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Abstract
Attentional refreshing has been described as an attention-based, domain-general maintenance mechanism in working memory. 
It is thought to operate via focusing executive attention on information held in working memory, protecting it from temporal 
decay and interference. Although attentional refreshing has attracted a lot of research, its functioning is still debated. At least 
one conception of refreshing supposes that it relies on semantic long-term memory representations to reconstruct working 
memory traces. Although investigations in the verbal domain found evidence against this hypothesis, a different pattern 
could emerge in visuospatial working memory in which absence of refreshing evidence has been observed for stimuli with 
minimal associated long-term knowledge. In a series of four experiments, the current study investigated the hypothesis of an 
involvement of semantic long-term representations in the functioning of attentional refreshing in the visuospatial domain. 
Both cognitive and memory load effects have been proposed as indexes of attentional refreshing. Therefore, we investigated 
the interaction between the effects of visual familiarity (a long-term memory effect) and cognitive load on recall perfor-
mance (Experiments 1A and 1B), as well as the interaction between the effects of visual familiarity and memory load on 
the response times in a concurrent processing task (Experiments 2A and 2B). Results were consistent across experiments 
and go against the hypothesis of the involvement of semantic long-term memory in the functioning of attentional refreshing 
in visuospatial working memory. As such, this study corroborates the results found in the verbal domain. Implications for 
attentional refreshing and working memory are discussed.
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Working memory (WM) has been defined as the part of our 
cognitive system dedicated to the maintenance of a limited 
amount of information for a short duration as well as the 
online processing of currently relevant information (Bar-
rouillet & Camos, 2015; Cowan, 2017; Oberauer, 2009). It 
is one of the most extensively investigated topics in psy-
chological science, as it is central to our day-to-day func-
tioning and has been linked to several higher cognitive 
functions (Conway et al., 2002, 2007, for a review). One 
central debate about WM is its relationship to semantic long-
term memory (LTM), where a seemingly infinite quantity 
of semantic information can be kept for long-time storage 
and retrieval (Bahrick et al., 1975; Brady et al., 2008). On 

the one hand, some authors argue that semantic LTM and 
WM are not functionally distinct, but that WM is basically 
activated semantic LTM (Cowan, 2008; Oberauer, 2002). 
On the other hand, other authors consider WM as a system 
separate from semantic LTM (Baddeley, 2000; Baddeley 
& Hitch, 1974; Barrouillet & Camos, 2015). One possible 
avenue to investigate the link between WM and semantic 
LTM would be to explore how semantic LTM factors impact 
WM maintenance processes. Accordingly, the present study 
focuses on one maintenance mechanism in particular, called 
attentional refreshing, which is an attention-based mecha-
nism that maintains mnemonic traces active in WM against 
decay and interference (see Camos et al., 2018, for a review). 
Among the different conceptions of refreshing, one suggests 
that it relies (at least in part) on semantic LTM representa-
tions (Barrouillet & Camos, 2015). This conception assumes 
that attentional refreshing uses information stored in seman-
tic LTM to reconstruct WM traces. Barrouillet and Camos 
(2015) suggested that more familiar items would benefit 
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from better reconstruction, in other words being more effi-
ciently refreshed, than less familiar ones, leading to an inter-
action between manipulations of familiarity and refreshing. 
However, previous examinations of the influence of item 
familiarity on attentional refreshing efficiency used verbal 
materials and provided evidence against this hypothesis 
(Camos et al., 2019; Labaronne et al., 2023). It is neverthe-
less possible that this finding is specific to verbal WM. The 
aim of the present study was to extend the examination of 
the effect of item familiarity on attentional refreshing to the 
visuospatial domain of WM.

Attentional refreshing in WM

Attentional refreshing is conceived as a domain-general 
maintenance process that uses central or executive atten-
tion to keep representations active in WM for subsequent 
processing (Camos et al., 2018; Johnson, 1992). It is thought 
to work by increasing the activation level of just-presented 
information, thus prolonging its accessibility in WM. This 
increase in activation is achieved by focusing attention on 
the WM representations of just-presented information. 
Thus, refreshing refers to the act of briefly thinking of WM 
representations, when the just-presented information is not 
directly available to our senses anymore. According to the 
time-based resource sharing model (TBRS model; Barrouil-
let & Camos, 2015), attentional refreshing cannot be per-
formed at the same time as another attention-demanding pro-
cess due to a central bottleneck. Thus, in case of competition 
between attentional refreshing and another attention-based 
process, attention has to be shared in a time-based manner 
between the two processes.

This time-based sharing of attention has two conse-
quences, which can be considered as two indexes of the 
functioning of attentional refreshing. A first index, named 
the cognitive load effect, refers to the observation that recall 
performance in a complex-span paradigm, in which the 
maintenance of information is interspersed with concurrent 
processing, is linearly correlated with the cognitive load of 
the concurrent processing task (e.g., see for review, Bar-
rouillet & Camos, 2015, 2021). The more this concurrent 
task requires attention per unit of time, the worse is recall 
performance. In the TBRS model, the cognitive load reflects 
the proportion of time during which attention is dedicated to 
concurrent processing and thus unavailable for maintenance 
purposes through attentional refreshing. Accordingly, a more 
attention-demanding concurrent task would divert general 
attention from refreshing the to-be recalled items for longer 
periods of time, compared with a less attention-demanding 
concurrent task. Hence, the cognitive load of a process-
ing task can be manipulated by varying either the overall 
time available to process a given number of stimuli of the 

concurrent task (i.e., the retention interval in complex span 
task) or the number of stimuli to process in the processing 
phase of a given duration (Barrouillet et al., 2007; Barrouil-
let & Camos, 2012). For example, in a complex span task in 
which participants maintained series of letters while reading 
series of digits, Barrouillet et al. (2004) reported that the 
amount of letters participants were able to recall dropped 
from 4.90 to 3.41 letters on average when the cognitive load 
of the concurrent task increased from 0.4 to 2 digits per 
second (with nine different values of cognitive load).

A second index, named the memory load effect, is the 
reciprocal effect of the previous one. According to the 
TBRS model, when attentional refreshing takes place, atten-
tion is not available for concurrent processing. As a result, 
refreshing postpones the execution of concurrent process-
ing. When more WM representations have to be refreshed 
in a sequential manner, the postponement becomes longer, 
which is reflected in longer response times to a concurrent 
processing task. Several studies showed indeed that the 
mean response time to a concurrent task increases for each 
additional item to be maintained in WM. For example, Ver-
gauwe et al. (2014) developed a paradigm inspired by the 
Brown–Peterson task (Brown, 1958; Peterson & Peterson, 
1959). This task was similar to a complex span task, with 
the difference that item presentation was not interspersed 
by a concurrent processing task. Instead, the processing 
task lasted for a fixed duration between item presentation 
and recall. The authors reported that the response times to 
the concurrent tasks increased linearly with the number of 
memory items (see Camos et al., 2019, for similar findings). 
Jarrold et al. (2011) showed a similar pattern of results using 
a complex-span task where they analyzed the response times 
to the concurrent task following each image presentation. 
In these studies, response times to the concurrent task were 
approximately 40 ms slower for each additional item held in 
WM. Since refreshing and concurrent processing cannot be 
done simultaneously, the processing of the concurrent task 
is postponed until all the items held in WM are refreshed, 
and the 40-ms slope found in the aforementioned studies is 
then interpreted as the time our cognitive system takes to 
refresh one memory item.

Despite the extensive research on attentional refreshing, 
its inner working is still up to debate. Researchers agree 
that central attention is needed for refreshing (e.g., Ver-
gauwe et al., 2012), but otherwise several different propos-
als about its functioning have been put forward. On the one 
hand, its functioning has been described as a mechanism 
that uses semantic LTM representations to reconstruct WM 
representation (akin to a redintegration process; Barrouillet 
& Camos, 2015; Thorn et al., 2005). On the other hand, 
Vergauwe and Cowan (2015) described its functioning as a 
rapid scanning of the current content of WM. The main dif-
ference between the two proposals lies in the involvement of 
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semantic LTM knowledge. Thus, investigating to what extent 
semantic LTM factors can influence attentional refresh-
ing could give us information on the relationship between 
semantic LTM and WM, which coincidentally could inform 
on the functioning of attentional refreshing itself.

