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A B S  T  R A C T   

 

Forecast accuracy is a crucial topic for industrial companies, and its impacts are 

particularly important for the finance and production departments. The company 

can incur high costs if forecasts are not accurate, for example, due to stock-outs 

or excess inventory. 

Therefore, the purpose of this study was to optimize accessories forecasting for 

a medium-sized Swiss enterprise. To do so, different forecasting techniques 

were tested, and statistical methods and machine learning (ML) algorithms were 

compared. The results were adjusted according to key account managers’ 

(KAM) expertise.  

This paper presents a comparison between exponential smoothing, seasonal 

autoregressive integrated moving average (SARIMA), SARIMAX (SARIMA 

with exogenous variables) and ML algorithms, such as k-nearest neighbors (k-

NN), least absolute shrinkage and selection operator (LASSO) regression, 

linear regression, and even random forest (RF). 

To compare these different methods, two measures of statistical dispersion are 

computed: mean absolute error (MAE) and root mean squared error (RMSE). 

The results are standardized to enable a better comparison. For our dataset, 

SARIMAX (with the KAMs’ expertise as an exogenous variable) appears to 

give better results than all the ML algorithms tested. 
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1. Introduction 
 

A previous article focused on improving product forecast accuracy for a Swiss small and 

medium enterprise (Ramosaj A., 2022): it identifies certain good methods to improve product 

forecasting accuracy. The following article discusses how forecasting accuracy can also be 

improved for accessories and spare parts. The difference between final products and 

accessories/spare parts is that products refer to household products while accessories are 

necessary for household products to be used and include, for example, spare parts, esthetic 

elements, or even maintenance products. Bad forecasting for spare parts can negatively impact 

decisions on supply, additional storage and maintenance costs, destruction, etc.  

 

There are noticeable differences between forecasting methods for final products and spare parts 

(Morris M., 2013). Various studies have been carried out to improve spare parts forecasting. 

Most try to reduce inventory costs (Romeijnders W., 2012), while others attempt to make links 

between poor accuracy and inventory obsolescence (Teunter R.H., 2011). Different forecasting 

approaches have been applied to improve the accuracy of spare parts orders. An interesting 

review of the field by (Pinçea C., 2021), splits spare parts forecasts into three categories: (1) 

time-series methods; (2) a combination of contextual approaches and statistical forecasting 

techniques; and (3) comparison of traditional and alternative demand forecasting methods. 

 

The consumption of spare parts varies greatly and is therefore challenging to forecast. Some 

research has focused on investigating the gap between research and practice in spare parts 

management through different case studies (Bacchetti A., 2012), while other studies have 

focused on statistical analysis (Hemeimat R., 2016). An interesting paper by (Arvan M., 2019) 

introduced human adjustments to quantitative forecasts, while another study made links 

between judgmental adjustments and statistical methods (Van den Broeke M., 2019). (Hu Q., 

2018) focused on spare parts classification by defining criteria such as the repairability, lead 

time, and even obsolescence of spare parts. Most studies have used historical data to determine 

how best to improve spare parts and applied models such as ARMA, auto-regressive integrated 

moving average (ARIMA) (Sheng F., 2020), autoregressive integrated moving average with 

exogenous values (ARIMAX), and seasonal autoregressive integrated moving average with 

exogenous values (SARIMAX) (Arunraj N.S., 2016). To go further, others have compared 

statistical and machine learning (ML) methods, such as k-nearest neighbors (k-NN) or even 

random forest (RF) (Spiliotis E., 2020). Most studies have used accuracy to measure the 

performance of forecasting, but others have shown that inventory performance yields more 

realistic benchmarks (Teunter R.H., 2017).  

 

The aim of our study was to improve the forecasting of spare parts for a medium-sized Swiss 

enterprise by using time-series models as well as ML algorithms. Following (Xie M., 2013), it 

was decided to add exogenous variables to the seasonal auto-regressive integrated moving 

average (SARIMA). The objective was to check the impacts of different exogenous values on 

the SARIMA model and compare these results with ML algorithms. We chose SARIMA, 

SARIMAX (SARIMA with exogenous variables), and some ML algorithms, such as LASSO, 

k-NN, RF, and linear regression, as exponential smoothing models.  

 

To outline the performance of our results, we decided to combine traditional forecasting 

measures, such as mean absolute error (MAE) and root mean square error (RMSE) but also 

residual stock (RS), to check the inventory impacts, as suggested in (Teunter R.H., 2017). 

 

 



3 
 

This article is organized as follows. Section 2 presents the state of the art of some forecasting 

models, after which Section 3 outlines the methodology used to solve the present research 

problem. Section 4 discusses the results and comparisons, and the last section concludes the 

paper. 

