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ABSTRACT
The superadiabatic dynamical density functional theory (superadiabatic-DDFT) is a promising new method for the study of colloidal sys-
tems out-of-equilibrium. Within this approach, the viscous forces arising from interparticle interactions are accounted for in a natural
way by explicitly treating the dynamics of the two-body correlations. For bulk systems subject to spatially homogeneous shear, we use the
superadiabatic-DDFT framework to calculate the steady-state pair distribution function and the corresponding viscosity for low values of
the shear-rate. We then consider a variant of the central approximation underlying this superadiabatic theory and obtain an inhomogeneous
generalization of a rheological bulk theory due to Russel and Gast. This paper thus establishes for the first time a connection between DDFT
approaches, formulated to treat inhomogeneous systems, and existing work addressing nonequilibrium microstructure and rheology in bulk
colloidal suspensions.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0211198

I. INTRODUCTION

Colloidal suspensions exhibit a rich variety of rheological
behavior, arising from the interplay between Brownian motion, sol-
vent hydrodynamics, and potential interactions.1–3 For example, the
phenomena of shear thinning, shear thickening, and yielding are
relevant for many commercial products and industrial processes. In
order to control and tune the rheological properties of a suspension
for any specific application, it is necessary to have an understand-
ing of how the microscopic interactions between the constituents
influence the macroscopic response.4 The challenge for nonequi-
librium statistical mechanics is to formulate robust and accurate
first-principles theories based on tractable approximation schemes
that capture the essential physics while remaining sufficiently simple
for concrete calculations to be performed.

For the most commonly studied situation, namely bulk sus-
pensions under homogeneous shear, there are currently a variety of
microscopic approaches. Each of these aims to capture a particular
aspect of cooperative particle motion within a limited range of shear-
rates and thermodynamic parameters but fails to provide a unified

global picture. While exact results can be obtained for low den-
sity systems at low shear-rate,5–7 systems at intermediate7–19 or high
densities20–24 invoke a diverse range of approximate closure relations
to account for the correlated motion of the particles. Inhomoge-
neous systems, for which the density and shear-rate vary in space,
are more challenging to treat theoretically, and appropriate closure
relations that correctly capture the coupling between gradients in
shear-rate and density remain under development.25–30

The clearest path to a first-principles theory of suspension rhe-
ology is to focus on the particle correlation functions and then
integrate these to obtain the macroscopic rheological properties of
interest. This makes it possible to connect the macroscopic consti-
tutive relations to the nonequilibrium microstructure of the system
and, therefore, gain microscopic insight into the physical mecha-
nisms at work.2,5 For systems with pairwise additive interparticle
interactions, the two-body correlations are the primary objects of
interest. In the absence of hydrodynamic interactions, these enable
full calculation of the stress tensor, which is the key quantity of
interest in rheology. Additional motivation to develop theories that
“look inside” the flowing system is provided by developments in the
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visualization and tracking of particle motion in experiments (con-
focal microscopy),25,31–33 together with the detailed information
provided by computer simulations of model systems under flow.34–37

Theoretical studies of inhomogeneous fluids, both in- and
out-of-equilibrium, are primarily based on the spatially varying one-
body density alone and do not usually directly involve the inhomo-
geneous two-body correlations (although exceptions do exist38–42).
This is a major difference between the standard dynamical density
functional theory (standard DDFT) of inhomogeneous fluids43,44

and the aforementioned approaches to bulk colloidal rheology.
When applied to bulk systems subject to homogeneous shear flow,
the standard DDFT does not present, as is, a useful framework since
the one-body density is not affected by the shear and remains con-
stant in time. There have nevertheless been attempts to supplement
the one-body equation of standard DDFT with additional empirical
correction terms to avert this issue.26,27,45

However, a new DDFT framework has recently been devel-
oped, the so-called superadiabatic-DDFT,41 which treats explicitly
the dynamics of the two-body correlations. This scheme presents a
significant improvement in describing the dynamics of inhomoge-
neous fluids in the presence of time-dependent external potentials
by accounting, via the two-body correlations, for the structural
rearrangement of the particles as the system flows.41,42 The
superadiabatic-DDFT (composed of a pair of coupled equations for
the one- and two-body density) per construction avoids the short-
comings of standard DDFT since its equation for the two-body
density is affected by shear and can thus be directly used to study
bulk homogeneous systems. By predicting the shear-induced distor-
tion of the pair correlations, superadiabatic-DDFT allows to obtain
the viscosity as an output of the theory. This is not a quantity reach-
able in any standard DDFT treatment of the problem, but is a very
relevant bridge to the world of rheology.

In this paper, we apply superadiabatic-DDFT to bulk systems
under steady-shear flow and investigate its predictions for the shear-
distorted pair distribution function and the low-shear viscosity. In
addition, we show that a variation of the superadiabatic-DDFT
reproduces, in the bulk limit, an early theory due to Russel and
Gast10 and, therefore, provides a generalization of their approach to
the case of inhomogeneous fluids in external fields. This establishes a
clear connection between existing microscopic theories of bulk col-
loidal rheology and DDFT approaches to the dynamics of inhomo-
geneous fluids. The numerical predictions of this Russel–Gast-type
approach are compared with those of supradiabatic-DDFT.

II. SUPERADIABATIC-DDFT
A. General framework

The superadiabatic-DDFT, presented in detail in Ref. 41,
consists of a pair of differential equations for the coupled time-
evolution of the one- and two-body densities. It is applicable to
systems with pairwise interparticle interactions. The first equation
of superadiabatic-DDFT is the exact expression for the one-body
density,

1
D0

∂ρ(r1, t)
∂t

= ∇r1 ⋅ (∇r1 ρ(r1, t) + ρ(r1, t)∇r1 βVext(r1, t)

+ ∫ dr2ρ(2)(r1, r2, t)∇r1 βϕ(r12)), (1)

where β = (kBT)−1, D0 is the diffusion coefficient, ϕ is the inter-
particle pair potential, r12 = ∣r1 − r2∣, and Vext is a time-dependent
external potential. The second equation is an approximate equation
of motion for the two-body density, given by

1
D0

∂ρ(2)(r1, r2, t)
∂t

= ∑
i=1,2
∇ri ⋅ (∇ri ρ

(2)
sup(r1, r2, t)

+ ρ(2)sup(r1, r2, t)∇ri βϕ(r12)

+ ρ(2)(r1, r2, t)∇ri βVext(ri)

− ρ(2)ad (r1, r2, t)∇ri βVad(ri, t)), (2)

where the superadiabatic contribution to the two-body density is
defined according to

ρ(2)sup(r1, r2, t) ≡ ρ(2)(r1, r2, t) − ρ(2)ad (r1, r2, t). (3)

The adiabatic two-body density, ρ(2)ad , is obtained by evaluating the
equilibrium two-body density functional at the instantaneous one-
body density,

ρ(2)ad (r1, r2, t) ≡ ρ(2)eq (r1, r2; [ρ(r, t)]). (4)

The adiabatic potential, Vad, appearing in (2) generates a ficti-
tious external force that stabilizes the adiabatic system. This is
obtained from the Yvon–Born–Green (YBG) relation of equilibrium
statistical mechanics46,47

−∇r1 Vad(r1, t) ≡ kBT∇r1 ln ρ(r1, t) + ∫ dr2
ρ(2)ad (r1, r2, t)

ρ(r1, t)
×∇r1 ϕ(r12), (5)

applied to the nonequilibrium system. We note that the approxi-
mate equation for the two-body density (2) becomes exact in the low
density limit.

