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Lipid droplets (LDs) are ubiquitous intracellular organelles with a central

role in multiple lipid metabolic pathways. However, identifying correlations

between their structural properties and their biological activity has proved

challenging, owing to their unique physicochemical properties as compared

with other cellular membranes. In recent years, molecular dynamics (MD)

simulations, a computational methodology allowing the accurate description

of molecular assemblies down to their individual components, have been dem-

onstrated to be a useful and powerful approach for studying LD structural

and dynamical properties. In this short review, we attempt to highlight, as

comprehensively as possible, how MD simulations have contributed to our

current understanding of multiple molecular mechanisms involved in LD

biology.
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Lipid droplets (LDs) are ubiquitous cellular structures

that store fats in the form of neutral lipids (NLs).

Because of this key function, they play vital roles in

energy metabolism and lipid homeostasis, and they are

a key hub for both physiological and pathological pro-

cesses [1–3], including targeting by numerous patho-

gens [4,5], metabolic syndrome [6], diabetes [7], and

many liver diseases [8–10]. Yet, despite their physiolog-

ical importance, many mechanistic aspects of LD biol-

ogy remain poorly understood.

From a physicochemical point of view, LDs are

oil-in-water emulsions constituted by a core of NLs,

mainly triglycerides (TG) and sterol esters (SE),

encircled by a phospholipid monolayer [11]. LDs

emerge from the endoplasmic reticulum (ER) mem-

brane, where NLs originate from the enzymatic action

of acyltransferases such as ACAT1/2 [12,13] and

DGAT1/2 [14,15]. A diverse array of LD specific pro-

teins decorates the lipid envelope surrounding the oil

core, each performing distinct functions.

While “classical” biology and biochemistry experi-

mental approaches remain the most frequent method-

ology to gain insights into LD biology, computational

studies have slowly gained traction in recent years,

yielding fresh perspectives. Notably, computational

approaches, particularly molecular dynamics (MD)

simulations, have emerged as a valuable tool for prob-

ing aspects of LDs that conventional wet-lab tech-

niques may find challenging to address and that would

have otherwise remained elusive.

MD simulations are a physics-based computational

approach that models the movement of atoms and
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molecules in a system. As such, it can be used to study

the behavior of nanoscopic systems at the molecular

level under well-controlled conditions (temperature,

pressure, ionic strength, etc.) and can provide insights

into the properties and dynamics of complex biological

systems, including their structure, as well as thermody-

namic and kinetic behavior. In a sense, MD simula-

tions can be considered as “in silico experiments,” akin

to in vitro reconstitutions, where the response of an

artificial system to well-defined variations in environ-

mental conditions can be investigated. Hence, this

technology is particularly well-suited, and complemen-

tary to experimental approaches, to describe structural

and dynamical properties of LDs, including their inter-

actions with proteins.

In this Perspective review, we will provide an over-

view of recent LD-related computational studies using

MD simulations, with a specific focus on the intricate

processes of LD formation and targeting by proteins.

We will retrace advancements in the field, predomi-

nantly focusing on MD simulations at different

scales, from all-atom (AA) to coarse-grain (CG) reso-

lution. Starting from exploring the physicochemical

properties of LD-like systems, we will provide our

point of view on this emerging field, and we will

highlight recent discoveries about LD proteins that

have further enriched our understanding of this fasci-

nating research area.

MD simulations of lipid droplets:
models and parameters

The conventional models employed to mimic

LD-related processes using MD simulations involve

two kinds of systems: (a) bilayer membranes enriched

in NLs (Fig. 1), which represented the first attempt to

study NL aggregation and the LD nucleation process

[17–19], and (b) ternary trilayer systems, characterized

by a central bulk phase of neutral lipids (mainly TG

and SE) at different ratios, encased between two phos-

pholipid monolayers (Fig. 1). The latter has emerged

as the most used system to investigate the physical

properties of the monolayer constituting the outer

envelope of LDs [20–24], even if other models have

also been used in the past [25,26].

