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A B S T R A C T

In most Swiss municipalities, a curbside system consisting of heavy trucks stopping at almost each household
is used for non-recoverable waste collection. Due to the many stops of the trucks, this strategy causes high
fuel consumption, emissions and noise. These effects can be alleviated by reducing the number of stops
performed by the collection vehicles. One possibility consists of selecting a subset of candidate locations that
are scattered throughout the municipality to place collection points which are used by residents to bring their
waste. Provided that the underlying road network is available and that the collection vehicle has a known
capacity, we refer to this problem as the capacitated multi-vehicle covering tour problem on a road network
(C𝑚-CTP-R). We propose a road-network-based mixed-integer linear programming (MILP) formulation that
exploits the sparsity of the network. We compare it against the MILP formulation that results from assuming
a customer-based graph, which is typically used in vehicle routing problems (VRP). To solve large instances,
we develop a two-phased heuristic approach that addresses the two subproblems the C𝑚-CTP-R is built on: a
set covering problem to select the locations and a split-delivery VRP to determine the tours. Computational
experiments on instances derived from real-life data show that the road-network-based formulation is better
suited. Furthermore, the proposed heuristic provides good solutions with optimality gaps below 1.7% and finds
better solutions for most of the instances that the exact method is not able to solve within a given time limit.
1. Introduction

Waste collection is an important process in waste management. It
mainly involves the transportation of waste from collection sites to dis-
posal facilities, and represents one of the primary and most expensive
logistical activities performed by any municipality. Indeed, collection
costs of municipal solid waste often account for up to 70% of the
total waste management budget (Tavares et al., 2009). The design and
operation of a waste collection system is a difficult task, since it entails
multiple distinguishing features, such as the types of collected waste
(e.g., dry recyclable, wet food or residual), the collection frequency
(e.g., weekly, bi-weekly or on-demand), and the pricing (e.g., weight- or
volume-based). Other key aspects are the containers or bags being used
at collection sites and the collection vehicles. Furthermore, residents
have high expectations when it comes to waste collection, in the sense
that they aim at a frequent collection at a site close to their home but
are not willing to spend neither money nor time for it.
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From the residents’ point of view, collection methods are often
divided into curbside (pick-up) systems, where the waste is disposed
outside their property, and bring (drop-off) systems, where the waste
is brought to communal collection sites (Rodrigues et al., 2016). Curb-
side systems are used in most Swiss municipalities to collect non-
recoverable waste, with heavy trucks stopping at almost each house-
hold. They are the most convenient for residents. However, due to the
nature of the employed trucks and the number of performed stops,
this strategy results into large collection times and causes negative
effects such as high fuel consumption, emissions and noise. In hopes of
designing a more efficient and sustainable residential waste collection
system, we investigate in this paper the location of collection points
that are close to residential buildings and can be easily accessed by foot.
These collection points represent physical areas (e.g., a circle painted
on the ground) where residents must leave their bags.
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This problem can be formulated as a facility location problem (FLP;
e.g., Ghiani et al., 2012; Tralhão et al., 2010). Nevertheless, since
the location of collection points is interlaced with the subsequent
collection tours, both decisions should be simultaneously tackled by
means of location-routing problems (LRPs; Prodhon & Prins, 2014).
These problems represent an approach to model and solve locational
problems while paying special attention to the underlying issues of
vehicle routing (Nagy & Salhi, 2007). Despite the different nature of
the decisions being addressed (location is strategical whereas routing is
tactical/operational), the overall system cost may be excessive if they
are handled separately. Additionally, the use of LRPs could decrease
the total costs over a long planning horizon within which routes might
change (Salhi & Nagy, 1999).

Given the location of a single disposal facility, a set of candidate
locations, a single collection vehicle, and the amount of waste produced
at each residential building in the time horizon under consideration,
we aim at selecting a subset of candidate locations to place collection
points while determining the tours that visit them in order to collect
the waste and transport it to the disposal facility. We assume that
the waste gathered in a collection point can be split and transported
in different tours. The number of tours is determined by the total
amount of waste to be collected and the capacity of the collection
vehicle. For each residential building, a given rank sorts the candidate
locations in compliance with some criterion (e.g., in increasing order
of walking distance). The goal of the problem is to locate collection
points such that all residential buildings are covered with minimum
total travel time. We say that a residential building is covered if its
waste is gathered at a collection point from its rank. Besides, we assume
that residential buildings will consider the highest-ranked candidate
location where a collection point is placed.

As defined, this problem is closely related to the multi-vehicle
covering tour problem (𝑚-CTP; Hachicha et al., 2000). The 𝑚-CTP can
be seen as an LRP that generalizes the vehicle routing problem (VRP).
We formulate our problem as a variant of the 𝑚-CTP in which the
constraints on the length and number of vertices of each tour are
replaced by vehicle capacity constraints. Furthermore, each residential
building does not only have to be covered by a collection point from its
rank, but also must be allocated to the highest-ranked collection point
that belongs to the solution. Since we assume that the underlying road
network is known, we refer to this problem as the capacitated 𝑚-CTP
n a road network (C𝑚-CTP-R).

In this paper, we propose a compact mixed-integer linear program-
ing (MILP) formulation for the C𝑚-CTP-R. This formulation relies on
road-network graph, a more detailed approach to represent the road
etwork that is also computationally more efficient than the so-called
ustomer-based graph typically used in VRPs (Letchford et al., 2014).
n a customer-based graph, a node is introduced for each customer
nd each depot, and an arc represents the shortest path between
he start node and the end node. Instead, the proposed formulation
xploits the sparsity of the road network by introducing decision vari-
bles for each road segment. This technique has already been con-
idered for other problems, such as the Steiner traveling salesman
roblem (STSP) in Letchford et al. (2013), and it is extended here
or the C𝑚-CTP-R. We also formulate the problem that results from
ssuming a customer-based graph on the network for a numerical and
omputational comparison of the two approaches.

To handle the large instances of the C𝑚-CTP-R that general-purpose
ILP solvers might fail to solve, we develop a two-phased heuristic
ethod. It is based upon solution procedures for the two interdepen-
ent subproblems the C𝑚-CTP-R is built on: a set covering problem
SCP) to identify the subset of candidate locations and the split-delivery
RP (SDVRP) to generate the tours that visit such locations. In the

irst phase, we construct set covers and approximate the routing cost
ssociated with each of them by means of a giant tour that is grad-
ally constructed by visiting either a candidate location or one of its
2

lternatives. An alternative to a candidate location represents another
andidate location that can cover the same residential buildings. In the
econd phase, we solve a SDVRP on the candidate locations visited in
he giant tour. To do so, we transform the problem into a capacitated
RP (CVRP) with an a priori splitting strategy of the nodes with a large
mount of waste (Chen et al., 2017), and we solve the resulting problem
ith the state-of-the-art metaheuristic for CVRP proposed by Vidal

2022). To conduct the experiments, we derive a set of instances for
he C𝑚-CTP-R by relying on data from various Swiss municipalities.
n particular, we compare the road-network-based and customer-based
ILP formulations, validate and assess the performance of the heuristic
ethod and analyze the travel time savings of the introduced waste

ollection system with respect to the state of practice.
To sum up, the contribution of this research is threefold:

1. We introduce a variant of the 𝑚-CTP, the C𝑚-CTP-R, in which
the constraints on the length and number of nodes of each tour
are replaced by vehicle capacity constraints, and the coverage
of nodes is ensured by the allocation of residential buildings
to a collection point that appears in their rank. We assume a
rank that sorts the candidate locations according to a given cri-
terion and define operational constraints that allocate residential
buildings to their highest-ranked candidate location where a
collection point is placed. This problem is a real-life problem
motivated by the collaboration with an industrial partner. To
test the proposed methodology, we derive a set of instances
based on real-life data that are appropriate to the C𝑚-CTP-R
with more than 2000 nodes that can be visited and up to 600
nodes to cover. These instances are made available online to
other researchers to encourage future research on the introduced
problem.1

2. We show that the road-network-based MILP formulation of the
C𝑚-CTP-R, which relies on a more detailed representation of
the underlying street network, is both computationally more
efficient and superior with respect to solution quality than the
MILP formulation that relies on the associated customer-based
graph. This is not an obvious claim as it is typically not the case
in the literature.

3. To handle large instances, we propose a two-phased heuristic
method that exploits the decomposable structure the C𝑚-CTP-R
is built on. This method is tested against the road-network-
based MILP formulation for the instances solved to optimality,
providing the optimal solution for most of them, as well as
for the instances not solved to optimality, providing a better
solution than the exact method in a given time budget for most
of them.

The remainder of the paper is organized as follows. Section 2
rovides an overview of relevant works in the context of 𝑚-CTP and

road-network representation. Section 3 formally defines the problem
and the particularities for its application in waste collection, and enu-
merates the modeling assumptions we make. Sections 4 and 5 present
the MILP formulations and the two-phased heuristic method, respec-
tively. Section 6 reports the computational and numerical experiments,
and Section 7 summarizes the main findings and discusses avenues for
future research.

2. Related work

Despite the increasing attention received by LRPs in the last years
(Schneider & Drexl, 2017), relatively few papers on the covering tour
problem (CTP) and derivatives thereof have been published. The first
appearance of the CTP can be attributed to Current (1981). The CTP
is formally defined in Gendreau et al. (1997) as the problem of finding
a Hamiltonian tour with minimum length over the subset of nodes to

1 https://drive.switch.ch/index.php/s/unpTFHxEwccSXRl
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be visited such that each node in the subset of nodes to be covered
lies within a prespecified distance from a tour node. A two-index
formulation is developed and solved exactly with a branch-and-cut
algorithm. Similar to Current and Schilling (1989), they further propose
a heuristic approach that combines a SCP and a Traveling Salesman
Problem (TSP) heuristics. Baldacci et al. (2005) formulate the CTP as a
two-commodity network flow problem and propose three scatter-search
heuristic algorithms.

The extension of the CTP to multiple vehicles, the 𝑚-CTP, is defined
in Hachicha et al. (2000) as the problem of designing up to 𝑚 vehicle
tours starting and ending at the depot with minimum total length such
that the nodes to cover lie within a preset distance of a tour node and
both the number of nodes and the length of any tour do not exceed
given values. The authors point out that the 𝑚-CTP appears to be more
difficult than the VRP and therefore heuristics might be the only viable
methods to find good solutions for practically relevant instances. They
propose three heuristics called modified savings, modified sweep and
route-first/cluster-second that are partially based on the corresponding
methods for the standard VRP. All of them allow to find good solutions
for realistic instances within a reasonable computational time, being
the modified savings the fastest one and the other two better in terms
of solution quality.

Jozefowiez (2014) introduces a branch-and-price algorithm based
on a column generation approach to solve the 𝑚-CTP exactly. The mas-
ter problem is a SCP and the subproblem is a variant of the profitable
tour problem (PTP; Dell’Amico et al., 1995) solved by a branch-and-
cut algorithm. This methodology is tested on instances with up to 60
nodes that can be visited and up to 150 nodes to cover. Ha et al. (2013)
propose a two-commodity flow formulation based on the formulation
of Baldacci et al. (2005) for the 𝑚-CTP when the length constraint is
relaxed and 𝑚 is a decision variable. They consider a standard branch-
and-cut algorithm to exactly solve the problem. Computational results
show that it outperforms the algorithm by Jozefowiez (2014) in the
same context. They also develop a two-phased metaheuristic based on
an evolutionary local search (ELS). In the first phase, subsets of nodes
that cover all customers are created, and in the second phase, a VRP
with unit demands on each subset is solved. The generated solution
is within 1.5% of optimality for the considered test instances with up
to 200 nodes. Kammoun et al. (2017) apply a variable neighborhood
search (VNS) heuristic based on the variable neighborhood descent
(VND) method for the variant without the length constraint. This
method is compared against the one of Ha et al. (2013) on the same
instances and reports better or equal results in a smaller computational
time.

