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Abstract and keywords

Abstract: Although climate change is considered to be partly responsible for the size change observed
in numerous species, the relevance of this hypothesis for the ungulates remains debated. We used body
mass measurements of 5635 yearlings (i.e. 1.5 years old) Alpine chamois (Rupicapra rupicapra) harvested
in September in the Swiss Alps (Ticino canton) from 1992 to 2018. In our study area, during this period,
yearlings shrank by ca. 3 kg while temperatures between May and July rose by 1.7°C. We identified that
warmer temperatures during birth and the early suckling period (May 9 to July 2 in the year of birth)
had the strongest impact on yearling mass. Further analyses of year-detrended mass and temperature data
indicate that this result was not simply due to changes in both variables over years, but that increases in
temperature during this particularly sensitive time window for development and growth are responsible for
the decrease in body mass of yearling chamois. Altogether, our results suggest that rising temperatures in
the Alpine regions could significantly affect the ecology and evolution of this wild ungulate.

Keywords: climate change, climwin, ungulates, life stages, temperature, elevation

Journal: Royal Society Open Science

Libraries and datasets

Libraries

knitr: :opts_chunk$set (
fig.path = "figures/",
dev = c("png", "tiff", "postscript", "pdf"), # for papers ("png", "tiff")
dpi = 300

# load the packages
library(dplyr)
library (snakecase)
library(climwin)
library(tidyr)
library(ggplot2)
library(effects)
library(1lme4)
library(lmerTest)
library(stringr)
library (MuMIn)

Session information
R session information is printed here for repeatability.

sessionInfo()

## R version 4.3.2 (2023-10-31)

## Platform: aarch64-apple-darwin20 (64-bit)
## Running under: macOS Sonoma 14.2.1

##



## Matrix products: default

## BLAS:  /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versi
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK v
##

## locale:

## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

## time zone: Europe/Zurich

## tzcode source: internal

#

## attached base packages:

## [1] stats graphics grDevices utils datasets methods Dbase

#i#

## other attached packages:

## [1] sjPlot_2.8.15 MuMIn_1.47.5 stringr_1.5.1 ImerTest_3.1-3 Imed4 1.1-35.1 effects_4.
## [12] ggplot2_3.4.4 snakecase_0.11.1 dplyr_1.1.4

#

## loaded via a namespace (and not attached):

## [1] tidyselect_1.2.0 sjlabelled_1.2.0 farver_2.1.1 fastmap_1.1.1 reshape_0.8.9
## [10] estimability_1.4.1 1lifecycle_1.0.4 survival_3.5-7 magrittr_2.0.3 compiler_4.3.2
## [19] knitr_1.45 labeling_0.4.3 plyr_1.8.9 abind_1.4-5 withr_3.0.0

## [28] grid_4.3.2 stats4_4.3.2 fansi_1.0.6 xtable_1.8-4 colorspace_2.1-
## [37] insight_0.19.7 cli_3.6.2 mvtnorm_1.2-4 survey_4.2-1 rmarkdown_2.25
## [46] RcppRoll_0.3.0 minga_1.2.6 DBI_1.2.0 splines_4.3.2 effectsize_0.8.
## [55] car_3.1-2 magick_2.8.2 evd_2.3-6.1 glue_1.7.0 nloptr_2.0.3

## [64] ggeffects_1.3.4 munsell 0.5.0 tibble_3.2.1 pillar_1.9.0 htmltools 0.5.7
## [73] backports_1.4.1 broom_1.0.5 Repp_1.0.12 coda_0.19-4 nlme_3.1-164

The datasets

The data analysed in this study are the records of the Ticino hunting bags from 1992 to 2018. In Ticino,
hunting starts at the beginning of September and the harvest plan is mostly completed within three weeks.

Data were collected from the Alps in Ticino, the southernmost canton of Switzerland, over an area of 2700
km2 with an elevation varying from 250 to 2700 m asl. The climate in the mountain range is Alpine,
with temperatures varying from mean temperatures of -12°C in winter to mean temperatures of 15.5°C in
summer. The hottest and the sunniest month of the year is July with an average maximum temperature of
25°C, measured in the biggest city in the canton Lugano (World Weather & Climate Information, 2021).

Overall, 34 017 animals were legally shot during the hunting period ranging from an age of 0.5 to 22.5
years old. All animals were sexed, aged and weighted (eviscerated). Both males and females have horns all
year-round, even though female ones tend to be shorter. For the estimation of the age of the shot chamois,
measurement of the teeth and the growth rings of their horns were used (Schroder and Elsner-Schack 1985).