 

2. Existing forecasting models 
 
 

2.1 Exponential Smoothing 

 

(Stadtler H., 2002) defined exponential smoothing as the most frequently used forecasting 

method. The equation is the following: 

 

𝐹𝑡 = 𝐹𝑡−1 +  𝛼 (𝐴𝑡−1 − 𝐹𝑡−1)        (1) 

 

where Ft  is the forecast value for period t, Ft−1 is the exponentially smoothed forecast made for 

the previous period, At−1 is the actual demand in the previous period and alpha (α) is a smoothing 

constant that provides the weight of the committed error. 

 

 

2.2 SARIMA 

 

ARIMA is frequently used in spare parts forecasting (Jiafu R., 2009). The initial parameters 

used in ARIMA (p, d, q) are auto-regression [AR(p)], integrated [I(d)], and moving average 

[MA(q)].  

 

The difference between ARIMA and SARIMA is that the second includes the seasonality 

effects (Hyndman R.J., 2018). The equations of ARIMA and SARIMA are explained in 

(Ramosaj A., 2022). 

 

SARIMA can be expressed as follows: 

 

SARIMA   (p,d,q)    (P,D,Q)s,   (2) 

 

 

Non-seasonal part of the model Seasonal part of the model 

 

where s is the number of observations in which uppercase notation can be observed and defined 

as the seasonal parts (s) of the model, as depicted in Equation 3. 

 

Seasonal AR(1) Seasonal difference          Seasonal MA (1)  (3) 

 

 

 
(1− Ø1B) (1−ɸ1Bs)(1−B)(1−Bs)yt=(1+θ1B) (1+Θ1Bs)εt. 

 
      Non-seasonal difference  

Non-seasonal AR (1)   Non-seasonal MA (1)                           
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P,D,Q and p,d,q are sets based on the best Akaike’s Information Criterion (AIC). AIC is 

defined as: AIC = −2log(L) + 2K, where L denotes the likelihood and K the number of 

parameters estimated by the model. The AIC penalizes models with many parameters, and 

thus attempts to select the best model by favoring simpler models. Note that the AIC does 

not have much meaning by itself. It is only useful in comparison to the AIC value for 

another model fitted to the same dataset (Makridakis S., 2008). 

 

 

2.3 SARIMAX 

 

To go further and include the effect of demand influencing factors, SARIMAX is applied. This 

model is a combination of the SARIMA model and an X factor that represents an exogenous 

value (Arunraj N.S., 2015). This exogenous value, X, is an external factor that impacts the 

accuracy of the forecasts. SARIMA (Ramosaj A., 2022) could be expressed by (p,d,q) (P,D,Q)s. 

To move from SARIMA to SARIMAX, an additional external factor, X, is added and is 

modeled by multi-linear regression equation as follows: 

 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + ⋯ + 𝛽𝑘𝑥𝑘,𝑡 + 𝜔𝑡      (4)

     

where: 

𝑦𝑡 is the time series dependent variables. 

𝑥1,𝑡 𝑡𝑜 𝑥𝑘,𝑡 are the external variables. 

𝛽0 𝑡𝑜 𝛽𝑘 are the correlation regression coefficients. 

𝜔𝑡 is a stochastic residual independent of the input series. 

 

𝜔𝑡 can be formulated as follows: 

 

𝜔𝑡 =
𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)

𝜙𝑝(𝐵)𝛷𝑝(𝐵𝑆)(1−𝐵)𝑑(1−𝐵𝑠)𝐷 𝜀𝑡        (5) 

 

where: 

𝜃𝑞(𝐵) is the non-seasonal moving average (MA). 

𝛩𝑄(𝐵𝑠) is the seasonal moving average (MA). 

𝜙𝑝(𝐵) is the non-seasonal auto-regression (AR). 

𝛷𝑝(𝐵𝑆) is the seasonal auto-regression (AR). 

(1 − 𝐵)𝑑 is the non-seasonal difference (I). 

(1 − 𝐵𝑠)𝐷  is the seasonal difference (I). 

𝜀𝑡 is the remaining error.  
    

The general formula of SARIMAX can be obtained by substitution, namely, by putting equation 

5 in equation 4 as follows (Arunraj N.S., 2016): 

 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + ⋯ + 𝛽𝑘𝑥𝑘,𝑡 +
𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)

𝜙𝑝(𝐵)𝛷𝑝(𝐵𝑆)(1−𝐵)𝑑(1−𝐵𝑠)𝐷 𝜀𝑡   (6) 

 

Each exogenous value is appropriate to each spare part forecasted. We decided to use the 

following exogenous variables in our study: 

- Month sales: indication of the months; for example, January is 1 and August is 8. 
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- Mean sales: mean of all August months for the four years of data, for example: 

 
Sales. August 2018 +  Sales. August 2019 +  Sales. August 2020 +  Sales. August 2021

4
 

 

- KAM: the given key account managers’ forecasts.  

- Mean KAM: mean of all August months predicted by the KAM for the four years of 

data, for example: 

 
KAM. August 2018 +  KAM. August 2019 +  KAM. August 2020 +  KAM. August 2021

4
 

 

- Last year KAM: last year’s KAM forecasts based on 12 months’ rolling values. 

