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Abstract

Clinical investigations on atrial fibrillation, the most common cardiac arrhyth-
mia, are based on computational models of the cardiac electrophysiology. Accu-
rate high fidelity models are costly and have limited applicability in the clinical
setting, where patient-specific in-silico assessments need to meet the practical
time constraints. To speed up the computations, less accurate but faster low fi-
delity models could be employed. In this work, we develop two low fidelity mod-
els for atrial fibrillation that approximate the monodomain high fidelity model.
One low fidelity model is based on the eikonal model, that we adapt to handle
the re-entries that characterize atrial fibrillation. This model includes the resti-
tution properties computed from the high fidelity model and handles anisotropy.
The other low fidelity model is based on a coarser discretization of the compu-
tational domain. In this model the coarsening of the underlying atrial model is
properly defined and the conduction velocity is adjusted. We assess the similar-
ity of the low fidelity approximations to the high fidelity results in quantitative
and qualitative studies and we explain the discrepancies. The accuracy of the
low fidelity models depends on the considered metric. Here the main focus is
on the inducibility of atrial fibrillation. The characterization of the atrial regions
where the arrhythmia can be induced provides information for the evaluation
and the design of the ablation treatment. Personalized inducibility maps can be
obtained with a multi-fidelity method. The multi-fidelity approach, in which the
high fidelity model and a correlated low fidelity model are combined, leads to a
speed-up compared to single-fidelity approaches.

The eikonal low fidelity model shows a poor agreement to the high fidelity
model in terms of atrial fibrillation inducibility. However, its qualitative accuracy
in simpler numerical experiments and its very low cost (potentially real-time)
make it attractive. This motivates our future interest in optimizing the imple-
mentation and in reducing the discrepancies to the high fidelity model. Instead,
the low fidelity model based on a coarser discretization highly agrees to the high
fidelity model on the atrial fibrillation inducibility. Moreover, thanks to this high
correlation, it performs well in the multi-fidelity framework.
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Chapter 1

Introduction

The heart is an organ whose function is to pump the blood around the body. This
is achieved by a cyclical alternation of contraction and relaxation movements.
The haemodynamics and the mechanics of the heart are ruled by its electrophys-
iological activity, which is determined by a propagating action potential. The
heart is composed of four chambers, two atria in the upper part and two ventri-
cles in the lower part. In normal conditions of sinus rhythm, the action potential
initiated by a group of pacemaker cells on the right atrium propagates to the
left atrium and to the ventricles (Colli Franzone et al. [2014]). In pathological
conditions of arrhythmias, the electrical activity of the heart is irregular. There
are various cardiac arrhythmias and the range of complications is wide. In this
work we focus on atrial fibrillation (AF), the most common cardiac arrhythmia
and a significant contributor to morbidity and mortality (Tsao et al. [2022]) due
to the consequent cardiac dysfunctions and the associated risk of causing strokes
(Schotten et al. [2011]).

AF is characterized by a chaotic electrical activity of the atria, self-sustained
by propagating re-entrant waves in the atrial tissue. AF is triggered by the so-
called ectopic foci, i.e. cells that generate an abnormal electrical stimulation that
hinders and perturbs the normal sinus rhythm. The occurrence of AF is related
to the electric and structural remodeling of the atrial substrate. In particular,
the presence of low-conducting fibrotic tissue is a risk factor. Moreover, AF itself
increases the ectopic activity and enhances the remodeling, thus increasing the
frequency and the duration of AF events (Schotten et al. [2011]). The most
common treatment for AF is ablation, which consists of isolating some parts of the
atrial tissue. If these isolated portions are pro-arrhythmic, ablation reduces the
risk of occurrence of AF. In the early stages of AF, the pulmonary veins isolation is
the standard treatment (Chen et al. [1999]) as the ectopic foci are located in the
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pulmonary veins (Haïssaguerre et al. [1998]). However, due to the progressive
nature of AF, the efficacy of ablation is currently suboptimal in the later stages
of AF. Indeed, there is no ablation strategy optimized to target the regions that
reduce the most the risk of AF occurrence (Verma et al. [2015]) as the location
of the ectopic foci shifts away from the pulmonary veins (Kawai et al. [2019]).
Moreover, the inter-individual variability in atrial geometry and substrate makes
the optimization of the ablation treatment even more challenging.