B. Low shear-rate solutions for the pair distribution
function in bulk

We now specialize to a bulk system, for which the external
potential is set equal to zero and the one-body density becomes
constant, ρ(r, t)→ ρb. In this case, the adiabatic two-body den-
sity is both isotropic and translationally invariant. Consequently,
the integral term in Eq. (5) vanishes, and the adiabatic potential
becomes constant in space. This constant can then be set equal to
zero without loss of generality. To exploit the translational invari-
ance of the system, we now define the following relative and absolute
coordinates:

r = r1 − r2, R = r1 + r2, (6)

that then allow us to make the replacements

∇r1 → ∇r = ∇, (7)

∇r2 → −∇r = −∇, (8)

where we henceforth drop the subscripts on the nabla. Due to trans-
lational invariance, ρ(2) will not depend on the absolute position
coordinate.
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FIG. 1. Sketch of the geometry. We choose particle 1 as the origin of our Cartesian
coordinate system (r1 is thus implicitly fixed equal to zero).

Since we wish to investigate systems under homogeneous flow,
we introduce the affine velocity field, v, which, for shear applied in
the direction of the x-axis, with shear-gradient in the y-direction, is
given by

v(r, t) = γ̇(t)yex, (9)

where γ̇ is the shear-rate (as illustrated in Fig. 1). From Eq. (2),
we thus obtain the following equation of motion for the pair
distribution function:

∂g(r, t)
∂t

= −2D0∇ ⋅ (−∇gsup(r, t) − gsup(r, t)∇βϕ(r))

−∇ ⋅ (g(r, t)v(r, t)), (10)

in which we note the emergence of the pair diffusion constant, 2D0,
and where the nonequilibrium pair distribution function is given by

g(r, t) =
ρ(2)(r, t)

ρ2
b

. (11)

Its superadiabatic component, which encodes the flow-induced
distortion of the microstructure, is defined as

gsup(r, t) = g(r, t) − geq(r), (12)

where the equilibrium radial distribution function, geq, can be
obtained from the interaction pair potential using an appro-
priate equilibrium theory (we will use an integral equation
closure).

Finding a solution to Eq. (10) for arbitrary values of γ̇ and ρb
is a difficult task. Even in the low density limit, considerable effort
must be expended to obtain numerical solutions due to the emer-
gence of a boundary-layer in g as the shear-rate is increased.6 We will
henceforth restrict our attention to the special case of steady-shear,

γ̇(t)→ γ̇, for which the time-independent, steady-state pair
distribution function, g(r, t)→ g(r), can be obtained (almost) ana-
lytically for arbitrary values of ρb. In the steady-state, Eq. (10)
reduces to

2D0∇ ⋅ (∇gsup(r) + gsup(r)∇βϕ(r)) −∇ ⋅ (g(r)v(r)) = 0. (13)

In equilibrium, v(r) = 0, and the pair-current, ∇gsup(r)
+ gsup(r)∇βϕ(r), vanishes. This condition leads trivially to
the solution gsup(r) = 0, which implies that g(r) = geq(r), as
expected.

To obtain a low shear-rate solution of the steady-state equa-
tion (13) we assume gsup to be a linear function of γ̇. (This will
be sufficient for our present purposes. However, we note that care
should be exercised when assuming linearity since boundary-layer
formation can significantly complicate the picture.19,48–50) Substitut-
ing (12) into (13) and neglecting terms quadratic and higher in γ̇
then yields the following linearized steady-state condition:

2D0∇ ⋅ (∇gsup(r) + gsup(r)∇βϕ(r)) −∇ ⋅ (geq(r)v(r)) = 0. (14)

In order to correctly capture the anisotropy induced by the flow, we
make the following ansatz:18

gsup(r) = −
1

2D0
(

r ⋅ E ⋅ r
r2 )e−βϕ(r) f (r), (15)

where we have introduced the rate-of-strain tensor, E, and the
isotropic radial function f(r). The rate-of-strain tensor contains all
relevant information about the affine flow field, while the function
f(r) depends only on the interaction potential, the bulk density, and
the system dimensionality. (Additional information regarding the
rate-of-strain tensor is provided in Appendix A.)

Working through the substitution of expression (15) into
Eq. (14), as described in Appendix B, finally yields the radial balance
equations required to determine f(r). These are given by

dgeq(r)
dr

2 D
= −

1
r2

d
dr
(r

df (r)
dr

e−βϕ(r)
) +

4
r3 f (r)e−βϕ(r),

dgeq(r)
dr

3 D
= −

1
r3

d
dr
(r2 df (r)

dr
e−βϕ(r)

) +
6
r3 f (r)e−βϕ(r),

(16)

in two- and three-dimensions, respectively. The boundary condi-
tions required to solve Eq. (16) depend on the pair potential under
consideration and are discussed in detail in Appendix C.

Although we have chosen to focus on shear, we note that the
expressions presented in this subsection remain valid for any incom-
pressible, translationally invariant flow field and so could be applied
directly to, e.g., extensional flows.