# load the data
ch_biom <- read.csv("data_chamois_yearlings.csv", stringsAsFactors = TRUE, na = c("", "NA"))
clim <- read.csv("data_swiss_weather.csv", stringsAsFactors = TRUE, na = c("", "NA", "-"))

colnames(ch_biom) <- snakecase::to_snake_case(colnames(ch_biom))

# fizing some wvariables

ch_biom$date_ymd <- as.Date(paste(ch_biom$year, ch_biom$month, ch_biom$day), ".Y %m %d")
clim$date_ymd <- as.Date(clim$date, "%d/%m/%y")

ch_biom$year_f <- as.factor(ch_biom$year)



Subset

Due to the nature of the dataset, only information on individuals shot in September was available, so for the
purpose of this study, only a 1.5-year-old animals were considered (7127 individuals, 3257 females and 3870
males). As chamois are usually weaned at 3 to 6 months of age (Scornavacca et al. 2018), a 1.5-year-old
individual has been feeding on their own for nearly a year, is fully grown but still very vulnerable to external
abiotic and biotic threats due to the decrease in maternal care and increase in active grazing behaviour.

ch_bioml5 <- ch_biom[, c("year", "year_f", "date_ymd", "elevation", "age", "sex", "weight")] %>%

drop_na()

boxplot(ch_biom15$weight ~ ch_bioml5$year)
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# standardising elevation
ch_biomi5$elevation_sc <- (ch_bioml5$elevation - mean(ch_biomi5$elevation, na.rm = TRUE)) /
sd(ch_biomi5$elevation, na.rm = TRUE)
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Weather correlations
Daily mean ambient temperature (°C) from 1990 until 2018 (all the years needed for the analysis) was
obtained from a Swiss meteorological station in the city of Lugano (273 m asl), within the harvesting area.

As this weather station is at a lower elevation compared to the harvesting area of the Chamois, we tested
here for correlations with 2 higher elevation stations, both located close to the town of Acquarossa.

The first one is located in Comprovasco (Coordinates: 714984/146451, Elevation: 575m a.s.1).

cor.test(clim$temp_mean_ lugano, clim$temp_mean_comprovasco, method = "pearson", na.action = "omit")
##

## Pearson's product-moment correlation

##

## data: clim$temp_mean_lugano and clim$temp_mean_comprovasco
## t = 478.83, df = 7653, p-value < 2.2e-16

## alternative hypothesis: true correlation is not equal to O
## 95 percent confidence interval:

## 0.9829776 0.9844254

## sample estimates:



## cor
## 0.9837175

plot(clim$temp_mean_lugano, clim$temp_mean_comprovasco)

10
|

clim$temp_mean_comprovasco

-10

-5 0 5 10 15 20 25 30

clim$temp_mean_lugano

The second one is located on the Cima del Simano (Coordinates: 717775/146825, Elevation: 2580m a.s.l).

cor.test(clim$temp_mean_lugano, clim$temp_mean_simano, method = "pearson'", na.action = "omit")
##

## DPearson's product-moment correlation

##

## data: clim$temp_mean_lugano and clim$temp_mean_simano

## t = 151.3, df = 8283, p-value < 2.2e-16

## alternative hypothesis: true correlation is not equal to O
## 95 percent confidence interval:

## 0.8510851 0.8625318

## sample estimates:

## cor

## 0.856914

plot(clim$temp_mean_lugano, clim$temp_mean_simano)
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As both weather station present high correlation values with the station of Lugano, we decided to use this
last weather station in the models as it includes all the years necessary for the analyses

cor.test(clim$temp_mean_lugano, clim$temp_max_lugano, method = "pearson", na.action = "omit")



#i#

## Pearson's product-moment correlation

##

## data: clim$temp_mean_lugano and clim$temp_max_lugano
## t = 655.95, df = 18626, p-value < 2.2e-16

## alternative hypothesis: true correlation is not equal to O
## 95 percent confidence interval:

## 0.9784291 0.9796211

## sample estimates:

#i# cor

## 0.9790335

plot(clim$temp_mean_lugano, clim$temp_max_lugano)
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cor.test(clim$temp_mean_lugano, clim$temp_min_lugano, method = "pearson", na.action = "omit")
##
## DPearson's product-moment correlation
##

## data: clim$temp_mean_lugano and clim$temp_min_lugano

## t = 632.13, df = 18626, p-value < 2.2e-16

## alternative hypothesis: true correlation is not equal to O
## 95 percent confidence interval:

## 0.9768293 0.9781087

## sample estimates:

#i#t cor

## 0.9774779

plot(clim$temp_mean_lugano, clim$temp_min_lugano)
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As the use of arbitrary climate periods do not always explain the biological response in the best way possible
(van de Pol et al. 2016), we investigated the variation weight of yearling individuals in relation to the
variation of mean ambient temperature using the R package climwin, and the function slidingwin which
detects the exact time window when a biological variable is most strongly affected by climate (Bailey and
van de Pol 2016).

