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Bulimia nervosa; Bulimia nervosa has been associated with a dysregulated catecholamine system. Nevertheless,
Qatecholamine deple- the influence of this dysregulation on bulimic symptoms, on neural activity, and on the course of
tion; the illness is not clear yet. An instructive paradigm for directly investigating the relationship
Alpha-methyl- between catecholaminergic functioning and bulimia nervosa has involved the behavioral and

paratyrosine;
Relapse;

Arterial spin labeling;
Cerebral blood flow

neural responses to experimental catecholamine depletion. The purpose of this study was to
examine the neural substrate of catecholaminergic dysfunction in bulimia nervosa and its
relationship to relapse. In a randomized, double-blind and crossover study design, catechola-
mine depletion was achieved by using the oral administration of alpha-methyl-paratyrosine
(AMPT) over 24 h in 18 remitted bulimic (rBN) and 22 healthy (HC) female participants. Cerebral
blood flow (CBF) was measured using a pseudo continuous arterial spin labeling (pCASL)
sequence. In a follow-up telephone interview, bulimic relapse was assessed. Following AMPT,
rBN participants revealed an increased vigor reduction and CBF decreases in the pallidum and
posterior midcingulate cortex (pMCC) relative to HC participants showing no CBF changes in
these regions. These results indicated that the pallidum and the pMCC are the functional neural
correlates of the dysregulated catecholamine system in bulimia nervosa. Bulimic relapse was
associated with increased depressive symptoms and CBF reduction in the hippocampus/
parahippocampal gyrus following catecholamine depletion. AMPT-induced increased CBF in
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this region predicted staying in remission. These findings demonstrated the importance of
depressive symptoms and the stress system in the course of bulimia nervosa.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Bulimia nervosa (BN) is a severe psychiatric disorder defined
by recurrent binge eating episodes accompanied by inap-
propriate compensatory behavior like purging or excessive
exercise. Understanding the pathophysiology of BN could guide
the development of new and improved treatments for this
disorder. Positron emission tomography (PET) and pharmaco-
logical challenge studies have implicated aberrant serotonin
signaling in BN (Bailer and Kaye, 2011; Kaye, 2008). PET
imaging revealed increased binding of the 5-HT;, receptor
tracer WAY100635 in ill and recovered BN (Kaye, 2008;
Tiihonen et al., 2004), whereas the binding of the 5-HTT
tracer 11C-McN5652 did not differ between recovered persons
with BN and control participants (Bailer et al., 2007).

Acute tryptophan depletion was followed by increased
sadness, body shape concerns, and subjective loss of control
of eating in remitted BN (Smith et al., 1999). Monoamine
systems interact in a reciprocal manner, such that aberrant
serotonin functioning suggests alterations in catecholamine
functioning in BN (Tremblay and Blier, 2006). Importantly,
abnormal serotonin and dopamine functioning might con-
tribute to different symptoms in BN, as demonstrated in
major depression (MDD) (Homan et al., 2015). Whereas
tryptophan depletion induced significantly more sadness,
hopelessness, and depressed mood, catecholamine deple-
tion induced lassitude, concentration difficulties, inactivity,
and somatic anxiety in subjects with remitted MDD (Homan
et al., 2015). Indeed, a central role has been proposed for
the dopamine system in eating disorders (Frank, 2016): BN is
related to a desensitized, and anorexia nervosa (AN) to a
sensitized dopaminergic system (Frank, 2013). This thesis is
supported by the finding that individuals with BN displayed a
reduced activation of the ventral striatum and insula after
unexpected delivery of a sucrose solution while participants
with AN revealed increased activation in these regions
(Frank et al., 2012, 2011). Further evidence for the
implication of dopamine in the psychopathology of BN stems
from the finding that higher frequency of binge eating is
related to lower concentrations of the dopamine metabolite
homovanillic acid in the cerebral spinal fluid (Jimerson
et al., 1992). An experimental pharmacological challenge
study with methylphenidate measuring the binding poten-
tial of the dopamine type 2 (D,) receptor with PET revealed
reduced dopamine reactivity in the striatum in individuals
with BN (Broft et al., 2012), indicating a deficient dopamine
activity, as suggested by Frank (2016). Importantly, experi-
mental catecholamine depletion induced mild eating dis-
order symptoms, mild depressive symptoms and reward
learning deficits in fully remitted bulimia nervosa (rBN)
(Grob et al., 2012, 2015). These findings provide causative
evidence for the exacerbating action of reduced dopamine
activity on psychiatric symptoms linked to BN. Nevertheless,

studies relating the behavioral effects of catecholamine
depletion to measures of brain functioning are still missing.
Therefore, in the present study, we focused on the func-
tional neuroanatomical role of the dysfunctional dopamine
system in BN and on its impact on relapse.

Based on our previous findings (Grob et al., 2012, 2015;
Homan et al., 2015), we hypothesized that catecholamine
depletion will induce lassitude, inactivity, mood and eating
disorder symptoms in rBN participants and that this induc-
tion will be associated with reduced CBF in basal ganglia
and insula in rBN relative to healthy control (HC) partici-
pants. In addition, we assumed that the dopamine-related
dysfunction revealed by catecholamine depletion will be
associated with later relapses in rBN participants.

By using a pseudo-continuous arterial spin labeled (pCASL)
perfusion functional magnetic resonance imaging (fMRI) we
aimed to examine the influence of catecholamine depletion on
resting brain cerebral blood flow (CBF) in rBN and HC partici-
pants. This method provides a direct and absolute quantifica-
tion of CBF, representing neural activity indirectly through the
binding between blood flow and neural activity (Detre et al.,
2012; Wang et al., 2011). Arterial spin labeling (ASL) fMRI
methods are sensitive to assess different conditions of psycho-
logical stress (Wang et al., 2005). Moreover, pharmacological
manipulation of the central dopamine system was found to
influence CBF in dopamine-rich brain regions: A single dose of
haloperidol was reported to increase CBF in the striatum,
midcingulate cortex, and motor cortex, and decease CBF in
the inferior temporal gyrus in healthy individuals (Handley
et al., 2013). In addition, metoclopramide, a dopamine D,
receptor antagonist, increased CBF in the pallidum, putamen,
and thalamus and decreased CBF in the insula and anterior
temporal lobes (Fernandez-Seara et al., 2011). For investigating
our hypotheses, we analyzed the perfusion imaging data using a
region of interest (ROI) approach to assess specifically the
effect of catecholamine depletion in the basal ganglia and
insula. We furthermore conducted a voxel-wise analysis, as we
may assume that cathecolamine depletion has a high likelihood
to induce CBF alterations in brain regions beyond these ROIs.