More recently, Glize et al. (2020) propose an exact method based on
column generation techniques to solve the 𝑚-CTP and its bi-objective
version that in addition to minimizing the total distance (length) of the
tours (first objective) also aims at minimizing the maximum coverage
distance (second objective). The method is compared with state-of-the-
art approaches on instances from the literature (with up to 200 nodes)
and for the first time, seven open instances are closed to optimality,
and for six open instances the best lower bounds are improved. Other
variants of the 𝑚-CTP include multiple depots with capacitated vehicles
(Allahyari et al., 2015), the multi-covering of nodes (Pham et al., 2017),
probabilistic coverage by the nodes to be visited (Karaoğlan et al.,
2018), and speed optimization on the traversed arcs (Margolis et al.,
2022).

The 𝑚-CTP finds applications in problems that concern the design
f bilevel transportation networks. In these problems, only a subset
f the nodes is actually visited by vehicles. Some examples include
he works of Hachicha et al. (2000) on the location of mobile health-
are teams in rural areas; (Labbé & Laporte, 1986) on the location
f boxes for overnight mail service; and Oliveira et al. (2015) on the
lanning of routes for urban patrolling. Additional examples can be
ound in humanitarian logistics. Naji-Azimi et al. (2012) address the
3

ocation of satellite distribution centers for supplying humanitarian aid (
throughout a disaster area. They show that only very small instances
can be solved efficiently using the mathematical model. The proposed
multi-start heuristic produces high-quality solutions for realistic in-
stances in reasonable computational times. Davoodi and Goli (2019)
deal with a similar problem by developing a hybrid approach that
combines an exact solution method (Benders decomposition) and a fast
metaheuristic (VNS) to enhance the efficiency of the overall method,
as confirmed by the experiments performed on a real-life case study.
Another interesting application is school bus routing. In Schittekat
et al. (2013), the joint problem of bus stop selection and bus route
generation is formulated in its most basic form. They characterize a
MILP formulation and a parameter-free matheuristic that combines a
greedy randomized adaptive search procedure (GRASP) and a VND
method. Experiments on randomly-generated instances with up to 80
stops and 800 students show that the matheuristic finds most known
optimal solutions much faster than the exact method.

In the context of waste collection, Cubillos and Wøhlk (2020) rely
on a bi-objective LRP known as maximal CTP (MCTP) for the location
of recycling drop-off stations. As introduced by Current and Schilling
(1994), in a MCTP a tour must visit 𝑝 nodes out of 𝑛 candidate
locations with the goals of minimizing the total length of the tour and
maximizing the covered demand. The MCTP is a variant of the CTP in
which the covering objective is replaced with a constraint that requires
complete coverage. In this application, the collection costs associated
with the routing are approximated with a TSP that is heuristically
solved, which means that the capacity on the collection vehicles is
disregarded. To handle real-life sized problems, they propose a heuristic
method inspired by VNS because its use for location problems has
yielded good results in the literature.

Several of the above-mentioned works rely on a customer-based
graph to represent the underlying road network. These are complete
graphs where a node represents a point of interest (e.g., customers, de-
pots) and an arc represents the best path (e.g., shortest, fastest) between
two nodes (Huang et al., 2017). When multiple attributes are defined
on road segments (e.g., travel cost, distance), this representation can
have negative consequences on the solution quality and/or efficiency
(Ben Ticha et al., 2018). To address this issue, a growing number of
papers investigate road-network graphs. These graphs mimic the road
network by defining the arcs as the road segments and the nodes as
the extremities of these segments. Letchford et al. (2014) show that
significant computing time savings can be achieved with respect to
customer-based graphs.

There is a collection of papers relying on road-network graphs in
the context of STSP. Independently introduced by , Cornuéjols et al.
(1985), Fleischmann (1985) and Orloff (1974), the aim of this problem
is to find a minimum-cost cycle that visits a set of required nodes at
least once. Letchford et al. (2013) propose compact formulations for
the STSP on a road-network graph with a linear number of variables
and constraints where decision variables are introduced for each road
segment. The authors show that instances with up to 500 nodes can
be solved with the developed exact branch-and-cut algorithms. Note
that the STSP has been transformed into the classical TSP in Álvarez-
Miranda and Sinnl (2019). Clearly, the TSP is a well studied problem
and can be solved quickly with the state-of-the-art solver CONCORDE
(Applegate et al., 2003), which enables to solve all instances from the
literature to optimality within 20 s (most of them within a second).
Road-network graphs are as well receiving increasing attention in
time-dependent VRP (e.g., Ben Ticha et al., 2019).

In conclusion, the review of the literature shows that a variety of
real-life problems can be modeled as 𝑚-CTPs. The C𝑚-CTP-R differs
rom the standard 𝑚-CTP in the vehicle capacity constraints, the allo-
ation of nodes that must be covered (which are allocated to specific
isited nodes) and the potential split of the demand of visited nodes
mong tours. Some of the reviewed applications have already addressed
ome of these features. Davoodi and Goli (2019) and Schittekat et al.

2013) include vehicle capacity constraints and allocation but do not
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allow for splits. The allocation typically results from a criterion set by
the decision maker (e.g., proximity), i.e., the decision maker imposes
the location to be used, whereas we assume that residents will bring
their waste to the collection point that is considered higher in the
assumed rank, which can have an impact on their location. Naji-Azimi
et al. (2012) consider, among others, vehicle capacity constraints and
split delivery. Furthermore, motivated by the findings of Letchford et al.
(2014), we rely on a road-network graph to represent the underlying
street network. To the best of our knowledge, a road-network-based
MILP formulation has not yet been proposed for the 𝑚-CTP or a variant
thereof. To handle practically relevant instances, we develop a heuristic
method that tackles the two subproblems the C𝑚-CTP-R is built on
(similar to Gendreau et al., 1997; Jozefowiez, 2014).

3. Problem definition

We provide a formal definition of the C𝑚-CTP-R in Section 3.1.
We discuss the specifications for its application to waste collection in
Section 3.2 and enumerate our modeling assumptions in Section 3.3.

3.1. Notation, data, and problem statement

Let 𝐺 = (𝑉 ∪ 𝑊 ,𝐴) be a directed graph with two node sets 𝑉 and
, and arc set 𝐴 representing the (directed) road network. 𝑉 includes

odes that represent candidate collection points and road intersections
nd 𝑊 is a set of nodes with positive demand (e.g., residents who
roduce waste in the context of waste collection). We assume that 𝐺
s strongly connected, i.e., there exists a path from each node ℎ ∈ 𝑉 to

each node ℎ′ ∈ 𝑉 . For each demand node 𝑖 ∈ 𝑊 , its demand 𝑑𝑖 must be
satisfied at one and only one node from its rank 𝑉 rank

𝑖 ⊆ 𝑉 . Note that
node 𝑖 ∈ 𝑊 may or may not be in 𝑉 rank

𝑖 . We assume that 𝑉 rank
𝑖 is totally

ordered. The ordering reflects the assumed criterion to sort candidate
locations. We assume that 𝑑𝑖 must be satisfied at the first node in 𝑉 rank

𝑖
at which a vehicle stops. We denote by rank(𝑖, 𝑗) the index of node 𝑗 in
𝑉 rank
𝑖 . Then, for two nodes 𝑗, 𝑗′ ∈ 𝑉 rank

𝑖 , rank(𝑖, 𝑗′) < rank(𝑖, 𝑗) indicates
that node 𝑗′ is preferred over node 𝑗 by demand node 𝑖. We define
𝑉 sto = ∪𝑖∈𝑊 𝑉 rank

𝑖 as the subset of potential stopping nodes. We denote
by 𝜎 ∈ 𝑉 the depot from which the tours depart and arrive. The arc
set 𝐴 represents directed road segments. Let 𝑐ℎℎ′ be the non-negative
length associated with arc (ℎ, ℎ′) ∈ 𝐴. We assume that these lengths
satisfy the triangle inequality.

For the customer-based graph representation, let 𝐺′ = (𝑉 ′, 𝐴′) be
the complete directed graph made up by the node set 𝑉 ′ = {𝜎} ∪ 𝑉 sto

and the arc set 𝐴′ such that an arc (𝑗, 𝑗′) ∈ 𝐴′ represents a shortest
path from 𝑗 ∈ 𝑉 ′ to 𝑗′ ∈ 𝑉 ′ of length 𝓁𝑗𝑗′ . Note that 𝓁𝑗𝑗′ is well-defined
for each ordered pair of nodes (𝑗, 𝑗′) ∈ 𝑉 ′ × 𝑉 ′ because 𝐺 is a strongly
connected graph.

We assume that the demand needs to be satisfied by 𝑚 vehicle tours.
In particular, we assume a representative vehicle of capacity 𝑄 that
drives as many tours as needed within the considered time horizon to
satisfy all the demand, i.e., 𝑚𝑄 ≥ 𝑑tot =

∑

𝑖∈𝑊 𝑑𝑖. We allow for splits,
i.e., the total demand that needs to be satisfied at a stopping node may
be split up between multiple tours. We assume that the demands are
arbitrarily divisible.

A solution of the C𝑚-CTP-R is specified by exactly 𝑚 tours on the
selected stopping nodes. For each tour, we usually only record the
nodes at which the vehicle stops to satisfy the demand by assuming
that a vehicle travels on a shortest path from one stopping node to the
next. We say that a solution covers 𝑖 ∈ 𝑊 if in at least one tour the
vehicle stops at some node in 𝑉 rank

𝑖 . A solution is feasible if it covers
all demand nodes, the demand of any node 𝑖 ∈ 𝑊 is satisfied at the
first node in 𝑉 rank

𝑖 at which a vehicle stops and the vehicle capacity is
not exceeded in any tour. The objective of the C𝑚-CTP-R is to find a
feasible solution with minimum total cost. The total cost is calculated
as the sum of the total cost associated with the traveled distances in
the tours plus the total number of stops performed by a vehicle times
𝑡sto, where 𝑡sto is a given stop penalty value.
4

3.2. Waste collection application

The road network of the geographical area under consideration
can be extracted from a mapping service (OpenStreetMap, 2022 in
our case). For every road intersection, we add a node to 𝑉 . The set
of candidate locations 𝑉 sto must be specified by the decision maker
(e.g., municipality). For the experiments performed in Section 6, we
place candidate locations on road segments such that the distance
between two locations is at most 50 m. Then, any road segment longer
than 50 m is split into equal-length stretches whose lengths are less or
equal than 50 m. The resulting splitting points are added to 𝑉 sto.

Each residential building is mapped to the node in 𝑉 whose location
is the closest to the building’s location. This node becomes a demand
node, and therefore belongs to 𝑊 . Notice that multiple buildings might
be represented by a single demand node. In Section 6, the demand 𝑑𝑖 of
node 𝑖 ∈ 𝑊 is obtained by aggregating the average waste production
per inhabitant for one week across the number of inhabitants repre-
sented by the node. We denote by 𝛾 the maximum walking distance
set by government regulations for residents to bring their waste. We
assume that the rank associated with residential building 𝑖 (𝑉 rank

𝑖 ) is
defined by sorting in increasing order of walking distance the candidate
locations within 𝛾. Note that the proposed modeling framework can
also accommodate different ranks for different individual residents
(or groups of residents) living in the same residential building. This
can be achieved by simply duplicating the respective demand node
as many times as individual residents are considered and defining a
rank for each of them. After the ranks of all demand nodes have been
determined, the candidate locations that do not belong to any rank are
deleted from 𝑉 sto.