Computational models of the cardiac electrophysiology are widely used to
perform in-silico patient-specific clinical investigations. The most accurate elec-
trophysiological model is the bidomain model, which consists of two parabolic
equations for the spatio-temporal evolution of the action potential, coupled with
a system of ODEs modeling the ionic properties of the tissue. The propagation
of the action potential is characterized by a steep and short upstroke that deter-
mines the activation of the cells. To capture this upstroke, the numerical solu-
tion of the bidomain equation requires small spatial and temporal discretizations.
Moreover, the bidomain system is degenerate, thus it is not possible to solve it
numerically with fully explicit schemes. These requirements on the discretiza-
tion parameters and on the numerical method often lead to unbearable compu-
tational costs of the bidomain model (Colli Franzone et al. [2014]). It is there-
fore common to resort to reduced models such as the monodomain model. The
monodomain model consists of one parabolic reaction-diffusion equation cou-
pled with the ionic ODE system (Colli Franzone et al. [2014]). The monodomain
system is non-degenerate and can be solved numerically with fully explicit meth-
ods. The monodomain model is computationally feasible and is widely used in AF
studies, e.g. to understand its inducibility and mechanisms (Potse et al. [2018],
Potse [2019], Gharaviri et al. [2020], Gharaviri et al. [2021b], Gharaviri et al.
[2021a]) or to design and evaluate ablation strategies (McDowell et al. [2015],
Boyle et al. [2019]). With appropriate spatial and temporal discretizations, the
monodomain model is an accurate approximation of the bidomain model (Potse
et al. [2006], Nagel et al. [2023]). Thus, in this work, we refer to the mon-
odomain model with sufficiently small discretization parameters as the high fi-
delity model. However, in order to capture the upstroke in the action potential,
the conditions on the discretization parameters remain. Therefore it is compu-
tationally demanding to employ the high fidelity model. The computational cost
of the high fidelity model often affects its applicability to personalized clinical
applications in which the results need to be delivered within practical time con-
straints.

Many ways to speed up the computations have been proposed. One option
is to rely on a faster implementation of the high fidelity model, e.g. based on
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GPUs (Kaboudian et al. [2019]). Alternatively, one could employ a low fidelity
model. The low fidelity models are less accurate, but faster, than the high fi-
delity model. Several low fidelity models are available. First, possible low fidelity
models are given by approximate models based on simplified physics, such as the
eikonal models (Neic et al. [2017], Loewe et al. [2019]). The eikonal models de-
scribe the activation times on the computational domain. The pure eikonal model
(Colli Franzone et al. [1990a]) does not capture the effects of the wavefront cur-
vature on the action potential propagation. The eikonal-diffusion (Colli Franzone
et al. [1990b]) and the eikonal-curvature (Keener [1991]) models are extensions
of the pure eikonal model that include the curvature effects. Contrary to the
eikonal-curvature model, the eikonal-diffusion model also captures the bound-
ary and the front collision effects on the action potential propagation (Pullan
et al. [2002]). The eikonal models are computationally cheap since there is no
time component in the underlying space dependent equations. Moreover, as the
eikonal equations describe the time when the upstroke in the action potential
occurs instead of the action potential itself, the eikonal models allow for a larger
spatial discretization compared to the monodomain model. However, the coarse
discretization and the fact that the eikonal approximations do not model the ionic
properties of the cardiac tissue might lead to imprecise simulations of the ac-
tion potential propagation. The reaction-eikonal equations (Neic et al. [2017])
allow to include the ionic model into a system that can be solved numerically
with less computational resources compared to the monodomain system. This
is achieved by approximating the diffusive term of the monodomain equation
with a term based on the eikonal activation times. The reaction-eikonal mod-
els are thus more accurate than the other eikonal models. However, since the
reaction-eikonal equations involve a temporal component and the ionic model,
the reaction-eikonal models are computationally more expensive than the other
eikonal models. Second, another possible low fidelity model can be obtained by
simply using a coarser discretization of the computational domain in the numer-
ical solution of the high fidelity equations (Dhamala et al. [2020], Pagani et al.
[2021]). When explicit numerical schemes are used to solve the high fidelity
equations, the larger spatial resolution is complemented by a larger time step.
The coarser discretization parameters might lead to an imprecise description of
the action potential propagation, but allow to reduce the computational cost.
Finally, another possibility for low fidelity models is provided by reduced-order
modeling (Fresca et al. [2020], Cicci et al. [2022]). Model reduction is achieved
by projecting the high fidelity model equations or solution onto a basis with lower
dimension compared to the original basis.

In this work, the main focus is on the inducibility of AF. In computational
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studies, the AF inducibility is often evaluated from the outcome of a tissue stim-
ulation by a pacing protocol (McDowell et al. [2015], Potse et al. [2018], Potse
[2019], Boyle et al. [2019], Gharaviri et al. [2021b], Gharaviri et al. [2021a]).
The pacing protocol consists of a train of stimuli delivered from a given a pac-
ing site. Depending on the pacing site, the stimulation might induce AF or not.
Specifically, if the pacing results in a vanishing wave, then the induction of AF is
not successful. Instead, if the pacing results in a self-sustained activity, then the
induction of AF is successful. Depending on the result of the stimulation (if AF is
induced or not), one can associate a class to each location of the atria. This binary
classification defines the inducibility map of the atria, i.e. a map associating the
class labels to the points on the atrial domain. The inducibility map provides use-
ful information for designing and evaluating ablation strategies. Indeed, given a
patient-specific atrial model, the inducibility map shows the regions that trigger
AF, which might be the target of a personalized ablation treatment. Moreover,
the inducibility map can be reduced into the metric defined as the fraction of tis-
sue where AF is inducible. Thus, in the case of several ablation therapies being
available, the inducibility metric allows to determine which therapy is the one
that mostly reduces the risk of occurrence of AF.