The overall approach for the climwin analysis is to compare the support by the data for competing hypotheses
and to formalize them into regression models (van de Pol et al., 2016).

Competing models are based upon a baseline model (called also null model, a model without weather
effects) and ranked using the deltaAICc, or the difference in terms of the Akaike Information Criterion
values calculated for a small sample size between the candidate model and baseline model.

Climwin presents the models using the deltaAICc value relative to the baseline model (AICc of the candidate
model - AICc of the baseline model). Therefore, a model that is more supported than the baseline model
will have a negative deltaAICc value. On the same hand the model with the best support from the data,
usually with lowest AICc, will be shown as the model with lowest deltaAICc in the climwin output.

The baseline model was a linear model with the body mass of the yearling chamois in relation to sex and
elevation. The function slidingwin creates a candidate set of competing models testing windows of different
lengths for the weather variable of interest, in this study the mean daily ambient temperature (°C).

Non-linear effects of temperature on body weight were taken into account by checking for both linear and
quadratic trends. This is mentioned in the climwin output as func = lin (only linear term) func = quad
(linear and quadratic terms).

As most of the chamois was shot during a two-week period at the end of September we chose an absolute
time window for the analyses instead of an individual specific time window. As reference day we chose the
last date of the shooting period (September 24th) and we looked for windows between September 24th and
662 days before (December 1st of 2 years before) to include the three critical periods of a young chamois
life: gestation, lactation and yearling.

Base model

According to (van de Pol et al. 2016), we built a base model that includes variables that can affect the body
size, i.e. elevation and sex.

ch_basemod <- 1m(
weight ~
sex + elevation_sc,
data = ch_biomlb
)

summary (ch_basemod)

#i#

## Call:

## 1m(formula = weight ~ sex + elevation_sc, data = ch_bioml5)
#

## Residuals:

## Min 1Q Median 3Q Max

## -8.2112 -1.8462 0.0268 1.7888 13.1538

#i



## Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

## (Intercept) 13.90777 0.05335 260.668 < 2e-16 **x

## sexm 0.56032 0.07145  7.842 5.28e-15 *x*x*

## elevation_sc 0.47942 0.03549 13.509 < 2e-16 ***

##H -

## Signif. codes: O '**x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 2.662 on 5632 degrees of freedom

## Multiple R-squared: 0.04296, Adjusted R-squared: 0.04262

## F-statistic: 126.4 on 2 and 5632 DF, p-value: < 2.2e-16

Climwin analysis
Finding the best window
Using the function slidingwin allows to search for the best climatic window

ch_mass_sw <- slidingwin(
baseline = ch_basemod,
xvar = list(

temp_mean = clim$temp_mean_lugano

),
type = "absolute",
refday = c(24, 9),
range = c(662, 0),
stat = c("mean"),
cdate = clim$date_ymd,
bdate = ch_bioml5$date_ymd,
func = c("lin", "quad"),
cmissing = FALSE,
cinterval = "day"

)

save(ch_mass_sw, file = "climwin_mass_01.rda")

Investigating the models

load(file = "climwin_mass_01.rda")

The best linear and quadratic windows

The linear4-quadratic term better explains the variation in the data (deltaAICc has the lowest value), sorted
by deltaAICc such that the best supported model is on top.

To investigate any other tested hypothesis we can simply replace the number in the double square brackets
with the corresponding list number.

ch_mass_sw$combos %>/, arrange(DeltaAICc)



##  response climate type stat func DeltaAICc WindowOpen WindowClose
## 2  weight temp_mean absolute mean quad -325.33 503 449
## 1  weight temp_mean absolute mean 1lin  -262.02 93 78

AICc of the Best model with the linear+quadratic term
MuMIn: :AICc(ch_mass_sw[[2]]$BestModel)

## [1] 26704.2

AICc of the Best model with the linear term

MuMIn: :AICc(ch_mass_sw[[1]]$BestModel)

## [1] 26767.51

AICc of the baseline model (no climatic factor), used by the function slidingwin as a reference to obtain the
deltaAICc values plotted above:

MuMIn: :AICc(ch_basemod)

## [1] 27029.52

Difference in terms of AICc between the Best model and the baseline model
MuMIn: :AICc(ch_mass_sw[[2]]$BestModel) - MuMIn::AICc(ch_basemod)
## [1] -325.3275

DeltaAICc as obtained using the function slidingwin in the climwin package
ch_mass_sw[[2]]$Dataset$deltaAICc[1]

## [1] -325.3275

They are the same!

