
Received: 20 May 2019 Revised: 22 February 2020

DOI: 10.1002/jae.2765

R E S E A R C H A R T I C L E

Direct and indirect effects of continuous treatments based
on generalized propensity score weighting

Martin Huber1 Yu-Chin Hsu2 Ying-Ying Lee3 Layal Lettry4

1Department of Economics, University of
Fribourg, Fribourg, Switzerland
2Academia Sinica, Institute of Economics,
National Central University, Taoyuan City,
Taiwan
3Department of Economics, University of
California Irvine, Irvine, California
4Swiss Federal Agency for Social
Insurances, Bern, Switzerland

Correspondence
Martin Huber, Department of Economics,
University of Fribourg, Bd de Pérolles 90,
1700 Fribourg, Switzerland.
Email: martin.huber@unifr.ch

Summary

This paper proposes semi- and nonparametric methods for disentangling the
total causal effect of a continuous treatment on an outcome variable into its
natural direct effect and the indirect effect that operates through one or sev-
eral intermediate variables called mediators jointly. Our approach is based
on weighting observations by the inverse of two versions of the generalized
propensity score (GPS), namely the conditional density of treatment either given
observed covariates or given covariates and the mediator. Our effect estimators
are shown to be asymptotically normal when the GPS is estimated by either a
parametric or a nonparametric kernel-based method. We also provide a simu-
lation study and an empirical illustration based on the Job Corps experimental
study.

1 INTRODUCTION

Classic treatment evaluations typically focus on assessing the total causal effect of a treatment on an outcome variable—for
example, the average treatment effect (ATE). In many evaluation problems, however, the causal mechanisms through
which a total effect operates are also of interest. When, for example, assessing the effect of an educational program on crim-
inal activity, policymakers might want to learn whether the total effect is driven by the program's effect on employment
chances, which in turn may affect criminal behavior, or by other features of the program such as its impact on personality
traits like integrity or discipline. Understanding the causal mechanisms may be helpful for appropriately designing such
educational programs—for example, whether the focus should be on increasing employability, personality development,
or both.

Causal mediation analysis aims to decompose a total treatment effect into the indirect effect operating through an inter-
mediate variable called mediator, and the direct effect net of mediation; see, for instance, Robins and Greenland (1992)
and Pearl (2001). A range of studies base identification on conditional independence assumptions given observables with
respect to treatment and mediator assignment in rather flexible (often nonparametric) models; see, for instance, Petersen,
Sinisi, and van der Laan (2006), Flores and Flores-Lagunes (2009), van der Weele (2009), Imai, Keele, and Yamamoto
(2010), Hong (2010), Albert and Nelson (2011), Imai and Yamamoto (2013), Tchetgen Tchetgen and Shpitser (2012), and
Vansteelandt, Bekaert, and Lange (2012), among others.1 Contributions concerned with nonparametric identification
under conditional independence conventionally focus on binary treatments. Yet, there are many empirical problems in
which treatment intensity is (close to) continuous—for example, hours of participation in an educational program or
the dose of a medical treatment; see, for instance, Hirano and Imbens (2004), Imai and van Dyk (2004), Bia and Mattei
(2012), Flores, Flores-Lagunes, Gonzalez, and Neumann (2012), Kluve, Schneider, Uhlendorff, and Zhao (2012), Galvao
and Wang (2015), and Lee (2018).

1In contrast, the seminal papers in mediation analysis of Judd and Kenny (1981) and Baron and Kenny (1986) assume linear models for both the
mediator and the outcome.
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This paper considers the identification and semi- as well as nonparametric estimation of natural direct and indirect
effect (in the denomination of Pearl, 2001)2 when the treatment is continuous. The indirect effect might either concern
a single mediator or reflect the impact operating through multiple mediators jointly. In the latter case, conditional inde-
pendence must hold for each mediator. The joint indirect effect then contains the causal mechanisms working through
any of these mediators (possibly including interaction effects between mediators), while the direct effect is the remainder
impact net of any of these causal mechanisms; see VanderWeele and Vansteelandt (2014) and Huber (2019) for a more
thorough discussion of the multiple mediators framework.3 We propose an estimator based on weighting by the inverse
of conditional treatment densities (i) given observed covariates and (ii) given covariates and the mediator(s), also known
as generalized propensity scores; see Hirano and Imbens (2004) and Imai and van Dyk (2004).

The generalized propensity scores are either obtained parametrically or nonparametrically by conditional kernel density
estimation. We show that estimation is asymptotically normal and converges at the rate of one-dimensional nonpara-
metric regression to the effects of interest under specific regularity conditions. We also provide a simulation study that
illustrates the robustness of our method when compared to classic linear mediation analysis that relies on tight paramet-
ric assumptions. Finally, we apply our approach to data on the Job Corps program, a US educational intervention for
disadvantaged youth. Specifically, we disentangle the negative effect of the length of exposure to academic and vocational
instruction in Job Corps on crime, measured by the number of arrests in the fourth year, into an indirect component oper-
ating through the mediator employment and a direct remainder effect. The latter covers any other causal mechanisms,
such as personality development. Our findings point to an important direct and nonlinear reduction of the number of
arrests as a consequence of Job Corp under a sufficiently large treatment intensity of roughly 1,000 hours or more, while
indirect effects are close to zero for the investigated range of treatment intensities of up to 2,000 hours.

Our paper fills an important methodological gap in the causal mediation literature with continuous treatment doses,
where studies typically rely on rather strong functional form restrictions for identification. The semi- and nonparametric
literature on continuous treatments under conditional independence is relatively sparse and focuses on the estimation
of total (rather than direct and indirect) treatment effects: Flores (2007) proposes a nonparametric kernel regression esti-
mator for average dose–response functions. Lee (2018) estimates the unconditional distribution of potential outcomes
using the estimated generalized propensity score as generated regressor. Flores (2005), Flores et al. (2012), and Galvao and
Wang (2015) discuss estimation based on weighting by the inverse of the generalized propensity score. Our approach can
be regarded as an extension of the semi- and nonparametric weighting approaches of Huber (2014) and Hsu, Huber, and
Lai (2018) for causal mediation analysis with discrete treatments to the continuous treatment case using kernel functions
and the concept of the generalized propensity score. The semiparametric version of the proposed estimator is available in
the “causalweight” package by Bodory and Huber (2018) for the statistical software “R.”4

The remainder of the paper is organized as follows. Section 2 introduces the parameters of interest. Section 3 discusses
the identifying assumption and identification based on weighting. Section 4 presents the estimation approach along with
its properties. Sections 5 and 6 provide a simulation study and empirical illustration based on the Job Corps experimental
study, respectively. Section 7 concludes.

2 PARAMETERS OF INTEREST

Our goal is to decompose the average treatment effect (ATE) of a continuous treatment variable D on an outcome variable
Y into a direct effect and an indirect effect operating through the mediator M, which may be a scalar or a vector and discrete
and/or continuous. For a generic random variable A, let  denote the support of A. To define the effects of interest, we use
the potential outcome framework (e.g., Rubin, 1974), which has been applied in the context of mediation analysis by Rubin
(2004), Ten Have et al. (2007), and Albert (2008), among others. Let M(d),Y(d,M(d′)) denote the potential mediator state as
a function of the treatment and potential outcome as a function of the treatment and the potential mediator, respectively,
under treatments values d, d′ ∈ . Furthermore, denote the mean potential outcomes by 𝜇(d, d) = E[Y(d,M(d))] and

2Such effects have also been referred to as pure/total direct and indirect effects by Robins and Greenland (1992) and Robins (2003) or as net and
mechanism treatment effects by Flores and Flores-Lagunes (2009).
3The joint indirect effect of multiple mediators generally differs from the sum of the indirect effects when considering each mediator separately (even
when appropriately accounting for interaction effects between mediators), unless statistical associations across mediators are ruled out; see Imai and
Yamamoto (2013).
4Further alternatives for assessing direct and indirect effects of continuous treatments are the “medflex” package by Steen, Loeys, Moerkerke, and
Vansteelandt (2017), which implements imputation-based estimation of potential outcomes as suggested by Vansteelandt et al. (2012), and the
regression-based “mediation” package by Tingley, Yamamoto, Hirose, Imai, and Keele (2014).
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𝜇(d, d′) = E[Y(d,M(d′))] with d ≠ d′. We note that under a continuous treatment 𝜇(d, d) has also been referred to as
average dose–response function in the literature; see, for instance, Hirano and Imbens (2004) and Imai and van Dyk
(2004).

Using this notation, the ATE of setting the treatment to d versus d′, denoted by 𝛥d,d′ , is given by

Δd,d′ = 𝜇(d, d) − 𝜇(d′, d′), for d ≠ d′. (1)

The ATE thus corresponds to the total average effect of D on Y operating both indirectly via the difference in potential
mediators M(d) and M(d′) as well as directly. In contrast, the average natural direct effect is given by the difference in
mean potential outcomes under d versus d′ when keeping the potential mediator fixed at either M(d) or M(d′):

𝜃d,d′ (d′) = 𝜇(d, d′) − 𝜇(d′, d′), 𝜃d,d′ (d) = 𝜇(d, d) − 𝜇(d′, d), for d ≠ d′. (2)

Analogously, the average natural indirect effect is defined as the difference in mean potential outcomes under M(d)
versus M(d′) while keeping the treatment fixed at either d or d′ such that the direct effect is nil:

𝛿d,d′ (d) = 𝜇(d, d) − 𝜇(d, d′), 𝛿d,d′ (d′) = 𝜇(d′, d) − 𝜇(d′, d′), for d ≠ d′. (3)

By adding and subtracting 𝜇(d, d′) in Equation 1, it is easy to verify that 𝜃d,d′ (d′) and 𝛿d,d′ (d) add up to the ATE. By
similarly adding and subtracting 𝜇(d′, d) in Equation 1, one sees that the ATE also corresponds to the sum of 𝜃d,d′ (d) and
𝛿d,d′ (d′), where d and d′ in the definition of direct and indirect effects have been swapped. That is, 𝛥d,d′ = 𝜃d,d′ (d′) +
𝛿d,d′ (d) = 𝜃d,d′ (d) + 𝛿d,d′ (d′). Indeed, 𝜃d,d′ (d′) and 𝛿d,d′ (d) might differ from 𝜃d,d′ (d) and 𝛿d,d′ (d′), respectively, if direct and
indirect effects are heterogeneous in M and D, respectively. This is the case in the presence of interactions of D and M in
the determination of outcome Y.

We note that if d − d′ → 0 such that the change in D becomes infinitesimal, limd′→d(𝜇(d, d) − 𝜇(d′, d′))∕(d − d′) corre-
sponds to the derivative of 𝜇(d, d) w.r.t. d, denoted by d𝜇(d,d)

dd
. This (total) marginal effect of the treatment at D = d has, for

instance, been considered in Hirano and Imbens (2004) and Flores et al. (2012). The total derivative can be written as

d
dt

𝜇(t, t)
||||t=d = 𝜕

𝜕t
𝜇(t, d) + 𝜕

𝜕t
𝜇(d, t)

||||t=d
, (4)

where d and 𝜕 denote total and partial derivatives, respectively. 𝜕

𝜕t
𝜇(t, d)|t=d and 𝜕

𝜕t
𝜇(d, t)|t=d are the marginal direct and

indirect effects, respectively, and correspond to Equations 2 and 3 divided by d−d′ when letting d−d′ → 0.5 Even though
our assumptions presented in Section 3 also permit identifying the marginal total, direct, and indirect effects provided in
Equation 4, the discussion in this paper focuses on the effects under measurable treatment changes such that d ≠ d′. This
permits investigating effect heterogeneities due to interactions of D and M by comparing 𝜃d,d′ (d) and 𝜃d,d′ (d′) as well as
𝛿d,d′ (d) and 𝛿d,d′ (d′), respectively, while such interactions are conceptually ruled out under infinitesimal changes in D.