The role of semantic LTM in attentional 
refreshing

As said earlier, some proposals on the functioning of atten-
tional refreshing propose that the mechanism relies on 
semantic LTM representations to support the maintenance 
of information in WM. One way to test this hypothesis is 
to examine how attentional refreshing is affected by well-
replicated effects showing an effect of semantic LTM fac-
tors on WM functioning. To that end, two effects have 
been examined in relation to attentional refreshing in ver-
bal WM (Camos et al., 2019): the lexicality effect and the 
lexical frequency effect. The lexicality effect is the obser-
vation that words are better recalled than nonwords. The 
lexical frequency effect is the observation that more fre-
quent words are better recalled than less frequent words. 
Although these effects have been replicated several times 
in WM tasks (e.g., Hulme, et al., 1991; Majerus & Van der 
Linden, 2003), its locus in WM is still up to debate. One 
possibility is that these effects reflect a differential impact of 
attentional refreshing that depends on item familiarity, such 
that more frequent words are refreshed more efficiently than 
less frequent words, because their representation in semantic 
LTM is better defined or more easily accessible. To test this 
hypothesis, a recent study manipulated the cognitive load 
orthogonally to either the lexical frequency of words or the 
lexicality of memory items, in a complex span task (Camos 
et al., 2019). In a first experiment, series of low-frequency 
or high-frequency words were presented in a complex-span 
task in which the cognitive load of the concurrent task was 
also manipulated. The authors’ rationale was as follows: If 
more frequent words are refreshed more efficiently and thus 
better protected from forgetting than less frequent words, 
then the lexical frequency effect (the difference in recall 
performance between the low- and high- frequency words) 
should be larger in trials where participants had more time 
to refresh (low cognitive load trials) than in trials where they 
had less time to refresh (high cognitive load trials). When 
there is less time to engage in attentional refreshing, the dif-
ference between high- and low-frequency words would be 
smaller, as the advantage for more frequent word would have 
less opportunity to manifest. If so, this should result in a sta-
tistical interaction between the lexical frequency of memory 
words and the cognitive load of the concurrent task. Results 
showed evidence against this interaction of interest, contra-
dicting the aforementioned hypothesis. A similar absence 

of interaction with cognitive load was observed in a second 
experiment in which the lexicality of the memoranda (words 
vs. nonwords) was manipulated. In two additional experi-
ments, Camos et al. (2019) tested the same hypothesis but 
used another index of attentional refreshing (i.e., the effect 
of memory load on response times in a concurrent process-
ing task). In particular, Experiment 3 uses low- and high-
frequency words as memoranda in a Brown–Peterson task, 
following the same logic as the task developed by Vergauwe 
et al. (2014). The idea was that if the memory load effect 
on the response times of the concurrent task indexes atten-
tional refreshing and if high-frequency words are refreshed 
more efficiently than low-frequency words, then an interac-
tion should be detected between both variables. Specifically, 
it was expected that high-frequency words would postpone 
the concurrent task to a lesser extent than low-frequency 
words, because high-frequency words would be refreshed 
more quickly. The results contradicted this prediction, 
showing evidence against the aforementioned interaction. 
This pattern of results was replicated in a final experiment, 
in which the lexicality of memory items was manipulated 
instead of the lexical frequency in the same Brown–Peterson 
task. Together, the four experiments reported in Camos et al. 
(2019) provided evidence against an interaction between 
semantic LTM factors and attentional refreshing, which casts 
doubt on the hypothesis of an involvement of semantic LTM 
in the functioning of attentional refreshing.

Other studies investigating attentional refreshing reached 
similar conclusions using different manipulations (Labar-
onne et al., 2023; Loaiza & Camos, 2018; Rosselet-Jordan 
et al., 2022). For example, Labaronne et al. (2023) manipu-
lated the lexicality of the memoranda in a complex span task 
in which the cognitive load of a concurrent parity task was 
varied. As in Camos et al. (2019), the authors expected an 
interaction between the cognitive load effect and the lexi-
cality of the memory items, with a cognitive load effect in 
words but not for pseudowords. However, contrary to this 
prediction, the cognitive load effect impaired recall perfor-
mance in both words and pseudowords. Although this find-
ing confirmed Camos et al.’s (2019) results, the absence of 
an implication of semantic LTM on refreshing while overall 
recall performance was affected by LTM effects left open the 
question on the locus of the implication of semantic LTM on 
WM. Moreover, despite the fact that attentional refreshing is 
conceived as a domain-general mechanism that can be used 
for both verbal and visuo-spatial memory materials (Bar-
rouillet & Camos, 2015; Cowan, 1995), all the experiments 
described above were limited to the verbal domain. Given 
that attentional refreshing has been described as a domain-
general mechanism (Barrouillet & Camos, 2015; Cowan, 
1995), one could assume that it should operate similarly for 
verbal and visuospatial domains, but some models of WM, 
such as the multicomponent model (Baddeley et al., 2021) 
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propose that visuo-spatial and verbal information are pro-
cessed by distinct mechanisms in WM.

Differences between verbal and visuospatial 
domains in WM

The most influential model of WM assumes a functional 
separation between verbal and visuospatial WM (Baddeley, 
1986, 2000; Baddeley & Logie, 1999). It could then be that, 
even though attentional refreshing is deployed in the same 
way for verbal and visuospatial information, specificities 
about how information is actually represented could dif-
fer between the verbal and visuo-spatial domains and this 
could, in turn, impact the functioning of attentional refresh-
ing. This possibility is supported by the findings of Ricker 
and Cowan (2010), which showed that some item features 
in the visuospatial domain are inevitably forgotten after a 
retention interval compared with words or letters that are 
less susceptible to temporal decay. The authors interpreted 
this pattern of results as possible evidence for a differential 
impact of attentional refreshing between domains, and that 
this discrepancy would be due to differences in how informa-
tion is represented between the verbal and the visuospatial 
domain.

In addition, several studies reported an absence of cog-
nitive load or memory load effects for different visuospa-
tial memoranda. In one experiment, Vergauwe et al. (2014) 
found no effect of memory load on the response times to a 
concurrent task in a Brown–Peterson paradigm where par-
ticipants had to maintain distinct fonts of the same letter. 
In the same vein, Ricker and Vergauwe (2020) consistently 
failed to find an effect of cognitive load manipulation in a 
Brown–Peterson task in which participants had to maintain 
the location of a dot on the edge of a circle. In all their 
experiments, the authors failed to find an effect of an atten-
tional refreshing manipulation on specific visuospatial items, 
and argued that this discrepancy with the literature could 
be due to the fact that the visuospatial memoranda used in 
these experiments lack stable semantic LTM representa-
tion, rendering them impossible to refresh. These findings 
suggest that the visuospatial domain differs from the verbal 
domain, in which the cognitive and memory load effects 
have been consistently observed whatever the nature of the 
verbal memory items (see Barrouillet & Camos, 2015, for 
review). Moreover, the authors’ suggestion to explain the 
lack of cognitive and memory load effects on these visuospa-
tial memoranda implicitly acknowledges that the functioning 
of attentional refreshing relies, at least in part, on semantic 
LTM. This is at least partially congruent with Barrouillet 
and Camos’s (2015) proposal on how attentional refresh-
ing uses information stored in semantic LTM to reconstruct 
degraded memory traces. Hence, the visuospatial domain 

may have some specificities such that visuospatial items can 
be refreshed only if a stable semantic LTM representation 
exists for these items. The current study aimed at directly 
testing this proposal by manipulating the quality of LTM 
representations through the familiarity effect in visuospatial 
WM, and by testing to what extent indexes related to refresh-
ing are affected by these manipulations.

The current study

The aim of this series of experiments was to investi-
gate whether semantic LTM factors influence attentional 
refreshing of information in visuospatial WM. Throughout 
four experiments, we adopted the approach of Camos and 
colleagues (2019) but in the visuospatial domain. Hence, 
we needed an equivalent of lexical frequency or lexicality 
manipulation implemented by Camos et al. (2019) for the 
visuospatial domain.

The lexical frequency effect relies on the fact that we do 
not encounter all words at the same frequency in our day-
to-day life. By definition, items are more familiar when we 
encounter them more frequently. It has been thus hypoth-
esized that the strength of a trace in semantic LTM depends 
on how frequently we have encountered the information 
before having to maintain it. To emulate this in the visu-
ospatial domain, we used the visuospatial familiarity effect 
by creating two pools of images that vary in their degree of 
familiarity. The high-familiarity images (here after the “real” 
images) were black-and-white drawings of real-life objects 
taken from the Snodgrass and Vanderwart (1980) image set, 
while the low-familiarity images (here after the “nonreal” 
images) were taken from Soldan et al. (2008), who created 
images by smoothly put together features from different 
images taken from the Snodgrass and Vanderwart image set 
(see Fig. 1). The nonreal images were then approximately 
as complex as the real images but were not representing 
day-to-day objects, a difference similar to the one between 
words and pseudo-words.