2. Experimental procedures
2.1. Participants

Eighteen female participants in remission from BN (rBN), and 22
female healthy volunteers (HC) with no history of any psychiatric
disorder and no major psychiatric condition in first-degree relatives
participated in this study. We included only females in the study
because previous studies had reported a higher prevalence of BN in
women and had described gender differences in the pathogenesis of
BN (Hoek and Hoeken, 2003; Hudson et al., 2007; Nagl et al., 2016;
Weltzin et al., 2005). All rBN participants had previously met the DSM-
IV criteria for BN, and had been in remission without any binge eating
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Table 1  Characteristics and clinical ratings at the screening.

Characteristics/clinical ratings HC participants  rBN participants T-statistic p-value

Age, mean +SD, years 271 + 9.2 28.1 + 8.1 T37.8 = -0.36 p =0.73

range, years 20-53 20-49

Years of education, mean +SD, years 15.1 + 2.3 15.3 + 2.7 T334 =-0.23 p =0.83

Body mass index (BMI), mean4+SD, kg/m?, 24.2 + 3.2 21.6 + 2.2 T36.9 = 2.91 p < 0.01

range, kg/m? 19.3-32.2 18.4-27.6

Age at onset of BN, mean+SD, years, NA 17.9 + 3.5

range, years 12-29

Time in remission from BN, mean +SD, months, NA 44.2 + 46.1

range, months 4-146

Major depression during or after BN, n, NA 11

Time in remission, mean+SD, months, 53.2 + 65.7

range, months 6-228

Mild to moderate anorectic symptoms preceding BN, n, NA 7

Time in remission, mean+SD, months, 87.4 + 68.1

range, months 48-240

Previous psychoactive medication (SSRI, SNRI, TCA), n NA 7

Time medication free, mean+SD, months, 51.0 £ 41.2

range, months 10-112

EDE-Q global score - past (4 weeks during acute phase  NA 4.20 + 1.00

with most severe bulimic symptoms), mean+SD, scores

EDE-Q global score - screening (4 weeks before screen- 0.57 + 0.49 1.11 + 0.82 Tre.4 = -2.46 p <0.05
ing), mean4SD, scores

MADRS, mean+SD, scores 1.41 + 2.20 3.00 + 3.77 Tre.1 = -1.58 p=0.13

Clinical ratings and characteristics at the screening visit. Differences between the remitted bulimic (rBN) and healthy control (HC)
participants were calculated using two-tailed t-tests.

Abbreviations: BMI, body mass index; BN, bulimia nervosa; EDE-Q, Eating Disorder Examination-Questionnaire; HC, healthy control
participants; MADRS, Montgomery-Asberg Depression Rating Scale; n, number; NA, not applicable; rBN, remitted bulimic participants;
SD, standard deviation; SNRI, serotonin and norepinephrine reuptake inhibitors; SSRI, selective serotonin reuptake inhibitors; TCA,

tricyclic antidepressants.

and purging episode. Seven rBN participants reported mild to moder-
ate anorectic symptoms before the onset of the bulimic symptoms.
Major depressive episodes during or after their acute BN phases were
described by 11 rBN participants (10 and 3 rBN participants, respec-
tively). None of the participants fulfilled the diagnostic criteria for an
anxiety disorder in their past or of any psychiatric disorder during
study participation. Detailed information on the characteristics of
both diagnostic groups are presented in Table 1.

Al participants were recruited by advertisement in local news-
papers, and by announcements and e-mail at the University of Bern.
Before the participants provided written informed consent the study
had been fully explained to them. The protocol and the written
informed consent were approved by the local ethics committee of

Canton Bern, Switzerland, and were performed in accordance with the
principles of the Declaration of Helsinki. During the screening visit, all
participants underwent the Structural Clinical Interview for DSM-IV
(First et al., 2002), a physical examination, a diagnostic interview with
a psychiatrist, and filled out clinical questionnaires. These clinical scales
included the Eating Disorder Examination-Questionnaire (EDE-Q)
(Hilbert and Tuschen-Caffier, 2006), a self-report questionnaire measur-
ing cognitive and behavioral features of eating disorders, and the
Montgomery-Asberg Depression Rating Scale (MADRS) (Schmidtke et al.,
1988), assessing depressive symptoms. Exclusion criteria for both groups
included current Axis | psychiatric disorder, a lifetime diagnosis of
psychosis, major medical or neurological illness, psychoactive medica-
tion exposure in the past 6 months, lifetime history of substance
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Figure 1 Time schedule of the experiment procedure. Drug administration at 4 time points in 24 h (0, 5, 10 and 24 h). Alpha-

methyl-paratyrosine (AMPT) was given in a body-weight adjusted dose, administrated at the 4 time points. During sham depletion,
the participants received 25 mg diphenhydramine at the first time point (0 h) and placebo at 5, 10 and 24 h after the first drug
administration. The functional and structural magnetic resonance (MR) imaging started 27 h after the first drug administration.
Blood samples were collected after MR imaging (29 h after first drug administration). The participants filled out clinical
questionnaires at 0, 24, 30, 54, 78 and 102 h after the first drug administration. Each session took 5 days.

dependency, pregnancy, suicidal ideations within the last 4 weeks
before and during study participation, and a history of suicide attempts.

In a follow-up telephone interview, we assessed bulimic relapse
defined as at least 1 binge eating or purging episode in rBN
participants. The interview took place with a latency varying
between 18 and 42 months after study participation.