3 IDENTIFICATION

For each unit only one potential outcome and potential mediator state, respectively, are known, namely those related to
the treatment value that is observed for that unit. That is, the observed mediator and outcome correspond to M = M(D) and
Y = Y(D,M(D)) under the observed treatment state D. In contrast, we cannot observe potential outcomes and mediators
defined upon treatment values different from the observed one. Specifically, Y(d,M(d′)) is not observed for any individual
if d ≠ d′, as at least one of d, d′ is necessarily different to the observed treatment.

5Suppose that Y(d,M(d)) is differentiable in both arguments, d and M(d), and M(d) is a scalar and is differentiable in d. Then the marginal indirect effect
can be written as

𝜕

𝜕t
𝜇(d, t)

||||t=d
= E

[
𝜕Y (d,M(d))

𝜕M(d)
dM(d)

dd

]
.

This is equivalent to the indirect effect in linear models (first-stage effect, dM(d)
dd

, times second-stage effect, 𝜕Y (d,M(d))
𝜕M(d)

) when there are no D–M interactions
(see, e.g., Baron & Kenny, 1986).
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The identification of natural direct and indirect effects therefore requires specific assumptions. Similar to Imai, Keele,
and Yamamoto (2010) (see their assumption 1), Tchetgen Tchetgen and Shpitser (2012) and many others, we base identifi-
cation on a sequential conditional independence assumption imposed on treatment and mediator assignment. However,
contrary to the standard in the literature, we consider a continuous treatment rather than a binary one.

Our first assumption requires that, given a vector of observed pretreatment characteristics that we denote by X, the
treatment is conditionally independent of the potential mediator states and the potential outcomes.

Assumption 1 (Conditional independence of the treatment). {Y(d′,m),M(d)} ⟂ D|X = x for all (d, d′,m, x) ∈ 2 ×
 ×  .

Assumption 1 rules out unobserved confounders jointly affecting the treatment, on the one hand, and the mediator
and/or the outcome on the other hand, conditional on X. In the treatment or program evaluation literature, this is referred
to as conditional independence, selection on observables, or exogeneity; see Imbens (2004). We point out that conditional
independence must hold with respect to any value in the continuous support of the treatment, which is stronger than that
for the binary treatment case.

Our second assumption imposes conditional independence of the mediator given the treatment and the covariates along
with a common support restriction on the conditional density of the treatment. To this end, let fA(a|B = b) denote the
conditional density of variable A at some value a given that variable B is equal to value b.

Assumption 2 (Conditional independence of the mediator).

(i) Y(d′,m) ⟂ M(d)|D = d,X = x for all (d, d′,m, x) ∈ 2 × ×  .
(ii) fD(d|M = m,X = x) > 0 for all (d,m, x) ∈  × ×  .

Assumption 2(i) rules out unobserved confounders jointly affecting the mediator and the outcome conditional on D
and X. This is for instance violated if unobserved posttreatment variables influence M and Y, and are not fully determined
by X and/or D. When M is multidimensional, Assumption 2(i) needs to hold for each element in M, such that its strength
increases in the number of mediators. Assumption 2(ii) is a common support restriction. It says that the conditional
density (or generalized propensity score) to receive any treatment d in the support of D given M,X is larger than zero. This
also implies that fD(d|X = x) > 0 and fM(m|D = d,X = x) > 0 by Bayes' theorem. Intuitively, it is required that individuals
(a) with comparable values in M and X exist across all possible treatment doses and (b) with comparable values in D and
X exist across all possible mediator values. This common support condition is stronger than that conventionally imposed
in the binary treatment case because it needs to hold over the entire support of the treatment, unless only a subset of
treatment values d was to be considered in the analysis. Furthermore, it becomes stronger as the number and support of
mediators increase.

Huber (2014) shows the identification of the mean potential outcomes 𝜇(d, d) and 𝜇(d, d′) with d ≠ d′ using weighting
by the inverse of specific propensity scores when Assumptions 1 and 2 are phrased in a binary context. Specifically,

𝜇(d, d) = E
[

Y · 1(D = d)
Pr(D = d|X)

]
, (5)

𝜇(d, d′) = E
[

Y · 1(D = d)
Pr(D = d|M,X)

· Pr(D = d′|M,X)
Pr(D = d′|X)

]
, (6)

1(·) denoting the indicator function. Also, Pr(D = d|X) = E[1(D = d)|X] and Pr(D = d|M,X) = E[1(D = d)|M,X] are
the conditional expectations of the weights, 1(D = d), that correspond to the treatment propensity scores. In the binary
treatment case, Equations 5 and 6 therefore correspond to equations 4 and 5 in Huber (2014).

Closely related identification results can be established for the case of a continuous treatment when appropriately
adapting the weighting expressions; see, for instance, the discussion in Flores et al. (2012) and Flores (2005). To this
end, denote by 𝜔(D; d, h) a weighting function that depends on the distance between D and the reference value d as
well as a nonnegative tuning parameter h. The closer the tuning parameter h is to zero, the less weight is given to larger
discrepancies between D and d. This modification of the weighting function is required as truly continuous treatments do
not have mass points. The probability of a specific value d is therefore equal to zero, which excludes the use of indicator
functions. For example, as in Flores et al. (2012), we define the weighting function to be a kernel function: 𝜔(D; d, h) ≡
K ((D − d)∕h) ∕h, where K is a symmetric second-order kernel function assigning more weight to observations closer to d
and h is a bandwidth. Under the assumption that fD(d|M,X) and E[Y|D = d,M,X] are continuous in d, the parameters of
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interest are identified in analogy to Equations 5 and 6 when letting h go to zero:

𝜇(d, d) = lim
h→0

E
[

Y · 𝜔(D; d, h)
𝑓D(d|X)

]
, (7)

𝜇(d, d′) = lim
h→0

E
[

Y · 𝜔(D; d, h)
𝑓D(d|M,X)

· 𝑓D(d′|M,X)
𝑓D(d′|X)

]
, (8)

where fD(d|X) and fD(d|M,X) are the generalized propensity scores that correspond to limh→0E[𝜔(D; d′, h)|X] and
limh→0E[𝜔(D; d′, h)|M,X], respectively. The identification of the mean potential outcomes implies the identification of
the direct and indirect effects defined in Equations 2 and 3.

Finally, we note that identification of mean potential outcomes and effects is alternatively obtained by the following
expressions related to the so-called mediation formula—see, for example, Pearl (2001) and Imai, Keele, and Yamamoto
(2010):

𝜇(d, d) = E
[
E[Y |D = d,X = x]

]
, (9)

𝜇(d, d′) = ∫ E[Y |D = d,M = m,X = x]dFM|D=d′,X=x(m)dFX (x) (10)

= ∫ E[Y |D = d,M = m,X = x] · 𝑓D(d′|M,X)
𝑓D(d′|X)

dFM|X=x(m)dFX (x)

= E
[

E[Y |D = d,M = m,X = x] · 𝑓D(d′|M,X)
𝑓D(d′|X)

]
.

The last two equalities in Equation 10 follow from Bayes' theorem and the law of iterated expectations, respectively.
Equations 9 and 10 suggest conducting mediation analysis using nonparametric regression-based estimates of the con-
ditional means E[Y|D = d,X] and E[Y|D = d,M,X], or alternatively of E[Y|D = d, fD(d|X)] and E[Y|D = d, fD(d|M,X)],
respectively, given the balancing property of the (generalized) propensity score. The balancing property implies 1(D =
d) ⟂ X|fD(d|X) and 1(D = d) ⟂ {M,X}|fD(d|M,X); see Rosenbaum and Rubin (1983) and Hirano and Imbens (2004).
Flores et al. (2012) point out that such a regression approach is computationally more burdensome than weighting esti-
mation, in our case based on Equations 7 and 8 as suggested in Section 4, because the respective conditional means need
to be computed for each observation in the sample. This is particularly relevant when using the bootstrap for inference,
as in our application in Section 6. On the other hand, weighting may be less stable (i.e., prone to a higher variance) than
conditional mean regression if fD(d|X) or fD(d|M,X) are close to zero; see the discussion in Khan and Tamer (2010).

4 ESTIMATION

Suppose the availability of a random sample {(Yi,Mi,Di,Xi)}n
i=1 from the joint distribution of (Y,M,D,X) for estimating the

potential outcomes as well as the direct and indirect effects. We first describe fully nonparametric estimation of direct and
indirect effects based on kernel methods along with its properties. At the end of this section, we discuss semiparametric
estimation based on parametric generalized propensity scores. Following standard practice, the subsequent discussion
implicitly assumes that regressors have been standardized by dividing by their respective standard deviations.

For an s-dimensional vector u = (u(1), … ,u(s))′, let Kh(u) = Πs
𝓁=1k(u(𝓁)∕h)∕h be a product kernel with a generic kernel

function k and bandwidth h. Let K1,h1(u) = Πs
𝓁=1k1(u(𝓁)∕h1)∕h1 and h1 denote the kernel function and bandwidth, respec-

tively, for the estimation of the generalized propensity scores, and K2,h2 and h2 be the respective parameters for estimating
the mean potential outcomes (based on conditioning only on D). In the first step, the generalized propensity scores—that
is, the conditional densities of D given X or M,X—are obtained by

𝑓D(d|Xi) =
∑n

𝑗=1 K1,h1 (X𝑗 − Xi,D𝑗 − d)∑n
𝑗=1 K1,h1(X𝑗 − X𝑗)

,

𝑓D(d|Mi,Xi) =
∑n

𝑗=1 K1,h1 (M𝑗 − Mi,X𝑗 − Xi,D𝑗 − d)∑n
𝑗=1 K1,h1(M𝑗 − Mi,X𝑗 − X𝑗)

,

(11)

HUBER ET AL.818
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respectively. In the second step, Equations 7 and 8 are estimated by the respective sample analogs with normalized
weights, which we denote by 𝜇(d, d) and 𝜇(d, d′):

𝜇(d, d) =
n∑

i=1

YiK2,h2 (Di − d)

𝑓D(d|Xi)

/ n∑
i=1

K2,h2 (Di − d)

𝑓D(d|Xi)
, (12)

𝜇(d, d′) =
n∑

i=1

YiK2,h2 (Di − d)

𝑓D(d|Mi,Xi)
· 𝑓D(d′|Mi,Xi)

𝑓D(d′|Xi)

/ n∑
i=1

K2,h2 (Di − d)

𝑓D(d|Mi,Xi)
· 𝑓D(d′|Mi,Xi)

𝑓D(d′|Xi)
. (12)

Then estimators for natural direct effects 𝜃d,d′ (d) and 𝜃d,d′ (d′), and natural indirect effects 𝛿d,d′ (d) and 𝛿d,d′ (d′) are given
by

𝜃d,d′ (d) = 𝜇(d, d) − 𝜇(d′, d), 𝜃d,d′ (d′) = 𝜇(d, d′) − 𝜇(d′, d′),

𝛿d,d′ (d) = 𝜇(d, d) − 𝜇(d, d′), 𝛿d,d′ (d′) = 𝜇(d′, d) − 𝜇(d′, d′).