The exploration of the whole atrial domain to obtain the inducibility map
is unfeasible. Therefore, the inducibility map must be obtained from few local
evaluations of the inducibility. The classification output is computed only at the
locations included in the so-called training set. For the pacing sites of the training
set, the inducibility is evaluated from the outcome of the simulation of the elec-
trical activity during and after the pacing protocol. For all the other locations of
the atria, the class label is estimated from the training data with a classification
method (Neal [1998], Rasmussen and Williams [2006], Nickisch and Rasmussen
[2008]). In the patient-specific case, the inducibility map needs to be obtained
within clinical time constraints and, therefore, the computational budget is re-
stricted. As a consequence, the number of high fidelity simulations is limited and
the accuracy of the classification in the whole atrial domain might be affected by
the low amount of training data. Moreover, the selection of the pacing sites to in-
clude in the training set might also affect the accuracy of the classification (Boyle
et al. [2021]). Compared to single-fidelity methods, multi-fidelity approaches
can reach higher accuracy with a fixed computational cost or, equivalently, can
reach a target accuracy with a lower computational cost (Kennedy and O’Hagan
[2000], Perdikaris et al. [2016], Quaglino et al. [2018], Quaglino et al. [2019],
Sahli Costabal et al. [2019]). The idea is to combine training data obtained from
the high fidelity model and training data obtained from a low fidelity model.
The speedup is achieved by offsetting most of the computational burden to the
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cheap low fidelity model, thus allowing a wider inspection of the atrial domain.
The improved accuracy is achieved if the low fidelity model is sufficiently corre-
lated to the high fidelity model. Note that our approach to obtain personalized
inducibility maps is to train a classifier for each patient-specific atrial anatomy.
An alternative, simulation-free, approach is to train a classifier that predicts the
inducibility outputs from the patient-specific atrial anatomy itself (Sahli Costabal
et al. [2023]).

Gaussian processes (GPs) perform well in predicting classification and re-
gression outputs when limited data is available. Moreover, GPs are of Bayesian
type and include the uncertainty in the predictions (Neal [1998], Rasmussen
and Williams [2006]). GP classification is more challenging than GP regression
since there is no closed expression of the likelihood and some approximations
are needed to obtain predictions (Nickisch and Rasmussen [2008]). Another
challenging aspect is the extension of the GP classification and regression from
Euclidean spaces to Riemannian manifolds such as the atrial surface. Indeed,
GPs depend on covariance functions that need to be positive semi-definite. The
covariance functions are typically based on the concept of distance and naively
accounting for the geodesic distance instead of the Euclidean distance does not
guarantee the positive semi-definiteness property (Pezzuto et al. [2019]). The
most used covariance function in the machine learning community is the Matérn
kernel (Rasmussen and Williams [2006]). The extension of Matérn GPs to Rie-
mannian manifolds has been introduced in Borovitskiy et al. [2020]. In the
cardiac modeling literature, GP classification has been performed on Euclidean
spaces (Sahli Costabal et al. [2019], Sahli Costabal et al. [2020]), whereas GP re-
gression has also been performed on manifolds (Coveney et al. [2019], Coveney
et al. [2020]). The extension of the GP prediction to the multi-fidelity framework
has been introduced in Kennedy and O’Hagan [2000]. Multi-fidelity GP classifi-
cation has been performed in Sahli Costabal et al. [2019] on Euclidean spaces.
The methodology presented in Gander et al. [2022] extends the multi-fidelity GP
classification to manifolds. This methodology is a novel procedure that can be
applied to estimate atrial inducibility maps. This GP classification method takes
advantage of the low fidelity models and incorporates the topological properties
of personalized atrial anatomies.

In this work, the goal is to develop novel low fidelity models for atrial fibrilla-
tion, either based on the eikonal model or based on a coarser discretization of the
computational domain. We assess the quality of the low fidelity approximations
in quantitative studies and in numerical experiments. We also provide explana-
tions for the discrepancies compared to the high fidelity results. As a novelty,
the numerical experiments include an assessment of the correlation between the
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high and the low fidelity models when used to evaluate the AF inducibility. If the
correlation is adequate, we employ the low fidelity model in the multi-fidelity
GP classification method of Gander et al. [2022] to estimate inducibility maps.
We then compare the resulting estimate to the estimates resulting from single-
fidelity approaches in terms of accuracy and computational cost. The goal is to
understand which strategies reach higher accuracies with given computational
cost.