- Regression KAM: linear regression on all the KAM predictions used to find the values 

of forecasts for the next year.  

 

 

2.4 ML models and metrics 

 

ML in forecasting uses algorithms to learn from past sales to predict future events. While 

statistical methods use linear processes to forecast, ML uses non-linear algorithms. ML methods 

have become popular with the increase in interest in artificial intelligence (AI) (Makridakis S., 

2018). For the data set used in this study, the most common ML algorithms were used, such as 

least absolute shrinkage and selection operator (LASSO), k-NN, RF, and linear regression. 

 

2.4.1 LASSO  

 

LASSO regression measures the relationship between variables. The goal is to find a balance 

between the best accuracy and overfitting by adding a penalty term to the traditional linear 

regression models (Sethi J.K., 2021). The parameters will be close to zero if the influence on 

the prediction model is low. LASSO is helpful when many variables are used in a model but 

not all of them are relevant (Ranstam J., 2018). 

 

The objective function is to minimize the following equation: 

 

J(w) = 
1

2𝑚
 [∑ (ŷi − 𝑦𝑖)2𝑚

𝑖=1 +  𝜆∑ |𝑤𝑗|𝑛
𝑗=1 ]      (7) 

 

where 𝑦i is the observed values (test set), and 𝑦̂i is the predicted values.  

 

This equation is based on two parts: 

 

First part:  

 

 
1

2𝑚
 ∑ (ŷi − 𝑦𝑖)

2𝑚
𝑖=1  : the goal is to minimize the prediction error. 

 

Second part:  

 

 𝜆 ∑ |𝑤𝑗|𝑛
𝑗=1  : the goal is to minimize the value of the parameters, where 𝜆 is a constant and 

|𝑤𝑗| is the L1-norm of the coefficient vector. 𝜆 is a regularization parameter which is a 

hyperparameter between 0 and 1. It refers to the degree of penalty that is assigned to each 
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parameter of the model. 

 

2.4.2 k-NN 

 

k-NN regression is a nonparametric method (which means it does not make any assumptions 

about the underlying data) that bases its prediction on feature similarities. This type of 

regression is used when data are labeled or noise-free. k-NN is a “lazy learner”: it does not learn 

from the training set immediately.  

 

k is a parameter that refers to the number of nearest neighbors to include in most of the 

processes. Choosing the right value of k is important for accuracy. k can be chosen by taking 

two steps:  

- Sqrt (n), where n is the total number of data points. 

- An odd value of k, to avoid confusion between the data classes. 

 

To obtain the nearest neighbors, we computed the Euclidean distance between the given point 

and all the points of the training set. The formula is the following: 

 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1         (8)  

 

where 𝑥𝑖  and 𝑦𝑖 are the two points for which the distance is calculated. 

 

 

2.4.3 Random Forecast 

 

RF is built by taking a collection of multiple random decision trees. As it uses multiple different 

decision trees, RF is less sensitive to the training data than other ML models. The sample of 

each tree is taken randomly by bootstrapping (Tugay R., 2020). Bootstrapping helps to create 

subsets of the original dataset with replacement. At every sequential process, each model tries 

to correct the errors of the previous model. 

The following steps are taken to build the RF: 

- As mentioned, the first step is to create subsets of the original data, as shown in Figure 

1. Rows and columns are selected through replacement. 

- An individual decision tree is created for each subset. 

- The decision trees all give a different output. 

- The majority voting is combined in the final output. 

The more different decisions trees are used, the better the accuracy. A benefit of the RF 

algorithm is that it can help reduce overfitting and bias (Mei J., 2014). To set up the RF, certain 

parameters must be set, namely, node, size, number of trees, and number of features.  
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Figure 1: RF structure (designed by the authors) 

To build the RF algorithm, the following steps must be followed (Noureen S., 2019): 

a. For s = 1 to S = forest size 

- Draw a bootstrap sample Z of size n from the training data, as shown in Figure 1. 

- Grow an RF tree 𝑇𝑠 to the bootstrapped data. To grow the tree, it is necessary to repeat 

the following steps at each node until the minimum node size 𝑛𝑚𝑖𝑛 is reached. 

1. Select the number of randomly chosen factor r from the p variables. 

2. Pick the best p among the r. 

3. Split the node into two sub-nodes. 

b. Output the ensemble of the trees {𝑇𝑠}1
𝑆. 

 

To make a prediction at a new point, x, we used the following formula for the RF algorithm 

based on regression: 

 

𝑓𝑟𝑓
𝑆 (𝑥) =

1

𝑆
∑ 𝑇𝑠(𝑥)𝑆

𝑠=1          (9) 

 

RFs aim to improve the variance reduction of bagging by reducing the correlation between the 

trees without overly increasing the variance. Bagging is a technique that helps to reduce the 

variance within a noisy dataset. It is possible to achieve it in the tree-growing process by a 

random selection of the inputs. Hence, when a tree is growing on a bootstrapped dataset, a check 

must be made before each split to determine the selected factor r ≤ p of the input variables. 