The depot 𝜎 corresponds to the waste disposal facility where the
vehicle departs and dumps the collected waste. Whenever needed
(e.g., the vehicle capacity has been reached), the vehicle can go to the
disposal facility, which is connected to each candidate location. Note
that visiting the disposal facility requires a considerable driving and
dumping time. It should therefore only be visited when necessary. In
our setting, the number of visits is equal to the number of tours.

For the sake of illustration, Fig. 1(a) presents the graph of a small
neighborhood of a Swiss municipality with 57 residential buildings,
411 inhabitants and an area of 0.13 km2. Graph 𝐺 contains in total
97 nodes, out of which 33 are demand nodes, and 307 arcs, out of
which 172 are incident to the disposal facility. For readability purposes,
we only show the underlying undirected graph of 𝐺 with left and right
road sides explicitly represented. Vehicles are only allowed to turn at
the so-called intersections, which are depicted in the graph as nodes
in the middle of a road segment (neither on the left nor on the right
road side). Furthermore, the waste disposal facility (black square), the
demand nodes (bold circles) and the candidate locations (all circles)
are depicted. For the disposal facility, only the closest road segments
that link it to the municipality road network are drawn. Figs. 1(b) and
1(c) present two solutions for 𝑚 = 2 tours to collect the total waste. The
solutions have been obtained with the MILP formulation that relies on
the road-network graph (see Section 4.1). Two values for the maximum
walking distance (in meters) are considered: 𝛾 = 0 (Fig. 1(b)) and
𝛾 = 100 (Fig. 1(c)). Notice that 𝛾 = 0 corresponds to door-to-door
collection. In Section 6.1 we detail the assumptions on the remaining
input data. For 𝛾 = 0, in tours 1 (red) and 2 (blue) the vehicle stops at
17 and 16 collection points, respectively. The total travel and collection
time is 4576 s. For 𝛾 = 100, in tours 1 and 2 the vehicle only stops at
6 and 3 collection points, respectively. The total travel and collection
time is 3795 s. This represents almost a 20% decrease in the total time
with respect to door-to-door collection, which results into a large gain
from a practical perspective.

3.3. Modeling assumptions

In this section, we discuss the modeling assumptions we make with

respect to various aspects of the problem.
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Fig. 1. Visualization of the illustrative example and tours 1 (red) and 2 (blue) of an optimal solution with maximum walking distance 𝛾 = 0 and 𝛾 = 100. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
a

A1: Deterministic demand. The amount of waste associated with each
demand node is known for a given time horizon, and we assume it does
not change within the time horizon.

A2: Allocation of residential buildings. Given the locations of collection
points, it makes sense to assume that residents will bring their waste
to their highest-ranked location. Our model is capable of handling any
rank of the candidate locations in compliance with a given criterion,
such as walking distance or proximity to interesting points. In our ex-
periments, we use the walking distances from the residential buildings
to the candidate locations as a measure.

A3: Focus on locational decisions. The focus of the decision maker is
on locational decisions, and routing aspects are considered to better
support such decisions. This means that the tours dictated by the
solution might not be the ones operated in practice.

A4: Design of collection points. Collection points are designated physical
areas where residents must leave their waste bags. There are no bins
or containers and bags are placed directly on the ground. Notice that
we do not assume a capacity for the candidate locations. If a collection
point is assigned to multiple demand nodes and a considerable demand
is associated with it, we assume that it is up to the decision maker to
determine how to address this at a post-processing stage (e.g., dimen-
sioning the collection point accordingly, visiting the collection point
multiple times within the considered time horizon).

A5: Split collection. Due to the nature of a collection point, it is possible
to split its waste by gathering some of the bags placed there. This situ-
ation is typically encountered at the end of the tour (i.e., before going
back to the disposal facility), as the vehicle can only accommodate
some of the bags before reaching its capacity. We do not enforce splits
to happen at the end of the tours. Since we assume a deterministic
demand (A1), they could in principle be planned beforehand at any
point in the tour. Furthermore, the routing in this problem is resolved
to make better decisions on the location of collection points (A3), and
we do not expect the decision maker to operate the tours as determined
by the solution. We assume that the collection is scheduled in a way
that no more than one vehicle tour will visit the same collection point
at the same time.

A6: Stop penalty value. We define the stop penalty value 𝑡sto as the time
it takes for the collection vehicle to break to reach the collection point,
to gather the waste and to accelerate to resume the tour. We assume
a constant time per unit of waste to be collected. As the total amount
of waste is known (A1), the total time to collect them is constant to
the optimization problem, and therefore can be ignored. Thus, the stop
penalty value 𝑡sto directly represents the break and acceleration time
per collection point. For the experiments performed in Section 6, we
assume 𝑡sto = 5 s.
5

4. Compact MILP formulations

We propose a compact MILP formulation for the C𝑚-CTP-R that
relies on a road-network graph (Section 4.1). For each tour, integer
decision variables capture the number of times that the vehicle tra-
verses a road segment. For comparison purposes, we also characterize
a formulation that considers the customer-graph representation of the
road network (Section 4.2). In this case, binary decision variables for
each pair of potential stopping nodes determine whether or not a
vehicle successively stops at both nodes.

4.1. Road-network-based formulation

Let  = {1,… , 𝑚} be the set of tours enumerated from 1 to 𝑚. For
each arc (ℎ, ℎ′) ∈ 𝐴 and tour 𝑘 ∈ , we introduce an integer variable
𝑥ℎℎ′𝑘 that indicates the number of traversals of tour 𝑘 on arc (ℎ, ℎ′). For
each node 𝑗 ∈ 𝑉 sto and tour 𝑘 ∈ , we define a binary variable 𝑦𝑗𝑘
that takes value 1 if in tour 𝑘 the vehicle stops at node 𝑗. For each node
𝑖 ∈ 𝑊 and node 𝑗 ∈ 𝑉 rank

𝑖 , we add a binary variable 𝑧𝑖𝑗 that takes value
1 if a demand of node 𝑖 is satisfied at node 𝑗. For each node 𝑗 ∈ 𝑉 sto

nd tour 𝑘 ∈ , we introduce a non-negative continuous variable 𝑞𝑗𝑘
that indicates the quantity of demand satisfied at node 𝑗 in tour 𝑘. For
the variables 𝑥 to define a tour, we adapt the single-commodity flow-
based formulation proposed by Letchford et al. (2013) for the STSP
by introducing a non-negative continuous variable 𝑓ℎℎ′𝑘 for each tour
𝑘 ∈  to capture the flow passing through (ℎ, ℎ′) ∈ 𝐴.

We construct the road-network-based formulation with splits (RN
for short) as follows:

min
∑

𝑘∈

∑

(ℎ,ℎ′)∈𝐴
𝑐ℎℎ′𝑥ℎℎ′𝑘 +

∑

𝑘∈

∑

𝑗∈𝑉 sto
𝑡sto𝑦𝑗𝑘, (1a)

s.t.
∑

𝑗∈𝑉 rank
𝑖

𝑧𝑖𝑗 = 1 ∀𝑖 ∈ 𝑊 , (1b)

∑

𝑗′∈𝑉 rank
𝑖 ∶

rank(𝑖,𝑗′ )>rank(𝑖,𝑗)

𝑧𝑖𝑗′ ≤ 1 − 𝑦𝑗𝑘 ∀𝑖 ∈ 𝑊 , 𝑗 ∈ 𝑉 rank
𝑖 , 𝑘 ∈ ,

(1c)
∑

𝑖∈𝑊 ∶𝑗∈𝑉 rank
𝑖

𝑑𝑖𝑧𝑖𝑗 =
∑

𝑘∈
𝑞𝑗𝑘 ∀𝑗 ∈ 𝑉 sto, (1d)

∑

𝑗∈𝑉 sto
𝑞𝑗𝑘 ≤ 𝑄 ∀𝑘 ∈ , (1e)

∑

ℎ∈𝑉 ∶(ℎ,𝑗)∈𝐴
𝑥ℎ𝑗𝑘 ≥ 𝑦𝑗𝑘 ∀𝑗 ∈ 𝑉 sto, 𝑘 ∈ , (1f)

∑

ℎ′∈𝑉 ∶(ℎ′ ,ℎ)∈𝐴
𝑥ℎ′ℎ𝑘 −

∑

ℎ′∈𝑉 ∶(ℎ,ℎ′)∈𝐴
𝑥ℎℎ′𝑘 = 0 ∀ℎ ∈ 𝑉 , 𝑘 ∈ , (1g)

∑

ℎ′∈𝑉 ∶(ℎ,ℎ′)∈𝐴
𝑓ℎℎ′𝑘 −

∑

ℎ′∈𝑉 ∶(ℎ′ ,ℎ)∈𝐴
𝑓ℎ′ℎ𝑘

=

{

𝑞ℎ𝑘, ∀ℎ ∈ 𝑉 sto

sto
∀𝑘 ∈ , (1h)
0, ∀ℎ ∈ 𝑉 ⧵ (𝑉 ∪ {𝜎})
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∑

ℎ∈𝑉 ∶(ℎ,𝜎)∈𝐴
𝑓ℎ𝜎𝑘 =

∑

𝑗∈𝑉 sto
𝑞𝑗𝑘 ∀𝑘 ∈ , (1i)

𝑥ℎℎ′𝑘 ∈ Z≥0 ∀(ℎ, ℎ′) ∈ 𝐴, 𝑘 ∈ , (1j)

𝑦𝑗𝑘 ∈ {0, 1} ∀𝑗 ∈ 𝑉 sto, 𝑘 ∈ , (1k)

𝑧𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑊 , 𝑗 ∈ 𝑉 rank
𝑖 , (1l)

0 ≤ 𝑞𝑗𝑘 ≤ 𝑄𝑦𝑗𝑘 ∀𝑗 ∈ 𝑉 sto, 𝑘 ∈ , (1m)

0 ≤ 𝑓ℎℎ′𝑘 ≤ 𝑄𝑥ℎℎ′𝑘 ∀(ℎ, ℎ′) ∈ 𝐴, 𝑘 ∈ . (1n)

The objective function (1a) expresses the total cost, which is com-
uted as the sum of the total travel distances plus 𝑡sto times the
otal number of stops. Constraints (1b) ensure that the demand of
ode 𝑖 ∈ 𝑊 is satisfied at exactly one stopping node from its rank.
onstraints (1c) are the operational constraints which state that the
emand of node 𝑖 ∈ 𝑊 is satisfied at the first stopping node in 𝑉 rank

𝑖
at which the vehicle stops. Constraints (1d) guarantee that the total
demand that is satisfied at node 𝑗 ∈ 𝑉 sto is equal to the total quantity
that is satisfied in all tours in which the vehicle stops at this node.
Constraints (1e) limit the demand satisfied in tour 𝑘 to the vehicle
capacity 𝑄.

Constraints (1f) to (1n) force the variables 𝑥 to take values that
make up valid tours. More precisely, constraints (1f) specify that in tour
𝑘 the vehicle can only stop at node 𝑗 ∈ 𝑉 sto if it traverses an incoming
arc into node 𝑗 at least once. The degree constraints (1g) define that in
tour 𝑘 the vehicle enters and leaves any node ℎ ∈ 𝑉 the same number of
times. Constraints (1h) ensure that the net outflow out of any stopping
node 𝑗 ∈ 𝑉 sto must be 𝑞𝑗𝑘, which is the demand quantity satisfied at
node 𝑗 in tour 𝑘. For any other node, these constraints impose a 0 net
outflow. Constraints (1i) enforce that the total quantity that must go
into the depot node equals the total quantity satisfied in tour 𝑘.