The 30 best quadratic models

The 30 best windows for the linear+quadratic models sorted by deltaAICc. All models with the lowest
AICc (delta AICc between -325.3275 and -320.4684) present very comparable windows: - WindowOpen and
WindowClose similar (+- 3 days) to the one of the top model.

head(ch_mass_sw[[2]]$Dataset, 30)
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## 127313 9 no
## 135538 9 no
## 136059 9 no
## 125299 9 no
## 135540 9 no
## 127822 9 no
## 136062 9 no
## 136063 9 no

Windows plot It’s possible to extract the time windows of all the best supported models (i.e. multi-model
inference). This panel shows the opening and closing points of the time windows that were best supported
by the data, here those models that made up 95% model confidence set.

plotwin(ch_mass_sw[[2]]$Dataset)
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Delta plot The variation in deltaAICc between time windows can be better investigated using the following
plot:

plotdelta(dataset = ch_mass_sw[[2]]$Dataset, arrow = TRUE)

AAICc (compared to null model)
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Warmer areas shows values with the lowest deltaAICc (i.e. “best models”). As explained by van de Pol et
al., 2016, these deltaAICc landscapes of the different time windows shows multiple peaks (red areas) instead
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of a clear single peak. This can indicate the presence of multiple (e.g. possibly both long- and short-lag)
weather signals within the same weather variable, but it can also occur due to collinearity or chance.

The evidence for multiple signals can be therefore investigated by adding the best supported of the weather
windows to the baseline model, and re-fitting all the different time windows again: this tests whether there is
still strong model support for the second best (e.g. short-lag) weather window once the other best supported
(e.g. long-lag) weather window has been accounted for in the baseline model (here in the Step 2).

Beta plot This panel shows the model support (deltaAICc) for all fitted time windows tried, shown for
each combination of Window open (y-axis) and Window close (x-axis). Models with the lowest deltaAICc
(red) are the best supported (colours show the deltaAICc levels compared to the null model, see legend).
Strongly supported windows will often be grouped together.

plotbetas(ch_mass_sw[[2]]$Dataset, arrow = TRUE)

Beta linear Beta quadratic
i F
600 - 600 ¢
—————— =h e — wEm -
1 1
& 4004 1 & 4004 1
Q. Qo
o 1 o 1
2 2
3 3
< 25 c
5 m= | LB
200 0 200
1
-25
0
-50
| ]
0+ 1 0+ 1
v v v v v v v v
0 200 400 600 0 200 400 600
Window close Window close

Autocollinearity Correlation between the mean temperature during the best supported time window and
the mean temperature over all other time windows.

autocoll <- autowin(
reference = ch_mass_sw[[2]],
baseline = ch_basemod,
xvar = list(
temp_mean = clim$temp_mean_lugano
)¢
type = "absolute",
refday = c(24, 9),
range = c(662, 0),
stat = "mean",
cdate = clim$date_ymd,

bdate = ch_bioml5$date_ymd,
func = "quad",
cmissing = FALSE,
cinterval = "day"
)
save(autocoll, file = "climwin_autocall_tmean.rda")
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load(file = "climwin_autocall_tmean.rda")
plotcor(autocoll, type = "A", arrow = TRUE)
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Main results
The best window

Dates of the best window (as if compared to year of harvest 2018)

"4Y/Jm/%d") - ch_mass_sw$combos$WindowOpen [[2]]

as.Date("2018/09/24", format

## [1] "2017-05-09"

as.Date("2018/09/24", format = "%Y/%m/%d") - ch_mass_sw$combos$WindowClose[[2]]
## [1] "2017-07-02"

The model

I can add the new temperature variable for the extracted time window to the original dataset:

# The best supported climate variable can be attached
# to the original dataset for further analyses

ch_biom15$temp_503_449 <- ch_mass_sw[[2]]$BestModelData$climate

ch_final <- 1m(
weight ~
sex + elevation_sc +
temp_503_449 + I(temp_503_449"2),
data = ch_biomlb

knitr::kable(car: :Anova(ch_final),
caption =
"ANOVA Chi-square table", digits = 4
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Table 1: ANOVA Chi-square table

Sum Sq Df  Fvalue Pr(>F)
sex 376.4787 1 56.3169 0
elevation sc 1346.7154 1 201.4533 0
temp_ 503_ 449 1190.6640 1 178.1098 0
I(temp_ 503_44972) 1086.7630 1 162.5674 0
Residuals 37636.5467 5630 NA NA

Sex difference estimated by the model:

emmeans: :emmeans (ch_final, "sex"