 

𝜌𝜎2 +
1−𝜌

𝑆
𝜎2           (10) 

where: 

𝜌 is the positive pairwise correlation. 

𝜎2 is the variance. 
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2.4.4 Linear regression 

 

Linear regression is an important algorithm that assumes a linear connection between the 

independent variable 𝑥𝑖 and the dependent variable 𝑦𝑖. It uses this linear connection to assume 

a relationship between these two variables (James G., 2021). Linear regression aims to find the 

best value of a and b, which means the error between the predicted value and the independent 

variable should be as low as possible. 

 

𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝑒𝑖            (11) 

 

where: 

 

𝑦𝑖 = predicted value 

𝑎 = regression constant 

𝑏 = regression coefficient 

𝑥𝑖 = independent variable or observed variable (the variable we expect to be influencing y) 

𝑒𝑖 = error 

i = 1,…, n  

 

2.4.5 Standardization 

 

The goal of data standardization is to convert data into a common format to enable better 

processing and comparison (Berner R., 2019). Data standardization can enhance accuracy 

and help in selecting the most relevant forecasting model (Grannis S.J., 2019). Therefore, 

standardization is carried out as a data pre-processing step before data are used in a time-

series model or an ML model. To standardize the data, the following points must be 

observed: 

- Numerical data should be on a consistent scale. 

- The categories should be consistently named. 

- The data value should be in a consistent format. 

- A uniform approach must be taken to deal with undefined or missing values. 

 

Zero-normalization (z-norm) is the most common method of standardizing data. The 

formula is as follows: 

 

x′ =
(x−μ)

σ
       (12) 

 

where: 

x’ is the standardized value. 

x is the observed value.  

𝑁𝑡𝑟𝑎𝑖𝑛 is the number of sales values used to train the model. 

 

𝜇 =
1

𝑁𝑡𝑟𝑎𝑖𝑛
∑ 𝑥𝑛

𝑁𝑡𝑟𝑎𝑖𝑛
𝑛=1  is the average deviation for the given feature. 

 

𝜎 = √
1

𝑁𝑡𝑟𝑎𝑖𝑛
∑ (𝑥𝑛 − 𝜇)2𝑁𝑡𝑟𝑎𝑖𝑛

𝑛=1  is the standard deviation for the given feature. 

 

After standardization, all the features will have a mean of zero and a standard deviation of 

one and respectively the same scale (Milligan G.W., 1988). 
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2.4.6 Dataset preparation 

 

To make a prediction with an ML model, it is necessary to process the time-series into a 

matrix of history. To do so, multiple retrospective observations must be defined, and a 

target value must be labeled, such as the next month after the history of observations is 

considered. Conversely, statistical models are based only on the time-series itself and do 

not require any processing. However, in both cases, the temporal aspect of the series must 

be preserved for the best predictions to be made. Figure 2 and Table 1 and Table 2 are 

illustrative examples. The chart presents the time-series as a temporal chart, and the data 

are organized by date from January 2018 to December 2022. We defined a window of 

observations as 12, and we built the matrix as shown in Table 1. We kept the observations 

from January 2018 to December 2018 and stored the value that the ML model needed for 

the training in column F(t+1), where F was used for the forecast, t for current time, and 1 

for the next month. Then, we continued with the second row, where the window moves 

from 1, and reperformed the process until the whole time-series had been parsed. Then, the 

dataset was shuffled by rows, and the ML model was trained.  

 
Figure 2: Normalized time-series for item 1 with displayed values. The last 12 months will be predicted and are represented 
as F(t+n), where F is used for forecast, t for current time, and n for the future. 

 

hist1 hist2 hist3 hist4 hist5 hist6 hist7 hist8 hist9 hist10 hist11 hist12 F(t+1)

1 1.87 0.7 1.33 -0.1 3.05 0.44 -0.7 0.62 -0.2 1.13 4.31 0.28 -0.32

2 0.7 1.33 -0.1 3.05 0.44 -0.7 0.62 -0.2 1.13 4.31 0.28 -0.32 -0.25

3 1.33 -0.1 3.05 0.44 -0.7 0.62 -0.2 1.13 4.31 0.28 -0.32 -0.25 1.61

4 -0.1 3.05 0.44 -0.7 0.62 -0.2 1.13 4.31 0.28 -0.32 -0.25 1.61 0.32

5 3.05 0.44 -0.7 0.62 -0.2 1.13 4.31 0.28 -0.3 -0.25 1.61 0.32 1.04  
 

Table 1: Dataset created for the use of ML models based on Figure 2. A history of 12 observations was built with a targeted 
value of F(t+1), where F is used for forecast, t for current time, and 1 for the next month. 

Once the ML model had been trained, it was ready to make predictions for the future. 