Among the eikonal models we choose the pure eikonal model. We exclude
the reaction-eikonal model because it is computationally more expensive than
the other eikonal models and here we want to focus on cheap low fidelity mod-
els. The other eikonal models describe the activation times of a single activation.
During AF events the electric activity is characterized by re-entries that imply
several activations. In particular, the cardiac cells alternate between the depo-
larized, the repolarized and the excitable states. The cells are initially in the
excitable state, meaning that they can activate. If the activation occurs, the cells
become depolarized. When the activation is over, the cells move to the repo-
larized state until they become excitable again. Therefore, to apply the eikonal
models to the simulation of AF, we have to include the re-excitability of the tissue
in order to model the activation times of multiple activations. The pure eikonal
equation can be solved by algorithms that iteratively pass through the nodes of
the computational mesh and update the corresponding activation times. These
algorithmic solution methods are suitable for adaptations such as the inclusion
of the re-excitability. The iterative algorithms could, in principle, be applied also
to solve the eikonal-curvature equation. However, at each iteration, the solution
would need an estimate of the wavefront curvature. Instead, the iterative algo-
rithms can not be applied to solve the eikonal-diffusion equation, because of the
global coupling due to the diffusion term. These facts determine our focus on
the pure eikonal model. The most common iterative algorithms for the solution
of the pure eikonal equation are the fast marching method (FMM) (Kimmel and
Sethian [1998], Sethian and Vladimirsky [2000]) and the fast iterative method
(FIM) (Fu et al. [2011]). Contrary to the FIM, the FMM is a single-pass algo-
rithm that guarantees the monotone acceptance of the activation times. These
properties are suitable for the adaptation to account for the re-excitability and
determine our choice of the FMM. The FMM is a Dijkstra-like method that con-
siders updates coming from the elements of the mesh, contrary to the standard
Dijkstra’s method (Dijkstra [1959]) that only allows updates from the edges. In
this work, we adapt the FMM algorithm to take into account the re-excitability
and we compare the resulting eikonal low fidelity model to the monodomain
high fidelity model in some 2D numerical experiments and in terms of AF in-
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ducibility on a 3D atrial geometry. This task has many challenging aspects. First,
the restitution properties describing the re-excitability need to be incorporated
in the algorithm. These restitution properties include the description of the ac-
tion potential duration (APD) and of the conduction velocity (CV) as a function
of the diastolic interval (DI). The APD is the time between the activation and
the repolarization. The DI is the time between the repolarization and the next
activation. Here, in order to maximize the similarity to the high fidelity model,
we use the restitution properties of the monodomain model, that we need to
compute. Second, the influence of heterogeneities in the tissue conductivity on
the eikonal approximation has to be analyzed, since the pure eikonal model does
not account for the resulting diffusion currents. To this end, we perform a quan-
titative comparison between the monodomain and the eikonal propagations in
presence of discontinuities in conductivity due to the presence of fibrosis. Third,
in order to guarantee the convergence of the FMM to the viscosity solution of
the eikonal equation, the computational mesh needs to satisfy an acuteness con-
dition (Mirebeau [2012], Mirebeau [2014]). It is not straightforward to satisfy
this requirement, mostly in the anisotropic case, where the acuteness is intended
with respect to the metric defined by the fibers direction and the anisotropy ratio.
Here we adapt the computational mesh to the metrics using the Mmg software
(Dobrzynski and Frey [2008]). Fourth, if the computational mesh of the eikonal
low fidelity model is coarser than the computational mesh of the monodomain
high fidelity model, then a proper mapping of the anatomical features from the
monodomain mesh to the eikonal mesh needs to be defined. Finally, a pacing
protocol needs to be designed to evaluate the AF inducibility with the eikonal
low fidelity model. Here we follow the idea introduced in Azzolin et al. [2021],
which consists of stimulating as soon as the pacing site becomes re-excitable.

In the literature, fast simulations of re-entries have mostly been carried out
using reaction-eikonal models or combinations of the monodomain model and
an eikonal model. In Jacquemet [2010] and Jacquemet [2012], re-entries along
prescribed pathways are generated by combining the monodomain model with
a generalization of the eikonal-diffusion model that handles re-entries. In Cor-
rado and Zemzemi [2018], a reaction-eikonal model is used to simulate a train
of stimuli. The same reaction-eikonal model is used in Gassa et al. [2021] to
simulate re-entries induced by S1-S2 stimulations, i.e. stimulations at two differ-
ent locations. In Barrios Espinosa et al. [2022], the monodomain model and the
pure eikonal model solved with the FIM are alternated to generate a re-entry on a
ring with the S1-S2 stimulation. In few works the solution algorithm for the pure
eikonal model has been modified to handle re-entries. Our approach is similar to
the one presented in Sermesant et al. [2007] and in Pernod et al. [2011], where
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the FMM is combined with a time-stepping to account for the re-excitability. In
Sermesant et al. [2007] the modified algorithm is only used to simulate a train
of stimuli. In Pernod et al. [2011] an interactive simulator that allows to design
and test ablation strategies is presented. There the authors also show an exam-
ple of a re-entry generated by a periodic pacing in presence of scars and isthmus,
i.e. respectively non-conducting and low-conducting tissue. A similar approach
has also been presented in Corrado and Zemzemi [2018], but using the Dijk-
stra’s method. In this work, contrary to Sermesant et al. [2007], Pernod et al.
[2011] and Corrado and Zemzemi [2018], the modified algorithm also includes
the restitution curves of the APD and the CV computed from the monodomain
model combined with the ionic model of the human atria. Moreover, here we
take care of the convergence of the FMM to the viscosity solution of the eikonal
equation. Furthermore, in this work we present the first attempt to evaluate the
AF inducibility from a pacing protocol using the pure eikonal model.

The comparison in terms of AF inducibility between the high fidelity model
and the low fidelity model based on a coarser discretization of the computa-
tional domain is less complex. Indeed, the low fidelity model based on coarser
discretization parameters includes the restitution properties, it deals with the
conduction heterogeneity and the anisotropy in the same manner as the high
fidelity model and it inherits the pacing protocol from the high fidelity model.
However, some aspects require some care. The computational mesh of the mon-
odomain model is coarser in the low fidelity case than in the high fidelity case.
Therefore, we have to define a proper mapping of the anatomical features from
the fine to the coarse mesh. Moreover, the coarser spatial discretization in the
low fidelity model affects the CV (Pezzuto et al. [2016]). Thus, in order to maxi-
mize the correlation between the two models, we adjust the CV of the low fidelity
model to match the CV of the high fidelity model.