C. Low-shear viscosity
For a bulk system in a steady-state, the nonequilibrium pair

distribution function is related to the stress tensor according to the
following exact expression:3

σ = −kBTρbI +
1
2

ρ2
b ∫ dr

rr
r
(

dϕ(r)
dr
)g(r), (17)

where I is the unit tensor. Due to the isotropy of the equilibrium pair
distribution function, only gsup contributes to the off-diagonal stress
tensor elements.
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The interaction part of the viscosity, η, is obtained by dividing
σxy by the shear rate. In the limit of low shear-rate, γ̇→ 0, Eq. (17)
gives the low shear viscosity, η0. Substituting Eq. (15) into Eq. (17)
and using the appropriate form for the rate-of-strain tensor in shear
flow, given by Eq. (A5), then yields

η0 =
kBT
4D0

ρ2
b ∫ dr

x2y2

r3 (
d
dr

e−βϕ(r)
) f (r). (18)

Both the function f and the integral in (18) depend on the
dimensionality of the system. We then find

η0
2 D
=

kBT
πD0

Φ2
2D∫

∞

0
drr2
(

d
dr

e−βϕ(r)
) f (r),

η0
3 D
=

kBT
πD0

12
5

Φ2
3D∫

∞

0
drr3
(

d
dr

e−βϕ(r)
) f (r),

(19)

in two- and three-dimensions, respectively. We have introduced
the two-dimensional area fraction, Φ2D = πρb/4, and the three-
dimensional volume fraction, Φ3D = πρb/6, where all lengths have
been non-dimensionalized using the characteristic diameter of the
particles. If the function f were known exactly, then Eq. (19) would
yield the exact low-shear viscosity. Within the present approach, the
adiabatic approximation employed to close the two-body equation
of motion (2) yields approximate radial balance equations (16) for f
and, therefore, an approximate low-shear viscosity.

For the well-studied case of low density hard-spheres in three-
dimensions, Eq. (16) has the analytic solution f(r) = 1/(3r3

), and
Eq. (19) recovers the quadratic term in the well-known low density
expansion (see p. 114 in Ref. 2),

η0 = ηs(1 +
5
2

Φ3D +
12
5

Φ2
3D), (20)

which applies in the absence of hydrodynamic interactions between
the particles. The first term in (20) is the solvent viscosity, ηs. The
second term arises from the drag of the solvent on the surface of each
individual sphere.51 The third term, which is exact for a system with-
out hydrodynamic interactions, represents the influence of direct
potential interactions between the particles and comes from evaluat-
ing the integral in Eq. (19) and then employing the Stokes-Einstein
relation kBT/D0 = 3πηs.

D. Numerical results
To investigate the predictions of the superadiabatic-DDFT

approach, we will focus on the special case of hard-disks in two-
dimensions, which presents a phenomenology qualitatively similar
to that of hard-spheres in three-dimensions while remaining con-
venient for visualization of the distorted pair correlations in the
xy-plane. The solution of the radial balance equation (16) requires as
input the hard-disk equilibrium radial distribution function, geq. We
obtain this quantity by employing the famous Percus–Yevick clo-
sure of the homogeneous Ornstein–Zernike equation,52,53 known to

FIG. 2. Superadiabatic-DDFT gsup. For hard-disks in two-dimensions, we show the superadiabatic contribution to the pair correlation function, gsup, in units of γ̇d2
/2D0. Since

we consider only low shear-rates, gsup exhibits quadripolar symmetry [see Eq. (15)]. Increasing the bulk density leads to packing oscillations.
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be accurate for the hard-disk system at low and intermediate bulk
densities.

In Fig. 2, we show scatter plots of the rescaled superadiabatic
contribution to the distorted pair correlation function, namely,

gsup(x, y)
γ̇d2
/2D0

= −
xy
r2 f (r), (21)

where r =
√

x2
+ y2 and f(r) is obtained from the numerical inte-

gration of Eq. (16). Results are shown for four different values of
the bulk density, ρb, one per panel, and are valid at low shear-rates.
At the lowest considered bulk density, ρb = 0.1, the radial function
f(r) obtained numerically is very close to its low-density limit value,
f(r) = 1/2r2, and no packing oscillations are visible in the resulting
scaled gsup. In this panel, we observe an accumulation of particles
at contact, r = d, in the “compressional” quadrants, defined as the
region where sign(y) = −sign(x), and an opposite depletion effect in
the “extensional” quadrants, where sign(y) = sign(x). As the value
of the bulk density increases, packing oscillations develop at larger
values of r. These oscillations in gsup take both positive and negative
values and are a nontrivial prediction of the radial balance equa-
tion (16). The packing structure of the full pair correlation function,
g(r) = geq(r) + gsup(r), will thus differ from that observed in bulk
as a consequence of the applied shear. However, our numerical solu-
tions reveal that the contact value of the radial function remains
unaffected by changes in ρb and is given by

f (r = d) = 1/(2d2
), ∀ρb, (22)

in each of the panels shown in Fig. 2.
Knowledge of the nonequilibrium pair correlation function also

enables the calculation of the interaction contribution to the low-
shear viscosity, η0, via Eq. (18). Results obtained by solving the
radial balance equation (16) and evaluating the integral (18) for
each chosen value of the bulk density are shown in Fig. 3 and com-
pared with a fit to Brownian dynamics simulation data taken from
Ref. 54. While both curves overlap for low values of ρb, the theoret-
ical superadiabatic-DDFT curve strongly underestimates η0 relative
to the simulation at higher densities. We note that the simulation
curve diverges as the system approaches random close packing,
located at Φ2D ≈ 0.82 for monodisperse hard-disks.

Due to the density independence of the contact value (22), the
above-described route to obtaining the interaction contribution to
the low-shear viscosity recovers its low-density form, namely,

η0 =
kBTd2

D0

Φ2
2D

2π
, ∀ρb. (23)

Accounting for the influence of shear-flow on the bulk three-body
density would give corrections to higher-order in area fraction
in Eq. (23). However, this mechanism is neglected per construc-
tion within the current approximation. The fact that we recover
only the leading-order contribution (23) to the low-shear viscos-
ity is thus not surprising and is consistent with the application of
the adiabatic approximation at the two-body level. It seems very
likely that improved predictions for η0 could be obtained from

FIG. 3. Low-shear viscosity. A comparison of η0 from superadiabatic-DDFT [see
Eq. (23)], with a fit to simulation data taken from Ref. 54. The low-shear viscos-
ity from simulation diverges as the system approaches random close packing,
whereas the superadiabatic-DDFT retains the low density limiting form for all
values of the area fraction.

superadiabatic-DDFT by employing the “test-particle method,” as
we will discuss in Sec. IV.

III. RUSSEL–GAST-TYPE THEORY
In Sec. II, we analyzed the properties of superadiabatic-DDFT

for bulk systems subject to homogeneous shear. All predictions of
the theory for the pair distribution function and viscosity arise from
the adiabatic closure employed to arrive at Eq. (2). In this section,
we show that there exists an alternative way to implement the adi-
abatic closure and that this results in a new approximate equation
of motion for the inhomogeneous two-body density, different from
Eq. (2). In the bulk limit, the new approximation reduces to an
equation of motion for the pair distribution function first intro-
duced in 1986 by Russel and Gast,10 which constituted one of the
earliest theoretical approaches to the microstructure and rheology
of colloidal suspensions at a finite volume fraction. It thus seems
appropriate to call our adiabatic closure of the equation of motion
for the inhomogeneous two-body density a “Russel–Gast-type”
approximation.