2.2. Procedure

The whole procedure of the study included a screening visit, which
took place at the University Hospital of Psychiatry in Bern, and
2 identical experimental sessions, performed at the Inselspital,
University Hospital of Bern. The experimental sessions comprised
an MR imaging, blood sampling, and clinical ratings. During these
2 sessions, the participants received once catecholamine depletion
induced by alpha-methyl-paratyrosine (AMPT) and once sham deple-
tion, in a randomized order, using a double-blind, crossover study
design. We used a body-weight adjusted dose (40 mg/kg body
weight, to a maximum of 4 g) of AMPT, which was administered at
4 time points over 24 h (time schedule in Figure 1) to avoid any
adverse reactions. This weight-adjusted dose of AMPT was already
used in previous studies (Grob et al., 2015; Hasler et al., 2008).
These studies revealed that this dose of AMPTwas sufficient to induce
eating disorder and depressive symptoms in rBN and depressive
participants, respectively, without causing severe aversive reactions.
During sham depletion, the participants received 25 mg diphenhy-
dramine at the first and placebo at the remaining time points.
Diphenhydramine was chosen for sham depletion because it induces
similar sedation, but no symptoms compared to AMPT (Bremner
et al., 2003; Lam et al., 2001; Neumeister et al., 1998). To avoid any
crossover effects, we separated the 2 experimental sessions by at
least 7 days. On average, the second session took place 27.4 days
after the first session (SD =27.5, range =7-112 days). Possible
adverse reactions were assessed regularly at 6 time points
(Figure 1). Additionally in each session, the induced eating disorder
and depressive symptoms were examined using the MADRS and an
adapted version of the EDE-Q. To measure the response to AMPT the
time frame of the EDE-Q was set to past 12 h and a visual analog
scale with a length of 60 mm was used for answering each question
instead of a seven-point rating scale. Further, the subscales vigor and
fatigue of the Profile of Mood States (POMS) (McNair et al., 1981)
were used to assess the reduction of activity and increase of lassitude
following AMPT as reported in a previous study (Homan et al., 2015).
Blood samples were taken in each session to measure serum prolactin
levels as a proxy of the depth of catecholamine depletion. A
comparison study on the effect of AMPT administered over 2 different
intake durations revealed that only after the longer challenge session
over 24h the striatal dopamine D, receptor binding potential
increased (Boot et al., 2008).

2.3. MR imaging

In each session, functional and anatomical MR images were acquired
on a 3 T Siemens Magnetom Trio Scanner (Erlangen, Germany) with a
12-channel regular head coil. For the measurement of the cerebral
blood flow (CBF), a pseudo continuous arterial spin labeling (pCASL)
sequence (Dai et al., 2008; Wu et al., 2007) with the following
parameter was used: repetition time (TR) = 4000 ms, echo time
(TE) = 18ms, field of view (FoV) = 230 mm?, voxel size =
3.6 x 1.8 x 6.0 mm?, balanced labeling with mean Gz of 0.6 mT/m
and 60 Hanning window-shaped RF pulses (RF duration 600 ps with
900 ps gap, flip angle (FA) = 25°, bandwidth = 752 Hz/pixel). After
the labeling (duration = 1720 ms), a delay of 1500 ms was applied
and the isocenter of the readout slice was set 90 mm above the
labeling plane. Sixteen ascending slices were acquired during each of
the 100 images (50 pairs of interleaved measured labeled and control
images) and were oriented along the anterior-posterior commissure
(AC-PC) line. The total acquisition time was 7 min and 4s.

For anatomical reference, high-resolution T1-weighted anatomi-
cal images were acquired using a magnetization prepared rapid
gradient-echo (MP-RAGE) sequence (TR = 1480 ms, TE = 2.2 ms,
inversion time (Tl) = 900 ms, FA = 9°, 256 x 256 matrix size, FoV
= 256 mm?, 176 slices, and voxel size = 1x1x 1 mm°).

2.4. Analysis of the behavioral data and serum prolactin
level

The clinical ratings were analyzed with linear mixed effect models
using the “lmer” method of the “lme4” package (Bates et al.,
2015), and the “lmerTest” package (Kuznetsova et al., 2016),
providing p-values, in R (version 3.3.2) (R Core Team, 2016). Group
(rBN versus HC participants), drug conditions (AMPT versus sham
depletion), and time (6 time points) were included in the model as
fixed effects, and the random effect term modelled a random
intercept and slope for the drug conditions for each participant.
The statistical significance level was set at « =0.05. The serum
prolactin levels were analyzed accordingly. This analysis included
group and drug as fixed effects and a random effect term modelling
a random intercept for each participant.

2.5. CBF quantification

The pCASL time series and the structural images were analyzed
using Statistical Parametric Mapping (SPM8, Wellcome Trust Center
for Neuroimaging, University College London, http://www.fil.ion.
ucl.ac.uk/spm/). The pCASL time series first were spatially rea
ligned to correct for movement artifacts. The structural images
were coregistered to the mean image of the realigned pCASL times
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series and then segmented into gray matter, white matter and
cerebrospinal fluid using SPM routines. To obtain mean CBF maps in
absolute units of ml/100 g/min the realigned ASL images were
quantified by using the following equation implemented in an
in-house MATLAB (MATLAB and Statistics Toolbox Release 2012a,
The MathWorks, Inc., Natick, Massachusetts, United States) script
(Federspiel et al., 2006):

A-AM 1
CBF = (2 .a- MO . T’Ib) ' (e—ay/T‘b _ef(r+w)/T“,)

For the CBF quantification the difference between the control
images and labeled images (AM) is multiplied by the blood tissue
partition coefficient (1 = 0.9 g/ml) and divided by inversion efficacy
(a = 85%), the equilibrium magnetization images (M;) and the
double decay time for labeled blood in a 3.0 T MR scanner
(T1p = 1.65s). This division is multiplied with inverse exponential
functions including the post-labeling delay time (v =1.55s), the
decay time for labeled blood (T;,) and the labeling duration
(m =1.725).

After the CBF quantification, the mean CBF maps were spatially
normalized to Montreal Neurological Institute space and smoothed
using an 8 mm full width at half maximum Gaussian kernel using
SPM routines.

2.6. fMRI analysis

For region of interest (ROI) analyses, we extracted the mean CBF of
4 regions, the anteroventral striatum, putamen, pallidum, and insula,
separately for each participant and in each drug condition. The regions
were defined by the Wake Forest University (WFU) Pick Atlas Tool
(version 3.0.5) (Maldjian et al., 2003; Tzourio-Mazoyer et al., 2002).
The definition of the anteroventral striatum is based on the description
of this region of Drevets et al. (2001). The mask for the anteroventral
striatum includes the nucleus accumbens, and the anteroventral
caudate and putamen. The posterior border of the mask was defined
by the anterior commissure and the ventral tip of the frontal horn of the
lateral ventricle described the dorsal boundary. These mean CBF values
were analyzed with mixed effect models as described above. The
models included group, drug and laterality (right versus left hemi-
sphere) as fixed effects, and a random effect term modelling intercept
and slope for the drug conditions for each participant.