Finally, constraints (1j) to (1n) define the domain of the decision
variables. Additionally, constraints (1m) link the variables 𝑞 with the
variables 𝑦 by stating that a positive quantity can be satisfied at node
𝑗 ∈ 𝑉 sto in tour 𝑘 only if the vehicle stops at this node. Note that 𝑄 is
a trivial upper bound on the quantity that can be satisfied at any node
in one tour. Constraints (1n) link the variables 𝑓 with the variables 𝑥.
If 𝑥ℎℎ′𝑘 = 0, i.e., arc (ℎ, ℎ′) is not traversed in tour 𝑘, then the flow
𝑓ℎℎ′𝑘 does not pass through it, and therefore 𝑓ℎℎ′𝑘 = 0. If 𝑥ℎℎ′𝑘 = 1, the
onstraint is trivially satisfied as the total flow cannot be larger than 𝑄.

We briefly discuss how the tour 𝑘 ∈  is constructed with the
ariables 𝑥. To this end, we build an auxiliary directed multigraph
T
𝑘 = (𝑉 T

𝑘 , 𝐴T
𝑘 ), where 𝑉 T

𝑘 ⊆ 𝑉 . We add a node ℎ ∈ 𝑉 to 𝑉 T
𝑘 if an arc

incident to ℎ, i.e., (ℎ, ℎ′) or (ℎ′, ℎ), has a positive value 𝑥ℎℎ′𝑘 or 𝑥ℎ′ℎ𝑘. For
any arc (ℎ, ℎ′) ∈ 𝐴, we add 𝑥ℎℎ′𝑘 copies of (ℎ, ℎ′) to 𝐴T

𝑘 . We then search
for an Eulerian cycle in 𝐺T

𝑘 . Clearly, not all graphs admit an Eulerian
cycle. A directed multigraph 𝐷 admits an Eulerian cycle if and only if
𝐷 is connected and the in-degree equals the out-degree at each node
of 𝐷 (see, e.g., Bang-Jensen & Gutin, 2008, Section 1.6). The degree
condition is directly specified on the variables 𝑥 in constraint (1g).
The connectedness condition is ensured thanks to constraints (1h) and
(1i). Indeed, the variable 𝑓ℎℎ′𝑘 can only be positive if 𝑥ℎℎ′𝑘 ≥ 1. This
ensures that all stopping nodes with positive demands visited in tour
𝑘 are connected to the depot in 𝐺T

𝑘 . Thus, they are all in the same
connected component of 𝐺T

𝑘 . We can efficiently find an Eulerian cycle in
this component, for example, with Hierholzer’s algorithm. Note that in
suboptimal solutions, we may have other connected components in 𝐺T

𝑘 .
These reflect unnecessary traversals and can simply be deleted. These
changes can only improve the quality of the solution.

As shown in Archetti et al. (2006), if the cost matrix satisfies the
triangle inequality, then there exists an optimal solution to the SDVRP
where the number of splits is less than the number of tours. The
number of splits is the sum of the number of splits at each customer,
that is defined as the number of tours that visit the customer minus
one. We can derive a valid inequality to RN from this property with
respect to the potential stopping nodes actually visited in the tours. This
6

prevents to obtain solutions with many unnecessary splits early in the
optimization process. To calculate the number of splits, we introduce
the binary variable 𝑠𝑗 for each node 𝑗 ∈ 𝑉 sto, which takes value 1 if
node 𝑗 is visited at least once. This allows not to take into account
the potential stopping nodes that are not visited in any tour. These
variables are linearly characterized by the following constraints:

𝑠𝑗 ≤
∑

𝑘∈
𝑦𝑗𝑘 ∀𝑗 ∈ 𝑉 sto, (2a)

𝑠𝑗 ≥ 𝑦𝑗𝑘 ∀𝑗 ∈ 𝑉 sto, 𝑘 ∈ . (2b)

Constraints (2a) force 𝑠𝑗 to be equal to 0 if node 𝑗 is not visited, whereas
constraints (2b) set 𝑠𝑗 to 1 if the node is visited in at least one tour. The
valid inequality is then written as follows:

∑

𝑗∈𝑉 sto

(

∑

𝑘∈
𝑦𝑗𝑘 − 𝑠𝑗

)

≤ 𝑚 − 1. (2c)

Note that when node 𝑗 ∈ 𝑉 sto is not visited in any tour, the term in
brackets in the left-hand side of constraint (2c) is equal to 0. If the
node is visited at least once, this term corresponds to the number of
splits, i.e., number of tours that visit the node minus one.

4.2. Customer-based-graph formulation

As discussed in Section 2, VRPs are typically formulated using a so-
called customer-based graph. In this section, we show how to construct
a customer-based-graph formulation for the C𝑚-CTP-R, called CG for
short, by adapting RN.

To derive CG from RN, we only need to replace 𝑉 with 𝑉 ′ and 𝐴
with 𝐴′ in formulation (1). In the CG formulation (4), the variables
𝑥𝑗𝑗′𝑘 determine whether in tour 𝑘 the vehicle stops at node 𝑗′ right
after stopping at node 𝑗. We can strengthen constraints (1f). In the
customer-based graph, if a tour 𝑘 goes through node 𝑗, then it also stops
there, whereas in the road-network graph it could just pass by without
stopping. Thus, we can replace constraints (1f) with the following
stronger condition:
∑

𝑗′∈𝑉 ′
𝑥𝑗′𝑗𝑘 = 𝑦𝑗𝑘, ∀𝑗 ∈ 𝑉 sto, 𝑘 ∈ . (3)

The remaining constraints are equivalent to the corresponding ones in
RN. Notice that constraints (2) are also valid inequalities to CG.

min
∑

𝑘∈

∑

(𝑗,𝑗′)∈𝐴′

𝑐𝑗𝑗′𝑥𝑗𝑗′𝑘 +
∑

𝑘∈

∑

𝑗∈𝑉 sto
𝑡sto𝑦𝑗𝑘, (4a)

s.t.
∑

𝑗∈𝑉 rank
𝑖

𝑧𝑖𝑗 = 1 ∀𝑖 ∈ 𝑊 , (4b)

∑

𝑗′∈𝑉 rank
𝑖 ∶

rank(𝑖,𝑗′ )>rank(𝑖,𝑗)

𝑧𝑖𝑗′ ≤ 1 − 𝑦𝑗𝑘 ∀𝑖 ∈ 𝑊 , 𝑗 ∈ 𝑉 rank
𝑖 , 𝑘 ∈ ,

(4c)
∑

𝑖∈𝑊 ∶𝑗∈𝑉 rank
𝑖

𝑑𝑖𝑧𝑖𝑗 =
∑

𝑘∈
𝑞𝑗𝑘 ∀𝑗 ∈ 𝑉 sto, (4d)

∑

𝑗∈𝑉 sto
𝑞𝑗𝑘 ≤ 𝑄 ∀𝑘 ∈ , (4e)

∑

𝑗′∈𝑉 ′

𝑥𝑗′𝑗𝑘 = 𝑦𝑗𝑘 ∀𝑗 ∈ 𝑉 sto, 𝑘 ∈ , (4f)

∑

𝑗′∈𝑉 ′

𝑥𝑗′𝑗𝑘 −
∑

𝑗′∈𝑉 ′

𝑥𝑗𝑗′𝑘 = 0 ∀𝑗 ∈ 𝑉 ′, 𝑘 ∈ , (4g)

∑

𝑗′∈𝑉 sto
𝑓𝑗𝑗′𝑘 −

∑

𝑗′∈𝑉 sto
𝑓𝑗′𝑗𝑘 = 𝑞𝑗𝑘, ∀𝑗 ∈ 𝑉 sto, 𝑘 ∈ , (4h)

∑

𝑗′∈𝑉 ′

𝑓𝑗′𝜎𝑘 =
∑

𝑗∈𝑉 sto
𝑞𝑗𝑘 ∀𝑘 ∈ , (4i)

𝑥𝑗𝑗′𝑘 ∈ Z≥0 ∀𝑗, 𝑗′ ∈ 𝑉 ′, 𝑘 ∈ , (4j)
sto
𝑦𝑗𝑘 ∈ {0, 1} ∀𝑗 ∈ 𝑉 , 𝑘 ∈ , (4k)
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𝑧𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑊 , 𝑗 ∈ 𝑉 rank
𝑖 , (4l)

0 ≤ 𝑞𝑗𝑘 ≤ 𝑄𝑦𝑗𝑘 ∀𝑗 ∈ 𝑉 sto, 𝑘 ∈ , (4m)

0 ≤ 𝑓𝑗𝑗′𝑘 ≤ 𝑄𝑥𝑗𝑗′𝑘 ∀𝑗, 𝑗′ ∈ 𝑉 ′, 𝑘 ∈ . (4n)

. A two-phased heuristic method for the C𝒎-CTP-R

The compact formulations developed in Section 4 become very
arge for instances of relevant size, which makes general-purpose MILP
olvers to fail at finding solutions. In this section, we propose a two-
hased heuristic method where each phase addresses each of the two
nterdependent subproblems the C𝑚-CTP-R is built on. Let us consider
he complete directed graph that provides a customer-based represen-
ation of the road network 𝐺′ = (𝑉 ′, 𝐴′). Recall that 𝑉 ′ = {𝜎} ∪ 𝑉 sto,
here 𝜎 denotes the depot and 𝑉 sto the set of potential stopping nodes.

The first phase handles the generation of subsets of 𝑉 sto such that
ll demand nodes are covered. We call such a subset a set cover and
enote it by 𝑉 sel ⊆ 𝑉 sto. Note that this subproblem is a SCP. Given
set cover 𝑉 sel, the tours that visit its nodes are built in the second

hase. This subproblem is a SDVRP, as the same node might be visited
n multiple tours (due to the split feature). The order in which the set
overs are processed in the second phase is determined by their cost.
his cost provides an estimation of the routing costs associated with a
et cover. It is defined as the cost of a giant tour (also known as TSP
our) that starts and ends at the depot and either visits a stopping node
f the set cover or one of its alternatives. An alternative of a stopping
ode is another stopping node that can cover at least the same demand
odes. The set of alternatives to the stopping nodes in 𝑉 sel is denoted
y 𝑉 alt ⊆ 𝑉 sto. We identify these nodes with the goal of increasing
he flexibility in the routing and taking into account the road-network
tructure. For instance, alternative nodes that represent nodes across
he street might bring about an improvement in the routing.

A pseudocode of the overall method can be found in Algorithm 1.
or the sake of clarity, Algorithms 2 and 3 include the instructions per-
ormed in the first and second phase, respectively. Both phases are run
n parallel thanks to a multi-threaded implementation of the method.
ore precisely, one thread is dedicated to the first phase and the

emaining ones to the second phase, as building tours requires a higher
omputational effort. To enable communication between the parallel
hreads so that the two tasks (i.e., first and second phase) are executed
hen needed, and to keep track of the set covers that have already
een processed in the second phase, we introduce two synchronized
ollections of set covers named bestSetCovers and treatedSetCovers.
urthermore, we keep track of the solution with the lowest overall cost
amed bestSol.

The data structures bestSetCovers and treatedSetCovers are shared
y the different threads and work as follows. The set covers generated
n the first phase are stored in bestSetCovers, which is a min–max
riority queue that sorts the set covers according to their cost with
axLength as its maximum length. This structure provides an order

o process the set covers in the second phase and allows to efficiently
ccess its minimum or maximum element. When the algorithm starts,
estSetCovers is empty, which triggers the thread dedicated to the first
hase to generate new set covers. The remaining threads are waiting
ntil a set cover is available in the queue, which is then retrieved
rom the queue to be treated in the second phase. As soon as the
ueue becomes almost empty (i.e., its size is less than maxLength), the
irst thread starts generating new set covers again, so that the threads
edicated to the second phase do not need to wait for new set covers.
f a set cover has already been processed in the second phase, we add
t to treatedSetCovers.