A. Alternative adiabatic closure
Integrating the many-particle Smoluchowski equation over

N − 2 particle coordinates yields the following, formally exact
equation of motion for the two-body density41,44

1
D0

∂ρ(2)(r1, r2, t)
∂t

= ∑
i=1,2
∇ri ⋅ (∇ri ρ

(2)
(r1, r2, t)

+ ρ(2)(r1, r2, t)∇ri β(Vext(ri) + ϕ(r12))

+ ∫ dr3ρ(3)(r1, r2, r3, t)∇ri βϕ(ri3)). (24)

This equation can also be rewritten in the following alternative
form:
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1
D0

∂ρ(2)(r1, r2, t)
∂t

= ∑
i=1,2
∇ri ⋅ (ρ(2)(r1, r2, t)(∇ri ln (ρ(2)(r1, r2, t))

+∇ri β(Vext(ri) + ϕ(r12))

+ ∫ dr3
ρ(3)(r1, r2, r3, t)

ρ(2)(r1, r2, t)
∇ri βϕ(ri3))), (25)

which remains fully equivalent to Eq. (24), since there is no
approximation involved at this stage.

Using the standard form (24) of the exact equation of motion
and applying the adiabatic approximation solely to the three-body
density, i.e., ρ(3) → ρ(3)ad , yields

1
D0

∂ρ(2)(r1, r2, t)
∂t

= ∑
i=1,2
∇ri ⋅ (∇ri ρ

(2)
(r1, r2, t)

+ ρ(2)(r1, r2, t)∇ri β(Vext(ri) + ϕ(r12))

+ ∫ dr3ρ(3)ad (r1, r2, r3, t)∇ri βϕ(ri3)), (26)

where the adiabatic three-body density is defined as

ρ(3)ad (r1, r2, r3, t) ≡ ρ(3)eq (r1, r2, r3; [ρ(r, t)]), (27)

in analogy to Eq. (4). Substitution of the second-order
Yvon–Born–Green (YBG2) equation41,46

∫ dr3ρ(3)ad (r1, r2, r3, t)∇ri βϕ(ri3)

= −∇ri ρ
(2)
ad (r1, r2, t) − ρ(2)ad (r1, r2, t)∇ri β

× (Vad(ri, t) + ϕ(r12)), (28)

into (26) yields the second equation of superadiabatic-DDFT,
namely Eq. (2). This is the procedure followed in Ref. 41.

An alternative method to implement the adiabatic closure is to
start with the (reformulated) exact equation of motion (25) and to
apply the approximation to the integral term,

1
D0

∂ρ(2)(r1, r2, t)
∂t

= ∑
i=1,2
∇ri ⋅
⎛

⎝
ρ(2)(r1, r2, t)

⎛

⎝
∇ri ln (ρ(2)(r1, r2, t))

+∇ri β(Vext(ri) + ϕ(r12))

+ ∫ dr3
ρ(3)ad (r1, r2, r3, t)

ρ(2)ad (r1, r2, t)
∇ri βϕ(ri3)

⎞

⎠

⎞

⎠
. (29)

We note that Eq. (29) is no longer equivalent to the previous Eq. (26).
The essential difference between these two options is that in Eq. (26)
we approximate the joint probability density, whereas in Eq. (29) we
approximate the conditional probability density. Substitution of the
rewritten YBG2 equation

∫ dr3
ρ(3)ad (r1, r2, r3, t)

ρ(2)ad (r1, r2, t)
∇ri βϕ(ri3)

= −∇ri ln (ρ(2)ad (r1, r2, t)) −∇ri β(Vad(ri, t) + ϕ(r12)), (30)

into expression (29), then yields the following alternative equation
of motion for the two-body density:

1
D0

∂ρ(2)(r1, r2, t)
∂t

= ∑
i=1,2
∇ri ⋅ (ρ

(2)
(r1, r2, t)(∇ri ln (ρ(2)(r1, r2, t))

+∇ri β(Vext(ri) − Vad(ri, t)) −∇ri ln (ρ(2)ad (r1, r2, t)))).
(31)

We refer to this approximation strategy as “Russel–Gast-like,” since
Eq. (31) reduces to the Russel–Gast equation (see Ref. 10) for the
pair distribution function in the bulk limit, as we will demonstrate
in Subsection III B.

B. Low shear-rate solutions for the pair distribution
function in bulk

Following the same scheme as in Subsection II B, the bulk limit
of Eq. (31) is given by

∂g(r, t)
∂t

= −2D0∇ ⋅ (−∇gsup(r, t) +
gsup(r, t)

geq(r)
∇geq(r))

−∇ ⋅ (g(r, t)v(r, t)). (32)

This provides an alternative to Eq. (10). [As a side-note, we men-
tion that the second term on the right-hand side of Eq. (32) can be
rewritten using the following rearrangement:

gsup(r, t)
geq(r)

∇geq(r) = −gsup(r, t)∇(− ln (geq(r)))

= −gsup(r, t)∇(βϕmf(r)),

where we have introduced the “potential of mean force,” ϕmf(r),
defined by geq(r) ≡ e−βϕmf(r).] In the low density limit, geq(r)
→ e−βϕ(r), which yields

gsup(r, t)
geq(r)

∇geq(r)→ −gsup(r, t)∇βϕ(r), (33)

such that Eqs. (32) and (10) then become equivalent (which is not
the case in general).

In the steady-state at finite densities, Eq. (32) reduces to the
condition

2D0∇ ⋅ (∇gsup(r, t) −
gsup(r, t)

geq(r)
∇geq(r)) −∇ ⋅ (g(r, t)v(r, t)) = 0.

(34)
Using the definition (12) and again assuming that gsup is linear in
the flow-rate yields the following expression to leading order:

2D0∇ ⋅ (∇gsup(r, t) −
gsup(r, t)

geq(r)
∇geq(r)) −∇ ⋅ (geq(r)v(r)) = 0.