We used the images of real vs- nonreal objects in two 
series of two experiments. In Experiments 1A and 1B, 
we used a complex span task in which we manipulated 
orthogonally the familiarity of the images to maintain 
and the cognitive load of the concurrent task in a within-
subject design; Experiment 1B implementing a stronger 
manipulation of the cognitive load than Experiment 1A. 
The aim was to investigate whether recall performance 
was better for high-familiarity images compared with low-
familiarity ones and, most importantly, whether the cogni-
tive load effect would interact with the image familiarity. 
We expected that, if attentional refreshing is facilitated by 
a greater accessibility to semantic LTM representations, 
then low-familiarity images would yield a smaller (or even 
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no) cognitive load effect than high-familiarity images, 
because the former would benefit less from refreshing 
opportunities than the latter.

In Experiments 2A and 2B, we implemented a slightly 
different complex span task, designed to investigate how 
the response times to the concurrent task are modulated by 
the image familiarity as well as by the number of images to 
maintain. In particular, we expected that, if the real images 
are refreshed more efficiently than the nonreal images, then 
the memory load effect on response times should be more 
pronounced for the nonreal images than for the real ones, 
which would result in a statistical interaction between 
memory load and image familiarity. If low-familiarity 
images take longer to refresh, then the resulting postpone-
ment of concurrent processing caused by each additional 
memory item should be more important for low-familiarity 
images, relative to high-familiarity images. Contrary to 
Camos et al. (2019), we choose to use the complex-span 
paradigm instead of the Brown–Peterson paradigm to eval-
uate response times to the concurrent task in regard to the 
memory load, because the complex span paradigm gives 
a higher number of data points per experimental cell dur-
ing one session than the Brown–Peterson task, while not 
lengthening the overall duration of the experiment. This 
is due to the fact that, in the Brown–Peterson paradigm, 
only one memory load condition is presented per trial. 
By contrast, response times to the concurrent task can be 
sampled after the presentation of each additional memory 
image in the complex-span task and thus, one trial of the 
complex-span paradigm induces several memory loads 
along the trial. Since our theoretical question focused on 
the presence or the absence of statistical interactions, we 
used Bayesian statistics throughout our analyses, as it can 
give evidence for the presence or the absence of an effect, 
contrary to the frequentist statistical approach.

Experiment 1A

In Experiment 1A, participants had to maintain the real 
and nonreal images described earlier while performing a 
parity judgment task. We manipulated orthogonally the 
familiarity of images to maintain and the cognitive load of 
the concurrent task. We selected the parity judgment task 
as concurrent task because it requires participants to make 
a response selection and ensured that general attention is 
involved. This task is also known for impacting attentional 
refreshing (e.g., Barrouillet et al., 2007). To maximize the 
cognitive load difference between conditions, a fixed number 
of digits appeared slowly in the low cognitive load condi-
tion (one digit every 2,000 ms) and at twice this pace in the 
high cognitive load condition (one digit every 1,000 ms), 
which reduces the availability of attention for maintenance 
purposes. Participants were also under articulatory suppres-
sion during image presentation and the concurrent parity 
judgment task, to minimize the possibility to recode and 
rehearse the presented information verbally. This was par-
ticularly important as it can be assumed that the real images 
are easier to recode into verbal code than the nonreal images. 
We predicted that, if high-familiarity images are refreshed 
more efficiently than low-familiarity images, then the cogni-
tive load effect should be larger in the high-familiarity items 
than in the low-familiarity items, because the former would 
benefit more from the availability of attention for refreshing 
during the processing phase.

Method

Participants

Forty students from the University of Fribourg and Geneva 
(38 women, mean age = 20.8± 2.0 years) participated in this 

Fig. 1  Examples of images used in the study
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experiment. Participants had normal or corrected-to-normal 
vision. They were compensated with partial course cred-
its or cinema tickets. Every participant read and signed an 
informed consent form. Ethical approval was given by IRB 
of both the University of Fribourg and University of Geneva.

Material

The memory items for the high-familiarity condition con-
sisted of 84 images of real objects taken from the Snodgrass 
and Vanderwart (1980) database. We selected images related 
to concepts with high lexical frequency nouns (mean fre-
quency = 107.9 ± 136.3 per million, range: 20–788, taken 
from the Lexique3 French words database; New et al., 2001, 
2004) to ensure that the images represented well known 
objects. For example, images could represent an airplane, a 
finger, a pan (see Fig. 1). The stimuli for the low-familiarity 
condition comprised 84 nonreal black and white images 
that were taken from Soldan et al. (2008). Each image was 
composed of features coming from different images from 
the Snodgrass and Vanderwart’s image set fused together to 
create nonsensical objects (see Fig. 1). The complete set of 
images can be found on the OSF page related to this study 
(https:// osf. io/ xdawz).

Procedure

This experiment used a complex span paradigm (see Fig. 2) 
in which stimuli to remember were the real and the nonreal 
images described earlier. The concurrent task was a par-
ity judgment task with digits ranging from 1 to 9, 5 being 
excluded to have the same number of odd and even digits. 
The experiment was divided in two blocks, one for the real 
images and the other for the nonreal images. The order of the 
blocks was counterbalanced across participants. Each block 
consisted of a maximum of 42 trials. An increasing length 

procedure was used, from 1 to 7 memory items (length 1 
to 7). Participants were informed of the change of lengths 
by a screen mentioning the new length. Each block started 
with six Length 1 trials, three in each cognitive load condi-
tion, the order of which was randomized for each participant. 
We implemented a stop rule in each block. If a participant 
recalled all images in the correct order in at least one trial 
from Length 1, the six trials from the next length (Length 2) 
were presented, and so on. In case of no successful trial for 
a given list length, the block would stop and the prompt for 
the next block would appear (or the experiment would stop 
if this was the last block).

Participants were seated at approximately 40 cm from 
the screen. At the start of every trial, the pace of the con-
current task was given: “rapide” or “lent” (fast and slow in 
French, respectively) and would remain on screen until the 
participant pressed the space bar to start the trial. Then, a 
fixation cross appeared in the center of the screen for 500 
ms, followed by the first image to memorize, which stayed 
on screen for 1 s (see Fig. 2). The image was presented in the 
center of the screen and measured approximately 10 cm × 6 
cm. After the image presentation and a 500-ms blank screen, 
the parity judgment task started. Participant had to decide 
whether four sequentially presented digits were odd or even 
by pressing the left or right mouse button, respectively. In 
the high cognitive load condition, digits appeared for 800 
ms with a 200-ms blank screen after each digit. In the low 
cognitive load condition, digits stayed on screen for 1,600 
ms with a 400-ms blank screen. The parity judgment phase 
lasted then 8 s and 4 s in the low and high cognitive load 
conditions, respectively. The digits were randomly selected 
without replacement for each parity judgment task phase. 
At the end of a trial, participants were presented with a total 
of 16 images on screen. These included the target images 
from the trial, as well as nontarget images randomly selected 
from the image pool of the current block. Importantly, the 

Fig. 2  Illustration of the successive events in a complex-span task trial in Experiment 1A. The presentation of a memory image and the phase of 
parity judgments are repeated for each image presented in the trial

https://osf.io/xdawz
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nontarget images were not allowed to be targets in the pre-
ceding or following trial. Participants had to click on the 
images that were presented in the order of presentation, 
using the left mouse button. We choose an array of 16 
images because it was a good balance between having a low 
chance level without the images being too small on screen 
during the response phase. Participants had to click on the 
same number of images as the length of the trial and could 
not correct themselves after they had clicked on an image. 
They had no time limit to answer. Since there were always 
16 images presented simultaneously during the response 
phase, the number of nontarget images was always equal to 
16 minus the number of presented items in the current trial. 
In the response phase, each image was of the size 3 cm × 2 
cm, and they were presented on a 4 × 4 matrix centered in 
the middle of the screen. Each image was separated by 2 cm 
horizontally and vertically to any adjacent images. After par-
ticipant had given their answer, the screen provided informa-
tion for the next trial. The choice of images in each trial was 
randomized for each participant, with the constraint that, 
within a given block, each image appeared twice as memory 
item (once in each cognitive load condition) and six times as 
nontarget during the response phase.