In the first phase (Algorithm 2), we iteratively generate set covers
nd calculate their cost with the procedure constructSet() (see Sec-
ion 5.1). If a set cover 𝑉 sel belongs to treatedSetCovers, we penalize
his fact so that this set cover will only be processed again if there

sel
7

re no other available unprocessed set covers. The set cover 𝑉 is
dded to bestSetCovers if it is different from the ones already included
n bestSetCovers (i.e., it does not contain the same nodes) and either
i) its cost is lower than cost(bestSetCovers.max()) (the largest cost
n bestSetCovers) or (ii) the length of bestSetCovers is lower than
axLength.

The goal of the second phase (Algorithm 3) is to solve a SDVRP
n the set covers in bestSetCovers. Once a set cover 𝑉 sel is selected, it
s added to treatedSetCovers so that the feedback mechanism (i.e., pe-
alization) with the first phase can be applied. We first transform the
DVRP into a CVRP by means of an a priori splitting strategy of the
odes (see Section 5.2). Second, we use a state-of-the-art algorithm
namely HGS-CVRP) to solve the resulting CVRP (see Section 5.3). This
olution is then transformed into a solution to the original SDVRP and
ompared against the current best solution (bestSol) with respect to
heir cost. Note that 𝑐𝑜𝑠𝑡() is a function which is computed differently
or set covers (i.e., cost of giant tours) and solutions (i.e., cost of SDVRP
olutions).
Algorithm 1: Two-phased heuristic method for the C𝑚-CTP-R

Input: 𝐺′ = (𝑉 ′, 𝐴′) directed, complete and strongly connected graph,
demand nodes 𝑊 , 𝑑𝑖 and 𝑉 rank

𝑖 ∀𝑖 ∈ 𝑊 , 𝑝 threads
Output: Solution to the C𝑚-CTP-R

1 Define the data structures shared by the different threads:
2 bestSetCovers: empty min-max priority queue
3 treatedSetCovers ← ∅
4 bestSol ← ∅
5 Run Algorithm 2 in thread 1
6 Run Algorithm 3 in threads 2,… , 𝑝
7 return bestSol

Algorithm 2: First phase in the two-phased heuristic method
(Algorithm 1)
1 while stopping criterion do
2 if |bestSetCovers| < maxLength then
3 Obtain 𝑉 sel with constructSet()
4 if 𝑉 sel ∈ treatedSetCovers then
5 Penalize 𝑉 sel

6 if 𝑉 sel ∉ bestSetCovers and (cost(𝑉 sel) < cost(bestSetCovers.max())
or |bestSetCovers| < maxLength) then

7 bestSetCovers ← bestSetCovers ∪ 𝑉 sel

8 else
9 Wait until the second phase analyzes more set covers, i.e.,

until |bestSetCovers| < maxLength (Algorithm 3)

Algorithm 3: Second phase in the two-phased heuristic method
(Algorithm 1)
1 while stopping criterion do
2 if bestSetCovers ≠ ∅ then
3 𝑉 sel ← bestSetCovers.min() ;
4 bestSetCovers ← bestSetCovers ⧵ 𝑉 sel ;
5 treatedSetCovers ← treatedSetCovers ∪ 𝑉 sel ;
6 Transform SDVRP associated with 𝑉 sel into a CVRP;
7 Find solution of the CVRP with HGS-CVRP: CVRPSol ;
8 Transform CVRPSol into a SDVRP solution: SDVRPSol ;
9 if cost(SDVRPSol) < cost(bestSol) then
10 bestSol ← SDVRPSol;

11 else
12 Wait until additional set covers are generated in the first

phase, i.e., until bestSetCovers ≠ ∅ (Algorithm 2)

Both phases are run until the stopping criterion is met. In the com-
putational experiments (see Section 6.3), we set a 3-hour time limit
(TL) and terminate the heuristic method after 100 iterations without
improvement, where one iteration corresponds to the processing of one
set cover, or after TL at the latest.
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5.1. Set construction

The procedure constructSet() generates a set cover 𝑉 sel ⊆ 𝑉 sto by
iteratively adding nodes until the resulting set is a set cover. It then
looks for redundant nodes, that is, nodes that can be removed from 𝑉 sel

while it continues to be a set cover. The set of alternatives 𝑉 alt ⊆ 𝑉 sto

is obtained by identifying the alternatives to each node in 𝑉 sel. Finally,
we define the cost of a set cover as the cost of the giant tour on
𝑉 sel∪𝑉 alt ⊆ 𝑉 sto. A pseudocode of this procedure is shown in Algorithm
4.

We denote by 𝑊 cov ⊆ 𝑊 the set of demand nodes covered by the
stopping nodes in 𝑉 sel. Both 𝑊 cov and 𝑉 sel are initially empty. We
randomly select a demand node 𝑖 ∈ 𝑊 ⧵𝑊 cov. To cover this node, we
dd one of the stopping nodes in 𝑉 rank

𝑖 to 𝑉 sel. To intensify the covering
f demand nodes, for each stopping node 𝑗 ∈ 𝑉 rank

𝑖 , we calculate
he total number of demand nodes that are covered if 𝑗 is added to

sel. Then, we select and add to 𝑉 sel a node maximizing this value.
We update the set of covered demand nodes by adding all the nodes
covered by 𝑗, i.e., 𝑊 cov = 𝑊 cov∪𝑊𝑗 , where 𝑊𝑗 ⊆ 𝑊 is the set of nodes
whose demand is covered by 𝑗, i.e., 𝑊𝑗 = {𝑖 ∈ 𝑊 |𝑗 ∈ 𝑉 rank

𝑖 }. Once
𝑉 sel is constructed, we remove its redundant nodes. A node 𝑗 ∈ 𝑉 sel is
redundant if 𝑉 sel ⧵ {𝑗} is a set cover.

To generate 𝑉 alt, let 𝑊 𝑗 ⊆ 𝑊 be the set of nodes whose demand is
atisfied at 𝑗 ∈ 𝑉 sel. It contains all demand nodes 𝑖 for which 𝑗 is the

first potential stopping node in 𝑉 rank
𝑖 among the ones in 𝑉 sel, i.e., for

any other node 𝑗′ ∈ 𝑉 rank
𝑖 ∩ 𝑉 sel, rank(𝑖, 𝑗) < rank(𝑖, 𝑗′). Let 𝑉 alt

𝑗 ⊆ 𝑉 sto

be the set of alternatives to 𝑗 ∈ 𝑉 sel. It contains the nodes 𝑗′ ∈ 𝑉 sto⧵{𝑗}
that can cover the demand nodes in 𝑊 𝑗 . The set of alternatives is then
efined as 𝑉 alt = ∪𝑗∈𝑉 sel𝑉 alt

𝑗 .
The last step consists in building a giant tour using the nodes in

sel ∪ 𝑉 alt. The construction of such tour is based on the savings ob-
ained from the gradual insertion of stopping nodes (inspired by Clarke

Wright, 1964). We denote by 𝑔𝑗 ⊆ 𝑉 sto the group of potential stopping
odes defined by the set cover node 𝑗 and its alternatives, i.e., 𝑔𝑗 =

{𝑗} ∪ 𝑉 alt
𝑗 . To start the giant tour, a node 𝑗 ∈ 𝑉 sel is randomly selected

nd added to the tour. The cost of the tour (𝜎, 𝑗, 𝜎) is 𝓁𝜎𝑗 + 𝓁𝑗𝜎 , where
𝓁𝜎𝑗 and 𝓁𝑗𝜎 respectively denote the shortest path from 𝜎 to 𝑗 and vice
versa. The next nodes are gradually inserted either before the first node
or after the last node in the current tour. This is also decided at random.
Note that the first node added to the tour is both considered the first
and the last node. Once the position is resolved, the node to be inserted
is the one reporting the largest savings among the nodes belonging to
available groups (see Fig. 2). A group is no longer available if any of its
nodes has been inserted in the tour. We define an auxiliary set to keep
track of the available groups. We denote it by 𝐺avail and initialize it to
contain all the groups, i.e., 𝐺avail = ∪𝑗∈𝑉 sel𝑔𝑗 . For each node 𝑗′ added
to the giant tour, 𝐺avail is updated by removing the groups that contain
𝑗′, i.e., 𝐺avail = 𝐺avail ⧵ {𝑔 ∈ 𝐺avail

|𝑗′ ∈ 𝑔}. The insertion of nodes in
the tour is repeated until all groups are unavailable, i.e., until 𝐺avail

is empty. The set cover 𝑉 sel is then redefined with the stopping nodes
hat are visited in the giant tour.

Fig. 2 illustrates the calculation of savings. Imagine the next node is
o be inserted after the last node in the giant tour, which is denoted by
(Fig. 2(a)). The group 𝑔𝑗′ comprises the set cover node 𝑗′ (black node)
nd its alternatives (white nodes). The savings obtained from inserting
node 𝑗′′ (gray node) after 𝑗 are calculated with respect to the shortest
ath that connects the depot with the group 𝑗′′ belongs to (𝑔𝑗′ ) back and
orth, which is denoted by 𝓁𝑔𝑗′ and is defined as min𝑧∈𝑔𝑗′ { 𝓁𝜎𝑧 + 𝓁𝑧𝜎}.
ore precisely, the savings are defined as 𝑠𝑗𝑗′′ = −𝓁𝑔𝑗′ −𝓁𝑗𝜎+𝓁𝑗𝑗′′+𝓁𝑗′′𝜎 ,
here 𝓁𝑔𝑗′ can be saved from being included in the giant tour (hence

he negative sign), 𝓁𝑗𝜎 is the link removed from the giant tour and 𝓁𝑗𝑗′′
nd 𝓁𝑗′′𝜎 are the links added to the tour. We calculate the savings for all
odes not yet in the giant tour and finally insert the one that maximizes
he savings with respect to 𝑗, i.e., 𝑗∗ = arg min𝑗′∈𝑔,𝑔∈𝐺avail 𝑠𝑗𝑗′ .
8

a

Algorithm 4: constructSet()
Input: 𝑉 ′ = {𝜎} ∪ 𝑉 sto, 𝑊 , 𝑉 rank

𝑖 ∀𝑖 ∈ 𝑊
Output: Set cover and its associated cost

1 Define 𝑉 sel ← ∅,𝑊 cov ← ∅
2 while 𝑉 sel is not a set cover do
3 Randomly select 𝑖 ∈ 𝑊 ⧵𝑊 cov

4 Select 𝑗∗ = arg max𝑗∈𝑉 rank
𝑖

|𝑊 cov ∪𝑊𝑗 |, with
𝑊𝑗 = {𝑖′ ∈ 𝑊 |𝑗 ∈ 𝑉 rank

𝑖′ }
5 𝑉 sel ← 𝑉 sel ∪ {𝑗∗}
6 𝑊 cov ← 𝑊 cov ∪𝑊𝑗∗

7 for 𝑗 ∈ 𝑉 sel do
8 if 𝑉 sel ⧵ {𝑗} is a set cover then
9 𝑉 sel ← 𝑉 sel ⧵ {𝑗}

0 for 𝑗 ∈ 𝑉 sel do
11 Define 𝑊 𝑗 = {𝑖 ∈ 𝑊 |𝑗 = arg min𝑗′∈𝑉 rank

𝑖
rank(𝑖, 𝑗′)}

12 Define 𝑉 alt
𝑗 = {𝑗′ ∈ 𝑉 sto ⧵ {𝑗} |𝑊 𝑗 ⊆ 𝑊𝑗′}

3 Define 𝑔𝑗 = {𝑗} ∪ 𝑉 alt
𝑗 ,∀𝑗 ∈ 𝑉 sel, 𝐺avail = ∪𝑗∈𝑉 sel𝑔𝑗

4 Randomly select 𝑗 ∈ 𝑉 sel

5 Define giantTour ← (𝜎, 𝑗, 𝜎), cost(giantTour) ← 𝓁𝜎𝑗 + 𝓁𝑗𝜎
6 Update 𝐺avail ← 𝐺avail ⧵ {𝑔 ∈ 𝐺avail

|𝑗 ∈ 𝑔}
7 while 𝐺avail is not empty do
18 Randomly select the position in the tour to insert the next node:

before or after
19 if before then
20 Denote by 𝑗 the first node in the giant tour
21 Calculate 𝑠𝑗′𝑗 = −𝓁𝑔 − 𝓁𝜎𝑗 + 𝓁𝜎𝑗′ + 𝓁𝑗′𝑗 , where