Assumption 3 invokes several regularity conditions required for the consistency and asymptotic normality of the proposed
estimator.

Assumption 3 (Regularity conditions).

(i) The data {Yi,Mi,Di,Xi}, i = 1, … ,n are independent and identically distributed (i.i.d.).
(ii) The probability density function fDMX(d,m, x) is bounded away from zero and is at least r-order continuously

differentiable with respect to (d,m, x), with uniformly bounded derivatives on ×× , a compact and convex
subset of 1+sm+sx , where sm and sx are the dimensions of M and X, respectively.

(iii) E
[
Y |D = d,M = m,X = x

]
is at least r-order continuously differentiable with respect to (d,m, x) on  × ×

and has uniformly bounded derivatives.
(iv) The symmetric kernels k1 and k2 are bounded differentiable, have convex bounded supports, and have order

r1 ≥ 2 and r2 ≥ 2, respectively.6
6

(v) The bandwidths h1, h2 and h ≡ min{h1, h2} and the orders r1 and r2 satisfy h1, h2 → 0, nh1
2sh2

2h−1 → ∞,
nhh4r1

1 h−2
2 → 0, nh1h2r2

2 = O(1), nh2r1+1
1 = O(1), h2r1

1 h−1
2 h → 0, nhh2r1

1 → 0, and nhh2r2
2 → 0, as n → ∞, where the

dimension of the regressors is s ≡ 1 + sm + sx.

Our estimator can be linearized to follow a U-statistic, which is well studied in the literature. The smoothness and
bandwidth conditions in Assumption 3 ensure that the remainder terms of the projections of the U-statistic and the
bias terms are asymptotically first-order negligible. Assumption 3(iv) imposes standard regularity conditions for kernel
functions. Assumption 3(v) implies that the first step estimators of the conditional density functions are undersmoothed.
And the first step requires a higher order kernel in dependence of the dimension of the regressors. For the second step,
Assumption 3(v) implies that one may either use the same (higher order) kernel and bandwidth as for the first step, or
alternatively a second-order kernel, requiring a smaller bandwidth h2 < h1. In the latter case, the estimation error of
the first step density estimators is first-order asymptotically negligible.7 In Assumption 3(v), nhh2r1

1 → 0 and nhh2r2
2 → 0

are the undersmoothing conditions for the limiting distribution of the estimators to be normal and centered at zero. To
implement our methods in practice, an alternative set of sufficient conditions for the nonparametric tuning parameters
in Assumption 3(v) is the following. Let the positive bandwidths vanish at a polynomial rate; that is, h1 = C1n−a and
h1 = C1n−b. If h = min{h1, h2} = h2, then Assumption 3(v) implies r1 > s, max

{
1 − 2r1a, 1

2r2+1
,

1−a
2r2

}
< b < 1 − 2sa,

and 1
2r1+1

≤ a < min
{

2r2−1
4r2s−1

,
r2

s(2r2+1)

}
. For an example of s = 3, one may choose r1 = 4. Then r2 = 2, a = 0.12, and

b = 0.25 satisfy the above conditions. The following theorem provides the main result of the paper, namely the asymptotic
normality of our estimator.

Theorem 1. (Asymptotics for the nonparametric case) Suppose Assumptions 1,2 and 3 hold with r ≥ max{r1, r2}.
Denote by R(k) ≡ ∫ ∞

−∞ k2(u)du and g(d,Mi,Xi) ≡ E[Y|D = d,Mi,Xi]. Then
√

nh
(
𝜇(d, d) − 𝜇(d, d)

)
=

6 A kernel k is of order r if ∫ k(u)du = 1, ∫ ulk(u)du = 0 for 0 < l < r, and ∫ |urk(u)|du < ∞.
7Furthermore, the convergence rate is slower than the rate when we use the same higher order kernel for both steps.
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√
h∕n

∑n
i=1 𝜑

np
𝜇(d,d)(Yi,Di,Xi; h1, h2) + op(1)

d
→ (0,Vd), where

𝜑
np
𝜇(d,d)(Yi,Di,Xi; h1, h2) ≡ (Yi − 𝜇(d, d))

K2,h2 (Di − d)
𝑓D(d|Xi)

− (E[Y |D = d,Xi] − 𝜇(d, d))
K1,h1(Di − d)
𝑓D(d|Xi)

and

Vd ≡
{

E
[
var[Y |D = d,X]∕𝑓D(d|X)

]
R(k2) if h = h1 = h2 and k1 = k2,

E
[
E
[
(Y − 𝜇(d, d))2|D = d,X

]
∕𝑓D(d|X)

]
R(k2) if h = h2 < h1,

and
√

nh
(
𝜇(d, d′) − 𝜇(d, d′)

)
=
√

h∕n
∑n

i=1 𝜑
np
𝜇(d,d′)(Yi,Di,Mi,Xi; h1, h2) + op(1)

d
→ (0,Vdd′ ), where

𝜑
np
𝜇(d,d′)(Yi,Di,Mi,Xi; h1, h2)

≡ ((
Yi − 𝜇(d, d′)

)
K2,h2 (Di − d)

−
(

g(d,Mi,Xi) − 𝜇(d, d′)
)

K1,h1 (Di − d)
) 𝑓D(d′|Mi,Xi)
𝑓D(d|Mi,Xi)𝑓D(d′|Xi)

+
(

g(d,Mi,Xi) − E
[
g(d,M,Xi)|D = d′,Xi

]) K1,h1(Di − d′)
𝑓D(d′|Xi)

and

Vdd′ ≡
⎧⎪⎪⎨⎪⎪⎩

(
E
[
var[Y |D = d,X] 𝑓 2

D(d
′|M,X)

𝑓D(d|M,X)𝑓 2
D(d′|X)

]
+E

[
var[g(d,M,X)|D = d′,X]∕𝑓D(d′|X)

])
R(k2), if h = h1 = h2 and k1 = k2,

E
[

E
[(

Y − 𝜇(d, d′)
)2|D = d,X

]
𝑓 2

D(d
′|M,X)

𝑓D(d|M,X)𝑓 2
D(d′|X)

]
R(k2), if h = h2 < h1.

Following Theorem 1, we have the following corollary regarding the asymptotics of the estimators of natural direct and
indirect effects.

Corollary 1. Suppose Assumptions 1,2, and 3 hold with r ≥ max{r1, r2}. Then

√
nh(𝜃d,d′ (d) − 𝜃d,d′ (d)) ≡

√
h
n

n∑
i=1

𝜑
np
𝜃d,d′ (d)

(Yi,Di,Mi,Xi; h1, h2) + op(1),

√
nh(𝜃d,d′ (d′) − 𝜃d,d′ (d′)) ≡

√
h
n

n∑
i=1

𝜑
np
𝜃d,d′ (d′)(Yi,Di,Mi,Xi; h1, h2) + op(1),

√
nh(𝛿d,d′ (d) − 𝛿d,d′ (d)) ≡

√
h
n

n∑
i=1

𝜑
np
𝛿d,d′ (d)

(Yi,Di,Mi,Xi; h1, h2) + op(1),

√
nh(𝛿d,d′ (d) − 𝛿d,d′ (d)) ≡

√
h
n

n∑
i=1

𝜑
np
𝛿d,d′ (d)

(Yi,Di,Mi,Xi; h1, h2) + op(1),

where
𝜑

np
𝜃d,d′ (d)

(Yi,Di,Mi,Xi; h1, h2) = 𝜑
np
𝜇(d,d)(Yi,Di,Xi; h1, h2) − 𝜑

np
𝜇(d′,d)(Yi,Di,Mi,Xi; h1, h2),

𝜑
np
𝜃d,d′ (d′)(Yi,Di,Mi,Xi; h1, h2) = 𝜑

np
𝜇(d,d′)(Yi,Di,Mi,Xi; h1, h2) − 𝜑

np
𝜇(d′,d′)(Yi,Di,Xi; h1, h2),

𝜑
np
𝛿d,d′ (d)

(Yi,Di,Mi,Xi; h1, h2) = 𝜑
np
𝜇(d,d)(Yi,Di,Xi; h1, h2) − 𝜑

np
𝜇(d,d′)(Yi,Di,Mi,Xi; h1, h2),

𝜑
np
𝜃d,d′ (d′)(Yi,Di,Mi,Xi; h1, h2) = 𝜑

np
𝜇(d′,d)(Yi,Di,Mi,Xi; h1, h2) − 𝜑

np
𝜇(d′,d′)(Yi,Di,Xi; h1, h2).

Note that the asymptotic variance of 𝜃d,d′ (d) is Vd + Vdd′ − 2limn→∞hcov(𝜑np
𝜇(d,d), 𝜑

np
𝜇(d′,d)) , whose explicit form is nota-

tionally complicated and does not provide any new insights, so we ignore it. The same argument applies to the other three
estimators. Inference may be based on a sample analog estimator. For example, given uniformly consistent estimators
Ê[Y |D = d,X = x] and Ê[Y |D = d,M = m,X = x] for E[Y|D = d,X = x] and E[Y|D = d,M = m,X = x], respectively, a
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consistent estimator for 𝜃d,d′ (d) is

̂𝜃d,d′ (d) =
h
n

n∑
i=1

(𝜑̂np
𝜇(d,d)(Yi,Di,Xi; h1, h2) − 𝜑̂

np
𝜇(d′,d)(Yi,Di,Mi,Xi; h1, h2))2,

where 𝜑̂np
𝜇(d,d)(Yi,Di,Xi; h1, h2) and 𝜑̂

np
𝜇(d′,d)(Yi,Di,Mi,Xi; h1, h2) are obtained by replacing the unknown functions or param-

eters in𝜑
np
𝜇(d,d)(Yi,Di,Xi; h1, h2) and𝜑

np
𝜇(d′,d)(Yi,Di,Mi,Xi; h1, h2)with their uniform consistent estimators. This applies both

when a single bandwidth is used such that h = h1 = h2 and k1 = k2 as well as when h = h1 < h2. Consistent variance
estimators for the other point estimators of the natural direct and indirect effects can be obtained analogously.