To minimize verbal recoding and the use of subvocal 
rehearsal, participants had to say “Ba-Bi-Boo” out loud 
from the start of each trial (i.e., when they pressed space 
bar to launch the trial) until the response phase, where they 
could stop. They had to start again at the beginning of the 
next trial. “Ba-Bi-Boo” was written on the top of the screen 
from the beginning of the trial until the response phase to 
remind them to repeat it. Before the experimental trials, 
participants had four training trials, two of Length 2 and 
Length 3, with one for each cognitive load for each length. 
Both image types were used for each list length during these 
training trials. The images used in the training trials were 
not used in the experimental trials. Before the training tri-
als, participants received training in the parity judgment 
task, and had to sort 12 digits in each cognitive load condi-
tion, starting from the low cognitive load. The experimenter 
stayed with the participant during the training phase, but left 
the participant alone during the experimental trials while 
monitoring the compliance of the articulatory suppression 
across the door.

Results

All analyses in the present study followed a Bayesian sta-
tistical approach. In this approach, the resulting statistic is 
a number comprised between 0 and positive infinity. This 
number can be interpreted straightforwardly as how many 
times a model explains the data better (or worse) than 
another model. For example, a model with a Bayes factor 
of 10 when compared with the null model implies that this 

model explains the data 10 times better than the null model. 
The Bayes factor can be calculated at the model level (as we 
just mentioned) or at the variable level. When calculated at 
the variable level, it is called the Bayes factor for the inclu-
sion (or exclusion) of a factor, which is the Bayes factor 
of the models with the variable of interest divided by the 
Bayes factor of the models without the variable of interest 
as predictive variable or in an interaction term (i.e., matched 
models only). For example, in a 2 × 2 design, with Factors 
A and B manipulated orthogonally, the Bayes factor for the 
inclusion of Factor A would be calculated by dividing the 
Bayes factor for the model containing A + B as predictive 
factors by the Bayes factor of the model containing B only. 
If we wanted to evaluate the Bayes factor for the inclusion 
of the interaction term, we would divide the Bayes factor for 
the full model (containing A + B + A:B, where A:B repre-
sent the interaction term) with the Bayes factor of the model 
without the interaction (the model containing A + B only). 
The Bayes factor for (or against) the inclusion of a variable 
can also be interpreted straightforwardly as how much evi-
dence there is in the data to include (or exclude) the variable 
in question. All analyses in this paper were performed with 
the BayesFactor package (Morey & Rouder, 2018) in R (R 
Core Team, 2020), with default settings. The raw data can 
be found on OSF (https:// osf. io/ xdawz).

First, we assessed participants’ performance to the par-
ity judgment task to ensure that participants followed the 
instructions during the task. We computed the rate of cor-
rect parity judgments across the whole experiment. Par-
ticipants with less than 70% of correct responses across 
all trials were discarded from analysis. This led to the 
discarding of data from three participants. We then used 
this ratio of correct parity judgments as dependent vari-
able in a 2 (image familiarity: real vs. nonreal images) × 2 
(cognitive load: high vs. low) Bayesian repeated-measures 
analysis of variance (ANOVA), with the subject number 
as the repeated-measure aggregator and its prior was set 
as “nuisance.” We used the default prior (medium) for the 
other factors. The best model included only the main effect 
of cognitive load  (BF10 = 1.1×1033). There was evidence 
against an effect of the image familiarity  (BFexclusion= 4.0) 
and against the interaction between image familiarity and 
cognitive load  (BFexclusion = 3.2). Although processing 
accuracy was better in the low cognitive load (94% ± 3%) 
compared with the high cognitive load condition (83% ± 
6%), performance was high overall, ensuring participants 
followed the instructions.

We then calculated the span for each participant in each 
experimental cell. The span was calculated as follows: each 
trial in which all images were correctly recalled in the cor-
rect position yielded 1 point, thus, as soon as one error was 
made, the trial yielded 0 points. Then, for each experimen-
tal cell, points were summed and divided by the number of 

https://osf.io/xdawz
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trials per list-length. We used this mean span as our depend-
ent variable in a 2 (image familiarity) × 2 (cognitive load) 
Bayesian repeated-measures ANOVA. As in every analysis 
in this article, the priors for the effects of interest were set as 
“medium” (default) and as “nuisance” for the within-subject 
aggregator. The best model was the one with only the two 
main effects of image familiarity and cognitive load with 
a BF10 = 6.8×106 (see Fig. 3). We found very strong evi-
dence for the image familiarity effect, with a lower mean 
span of 3.1 (±1.4) for the nonreal images than for the real 
images (mean = 4.0 ±1.4;  BFinclusion = 6.1×106). Although 
in the expected direction, the evidence for an effect of the 
cognitive load manipulation was more ambiguous, with a 
 BFinclusion of 2.3 in favor of a difference between the low 
(mean = 3.7 ±1.5) and the high (mean = 3.4 ±1.4) cogni-
tive load conditions. This probably reflected the fact that, 
when the cognitive load effect was analyzed separately for 
real and nonreal images using a repeated-measures Bayesian 
ANOVA, evidence for the cognitive load effect was clear 
in real images  (BF10 = 12.5) while evidence supported its 
absence in nonreal images  (BF01 = 3.1). Nevertheless, and 
contrary to what these latter effects may suggest, there was 
ambiguous evidence against the interaction between cogni-
tive load and image familiarity,  BFexclusion = 1.7.

Discussion

In this first experiment, we observed a strong effect of 
image familiarity effect on memory performance in a 
WM task, where real images yield better memory per-
formance than nonreal images. We also found ambiguous 
evidence against the interaction between image familiar-
ity and cognitive load effect. Even though the cognitive 

load effect was included in the best model of our memory 
data, the evidence for the inclusion of the cognitive load 
effect was rather weak. It is possible that the cognitive load 
manipulation we implemented was not effective enough to 
really impact recall performance. Hence, before drawing 
further conclusions on these findings, we implemented at 
a stronger cognitive load manipulation in Experiment 1B.

Experiment 1B

Experiment 1B used the same paradigm as in Experiment 
1A, with a few changes. First, the cognitive load manipu-
lation was strengthened. Although we kept the same pace 
as in Experiment 1A for the low and high cognitive load, 
eight digits were presented in the high cognitive load con-
dition and only four in the low cognitive load condition. 
This equalized the total duration (8 s) of the parity judg-
ment task across cognitive load conditions. This way, we 
managed to manipulate the cognitive load of the second-
ary task without changing the total duration of each sec-
ondary task phase. We also divided each pool of images 
(real and nonreal) into two sublists. Each participant was 
attributed one sublist to the high cognitive load condition 
and the other to the low cognitive load condition, the attri-
bution of which was counterbalanced across participant. 
This allowed us to use each image only once as a target 
throughout the whole experiment, minimizing possible 
training effect on specific images, and also evaluate if one 
half of the images yielded better performance compared 
with the other half.

Fig. 3  Mean span in Experiment 1A as a function of the type of memory images (on-real or real) and the cognitive load of the concurrent task 
(low or high). Error bars correspond to standard error
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Method

Participants

Forty-one students from the University of Geneva (35 
women, mean age: 22.2±6.5 years) participated in this 
experiment. They were compensated with partial course 
credits. Every participant read and signed a form of con-
sent. Ethical approval was given by IRB of the University of 
Geneva. None of them participated in Experiment 1A. One 
participant was excluded from the analysis because they did 
not follow the instructions.

Material

The same 84 images per image type as in Experiment 1A 
were used, and divided into two sublists for each type of 
images. For each participant, one sublist was presented in 
the low cognitive load condition and the other in the high 
cognitive load condition. The association between sublist 
and cognitive load condition was counterbalanced across 
participants. This allowed us to use every image only once 
as a target and approximately 3 times as nontarget in the 
response phase.

Procedure

This experiment followed the same procedure as in Experi-
ment 1A, with a few exceptions. Each block consisted of 
20 trials (instead of 42 in Experiment 1A), presented in an 
increasing length structure. The list length varied from two 
to six (instead of one to seven in Experiment 1A), with four 
trials per each list length and image type, two in each cogni-
tive load condition. The pace of digits presentation in the 
parity judgment task was the same as in Experiment 1A, but 
eight digits were presented in the high cognitive load, and 
four in the low cognitive load condition to increase the dif-
ference of cognitive load between the two conditions (note 
that four digits were presented in both conditions in Experi-
ment 1A).