In addition to the ROI analyses, we conducted whole brain voxel-
wise analyses. For analyzing group differences under sham depletion,
we included the smoothed CBF maps assessed during sham depletion in
a second level two-sample t-test. To correct for systematic effects of
AMPT, the mean global CBF values following sham depletion were
entered as a covariate into the analysis. The mean global CBF values
were obtained by averaging the CBF in the gray matter separately for
each condition and participant. A voxel-level threshold of p < 0,001
(uncorrected) and a minimum cluster size of 17 voxels were deter-
mined for this analysis. The cluster size criterion was based on the
“expected voxels per cluster” threshold on the SPM output file. To
analyze group-by-drug interactions, the smoothed CBF maps were
entered into a further second level analysis using a flexible factorial
design with group as a between-subject, drug as a within-subject
factor, and a random factor for each subject. The mean CBF values
were included as a covariate in the analysis. A voxel-level threshold of
p < 0,001 (uncorrected) and a minimum cluster size of 15 voxels
according to the “expected voxels per cluster” threshold on the SPM
output file were determined for this analysis.

Additionally, we tested for associations between AMPT-induced
symptoms and neural activity. Hence, we included the CBF changes in
the ROIs and the clinical rating changes of all participants in a
Spearman’s rho rank correlation analyses by using the “rcorr” method
of the “Hmisc” package (Harrell, 2016) of R (R Core Team, 2016). The
within-session clinical rating changes were calculated by subtracting the
maximum deviation score at the time point when the peak of

catecholamine depletion is expected (24 or 30 h after first drug
administration) from the baseline in each session, as described in our
previous study (Grob et al., 2015). Then these clinical rating changes
following sham depletion were deducted from the rating changes
following AMPT administration. The CBF changes were obtained by
the subtraction of the mean CBF following sham depletion from the
AMPT-induced mean CBF in each ROIl. We additionally calculated a
voxel-wise multiple regression analyses involving the CBF changes in all
voxels and the induced within-session clinical rating changes. The CBF
changes in all voxels were calculated by subtracting the smoothed CBF
maps following sham depletion from the maps following AMPT admin-
istration. For this voxel-wise analysis, we used a voxel-level threshold of
p < 0,001 (uncorrected) and a minimum cluster size of 18 voxels
according to the “expected voxels per cluster” threshold on the SPM
output file.

As reported in the literature (Komatsu et al., 2010; Willeumier
et al., 2011), the body mass index (BMI), which is expected to differ
between BN and healthy individuals, may be related to CBF. To
check for a possible confounding between BMI and CBF in our study
we carried out several analyses. First, we tested whether including
BMI as an additional factor would explain more CBF variance in the
sham condition. For this purpose, the goodness of fit of our original
model was compared to the goodness of fit of an extended model
containing BMI as an additional factor in a voxel-wise manner in the
brain regions, where both groups differed in CBF under sham
treatment. The significance of the improvement of goodness of fit
was averaged for all voxels belonging to each cluster of significant
between-group differences. Second, in a similar manner, we
checked whether including BMI as an additional predictor would
better explain the variance in the effects of AMPT. Finally, we
calculated direct correlations of BMI with CBF in the sham condition
and with AMPT-induced CBF changes in each predefined ROls
separately, and in a whole-brain voxel-wise manner. For the latter,
a voxel-level threshold of p < 0,001 (uncorrected) and a minimum
cluster size of 25 and 18 voxels was determined for the sham
condition and the AMPT-induced CBF changes, respectively, based
on the “expected voxels per cluster” threshold on the SPM output
files. The analyses were carried out with the “lm” and “anova”
methods of the “stats” package, the “lmer” method of the “lme4”
package (Bates et al., 2015), and with the “rcorr” method of the
“Hmisc” package (Harrell, 2016) in R (R Core Team, 2016), and by
using SPM8 for the voxel-wise analyses.

To identify prognostic biomarkers for the course of BN, the rBN
participants were separated into 2 groups according to the results
of the follow-up telephone interview. A voxel-wise two-sample t-
test including the CBF changes in all voxels was calculated (voxel-
level threshold of p < 0,001 (uncorrected), minimum cluster size of
14 voxels as determined by the SPM output file).

3. Results
3.1. Behavioral ratings and serum prolactin level

3.1.1. Screening

In the screening visit, the participants filled out the EDE-Q
and were interviewed using the MADRS to examine residual
eating disorder and depressive symptoms (Table 1). RBN
participants scored higher on the EDE-Q global score mainly
due to residual exaggerated eating and body shape con-
cerns. The groups revealed no significant difference regard-
ing depressive symptoms.

3.1.2. Behavioral response to catecholamine depletion
In both sessions over all 6 time points, rBN participants
showed higher EDE-Q global scores than HC participants



638

S.V. Mueller et al.

Table 2

Behavioral response to catecholamine depletion.

HC participants

rBN participants

interaction
group-by-drug

Questionnaire sham depletion =~ AMPT sham depletion =~ AMPT Fi 38 p-value
EDE-Q baseline (Oh) 3.33 + 5.1 3.69 + 4.4 9.87 + 8.0 8.51 + 6.3

+ 24h -0.51 + 1.6 -0.46 + 0.8 +0.24 + 5.1 -0.59 + 3.2

+ 30h -0.29 + 2.1 -0.27 + 1.25 -1.95 + 4.7 +0.24 + 3.4 0.24 0.63
MADRS baseline (0h) 0.27 + 0.9 0.32 + 0.8 0.83 + 1.7 0.50 + 0.9

+ 24h +0.14 + 1.3 +0.55 + 1.1 +0.50 + 2.0 +1.50 + 1.7

+ 30h +0.27 + 1.4 +1.55 + 1.7 +0.78 + 1.9 +2.39 + 2.2 0.60 0.44
POMS - vigor baseline (Oh) 22.71 + 5.9 20.86 + 7.0 22.00 + 7.6 22.97 + 8.0

+ 24h -1.12 + 4.7 -2.73 + 4.9 -1.22 + 6.9 -9.53 + 7.7

+ 30h -1.26 + 6.9 -5.95 + 5.6 -2.39 + 6.7 -10.97 + 6.9 4.71 < 0.05
POMS - fatigue baseline (Oh) 4.64 + 4.9 7.27 + 7.1 6.22 + 5.5 5.28 + 4.2

+ 24h +0.95 + 6.7 +3.91 £ 9.4 -1.11 £ 5.6 +10.22 + 11.1

+ 30h +2.77 + 5.0 +7.36 + 7.1 +1.78 + 5.7 +11.79 + 10.3 5.40 < 0.05

Behavioral response to catecholamine depletion and sham depletion. Mean, standard deviation and the results of the group-by-drug

interaction are presented. Decreased scores from baseline at 24 or 30 h after the first medication intake are marked by ‘-¢, and

increases from baseline were indicated by ‘+’.