This work is organized as follows. The main aspects of cardiac electrophys-
iology and AF are introduced in Chapter 2. The high fidelity model of AF is
introduced in Chapter 3. The eikonal low fidelity model with re-excitability and
several tests of its similarity to the high fidelity model are presented in Chapter 4.
The low fidelity model based on coarser discretization parameters and a test of
its correlation to the high fidelity model in terms of AF inducibility are presented
in Chapter 5. The multi-fidelity classification method to predict AF inducibility
maps is presented in Chapter 6, together with the study of its accuracy and cost
compared to single-fidelity approaches. Conclusions are drawn in Chapter 7.

Some of the numerical results presented in this work are visualized in the
videos available at https://drive.google.com/drive/folders/1bAEHYhed8_

2gKVPz8k5rLoqZP4YUWPEl?usp=sharing.

https://drive.google.com/drive/folders/1bAEHYhed8_2gKVPz8k5rLoqZP4YUWPEl?usp=sharing
https://drive.google.com/drive/folders/1bAEHYhed8_2gKVPz8k5rLoqZP4YUWPEl?usp=sharing


Chapter 2

Cardiac electrophysiology and atrial
fibrillation

The heart is an organ composed of four chambers, namely two atria in the upper
part and two ventricles in the lower part. Figure 2.1 shows the cardiac anatomy.
The cardiac function is to pump blood around the body. In particular, the right

Figure 2.1. Cardiac anatomy and blood circulation. Source: https://www.

texasheart.org/heart-health/heart-information-center/topics/heart-anatomy.

chambers pump the deoxygenated blood through the pulmonary artery to the
lungs, where it gets oxygenated, and back to the heart through the pulmonary
veins. The left chambers then pump the oxygenated blood through the aorta
around the body, where it deoxygenates, and back to the heart through the ve-

9

https://www.texasheart.org/heart-health/heart-information-center/topics/heart-anatomy
https://www.texasheart.org/heart-health/heart-information-center/topics/heart-anatomy
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nae cavae (Colli Franzone et al. [2014]). The blood circulation in the heart is
illustrated in Figure 2.1. The cardiac function is ruled by a cyclical alternation of
contraction and relaxation movements. The haemodynamics and the mechan-
ics of the heart are regulated by its electrophysiological activity (Colli Franzone
et al. [2014]).

In this chapter we introduce the cardiac electrophysiology and the pathologi-
cal condition of AF. The cardiac electrophysiology is presented in Section 2.1 and
AF is presented in Section 2.2.

2.1 Cardiac electrophysiology

In this section we present the main aspects of the cardiac electrophysiology. At
the cellular level, the electrical activity is ruled by ion fluxes between the in-
tracellular and the extracellular spaces, across the ion channels located on the
cellular membrane. The flow of ionic currents leads to an action potential, that
is a strong variation in the transmembrane potential, i.e. the difference between
the intracellular and the extracellular potentials (Colli Franzone et al. [2014]).
The action potential consists of the five phases shown in Figure 2.2. The action

Figure 2.2. Action potential phases. Source: https://en.wikipedia.org/wiki/

Cardiac_action_potential.

https://en.wikipedia.org/wiki/Cardiac_action_potential
https://en.wikipedia.org/wiki/Cardiac_action_potential
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potential is determined by the Na+, K+, Cl− and Ca2+ ions carried by several
ionic currents. Phase 0 is the depolarization, during which the excitable cell ac-
tivates and the transmembrane potential rapidly increases. The upstroke is due
to the inflow of Na+ ions carried by the rapid INa current. Phase 1 is a small
downward deflection of the transmembrane potential. The deflection is due to
the outflow of K+ and Cl− ions, respectively carried by the transient outward
Ito1 and Ito2 currents. Phase 2 is the plateau, during which the transmembrane
potential is roughly constant. The plateau is due to the balance between the
inflow of Ca2+ ions, carried by the L-type ICaL current, and the outflow of K+

ions, carried by the slow delayed rectifier IKS current. Phase 3 is the repolariza-
tion, during which the cell inactivates and the transmembrane potential rapidly
decreases. The downstroke is due to a net outward current caused by the out-
flow of K+ ions, carried by the slow and the rapid delayed rectifier IKS and IKR

currents, and the inflow of K+ ions, carried by the inward rectifier IK1 current.
Phase 4 is the resting phase, during which the transmembrane potential takes its
resting value and the cell becomes re-excitable. The resting value is maintained
by the inward rectifier IK1 current. The mentioned ionic currents are those that
mostly contribute to an action potential. Other currents also play a role in the
cardiac electrophysiology. These include pump currents and exchanger currents
(Colli Franzone et al. [2014]).