𝓁𝑔 = arg min𝑧∈𝑔{ 𝓁𝜎𝑧 + 𝓁𝑧𝜎}, ∀𝑗′ ∈ 𝑔, 𝑔 ∈ 𝐺avail

22 Select 𝑗∗ = arg min𝑗′∈𝑔,𝑔∈𝐺avail 𝑠𝑗′𝑗
23 Add 𝑗∗ to giantTour
24 Update cost(giantTour) ← cost(giantTour) + 𝑠𝑗∗𝑗 ,

𝐺avail ← 𝐺avail ⧵ {𝑔 ∈ 𝐺avail
|𝑗∗ ∈ 𝑔}

25 if after then
26 Denote by 𝑗 the last node in the giant tour
27 Calculate 𝑠𝑗𝑗′ = −𝓁𝑔 − 𝓁𝑗𝜎 + 𝓁𝑗𝑗′ + 𝓁𝑗′𝜎 , where

𝓁𝑔 = arg min𝑧∈𝑔{ 𝓁𝜎𝑧 + 𝓁𝑧𝜎}, ∀𝑗′ ∈ 𝑔, 𝑔 ∈ 𝐺avail

28 Select 𝑗∗ = arg min𝑗′∈𝑔,𝑔∈𝐺avail 𝑠𝑗𝑗′
29 Add 𝑗∗ to giantTour
30 Update cost(giantTour) ← cost(giantTour) + 𝑠𝑗𝑗∗ ,

𝐺avail ← 𝐺avail ⧵ {𝑔 ∈ 𝐺avail
|𝑗∗ ∈ 𝑔}

1 Define cost(𝑉 sel) = cost(giantTour)
2 return 𝑉 sel, cost(𝑉 sel)

5.2. From SDVRP to CVRP

To solve the SDVRP associated with a set cover 𝑉 sel, we consider
the method developed by Chen et al. (2017). The idea is to transform
the SDVRP into a CVRP at the expense of an increased number of
customers. To do so, an a priori splitting strategy is used, i.e., each
customer demand is split in advance and not as determined by the
solution of the problem. This approach allows to use any CVRP solver
instead of developing tailored algorithms for the SDVRP. Finally, the
solution to the CVRP is transformed into a solution to the original
SDVRP.

Chen et al. (2017) propose a 20/10/5/1 rule that splits each cus-
tomer demand into 𝑚20 pieces of 0.2𝑄, 𝑚10 pieces of 0.1𝑄, 𝑚5 pieces
f 0.05𝑄, 𝑚1 pieces of 0.01𝑄, and at most one remaining piece of less
han 0.01𝑄, where 𝑄 is the vehicle capacity. The number of pieces
or each customer 𝑗 is calculated as follows: 𝑚20 = max{𝑚 ∈ Z+ ∪
0}|0.2𝑄𝑚 ≤ 𝑑𝑗}, 𝑚10 = max{𝑚 ∈ Z+ ∪ {0}|0.1𝑄𝑚 ≤ 𝑑𝑗 − 0.2𝑄𝑚20},
5 = max{𝑚 ∈ Z+ ∪ {0}|0.05𝑄𝑚 ≤ 𝑑𝑗 − 0.2𝑄𝑚20 − 0.1𝑄𝑚10} and 𝑚1 =
ax{𝑚 ∈ Z+ ∪ {0}|0.05𝑄𝑚 ≤ 𝑑𝑗 − 0.2𝑄𝑚20 − 0.1𝑄𝑚10 − 0.05𝑄𝑚5}, where
𝑗 is the demand of customer 𝑗. For instance, if 𝑄 = 100 and 𝑑𝑗 = 76,
his customer is split into six nodes with demands 20, 20, 20, 10, 5,

nd 1. Notice that the only way not to eliminate the optimal SDVRP
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Fig. 2. Calculation of the savings for the insertion of a group of potential stopping nodes after the last node of the current giant tour.
olution when both the vehicle capacity and the customer demands
re integers is to split the demands into unit demands. Nevertheless,
his strategy will dramatically increase the size of the resulting CVRP,
nd consequently the running time. As pointed out by the authors,
he split rule might not eliminate the optimal solution if the vehicles
tours in our case) that serve split demands are not fully loaded, since
his involves many different ways to split the demand in an optimal
olution.

For the C𝑚-CTP-R, the amount of demand to be satisfied at each
topping node is determined during the first phase, when the stopping
odes that form the set cover are decided. We then only split the nodes
hose demand exceeds 10% of the vehicle capacity, i.e., the set cover
odes 𝑗 such that 𝑑𝑗 ≥ 0.1𝑄, with the 20/10/5/1 split rule. In this
ay, we prevent to split small demands (with respect to the vehicle

apacity), and therefore limit the number of nodes that are generated
hen defining the associated CVRP.

.3. Hybrid genetic search for the CVRP

We rely on the hybrid genetic search for the CVRP (HGS-CVRP)
eveloped by Vidal (2022). This state-of-the-art algorithm uses the
ame general methodology as Vidal et al. (2012) but includes an addi-
ional neighborhood called SWAP* that consists in exchanging two cus-
omers between different routes without an insertion in place. Compu-
ational experiments have shown that HGS-CVRP stands as the leading
etaheuristic regarding solution quality and convergence speed.

The performance of HGS-CVRP comes from the combination of
hree main strategies. First, a synergistic combination of crossover-
ased and neighborhood-based search. The former allows a diversified
earch in the solution space, while the latter enables aggressive solution
mprovement. Second, a controlled exploration of infeasible solutions
n which any excess load in the routes is linearly penalized. Third,
opulation diversity management strategies that allow to maintain a
iversified and high-quality set of solutions and counterbalance the
oss of diversity due to the neighborhood search. We refer the reader
o Vidal (2022) for further details on the HGS-CVRP algorithm.

We apply the open-source implementation of HGS-CVRP 2 with a
ower number of iterations without improvement (10,000 instead of
0,000 to speed up the process) and the rest of the parameters set
o their default values. The algorithm returns a solution file with the
odes visited in each route and the total cost. We then simply need

2 https://github.com/vidalt/HGS-CVRP
9

to transform this solution into a solution to the original SDVRP. To
do so, we define the tours of the SDVRP solution as the tours of the
CVRP solution except for the split nodes introduced in the CVRP. In
the SDVRP tour, only the original nodes are visited, and the demand
satisfied in the tour is equal to the sum of the demands of the associated
split nodes satisfied in the CVRP tour. Notice that these split nodes are
visited in consecutive order in the CVRP tour. Indeed, they are located
at the same position, and consequently the distance between two split
nodes is equal to 0.

6. Computational experiments

In this section, we present the tests conducted on a set of real-
istic instances inspired by real data from municipalities in Switzer-
land. In Section 6.1, we describe the datasets and problem instances
considered for the experiments. Section 6.2 compares the proposed
road-network-based MILP formulation against its customer-based coun-
terpart, Section 6.3 assesses the performance of the heuristic method
and Section 6.4 discusses some practical aspects of the introduced waste
collection method with respect to the state of practice. Note that in the
tables included in Sections 6.2 and 6.3 the best results are highlighted
in bold.

6.1. Datasets and problem instances

Each problem instance is generated with a road-network dataset
containing information on the nodes and the arcs of the underlying
graph and by providing values to the problem parameters. The asso-
ciated customer-based graphs are constructed according to Section 3.1.
The two main parameters that characterize an instance are the maxi-
mum walking distance (𝛾) and the number of tours (𝑚). The former is
considered to determine the ranks of each residential building, i.e., the
candidate locations within a distance less or equal than 𝛾 ordered in
increasing distance, as described in Section 3.2. The latter refers to
the necessary number of tours to collect all the waste. For the sake of
deriving multiple instances, we assume various values for 𝑚 and derive
the vehicle capacity 𝑄 accordingly (see Section 3.1). We add a 5%
buffer to the minimum required capacity of each vehicle, i.e., 𝑄 = ⌈1.05⋅
(𝑑tot∕𝑚)⌉. This enables the vehicle not to be fully loaded, which might
allow for the a priori splitting of the demand nodes not to eliminate the
optimal solution (Chen et al., 2017). We also need to make assumptions
on the average speed of the vehicle to transform travel distances into
travel times in the objective function. We distinguish between the

https://github.com/vidalt/HGS-CVRP
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Table 1
Characteristics of the road-network graphs for each dataset.

Dataset W15 W50 W100 W200 W600

|𝑊 | 15 50 100 200 600
|𝑉 | 154 394 899 1840 8046
|𝐴| 172 426 1006 2120 8740
Area (km2) 0.65 2.86 5.06 6.95 19.84
Density (|𝑊 |∕km2) 23.08 17.48 19.76 28.78 30.24

|𝑉 sto
|

𝛾 = 0 23 74 137 263 808
𝛾 = 50 45 145 286 439 1489
𝛾 = 100 73 177 393 507 1962
𝛾 = 200 96 208 474 556 2500
𝛾 = 300 114 214 523 584 2861

average speed of the vehicle during collection (𝑠col) and the average
speed from or to the disposal facility (𝑠dep).

We define instances of various sizes with respect to the number of
emand nodes. In particular, we consider 15, 50, 100, 200, and 600
emand nodes, and label these datasets 𝑊 15, 𝑊 50, 𝑊 100, 𝑊 200 and
600, respectively. The smallest dataset (𝑊 15) is used to solve both
ILP formulations to optimality, so that we can compare their perfor-
ance. The largest dataset (𝑊 600) is used to assess the performance of

he heuristic. We assume 𝑚 ∈ {1, 2, 6} and 𝛾 ∈ {50, 100, 200, 300}. This
esults into 12 instances for each dataset, which yields 60 instances
n total. They are labeled 𝑊 𝑥 − 𝛾 − 𝑚, with 𝑥 ∈ {15, 50, 100, 200, 600}.

For the experiments conducted in Section 6.4 we derive additional
instances with 𝛾 = 0 (i.e., no walking distance) to represent the state of
practice. Notice that for the instances with 𝑚 = 1, the C𝑚-CTP-R reduces
to a CTP, and for the ones with 𝑚 = 1 and 𝛾 = 0 (i.e., all demand nodes
need to be visited), the problem becomes a TSP.

The road-network graph associated with each instance is con-
structed according to Section 3.2. It comprises the nodes to be covered
(i.e., the demand nodes) and the nodes that can be visited, which
include both the demand nodes and the nodes representing candidate
locations that lie within the assumed maximum walking distance.
Table 1 shows the characteristics of the road-network graphs associated
with the considered datasets. Notice that the number of candidate
locations |𝑉 sto

| is different for each value of 𝛾, as the ranks are
determined according to this value and 𝑉 sto = ∪𝑖∈𝑊 𝑉 rank

𝑖 . Also notice
that |𝑉 sto

| > |𝑊 | for 𝛾 = 0 because candidate locations on the other
side of the street can be reached at 0 cost (i.e., walking distance),
which is why there are more nodes representing candidate locations
than demand nodes.