Simulations of model LDs are not as straightfor-

ward as those of “classical” lipid bilayers, for at least

three main reasons. First, while bilayers are approxi-

mately 4–5-nm thick, MD models of LD-like trilayers

need to be, in principle, sufficiently thick to reach

bona fide bulk properties (i.e., not affected by the

phospholipid monolayer) in their core. This implies

that one box dimension in trilayer simulations must be

several times bigger than in lipid bilayer simulations,

causing a significant increase in the associated

computational cost.

Second, MD simulations of lipid bilayers are gener-

ally carried out at near-zero bilayer tension for at least

two reasons: (a) to mimic the coupling of the system

under study to an infinite reservoir of phospholipids

and (b) based on theoretical considerations of thermo-

dynamic equilibrium [27]. On the other hand, experi-

mental measurements of the surface tension of the LD

monolayer, both ex vivo [18] and in vitro [28], suggest

that the LD monolayer could be under non-negligible

tension, generally in the range 1–5 mN�m�1. Further,

the presence of NL in lipid bilayers also influences

bilayer tension [18], effectively making both bilayer

and monolayer tensions two additional adjustable

parameters to consider when performing MD simula-

tions of model LDs.

Third, conflicting observations (see the next section)

reported using MD simulations by various labs have

led to the realization that the field lacks a well-tested

set of force-field parameters capable of faithfully

describing the behavior of NL molecules in all envi-

ronments. To address this issue, specific parameters

for NLs have been developed in the last few years.

These include AA parameters for TG [29,30] and SE

molecules [23] compatible with CHARMM36 [31]; CG

parameters compatible with the SDK/SPICA force

field [32] for TG, SE, and TG-precursor diacylglycerol

(DG) [21,22,33]; an implicit-solvent CG model for TG

and phospholipids [30]; a still unpublished model for

TG compatible with MARTINI 3 [34] that has been

recently used to investigate properties of LD growth

[35]; and an ultra-coarse-grain model consisting of

only four CG beads per lipid (phospholipids and TG)

to study TG nucleation [36]. A list of available param-

eters has been recently highlighted in a technical

review on the subject [37], and, while a general consen-

sus has not been yet reached, it is our opinion that

these developments are dramatically helping the field

move forward by identifying potential pitfalls and by

iteratively improving the quality of the computational

results. Hence, we foresee that future force field devel-

opments, likely in combination with experimental

efforts specifically tailored to address this issue, will

continue to further improve the reliability of MD sim-

ulations to describe LD properties.

MD simulations of protein-free LD-like
systems

The development of parameters specifically tailored for

NLs has increased the toolkit available for the
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investigation of LD biology at the molecular level,

both in the presence and absence of proteins. Specifi-

cally, two main processes have been extensively stud-

ied: (a) LD biogenesis and growth, and (b) protein

targeting to the LD surface. Despite the important role

played by proteins in these two processes, MD simula-

tions in protein-free systems have also contributed to

our understanding of several mechanistic aspects of

these phenomena.

Concerning LD biogenesis, it is well established that

LD formation takes place in the ER membrane

(Fig. 1), and, based on the physicochemical properties

of NL molecules, it had been proposed in experimental

studies that diluted NL molecules in the ER membrane

could undergo a spontaneous demixing within the

phospholipid bilayer upon reaching a critical concen-

tration [1,38–41]. CG-MD simulations have indeed

been used to thoroughly characterize this process, and

to understand its underlying molecular determinants.

Specifically, they have been instrumental not only to

show that NLs can form distinctive disk-shaped lenses

(Fig. 1) that constitute the condensed phase in a pro-

cess named nucleation [17–19,41] but also to determine

how membrane properties can modulate their forma-

tion. Specifically, MD simulations have revealed how

the dynamic process of LD formation, driven by the

chemical potential of TG molecules, is intimately

linked to the physicochemical attributes of the sur-

rounding membrane. Those include membrane tension,

which inhibits the channeling of NLs from the

phospholipid bilayer to the LD nucleation site, result-

ing in the accumulation of TG molecules inside the

lipid bilayer [18], membrane rigidity [36], and lipid

composition [18,19], with DG, cholesterol, and phos-

pholipids with conical shapes promoting the phase sep-

aration process by lowering the threshold of TG

nucleation [19].