The excitable cells compose the cardiac tissue and their electric connections
allow the propagation of the action potential. The electric connections are called
gap junctions and connect the cells longitudinally or transversally. The action po-
tential conduction is anisotropic, as it is faster along the longitudinal direction
than along the transversal direction. Most connections are longitudinal and form
the so-called cardiac fibers. The fibers show a laminar organization radially be-
tween the external part of the chamber walls (the epicardium) and the internal
part (the endocardium) (Colli Franzone et al. [2014]). For more details on the
cellular organization, we refer to Keener and Sneyd [2009b]. The cardiac con-
duction system is shown in Figure 2.3. In normal conditions of sinus rhythm,
the sinoatrial node, which is located in the right atrium, is a natural pacemaker
that initiates and regulates the action potential at each beat. The action potential
that originates from the sinoatrial node then propagates through the right atrium
and to the left atrium through the Bachmann’s bundle. When the action poten-
tial reaches the atrioventricular node, which is located at the base of the atria,
it propagates through the His bundle and the Purkinje network to the ventricles
(Colli Franzone et al. [2014]).
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Figure 2.3. Cardiac conduction system. Source: https://www.teachpe.com/

anatomy-physiology/the-heart-conduction-system.

2.2 Atrial fibrillation

In this section we present the main aspects of AF, the most common cardiac ar-
rhythmia. AF is characterized by an abnormal electrical activity of the atria. We
first introduce the atrial anatomy and some specific aspects of the atrial electro-
physiology. Then, we move to the pathological condition of AF.

The atrial anatomy is shown in Figure 2.4. The left atrial geometry includes
the pulmonary veins and the left atrial appendage (LAA). The right atrial geome-
try includes the venae cavae and the right atrial appendage (RAA). The coronary
sinus and some interatrial connections are also part of the geometry. Moreover,
there are some bundles, namely the Bachmann’s bundle and the trabecular net-
works, which are shown in panels E and F of Figure 2.4. In the Bachmann’s
bundle, the CV along the fibers direction is higher compared to the other regions
of the atria. The lines in Figure 2.4 show the fibers orientation. The epicardial
fibers are shown in panels A and B, whereas the endocardial fibers are shown
in panels C and D. Notice that, since in the region between the inferior and the
superior vena cava the conduction is isotropic, the intercaval region has no fiber
orientation (Gharaviri et al. [2020]).

The atria and the ventricles show some electrophysiological differences that
are mainly due to differences in the density of some ionic currents and in the
kinetics of some repolarizing currents. In particular, the plateau phase is less
pronounced in the atria than in the ventricles, leading to a shorter APD, which

https://www.teachpe.com/anatomy-physiology/the-heart-conduction-system
https://www.teachpe.com/anatomy-physiology/the-heart-conduction-system
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Bachmann’s 
Bundle

Trabecular 
networks

Inferior 
caval vein

(A)
(B)

(C)

(E)

(D)

(F)

Figure 2.4. Atrial anatomy and fibers orientation. Left column: anterior view.
Right column: posterior view. Panels A and B: epicardium. Panels C and D:
endocardium. Panels E and F: bundles. Source: Gharaviri et al. [2020].

corresponds to the time between the activation and the repolarization. Moreover,
the atrial cells are more excitable than the ventricular cells, which means that the
critical size or strength of a stimulus needed to generate an action potential is
lower in the atria than in the ventricles (Schotten et al. [2011]).

AF is characterized by a chaotic electrical activity of the atria. AF is triggered
by abnormal electrical stimulations that occur away from the sinoatrial node, at
the so-called ectopic foci. Under certain circumstances, this ectopic activity alters
the normal sinus rhythm and induces a self-sustained electrical activity character-
ized by re-entrant waves that propagate in the atrial tissue. The ectopic activity
is due to abnormal conditions that produce a cellular Ca2+ overload. The excess
Ca2+ is then ejected by the INaCa exchanger current, which produces an inflow
of Na+ that initiates an action potential (Schotten et al. [2011]). The induc-
tion of an AF event from the ectopic activity needs to be favored by a remodeled
substrate. The remodeling is both electric and structural. The electric remodel-
ing consists of a shortening of the effective refractory period (ERP), which is the
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time between activation and re-excitability. The structural remodeling consists
of atrial tissue features that imply a slower and more heterogeneous conduc-
tion. The presence of endomysial fibrosis is the main feature of the structural
remodeling. The fibrous tissue is located between the fibers, thus hindering the
transversal propagation of the action potential and increasing the anisotropy.
Another feature of the structural remodeling is the altered connexin expression,
which consists of a reduction of the transversal gap junctions that increases the
anisotropy. The structural remodeling can be caused by aging or by underlying
heart diseases such as heart failure. An altered autonomic activity can be the
cause of the electric remodeling and the Ca2+ overload (Schotten et al. [2011]).

AF causes the atrial contractile dysfunction, which affects the haemodynam-
ical activity and increases the thromboembolic risk. If a clot forms and then gets
pumped to the brain, it can cause a stroke. It is estimated that 20%−25% of all
strokes are due to AF (Schotten et al. [2011]). Therefore AF is a major contribu-
tor to mortality (Tsao et al. [2022]). AF also causes other heart diseases, such as
atrial dilatation, cellular hypertrophy and atrial stretch, i.e. atrial pressure and
volume overload (Schotten et al. [2011]). Hence AF is also a major contribu-
tor to morbidity (Tsao et al. [2022]). Moreover, AF promotes AF by increasing
the ectopic activity and by enhancing the remodeling. Indeed, AF itself or its
consequences cause cellular Ca2+ overload, shortening of the ERP and forma-
tion of fibrosis. As a consequence, in patients, the frequency and the duration of
AF episodes increases over time. In the early stages of AF (paroxysmal AF) the
episodes are rare and self-terminating, whereas in later stages of AF (persistent
AF), the episodes are more frequent and sustained (Schotten et al. [2011]).