However, the ML model could only predict the next month, and the objective was to predict 

the next 12 months. Therefore, we resumed the predictions already made to predict the 

future. Table 2 shows the process of making predictions for the next 12 months. The 

predictions were based on a rolling window that considers a history as 12 months and 

predicts one month ahead. After 12 iterations of predictions, the forecasts for the next 12 



10 
 

months were returned and could be compared through metrics. 
 

hist1 hist2 hist3 hist4 hist5 hist6 hist7 hist8 hist9 hist10 hist11 hist12 F(t+1)

1 -0.69 -0.27 -0.76 0.14 -0.69 -0.37 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1)

2 -0.27 -0.76 0.14 -0.69 -0.37 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2)

3 -0.76 0.14 -0.69 -0.37 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3)

4 0.14 -0.69 -0.37 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4)

5 -0.69 -0.37 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5)

6 -0.37 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6)

7 -0.86 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6) F(t+7)

8 -0.04 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6) F(t+7) F(t+8)

9 -0.63 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6) F(t+7) F(t+8) F(t+9)

10 -0.28 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6) F(t+7) F(t+8) F(t+9) F(t+10)

11 -0.37 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6) F(t+7) F(t+8) F(t+9) F(t+10) F(t+11)

12 -1 F(t+1) F(t+2) F(t+3) F(t+4) F(t+5) F(t+6) F(t+7) F(t+8) F(t+9) F(t+10) F(t+11) F(t+12)  
 
Table 2: Predictions of the ML model based on a rolling window. Twelve iterations of predictions are necessary to return 
the next 12 months of forecasts as the columns F(t+1), where F is used for forecast, t for current time and 1 for the next 
month. 

The performances were also benchmarked by using the KAM forecasts in the same way to 

increase the number of experiments for the training of the ML model (only used in Table 

1).  

 

2.4.7 Models’ adaptation 

 

To fit a statistical or ML model, the data must be adapted to preserve the integrity and 

consistency of the time-series. The data processing, model building, and estimation of the 

metrics were carried out using the Python libraries Scikit-learn and Statsmodels. The model 

fitting was still based on data from January 2018 to December 2021. The data from January 

2022 to December 2022 were set aside for the evaluation of the forecasts. 

 

Regarding the exponential smoothing model, the data were considered as a time-series 

format, the alpha parameter was auto-adjusted, and the series was directly given to the 

model. 

 

In the SARIMA model, the data were preserved as a time-series format, and the parameters, 

such as p,d,q for the ARIMA model and P,D,Q, and s for the seasonality, were set based 

on the best AIC computed on the training set and a mapping of the different previously 

mentioned parameters. The model with the lowest AIC was used to make the forecasts. For 

SARIMAX, the method was the same as for SARIMA except that the exogenous values 

were added to the model during the training and forecasts.  

 

The different ML models required the matrix with the history of the 12 values to forecast 

the next month (Table 1) as input. The ML models were trained by searching for the best 

parameters based on the training set itself, which consisted of the cross-validation of the 

training set to find the best parameters of the model. The method consisted of splitting the 

dataset into batches, also known as folds, and performing the training on the number of 

folds minus one and forecasting on the one remaining fold. The process was repeated on 

the same number of iterations as the number of folds. In our case, we considered five folds 

for all items and all ML models; hence, for every item, five iterations per parameter were 
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mapped through different values.  

 

For instance, the LASSO model needed to be fitted through the alpha parameter only, and 

the alphas to map were 0.001, 0.01, 0.1, and 1. For every parameter’s value, five training 

rounds were required due to the quantity of folds, resulting in 20 iterations for the four 

different values mapped (5 x 4 = 20). The complexity increased when the k-NN model was 

used, for which two parameters were mapped, namely, the number of neighbors and the 

methods to compute the distance. The number of neighbors consisted of three values (2, 3, 

5), and the distance could be Manhattan or Euclidean (1 or 2). We kept the number of folds 

at five and, due to the mapping of the parameters, we had six couples of parameters to test 

by item, resulting in 30 iterations to select the best model (2 x 3 x 5 = 30).  

 

Regarding the RF, the number of parameters increases again when considering the number 

of trees or estimators with five values (5, 10, 15, 20, 25) to map, the maximum depth of 

the tree with a mapping between five values (2, 4, 6, 8, 10), the minimum number of 

samples required to split a node to map at three values (2, 3, 5), and the bootstrap, which 

is a method to use the entire dataset to train all the trees at once, or the dataset is split 

proportionally to the number of trees so that every tree is trained with unique data. The 

bootstrap is mapped as two values (true or false). Based on the previous calculation, the 

RF needed 750 iterations to find the best parameters for the model (5 x 5 x 3 x 2 x 5 = 750).  

 

Finally, the linear regression model does not need to search for the best parameters of the 

model because this model minimizes the residual sum of square without any restrictions or 

constraints. The ML models could be trained with an enlarged dataset thanks to the KAM 

forecasts, which were added to the training set. 

 

Once the ML model’s parameters were found, the final model could be trained based on 

the entire training set, and the forecasts could be made as illustrated in Table 2. Metrics 

were applied to measure the performances of the models. 