Following the nucleation phase, LDs expand by

sequestering NLs from the ER. Upon reaching a cer-

tain dimension, LDs can eventually undergo budding

toward the cytosol (Fig. 1). This stage is subject to

various influences that drive the directionality of bud-

ding. In combination with experimental studies, MD

simulations have contributed to our understanding

that two important parameters in this respect are (a)

surface tension and (b) membrane asymmetry. Indeed,

MD simulations have proven instrumental in showing

that surface tension is a key property driving the evo-

lution from flat oil lenses during the nascent stage to

spherical-shaped LDs during growth and budding

[18,35,36]. Additionally, MD simulations have been

used to show that leaflet imbalance, arising from an

excess of phospholipids in one leaflet or the presence

of embedded proteins, ensures a more extensive cover-

age of the oil phase on the cytoplasmic side, thereby

prompting budding in that specific direction [35,36,42].

Computational approaches were not solely employed

for deciphering the complexities of the LD biogenesis

process. Simulations of LD-like ternary systems, ini-

tially carried out at the atomistic level using the Berger

Fig. 1. LD-like models used in MD simulations. Representative snapshots from MD simulations highlighting different in silico models used

to study LD biology. From left to right: NLs-enriched lipid bilayer, with NLs encased between the two bilayer leaflets; nascent NLs lens

(adapted from [16]); budding NL droplet (adapted from [16]); trilayer system with bulk NLs shielded by water by two lipid monolayers. MD

snapshots color code: PL (phospholipid) tails, yellow; PL head groups, gray; TG, orange; SE, red; DG, violet.
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lipid force field [43,44], have proven to be exception-

ally well-suited to investigate LD structure and specifi-

cally the interactions between NLs and the

phospholipid monolayer [20,22]. This highlighted how,

within LDs, TG molecules can undergo extensive

interdigitation with phospholipids [22]. This phenome-

non minimizes the contacts between hydrophobic and

hydrophilic moieties and, furthermore, can promote

the formation of membrane defects, which have been

proposed to be crucial for protein targeting on LDs

[22].

Later studies using the CHARMM36 force field

[24,45], following up on this idea, have confirmed these

observations but have also, quite surprisingly, found a

large enrichment (5–8%) of TG molecules on the

monolayer surface and 10 times more water in the LD

core than experimentally reported, even at zero surface

tension [24]. Recent works have shown that these con-

trasting findings likely originate from the treatment of

partial charges on the glycerol moiety of TG molecules

[29,30]. Specifically, the original CHARMM36 param-

eters for TG molecules have partial charges on their

glycerol moiety that are identical to those of phospho-

lipids, leading to MD simulations of TG molecules

that have an interfacial tension of 17.3 mN�m�1 [29],

rather than 29–32 mN�m�1 as measured experimentally

[46,47]. This observation has two interesting conse-

quences. First, the TG molecules in the original

CHARMM36 description are more hydrophilic than

the experimental data suggest. Second, because their

interfacial tension is compatible to that experimentally

measured for diacylglycerol (DG) (17.2 mN�m�1) [48],

their behavior in the simulations is unsurprisingly

extremely similar to that of DG, which has a reported

experimental solubility in lipid bilayer of around

15–20% [29,49–52]. This would correspond to a mono-

layer solubility of 7–10% in line with what observed in

the simulations [24]. Interestingly, DG is also a

biologically-active lipid intermediate in the TG synthe-

sis pathway [53] and various reports describe

DG-dependent binding of proteins on LDs [54,55].