Abbreviations: AMPT, alpha-methyl-paratyrosine; EDE-Q, Eating Disorder Examination-Questionnaire; HC, healthy control participants;
MADRS, Montgomery-Asberg Depression Rating Scale; POMS, Profile of Mood States; rBN, remitted bulimic participants

(F1,38 =11.77, p<0.01), but no significant effect of drug
condition and no interaction was found. RBN participants
reported more depressive symptoms measured using the
MADRS than HC participants in both sessions (Fy 35 = 13.58,
p < 0,001). In POMS, AMPT induced fatigue (F; 33 =22.48,
p < 0.001), and reduced vigor (Fy 35 = 5.30, p < 0.05) in both
groups. Detailed behavioral responses to catecholamine deple-
tion are presented in Table 2.

We investigated the induced changes in POMS rating scales
24 and 30 h after the first AMPT and sham drug administration
in relation to its baseline in separate mixed model analyses, as
we have done in our previous study (Grob et al., 2015). These
analyses revealed that AMPT induced fatigue and reduced vigor
significantly more in rBN than in HC participants (group-by-
drug interaction: POMS vigor: F; 35 =4.71, p <0.05; POMS
fatigue: Fy 35 =5.40, p < 0.05).

The serum prolactin level was not available for both
condition in 1 rBN participant. A mixed effects model analysis
on the serum prolactin level revealed a significant main effect
for drug (sham depletion: mean =9.07+3.23; AMPT:
mean =49.2+12.03; F; 37 =436.02, p <0.001), but no sig-
nificant main effect for group (Fy 37 =0.53, p =0.47) or
interaction (F, 3; = 1.78, p = 0.19), suggesting that the depth
of catecholamine depletion did not differ between groups.

3.2. Imaging results

The mean global CBF values showed no difference between
the groups (Fy,33 =0.001, p =0.97) and drug conditions

(F1,38 = 1.13, p =0.30). There was no significant drug-by-
group interaction (F 33 = 0.004, p = 0.95).

3.2.1. Regions of interest
The 2 groups revealed no significant main effect on CBF in
any of the predefined ROIs (Table 3A). AMPT, however,
influenced the mean CBF in the pallidum significantly and
showed a trend towards a significant main effect (p = 0.06)
on the CBF in the putamen (Table 3A). Both effects revealed
an AMPT-induced reduction in CBF. In no other ROI, AMPT
showed a significant main effect on the CBF. A significant
drug-by-group interaction was found in 1 region, the
pallidum (Table 3A). While AMPT did not alter CBF in HC
participants, it led to reduced CBF in rBN participants in this
region.

No significant correlations between BMI and CBF were
found in any of the ROIs for the sham condition and for
AMPT-induced CBF alterations.

3.2.2. Voxel-wise analysis
A between-group comparison in the sham depletion condi-
tion revealed a reduced CBF in the rBN group in the left
rolandic operculum (MNI-coordinates: x =-56, y=0,
z = 10; peak-t-value: T3; =4.79; p < 0.001; kg = 35) and
insula (x =-40, y=10, z=-4; T37 =4.28; p < 0.001;
ke = 31) relative to HC participants.

Detailed results of the drug-by-group interaction analysis
are presented in Table 3B. We found drug-by-group inter-
actions of the CBF in the right posterior midcingulate cortex



Table 3  Neural response to catecholamine depletion

(A) Mean cerebral blood flow (CBF) and standard deviation in the regions of interest (ROIs).

Mean + SD interaction

HC participants rBN participants group drug group-by-drug
Region of interest Sham AMPT Sham AMPT Fi 38 p-value Fi 38 p-value Fi38 p-value
Left pallidum 33.2 + 7.7 341 + 7.6 37.6 + 9.3 30.9 + 8.4 < 0.01 0.94 5.60 < 0.05 5.60 < 0.05
Right pallidum 36.6 + 9.1 35.7 + 5.6 38.4 + 10.1 33.4 + 10.4
Left putamen 40.3 + 7.9 40.2 + 7.8 41.7 + 8.1 38.0 + 8.3 0.04 0.84 3.89 0.06 0.52 0.48
Right putamen 42.4 + 7.2 40.0 + 6.8 41.7 + 7.1 39.8 + 7.4
Left insula 47.0 + 8.9 45.5 + 8.4 44.3 + 8.3 45.6 + 6.4 0.11 0.75 0.37 0.55 0.50 0.49
Right insula 50.4 + 7.0 49.1 + 8.2 50.2 + 9.1 49.2 + 7.6
Left anteroventral striatum 39.1 + 9.1 38.2 + 7.7 41.8 + 7.9 39.2 + 9.6 0.96 0.34 0.23 0.64 0.10 0.76
Right anteroventral striatum 38.6 + 5.6 39.2 + 8.0 40.5 + 7.4 41.6 + 6.5
(B) Voxel-wise analysis of the group-by-drug interaction.

Mean + SD
MNI - coordinates HC participants rBN participants
No. of
Region BA Tz p-value voxels X v z Sham AMPT Sham AMPT
Group x drug condition interaction
Interaction: rBN participants: catecholamine (AMPT) > sham depletion,
HC participants: sham > catecholamine depletion (AMPT)

Left posterior superior temporal gyrus 42 4.43 < 0.001 28 -60 -26 8 54.5 + 11.1  46.7 + 10.5 49.5 + 6.1 55.5 + 14.5
Right medial frontal gyrus 10 4.17 < 0.001 26 10 62 4 50.9 + 9.3 42.8 + 109 44.3 + 13.1 47.7 + 13.1
Right posterior superior temporal gyrus 42 4.09 < 0.001 24 68 -18 6 48.2 + 10.1 41.1 +10.6 41.5 + 12.3 49.5 + 6.2
Left posterior middle temporal gyrus 22 4.08 < 0.001 28 -58 -44 8 55.5 + 10.1 49.6 + 9.7 49.5 + 9.0 55.9 + 12.7
Interaction: rBN participants: sham > catecholamine depletion (AMPT),
HC participants: catecholamine (AMPT) > sham depletion
Right posterior midcingulate cortex 24 4.40 < 0.001 41 6 -18 44 53.8 +12.4 55.7 +10.5 59.2 + 13.6 45.6 + 12.6

(pMCC)

(A) Mean and standard deviation of cerebral blood flow (CBF) in the four regions of interest (ROls), separately for each hemisphere. Results of the linear mixed model analyses are
presented. (B) Voxel-wise analysis of the smoothed CBF maps in a flexible factorial design; p < 0.001, uncorrected; minimum cluster size of 15 voxels. CBF mean and standard deviation
in the clusters are presented.