(35)
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Since Eqs. (14) and (35) are non-equivalent, the solution of
Eq. (35) now requires a different ansatz than used previously. The
appropriate choice in the present case is given by

gsup(r) = −
1

2D0
(

r ⋅ E ⋅ r
r2 )geq(r) f ⋆(r), (36)

where the ⋆ notation makes it explicit that the (still unknown)
radial function, f⋆(r), is different from the function, f(r), previ-
ously encountered. Substitution of ansatz (36) into the linearized
steady-state equation (35) then yields the alternative radial balance
equations

dgeq(r)
dr

2 D
= −

1
r2

d
dr
(r

d f ⋆(r)
dr

geq(r)) +
4
r3 f ⋆(r)geq(r),

dgeq(r)
dr

3 D
= −

1
r3

d
dr
(r2 d f ⋆(r)

dr
geq(r)) +

6
r3 f ⋆(r)geq(r),

(37)

to determine f⋆(r) for the cases of two- and three-dimensions. We
refer the reader to Appendix D for additional details regarding the
derivation of Eq. (37) and the boundary conditions required to solve
them.

C. Low-shear viscosity
Within the alternative adiabatic closure, the low-shear viscosity

is given by

η0 =
kBT
4D0

ρ2
b ∫ dr

x2y2

r3 (
d
dr

e−βϕ(r)
)yeq(r) f ⋆(r), (38)

where we have introduced the so-called “cavity distribution
function,”

yeq(r) = geq(r)eβϕ(r), (39)

familiar from liquid-state theory.46 We emphasize that f⋆(r)
appearing in Eq. (38) is given by solution of the radial balance
equations (37) and is distinct from the function f(r) obtained
from solution of Eq. (16). In two- and three-dimensions, Eq. (38)
becomes

η0
2 D
=

kBT
πD0

Φ2
2D∫

∞

0
drr2
(

d
dr

e−βϕ(r)
)yeq(r) f ⋆(r),

η0
3 D
=

kBT
πD0

12
5

Φ2
3D∫

∞

0
drr3
(

d
dr

e−βϕ(r)
)yeq(r) f ⋆(r),

(40)

FIG. 4. Russel–Gast-type closure for gsup. Analogous plot to Fig. 2, but this time employing the alternative closure. For hard-disks, we show the superadiabatic contribution
to the pair correlation function, gsup, in units of γ̇d2

/2D0 [see Eq. (36)]. Since the results are qualitatively similar to those in Fig. 2 and, therefore, difficult to compare, we refer
the reader to Fig. 5 for a more detailed analysis.
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respectively. For the special case of low density hard-spheres in
three-dimensions, the analytic solution of Eq. (37) is the same as that
given by Eq. (16), namely

f ⋆(r) = f (r) = 1/(3r3
), (41)

such that the Russel–Gast-type closure reproduces the exact low
density expansion of the low-shear viscosity of hard-spheres, given
by Eq. (20).

D. Numerical results
We now investigate some numerical predictions of the alter-

native closure, where we again consider the hard-disk system in
two-dimensions and use the Percus–Yevick closure to obtain geq for
input to the radial balance equation (37). In Fig. 4, we show scatter
plots of the quantity

gsup(x, y)
γ̇d2
/2D0

= −
xy
r2 f ⋆(r)geq(r), (42)

for four different values of the input bulk density. Note that the
radial function f⋆(r) is obtained from numerical integration of

Eq. (37) and that r =
√

x2
+ y2. The predictions of the Russel–Gast-

type closure are generally very similar to those obtained from
the superadiabatic-DDFT approach of Sec. II, although deviations
become apparent on closer inspection.

The results for gsup at the lowest bulk density considered,
ρb = 0.1, are very close to the known low-density limit, for which
f⋆(r) = 1/2r2, with accumulation and depletion at contact within
the compressional and extensional quadrants, respectively. As the
bulk density increases, we observe the emergence of packing oscil-
lations. We recall that superadiatic-DDFT predicted that the radial
function f appearing in Eq. (23) has a contact value that remains
independent of the bulk density. The analogous quantity within
the present approximation is the product f⋆(r)geq(r) appearing on
the right-hand side of Eq. (42). We find that the contact value of
this product does exhibit a nontrivial dependence on ρb and, as we
will see, this causes the low-shear viscosity generated by Eq. (40) to
deviate from that predicted by superadiabatic-DDFT.

In Fig. 5, we show the pair distribution function on both the
extensional axis, along which the particles get pulled apart by the
shear, and on the compressional axis, along which the particles
get pressed together. In order to show more clearly the difference
between the superadiabatic-DDFT and Russel–Gast-type approxi-
mations, we show in the inset the difference between the nonequilib-
rium and equilibrium pair distribution functions. On the extensional
axis, both approximation schemes predict a reduction in the height
of all maxima, including the first peak at particle contact. The reduc-
tion in amplitude of the peaks is slightly more pronounced within
the Russel–Gast-type approximation. In both cases, the radial posi-
tion of the second and higher-order peaks shifts to larger values
of r, consistent with the fact that particles are being pulled away
from each other by the shear flow. In contrast, on the compressional
axis, the height of all maxima increases, and the radial locations of
the second and higher-order peaks are shifted to smaller values of
r since the particles are being pushed closer together by the shear
flow. The two theories again make similar predictions, although the

FIG. 5. Pair distribution function. We show the full nonequilibrium pair distribution
function of hard-disks along the extensional axis, y = x, and the compressional
axis, y = −x. Results are given from both the superadiabatic-DDFT and the
Russel–Gast-type approximations for ρb = 0.7. The additional black curve indi-
cates the equilibrium radial distribution function for comparison. The dimensionless
shear-rate is chosen to be γ̇d2

/2D0 = 1. The inset shows the difference between
the nonequilibrium and equilibrium pair distribution functions to highlight the differ-
ence between the two approximations. Due to the symmetry of the low-shear pair
distribution function for a given approximation, the curves in the compressional
and extensional directions are identical (up to a sign).

Russel–Gast-type approximation yields a slightly larger increase in
peak height than the superadiabatic-DDFT. The general similar-
ity of the predictions from the two approximation schemes for the
nonequilibrium microstructure is reassuring, as it appears that the
results are robust with respect to the details of how the adiabatic
approximation is implemented.

From the nonequilibrium pair correlation function, we can cal-
culate the zero-shear viscosity using Eq. (40), for which results are
shown in Fig. 6. We find that the Russel–Gast-type approximation
scheme generates a low-shear viscosity curve with values slightly
larger than those predicted by the superadiabatic-DDFT. We can
attribute this effect to the difference in the contact value of the pair
distribution function between the two approximations (see Fig. 5).
Within the Russel–Gast-type approach, the difference between the
contact value on the extensional axis and the contact value on the
compressional axis is larger than for superadiabatic-DDFT. This
larger extensional/compressional asymmetry has the consequence
that for any given area fraction, η0 from the Russel–Gast-type
approach is larger than for the superadiabatic-DDFT. Although the
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FIG. 6. Low-shear viscosity. Analogous plot to Fig. 3, but now including the predic-
tion of the Russel–Gast-type approximation. This additional result predicts slightly
larger values of η0 than the superadiabatic-DDFT but exhibits an unphysical
curvature as the area fraction is increased.