Results

As in Experiment 1A, we first assessed performance on the 
parity judgment task. We did not exclude any participants 
as they all exhibited more than 70% of correct response 
(mean = 89% ± 6%). We then analyzed the ratio of correct 
parity judgment in a 2 (image familiarity) × 2 (cognitive 
load) repeated-measures Bayesian ANOVA. This analysis 
yielded the same pattern of results as in Experiment 1A, 
with the best model including only the main effect of cogni-
tive load  (BF10 = 4.1×1027). There was very strong evidence 
for an effect of the cognitive load manipulation  (BFinclusion 

= 5.4×1027), with better performance in the low cognitive 
load condition (95% ± 5%) compared with the high cogni-
tive load condition (86% ± 7%), evidence against an effect 
of image familiarity  (BFexclusion = 4.3), and evidence against 
the interaction  (BFexclusion = 5.2).

Spans were computed for each participant and each 
experimental cell in the same way as in Experiment 1A. We 
first checked the absence of the sublists manipulation on the 
span score by performing an independent-sample Bayesian 
t test on the span score of participants that had one sublist 
compared with the other,  BF01 = 3.1. We then turned to the 
analysis of the span score as a function of image familiarity 
and cognitive load manipulation in a 2 (image familiarity) × 
2 (cognitive load) repeated-measures Bayesian ANOVA was 
performed with the calculated span as dependent variable 
(Fig. 4). The same priors as in Experiment 1A were used 
for the analysis. The best model included the main effects of 
image familiarity and cognitive load, BF10 = 1.9×1010, with 
better performance for the real images (mean = 4.1 ± 1.3) 
than for nonreal images (3.2 ± 1.2,  BFinclusion = 3.2×109), 
and better performance in the low (3.8 ± 1.3) compared 
with the high cognitive load condition (3.3 ± 1.3,  BFinclusion 
= 19.6). Finally, despite the fact that the strengthening of 
cognitive load manipulation was successful in impacting 
recall performance, there was evidence against the predicted 
interaction between cognitive load and image familiarity, 
 BFexclusion = 4.2.

Discussion

In this second experiment, we replicated the findings of 
Experiment 1A but with a clearer outcome. We found more 
pronounced evidence for the effect of cognitive load as well 
as for the effect of image familiarity, but also against an 
interaction between both factors. Overall, Experiment 1B 
confirmed the absence of the interaction of interest. Under 
the assumption that the cognitive load effect assesses the 
operation of attentional refreshing, this finding contradicts 
the hypothesis that attentional refreshing is supported by 
semantic LTM representations.

However, to ensure that our conclusion on the absence 
of an effect of semantic LTM on attentional refreshing was 
not limited to a single index of attentional refreshing, we 
extended our investigation of the image familiarity effect to 
another index of attentional refreshing—namely, the mem-
ory load effect on response times in the concurrent task. As 
explained earlier, several studies showed that an increase in 
memory load induced a postponement of the response times 
to the concurrent task, which is interpreted as evidence for 
attentional refreshing. The use of response times allowed 
us to examine the effect of image familiarity on attentional 
refreshing in a more fine-grained measure than span. If the 
high-familiarity images are refreshed more efficiently than 
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low-familiarity ones, we should expect a difference in the 
memory load effect on response times as a function of image 
familiarity. The high-familiarity images should elicit less 
postponement of the concurrent task than low-familiarity 
images, that is a smaller memory load effect. Although 
Experiments 1A and 1B were not designed to directly test 
this hypothesis, analysis of RT postponement as a function 
of memory load in these two experiments showed that each 
new item held in working memory induced a postponement 
of the reaction times to the concurrent task, as predicted 
by this hypothesis (see Supplementary Material 1). To test 
this hypothesis more directly, we adapted the complex-span 
paradigm used in Experiments 1A and 1B to investigate the 
impact of memory load on the concurrent task reaction time 
in two additional experiments.

Experiments 2A and 2B

The aim of these two experiments was to investigate the 
effect of image familiarity and memory load on the response 
times to the parity judgment task in a complex-span para-
digm. The hypothesis was that, if the functioning of atten-
tional refreshing is influenced by image familiarity, then 
we should detect an interaction between the memory load 
manipulation and the image familiarity manipulation on 
response times in parity judgments. Experiments 2A and 
2B followed the same structure as Experiments 1A and 1B, 
with the same images to manipulate image familiarity. The 
only difference between Experiments 2A and 2B concerned 
the implementation of the concurrent task.

It is important to understand that to examine the memory 
load effect on response times, participants need to recall 

correctly the memory items to assure the items were indeed 
maintained in WM, but participants also have to make cor-
rect judgments in the concurrent task. Hence, the way that 
the concurrent task is implemented can have an impact on 
participants’ performance. We chose then to administer two 
variations of the same parity judgment task to check that 
our findings were not dependent on methodological choices. 
In Experiment 2A, participants had to judge the parity of a 
fixed number of digits (4 digits after each memory item), 
with no time limit on each parity judgment, while in Experi-
ment 2B, the concurrent task between the presentation of 
memory items lasted for a fixed duration (5 seconds after 
each memory item), and participants had to judge as many 
digits as possible during this time. If the memory load effect 
on response times is larger in the low-familiarity condition 
compared with the high-familiarity one, this would indicate 
that low-familiarity images are refreshed more slowly and 
less efficiently than high-familiarity images.

Method

Participants

In total, 57 participants were recruited and randomly 
assigned to one of the two experiments, 29 to Experiment 2A 
(26 women, mean age = 20.8 ± 2.1 years) and 28 to Experi-
ment 2B (26 women, mean age = 21.6 ± 2.4 years). All were 
students from the University of Fribourg and compensated 
with partial course credits or cinema tickets. Every partici-
pant read and signed a form of consent. Ethical approval 
was given by IRB of the University of Fribourg. None had 
participated in Experiments 1A or 1B. One participant from 

Fig. 4  Mean span in Experiment 1B as a function of the type of images to maintain (nonreal or real) and the cognitive load of the concurrent 
task (low or high). Error bars correspond to standard error
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Experiment 2B was excluded from the analysis for having 
stopped the articulatory suppression.

Material and procedure

The same general procedure as in Experiments 1A and 1B 
was applied, with changes related to the implementation 
of the concurrent task, the total number of trials, and the 
memory load manipulation.

First, there were two versions (named A and B) of the 
parity judgment task, one per experiment. In Experiment 
2A, the number of digits to be processed per processing 
phase was fixed, with four digits presented sequentially. In 
Experiment 2B, the duration of the parity judgment phase 
between the presentation of the memory images was fixed, 
lasting 5 s, and participants had to judge as many digits as 
possible. Participants were instructed to perform the parity 
judgment task in such a way that, though aiming at respond-
ing as fast and as accurately as possible, they remembered 
all the memory items in their order of presentation. In both 
experiments, the next digit appeared 50 ms after the last one 
was judged, and the delay between image presentation and 
the beginning of the concurrent task was shortened to 300 
ms. Second, the list length varied from two to four images 
with trials in each length for each type of images (i.e., 
48 experimental trials in total). Seventy-six images were 
selected in both Snodgrass and Vanderwart (1980) and in 
Soldan and colleagues (2008) image bases. In Experiments 
2A and 2B, we did not implement list length longer than 
four items, because less than half of participants succeeded 
in two or more trials with a length of five in Experiments 1A 
and 1B. All trials were presented in one single block, with 
the trial order randomized for each participant. Before each 
trial, the number of memory images was indicated. Items for 
each trial were selected randomly with the limitation that, 
across all trials, images were not used more than once as 
memory item for the same participant.

Before the experimental trials, participants performed 
four training trials to accustom them to the task, two trials 
of Length 2 and two trials of Length 3, and both kinds of 
images were used during training, with one trial for each 
type of images and each list length. The version of the par-
ity judgment task (A or B) was the same in the training and 
experimental trials. None of the images used in the training 
trials were used in the experimental trials.

Three different outcome variables were analyzed: recall 
performance, the first response time of every parity judg-
ment phase (hereafter: Initial-RTs), and the mean response 
times to all of the subsequent parity judgments of each parity 
judgment phase (hereafter: Subsequent-RTs). To examine 
the effect of the memory load on the response times in the 
parity judgment task, only trials with correct recall were 
included in the analyses (see Camos et al., 2019; Vergauwe 

et al., 2014). We split response times in Initial-RTs and 
Subsequent-RTs, because response times for the first parity 
judgment can be contaminated with switching processes and 
consolidation processes, and thus are typically significantly 
longer than any subsequent response times (Camos et al., 
2019; Jarrold et al., 2011; Vergauwe et al., 2014). Since we 
sampled the Initial-RTs and Subsequent-RTs as a function 
of memory load, multiple Initial-RTs and Subsequent-RTs 
values could be measured during a single trial. For example, 
in a Length 4 trial, we had four measures for both response 
times: The Initial-RTs following each image presentation 
(i.e., RT to the first digit that followed memory item presen-
tation) as well as the mean of the Subsequent-RTs follow-
ing each image presentation, with memory load increasing 
for later processing phases in the trial (e.g., response times 
measured in the processing phase following the presenta-
tion of the first to-be-remembered image corresponds to 
response-times measures under Memory Load 1, whereas 
response times measured in the processing phase following 
the presentation of the third to-be-remembered image corre-
sponds to response times measures under Memory Load 3).