Abbreviations: AMPT, alpha-methyl-paratyrosine; BA, brodmann area; CBF, cerebral blood flow; HC, healthy control participants; MNI, Montreal Neurological Institute; No., Number; rBN,
remitted bulimic participants; ROIl, region of interest; SD, standard deviation; Sham, sham depletion.
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Table 4 Correlations between neural and behavioral effects of catecholamine depletion.

(A) Correlation analyses of the regions of interest (ROIs).

Behavioral rating Region of interest rho p-value
POMS vigor Right putamen 0.47 < 0.01
Left pallidum 0.55 < 0.001
POMS fatigue Left pallidum -0.47 < 0.01
(B) Voxel-wise correlation analyses.
MNI - coordinates
Behavioral rating Region BA Ts; p-value No. of voxels x 1% z
POMS vigor Right posterior midcingulate cortex (pMCC)* 24 5.47 < 0.05* 180 4 -12 36
MADRS Right hippocampus/parahippocampal gyrus 4.96 < 0.001 158 30 -34 -14
Left posterior middle temporal gyrus 21/22 4.12 < 0.001 37 -60 -46 0

Correlation analyses with the various regions of interest (ROIs) and voxel-wise multiple regression analyses including catecholamine
depletion-induced CBF differences and the induced within-session behavioral rating changes. (A) The Spearman’s rho rank correlation
was used to assess the correlations with the various ROIs: significant correlations (p < 0.05) were reported. (B) Multiple regression
analyses: significance threshold: p < 0.001, uncorrected; minimum cluster size of 23 voxels; * peak is significant ona p < 0.05 FWE-

corrected level.

Abbreviations: MADRS, Montgomery-Asberg Depression Rating Scale; No., Number; MNI, Montreal Neurological Institute; POMS, Profile

of Mood States; ROI, region of interest.

(pPMCC), bilateral in the posterior temporal cortex, and in
the right medial frontal gyrus. In the pMCC, CBF was
decreased following AMPT relative to sham depletion in
rBN, but remained unchanged in HC participants. In rBN
participants AMPT induced increased CBF and in HC parti-
cipants decreased CBF bilateral in the posterior temporal
cortex.

Including BMI as an additional factor did not significantly
improve the goodness of fit of the models for the sham
condition and the group-by-drug interaction. Moreover, we
found no significant correlations between BMI and CBF in the
sham condition. Higher BMI, however, was related to higher
AMPT-induced CBF reduction in the left rolandic operculum
(MNI-coordinates: x =-52, y=-6, z=8; peak-t-value:
Ts7 = 4.07; p < 0.001; kg = 33).

3.3. Relation between neural and behavioral
AMPT effects

3.3.1. Correlations between AMPT-induced changes in

symptoms and CBF

Across groups, the correlation analyses between AMPT-induced
behavioral rating changes and CBF alterations in the different
ROIs revealed that higher vigor reduction was associated with
a stronger CBF decrease in the right putamen and left
pallidum. The induced fatigue by AMPT correlated with CBF
decreases in the left pallidum. In no ROI, the induced
depressive symptoms correlated with CBF (Table 4A).

In a voxel-wise multiple regression analysis, AMPT-
induced depressive symptoms correlated negatively with
the induced CBF changes in the right hippocampus/para-
hippocampal gyrus and the left posterior middle temporal
gyrus. The AMPT-induced vigor reductions correlated with

CBF decreases in the right pMCC (p < 0.05 family-wise error
(FWE)-corrected) (Table 4B).

3.3.2. Follow-up assessment

The follow-up telephone interview revealed that 5 out of 16
rBN participants experienced relapse. Two participants
denied their participation in the follow-up interview. The
latency of the follow-up assessment varied between the
participants. The latency, however, was not different
between the participants reported a relapse and the parti-
cipants stayed in remission (T7o=1.23, p =0.26). The
following dopamine-related measures were associated with
later relapse: AMPT induced increases in depressive symp-
toms (T43.2 = -4.35, p < 0.001; Figure 2B and C), CBF reduc-
tion in the right hippocampus/parahippocampus gyrus (peak
t-value: Ty4 = 6.41; p < 0.001; Figure 2A,C and D) and CBF
reduction in the right inferior parietal lobe (MNI-coordinates:
x =58, y=-40, z=36; T4 =5.65; p<0.001; kg =31).
In addition, relapse was associated with shorter time in
remission (Ty2,7 =-3.09, p<0.01, reporting relapse:
mean = 12.8413.79 months; staying in remission:
mean = 63.18+50.03 months). Staying in remission was
associated with AMPT-induced increase in CBF in the hippo-
campus/parahippocampal gyrus (Figure 2A,C and D).

4. Discussion

This present study showed that AMPT reduced vigor, and that
this effect was stronger in remitted BN relative to healthy
individuals. This behavioral finding was paralleled by CBF
reduction in the pallidum and in the pMCC in rBN participants,
while healthy individuals revealed no CBF alterations in these
regions. In the posterior temporal cortex, the CBF changes
following AMPT differentiated between rBN and healthy
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Figure 2 Predicting bulimic relapse: remitted bulimic (rBN) participants reporting bulimic relapse in the follow-up assessment
revealed cerebral blood flow (CBF) reduction in the right hippocampus/parahippocampal gyrus and experienced increased
depressive symptoms following AMPT. AMPT-induced CBF increase in the right hippocampus/parahippocampal gyrus predicted
staying in remission. (A) AMPT-induced CBF changes in a cluster in the right hippocampus/parahippocampal gyrus. Separate bars
representing the mean and standard error (error bars) of the AMPT-induced CBF changes in the following 3 groups: healthy control
(HC, N =22), rBN participants reporting bulimic relapse (N =5), and rBN participants remaining in remission (N = 11). (B) AMPT-
induced depressive symptoms. Bars representing the mean and standard error (error bars) of the AMPT-induced depressive symptoms
separately for the 3 groups. (C) Scatter plot of the AMPT-induced CBF changes in the right hippocampus/parahippocampal gyrus
cluster and the induced depressive symptoms. (D) Voxel-wise two-sample t-test comparing rBN participants remaining in remission
and rBN participants reporting bulimic relapse after study participation: significant difference in the AMPT-induced CBF changes in a
cluster in the right hippocampus/parahippocampal gyrus (MNI-coordinates: x =26, y =-36, z =-4; cluster size: kg = 87).
Significance level: * p < 0.01, **p < 0.001, ***p < 0.0001.