 

 

2.4.8 Metrics  

 

To measure the performance of our different models, we chose RMSE, MAE, and the RS 

as metrics. Using the RS enabled the inventory impacts to be checked, as suggested in 

(Teunter R.H., 2017). 

 

2.4.8.1 RMSE  

 

RMSE measures the magnitude of the error, and better models have a lower RMSE 

(Bakay M.S., 2021). The formula is the following: 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦̂𝑖−𝑦𝑖)2

𝑛

𝑛

𝑖=1
        (13) 

 

In the equation, n is the number of data points or observations, 𝑦i is the observed values 

(test set), and 𝑦̂i is the predicted values. 
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2.4.8.2 MAE  

 

The MAE is the sum of the absolute residual error. The formula is: 

 

𝑀𝐴𝐸 =
∑  |𝑦̂𝑖−𝑦𝑖|

𝑛

𝑖=1

𝑛
      (14) 

 

 

2.4.8.3 RS  

 

RS measures whether the forecasts are too optimistic (high stock level) or pessimistic (out 

of stock [OOS]) (Ramosaj A., 2022). The formula is the following: 

 

𝑅𝑆 =  ∑ (ŷi − yi)
𝑛
𝑖=1         (15)

     

ŷi > yi yields a too optimistic forecast, whereas ŷi< yi yields a too pessimistic forecast. 

 
 

3. The methodology 

 

The methodology helped to define the most suitable model to forecast sales of accessories. 

The dataset was composed of 27 items with the weekly sales from 2018 to 2023 for every 

item. Some items were end of life (EOL), that is, the company is selling the remaining 

stock, but they will not order them anymore. Therefore, the three EOL items of our dataset 

were excluded. Of the remaining 24 items, we noticed that 11 have big accuracy impacts, 

whether because they are seasonal-driven, have high volatility, or for other reasons. The 

KAM forecasts are either too optimistic or too pessimistic.  

 

The methodology started with the raw data, which were divided into two subsets with the 

monthly sales to one side and the KAM forecasts to the other. Next, the subsets were 

grouped by items and months to create a monthly time-series for every item. Thereafter, 

every sales time-series was standardized, and the computed mean (µ) and the computed 

standard deviation (σ) of the defined item were reused to standardize the equal item with 

the KAM forecasts.  

 

Once the standardization was completed, the time-series were split into two subsets. The 

first contained the sales values used to fit the model, and the second was composed of the 

last 12 sales values, which helped to compute the metrics. The same was done with the 

KAM values, which were also split into data used for the fitting and data used for the 

computation of the metrics. This process resulted in two subsets, called the train set and 

test set, for the sales and KAM forecasts. 

 

The train set of sales was used with most of the model categories (exponential smoothing, 

SARIMA, SARIMAX, ML, and ML with KAM) to fit the model due to make predictions 

for the next 12 months. These predictions were compared to the real sales of the last 12 

months, also called the test set of sales, by two metrics, the RMSE and the MAE. The third 

metric, RS, was used at the end to compare the RS of the KAM with the best selected 

model. The train set of the KAM could also be used with specific model categories, such 

as SARIMAX and ML, with the KAM predictions. The test set of the KAM was used to 

measure the error between sales and KAM forecasts over the last 12 months. All RMSE 
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and MAE results were collected to compute the average and median for each item through 

the errors of the statistical and ML models. This step would define the selection criteria of 

a model to be able to make acceptable predictions for the time-series. The count by 

statistical and ML models was plotted with a histogram. The most suitable models were 

those that were more accurate than the KAM forecasts for each criterion, and they were 

ranked by largest occurrence.  

 

Figure 3: Methodology designed by the authors. 
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4. Results 

 

The results are presented in sub-sections in order to follow the steps of the development. 

 

The following are explanations for the differences between MAE and RMSE: 

- RMSE gives more weight to large value => ability to handle outliers. 

- MAE treats errors equally => unsensitivity to outliers. 

- RMSE and MAE are interpretable and have same unit as the data. 

- Lower RMSE and MAE indicate a better fit of the model. 

 

The first step of the methodology consisted of obtaining the sales and KAM forecasts 

from the raw data and represent them by months. Figure 4 presents an example of the 

sales and KAM forecasts represented as a time-series.  

 
Figure 4: Presentation of the sales and KAM forecasts as a time-series. The plain lines are the history of the sales and KAM 
forecasts used for the training and the dashed line is the projected sales to evaluate the statistical and ML models. 

Once the time-series for sales and KAM forecasts were formed, the sales values were 

standardized for every item individually. The mean (µ) and standard deviation (σ) from the 

item were also used to standardize the same item with the KAM forecasts. Figure 5 shows 

the standardization of the sales and KAM forecasts previously illustrated in Figure 4. The 

standardization allowed the distribution of the data to be retained and the mean to be 

brought to 0 and the standard deviation to 1. The forecasts stay in the same layout in both 

Figure 4 and Figure 5; the difference is that the data were processed on a common scale.  
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Figure 5: The sales and KAM forecasts are standardized. 