## sex emmean SE df lower.CL upper.CL
## f 13.6 0.0559 5630 13.5 13.8
## m 14.2 0.0517 5630 14.1 14.3
##

## Confidence level used: 0.95

ch_final2 <- 1m(
weight ~
sex + elevation +
temp_503_449 + I(temp_503_44972),
data = ch_biomlb
)

eff_data <- data.frame(effects::effect("temp_503_449",
ch_final2,
partial.residuals = TRUE

))

plot_temp <- ggplot(eff_data, aes(x = temp_503_449, y = fit)) +
geom_line(linewidth = 0.3) +
geom_ribbon (
data = eff_data, aes(ymin = lower, ymax = upper),
linetype = 0, alpha = 0.3

)+
xlab("Temperature (°C) \n May 9 - July 2, birth year") +
theme (
legend.position = "none",
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black")
) +

geom_point(
data = ch_biomlb,
aes(x = temp_503_449, y = weight),
size = 1, shape = 16, alpha = 0.1
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) +

ylab("Body mass (kg)") +

scale_y_continuous(limits = c(6, 28), breaks = seq(0, 35, 3)) +
scale_x_continuous(limits c(16.5, 22.5), breaks = seq(16.5, 22.5, 1)) +
annotate("text", x = 16.5, y = 28, label = "(a)")

eff_data <- data.frame(effects::effect("elevation",
ch_final2,
partial.residuals = T

))

plot_alt <- ggplot(eff_data, aes(x = elevation, y = fit)) +
geom_line(linewidth = 0.3) +
geom_ribbon (
data = eff_data, aes(ymin = lower, ymax = upper),
linetype = 0, alpha = 0.3

) +
xlab("Elevation (m a.s.1)") +
Ylab(" n) +

scale_y_continuous(limits = c(6, 28), breaks = seq(0, 35, 3)) +
scale_x_continuous(limits c(200, 2600), breaks = seq(200, 2600, 600)) +
theme (

legend.position = "none",

panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

panel.background = element_blank(),

axis.line = element_line(colour = "black")

) +
geom_point(
data = ch_biomlb,
aes(x = elevation, y = weight),
size = 1, shape = 16, alpha = 0.1
) +
annotate("text", x = 200, y = 28, label = "(b)")

cowplot: :plot_grid(
plot_temp, plot_alt,
nrow = 1, align = "h"

Figure Note that the quadratic model is heuristic and does not imply that the relationship is parabolic
over the whole range of temperatures.

Last step: Randwin

Using randwin to randomize the identity of the chamois we are able to check if the window that was found
before is actually important, or the relationship was just random.
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Figure 1: Relationship between body mass of harvested 1.5-year-old Alpine chamois and (a) the average
temperature between May 9 and July 2 of the birth year (suckling period), and (b) elevation (m a.s.l.). Each
dot is one observation (darker dots represent a higher number of observations); fitted lines in (a) and (b) are
shown with 95 % confidence intervals (shaded areas).

# Performing randamization to identify
# likelyhood of of dignals occuring by chance

ch_mass_rand100 <- randwin(
repeats = 100,
baseline = ch_basemod,
xvar = list(Temp = clim$temp_mean_lugano),
type = "absolute",
refday = c(24, 9),
range = c(662, 0),
stat = "mean",
cdate = clim$date_ymd,
bdate = ch_biomi5$date_ymd,
func = c("lin", "quad"),
cmissing = FALSE,

cinterval = "day",
window = "sliding"
)
save(ch_mass_rand100, file = "climwin_mass_randomization.rda")

load("climwin _mass_randomization.rda")

pvalue(

datasetrand = ch_mass_rand100[[1]],

dataset = ch_mass_sw[[1]]$Dataset, metric = "C", sample.size = 27
)
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## [1] 0.0006889727

pvalue(

datasetrand = ch_mass_rand100[[2]],

dataset = ch_mass_sw[[2]]$Dataset, metric = "C", sample.size = 50
)

## Warning in pvalue(datasetrand = ch_mass_rand100[[2]], dataset = ch_mass_sw[[2]]$Dataset, : Pc will b
## [1] 3.160582e-06

The randomization process shows that the window is actually important.

Long term changes

data_temp <- subset(ch_bioml5, !duplicated(year))
temp_lm <- 1m(temp_503_449 ~ year, data_temp)
weight_lm <- 1lm(weight ~ year, ch_bioml5)

knitr::kable(car: :Anova(temp_1lm),
caption =
"ANOVA Chi-square table", digits = 4

Table 2: ANOVA Chi-square table

Sum Sq Df F value Pr(>F)

year 6.3471 1 5.763 0.0241
Residuals 27.5339 25 NA NA

knitr::kable(car: :Anova(weight_1m),
caption =
"ANOVA Chi-square table", digits = 4