individuals, showing increased and decreased CBF, respectively. parahippocampal gyrus were related to later bulimic relapse.
In addition, we found catecholamine-associated biomarkers for Reversely, AMPT-induced increase in CBF in the hippocampus/
BN relapse: higher AMPT-induced depressive symptoms and parahippocampal gyrus was associated with staying in remis-
AMPT-induced CBF reduction in the hippocampus/ sion, and appeared to reflect higher resiliency.
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Our finding of AMPT-induced vigor reduction, that was
more strongly pronounced in rBN than in HC participants, is
well in line with the addiction model-based dopamine
deficiency proposed for BN by Frank (2016). Addiction is
associated with a desensitized dopamine system (Volkow
et al., 2016). Drug withdrawal exacerbates this dopamine
deficiency (Bailey et al., 2001) and is associated with drug
craving, anhedonia, dysphoria, and sleep disturbances.
Frank's (2016) theory yields similar predictions on the
behavioral and neural level that have been supported by
previous research. In healthy women, recurrent dieting and
eating without restrictions periods over 4 weeks led to
worse mood, increased fatigue, and enhanced caloric intake
(Laessle et al., 1996). In a longitudinal study over three
years in young female college students, vigor was found to
be predictive for bulimic symptoms: in the first assessment
in this study an increased vigor predicted bulimic symptoms
(Cooley and Toray, 2001b). After three years, however,
reduced vigor was associated with bulimic symptoms
(Cooley and Toray, 2001a), probably induced by the desen-
sitized dopamine system. Our current finding of AMPT-
induced vigor reduction yields further support for the theory
of Frank (2016).

Frank proposed in his model of eating disorders that the
desensitized dopamine system in BN needs stimulation
through binge eating behavior (Frank, 2016). The propensity
for binge eating may be further exacerbated by experi-
mental catecholamine depletion. Indeed, our previous study
showed that AMPT increased eating disorder symptoms
measured by the EDE-Q in remitted BN (Grob et al.,
2015). In the present study we did not observe this effect,
probably due to the important impact of the environment
on eating behavior (Frank, 2016). The present study was
conducted in an uncontrolled environment, whereas in our
previous study, the administration of AMPT and the experi-
ments were performed in a controlled environment without
food cues and with regular, standardized meals (Grob et al.,
2015). After leaving the controlled environment, rBN parti-
cipants reported more eating disorder symptoms (Grob
et al., 2015). Hence, we may not have observed an effect
of AMPT on eating disorder symptoms in the rBN participants
included in this study, because the effect of AMPT was
overridden by environmental influences.

Based on our CBF measures, we found rBN-related AMPT-
induced brain activity changes in the pallidum and the
pPMCC, which is consistent with Frank's model (Frank, 2016):
reduced catecholamine neurotransmission led to CBF reduc-
tion in these regions in rBN participants. The pallidum is
part of the brain reward system found to be desensitized in
BN (Frank et al., 2011). HC participants in our study
revealed no significant AMPT-induced CBF alterations in
the pallidum and pMCC in contrast to the rBN participants.
This is in line with previous pharmacological challenge
studies using AMPT also revealing different effects of AMPT
in control and experimental participants (Abi-Dargham
et al., 2000; Hasler et al., 2008). Since rBN and HC
participants, however, showed the same increase in prolac-
tin levels, a lack of catecholamine depletion in HC partici-
pants is no possible explanation for these findings. The lack
of response to catecholamine depletion in these regions
suggests that the catecholaminergic system in healthy
participants had enough reserve to compensate for the

partial catecholamine depletion by our low dose AMPT
challenge.

Including BMI as an additional factor did not significantly
improve the goodness of fit of the models for the sham
condition and the group-by-drug interaction. Furthermore,
CBF in the sham condition and AMPT-induced CBF altera-
tions were not significantly related to BMI in the predefined
ROIs. Moreover, the voxel-wise analysis revealed no sig-
nificant association between BMI and CBF in the sham
condition. The correlation between AMPT-induced CBF
alterations and BMI, however, revealed a significant asso-
ciation in the left rolandic operculum: higher BMI was
related to AMPT-induced CBF reduction in the left rolandic
operculum. This finding might represent a floor effect,
because a between-group comparison in the sham condi-
tion revealed a reduced CBF in the rBN group in the left
rolandic operculum and the insula. These results, however,
might also be relevant for the pathophysiology of BN in
view of the report that the administration of milk shakes
with varying fat and sugar contents in lean adolescents
leads to increased activation of the rolandic operculum
and the insula with increasing sugar content (Stice et al.,
2013). Our results suggest that a neural mechanism reg-
ulating sugar intake that involves CBF in these regions is
impaired in rBN individuals.

Contrary to our expectations, there was no AMPT effect
on CBF in the anteroventral striatum and only a statistical
trend for a decreased CBF in the putamen. In previous
catecholamine challenge studies, glucose metabolism was
altered following AMPT in these regions (Bremner et al.,
2003; Hasler et al., 2008; Savitz et al., 2013). The glucose
metabolism was reported to be increased following AMPT in
the ventral striatum with the peak located in the putamen
in both remitted MDD and healthy individuals (Hasler et al.,
2008) and in participants with low and high risk for mood
disorders (Savitz et al., 2013). Another study, however,
associated metabolism decrease in the putamen with
AMPT-induced relapse of depressive symptoms in remitted
MDD, whereas increased metabolism following AMPT was
found in remitted MDD participants experiencing no relapse
(Bremner et al., 2003). These findings suggest that catecho-
lamine deficiency may have a different impact on MDD and
BN. The potentially different pathogenesis of “primary”
MDD and MDD comorbid with BN may have important clinical
implications.

Importantly, our study yields insights into the relation
between catecholamine-driven brain activity and behavior
in BN. Berridge, et al., described that the pallidum is
involved in “wanting” for foods (Berridge et al., 2010). In
an animal study, dopamine transporter (DAT)-knockdown
mice having elevated extracellular dopamine revealed
increased “wanting” for food-intake and vigorous behavior
(Pecina et al., 2003). In our study, AMPT-induced CBF
reduction in the pallidum was associated with vigor
decrease. These findings in remitted BN revealed that the
anhedonic behavioral response to catecholamine deficiency
paralleled by reduced CBF in the pallidum might be involved
in the dysfunctional eating behavior in BN.