Russel–Gast-type closure produces values of the low-shear viscos-
ity closer to the simulation results, it has the undesirable feature of
changing curvature as the area fraction increases beyond about 0.45.
This questions the physicality of the alternative approximation and
its rescaling potential for higher densities.12

IV. DISCUSSION
In this paper, we have investigated the predictions of

superadiabatic-DDFT for the nonequilibrium pair correlation func-
tion and low-shear viscosity of bulk systems subject to the homoge-
neous shear flow defined by Eq. (9). This provides a conceptual link
between density functional-based approaches, which are focused on
the inhomogeneous one-body density,43,44,55 and microscopic theo-
ries of homogeneous bulk rheology of the type pioneered by Brady,
Russel, Wagner, and others.2,3,18 A clear connection between these
two substantial bodies of literature, which have coexisted for decades
with little to no interaction, is established by our Russel–Gast-type
closure of the equation of motion for the two-body density. As
detailed in Sec. III, this new scheme generates a fully inhomoge-
neous DDFT, which reduces to the known Russel–Gast theory for
bulk systems subject to homogeneous shear.10

The application of shear distorts the bulk pair distribution
function and, for systems interacting via a pairwise additive poten-
tial, enables the interaction part of the stress tensor to be calculated.
For the low shear-rates considered here, the only relevant trans-
port coefficient is the viscosity, since the lowest-order shear-induced
changes to the diagonal stress tensor elements are quadratic in γ̇.
For larger shear-rates, we would need to consider the extension of
our solution ansatz (15) or (36), respectively, to higher-order in
γ̇, which would then generate nonvanishing normal stress differ-
ences and shear-induced modifications to the system pressure.6,29

It would be interesting to investigate the extent to which numer-
ical solutions of the superadiabatic-DDFT can account for non-
linear rheological and microstructural changes as the shear rate is
increased. For example, it is known from both simulation37 and
experiment56 that the nonequilibrium bulk three-body distribution

function deviates significantly from its equilibrium form, which
could be difficult to capture using an adiabatic closure on the
two-body level.

Focusing on the low shear-rate regime enabled a largely analytic
investigation of the nonequilibrium pair distribution function, with
only the solution of the radial balance equation and evaluation of the
low-shear viscosity demanding (relatively simple) numerical inte-
gration. At larger values of the shear-rate, more sophisticated tech-
niques must be employed since boundary-layer formation prevents
the application of straightforward perturbation theory.6,48–50,57 An
interesting extension of our study to obtain results for higher shear-
rates could be to employ either multipole methods,58 specialized
numerical schemes,6,59 or intermediate asymptotics.19,49 Although
the theories presented here are valid for an arbitrary pair interaction
potential in two- or three-dimensions, we chose to perform numeri-
cal calculations for the special case of hard-disks, as this presents the
simplest continuum model for the study of shear while still retaining
much of the essential phenomenology of three-dimensional systems.
In Refs. 19 and 49, it is shown how the pair distribution func-
tion under shear can be calculated analytically for more general
interaction potentials.

The two routes presented in this work are built on two vari-
ations of the same approximation. The numerical output of those
theories is broadly similar but, as clearly pictured by the final viscos-
ity plot, Fig. 6, is different in more demanding situations at higher
bulk density. One can thus ask which scheme is more likely to
succeed in further investigations. The unphysical shape of the vis-
cosity curve obtained with the Russel–Gast-like closure suggests that
this variation of the approximation may be less robust than that
of superadiabatic-DDFT and could prove more difficult to improve
and refine.

A natural first step toward better predictions for the viscosity
at higher bulk densities would be to apply Brady’s semi-empirical
rescaling method.12 For the present Brownian dynamics, without
hydrodynamic interactions, this consists of multiplying the low den-
sity limiting solution for the interaction contribution to η0 [given
by Eq. (23) for hard-disks] by the contact value of the equilibrium
radial distribution function. The resulting low-shear viscosity has
been shown to agree well with simulation data for hard-spheres,16

and we find that this is also the case for hard-disks. Since the
superadiabatic-DDFT predicts that the low-density limiting result
(23) holds for all values of ρb, a rescaled version of the superadiatic-
DDFT would exactly reproduce Brady’s theory for η0. In contrast,
a rescaled Russel–Gast-type theory would continue to exhibit an
unphysical curvature, as the contact value of geq is a monotonically
increasing function of bulk density. Investigating how such a rescal-
ing factor could emerge from a systematic, first-principles extension
of the superadiabatic-DDFT closure scheme will be an interesting
topic for future study.

While the above considerations may provide a path to struc-
tural improvements of the superadiabatic-DDFT equations (i.e.,
following from a new two-body closure), there remains a great deal
to be learned from the current version of the theory. In this paper,
we have considered only the direct application of superadiabatic-
DDFT to the bulk system, meaning that we work from the outset
with a constant one-body density and focus on the properties and
predictions of the resulting two-body equation of motion. Although
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this sheds light on the internal structure and physical content of
the theory, we should keep in mind that the superadiabatic-DDFT
is still a density functional theory and, as such, aims primar-
ily to predict the dynamics of the one-body density. If we are
interested solely in bulk systems under shear, as in the present
work, then the full power of superadiabatic-DDFT for the one-
body dynamics can be harnessed by employing a more sophisti-
cated implementation scheme: the test-particle method. Fixing a
test-particle at the coordinate origin [i.e., setting Vext(r) = ϕ(r)]
induces a spatially varying steady-state one-body density, ρ(r),
as particles around the test-particle accumulate in the compres-
sional quadrants and are depleted from the extensional quad-
rants.54 This inhomogeneous one-body density can be related to
the bulk pair distribution function according to g(r) = ρ(r)/ρb,
from which the viscosity can be calculated using Eq. (17). We sus-
pect that a test-particle implementation of superadiabatic-DDFT
will yield a low-shear viscosity that greatly improves the simple
quadratic expression (23), obtained by direct application of the
two-body equation of motion to bulk. The proposed test-particle
calculation would require explicit treatment of the inhomogeneous
two-body density in the presence of a test-particle and would
thus capture, to some extent, the shear-induced distortion of the
bulk three-body correlations. Investigations in this direction are
underway.