Results

As in Experiments 1A and 1B, we used the ratio of correct 
parity judgments as exclusion criterion. Since our analy-
sis was based on correct parity judgments, we chose an 
exclusion threshold higher than in Experiments 1A and 1B. 
Participants should have more than 80% of correct parity 
judgments to include their data in the reported analyses. No 
participants were excluded based on this criterion in Experi-
ment 2A, and one was excluded from Experiment 2B. While 
participants judged the parity of 4 digits presented after each 
memory image in Experiment 2A (i.e., experiment with 
fixed number of digits per processing phase), they judged 
on average 6.2 ± 1.2 digits (range: 3–10) in Experiment 
2B, and there was no difference in the number of processed 
digits between low- and high-familiarity images, as assessed 
by a two-sided Bayesian t test  (BF01 = 5.5). In both experi-
ments, participants’ rate of correct parity judgments was 
high (97%, 96%, and 96% in Exp. 2A, and 95%, 95%, and 
94% in Exp. 2B, for Lengths 2 to 4, respectively), indicating 
they followed the instructions well.

Before analyzing response times to the parity judgment 
task, we first examined recall performance. Because no stop 
rule was implemented, recall performance was scored via the 
partial credit unit (PCU). This index is the mean proportion 
of images correctly recalled in the correct position in each 
trial. The resulting score has been shown to be a better index 
of recall performance than span in WM tasks (Conway et al., 
2005). We then applied a two-sided paired Bayesian t test on 
PCU score between the low and high visuospatial familiar-
ity condition. In both experiments, this analysis showed a 
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difference between high- and low-familiarity images: Trials 
with nonreal images (PCU= 0.61 ± 0.24 and 0.63 ± 0.20 in 
Experiments 2A and 2B, respectively) yielded worse recall 
performance than trials with real images (PCU= 0.74 ± 0.19 
and 0.78 ± 0.16), BF10 = 333 and 1048, for Experiments 2A 
and 2B, respectively, replicating the visuospatial familiarity 
effect in memory performance observed in Experiments 1A 
and 1B.

Next, we analyzed the response times in the concurrent 
parity judgment task. To investigate the effect of memory 
load as well as of visuospatial familiarity on response times, 
only trials with perfect recall were kept, leading to 49% and 
47% of the trials being discarded in Experiments 2A and 2B, 
respectively. The mean Initial-RTs and mean Subsequent-
RTs were then computed for each participant in each of the 
eight experimental cells (2 image familiarity: real or nonreal 
× 4 memory load: 1 to 4 images). To ensure reliability of 
our response time measures, experimental cells in which 
less than two correct trials were available for computing the 
mean were discarded. This led to discarding 42 experimental 
cells out of the 232 (8 × 29 participants) in Experiment 2A 
(3 from the one-image and the two-image conditions, 12 
from the three-image, and 33 from the four-image condi-
tions) and 29 out of the 208 cells (8 × 26 participants) in 
Experiment 2B (six from the three-image and 23 from the 
four-image conditions). Mean Initial-RTs and Subsequent-
RTs were then analyzed in two separate repeated-measures 
Bayesian ANOVAs.

Before averaging RTs across the subsequent positions 
(i.e., across all digits presented within a processing episode, 
except the first digit), we analyzed the effect of position of 
digits within a processing episode (see Supplementary Mate-
rial 2). Results of this analysis showed that, in both experi-
ments, there was no effect of digit position (from Position 
2 onward) on response time to the concurrent task. Subse-
quent-RTs from the same parity phase and from the same 
participant could thus be pooled together.

We thus averaged RTs across subsequent positions (i.e., 
all except the first position) and analyzed them separately 
for Experiments 2A and 2B in two 2 (image familiarity: real 
or nonreal) × 4 (memory load: 1 to 4) repeated-measures 
Bayesian ANOVAs, one per experiment. Both analyses 
yielded the same pattern of results (Fig. 5). The best models 
included only a main effect of the memory load (BF10 = 
4.8×104 in Experiment 2A and BF10 = 3.9×108 in Experi-
ment 2B). There was overwhelming evidence for an increase 
in Subsequent-RTs as a function of the memory load (609 
ms ± 101 ms, 659 ms ± 131 ms, 681 ± 122, and 704 ms ± 
190 ms for one to four images in Experiment 2A; 617 ms ± 
122 ms, 658 ms ± 151 ms, 680 ms ± 163 ms, and 741 ms ± 
175 ms in Experiment 2B). We also found evidence against 
an effect of image familiarity on Subsequent-RTs (652 ms 
± 118 ms and 663 ms ± 152 ms for nonreal and real images 
in Experiment 2A; 655 ms ± 154 ms, and 674 ms ± 156 ms 
in Experiment 2B),  BFexclusion = 5.5 and 5.2 in Experiments 
2A and 2B, respectively, and against the interaction between 
image familiarity and memory load,  BFexclusion = 7.2 and 9.7, 
respectively. To assess the speed of refreshing, we computed 
the slope of a linear regression on the mean Subsequent-RTs 
as a function of the memory load, separately for the real and 
the nonreal images in Experiments 2A and 2B. In Experi-
ment 2A, the linear regression showed an increase of 29 ms 
per new image held in WM for the real images (R2 = 0.89) 
and 32 ms per new image for the nonreal images (R2 = 0.81). 
In Experiment 2B, the linear regression showed an increase 
of 38 ms per new image for the real images (R2 = 0.97) and 
an increase of 40 ms per new image for the nonreal images 
(R2 = 0.96).

The analysis of the Initial-RTs also yielded a similar pat-
tern across the two experiments (Fig 6). In the two experi-
ments, the best model was the full model including both 
the main effects of memory load and image familiarity as 
well as the interaction between these two factors (BF10 
= 3.8 and BF10 = 1.1×1010 in Experiments 2A and 2B, 

Fig. 5  Mean subsequent-RTs (in ms) in Experiments 2A (left) and 2B (right) as a function of the memory load (1 to 4) and the image familiarity 
(nonreal or real). Error bars correspond to standard error
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respectively). However, in both experiments, the full model 
was only ambiguously better than the second-best model 
that included the effect of the memory load only, with the 
full model explaining the data only 1.1 and 2.3 times better 
in Experiments 2A and 2B, respectively. This is likely due 
to the fact that we found evidence against the inclusion of 
the type of images in both analyses, with a  BFexclusion = 3.1 
and 7.0, in Experiments 2A and 2B respectively, but in favor 
of the inclusion of the interaction  (BFinclusion = 4.0 and 13, 
in Experiments 2A and 2B, respectively). Including image 
familiarity as a predictor would lower the overall Bayes fac-
tor of the models, but this is counteracted by the presence 
of the interaction. Hence, this probably led to the overall 
slightly better Bayes factor for the full models compared 
with the memory-load only models.

To analyze this interaction in more detail, we tested 
whether the effect of image familiarity was present at each 
memory load separately. To this aim, we applied dependent 
two-sided Bayesian t test with image familiarity as independ-
ent variable on Initial-RTs separately for each memory load. 
In both experiments, we found convincing evidence for an 
effect of image type on Initial-RTs for memory load of one 
 (BF10 = 25 and 1.1×103, for Experiment 2A and 2B, respec-
tively), but weak evidence at best for a difference between 
real and nonreal images at higher memory loads  (BF10 = 
2.6, 0.5 and 0.4 for memory load two to four, respectively, 
in Experiment 2A;  BF10 = 0.3, 3.2 and 0.8 for memory load 
two to four, respectively, in Experiment 2B; Fig 6).