As an alternative to basing variance estimation on the sample analogs of Theorem 1, one may apply bootstrap methods.
Bootstrapping is known to be valid for local constant estimators; see Horowitz (2001). In the proof of Theorem 1, we can
replace the random sample {(Yi,Mi,Di,Xi)}i=1,… ,n with the bootstrap sample {(Y∗

i ,M∗
i ,D∗

i ,X∗
i )}i=1,… ,n and replace the

population distribution p and E with the empirical distribution p* and E*.8 Thus the bootstrap is valid in this context.
Our theory so far only considered the case in which all elements in X and M are continuous variables. We subsequently

briefly discuss the inclusion of discrete variables. Consider a discrete covariate, X̃ , that only takes a finite number of values
and enters the conditioning set in Assumptions 1 and 2 in addition to the continuously distributed X. The conditional
density of D = d given the covariates may be estimated by

𝑓D(d|Xi, X̃i) =
∑n

𝑗=1 1(X̃𝑗 = X̃i)K1,h1(X𝑗 − Xi)K1,h1(D𝑗 − d)∑n
𝑗=1 1(X̃𝑗 = X̃i)K1,h1(X𝑗 − X𝑗)

,

that is, in subcells defined upon the values of X̃ . Analogously, 𝑓D(d|Mi,Xi, X̃i) is obtained. Replacing 𝑓D(d|Xi) and
𝑓D(d|Mi,Xi) in (12) by 𝑓D(d|Xi, X̃i), and 𝑓D(d|Mi,Xi, X̃i), respectively, allows estimating 𝜇(d, d) and 𝜇(d, d′). When substi-
tuting fDMX(d,m, x) and E[Y|D = d,M = m,X = x] by 𝑓DMXX̃ (d,m, x, x̃) and E[Y |D = d,M = m,X = x, X̃ = x̃], respectively,
in Assumption 3, our previous asymptotic results remain valid.9

We conclude this section by considering semiparametric estimation of 𝜇(d, d) and 𝜇(d, d′), in which the generalized
propensity scores fD(d|X) and fD(d|M,X) are parametrically specified. To this end, we invoke the following assumption on
the first step estimation of the generalized propensity scores.

Assumption 4. (Parametric generalized propensity scores):

(i) The estimator 𝛾̂x of the generalized propensity score model fD(d|x; 𝛾x), 𝛾x ∈ Γx ⊆ sx , satisfies supx∈ |𝑓D(d|x; 𝛾̂x) −
𝑓D(d|x; 𝛾x0)| = Op(n−1∕2), where 𝛾x0 ∈ 𝛤x such that fD(d|x) = fD(d|x; 𝛾x0) for all x ∈  .

(ii) The estimator 𝛾̂mx of the generalized propensity score model fD(d|m, x; 𝛾mx), 𝛾mx ∈ Γmx ⊆ smx , satis-
fies supm∈,x∈ |𝑓D(d|m, x; 𝛾̂mx) − 𝑓D(d|m, x; 𝛾mx0)| = Op(n−1∕2) where 𝛾mx0 ∈ 𝛤mx, such that fD(d|m, x) =
fD(d|m, x; 𝛾mx0) for all m ∈  and x ∈  .

(iii) fD(d|x) and fD(d|m, x) are uniformly bounded above and bounded away from zero on  × ×  .

A sufficient condition for Assumption 4 is the following. Suppose that the joint density function of D, M and X,
fDMX(d,m, x) is uniformly bounded above and bounded away from zero and follows a parametric model such that|𝑓DMX (d,m, x) − 𝑓DMX (d,m, x; 𝛾̂)| is Op(n−1/2) uniformly. 𝛾̂ is a root-n consistent estimator for 𝛾0 (typically based on
maximum likelihood) with fDMX(d,m, x) = fDMX(d,m, x; 𝛾0). Let fX(x), fDX(d, x), fMX(m, x) be the marginal density func-
tions. Then fD(d|x) = fDX(d, x)∕fX(x) and fD(d|m, x) = fDMX(d,m, x)∕fMX(m, x), which can be consistently estimated by
𝑓D(d|x; 𝛾̂) = 𝑓DX (d, x; 𝛾̂)∕𝑓X (x; 𝛾̂) and 𝑓D(d|m, x; 𝛾̂) = 𝑓DMX (d,m, x; 𝛾̂)∕𝑓MX (m, x; 𝛾̂). Semiparametric estimators for 𝜇(d, d)

8Lemma 3.1 in Powell, Stock, and Stoker (1989) and the asymptotic linear representation for the U-statistic hold for the bootstrap estimator. The
Lyapounov condition holds by the same argument.
9Note that sx and sm correspond to the numbers of continuous variables in X and M, respectively—that is, without the discrete covariate X̃ .
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and 𝜇(d, d′) are given by

𝜇(d, d) =
n∑

i=1

YiK2,h2 (Di − d)

𝑓D(d|Xi; 𝛾̂x)

/ n∑
i=1

K2,h2 (Di − d)

𝑓D(d|Xi; 𝛾̂x))
,

𝜇(d, d′) =
n∑

i=1

YiK2,h2 (Di − d)

𝑓D(d|Mi,Xi; 𝛾̂mx))
· 𝑓D(d′|Mi,Xi; 𝛾̂mx)

𝑓D(d′|Xi; 𝛾̂x)

/ n∑
i=1

K2,h2 (Di − d)

𝑓D(d|Mi,Xi; 𝛾̂mx)
· 𝑓D(d′|Mi,Xi; 𝛾̂mx)

𝑓D(d′|Xi; 𝛾̂x)
.

(13)

By invoking Assumption 4, the asymptotic theory for these estimators simplifies considerably when compared to the
nonparametric case; see Theorem 2 below.

Theorem 2 (Asymptotics for the semiparametric case). Suppose Assumptions 1-3(i)–(iv), and 4 hold with r ≥ r2. Let
the order of the kernel r2 = 2. The bandwidth h2 satisfy h2 → 0, nh2 → ∞, and nh5

2 → 0. Then√
nh2

(
𝜇(d, d) − 𝜇(d, d)

)
=
√

h2

n

n∑
i=1

(Yi − 𝜇(d, d))
K2,h2(Di − d)
𝑓D(d|Xi)

+ op(1)
d
→ (0,Vd),

where Vd = E
[
E
[
(Y − 𝜇(d, d))2|D = d,X

]
∕𝑓D(d|X)

]
R(k2) and√

nh2
(
𝜇(d, d′) − 𝜇(d, d′)

)
=
√

h2

n

n∑
i=1

(
Yi − 𝜇(d, d′)

) K2,h2(Di − d)𝑓D(d′|Mi,Xi)
𝑓D(d|Mi,Xi)𝑓D(d′|Xi)

+ op(1)
d
→ (0,Vdd′ ),

where Vdd′ = E
[

E
[(

Y − 𝜇(d, d′)
)2|D = d,M,X

]
𝑓 2

D(d
′|M,X)

𝑓D(d|M,X)𝑓 2
D(d′|X)

]
R(k2).

The condition nh5
2 → 0 in Theorem 2 is the undersmoothing condition for the semiparametric estimators. A corollary

similar to Corollary 1 for the asymptotics for semiparametric estimators for natural direct and indirect estimators can
be obtained similarly, so we omit the details. The main advantage of the semiparametric approach over the fully non-
parametric estimator is that it circumvents the curse of dimensionality problem when the dimensions of X and/or M are
large. On the downside, misspecifications of the generalized propensity scores generally result in inconsistent estimators
of potential outcomes and effects.

5 SIMULATION STUDY

This section provides a simulation study to investigate the finite sample behavior of our semi- and nonparametric methods
based on the following data generating process:

Y = 0.3D + 0.3 M + 𝛼DM + 0.3X + 𝛽D3 + U,

M = 0.3D + 0.3X + V , D = 0.3X + W ,

X ∼ uniform(−1.5, 1.5), U,V ,W ∼ uniform(−2, 2), independently of each other.

Outcome Y is a function of the observed variables D,M,X and an unobserved term U. 𝛼 gauges the interaction effect
between D and M. 𝛼 = 0 satisfies the assumption of no interaction as discussed in Robins (2003), implying that the
direct effect 𝜃d,d′ (d) = 𝜃d,d′ (d′) in Equation 2 and the indirect effect 𝛿d,d′ (d) = 𝛿d,d′ (d′) in Equation 3. In contrast, for
𝛼 ≠ 0, direct and indirect effects are heterogeneous. 𝛽 determines whether the direct effect of D on Y is linear (𝛽=0)
or nonlinear, namely cubic (𝛽 ≠ 0). Mediator M is a function of D,X and the unobservable V. Note that the indirect
effect is linear, as M is linear in D and Y is linear in M. Treatment D is linearly determined by X and the unobservable
W. The covariate X, which confounds the treatment–outcome, treatment–mediator, and mediator–outcome relations, is
continuously uniformly distributed with support ranging from −1.5 to 1.5. Finally, the unobservables follow uniform
distributions with support ranging from −2 to 2. They are statistically independent of each other as well as of X. In our
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TABLE 1 Simulations 𝛼 = 0.5, 𝛽 = 0

𝜽d,0(d) 𝜽d,0(0) 𝜹d,0(d) 𝜹d,0(0)
abias SD RMSE abias SD RMSE abias SD RMSE abias SD RMSE

n = 1, 000
OLS 0.124 0.035 0.130 0.000 0.035 0.035 0.124 0.013 0.125 0.001 0.013 0.013
W np 0.020 0.057 0.062 0.062 0.056 0.086 0.077 0.010 0.077 0.039 0.007 0.040
W np us 0.016 0.101 0.103 0.044 0.100 0.113 0.048 0.035 0.060 0.023 0.024 0.034
W p 0.059 0.059 0.086 0.058 0.058 0.083 0.011 0.020 0.024 0.006 0.015 0.016
W p us 0.050 0.106 0.118 0.049 0.105 0.117 0.003 0.024 0.024 0.002 0.019 0.019

n = 4, 000
OLS 0.124 0.017 0.126 0.000 0.017 0.017 0.124 0.006 0.124 0.000 0.006 0.006
W np 0.016 0.038 0.044 0.054 0.037 0.069 0.065 0.008 0.065 0.034 0.005 0.034
W np us 0.021 0.063 0.067 0.043 0.062 0.079 0.048 0.021 0.052 0.026 0.014 0.029
W p 0.050 0.039 0.065 0.050 0.038 0.064 0.005 0.011 0.013 0.001 0.008 0.008
W p us 0.049 0.065 0.084 0.049 0.064 0.083 0.003 0.014 0.014 0.001 0.011 0.011

Note. “abias,” “SD,” and “RMSE” report the the average absolute bias, standard deviation, and root mean squared error, respectively,
of the effects across all treatment values d ∈ {−1.5,−1.4, … 1.4, 1.5} and d′ = 0. “OLS,” “W np,” “W np us,” “W p,” and “W p us” refer
to linear regression, nonparametric weighting, nonparametric weighting with undersmoothing in the kernel procedures, weighting
with a parametric generalized propensity score, and weighting with a parametric generalized propensity score and undersmoothing
in the kernel function, respectively.

simulation design, the ATE corresponds to Δd,d′ = 0.39(d − d′) + 0.3𝛼(d2 − d′2) + 𝛽(d3 − d′3). The direct effects are given
by 𝜃d,d′ (d) = 0.3(d − d′) + 0.3𝛼(d2 − d′2) + 𝛽(d3 − d′3) and 𝜃d,d′ (d′) = 0.3(d − d′) + 𝛽(d3 − d′3), and the indirect effects by
𝛿d,d′ (d) = 0.09(d − d′) + 0.3𝛼(d2 − d′2) and 𝛿d,d′ (d′) = 0.09(d − d′).