Besides an altered brain reward system (Frank, 2013),
eating disorders were also associated with emotion regula-
tion difficulties (Harrison et al., 2010). Frank assumed that
negative emotions and stress contribute to the
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development and maintenance of eating disorder symp-
toms (Frank, 2016). The midcingulate gyrus (MCC) was
described to be involved in the integration of negative
emotions and motoric responses (Pereira et al., 2010).
Different monetary incentives and therefore different
states of vigor requiring motor responses activated the
MCC differently (Pessiglione et al., 2007). In our study, the
AMPT-induced vigor reduction was associated with induced
CBF decrease in the pMCC. In contrast, AMPT increased
glucose metabolism in the pMCC in remitted MDD, with
higher induced glucose metabolism was associated with
greater AMPT-induced reduction of hedonic capacity
(Hasler et al., 2008). This finding points to important
differences in the pathogenesis of depressive states in BN
and MDD. Moreover, in our study, remitted BN was asso-
ciated with increased CBF following AMPT in the posterior
temporal cortex, which is involved in processing of social
and emotional stimuli (Scharpf et al., 2010). These
changes were negatively correlated with induced depres-
sive symptoms measured by the MADRS, whereas in
remitted MDD, AMPT-induced metabolism increase in this
region revealed a positive association with depressive
symptoms (Hasler et al., 2008). Taken together, depressive
symptoms in MDD appear to be associated with catechola-
mine deficiency-related increase in neural activity in the
emotional and social brain, whereas depression in BN is
rather related to a catecholamine deficiency-induced
decrease in neural activity.

Depressive syndromes in BN were associated with an
unfavorable course with high chronicity (Keski-Rahkonen
et al., 2013). Consistent with this finding from epidemiol-
ogy, we demonstrated that increased AMPT-induced depres-
sive symptoms were related to later bulimic relapse. This
relationship was paralleled by reduced CBF in the hippo-
campus/parahippocampal gyrus, whereas increased CBF in
this region was coupled with remaining in remission. These
results are in agreement with a finding in MDD, revealing
that the return of depressive symptoms following AMPT in
remission was associated with a decreased metabolism in
the hippocampus and other cortical regions, whereas
increased metabolism in these brain regions were experi-
enced by individuals reporting no relapse (Bremner et al.,
2003). In an animal study, maternal separation and fasting/
refeeding cycles led to binge eating behavior in rats (Ryu
et al., 2008) resulting in reduced depression-like behavior
and increased dopamine concentration in the hippocampus
(Jahng et al., 2012). The anti-depressive and dopamine-
elevating effect of binge eating might be responsible for the
maintenance of this behavior. Anticipation and receive of
food in a negative mood state was reported to result in
increased activation in the parahippocampal gyrus and
pallidum in emotional eaters (Bohon et al., 2009). Frank
proposed in his model that stressful life events might result
in a dysfunctional dopamine system in BN (Frank, 2016).
Therefore, stressful events, dopamine deficiency, and a
dysfunctional hippocampus reactivity might act in concert
to trigger binge eating, to reduce distress, negative emo-
tions and anhedonia.

Besides an AMPT-induced increase in depressive symptoms
and CBF reductions in the hippocampus/parahippocampal
gyrus, relapse was also associated with a shorter time in
remission in our study. On the contrary, in rBN that remained

in remission, AMPT induced an increase in hippocampal/para-
hippocampal CBF, and they reported a longer duration of
remission prior to the study. This complex of findings on the
behavioral and neural level has important implications, suggest-
ing that catecholamine-related hippocampus/parahippocampal
gyrus CBF is a biomarker of susceptibility and resilience to BN
relapse. This notion is consistent with reports on the relation
between hippocampus integrity in food intake. Kanoski and
Davidson (2011) claimed that the intake of high caloric food
disrupts a neural inhibitory mechanism involving the hippocam-
pus that controls food intake. In accordance with this theory,
obese and previously obese individuals showed a reduced CBF in
the hippocampus after food consumption to satiation whereas
lean individuals revealed an increased CBF in this region
(DelParigi et al., 2003). Furthermore, longitudinal data showed
that higher consumption of unhealthy “Western” food was
associated with smaller hippocampal volume (Jacka et al.,
2015). Taken together with these findings, our results expand
Frank's model of eating disorders (Frank, 2016) by showing a
catecholamine-related mechanism involving the hippocampus/
parahippocampal gyrus that contributes to staying in remission
or being susceptible to BN relapse.

Two limitation of this study merit comment. First, the
large variation in the latency of the follow-up assessment
might have had an influence on the group assignment of
the rBN participants: we are not able to rule out that the
participants who experienced no relapse by the time of
the follow-up assessment will have a binge eating or
purging episode in the future. Nonetheless, the latency
of the follow-up assessment was at least 18 months. An
earlier study showed that the risk of relapse was highest
within the first 6-7 months (Richard et al., 2005). In
addition, the latency of the follow-up assessments was
not significant different between the rBN participants
experienced a relapse and the participants staying in
remission. Therefore, we concluded that the latency had,
if at all, only a minor impact on the group assignment in
the follow-up assessment. Second, the duration between
the two experimental sessions differed largely between
the participants and therefore, might has had an effect on
our results. Nonetheless, there was no significant differ-
ence in the duration between rBN and HC participants,
and between the rBN participants experienced a relapse
and the participants staying in remission. Hence, we
assumed that the potential effect of differing durations
on our findings is minor.

This study suggests that catecholamine depletion-induced
reductions in CBF in the pallidum and the pMCC in remitted
BN are the functional neuroanatomical correlates of a
desensitized dopamine system in BN, as Frank proposed in
his model of eating disorders (Frank, 2016). Most impor-
tantly, we were able to extend this model by revealing that
later bulimic relapse was associated with catecholamine
depletion-induced depressive symptoms paralleled by a
decrease in hippocampal CBF, emphasizing the importance
of depressive symptoms and the stress system in the course
of BN. Our findings encourage clinical studies on the effect
of interpersonal stress management in combination with
drugs that enhance catecholaminergic neurotransmission on
the course of BN. In addition, treatment of depression,
including pharmacotherapy with selective serotonin, selec-
tive norepinephrine or serotonin-norepinephrine reuptake
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inhibitors, may not be overlooked in order to facilitate
treatment or prevent relapse of BN (Flament et al., 2012).
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