Following these conflicting observations, efforts to

improve the parameters by reducing the partial charges

on the glycerol moiety according to quantum-

mechanical data and physicochemical experiments

[29,30] have resulted in MD simulations of trilayers

that correctly reproduce the interfacial tension between

TG and water using modified CHARMM36 parame-

ters. However, these new models remain unable to

reproduce the depletion of phospholipids from the LD

surface observed in one specific in vitro reconstitution

model [56]. We note, however, that this depletion is

observed also in the presence of other oils (squalene,

dodecane) [56], and this discrepancy is thus unlikely to

originate from the description of TG–water
interactions in the model. Rather, its origin has been

suggested to arise from too weak TG–phospholipid
interactions in the force field, also according to a con-

tinuum model description of the system [57]. This sug-

gests that further force field developments to

accurately describe LD properties might extend

beyond TG molecules, and also encompass phospho-

lipids, to further improve the agreement between MD

simulations and experimental measurements in recon-

stituted systems.

More recently, MD simulations have also demon-

strated how the presence of SE molecules influences

the oil core architecture [21,23]. Specifically, MD simu-

lations have shown that, at high concentrations, SE

can spontaneously demix within the LD core [21]

potentially seeding toward the formation of a SE-rich

crystalline lattice just below the phospholipid mono-

layer. This physico-chemical phenomenon confers to

the droplet a characteristic “onion-like” configuration

where concentric SE layers surround an amorphous

TG nucleus, that is also experimentally observed indi-

rectly using polarization microscopy or directly using

cryo-electron tomography [21,58].

LD-specific protein targeting

In addition to the mechanical and physicochemical

properties of the lipidic components, LD-resident pro-

teins also play major roles in LD biology. The LD

proteome consists of a diverse array of proteins and

enzymes, mostly identified using proteomics

approaches [59–62], each with distinct functions in

lipid metabolism and promoting interactions of LDs

with other organelles.

Interestingly, it appears that LDs lack a dedicated

protein machinery responsible for the direct incorpora-

tion of proteins onto their surfaces [63]. Rather, the

current paradigm posits that protein binding to LDs is

essentially governed by the unique properties of the

LD surface monolayer arrangement or by interactions

with protein already residing on the LD surface. It is

thus not surprising that physicochemical properties of

the LD surface, such as interfacial tension, have been

suggested as main contributors not only in LD forma-

tion and budding [18] but also in protein targeting

[22,64].

In this context, LD-associated proteins have been

conceptually divided into two main classes (reviewed

by Olarte et al. [63]), depending on their localization

in the absence of intracellular LDs and their likely tar-

geting mechanism: CYTOLD proteins (also known as

4 FEBS Letters (2024) ª 2024 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
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Class II proteins), which stands for “Cytoplasm to

LD,” and ERTOLD proteins (also known as Class I

proteins), or “Endoplasmic Reticulum to LD” [63]

(Fig. 2A). The CYTOLD pathway refers to the mecha-

nisms by which proteins are directed from the cyto-

plasm of a cell to the LD surface. These proteins often

contain targeting signals or motifs, like amphipathic

helices (AH) [3,63]. In the ERTOLD pathway, on the

other hand, proteins target LDs via diffusion from

the ER membrane and interact with the LD surface

likely through helical hairpin motifs (helix-turn-helix).

This transition is supposed to be mediated by the pres-

ence of ER-LD bridges that physically keep the con-

nection between the organelles [66], and that could

also modulate lipid diffusion [67].

How proteins belonging to both classes specifically

partition to the LD surface has not only been exam-

ined through experimental methods, which typically

aim to investigate how proteins behave in cells using

fluorescence microscopy [68–71] or in reconstituted

mixed bilayer/monolayer systems [65,72] but also with

computational approaches. MD simulations have been

pivotal in understanding how the unique surface prop-

erties of LDs can influence specific protein targeting,

providing valuable insights into the molecular proper-

ties of the monolayer. Specifically, MD simulations

have characterized how the presence of a lipid core

affects the surface area per phospholipid and the per-

sistence of lipid-packing defects (LPDs) [22], thus

imparting a unique membrane packing to LDs com-

pared to phospholipid bilayers (Fig. 2B). These

“voids,” that in lipid bilayers are generated by the

exposure of the hydrocarbon atoms belonging to

the lipid acyl chains to the surface [22,73], affect LD

surface properties [22] and, consequently, protein tar-

geting [45,72,74–76]. To this end, all-atom simulations

have suggested that LPDs are possibly more persistent

in LDs, compared with phospholipid bilayers [72,75],

and, as such, can constitute specific binding sites for

the preferential targeting of proteins [24,72].