Finally, we mention the issue of hydrodynamic interactions.
Although the majority of standard DDFT studies do not consider
solvent hydrodynamics, this aspect has been incorporated into the
formalism.60–64 It would thus be interesting to investigate whether a
similar extension would be feasible for superadiabatic-DDFT. Many
of the existing theories of homogeneous bulk rheology mentioned
in the introduction, including the bulk Russel–Gast theory, were
formulated to include hydrodynamic interactions to some level of
approximation. These works, all of which are focused on two-body
correlations, could well provide a source of inspiration for future
developments.
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APPENDIX A: RHEOLOGICAL QUANTITIES

In a system undergoing translationally invariant, homogeneous
flow, the velocity field can be conveniently expressed in the following
form:

v(r) = κ ⋅ r, (A1)

where κ is the spatially constant velocity gradient tensor. As an
example, choosing flow in the x-direction with shear-gradient in the
y-direction enables κ to be represented in matrix form as

κ =
⎛
⎜
⎜
⎝

0 γ̇ 0
0 0 0
0 0 0

⎞
⎟
⎟
⎠

, (A2)

for a three-dimensional system with shear-rate γ̇.
The right-hand side of (A1) can be decomposed into a sum of

two terms,

v(r) = E ⋅ r +Ω ⋅ r, (A3)

where

E =
1
2
(κ + κT

), Ω = 1
2
(κ − κT

), (A4)

are the (symmetric) rate-of-strain tensor and the (antisymmet-
ric) rate-of-rotation tensor, respectively. The rate-of-strain ten-
sor describes “pure straining motion” leading to relative motion
between any two particles, whereas the rate-of-rotation tensor
yields pure rotational motion, which does not affect their relative
separation.65 For the aforementioned case of shear flow, we obtain

E =
1
2

⎛
⎜
⎜
⎝

0 γ̇ 0
γ̇ 0 0
0 0 0

⎞
⎟
⎟
⎠

, Ω = 1
2

⎛
⎜
⎜
⎝

0 γ̇ 0
−γ̇ 0 0
0 0 0

⎞
⎟
⎟
⎠

. (A5)

The anisotropy of the nonequilibrium pair distribution function in a
system subject to a slow translationally invariant flow is determined
solely by its straining motion and does not involve its rotational
component.6,18 This motivates our choice of ansatz for gsup in
Eqs. (15) and (36).

APPENDIX B: THE RADIAL BALANCE EQUATION

Substitution of the ansatz (15) into the linearized steady-state
equation (14) yields the radial balance equations (16). Since this
procedure is not straightforward, we outline here the main steps of
the calculation. Although we are primarily interested in the case of
homogeneous shear, we formulate the problem using the rate-of-
flow tensor E, which can also describe other flow types. This not
only extends the generality of our results but also presents the tech-
nical advantage that certain vector/tensor identities can be employed
to make the calculation as clean as possible. Unless otherwise
stated, all expressions given in this appendix are valid in arbitrary
dimensionality.

We start by collecting a few useful identities. For a general,
spatially varying, second-rank tensor M, the following holds:
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∇((r̂ ⋅M ⋅ r̂)a(r)) =
2
r2 (r ⋅M) ⋅ (I − r̂r̂)a(r)

+
1
r

da(r)
dr
(r ⋅M) ⋅ r̂r̂, (B1)

where r̂ = r/r is a unit vector, r̂r̂ is a dyadic product, and a(r) is a
scalar function of r = ∣r∣. For an arbitrary, spatially dependent vector
field, u, we have

∇ ⋅ (u ⋅M) = u ⋅ (∇ ⋅M) +M : ∇u, (B2)

where the double dot notation in the second term indicates a full
contraction, i.e., a scalar product followed by a trace operation. The
divergence of the product a(r)M is given by

∇ ⋅ (a(r)M) = ∇a(r) ⋅M + a(r)∇ ⋅M

= (
da(r)

dr
)r̂ ⋅M + a(r)∇ ⋅M.

(B3)

This identity generates the following special cases in two-
dimensions:

∇ ⋅ (a(r)(I − r̂r̂))2 D
= −

a(r)
r

r̂, (B4)

∇ ⋅ (a(r)r̂r̂)2 D
=

1
r

d
dr
(ra(r))r̂, (B5)

and three-dimensions

∇ ⋅ (a(r)(I − r̂r̂))3 D
= −

2a(r)
r

r̂, (B6)

∇ ⋅ (a(r)r̂r̂)3 D
=

1
r2

d
dr
(r2a(r))r̂, (B7)

respectively. In the special case where M is symmetric, it can be
shown that

(∇(M ⋅ r̂)) ⋅ r̂ = 0. (B8)

Finally, the divergence of the scalar product M ⋅ r̂ is given by the
aesthetically appealing identity,

∇ ⋅ (M ⋅ r̂) =
Tr (M)

r
−

r̂ ⋅M ⋅ r̂
r

. (B9)

We will now employ these identities to calculate the pair distribution
function at low flow rates.

Substitution of the ansatz (15) into the linearized steady-state
equation (14) yields

∇ ⋅ (geq(r)v(r)) = −∇ ⋅ (e−βϕ(r)
∇((r̂ ⋅ E ⋅ r̂) f (r))), (B10)

in which the only unknown quantity is the function f(r). Assuming
incompressible flow, ∇ ⋅ v = 0, using identity (B1) and rewriting the
projected velocity as

v(r) ⋅ r̂ = r(r̂ ⋅ E ⋅ r̂), (B11)

enables us to re-express Eq. (B10) as follows:

r
dgeq(r)

dr
(r̂ ⋅ E ⋅ r̂)

= −∇ ⋅ ((r̂ ⋅ E) ⋅ ((I − r̂r̂)
2 f (r)

r
+ r̂r̂

df (r)
dr
)e−βϕ(r)

). (B12)

The advantage of this representation is the appearance of the dyadic
tensors, r̂r̂ and (I − r̂r̂), which project either along or perpendicular
to the relative position vector r.

On the right-hand side of (B12), we have to calculate the
divergence of the scalar product between the vector r̂ ⋅ E and a
second-rank tensor. We can thus exploit relation (B2) to obtain

r
dgeq(r)

dr
(r̂ ⋅ E ⋅ r̂)

= −(r̂ ⋅ E) ⋅ (∇ ⋅ (((I − r̂r̂)
2 f (r)

r
+ r̂r̂

df (r)
dr
)e−βϕ(r)

))

− (((I − r̂r̂)
2 f (r)

r
+ r̂r̂

df (r)
dr
)e−βϕ(r)

) : ∇(E ⋅ r̂). (B13)

We will consider separately the two terms appearing on the right-
hand side of (B13), which we henceforth refer to as (i) and (ii).