We consider 1,000 simulations and two sample sizes n = 1, 000, 4, 000 to investigate the performance of our nonpara-
metric weighting approach based on Equation (12). As the dimension of (D,X,M) is equal to s = 3 (see Section 4) in our
simulation, we set the orders of the Epanechnikov kernels in Equations 11 and 12 to r1 = 4 and r2 = 2, respectively.
Furthermore, the bandwidth h1 is determined by multiplying the respective standard deviations of D,X,M by C1n−0.12,
where C1 = 3.03 is the constant term in a Silverman (1986)-type rule of thumb for fourth-order Epanechnikov kernels.
Analogously, h2 is obtained using C2n−0.25, with C2 = 2.34 being the constant for second-order Epanechnikov kernels.
We note that these choices of r1, r2, h1, h2 satisfy the regularity conditions in Assumption 3 required for the satisfaction of
Theorem 1.

Furthermore, we consider semiparametric weighting based on parametric estimation of the generalized propensity
scores in Equation 13. To this end we (incorrectly) assume D to be normally distributed given X or given (X,M), respec-
tively. Bandwidth h2 corresponds to C2n−0.25, with C2 = 2.34. For all kernel-based computations, we use the “np” package
by Hayfield and Racine (2008) for the statistical software “R.” Besides estimation using bandwidths based on the rule of
thumb, we consider undersmoothed versions, in which bandwidths of all kernel procedures are divided by 2. For com-
parison, in addition we estimate the direct and indirect effects based on linear ordinary least squares (OLS) regressions
of the mediator on a constant, the treatment, and covariate and of the outcome on a constant, the treatment, the medi-
ator, and the covariate, respectively. Concerning the definition of the direct and indirect effects, we set d′ = 0. For d, we
consider a sequence of values defined by an equidistant grid between (and including) −1.5 and 1.5 with step size 0.1 (i.e.,
d ∈ {−1.5,−1.4, … 1.4, 1.5}; however, without including 0 for obvious reasons.

Table 1 reports the averages of the absolute bias (abias), standard deviation (SD), and root mean squared error (RMSE)
for each effect under 𝛼 = 0.5 (effect heterogeneity) and 𝛽 = 0 (fully linear model), where averaging is over all treatment
comparisons (d−d′) considered. Not surprisingly, the OLS-based estimators (OLS) have the lowest standard deviations of
all methods due to their parametric assumptions. On the downside, the OLS estimates of 𝜃(d) and 𝛿(d) are nonnegligibly
biased under either sample size due to the omission of the treatment–mediator interactions. In contrast, the nonparamet-
ric weighting estimator with rule-of-thumb bandwidths (W np) is considerably less biased. Undersmoothing (W np us)
generally entails an even lower absolute bias but, as expected, a higher standard deviation. A qualitatively similar pat-
tern is observed for semiparametric weighting with a parametric first step (W p). Undersmoothing (W p us), which in the
semiparametric case only concerns h2, reduces the absolute bias and increases the standard deviation. We also note that
the semi- and nonparametric versions do not uniformly dominate each other in terms of RMSE across the effects and
sample sizes considered.
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TABLE 2 Simulations 𝛼 = 0, 𝛽 = 0.25

𝜽d,0(d) 𝜽d,0(0) 𝜹d,0(d) 𝜹d,0(0)
abias SD RMSE abias SD RMSE abias SD RMSE abias SD RMSE

n = 1, 000
OLS 0.280 0.029 0.282 0.280 0.029 0.282 0.001 0.011 0.011 0.001 0.011 0.011
W np 0.099 0.055 0.117 0.097 0.055 0.115 0.035 0.009 0.036 0.038 0.008 0.039
W np us 0.043 0.096 0.106 0.041 0.097 0.105 0.021 0.025 0.033 0.023 0.024 0.034
W p 0.064 0.057 0.090 0.066 0.058 0.091 0.015 0.018 0.023 0.007 0.015 0.016
W p us 0.024 0.101 0.105 0.026 0.101 0.106 0.004 0.020 0.021 0.002 0.018 0.019

n = 4, 000
OLS 0.281 0.015 0.281 0.281 0.015 0.281 0.000 0.006 0.006 0.000 0.006 0.006
W np 0.064 0.036 0.074 0.061 0.036 0.072 0.031 0.006 0.031 0.034 0.005 0.034
W np us 0.035 0.059 0.069 0.033 0.059 0.068 0.024 0.014 0.028 0.026 0.014 0.029
W p 0.023 0.037 0.046 0.025 0.037 0.048 0.007 0.009 0.012 0.001 0.008 0.008
W p us 0.034 0.062 0.072 0.036 0.062 0.073 0.001 0.011 0.011 0.001 0.011 0.011

Note. “abias,” “SD,” and “RMSE” report the the average absolute bias, standard deviation, and root mean squared error, respectively,
of the effects across all treatment values d ∈ {−1.5,−1.4, … 1.4, 1.5} and d′ = 0. “OLS,” “W np,” “W np us,” “W p,” and “W p us” refer
to linear regression, nonparametric weighting, nonparametric weighting with undersmoothing in the kernel procedures, weighting
with a parametric generalized propensity score, and weighting with a parametric generalized propensity score and undersmoothing
in the kernel function, respectively.

Table 2 gives the average statistics over all treatment comparisons (d − d′) for 𝛼 = 0 (effect homogeneity) and 𝛽 = 0.25
(nonlinear direct effects). The OLS estimates of the direct effects are severely biased due to the cubic effect of D in the out-
come model, whereas the indirect effect estimates are unbiased, as they are indeed linear. In contrast, the absolute biases
of both the semi- and nonparametric weighting estimators for the direct effects are considerably smaller and decreasing
in the sample size. Again, undersmoothing in many cases entails a lower absolute bias than relying on rule-of-thumb
bandwidths, but leads to higher standard deviations. Interestingly, the semiparametric versions (W p, W p us) are quite
competitive both in terms of small absolute biases and RMSEs, despite incorrectly assuming normality. Apparently, the
misspecification of the generalized propensity score does not entail important biases as long as bandwidth h2 is sufficiently
small.

Finally, Table 3 provides the results when setting 𝛼 = 0.5, 𝛽 = 0.25 (effect heterogeneity and nonlinear direct effects).
Three out of four OLS effect estimates exhibit important biases, while both the semi- and nonparametric weighting esti-
mators are less biased and superior to OLS in terms of average RMSEs under either sample size. All in all, the simulations
demonstrate the merits of our methods in terms of robustness to deviations from specific parametric assumptions. This,
however, comes at an efficiency cost which decreases in the sample size. The results suggest that our methods perform
decently in sample sizes with several thousand observations (or more), which is quite common in empirical research.

6 EMPIRICAL ILLUSTRATION

We apply our method to the Job Corps study, which was conducted in the mid-1990s to assess the publicly funded US Job
Corps program and used an experimental design in which access to Job Corps was assigned at random. The Job Corps
program targets individuals who are between 16 and 24 years old, legally reside in the USA, and come from low-income
households. Participants received approximately 1,200 hours of vocational training and education, housing, and board
over an average duration of eight months. Schochet, Burghardt, and Glazerman (2001) and Schochet, Burghardt, and
McConnell (2008) discuss in detail the study design and report the average effects of program assignment on a broad
range of outcomes. Their findings suggest that Job Corps increases educational attainment, reduces criminal activity, and
increases employment and earnings, at least for some years after the program.

Several previous studies investigated various causal mechanisms of the Job Corps program and found significant direct
or indirect effects, depending on the mediator and outcome variables considered. Flores and Flores-Lagunes (2009) find
a positive direct effect of program assignment on earnings when controlling for the mediator work experience which they
assume to be conditionally exogenous given observed covariates. Also, Huber (2014) invokes a selection on observables
assumption and estimates a positive direct health effect when controlling for the mediator employment. Frölich and
Huber (2017) use an IV strategy based on two instruments to disentangle the earnings effect of being enrolled in Job Corps
into an indirect effect via hours worked and a direct effect (likely related to a change in human capital). The results point to
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TABLE 3 Simulations 𝛼 = 0.5, 𝛽 = 0.25

𝜽d,0(d) 𝜽d,0(0) 𝜹d,0(d) 𝜹d,0(0)
abias SD RMSE abias SD RMSE abias SD RMSE abias SD RMSE

n = 1, 000
OLS 0.298 0.037 0.303 0.280 0.037 0.283 0.124 0.013 0.125 0.001 0.013 0.013
W np 0.100 0.061 0.122 0.114 0.060 0.132 0.076 0.011 0.077 0.038 0.008 0.039
W np us 0.044 0.102 0.112 0.056 0.101 0.120 0.047 0.035 0.060 0.023 0.024 0.034
W p 0.068 0.063 0.097 0.067 0.062 0.095 0.016 0.021 0.029 0.007 0.015 0.017
W p us 0.025 0.107 0.112 0.026 0.106 0.111 0.004 0.024 0.025 0.002 0.019 0.019

n = 4, 000
OLS 0.299 0.018 0.300 0.281 0.018 0.282 0.124 0.007 0.124 0.000 0.007 0.007
W np 0.064 0.039 0.076 0.078 0.038 0.089 0.065 0.008 0.065 0.034 0.005 0.034
W np us 0.035 0.063 0.073 0.049 0.062 0.083 0.047 0.021 0.052 0.026 0.014 0.029
W p 0.029 0.040 0.053 0.029 0.040 0.053 0.008 0.012 0.015 0.002 0.008 0.008
W p us 0.035 0.065 0.077 0.036 0.065 0.077 0.003 0.014 0.014 0.001 0.011 0.011

Note. “abias,” “SD,” and “RMSE” report the the average absolute bias, standard deviation, and root mean squared error, respectively,
of the effects across all treatment values d ∈ {−1.5,−1.4, … 1.4, 1.5} and d′ = 0. “OLS,” “W np,” “W np us,” ‘W p,” and “W p us” refer
to linear regression, nonparametric weighting, nonparametric weighting with undersmoothing in the kernel procedures, weighting
with a parametric generalized propensity score, and weighting with a parametric generalized propensity score and undersmoothing
in the kernel function, respectively.

the existence of an indirect rather than a direct mechanism. Using a partial identification approach allowing for mediator
endogeneity, Flores and Flores-Lagunes (2010) derive bounds for direct and indirect effects of Job Corps assignment on
employment and earnings mediated by the achievement of a GED, high school degree, or vocational degree. Under their
strongest set of bounding assumptions, the results suggest a positive effect on labor market outcomes even net of the
indirect mechanism via obtaining a degree.

While these previous contributions consider binary treatment definitions, our interest lies in the effect of different doses
of participation in Job Corps on an outcome variable capturing criminal behavior, namely the number of arrests. Our con-
tinuous treatment definition follows Flores et al. (2012), who assess the total effect of length of exposure to academic and
vocational instruction on earnings. In contrast, our mediation analysis investigates whether the time spent in Job Corps
affects the number of arrests indirectly through employment or “directly”—that is, through any other causal mechanisms.
More precisely, our treatment variable D is defined as the total hours spent either in academic or vocational classes in
the 12 months following the program assignment according to the survey. While access to the program was randomly
assigned, the decision to actually take the treatment was endogenous and thus prone to selection, both at the extensive
margin (whether to join Job Corps or not) and at the intensive margin (how many hours to consume). The mediator M is
the proportion of weeks employed in the second year, while the outcome variable Y corresponds to the number of times
the individual was arrested by the police in the fourth year after the random assignment.