Rather than being static, however, LD surface prop-

erties are likely to be dynamically modulated during

different stages of lipid metabolism: LD surface expan-

sion, possibly during LD growth, increases LD surface

tension and, consequently LPDs [22], allowing new

proteins to bind to the LD surface; in contrast, LD

shrinkage in the late stages increases lipid packing and

causes the displacement of weakly bound proteins [77].

This concerted mechanism provides a scenario where

the protein composition of LDs is modulated by bio-

physical properties of the LD membrane.

In addition, MD simulations have provided a

dynamical perspective on LD targeting. For instance,

CYTOLD proteins have been proposed to bind to the

monolayer following a multi-stage pathway: from their

initial unfolded configuration in solution, proteins can

fold upon anchoring to LPDs thanks to hydrophobic

residues [72]. Indeed, specific sequence “signatures,” in

particular bulky hydrophobic residues, have been dem-

onstrated by MD simulations to be crucial for specific

binding to LDs [45,72,76].

Finally, the targeting of model peptides was also

studied using MD, in an attempt to investigate the

LD-targeting behavior of integral membrane proteins

of the ERTOLD pathway [65,78]. When incorporated

and randomly distributed in a phospholipid bilayer,

these peptides, enriched in hydrophobic residues,

showed a spontaneous tendency to diffuse toward the

monolayer surface, indicating a lower free energy of

the system [65,78]. All atom simulations were also used

to identify specific sequence features of hydrophobic

membrane motifs that mediate LD targeting,

Fig. 2. LD-targeting by proteins. (A) Conceptual scheme of LD-targeting pathways by protein, and representative examples of MD

simulations to study both ERTOLD (left; image adapted from [65]) and CYTOLD (right; snapshot adapted with permission from [45].

Copyright 2021 American Chemical Society) pathways. (B) MD snapshots and representative scheme of deep (blue, top) and shallow

(green, bottom) lipid packing defects in MD simulations of model LDs.

5FEBS Letters (2024) ª 2024 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
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identifying a prominent role for deeply inserted trypto-

phan residues that promote subtle conformational

changes of the protein structure in the bilayer versus a

LD-like environment [78]. We caution, however, that

all protein–LD interactions described using all-atom

MD so far in this context, both for CYTOLD and

ERTOLD proteins [45,72,76,78], have been carried out

using the old, more hydrophilic, CHARMM parame-

ters for TG molecules. Future studies, possibly in com-

bination with experimental methods that probe

protein–membrane interactions with high resolution,

will certainly help shed light on this fascinating molec-

ular mechanism.

LD activity of ER integral membrane
proteins

It is important to note that it is not only proteins that

directly target the LD surface that contribute in a

major way to the LD biogenesis process. An array of

other proteins and enzymes, primarily situated within

the ER, also occupy a central position in regulating

the various facets of LD formation and dynamics.

Among these, seipin represents a prominent example,

as its localization at the ER membrane defines LD for-

mation sites that are characterized by a single seipin

oligomer associated with each emerging LD [79,80]. At

the molecular level, seipin homo-oligomerizes, forming

a ring-like structure constituted by 10–12 subunits,

depending on species, with each monomer featuring

two transmembrane (TM) segments encasing a highly

conserved luminal domain folded as an 8-stranded

b-sandwich [81,82] along with a hydrophobic helix

(HH) [83,84].

However, seipin is not just a structural scaffold at

ER-LD contact sites [85–88], as it has been suggested

to play multiple functions. These include, among

others, (a) the regulation of phospholipid metabolism

and lipid distribution in the ER [83,89,90]; (b) control

of adipogenesis, as mutations in its sequence can lead

to a congenital disorder known as Berardinelli-Seip

congenital lipodystrophy type 2 (BSCL2) [91,92], and

(c) modulation of the early stages of LD formation, as

seipin-deficient cells result in TG accumulation in the

ER and delayed formation of aberrant LDs, which are

smaller, supersized, and sometimes clustered [85,93,94].