Table 3: ANOVA Chi-square table

Sum Sq Df  Fvalue Pr(>F)

year 2222.902 1 317.2453 0
Residuals  39469.785 5633 NA NA

Decrease in weight (kg):

(weight_lm$coeff[1] + 2018 * weight_lm$coeff[2]) - (weight_lm$coeff[1] + 1992 * weight_lm$coeff[2])

## (Intercept)
##  -2.919858
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Increase in temperature (°C) for the period May 9 - July 2:

(temp_lm$coeff[1] + 2018 * temp_lm$coeff[2]) - (temp_lm$coeff[1] + 1992 * temp_lm$coeff[2])

## (Intercept)
## 1.61847

plot_yr_temp <- ggplot(data_temp, aes(x = year, y = temp_503_449)) +
geom_point(size = 1, shape = 16, alpha = 0.7) +
geom_smooth(method = "1lm", formula = "y ~ x", col = "black", linewidth = 0.3) +
scale_x_continuous(
limits = c(1992, 2018),
breaks = c(1992, 1997, 2002, 2007, 2013, 2018),

labels = c(1992, 1997, 2002, 2007, 2013, 2018) - 1
)+
xlab("") +
ylab("Temperature (°C) \n May 9 - July 2, birth year") +
theme (
legend.position = "none",
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black")
)+

scale_y_continuous(limits = c(16.5, 22.5), breaks = seq(16.5, 22.5, 1)) +
annotate("text", x = 1992, y = 22.5, label = "(a)")

plot_yr_bm <- ggplot(ch_bioml5, aes(x = year, y = weight)) +
geom_point(size = 1, shape = 16, alpha = 0.08) +
geom_smooth(method = "1lm", formula = "y ~ x", col
scale_x_continuous(limits = c(1992, 2018), breaks
xlab("Year") +
ylab("Body mass (kg)") +
theme (

legend.position = "none",

panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black")

"black", linewidth = 0.3) +
c(1992, 1997, 2002, 2007, 2013, 2018)) +

) +
scale_y_continuous(limits = c(6, 28), breaks = seq(0, 30, 3)) +
annotate("text", x = 1992, y = 30, label = "(b)")

Detrended changes
Here we ran year-detrended analyses to demonstrate that year is not confounding the relationship between
body mass and temperature. We extracted the residuals of linear regressions between mass and year and

between temperature and year, and then ran a linear model with the residuals of body mass in relation to
the residuals of temperature.
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data_temp$temp_503_449_resid <- temp_lm$resid
ch_bioml5$weight_resid <- weight_lm$resid

ch_biom152 <- merge(
ch_biomlh,
data_temp[c(
"year",
"temp_503_449_resid"
)]

resid_qlml <- 1m(
weight_resid ~ temp_503_449_resid + I(temp_503_449_resid~2),

ch_biom152
)
knitr::kable(car: :Anova(resid_qlml),
caption =
"ANOVA Chi-square table", digits = 4
)

Table 4: ANOVA Chi-square table

Sum Sq Df F value Pr(>F)

temp_ 503_ 449 resid 612.2390 1 88.7625 0
I(temp_ 503_449 resid™2) 278.1285 1 40.3231 0
Residuals 38846.6790 5632 NA NA

eff_data <- data.frame(effects::effect("temp_503_449 resid",
resid_qlmil,
partial.residuals = TRUE

))

plot_resid_qlml <- ggplot(eff_data, aes(x = temp_503_449_resid, y = fit)) +
geom_line(linewidth = 0.3) +
geom_ribbon (
data = eff_data, aes(ymin = lower, ymax = upper),
linetype = 0, alpha = 0.3
) +
xlab("Temperature (°C) residuals \n May 9 - July 2, birth year") +
ylab("Body mass (kg) residuals") +
theme (
legend.position = "none",
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),

axis.line = element_line(colour = "black")
)+
geom_point(data = ch_bioml152, aes(x = temp_503_449_resid, y = weight_resid), size = 1, shape = 16,
scale_y_continuous(limits = c(-10, 15), breaks = seq(-10, 15, 5)) +
scale_x_continuous(limits = c(-2, 3.5)) +
annotate("text", x = -2, y = 15, label = "(c)")
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Figure

cowplot: :plot_grid(
plot_yr_temp, plot_yr_bm, plot_resid_qglml,
ncol = 1, align = "v"

Supplementary Material 3

Analyses with the minimum and maximum temperature, same base model as in Supplementary Material 2

Climwin analysis
Finding the best windows
Using the function slidingwin allows to search for the best climatic window

ch_mass_sw <- slidingwin(

baseline = ch_basemod,

xvar = list(
temp_mean = clim$temp_mean_lugano,
temp_max = clim$temp_max_lugano,
temp_min = clim$temp_min_lugano

)

type = "absolute",

refday = c(24, 9),

range = c(662, 0),

stat = c("mean"),

cdate = clim$date_ymd,

bdate = ch_bioml5$date_ymd,

func = c("lin", "quad"),
cmissing = FALSE,
cinterval = "day"
)
save(ch_mass_sw, file = "climwin_mass_Olb_ril.rda")

Investigating the models

load(file = "climwin_mass_Ol1b_ril.rda")

Results: overall best models

When considering mean, minimum or maximum temperature, the linear+quadratic term better explains the
variation in the data (deltaAICc has the lowest value), sorted by deltaAICc such that the best supported
model is on top.