The most common treatment for AF is ablation, which consists of creating
some isolation lines on the atrial tissue. The ablation lines have the effect of iso-
lating some parts of tissue and, if these isolated portions are pro-arrhythmic, ab-
lation reduces the risk of occurrence of AF. In paroxysmal AF, the ectopic foci are
located in the pulmonary veins (Haïssaguerre et al. [1998]) and the pulmonary
veins isolation is the standard treatment (Chen et al. [1999]). However, in per-
sistent AF, the location of the ectopic foci shifts away from the pulmonary veins
(Kawai et al. [2019]) and currently there is no ablation strategy optimized to tar-
get the regions that reduce the most the risk of an AF event (Verma et al. [2015]).
The efficacy of ablation is thus suboptimal in persistent AF patients. Other treat-
ments for AF such as pharmacological cardioversion and antiarrhythmic drugs
also have limited efficacy (Schotten et al. [2011]). Instead, the anticoagulation
therapy to reduce the thromboembolic risk is efficient, but it is potentially harm-
ful and it does not prevent AF (Schotten et al. [2011]).



Chapter 3

High fidelity model of atrial fibrillation

In this chapter we present the high fidelity model of the AF electrophysiology. At
the cellular level, the electrical activity is described by the ionic model. At the
tissue level, the propagation of the action potential is described by the bidomain
model, which considers the intracellular and the extracellular domains and mod-
els the intracellular and the extracellular potentials. The numerical solution of
the equations involved in the bidomain model is excessively computationally de-
manding. Therefore we must resort to the monodomain model, which is a com-
monly used approximation of the bidomain model. The monodomain equation
models the transmembrane potential, which is defined as the difference between
the intracellular and the extracellular potentials (Colli Franzone et al. [2014]).
Throughout this work we consider the monodomain model to be our high fidelity
model.

In this work we focus on AF, so we present the high fidelity model on the atrial
domain. The ionic model of AF is introduced in Section 3.1. The bidomain and
the monodomain models are introduced in Sections 3.2 and 3.3, respectively. The
pacing protocol to evaluate the AF inducibility is presented in Section 3.4. Our
discretized atrial model is presented in Section 3.5 and the numerical solution of
the monodomain equation is presented in Section 3.6.

3.1 Ionic model of atrial fibrillation

As described in Section 2.1, the cellular electrophysiological activity is driven by
ion flows across the ion channels located on the membrane. In this section we
introduce the ionic model that describes these ion flows. We consider the atrial
tissue Ω ⊂ R3 and the time interval (0, T ). The ionic model describes the ionic
current Iion(v, w , c): Ω×(0, T )→ R as a function of the transmembrane potential

15
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v : Ω× (0, T )→ R, the nw gating variables w : Ω× (0, T )→ Rnw and the nc ionic
concentrations c : Ω×(0, T )→ Rnc . The transmembrane potential is the potential
difference across the membrane, the gating variables describe the proportion of
open ion channels and the ionic concentrations refer to the intracellular domain.
The gating variables and the ionic concentrations are modeled by an ODE system
of the form

¨

∂
∂ t w (x , t)−Gw (v, w ) = 0,
∂
∂ t c(x , t)−Gc(v, w , c) = 0.

(3.1)

We refer to Keener and Sneyd [2009a] and Colli Franzone et al. [2014] for more
details on the ionic models.

Several ionic models exist and each model is specific for one membrane type.
The ionic model for the human atria is the Courtemanche-Ramirez-Nattel model
(Courtemanche et al. [1998]). This model describes the total ionic current Iion as
a sum of 12 currents which depend on nw = 12 gating variables and nc = 3 ionic
concentration variables. In this work we consider this ionic model with some
adaptations to the AF phenotype that capture the shortening of the ERP due to
the electric remodeling. Additionally, the expressions for the rate coefficients of
some gating variables are smoothed in order to increase the numerical stability
(Potse [2019]).

The cell membrane separates the charges at the intracellular and extracellular
domains, therefore it can be seen as a capacitor. The capacitance is defined as
Cm =Q/v, where Q : Ω× (0, T )→ R is the charge across the membrane and v is
the voltage potential needed to hold the charge. Assuming that the capacitance
Cm ∈ R is constant, the capacitative current Icap : Ω× (0, T )→ R is given by

Icap(x , t) =
∂

∂ t
Q(x , t) = Cm

∂

∂ t
v(x , t).

The cell membrane can be modeled as an electrical circuit with a capacitor and
a resistor (Keener and Sneyd [2009a], Colli Franzone et al. [2014]). The trans-
membrane current Im : Ω× (0, T )→ R is thus the sum of the capacitative current
Icap and the ionic current Iion, i.e.