To simplify (i) in two-dimensions, we use (B3)–(B5). This
yields

− (r̂ ⋅ E ⋅ r̂)(
1
r

d
dr
(r

df (r)
dr

e−βϕ(r)
) −

2 f (r)e−βϕ(r)

r2 ). (B14)

The analogous result in three-dimensions is given by

− (r̂ ⋅ E ⋅ r̂)(
1
r2

d
dr
(r2 df (r)

dr
e−βϕ(r)

) −
4 f (r)e−βϕ(r)

r2 ), (B15)

where we have used equations (B3), (B6), and (B7).
The simplification of term (ii) does not depend on the dimen-

sionality of the system. We first employ Eq. (B8) to re-express the
factor∇(E ⋅ r̂) as a divergence and then use identity (B9) to obtain

−
2 f (r)e−βϕ(r)

r
∇ ⋅ (E ⋅ r̂)

= −
2 f (r)e−βϕ(r)

r
(

Tr (E)
r
−

r̂ ⋅ E ⋅ r̂
r
)

=
2 f (r)e−βϕ(r)

r2 (r̂ ⋅ E ⋅ r̂), (B16)

since Tr (E) = 0 for incompressible flow.
Finally, substituting (B14) and (B16) into (B13) yields the

desired two-dimensional result

(r̂ ⋅ E ⋅ r̂)(
1
r

d
dr
(r

df (r)
dr

e−βϕ(r)
) −

4
r2 f (r)e−βϕ(r)

)

2 D
= − (r̂ ⋅ E ⋅ r̂)r

dgeq(r)
dr

, (B17)

while substitution of (B15) and (B16) into (B13) gives the result in
three-dimensions,
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(r̂ ⋅ E ⋅ r̂)(
1
r2

d
dr
(r2 df (r)

dr
e−βϕ(r)

) −
6
r2 f (r)e−βϕ(r)

)

3 D
= − (r̂ ⋅ E ⋅ r̂)r

dgeq(r)
dr

. (B18)

Since these expressions remain valid for all choices of the traceless
tensor E, the coefficients of the quadratic form (r̂ ⋅ E ⋅ r̂) must be
equal. We thus obtain the radial balance equations (16) stated in the
main text. We note that, in addition to the explicit appearance of the
pair interaction potential in (B17), respectively (B18), both the pair
potential and the bulk density enter these equations implicitly via the
equilibrium radial distribution function.

APPENDIX C: BOUNDARY CONDITIONS

The radial balance equations (16) are second-order in spatial
derivative, and their solution thus requires the specification of two
boundary conditions. From the linearized steady-state equation (14)
we can identify the following expression for the pair-current at low
shear-rates:

j(r) = −2D0(∇gsup(r) + gsup(r)∇βϕ(r)) + geq(r)v(r). (C1)

Pairs of particles separated by a large distance are not spatially cor-
related, which implies that the radial component of the pair-current
should tend to zero. Moreover, if we assume that the interparti-
cle interaction potential has a strongly repulsive core, then we can
impose that the radial component of the pair-current will also go to
zero at small separations. We thus have the boundary condition

j(r) ⋅ r̂ = 0, (C2)

for both r →∞ and r → 0.
For the case of hard-disks in two-dimensions or hard-spheres

in three-dimensions, the second boundary condition takes a special
form since the radial pair-current must vanish when two particles
touch in order to prevent unphysical overlap. The small separation
boundary condition then becomes

j(r) ⋅ r̂ =
r→1

0, (C3)

where we have set the particle diameter equal to unity. Using steps
directly analogous to those leading from (B10) to (B12) enables the
pair-current of hard-spheres to be expressed in the following form:

j(r) = (r̂ ⋅ E) ⋅ ((I − r̂r̂)
2 f (r)

r
+ r̂r̂

df (r)
dr
) + geq(r)v(r), (C4)

for r > 1. [Note that ϕ(r > 1) = 0 for the hard-sphere potential.]
Taking the scalar product of Eq. (C4) with the radial unit vector
yields

j(r) ⋅ r̂ = (r̂ ⋅ E ⋅ r̂)(rgeq(r) +
df (r)

dr
), (C5)

where we have used (B11). The hard-sphere “zero-flux” condition at
particle contact thus becomes

df (r)
dr
∣
r=1
= −geq(1). (C6)

The radial balance equations (16), combined with (C6) and
f(r →∞) = 0, fully determine the function f(r), given that the
input equilibrium radial distribution function is known.

APPENDIX D: ALTERNATIVE FORMS OF THE RADIAL
BALANCE EQUATION AND BOUNDARY CONDITIONS

In the preceding two Appendixes, we provided all the details
required for the derivation and solution of the radial balance
equations of superadiabatic-DDFT. Since the derivation of both
the alternative radial balance equations (37) and their boundary
conditions are very similar, we give here only the main equa-
tions to highlight the differences between the two approximation
schemes.

Substitution of the ansatz (36) into the linearized steady-state
equation (35) yields

∇ ⋅ (geq(r)v(r)) = −∇ ⋅ (geq(r)∇((r̂ ⋅ E ⋅ r̂) f ⋆(r))), (D1)

from which we can determine the function f⋆(r). Assuming incom-
pressible flow, ∇ ⋅ v = 0, and using the identities (B1) and (B11), we
can re-express Eq. (D1) in the following form:

r
dgeq(r)

dr
(r̂ ⋅ E ⋅ r̂)

= −∇ ⋅ ((r̂ ⋅ E) ⋅ ((I − r̂r̂)
2 f ⋆(r)

r
+ r̂r̂

d f ⋆(r)
dr

)geq(r)).

(D2)

Steps analogous to those leading from Eqs. (B12) to (B18) then
generate the alternative form of the radial balance equations (37).

From the linearized steady-state equation (35), we identify the
pair-current at low shear-rates,

j(r, t) = −2D0(∇gsup(r, t) −
gsup(r, t)

geq(r)
∇geq(r)) + geq(r)v(r).

(D3)
A calculation analogous to that leading from (B10) to (B12) shows
that Eq. (D3) can be re-expressed as

j(r) = (r̂ ⋅ E) ⋅ ((I − r̂r̂)
2 f ⋆(r)

r
+ r̂r̂

d f ⋆(r)
dr

)geq(r) + geq(r)v(r).

(D4)
For a general interaction potential, the boundary condition (C2)
holds for both r →∞ and r → 0.

In the special case of hard-spheres, the two-body current must
be equal to zero when a pair of particles come into contact. Applying
the boundary condition (C2) at r = 1 yields

d f ⋆(r)
dr

∣

r=1
= −1, (D5)

which is different from Eq. (C6). The boundary condition at par-
ticle contact, Eq. (D5), together with f⋆(r →∞) = 0, then fully
determines the solutions of the radial balance equations (37).
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