To investigate any other tested hypothesis we can simply replace the number in the double square brackets
with the corresponding list number.
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Figure 2: Annual trend of (a) average temperature between May 9 and July 2 and (b) body mass of harvested
1.5-year-old Alpine chamois between 1992 and 2018, and (c) year-detrended relationship between body mass
and temperature. Detrended values in (c¢) are residuals from linear models in (a) and (b). Each dot is one
observation (darker dots representing a higher number of observations in (b)); fitted lines are shown with
95% confidence intervals (shaded areas).
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ch_mass_sw$combos %>} arrange(DeltaAICc)

##  response climate type stat func DeltaAICc WindowOpen WindowClose
## 6 weight temp_min absolute mean quad -346.32 493 451
## 5 weight temp_max absolute mean quad -329.94 522 440
## 4 weight temp_mean absolute mean quad -325.33 503 449
## 2 weight temp_max absolute mean 1lin -264.74 93 78
## 3 weight temp_min absolute mean 1lin  -263.30 492 490
## 1  weight temp_mean absolute mean 1lin  -262.02 93 78

Maximum temperature

Dates of this window (as if compared to year of harvest 2018)

as.Date("2018/09/24", format "5Y/Jm/%d") - ch_mass_sw$combos$WindowOpen [[5]]

## [1] "2017-04-20"

as.Date("2018/09/24", format

"%Y/%m/%d") - ch_mass_sw$combos$WindowClose[[5]]

## [1] "2017-07-11"

The maximum temperature has a wider window (earlier Open date and later Close date) compared to the
mean temperature, but the window overlaps.

windows plot

It’s possible to extract the time windows of all the best supported models (i.e. multi-model inference). This
panel shows the opening and closing points of the time windows that were best supported by the data, here
those models that made up 95% model confidence set.

plotwin(ch_mass_sw[[5]]$Dataset)
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plotdelta(dataset = ch_mass_sw[[5]]$Dataset, arrow = TRUE)
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Interpretation: Warmer areas shows values with the lowest deltaAICc (i.e. “best models”). As explained
by van de Pol et al., 2016, these deltaAICc landscapes of the different time windows shows multiple peaks
(red areas) instead of a clear single peak. This can indicate the presence of multiple (e.g. possibly both long-
and short-lag) weather signals within the same weather variable, but it can also occur due to collinearity or
chance.

The evidence for multiple signals can be therefore investigated by adding the best supported of the weather
windows to the baseline model, and re-fitting all the different time windows again: this tests whether there is
still strong model support for the second best (e.g. short-lag) weather window once the other best supported
(e.g. long-lag) weather window has been accounted for in the baseline model (here in the Step 2).

Best model summary

summary of the best model:

summary (ch_mass_sw[[5]]$BestModel)

##

## Call:

## 1lm(formula = yvar ~ sex + elevation_sc + climate + I(climate”2),
#t data = modeldat)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.089 -1.803 0.037 1.744 11.889

##

## Coefficients:

#t Estimate Std. Error t value Pr(>|t])

## (Intercept) 137.42273 8.59970 15.980 < 2e-16 ***

## sexm 0.53317 0.06941 7.682 1.84e-14 **x

## elevation_sc 0.49317 0.03447 14.308 < 2e-16 **x

## climate -10.21186 0.73323 -13.927 < 2e-16 **x

## I(climate™2) 0.20983 0.01560 13.451 < 2e-16 **x

## ——-

## Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 2.584 on 5630 degrees of freedom
## Multiple R-squared: 0.09802, Adjusted R-squared: 0.09738
## F-statistic: 153 on 4 and 5630 DF, p-value: < 2.2e-16
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plot
ch_biom15$clim_temporary <- ch_mass_sw[[5]]$BestModelData$climate

ch_mod_temporary <- 1lm(
weight ~
sex + elevation_sc + clim_temporary + I(clim_temporary~2),
data = ch_biomlb

eff_data <- data.frame(effects::effect("clim_temporary",
ch_mod_temporary,
partial.residuals = T