Once the statistical and ML models had been performed and the error had been computed, 

the count of models that had an error less than or equal to the selection criteria was 

presented. The maximum value of counts is 24.  

 

Based on the 16 models, it emerged that 13 models performed better than or as well as the 

KAM with the average criterion (Figure 6) and 14 models with the median criterion (Figure 

7) with the MAE metric. Additionally, 15 models performed better than the KAM with the 

average criterion (Figure 8) and the median criterion (Figure 9) with the RMSE metric.  

 

The most suitable models, which demonstrated better performances than the KAM 

forecasts, are the SARIMAX model coupled with the monthly mean of the KAM forecasts, 

the SARIMAX model associated with the last year of KAM forecasts, and the SARIMAX 

model without exogenous values regarding the MAE metric. As regards the RMSE metric, 

almost all models presented an acceptable performance except the SARIMAX model with 

the average of the monthly sales as exogenous values.  

 

As shown in Figure 6, which uses the average of MAE by item as the selection criterion, 

nearly all models gave better predictions than the KAM forecasts, and only the exponential 

smoothing model and SARIMAX models with the average of the monthly sales were 

globally less accurate than the KAM forecasts. The model that was generally better than 

the KAM in most cases is the SARIMAX model with the last 12 months’ KAM forecasts. 
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Figure 6: Histogram of the best statistical and ML models related to the KAM count (red dashed line) based on the average 
of the MAE by item. 

Then, by using the MAE median by item as the selection criterion, as illustrated in Figure 

7, almost all models presented a better or equivalent prediction than the KAM forecasts; 

the exceptions are the SARIMAX models with the average of the monthly sales and the 

SARIMAX models with the KAM forecasts fitted through a linear regression. The model 

that performed best is the SARIMAX model with the last 12 months of KAM forecasts. 

 
Figure 7: Histogram of the best statistical and ML models related to the KAM count (red dashed line) based on the median 
of the MAE by item. 

Then, a ranking of the statistical and ML models based on the average and median criteria 

was performed and highlighted the best models by criterion. Table 3 shows the best models 

by metric. The three models that performed best are the SARIMAX model with the last 12 

months KAM forecasts, the SARIMA model, and the SARIMAX model with the average 

of the monthly KAM forecasts. 
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Rank Based on the average criterion Based on the median criterion 

 Model Count  Model Count 

1 SARIMAX last year KAM 20 / 24 SARIMAX last year KAM 18 / 24 

2 SARIMA 18 / 24 SARIMA 17 / 24 

3 SARIMAX mean KAM 18 / 24 SARIMAX mean KAM 16 / 24 
Table 3: Ranking of the three best model by selection criteria (average, median) and their related counts with the MAE. 

Then, looking at the average of RMSE by item as the selection criterion (Figure 8), almost 

all the models gave better forecasts than the KAM forecasts; only the SARIMAX model 

with the average of the monthly sales was globally less accurate than the KAM forecasts. 

The models that were generally better than the KAM in most cases are the SARIMAX 

model with the last 12 months’ KAM forecasts and the SARIMAX model with the average 

of monthly forecasts. 

 

 
Figure 8: Histogram of the best statistical and ML models related to the KAM count (red dashed line) based on the average 
of the RMSE by item. 

Figure 9 shows the RMSE median by item as selection criterion: all models presented a 

prediction that was better than or equal to the KAM. The model that performed best is the 

SARIMAX model with the average of the monthly KAM forecasts. 
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Figure 9: Histogram of the best statistical and ML models related to the KAM count (red dashed line) based on the median 
of the RMSE by item. 

The ranking for the metric RMSE highlights three best models that are the SARIMAX 

model with the average of the monthly KAM forecasts, the SARIMAX model with the last 

12 months KAM forecasts and the SARIMA model with the average and the median 

criteria. Table 4 shows the ranking and the number of occurrences. 

 

Rank Based on the average criterion Based on the median criterion 

 Model Count  Model Count 

1 SARIMAX mean KAM 18 / 24 SARIMAX mean KAM 18 / 24 

2 SARIMAX last year KAM 18 / 24 SARIMAX last year KAM 17 / 24 

3 SARIMA 16 / 24 SARIMA 16 / 24 
Table 4: Ranking of the three best model by selection criteria (average, median) and their related counts with the RMSE. 

Overall, the most suitable models to forecast the next 12 months of all items by using a 

single type of statistical or ML model remain the SARIMAX model with the 12 last months 

of KAM forecasts as exogenous values, the SARIMAX model with the average of the 

monthly KAM forecasts as exogenous values, and the SARIMA model. These models 

presented overall better forecasts than the other models based on the presented method of 

analysis by giving an overall reduced MAE. Thus, they presented a reduction in prediction 

errors and an ability to handle outliers well with a higher reduction of RMSE than the other 

models. 