Schochet et al. (2008) report that Job Corps significantly reduced arrest and conviction rates, as well as time spent incar-
cerated. Our approach adds to these findings in two dimensions. First, we document that the effect on the number of
arrests is highly nonlinear in the treatment dose, with significant reductions in arrests only materializing after a non-
negligible amount of hours in Job Corps. A binary treatment definition would not permit discovering this nonlinearity.
Second, our mediation analysis disentangles the total reduction into an indirect component due to Job Corps-induced
employment and a (direct) remainder effect of the program, which allows assessing the relative importance of different
causal mechanisms.

For identification, we invoke sequential conditional independence of the treatment and the mediator as outlined in
Section 3 based on a rich set of pretreatment covariates X, which overlaps with the control variables of Flores et al. (2012).10

Specifically, we control for individual characteristics like age, gender, ethnicity, language competency, education, mar-
ital status, household size and income, previous receipt of social aid, and family background (e.g., parents’ education),
as well as health and health-related behavior at baseline. Conditioning on such a rich set of socioeconomic variables
appears important, as identification relies on successfully controlling for all confounders jointly influencing at least two
out of the three variables time in treatment, employment in the second year, and arrests in the fourth year. Furthermore,

10A control variable in Flores et al. (2012) we do not have access to is the local unemployment rate. The latter was constructed by matching county-level
unemployment rates to individual postal codes of residence, which are only available in a restricted-use data set.
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TABLE 4 Descriptives

Variable Type Mean SD Min Max Nonmissing
female dummmy (1 if yes, 0 if no) 0.44 0.50 0.00 1.00 4,000
age numeric 18.33 2.14 16.00 24.00 4,000
white dummy (1 if yes, 0 if no) 0.25 0.43 0.00 1.00 4,000
black dummy (1 if yes, 0 if no) 0.50 0.50 0.00 1.00 4,000
Hispanic dummy (1 if yes, 0 if no) 0.17 0.38 0.00 1.00 4,000
years of education numeric 10.05 1.54 0.00 20.00 3,945
GED diploma dummy (1 if yes, 0 if no) 0.04 0.20 0.00 1.00 3,982
high school diploma dummy (1 if yes, 0 if no) 0.18 0.39 0.00 1.00 3,982
native English dummy (1 if yes, 0 if no) 0.86 0.35 0.00 1.00 3,950
divorced dummy (1 if yes, 0 if no) 0.01 0.09 0.00 1.00 3,953
separated dummy (1 if yes, 0 if no) 0.01 0.11 0.00 1.00 3,953
cohabiting dummy (1 if yes, 0 if no) 0.03 0.18 0.00 1.00 3,953
married dummy (1 if yes, 0 if no) 0.02 0.13 0.00 1.00 3,953
has children dummy (1 if yes, 0 if no) 0.18 0.38 0.00 1.00 3,981
ever worked dummy (1 if yes, 0 if no) 0.41 0.49 0.00 1.00 1,405
average weekly gross earnings (in USD) numeric 19.41 98.66 0.00 2,000.00 3,999
is household head dummy (1 if yes, 0 if no) 0.11 0.31 0.00 1.00 3,933
household size (number of people) numeric 3.52 2.01 0.00 15.00 3,944
designated for nonresidential slot dummy (1 if yes, 0 if no) 0.17 0.38 0.00 1.00 4,000
total household gross income categorical (cf. Table A1) 3.51 2.21 1.00 7.00 2,508
total personal gross income categorical (cf. Table A1) 1.11 0.48 1.00 7.00 1,774
mum's years of education numeric 11.50 2.60 0.00 20.00 3,263
dad's years of education numeric 11.45 2.90 0.00 20.00 2,506
dad did not work when 14 dummy (1 if yes, 0 if no) 0.06 0.23 0.00 1.00 3,575
received AFDC every month dummy (1 if yes, 0 if no) 0.80 0.40 0.00 1.00 1,148
received public assistance every month dummy (1 if yes, 0 if no) 0.85 0.36 0.00 1.00 946
received food stamps dummy (1 if yes, 0 if no) 0.45 0.50 0.00 1.00 3,836
welfare receipt during childhood categorical (cf. Table A1) 2.07 1.19 1.00 4.00 3,726
poor/fair general health status dummy (1 if yes, 0 if no) 0.13 0.33 0.00 1.00 3,953
physical/emotional problems dummy (1 if yes, 0 if no) 0.04 0.20 0.00 1.00 3,950
extent of marijuana use categorical (cf. Table A1) 2.54 1.55 0.00 4.00 1,469
extent of hallucinogen use categorical (cf. Table A1) 2.76 1.73 0.00 4.00 204
ever used other illegal drugs dummy (1 if yes, 0 if no) 0.01 0.08 0.00 1.00 2,628
extent of smoking categorical (cf. Table A1) 1.53 0.98 0.00 4.00 2,084
extent of alcohol consumption categorical (cf. Table A1) 3.14 1.21 0.00 4.00 2,306
ever arrested dummy (1 if yes, 0 if no) 0.24 0.43 0.00 1.00 3,951
times in prison numeric 0.07 0.35 0.00 5.00 3,951
time spent by recruiter speaking of Job Corps categorical (cf. Table A1) 2.05 0.94 1.00 4.00 3,922
extent of recruiter support categorical (cf. Table A1) 1.59 1.07 1.00 5.00 3,911
idea about wished training dummy (1 if yes, 0 if no) 0.85 0.35 0.00 1.00 3,944
expected hourly wage after Job Corps numeric 9.95 6.57 5.00 96.00 1,799
expected improvement in maths categorical (cf. Table A1) 1.32 0.53 1.00 3.00 3,916
expected improvement in reading skills categorical (cf. Table A1) 1.53 0.65 1.00 3.00 3,932
expected improvement in social skills categorical (cf. Table A1) 1.48 0.68 1.00 3.00 3,932
expected to be training for a job categorical (cf. Table A1) 1.04 0.23 1.00 3.00 3,922
worried about Job Corps dummy (1 if yes, 0 if no) 0.37 0.48 0.00 1.00 3,944
1st contact with recruiter by phone dummy (1 if yes, 0 if no) 0.41 0.49 0.00 1.00 3,953
1st contact with recruiter in office dummy (1 if yes, 0 if no) 0.39 0.49 0.00 1.00 2,315
expected stay in Job Corps numeric (in months) 6.64 9.81 0.00 36.00 4,000
total hours spent in 1st year classes (D) numeric (treatment var.) 1,194.15 964.89 0.86 5,142.86 4,000
Share of weeks employed in 2nd year (M) numeric (in percent, mediator var.) 44.05 37.84 0.00 100.00 4,000
Number of arrests in year 4 (Y) numeric (outcome var.) 0.15 0.62 0.00 8.00 4,000

we condition on variables that are predictive for the duration in the program, namely expectations about Job Corps and
interaction with the recruiters. Such factors appear important as they are likely correlated with personality traits like
motivation, which may also affect the mediator and the outcome. Finally, we include pretreatment outcome and mediator
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variables that reflect labor market and criminal behavior prior to Job Corps. This permits controlling for unobserved con-
founders that are time constant in the sense that they only affect the mediator and the outcome through their respective
pretreatment values.

We, however, acknowledge that our framework does not allow for dynamic confounding, implying that the length
of treatment and/or the share of employment are affected by confounders that are themselves influenced by the initial
decision to participate in the treatment at all. This would, for instance, be the case if initial treatment participation affected
motivation, which in turn influenced treatment duration, employment, and criminal behavior. Even though we hope that
the limited time horizon considered for the treatment (first year) and the mediator (second year) mitigates issues related
to dynamic confounding, this threat to identification needs to be borne in mind when interpreting the results.

The original Job Corps data set consists of 15,386 individuals prior to program assignment, but a substantial share never
enrolled in the program and dropped out of the study. We therefore consider the 10,775 observations for which both the
posttreatment variables M and Y are observed in the follow-up surveys after 2 and 4 years, respectively.11 Among these,
there are cases of item nonresponse in various elements of X measured at the baseline survey, for which we account by
the inclusion of missing dummies. Furthermore, and similar to Flores et al. (2012), we restrict our evaluation sample to
observations with a positive treatment intensity; that is, D > 0, ultimately consisting of 4,000 individuals.12 The results
presented further below therefore refer to the group of treated individuals with nonmissing posttreated variables and
only carry over to other groups (like the total population) if direct and indirect effects are homogeneous across individual
characteristics.

Table 4 provides descriptive statistics for the pretreatment covariates as well as the treatment, mediator, and outcome
variables in our evaluation sample, along with the numbers of nonmissing observations. Individuals in our evaluation
sample were on average 18.33 years old at baseline when applying for Job Corps and women made up 44%. Half of the
applicants were black, while whites and Hispanics accounted for 25% and 17%, respectively. Regarding education, 18% of
those with nonmissing values held a high school diploma and 4% a General Education Diploma (GED). A large share of
respondents (had) received public assistance or welfare benefits, pointing to economic hardship. 24% had been arrested at
least once prior to program assignment (excluding minor motor vehicles violations). Concerning treatment intensity (D),
individuals spent on average 1,194 hours either in academic or vocational classes in the first year after assignment. This
corresponds to roughly 149 days of 8 hours. Thus individuals with a positive treatment intensity were on average almost
30 working weeks in Job Corps in the first year. The treatment distribution is right skewed as the median is somewhat
lower, amounting to 966 hours in classes. Concerning the share of weeks employed in the second year (M), the individuals
were on average 44.05% in employment. Finally, the average number of arrests in the fourth year (Y) amounts to 0.15.
Most individuals were never arrested, while 9% were arrested at least once.

We evaluate the direct and indirect effects for 20 different values of positive treatment intensity between 100 and 2,000
hours in steps of 100 versus a rather small intensity of just 40 hours. That is, we estimate 𝜃d,d′ (d), 𝜃d,d′ (d′), 𝛿d,d′ (d), and
𝛿d,d′ (d′) for each of d ∈ {100, 200, … , 1, 900, 2, 000} and d′ = 40. We therefore investigate among treated individuals
whether the length of classroom education actually matters for the number of arrests relative to a minor exposure (40
hours) that corresponds to roughly one working week spent in class. This permits learning whether the treatment affects
criminal behavior importantly at the extensive margin in order to judge the benefits of a more lengthy (and costly) expo-
sure to classroom education when compared to a minimal intervention.13 Figure 1 reports the distribution of D in our
evaluation sample by means of a histogram. Due to large number of covariates, the generalized propensity scores are
estimated parametrically. We therefore assume that D is conditionally log-normally distributed given X or (X,M), as it
is common for nonnegative treatments; see, for instance, Imai and van Dyk (2004). As for semiparametric weighting in
Section 5, estimation relies on Equation 13 and the rule of thumb for determining bandwidth h2. We note that the obtained
results are quite similar when assuming a conditional normal distribution of D (instead of log-normality) and/or apply-
ing undersmoothing by taking half of the rule-of-thumb bandwidth h2. Inference is based on bootstrap standard errors
obtained by bootstrapping the effects 999 times.