Concerning the other parameters, we assume a larger average speed
to go from and to the disposal facility, i.e., 𝑠col = 2 m∕s and 𝑠dep =
14 m∕s. As discussed in Section 3.2, we set the stop penalty value to
𝑡sto = 5 s, which can be interpreted as the time it takes for a vehicle to
break to reach the collection point and to accelerate to resume the tour
(the time to collect the waste is constant to the optimization problem,
see Section 3.3).

The developed computer codes are implemented in Java. The in-
stances were tested on a computer with a 3.4 GHz Intel Core i5
processor, 32 GB of RAM, operating under Windows 10. To solve the
MILP formulations, we use the Gurobi 9.1.2 MIP solver via its Java API.

6.2. Comparison of the MILP formulations

The goal of this section is to test and compare against each other
the MILP formulations introduced in Section 4. We set a three-hour TL
for both formulations on each instance.

Table 2 presents the results of CG and RN for four of the datasets,
namely 𝑊 15, 𝑊 50, 𝑊 100 and 𝑊 200. Note that we exclude dataset
𝑊 600 in this section because of its size. The instances associated with
this dataset are tested in Section 6.3. The table shows the total number
of instances, the number of instances solved to optimality, the number
of instances for which a feasible solution was found (excluding the
ones solved to optimality) and the number of instances for which no
10

w

solution was found. Furthermore, it presents the average and worst
gaps reported by Gurobi for the instances for which the 3-hour TL
was reached. For a fair comparison of the average computation times,
we only consider instances that were solved to optimality by both
approaches, namely 7 instances of dataset W15.

We observe that for the small instances (datasets 𝑊 15 and 𝑊 50)
ither an optimal or a feasible solution was found within the TL,
hereas for almost half of the larger instances (datasets 𝑊 100 and
200) no solution could be found by CG. RN is able to find more

ften optimal solutions than CG, except for the smallest dataset W15,
here both formulations could prove optimality to the same number
f instances. Over all datasets, RN reported lower average and worst
aps for the instances that were not solved to optimality. For the few
nstances solved to optimality by both formulations, RN was faster in
oing so.

Table 3 presents the disaggregated results for each instance. In
articular, it includes the upper bounds, lower bounds, gaps, and
he computation times reported by Gurobi. As already anticipated
n Table 2, we observe that RN is able to find more optimal and
easible solutions, and it is faster in proving optimality for the instances
olved by both formulations. The only instance that CG could solve to
ptimality and RN could not is W15-200-6 for which RN, nevertheless,
eturned the same upper bound and a gap of 0.09%. Furthermore,
egarding solution quality, we observe that for all instances RN found
olutions with better or equally good upper bound values.

These experiments show the superiority of RN both from a com-
utational and solution quality point of view. We now analyze the
mpact of the parameters that define the problem instances (𝑚 and 𝛾)
n the solvability of RN. For the sake of illustration, we only consider
he instances for the dataset 𝑊 100. Table 4 reports the computation
imes (s) for the instances solved to optimality and the gaps reported
y Gurobi (%) for the instances for which the 3-hour TL was reached.
e clearly observe that as 𝛾 and/or 𝑚 increase, RN either takes more

ime in finding the optimal solution or is only able to provide a feasible
olution, while the associated gap also increases.

.3. Validation and performance of the heuristic method

This section aims to validate the heuristic method (H) with re-
pect to the instances solved to optimality by RN and to assess its
erformance for other instances. To this end, we consider the instances
ssociated with datasets 𝑊 50, 𝑊 100, 𝑊 200 and 𝑊 600. Notice that we
xclude dataset 𝑊 15 in this section. We set again a 3-hour TL to run RN
n the selected instances. We terminate H after 100 iterations without
mprovement, where one iteration corresponds to the processing of one
et cover, or after TL at the latest.

Tables 5 and 6 present the results of RN and H for each instance and
nclude the upper bounds, computation times and the gaps of H with
espect to RN (the ones equal to 0 are highlighted in italics). These
aps are computed as the relative difference of the upper bound value
btained with H with respect to the upper bound value reported by RN
i.e., (𝑈𝐵H − 𝑈𝐵RN)∕𝑈𝐵RN).

For the validation of H, we rely on the instances solved to optimality
y RN. We observe in Table 5 that H found solutions with the same
pper bound values as RN for 13 out of 20 instances. In general, RN
as able to find the optimal solution faster mainly for CTP instances
𝑚 = 1), whereas H was faster for 𝑚-CTP instances (𝑚 > 1). For the
even instances where H was not able to find the optimal solutions, it
till provides good solutions with optimality gaps below 1.7%. For two
f these instances, H returned the final solution faster than RN. Note
hat the computational time of H depends on the stopping criterion (in
his case iterations without improvement). A different definition of the
ermination criterion might yield different computational times.

We now assess the performance of H with Table 6. We can see
hat for instances where the 3-hour time limit was reached by RN, H

as always faster (with the exception of the instance W200-200-2) and
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Table 2
Aggregated results of CG and RN formulations for the instances associated with 𝑊 15, 𝑊 50, 𝑊 100 and 𝑊 200 within a 3-hour time limit.
Dataset W15 W50 W100 W200

CG RN CG RN CG RN CG RN

Instances (12 in total)
# optimal 10 10 1 9 0 6 0 4
# feasible 2 2 11 3 9 6 5 8
# no solution 0 0 0 0 3 0 7 0

Average gap (%) 0.47 0.20 12.34 1.99 44.36 10.67 42.40 7.69
Worst gap (%) 0.51 0.30 25.41 3.87 60.53 14.84 87.08 13.21
Average comp. time (s) 1430.90 311.57 1449.23 1.22 – – – –
Table 3
Exhaustive results of CG and RN formulations for the instances associated with 𝑊 15, 𝑊 50, 𝑊 100 and 𝑊 200 (TL corresponds to a 3-hour time limit).

Instance Upper bound Lower bound Gap (%) Comp. time (s)

(𝑊 𝑥 − 𝛾 − 𝑚) CG RN CG RN CG RN CG RN

W15-50-1 6316.65 6316.65 6316.65 6316.65 0.00 0.00 4.37 0.46
W15-50-2 9639.65 9639.65 9639.65 9639.65 0.00 0.00 296.72 9.06
W15-50-6 23165.14 23165.14 23 064.56 23165.14 0.43 0.00 TL 7296.85
W15-100-1 6227.43 6227.43 6227.43 6227.43 0.00 0.00 536.59 1.64
W15-100-2 9511.86 9511.86 9511.86 9511.86 0.00 0.00 4665.50 92.70
W15-100-6 23017.28 23017.28 22 936.35 22947.86 0.35 0.30 TL TL
W15-200-1 5903.72 5903.72 5903.72 5903.72 0.00 0.00 81.25 8.19
W15-200-2 9312.28 9312.28 9312.28 9312.28 0.00 0.00 4038.74 194.59
W15-200-6 22842.15 22842.15 22842.15 22 821.80 0.00 0.09 2935.71 TL
W15-300-1 5791.72 5791.72 5791.72 5791.72 0.00 0.00 61.15 8.73
W15-300-2 9214.01 9214.01 9214.01 9214.01 0.00 0.00 2827.23 1072.63
W15-300-6 22737.43 22737.43 22737.43 22737.43 0.00 0.00 366.50 1416.11
W50-50-1 5524.07 5524.07 5524.07 5524.07 0.00 0.00 1449.23 1.22
W50-50-2 7799.64 7799.64 7513.98 7799.64 3.66 0.00 TL 104.95
W50-50-6 17 640.79 17602.50 17 203.21 17572.24 2.48 0.17 TL TL
W50-100-1 5108.28 5108.28 4938.20 5108.28 3.33 0.00 TL 3.83
W50-100-2 7114.28 7114.28 6806.97 7114.28 4.32 0.00 TL 68.88
W50-100-6 17 331.70 17073.42 16 387.05 17073.42 5.45 0.00 TL 6765.66
W50-200-1 4531.93 4531.93 3967.09 4531.93 12.46 0.00 TL 58.84
W50-200-2 6728.78 6728.78 5792.34 6728.78 13.92 0.00 TL 511.35
W50-200-6 16 750.00 16689.15 15 853.63 16369.51 5.35 1.92 TL TL
W50-300-1 4100.79 4095.78 3363.79 4095.78 17.97 0.00 TL 72.41
W50-300-2 6646.14 6646.13 5589.07 6646.13 15.90 0.00 TL 1956.12
W50-300-6 16 812.28 16572.14 15 744.00 15930.65 6.35 3.87 TL TL
W100-50-1 7175.92 7105.71 5879.78 7105.71 18.06 0.00 TL 8.56
W100-50-2 9164.71 8359.57 6936.61 8359.57 24.31 0.00 TL 187.18
W100-50-6 15 917.92 15460.78 13 069.92 14786.74 17.89 4.36 TL TL
W100-100-1 6188.71 5839.85 3817.19 5839.85 38.32 0.00 TL 84.78
W100-100-2 9379.91 7254.07 5241.78 7254.07 44.12 0.00 TL 8916.96
W100-100-6 – 14545.72 – 12946.90 – 10.99 TL TL
W100-200-1 5741.13 5080.64 3080.23 5080.64 46.35 0.00 TL 3685.47
W100-200-2 8160.49 6602.71 4736.13 6007.99 41.96 9.01 TL TL
W100-200-6 – 13967.06 – 11894.87 – 14.84 TL TL
W100-300-1 5270.71 4225.21 2806.79 4225.21 46.75 0.00 TL 8424.55
W100-300-2 6998.64 5913.35 4535.41 5161.82 35.20 12.71 TL TL
W100-300-6 – 13072.55 – 11491.36 – 12.10 TL TL
W200-50-1 14 458.93 14443.93 11 982.29 14443.93 17.13 0.00 TL 12.89
W200-50-2 – 18456.36 – 18456.36 – 0.00 TL 640.75
W200-50-6 – 36392.00 – 34232.78 – 5.93 TL TL
W200-100-1 12 847.79 12350.29 9515.17 12350.29 25.94 0.00 TL 152.23
W200-100-2 – 16787.85 – 16214.94 – 3.41 TL TL
W200-100-6 – 34918.64 – 31816.50 – 8.88 TL TL
W200-200-1 13 061.79 11006.29 8264.56 11006.29 36.73 0.00 TL 1186.66
W200-200-2 – 15464.28 - 14393.72 – 6.92 TL TL
W200-200-6 – 33546.71 – 30308.73 – 9.65 TL TL
W200-300-1 12 308.15 10447.22 8005.84 10076.56 34.96 3.55 TL TL
W200-300-2 80 077.79 14990.29 12 435.27 13009.79 84.47 13.21 TL TL
W200-300-6 – 33191.00 – 29883.25 - 9.97 TL TL
returned better solutions (smaller upper bound values) for most of them
(22 out of 28 instances). This effect is also visible in the gaps to RN,
which are negative when the upper bound values of H are lower that
those of RN. For the instance W200-200-2, H did only terminate after
the TL was reached, however, it found a better solution than RN with
a gap of −0.15%. For the six instances for which RN found a better
solution than H, the respective gaps are all below 1.3%.
11
Fig. 3 shows the gaps to RN for the considered instances in a boxplot
chart. Fig. 3(a) visualizes the gaps for the instances solved to optimality
by RN (Table 5) and Figs. 3(b) and 3(c) visualize the gaps for the
instances for which RN reached the 3-hour TL (Table 6). The value
below the dataset names refer to the number of instances included in
each of the plots. These plots illustrate in an aggregated way that H
was able to find solutions that are optimal or close to optimality for
instances that were solved to optimality by RN, and returned better
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Fig. 3. Boxplots of the gaps to RN for the instances associated with the datasets 𝑊 50, 𝑊 100, 𝑊 200 and 𝑊 600.
a
m