 

To confirm the suitability of these models, the residual stock can be used with different 

items presented during the test period over which the KAM forecasts were made one year 

ago and the last 12 month of sales were registered. A typical result is shown in Figure 10, 

where the red line represents the limit to avoid an OOS situation. By considering the 

residual stock of the KAM forecasts on 01.01.2022 without knowing the sales for the year 

2022, the SME’s residual stock would have increased by 1184 units, whereas the statistical 

model would have increased the residual stock by only 585 units. Moreover, there would 
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have been no stock shortages.  

 
Figure 10: Residual stock for “item 1” by comparing the residual stock with the KAM forecasts vs. the statistical model 
SARIMAX with the 12 last months of KAM forecasts as exogenous value. 

Finally, we report the residual stock after 12 months considering the KAM forecasts only 

or by using a statistical model, as illustrated in Figure 11. The RS show that with the 12 

last months of KAM forecasts as exogenous values, the results are on 16 times over 24 

times better. It is also observed that when the KAM is too extreme, the statistical model 

will reduce the forecasting error.  

 
Figure 11: Residual stock for all items after 12 months when considering the KAM forecasts for the next 12 months of 
operation or considering the statistical model SARIMAX with the last 12 months of KAM forecasts as an exogenous value. 

The same analysis can be made with the SARIMAX model with the average of the monthly 

forecasts of the KAM as exogenous values. This solution also presents a better residual 

stock for many items but tends to be more pessimistic and deliver on the long-term negative 

stock, posing a risk of stock shortages. Figure 12 presents the residual stock of item 1; the 

residual stock is kept in a range of 40 units to 318 units through the months for the statistical 

model opposite to the KAM forecasts that imply a continuous increasing of stock level. 

The red line represents the limit to avoid an OOS situation. 
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Figure 12: Residual stock for “item 1” by comparing the residual stock with the KAM forecasts vs. the statistical model 
SARIMAX with the average of the monthly KAM forecasts as an exogenous value. 

Considering all items and looking at the residual stock after 12 months, as reported in 

Figure 13, it emerges that 14 of 24 forecasts made with the statistical model gave better 

results than the KAM forecasts. It is observed that the statistical model SARIMAX with 

the average of the monthly KAM forecasts increased the risk of a stock shortage.  

 
Figure 13: Residual stock for all items after 12 months when considering the KAM forecasts for the next 12 months of 
operation or considering the statistical model SARIMAX with the average of the monthly KAM forecasts as an exogenous 
value. 

Finally, the analysis was made with the SARIMA model, which showed a poor residual 

stock because the model tended to deliver negative stock during the evaluated period. 

Hence, the company would risk a stock shortage. Figure 14 presents the residual stock of 

item 1; the residual stock is kept in a range of -92 units to 240 units through the months for 

the statistical model (orange), which gives good accuracy but implies a risk. The green line 

is the KAM forecasts, where the stock is growing continuously. The red line represents the 

limit to avoid an OOS situation. 
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Figure 14: Residual stock for “item 1” by comparing the residual stock with the KAM forecasts vs. the statistical model 
SARIMA. 

When all items are considered and the residual stock is examined after 12 months, as shown 

in Figure 15, 14 of the 24 forecasts produced using the statistical model outperformed the 

KAM forecasts with better accuracy. However, it is also observed that the statistical model 

SARIMA entailed a large risk of stock shortage.  

 
Figure 15: Residual stock for all items after 12 months when considering the KAM forecasts for the 12 next months of 
operation or considering the statistical model. 

In general, the SARIMAX model with the last 12 months of KAM forecasts as exogenous 

values is the most suitable for the provided dataset of accessories. The forecasts for 2022 

would be improved for 16 of 24 items, and the risk of the stock shortage would have been 

only present for 10 items for which the risk would have been the same if only the KAM 

forecasts had been considered. SARIMA and SARIMAX with the monthly average of 

KAM forecasts models represent a higher risk of OOS for the company. In a long-term 

observation, the residual stock could help to define the safety stocks needed for each item. 

The residual stock seems to stabilize after a few months, as shown in Figure 12. 
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5. Conclusion 

 

Multiple methods were tested, and it is demonstrated that company forecasting is not 

completely independent of human factors. Therefore, in this paper, the human factor was 

combined with the best tested methods. It has been shown that statistical models perform 

better than ML models for accessories forecasts in general. Among the 16 models tested, 

13 models performed better than the KAM. The most suitable models that performed better 

than the KAM forecasts are the SARIMAX model coupled with the monthly mean of the 

KAM forecasts, the SARIMAX model associated with the last year of KAM forecasts, and 

the SARIMAX model without exogenous values regarding the MAE and RMSE metrics.  

 

Residual stock helps us to measure the remaining stock of the best selected model 

compared to KAM forecasts. It was noted that the KAM forecasts were always more 

optimistic than those of the models, which would result in stock levels being too high and 

therefore increase additional costs. Residual stock could also help the company to define 

the safety stocks, as it has been observed that the residual stock stabilizes after a few 

months when a statistical model is applied to the forecasts. 
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