)

ggplot(eff_data, aes(x = clim_temporary, y = fit)) +
geom_line(linewidth = 0.3) +
geom_ribbon (
data = eff_data, aes(ymin = lower, ymax = upper),
linetype = 0, alpha = 0.3

)+
xlab("Maximum temperature (°C) \n April 20 - July 11, birth year") +
theme (
legend.position = "none",
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black")
)+

geom_point(
data = ch_bioml5,
aes(x = clim_temporary, y = weight),
size = 1, shape = 16, alpha = 0.1
) +
ylab("Body mass (kg)") +
scale_y_continuous(limits
scale_x_continuous(limits

c(5, 28), breaks = seq(0, 35, 3)) +
c(20.5, 26.5), breaks = seq(16.5, 28.5, 1))

Body mass (kg)

12

205 215 225 235 245 255 26.5
Maximum temperature (°C)
April 20 = July 11, birth year
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Minimum temperature

Dates of this window (as if compared to year of harvest 2018)

as.Date("2018/09/24", format = "%Y/%m/%d") - ch_mass_sw$combos$WindowOpen[[6]]

## [1] "2017-05-19"

as.Date("2018/09/24", format = "7Y/%m/%d") - ch_mass_sw$combos$WindowClose[[6]]

## [1] "2017-06-30"

The maximum temperature has a narrower window (laterer Open date and earlier Close date) compared to
the mean temperature, but the window overlaps.

windows plot

It’s possible to extract the time windows of all the best supported models (i.e. multi-model inference). This
panel shows the opening and closing points of the time windows that were best supported by the data, here
those models that made up 95% model confidence set.

plotwin(ch_mass_sw[[6]]$Dataset)
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plotdelta(dataset = ch_mass_sw[[6]]$Dataset, arrow = TRUE)
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Interpretation: Warmer areas shows values with the lowest deltaAICc (i.e. “best models”). As explained
by van de Pol et al., 2016, these deltaAICc landscapes of the different time windows shows multiple peaks
(red areas) instead of a clear single peak. This can indicate the presence of multiple (e.g. possibly both long-
and short-lag) weather signals within the same weather variable, but it can also occur due to collinearity or
chance.

The evidence for multiple signals can be therefore investigated by adding the best supported of the weather
windows to the baseline model, and re-fitting all the different time windows again: this tests whether there is
still strong model support for the second best (e.g. short-lag) weather window once the other best supported
(e.g. long-lag) weather window has been accounted for in the baseline model (here in the Step 2).

Best model summary

summary of the best model:

summary (ch_mass_sw[[6]]$BestModel)

##

## Call:

## 1m(formula = yvar ~ sex + elevation_sc + climate + I(climate”2),
#it data = modeldat)

##

## Residuals:

#i Min 1Q Median 3Q Max

## -7.9263 -1.8179 -0.0008 1.7591 12.4550

##

## Coefficients:

#it Estimate Std. Error t value Pr(>[tl)

## (Intercept) 72.63273 3.81258 19.051 < 2e-16 ***

## sexm 0.52203 0.06932  7.531 5.83e-14 *xx*x

## elevation_sc 0.48562 0.03441 14.112 < 2e-16 **x

## climate -6.88972 0.46590 -14.788 < 2e-16 ***

## I(climate™2) 0.19943 0.01417 14.076 < 2e-16 ***

## ——

## Signif. codes: O 'sxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 2.581 on 5630 degrees of freedom
## Multiple R-squared: 0.1006, Adjusted R-squared: 0.1

## F-statistic: 157.5 on 4 and 5630 DF, p-value: < 2.2e-16

plot
ch_biom15$clim_temporary <- ch_mass_sw[[6]]$BestModelData$climate

ch_mod_temporary <- 1lm(
weight ~
sex + elevation_sc + clim_temporary + I(clim_temporary~2),
data = ch_biomlb

eff_data <- data.frame(effects::effect("clim_temporary",
ch_mod_temporary,
partial.residuals = T

))
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ggplot(eff_data, aes(x = clim_temporary, y = fit)) +
geom_line(linewidth = 0.3) +
geom_ribbon (
data = eff_data, aes(ymin = lower, ymax = upper),
linetype = 0, alpha = 0.3

) +
xlab("Minimum temperature (°C) \n May 19 - June 30, birth year") +
theme (

legend.position = "none",

panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black")
) +
geom_point(
data = ch_bioml5,
aes(x = clim_temporary, y = weight),
size = 1, shape = 16, alpha = 0.1
) +
ylab("Body mass (kg)") +
scale_y_continuous(limits = c(5, 28), breaks = seq(0, 35, 3)) +
scale_x_continuous(limits c(13.5, 19.5), breaks = seq(13.5, 28.5, 1))
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