Discussion

Despite differences in the implementation of the concurrent 
task, both experiments yielded the same pattern of results. 
First, we replicated the visuospatial familiarity effect in 
memory performance, nonreal images yielded worse recall 
performance than real images. Furthermore, as expected, 
the analysis on the Subsequent-RTs, often considered as an 

index of the functioning of attentional refreshing, showed 
that the response times to the concurrent task was influenced 
by the memory load. Indeed, response times were postponed 
by approximately 30–40 ms for each additional image to 
maintain. This is in line with previous findings estimating 
the speed of refreshing around 40 ms (Camos et al., 2019; 
Jarrold et al., 2011; Vergauwe et al., 2014), and with the 
estimations based on the data collected in Experiments 
1A and 1B (an increase of 31 ms and 17 ms for real and 
nonreal images respectively; see Supplementary Material 
1). Finally, we also found evidence against the interaction 
between image familiarity and memory load on the Subse-
quent-RTs, which, under the assumption that the memory 
load effect assesses the operation of attentional refreshing, 
contradicts our hypothesis of an involvement of semantic 
LTM in attentional refreshing. One could argue that many 
trials were dropped for the analysis (49% and 47% in Experi-
ment 2A and 2B, respectively), potentially jeopardizing our 
conclusion. However, this approach is in line with previ-
ous studies following the same methodology (Camos et al., 
2019; Vergauwe et al., 2014). Theoretically, because we aim 
to study effects due to WM maintenance, it is important to 
keep only trials with perfect recall, to ensure that the images 
were really maintained in WM. To illustrate this point, anal-
ysis of subsequent-RTs using all trials in Experiments 2A 
and 2B regardless of recall performance shows the same 
pattern of results, but with less steep slopes for the regres-
sion analysis of subsequent-RTs on memory load effect (see 
Supplementary Material 3).

Regarding the results for the Initial-RTs, we found evi-
dence for an effect of memory load on Initial-RTs, with a 
larger postponement of Initial-RTs induced by higher mem-
ory load, but evidence against an effect of image familiar-
ity. However, the image familiarity effect interacted with 
memory load, with larger Initial-RTs in trials with nonreal 
images compared with trials with real image for a memory 
load of one. As Initial-RTs are often considered as indexing 

Fig. 6  Mean initial-RTs (in ms) in Experiments 2A (left) and 2B (right) as a function of the memory load (1 to 4) and the image familiarity 
(nonreal or real). Error bars correspond to standard error
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consolidation, these findings question the functioning of 
consolidation process. In the General Discussion, we will 
elaborate further on this issue.

General discussion

In a series of four experiments, we investigated the hypoth-
esis that the functioning of attentional refreshing relies on 
semantic LTM representations in the visuospatial domain of 
WM. More specifically, we hypothesized that visuospatial 
items that are more familiar (and thus better represented 
in semantic LTM) would be refreshed more efficiently and 
more quickly than less familiar items. In Experiments 1A 
and 1B, item familiarity and refreshing opportunity were 
manipulated orthogonally in a complex-span task with a 
stronger manipulation of refreshing opportunity in Experi-
ment 1B than 1A. In both experiments, we found evidence 
for an effect of the familiarity manipulation and of refresh-
ing opportunity (although ambiguous in Exp. 1A). However, 
evidence (ambiguous in Exp. 1A and convincing in Exp. 1B) 
was gathered against the interaction, which is inconsistent 
with the hypothesis that attentional refreshing functioning 
is influenced by semantic LTM factors.

To examine this hypothesis with a more fine-grained 
measure, Experiments 2A and 2B investigated the effect 
of familiarity on another index of attentional refreshing: 
the memory load effect on concurrent task response times. 
Memory load and the familiarity of visuospatial items were 
manipulated orthogonally in two complex-span tasks, which 
differed slightly in their operationalization of the concurrent 
task. Experiments 2A and 2B yielded the same pattern of 
results, with evidence for the presence of a memory load 
effect on response times to the concurrent task, but evidence 
against an effect of image familiarity and against the pre-
dicted interaction, the speed of refreshing thus being similar 
in high-familiarity and low-familiarity images. Thus, across 
four experiments, we observed a very consistent pattern of 
findings. In the following, we will discuss the implications 
for the functioning of attentional refreshing. We will also 
discuss the implications regarding the relationship between 
semantic LTM and WM.

On the functioning of attentional refreshing

Several accounts of attentional refreshing functioning have 
been put forward (see Camos et al., 2018, for a review). 
Although the models differ on several key aspects of atten-
tional refreshing functioning, they tend to agree that atten-
tional refreshing is domain general. Comparing our results 
to the ones from Camos et al. (2019) lends support to this 
assumption. Our patterns of results in the visuospatial 
domain are very similar to the patterns in the verbal domain 

reported by Camos et al. (2019) in two ways. First, we rep-
licated the cognitive load effect with visuospatial material 
and a serial recognition paradigm, with worse performance 
under high cognitive load. This finding extends the results 
of Camos et al. (2019) that used a written recall procedure. 
However, the cognitive load effect was less convincing in our 
experiments, compared with the same manipulation in the 
verbal domain. Since recognition does not demand a com-
plete reconstruction of the mnemonic traces, less stable WM 
representations can be recognized relatively easily, whereas 
active recall of these less stable WM representations may not 
be possible. Thus, in recognition tasks, it is possible that par-
ticipants do not actively maintain visuospatial items and just 
rely on their feeling of familiarity to perform the recognition 
task. This might be true for Experiment 1A, as the evidence 
for the cognitive load effect was ambiguous. However, the 
convincing cognitive load effect in Experiment 1B indicates 
that, even though we used a recognition procedure, this still 
elicited active maintenance of the presented items. All in 
all, the results from Experiments 1A and 1B were in line 
with previous studies that found a cognitive load effect on 
recall performance with verbal as well as visuospatial mate-
rial (Barrouillet et al., 2007; Barrouillet & Camos, 2012; 
Vergauwe et al., 2010, 2012, 2014).

Secondly, we also extended the memory load effect on 
concurrent response times to visuospatial material, even 
though we used the complex-span paradigm instead of the 
Brown–Peterson task used by Vergauwe et al. (2014) and 
Camos et al. (2019). A very similar time postponement with 
increased memory load was observed, with an estimate of 
the refreshing rate at around 30–50 ms per new item held in 
WM akin to previous estimates (35–45 ms in Camos et al., 
2019; 41 ms in Jarrold et al., 2011; 28–40 ms in Vergauwe 
et al., 2014). Such a memory load effect is consistent with 
the idea that attentional refreshing works via a sequential 
scanning of all items held in WM (Vergauwe & Cowan, 
2015). Each item held in WM is refreshed one after the 
other in a sequential manner, before participants start to 
process the processing items of the concurrent task. Beside 
strengthening this account of the functioning of attentional 
refreshing, our results extend the domain-generality of the 
memory load effect on the response times to a concurrent 
task, because the present study observed this effect in a para-
digm in which it was never tested before (i.e., complex span 
task with serial recognition). Because this postponement is 
considered as an index of attentional refreshing speed, the 
similarity of slope estimates indicates that visuospatial and 
verbal items are refreshed at a similar speed. This would be 
indicative that the same mechanism, probably refreshing, 
is at play in both domains. Thus, together with the results 
from Camos et al. (2019), our results reinforce the idea that 
attentional refreshing is a domain-general mechanism that 
works in the same way for verbal and visuospatial material.
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In addition, our results also show that image familiar-
ity has an impact on recall performance, with conclusive 
evidence that low-familiarity images yield worse recall 
performance than high-familiarity images. This difference 
in performance shows that our manipulation of semantic 
LTM in the visuospatial domain was effective. Despite 
the presence of the familiarity effect, we found evidence 
against the interactions of interest in all four experiments. 
In Experiments 1A and 1B, the cognitive load effect was 
similar in both type of images, indicating that low-famil-
iarity images were refreshed as efficiently as high-famili-
arity ones. This conclusion is supported by the absence of 
interactions in Experiments 2A and 2B, showing that high-
familiarity and low-familiarity images should be consid-
ered as being refreshed at the same speed. Taken together, 
results from our experiments show that image familiarity 
does not influence the functioning of attentional refresh-
ing, even though it impacts recall performance. This con-
tradicts the hypothesis that attentional refreshing functions 
via the involvement of semantic LTM.