11Our analysis does not make use of the sample weights provided in the Job Corps data to account for the fact that, due to stratified sampling, specific
groups are over- or underrepresented in the data relative to the original study population of interest.
12All in all, there are 5,279 observations with D > 0, out of which 1,279 have missing values in M and/or Y. Investigating the selectivity of missingness
w.r.t. the treatment by regressing a dummy for the missingness of Y or M (or both) on D using a probit model yields a p-value of 16%.
13In a robustness check, we set d′ = 0 (no classes at all) and also include observations with zero treatment intensity in our analysis. Figure A1 in
Appendix A.3 displays the direct and indirect effects. The point estimates and conclusions to be drawn are similar to those presented in this section,
despite the fact that the effects are defined relative to a zero treatment rather than a minor, positive treatment.
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FIGURE 1 Histogram of D

To verify whether our estimates of the generalized propensity score fD(d|M,X) successfully balance the distributions
of the covariates and the mediator across treatment intensities, we conduct a test that is in the spirit of Smith and Todd
(2005). Specifically, we linearly regress each of the 65 elements in X (that also include missing dummies) as well as M on
the log-treatment intensity, the generalized propensity score (given X and M) estimated at the sample values of D, and
the score's square.14 If (X,M) and D are not associated given the estimated propensity score such that the latter satisfies
the balancing property, then the coefficient on the log-treatment should be statistically insignificant in most cases. The
p-values of the coefficient averages 56.7% and is only in four regressions (6%) smaller than 5%, such that we do not find
evidence for a violation of the balancing property.15

Furthermore, we check for common support across the generalized propensity scores estimated at the different treat-
ment values considered in our application. Common support implies that no observation obtains too large a weight in the
computation of any mean potential outcome based on weighting expressions (Equation 12), due to dividing by estimated
generalized propensity scores that are close to zero. A large weight would entail a large influence of a single observation
w.r.t. the estimation of some mean potential outcome, thus implying a large variance of the estimator of that mean poten-
tial outcome and ultimately of the effect of interest. See Huber, Lechner, and Wunsch (2013) for an analogous argument
in the context of binary treatment evaluation. We therefore investigate the relative weights in our sample when estimat-
ing the mean potential outcomes, corresponding, for example, to

K2,h2(Di−d)
𝑓D(d|Xi)

∕
∑n

i=1
K2,h2(Di−d)
𝑓D(d|Xi)

when considering 𝜇(d, d). For
any observation, any mean potential outcome, and any d ∈ {40, 100, 200, … , 1, 900, 2, 000}, the relative weight is below
1%. We therefore do not find evidence for a lack in common support.

The upper panel of Figure 2 displays the direct effects under treatment (𝜃d,40(d)) on the left and nontreatment (𝜃d,40(40))
on the right, which are quite heterogeneous over the range of values d. While small treatment intensities do not appear
to directly reduce the number of arrests, direct effects are statistically significantly negative at the 5% level from 1,100
hours on, when the pointwise 95% confidence intervals (dashed lines) do not include zero. The effect peaks in absolute
terms around 1,700 hours, reducing the number of arrests by 0.09. In relative terms, this effect is substantial, given that
the average number of arrests in the fourth year is 0.15; see Table 4. The lower panel of Figure 2 provides the indirect
effects under treatment (𝛿d,40(d)) on the left and nontreatment (𝛿d,40(40)) on the right, operating through employment.

14Using cubic or quartic polynomials of the propensity score yields similar results.
15The four variables for which balance is rejected at the 5% level are black, Hispanic, native English, and expected stay in Job Corps.
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FIGURE 2 Direct effects 𝜃d,40(d) (top left) and 𝜃d,40(40) (top right) as well as indirect effects 𝛿d,40(d) (bottom left) and 𝛿d,40(40) (bottom
right) for d ∈ {100, 200, … , 1, 900, 2, 000}
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All indirect effects are very small in absolute terms and never statistically different from zero at the 5% level. Summing
up, our results point to an important direct, nonlinear reduction in the number of arrests in the fourth year as a conse-
quence of Job Corp under a sufficiently large treatment intensity of roughly 1,100 hours or more. In contrast, the effects
of program-induced employment changes on arrests are close to zero for the investigated range of treatment intensities.

To check the robustness of our findings across different methods, we also compute the direct and indirect effects for
d ∈ {100, 200, … , 1, 900, 2, 000} and d′ = 40 using the “mediate” command in the “mediation” package for “R” by Tingley
et al. (2014). The latter applies regression to estimate the mediator and outcome models and simulates potential mediators
and outcomes according to these models; see Imai, Keele, and Tingley (2010) for details concerning the algorithm. Among
other specifications, the command permits for generalized additive models (GAM) such that the continuous regressors
(be it X, M, or D) in the outcome and mediator equations are flexibly modeled by polynomial functions. We use the
GAM approach and also include a polynomial of the interaction between D and M in the outcome equation to allow for
heterogeneous direct and indirect effects. Appendix A.0.4 reports the effect estimates along with 95% confidence intervals
based on bootstrapping 999 times. The point estimates are in line with those of our weighting estimators reported in
Figure 2; however, precision is considerably lower. Finally, we redefine the outcome variable Y to be a dummy variable
indicating any arrests in the fourth year (Y = 1) versus no arrests (Y = 0) and apply our semiparametric weighting
approach. The effects, which are reported in Appendix A.0.5, then correspond to changes in the probability of being
arrested at least once and show a comparable pattern as our main results.

7 CONCLUSION

Assuming sequential conditional independence, we proposed semi- and nonparametric methods (using either parametric
or nonparametric generalized propensity scores) for estimating direct and indirect effects of a continuous treatment based
on inverse probability weighting and kernel methods. We demonstrated the asymptotic normality of the estimators under
particular regularity conditions and investigated their finite-sample behavior in a simulation study. Finally, we applied
the semiparametric method to the Job Corps program. We found this educational intervention to directly and nonlinearly
decrease the number of arrests in the fourth year after assignment when controlling for employment as mediator. The
semiparametric version of the proposed estimator is available in the “causalweight” package by Bodory and Huber (2018)
for the statistical software “R.”

As a word of caution, the identifying assumptions considered are rather strong in order to allow for a continuously
distributed treatment and possibly multiple mediators with rich support. They may therefore not seem plausible in all
settings, in particular when the richness of observed covariates is limited and/or dynamic confounding appears likely.
In this case, conditioning on pretreatment covariates is insufficient to control for posttreatment confounders of the
mediator–outcome association. In applications where the assumptions seem justifiable, however, the proposed weight-
ing methods are more flexible in terms of modeling assumptions than linear regression-based approaches conventionally
used in practice.
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APPENDIX A

A.1 Proof of Theorem 1
Let the supremum norm of a function A(z) be ||A|| ≡ supz|A(z)|. Our estimator has the form Â∕B̂. A Taylor expansion
gives

Â
B̂

= A
B
+ Â − A

B
− A

B2 (B̂ − B) + Op(||Â − A||||B̂ − B|| + ||B̂ − B||2). (A1)

The numerator of the estimator 𝜇(d, d) is

1
n

n∑
i=1

YiK2,h2(Di − d) 𝑓X (Xi)
𝑓DX (d,Xi)

= 1
n

n∑
i=1

YiK2,h2(Di − d)

(
1

𝑓D(d|Xi)
+ 𝑓X (Xi) − 𝑓X (Xi)

𝑓DX (d,Xi)
− 𝑓DX (d,Xi) − 𝑓DX (d,Xi)

𝑓D(d|X = Xi)𝑓DX (d,Xi)

)

+ Op

(
1
n

n∑
i=1

Y 2
i K2

2,h2
(Di − d)

)
Op

(||𝑓DX − 𝑓DX ||2) .

(A2)

The kernel-based estimator satisfies the uniform convergence rate as in lemma B.3 in Newey (1994):

sup
(d,m,x)∈××

|𝑓DMX (d,m, x) − 𝑓DMX (d,m, x)| = Op

((
log n
nh1

s

)1∕2

+ h1
r1

)
. (A3)

Thus the last term in Equation A2 is Op

(
h−1

2

((
log n∕(nh1

s)
)−1∕2 + h1

r1
)2

)
= op((nh)−1∕2) by Assumption 3(iv).
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We analyze the third term in parentheses of Equation A2:

− 1
n

n∑
i=1

YiK2,h2 (Di − d) 𝑓DX (d,Xi) − 𝑓DX (d,Xi)
𝑓D(d|X = Xi)𝑓DX (d,Xi)

= − 1
n

n∑
i=1

YiK2,h2 (Di − d)
𝑓D(d|X = Xi)𝑓DX (d,Xi)

(
1
n

n∑
𝑗=1

K1,h1(D𝑗 − d)K1,h1(X𝑗 − Xi) − 𝑓DX (d,Xi)

)

≡ 1
n(n − 1)

n∑
i=1

∑
𝑗≠i

p(Zi,Z𝑗)

= 1
n

n∑
i=1

E[p(Zi,Z𝑗)|Zi] +
1
n

n∑
𝑗=1

E[p(Zi,Z𝑗)|Z𝑗] − E[p(Zi,Z𝑗)] + Rem,

(A4)

which is a U-statistic with Zi ≡ (Yi,Di,Xi) and

p(Zi,Z𝑗) ≡ −
YiK2,h2(Di − d)

𝑓D(d|X = Xi)𝑓DX (d,Xi)
(

K1,h1(D𝑗 − d)K1,h1(X𝑗 − Xi) − 𝑓DX (d,Xi)
)
.

To control the remainder term Rem, we calculate

E
[
p(Zi,Z𝑗)2]

= E

[ Y 2
i K2

2,h2
(Di − d)

𝑓 2
D(d|X = Xi)𝑓 2

DX (d,Xi)
E
[(

K1,h1 (D𝑗 − d)K1,h1(X𝑗 − Xi) − 𝑓DX (d,Xi)
)2 |Zi

]]
= O(h−1

2 h−s
1 ).

Assumption 3(v) implies that E
[
p(Zi,Z𝑗)2] h = O(h−1

2 h−s
1 h) = o(n), which further implies Rem = op((nh)−1/2) by lemma

3.1 in Powell et al. (1989). The projection E[p(Zi,Zj)|Zj] satisfies

1
n

n∑
𝑗=1

E[p(Zi,Z𝑗)|Z𝑗]

= −E

[
E [Yi|Di,Xi]K2,h2(Di − d)
𝑓D(d|X = Xi)𝑓DX (d,Xi)

(
1
n

n∑
𝑗=1

K1,h1 (D𝑗 − d)K1,h1(X𝑗 − Xi) − 𝑓DX (d,Xi)

)|Z𝑗

]

= − 1
n

n∑
𝑗=1

E
[
Y |D = d,X = X𝑗

]
𝑓D(d|X = X𝑗)

K1,h1(D𝑗 − d) + E
[
E
[
Y |D = d,X

]]
+ Op(h2

r2 + h1
r1 )

= Op((nh1)−1∕2).