Table 4
Sensitivity analysis with respect to 𝑚 and 𝛾 for the instances associated with W100
solved by RN (TL corresponds to a 3-hour time limit).
𝛾/𝑚 Comp. time (s) Gap (%)

1 2 6 1 2 6

50 8.56 187.18 TL 0.00 0.00 4.36
100 84.78 8916.96 TL 0.00 0.00 10.99
200 3685.47 TL TL 0.00 9.01 14.84
300 8424.55 TL TL 0.00 12.71 12.10

Table 5
Comparison of results of RN and H for the instances associated with 𝑊 50, 𝑊 100, 𝑊 200
nd 𝑊 600 solved to optimality.
Instance Upper bound Comp. time (s) Gap to RN (%)

(𝑊 𝑥 − 𝛾 − 𝑚) RN H RN H

W50-50-1 5524.07 5524.07 1.22 36.21 0.00
W50-50-2 7799.64 7799.64 104.95 3456.64 0.00
W50-100-1 5108.28 5108.29 3.83 24.66 0.00
W50-100-2 7114.28 7114.29 68.88 2175.56 0.00
W50-100-6 17073.42 17 178.14 6765.66 216.27 0.61
W50-200-1 4531.93 4531.93 58.84 15.58 0.00
W50-200-2 6728.78 6728.79 511.35 72.34 0.00
W50-300-1 4095.78 4095.79 72.41 12.39 0.00
W50-300-2 6646.13 6646.14 1956.12 172.32 0.00
W100-50-1 7105.71 7131.71 8.56 2846.55 0.37
W100-50-2 8359.57 8421.57 187.18 10 182.24 0.74
W100-100-1 5839.85 5839.86 84.78 1212.24 0.00
W100-100-2 7254.07 7254.07 8916.96 8274.15 0.00
W100-200-1 5080.64 5080.64 3685.47 7076.41 0.00
W100-300-1 4225.21 4286.71 8424.55 898.79 1.46
W200-50-1 14443.93 14443.93 12.89 6039.10 0.00
W200-50-2 18456.36 18 488.36 640.75 5554.41 0.17
W200-100-1 12350.29 12 473.29 152.23 5804.01 1.00
W200-200-1 11006.29 11006.29 1186.66 287.86 0.00
W600-50-1 37473.78 38 109.14 1428.52 8902.14 1.70

solutions for most of the instances for which RN found a feasible
solution at the 3-hour TL. The largest gap to RN is −84.62% which
corresponds to the instance W600-300-2.

Fig. 4 visualizes the evolution of the upper bound values over time
or H for some instances of the largest dataset W600. Each point in the
lot represents a new best solution found by the method. We observe
hat H finds solutions quickly and reports the best found solution early
n the solving process, some of them already in the first 15 min. These
esults clearly manifest that H provides good solutions in reasonable
ime and is better suited for real-life applications with instances of
elevant size.
12

d

Table 6
Comparison of results of RN and H for the instances associated with 𝑊 50, 𝑊 100,
𝑊 200 and 𝑊 600 (the RN upper bound corresponds to the feasible solution reported
by Gurobi after a 3-hour time limit (TL)).

Instance Upper bound Comp. time H (s) Gap to RN (%)

(𝑊 𝑥 − 𝛾 − 𝑚) RN H

W50-50-6 17602.50 17664.93 1063.79 0.35
W50-200-6 16689.15 16734.71 149.80 0.27
W50-300-6 16572.14 16728.29 199.49 0.94
W100-50-6 15 460.78 15349.36 4853.35 −0.72
W100-100-6 14 545.72 14187.50 1842.73 −2.46
W100-200-2 6602.71 6614.50 1162.32 0.18
W100-200-6 13 967.06 13677.36 5531.96 −2.07
W100-300-2 5913.35 5872.50 1165.59 −0.69
W100-300-6 13 072.55 12942.00 1334.46 −1.00
W200-50-6 36 392.00 36358.36 2239.42 −0.09
W200-100-2 16 787.85 16747.57 1916.30 −0.24
W200-100-6 34 918.64 34730.57 9604.96 −0.54
W200-200-2 15 464.28 15440.43 TL −0.15
W200-200-6 33546.71 33558.36 4169.61 0.03
W200-300-1 10 447.22 10447.21 1280.51 0.00
W200-300-2 14 990.29 14855.57 1993.02 −0.90
W200-300-6 33 191.00 32724.29 504.41 −1.41
W600-50-2 40 943.57 39093.71 6340.32 −4.52
W600-50-6 158 262.42 49519.21 13636.53 −68.71
W600-100-1 31961.72 32373.93 6987.99 1.29
W600-100-2 39 379.00 33547.86 5109.05 −14.81
W600-100-6 271 135.30 43387.43 883.70 −84.00
W600-200-1 27 550.43 26958.93 3247.14 −2.15
W600-200-2 33 074.79 28377.86 1168.45 −14.20
W600-200-6 – 37991.43 6371.19 –
W600-300-1 23 552.71 23077.29 988.81 −2.02
W600-300-2 160 821.78 24739.57 9980.07 −84.62
W600-300-6 – 35111.36 4506.08 –

6.4. Practical aspects

In this section, we analyze the savings in the total collection time
with respect to door-to-door collection (no walking distance). As pre-
sented in Section 6.3, H performed well in finding good solutions for
all dataset sizes, and is therefore considered as the method to use in
practice. To this end, we consider the solution generated by H (with
the same termination criterion as the one considered in Section 6.3)
for the instances associated with the datasets 𝑊 50, 𝑊 100, 𝑊 200 and
𝑊 600. We then compare it against the heuristic solution of the instance
ssociated with the same dataset and number of tours but with a
aximum walking distance of 𝛾 = 0 m.

Fig. 5 displays the savings (as a percentage) with respect to door-to-
oor collection for each dataset, walking distance (𝛾 > 0) and number
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Fig. 4. Convergence graph of H for instances associated with dataset W600, walking distances 𝛾 = 100 (red), 𝛾 = 200 (blue), 𝛾 = 300 (green), and number of tours 𝑚 ∈ {1, 2, 6}.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Percentage of savings with respect to door-to-door collection (𝛾 = 0) using the heuristic method to generate the solutions (the labels on top of the bars are the number of
ollection points visited in the tours).
o
s
l

f tours (𝑚). In all cases, we observe savings of at least 2% (W50-50-
) up to a maximum of over 50% (W100-300-1) with an average of
5.25%. As expected, the larger the maximum walking distance, the
igher the savings. We observe that going from 𝛾 = 0 m to 𝛾 = 50

m comes with a larger gain in collection time (on average 14.04%)
than increasing 𝛾 further to 100 m, 200 m or 300 m (additional gain
with respect to the previous value of 𝛾 on average 8.85%, 6.81% and
13
4.68%, respectively). The same can be observed with the number of
collection points visited by the tours (labels on top of the bars). Going
from door-to-door collection to 𝛾 = 50 m reduces the number of points
by 50% on average while increasing to 𝛾 = 100 m, 200 m or 300 m
nly removes 40% of the points on average. We also observe that the
avings decrease as the value of 𝑚 increases. This might be due to a
arger geographical distance of the network to the disposal facility 𝜎
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Fig. 6. Solutions of the heuristic approach for all instances of dataset W100.
and consequently a higher constant driving time to dump the waste in
each tour. To analyze the impact of the number of tours (𝑚) on the
locational decision of collection points, we observe that the number of
collection points does not change significantly for different values of 𝑚.
For instance, in Fig. 5(b), for each value of 𝛾 (each color), the resulting
14
number of collection points (i.e., label on top of the bars) is the same
for all values of 𝑚. Taking a closer look at the characteristics of the
municipalities (see Table 1), we note that the savings with respect to
door-to-door collection are independent of the sizes and densities of the
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municipalities. The highest savings could be achieved for W600, which
s the municipality with the highest number of demand nodes.

To visualize the effect of different maximum walking distances on
he number of collection points, Fig. 6 presents the network repre-
entation of the solutions obtained by H for all instances (i.e., 𝛾 ∈
0, 50, 100, 200, 300} and 𝑚 ∈ {1, 2, 6}) of the dataset W100. The tours
re marked in different colors, which helps to easily identify the various
lusters of collection points. For visualization reasons, the disposal
acility is not shown in the images. We observe that with increasing
alking distance (images from bottom to top) the number of visited
odes in the graph decreases which, as discussed above, correlates with
he gain in collection time. Furthermore, the images show that for each
olumn of instances (same value of 𝑚) the clustering of nodes is similar
ased on the areas in which the nodes lie. For each row of instances
same value of 𝛾), we observe a similar selection of collection points,
hich supports the above-mentioned claim that the locational decision
oes not depend on the number of assumed tours.

. Conclusion

In this paper, we formulated and solved the C𝑚-CTP-R, a partic-
lar version of the 𝑚-CTP where the constraints on the length and
umber of nodes of each tour are replaced by vehicle capacity con-
traints. Furthermore, the coverage of demand nodes is determined
y exogenously given ranks that enforce each demand node to be
overed by the first node in its rank which is visited by a vehicle.
e developed a road-network-based MILP formulation and compared

t against a customer-based formulation as typically used in VRP. To
olve practically relevant instances, we proposed a two-phased heuristic
hat first generates sets of nodes to be visited (set covers) and then
etermines the tours that visit them. Finally, we derived multiple
nstances inspired by real-life data from municipalities of Switzerland
o perform extensive experiments. Additionally, we provided practical
nsights of the described waste collection method in contrast with the
tate of practice (door-to-door collection).

The computational experiments in Section 6.2 confirm the advan-
ages of the road-network representation such that the associated for-
ulation (RN) outperforms its customer-based counterpart (CG) and
rovides a more intuitive characterization of the actual network. In
rief, RN was able to find more often optimal and feasible solutions,
btained lower average and worst gaps (reported by Gurobi) and was
aster in proving optimality. Furthermore, the quality of the solutions
ound by RN was better or equally good for all instances.

The proposed heuristic method (H) provides good solutions for the
𝑚-CTP-R and can handle the large instances that RN fails to solve to
ptimality or even fails to find a feasible solution within the given time
imit. This method was able to find optimal solutions for 13 out of the
0 instances solved to optimality by RN and reported optimality gaps
elow 1.7% for the remaining instances. In addition, it found better
olutions for most of the instances for which the exact method failed
t proving optimality within the given time limit. From a practical
erspective, we observe that the larger the maximum walking distance
, the higher the savings in collection time with respect to door-to-door
ollection (𝛾 = 0).

The presented MILP formulation and heuristic method could be
urther extended to accommodate other waste collection methods. For
nstance, an interesting concept results from introducing intermediate
isposal facilities (Markov et al., 2016; Ramos et al., 2020) and an
eterogeneous fleet of vehicles consisting of small vehicles, potentially
lectric, that bring the waste to the intermediate facilities and large
nes that empty them and bring the waste to the disposal facility.
o better represent reality, uncertain waste productions and travel
imes could be modeled by a set of discrete scenarios with the goal to
inimize the worst or average cost over all of them. An interesting per-

pective to be integrated in the introduced problem is the maximization
15

f residents’ satisfaction via a multi-objective approach.
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