Recent computational studies have made significant

contributions to our understanding of seipin-mediated

LD formation, offering molecular insights beyond the

capabilities of current experimental methods. In silico

work employing MD simulations at CG level of detail

has demonstrated the prominent role of seipin in clus-

tering NLs at the LD formation site (Fig. 3A). Indeed,

seipin can trap and concentrate NL molecules, as well

as TG precursor DG, in both luminal and TM regions,

thanks to specific interactions between the polar

Fig. 3. The role of seipin in the early stages of LD biogenesis. (A) MD snapshots showing the ability of seipin (red) to cluster NLs. (B) MD

simulations highlighting the role of seipin in LD growth and budding. Representative snapshots adapted from [95] (left) and [35] (right).

6 FEBS Letters (2024) ª 2024 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
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glycerol moieties of TG and key polar residues

[41,81,96–98]. In detail, a pair of serine residues in the

HH of the luminal domain acts as a binding site for

membrane-embedded NLs, and their mutation into

more hydrophobic residues results in delayed LD for-

mation [97].

Ultra-CG MD simulations have further emphasized

the importance of seipin in facilitating TG nucleation:

despite the low resolution of this model, it has been

possible to prove that key regions, such as the TM

domains, contribute to the generation of a unique

ER-LD neck structure, and they have provided initial

molecular information concerning the early stages of

LD growth and budding [95] (Fig. 3B). Along this line

of research, a recent study taking advantage of a

grand-canonical simulation scheme, in which TG and

phospholipids are computationally “synthesized” at

specific locations, was able to reproduce various stages

of LD formation and maturation using the MARTINI

CG force field. In the presence of seipin, nascent LDs

formed within the seipin ring, which subsequently

grow and expand towards the cytosolic side [35]

(Fig. 3B).

Conclusions and outlook

In the last 5–6 years, MD simulations have emerged as

a complementary approach to investigate the biology

of LDs. Thanks to improved computational models of

neutral lipids, this methodology has contributed to

advancing our understanding of the unique and fasci-

nating molecular properties of LDs. When used appro-

priately, often in combination with experimental

studies, the findings from MD simulations have trans-

lated into the discovery of important LD-related physi-

ological mechanisms.

Yet, these pioneering studies only represent the tip

of the iceberg, as several outstanding challenges and

opportunities remain. In our opinion, three main sub-

jects are primed for important contributions from MD

simulations in the next few years. First, a detailed

understanding of the exact correlation between the

complex lipid composition of LDs and their molecular

properties in different metabolic states or upon differ-

ent genetic or environmental perturbations remains

limited. In this context, the molecular properties of

their neighboring ER membrane (lipid composition,

membrane tension, membrane curvature) are also

likely to play a major role in LD formation, budding,

and growth that remains mostly unexplored. We

expect that future MD studies will highlight in greater

detail how all these properties affect LD biology and

how this plays a role in physiological contexts.

Second, we still lack a convincing characterization

of proteins at the LD surface. While MD simulations

are a powerful methodology to characterize protein–
membrane interactions, both AA and CG simulations

have limitations, especially regarding conformational

changes that might occur specifically at the LD sur-

face. We expect that a combination of MD studies

with experimental approaches (e.g., using spectroscopy

approaches on chemically-labeled protein residues) will

be required to further clarify the molecular details of

protein binding to LDs.

Finally, the availability of recent experimental

structures of enzymes in the neutral lipid synthesis

pathway [12–15,99,100], as well as structural models

of LD proteins from AI-based tools such as Alpha-

Fold and Rosetta [101–105], constitutes an incredi-

ble resource to investigate LD biology in molecular

terms. We foresee that the combination of this

wealth of structural information with accurate lipid

models mimicking mature or nascent LDs using

MD simulations will further affirm the

ever-increasing role of molecular simulations in this

research field.
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