Also, the projection E[p(Zi,Zj)|Zi] satisfies

E[p(Zi,Z𝑗)|Zi]

= −E
[ YiK2,h2 (Di − d)
𝑓D(d|X = Xi)𝑓DX (d,Xi)

(
K1,h1 (D𝑗 − d)K1,h1(X𝑗 − Xi) − 𝑓DX (d,Xi)

) |Zi

]
= −

YiK2,h2(Di − d)
𝑓D(d|X = Xi)𝑓DX (d,Xi)

(
E
[
K1,h1(D𝑗 − d)K1,h1(X𝑗 − Xi)|Zi

]
− 𝑓DX (d,Xi)

)
= −

YiK2,h2(Di − d)
𝑓D(d|X = Xi)𝑓DX (d,Xi)

(
h1

r1 Gi + op(h1
r1)
)
,
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where Gi ≡
(

𝜕r1

𝜕dr1
𝑓DX (d,Xi) + 𝜕r1

𝜕Xr1
i
𝑓DX (d,Xi)

) ∫ ur1 K1(u)du∕r1!. The last term in Equation A4 is

E[p(Zi,Z𝑗)] = −E
[ YiK2,h2 (Di − d)
𝑓D(d|X = Xi)𝑓DX (d,Xi)

(
E
[
K1,h1(D𝑗 − d)K1,h1(X𝑗 − Xi)|Zi

]
− 𝑓DX (d,Xi)

)]
= −E

[ YiK2,h2 (Di − d)
𝑓D(d|X = Xi)𝑓DX (d,Xi)

(
h1

r1 Gi + op(h1
r1)
)]

.

Therefore

1
n

n∑
i=1

E[p(Zi,Z𝑗)|Zi] − E[p(Zi,Z𝑗)] = − 1
n

n∑
i=1

YiK2,h2 (Di − d)
𝑓D(d|X = Xi)𝑓DX (d,Xi)

(
h1

r1 Gi + op(h1
r1)
)

+ E
[ YiK2,h2(Di − d)
𝑓D(d|X = Xi)𝑓DX (d,Xi)

(
h1

r1 Gi + op(h1
r1)
)]

= Op(h1
r1∕

√
nh2)

= op((nh)−1∕2).

The same argument implies that the second term in the parentheses of Equation A2 is of smaller order. Thus, the
asymptotic linear representation for the numerator of 𝜇(d, d) in Equation A2 corresponds to

1
n

n∑
i=1

YiK2,h2(Di − d) 𝑓X (Xi)
𝑓DX (d,Xi)

− E[E[Y |D = d,X]]

= 1
n

n∑
i=1

(
YiK2,h2(Di − d) − E[Y |D = d,X = Xi]K1,h1 (Di − d)

)
∕𝑓D(d|Xi) + op

(
(nh)−1∕2) .

The denominator of 𝜇(d, d) is equivalent to the numerator of 𝜇(d, d) by replacing Yi with 1. By the same argument as
above, we obtain

1
n

n∑
i=1

K2,h2(Di − d) 𝑓X (Xi)
𝑓DX (d,Xi)

− 1 = 1
n

n∑
i=1

K2,h2 (Di − d) − K1,h1 (Di − d)
𝑓D(d|Xi)

+ op
(
(nh)−1∕2) .

By the Taylor expansion in Equation A1, we then obtain

𝜇(d, d) − 𝜇(d, d) = 1
n

n∑
i=1

IFi + op
(
(nh)−1∕2) ,

where IFi ≡ (Yi − 𝜇(d, d))
K2,h2 (Di−d)
𝑓D(d|Xi)

− (E[Y |D = d,Xi] − 𝜇(d, d)) K1,h1 (Di−d)
𝑓D(d|Xi)

. Next we show asymptotic normality by the
Lyapounov CLT with third absolute moments. The Lyapounov condition holds because

( n∑
i=1

var[IFi]

)−3∕2 n∑
i=1

E
[|IFi|3]

= O
(
(nh−1)−3∕2) n∑

i=1
E
[|IFi|3] = O

(
(nh)−1∕2

)
= o(1).

By a similar argument, we obtain the asymptotic variance limn→∞hvar[IFi] = Vd.

HUBER ET AL.834

 10991255, 2020, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.2765 by U

niversité D
e Fribourg, W

iley O
nline L

ibrary on [22/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Now we turn to 𝜇(d, d′). Let

Ω̂i = Ω̂(Mi,Xi)

≡ 𝑓D(d′|M = Mi,X = Xi)
𝑓D(d|M = Mi,X = Xi)𝑓D(d′|X = Xi)

= 𝑓DMX (d′,Mi,Xi)𝑓X (Xi)
𝑓DMX (d,Mi,Xi)𝑓DX (d′,Xi)

≡ ÂiF̂i

B̂iĈi
= Ωi + Ωi

Âi − Ai

Ai
+ Ωi

F̂i − Fi

Fi
− Ωi

B̂i − Bi

Bi
− Ωi

Ĉi − Ci

Ci
+ Op

(||B̂i − Bi||2) .

We use the same argument as in the proof for 𝜇(d, d) further above. We analyze the numerator of 𝜇(d,M(d′)),
1
n

n∑
i=1

YiK2,h2(Di − d)Ω̂i. Let s.o. stand for smaller order terms. In the U-statistic in Equation A4, the s.o. are

n−1 ∑n
i=1 E[p(Zi,Z𝑗)|Zi] − E[p(Zi,Z𝑗)] + Rem = op((nh)−1∕2). Thus

1
n

n∑
i=1

YiK2,h2(Di − d)Ωi
Âi − Ai

Ai

= 1
n

n∑
𝑗=1

E
[

E[Yi|Di,Mi,Xi]K2,h2(Di − d)Ωi

Ai

(
K1,h1(D𝑗 − d′)K1,h1(M𝑗 − Mi)K1,h1(X𝑗 − Xi) − Ai

) |Z𝑗

]
+ s.o.

= 1
n

n∑
𝑗=1

E[Yi|Di = d,Mi = M𝑗 ,Xi = X𝑗]
Ω𝑗

A𝑗

𝑓DMX (d,M𝑗 ,X𝑗)K1,h1(D𝑗 − d′)

− E
[
E[Yi|Di = d,Mi,Xi]Ωi𝑓D|MX (d|Mi,Xi)

]
+ Op(h1

r1 + h2
r2) + s.o.

= 1
n

n∑
𝑗=1

g(d,M𝑗 ,X𝑗)
Ω𝑗B𝑗

A𝑗

K1,h1 (D𝑗 − d′) − 𝜇(d, d′) + Op(h1
r1 + h2

r2) + s.o.,

where g(d,Mi,Xi) ≡ E[Y|D = d,Mi,Xi]. By the same argument, we obtain

− 1
n

n∑
i=1

YiK2,h2 (Di − d)Ωi
B̂i − Bi

Bi

= 1
n

n∑
𝑗=1

g(d,M𝑗 ,X𝑗)Ω𝑗K1,h1 (D𝑗 − d) + 𝜇(d, d′) + Op(h1
r1 + h2

r2) + s.o.,

− 1
n

n∑
i=1

YiK2,h2(Di − d)Ωi
Ĉi − Ci

Ci

= − 1
n

n∑
𝑗=1

E
[
g(d,M,X𝑗)|D = d′,X = X𝑗

]
K1,h1(D𝑗 − d′)∕𝑓D(d′|X = X𝑗)

+ E[Y (d,M(d′))] + Op(h1
r1 + h2

r2) + s.o.,

and

1
n

n∑
i=1

YiK2,h2 (Di − d)Ωi
F̂i − Fi

Fi

= 1
n

n∑
𝑗=1

E
[
g(d,M,X𝑗)|D = d′,X = X𝑗

]
− 𝜇(d, d′) + Op(h1

r1 + h2
r2) + s.o = Op(n−1∕2).

Collecting all these terms, we obtain the asymptotic linear representation for the numerator n−1 ∑n
i=1 YiK2,h2 (Di −

d)Ω̂i. Replacing Yi with 1 gives the asymptotic linear representation for the denominator: n−1 ∑n
i=1 K2,h2 (Di − d)Ω̂ =

n−1 ∑n
i=1

(
K2,h2(Di − d) − K1,h1(Di − d)

)
Ωi + op((nh)−1∕2). The Lyapounov CLT gives the asymptotic normality.
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A.2 Proof of Theorem 2
We consider the estimator 𝜇(d, d). Let 𝛺i(𝛾) = 1∕fD(d|Xi) and Ω̂i(𝛾) = 1∕𝑓D(d|Xi; 𝛾̂x). By a mean-value expansion, it holds
that Ω̂i(𝛾) − Ωi(𝛾) = −w̄−2

i (𝑓D(d|Xi) − 𝑓D(d|Xi; 𝛾̂x)) for some w̄i between fD(d|Xi) and 𝑓D(d|Xi; 𝛾̂x). Then Ω̂i(𝛾) − Ωi(𝛾) =
Op(n−1∕2) uniformly over i. We start with the numerator of the estimator 𝜇(d, d). Note that

1
n

n∑
i=1

YiK2,h2 (Di − d)Ω̂i(𝛾)

= 1
n

n∑
i=1

YiK2,h2(Di − d)Ωi(𝛾) +
1
n

n∑
i=1

YiK2,h2(Di − d)(Ω̂i(𝛾) − Ωi(𝛾))

= 1
n

n∑
i=1

YiK2,h2(Di − d)Ωi(𝛾) + Op((nh2)−1∕2)Op(n−1∕2)

= 1
n

n∑
i=1

YiK2,h2(Di − d)Ωi(𝛾) + op(1),

where the second equality holds by a similar argument as in theorem 2 of Abrevaya, Hsu, and Lieli (2015). The derivation
for the denominator follows the same arguments. By the Taylor expansion (Equation A1) and E[𝛺|D = d]fD(d) = 1,

𝜇(d, d) − 𝜇(d, d) = 1
n

n∑
i=1

(
Yi − 𝜇(d, d)
𝑓D(d|Xi)

)
K2,h2(Di − d) + Op

(
(nh2)−1) .

The asymptotic normality is shown by the Lyapounov CLT with third absolute moments as the arguments in the proof of
Theorem 1. The proof for 𝜇(d, d′) is analogous and therefore omitted.

A.3 Results for nontreatement d
′
= 0

A.4 Results using generalized additive regression models for M and Y with d
′
= 40

A.5 Results for binary outcome with d
′
= 40

A.6 Description of the categorical variables
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FIGURE A1 Direct effects 𝜃d,0(d) (top left) and 𝜃d,0(0) (top right) as well as indirect effects 𝛿d,0(d) (bottom left) and 𝛿d,0(0) (bottom right)
for d ∈ {100, 200, … , 1, 900, 2, 000}
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FIGURE A2 Direct effects 𝜃d,40(d) (top left) and 𝜃d,40(40) (top right) as well as indirect effects 𝛿d,40(d) (bottom left) and 𝛿d,40(40) (bottom
right) for d ∈ {100, 200, … , 1, 900, 2, 000}
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FIGURE A3 Direct effects 𝜃d,40(d) (top left)
and 𝜃d,40(40) (top right) as well as indirect effects
𝛿d,40(d) (bottom left) and 𝛿d,40(40) (bottom right)
for d ∈ {100, 200, … , 1, 900, 2, 000}
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