It is important to note that this conclusion only holds 
under the assumption that the cognitive load effect on recall 
and the effect of memory load on Subsequent-RTs reflect 
the operation of refreshing. Although several researchers 
have indeed worked under this assumption (e.g., Fanuel 
et al., 2018; Labaronne et al., 2023; Loaiza & Souza, 2019), 
one could argue that these effects are reflecting other work-
ing memory processes and hence, that our effects do not 
allow strong conclusions related to refreshing. For the cog-
nitive load effect, at least one alternative explanation has 
been proposed, whereby the effect would rather reflect the 
operation of a removal process than of a reactivation pro-
cess (e.g., Oberauer et al., 2012). Under that assumption, 
one would rather conclude that the efficiency of removal 
is not affected by the familiarity of the memory materials 
(which would make sense, given that the removal process 
would operate on the processing items, rather than on the 
memory items). For the memory load effect, a clear alter-
native explanation is currently not available, because as 
mentioned, the removal does not operate on memory items, 
which makes it difficult to understand how their number 
would affect its efficiency. However, recent research did 
suggest that the reconfiguration of memory materials may 
contribute to the effect of memory load on concurrent 
processing (Joseph & Morey, 2022). Under that assump-
tion, one could conclude that this type of reconfiguration 
is not affected by the familiarity of the memory materials 
(although the reconfiguration may explain effects on Initial-
RTs, see in the next section). Overall, our data indicate 
that whatever the nature of the attentional processes tak-
ing place during free time in complex span tasks, these 
processes are not affected by image familiarity and thus, do 
seem to operate independently from semantic LTM.

Refreshable and nonrefreshable material

To summarize, our results are congruent with the domain-
generality assumption of attentional refreshing and with 
previous studies that showed an absence of semantic LTM 
effect on attentional refreshing in verbal WM. However, the 
question remains as to why some specific visuospatial items 
are not influenced by attentional refreshing manipulations 
in some previous studies (e.g., Ricker & Vergauwe, 2020; 
Schneider et al., 2023; Vergauwe et al., 2014). In their study, 
Ricker and Vergauwe (2020) failed to find cognitive load 
effect with some specific visuospatial material (i.e., posi-
tion around a circle in an angle reproduction task) and put 
forward several explanations for the absence of this effect. 
They hypothesized that it could be due to the memory mate-
rial itself, as an angle reproduction task had never been used 
before in any study with a cognitive load manipulation. It 
would suppose that specifics about position around a cir-
cle would prevent it from being refreshed. However, this 
does not seem to hold, as other types of visuospatial memo-
randa have also yielded an absence of memory load effect 
(Vergauwe et al., 2014) or seem to not be actively refresh-
able (Ricker & Cowan, 2010; Schneider et al., 2023). In 
the current literature, other memoranda for which an effect 
of attentional refreshing manipulation was not observed are 
unconventional characters (Ricker & Cowan, 2010), and 
different fonts of the same letter (Vergauwe et al., 2014). 
Although the three kinds of memoranda pertain to the same 
domain, it is not clear how they relate to each other or what 
the common features are that may drive the similar absence 
of effect. As suggested by Camos and colleagues (2019), we 
entertained in the present study the idea that differences in 
semantic LTM mnemonic traces could be the basis of this 
discrepancy, but we failed to find support for this hypoth-
esis. Another possible explanation relies on the possibility to 
verbalize the memoranda. One could argue that fonts of the 
same letter and unconventional characters are difficult to ver-
balize without proper training, and that attentional refresh-
ing relies on some sort of verbal recoding. However, this is 
not congruent with the results from Ricker and Vergauwe 
(2020). In Experiment 2, they used “canonical” positions 
around the circle instead of random continuous position, and 
still found no effect of the cognitive load manipulation, even 
though the actual position could easily be verbally recoded 
as “up, down, left or right.”

One last possible explanation relies on the relationship 
between consolidation and refreshing in WM. Consolida-
tion in WM is a process that transforms fleeting sensory 
traces into more stable representations in WM (Bayliss, 
et al., 2015; De Schrijver & Barrouillet, 2017; Ricker & 
Cowan, 2014; see Ricker et al., 2018, for a review). Ricker 
and Vergauwe (2020) argued that it could be possible that 
only well-enough consolidated traces can be refreshed, and 
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that low-level visuospatial features are not easily consoli-
dated. However, recent studies in the verbal domain showed 
evidence against an interaction between consolidation and 
refreshing (Bayliss et al., 2015; Labaronne et al., 2023) and 
against an effect of familiarity on consolidation (Cotton & 
Ricker, 2021). In our results, we only found reliable dif-
ferences between familiar and unfamiliar items on Initial-
RTs when the memory load was one. Higher memory loads 
did not show reliable evidence for an effect of image type. 
If consolidation was influenced by image type, it is rather 
striking that we found only evidence of such an effect with a 
memory load of one and not with higher memory load. Thus, 
it seems our data argue against an impact of familiarity on 
consolidation process. Regarding the effect of memory load 
on Initial-RTs, it is rather surprising that the mere consoli-
dation of a newly presented image leads to a memory load 
effect on Initial-RTs. Indeed, consolidation has been pro-
posed to operate on the memory item that was presented 
just before, and should therefore not be impacted by the 
memory load manipulation. It could be that Initials-RTs are 
also impacted by the refreshing of the already consolidated 
WM representations (i.e., previously presented images in 
the same trial), which would be refreshed after the consoli-
dation of the newly-presented memory item and before the 
response to the first parity judgment. Alternatively, it can be 
envisioned that the addition of a new image requires a recon-
figuration of the output program. This could account for an 
increase in Initial-RTs throughout serial position, as the out-
put program becoming more and more complex, it needs 
more time to be reconfigured (see Jones & Macken, 2018; 
Joseph & Morey, 2022; Myers et al., 2017; Stokes, 2015). 
Overall, future studies should aim at uncovering, in a more 
systematic way, which types of material can be influenced by 
attentional refreshing manipulations and which types cannot, 
as it could reveal important limitations to the functioning of 
attentional refreshing.

Relationships between WM and semantic LTM

Assuming that cognitive load and memory load effects 
reflect the operation of refreshing, our results go against the 
idea that semantic LTM is directly involved in the function-
ing of attentional refreshing. However, since we did find 
a familiarity effect on recall performance, our results are 
congruent with the idea that semantic LTM has an impact 
on WM functioning. The familiarity effect could originate 
from several WM processes other than those taking place 
during maintenance period, namely from processes occur-
ring during the encoding and/or the recall phase (see Thorn 
& Page, 2008, for a review). Regarding encoding processes, 
it could be that high-familiarity items are encoded more 
strongly than low-familiarity ones, resulting in better recall 
performance for high-familiarity items. However, our results 

in Experiment 2A and 2B on Initial-RTs showed that these 
response times are only influenced by the memory load and 
not by image familiarity. This is consistent with the idea 
that encoding processes happen at the same speed for high-
familiarity and low-familiarity items, but does not give infor-
mation about the strength of this encoding. Finally, Initial-
RTs’ pattern of results once again replicates the results from 
Camos et al. (2019) in the verbal domain. However, we do 
not consider this as definitive evidence, as Initial-RTs were 
not our primary variable of interest and the experiments 
were not designed to directly test the hypothesis that high-
familiarity items are better encoded or consolidated than 
low-familiarity items. Future experiments should aim at 
investigating this possibility. Alternatively (or in addition 
to the possible effect at encoding described above), item 
familiarity could have an impact at the recall stage through 
the redintegration process (Hulme et al., 1997; Schweick-
ert, 1993). This hypothesis supposes that semantic LTM 
is used to reconstruct mnemonic traces in WM at recall. 
Thus, items that are easier to retrieve from semantic LTM 
(i.e., high-familiarity items) would have a greater probabil-
ity to be redintegrated than harder-to-retrieve items (i.e., 
low-familiarity items). To conclude, our findings go against 
the idea that attentional refreshing of visuo-spatial material 
relies on semantic LTM. Together with similar findings in 
the verbal domain (Camos et al., 2019), this tends to support 
the separation between WM and semantic LTM. Future stud-
ies should aim at disentangling the different possible loci for 
the familiarity effect, and more generally for the LTM effects 
that impact recall at short term.

Conclusion

Although we repeatedly found a familiarity effect on recall 
performance in our study, our data are not congruent with 
the hypothesis that high-familiarity visuospatial items are 
refreshed more efficiently than low-familiarity items. This 
indicates that the familiarity effect in WM does not emerge 
from the maintenance phase. In four experiments, we found 
evidence against the hypothesis that attentional refreshing 
uses semantic LTM to reconstruct traces maintained in WM 
during the retention interval. The pattern of results corrobo-
rates what was already found in the verbal domain. Moreo-
ver, our results were inconsistent with the idea that, in the 
visuospatial domain, information can only be refreshed if 
a stable semantic LTM traces exist. Future studies should 
aim at evaluating possible boundary conditions to the func-
tioning of attentional refreshing, an attentional maintenance 
process that is central to WM.
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