Im(x , t) = Cm
∂

∂ t
v(x , t) + Iion(v, w , c). (3.2)

3.2 Bidomain model

The action potential propagation on the tissue is modeled by the bidomain equa-
tion, that we derive in this section following Colli Franzone et al. [2014]. We
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consider the intracellular and extracellular domains Ωi and Ωe, respectively, of
the atrial tissue Ω = Ωi ∪Ωe. The intracellular and extracellular domains coex-
ist everywhere on the tissue. We consider the average current densities J i : Ω×
(0, T ) → R3 and Je : Ω × (0, T ) → R3 per unit area and the applied currents
Iapp,i : Ω×(0, T )→ R and Iapp,e : Ω×(0, T )→ R in the intracellular and extracellu-
lar domains, respectively. The applied currents Iapp,i and Iapp,e and the transmem-
brane current Im derived in Section 3.1 are meant per unit area. The intracellular
and extracellular applied currents iapp,i : Ω×(0, T )→ R and iapp,e : Ω×(0, T )→ R
and the transmembrane current im : Ω× (0, T )→ R per unit volume are given by

iapp,i(x , t) = β Iapp,i(x , t), iapp,e(x , t) = β Iapp,e(x , t), im(x , t) = β Im(x , t), (3.3)

where β ∈ R is the surface-to-volume ratio. By the current conservation law on
a generic volume V we have

¨

− 1
|V |

∫

∂ V
J i(x , t) · n(x )dσx =

1
|V |

∫

V
im(x , t)dx − 1

|V |

∫

V
iapp,i(x , t)dx ,

1
|V |

∫

∂ V
Je(x , t) · n(x )dσx =

1
|V |

∫

V
im(x , t)dx + 1

|V |

∫

V
iapp,e(x , t)dx ,

where |V | is the volume size of V , ∂ V is the surface of V and n is the outward
normal at ∂ V . Note that the transmembrane current im is considered to flow
from the intracellular to the extracellular domain. By taking the limit as |V | → 0
we get

¨

∇ · J i(x , t) = −im(x , t) + iapp,i(x , t),

∇ · Je(x , t) = im(x , t) + iapp,e(x , t).
(3.4)

We also consider the intracellular and extracellular potentials ui : Ω× (0, T )→ R
and ue : Ω× (0, T )→ R, respectively. By Ohm’s law we have

¨

J i(x , t) = −Di(x )∇ui(x , t),

Je(x , t) = −De(x )∇ue(x , t),
(3.5)

where Di : Ω → R3×3 and De : Ω → R3×3 are the intracellular and extracellular
conductivity tensors, respectively. The tissue anisotropy due to the fibers orien-
tation is encoded in the conductivity tensors, which are defined as

Di,e(x ) = σ
l
i,e(x ) f l(x ) f

ᵀ
l (x ) +σ

t
i,e(x ) f t(x ) f

ᵀ
t (x ) +σ

n
i,e(x ) f n(x ) f

ᵀ
n(x ), (3.6)

where f l : Ω → R3 is the local fiber direction, f t : Ω → R3 is the direction
transversal to the fiber and tangent to the radial lamina and f n : Ω→ R3 is the di-
rection orthogonal to both the fiber and the radial lamina. Moreover σl

i : Ω→ R,
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σt
i : Ω → R, σn

i : Ω → R and σl
e : Ω → R, σt

e : Ω → R, σn
e : Ω → R are the con-

ductivities respectively along the directions f l , f t , f n in the intracellular and
extracellular domains, respectively. Note that f l , f t and f n are the orthonor-
mal eigenvectors of the conductivity tensors and the conductivities are the cor-
responding eigenvalues.

The domain Ω is assumed to be insulated, therefore on the boundary ∂Ω the
no current flow conditions

¨

n(x )ᵀJ i(x , t) = 0,

n(x )ᵀJe(x , t) = 0
(3.7)

must be assigned, where n : ∂Ω→ R3 is the unit outward normal to ∂Ω. Addi-
tionally, initial conditions of the form

v(x , 0) = v0(x ), w (x , 0) = w 0(x ), c(x , 0) = c0(x ) (3.8)

must also be assigned, where v0 : Ω→ R, w 0 : Ω→ Rnw and c0 : Ω→ Rnc repre-
sent the resting state of the system.

By combining the Equations (3.1)-(3.5), (3.7) and (3.8) we obtain the bido-
main system



























∇ · (Di∇ui) = β
�

Cm
∂
∂ t v + Iion(v, w , c)− Iapp,i

�

in Ω× (0, T ),

∇ · (De∇ue) = β
�

−Cm
∂
∂ t v − Iion(v, w , c)− Iapp,e

�

in Ω× (0, T ),
∂
∂ t w −Gw (v, w ) = 0, ∂

∂ t c −Gc(v, w , c) = 0 in Ω× (0, T ),

nᵀDi∇ui = 0, nᵀDe∇ue = 0 in ∂Ω× (0, T ),

v(·, 0) = v0(·), w (·, 0) = w 0(·), c(·, 0) = c0(·) in Ω.

(3.9)

This system is composed of two parabolic equations, the ionic ODE system and
the boundary and initial conditions. The bidomain system is degenerate, as the
sum of the two parabolic equations does not depend on the time derivative of
v. Therefore, fully explicit schemes can not be employed to solve the bidomain
equation numerically. Moreover, the numerical solution of the bidomain equa-
tion requires a fine spatial discretization and a small time step to capture the steep
and short upstroke that characterizes the transmembrane potential v during the
activation. Under these constraints, the numerical computations are often unfea-
sible, so it is common to resort to approximated models. A common approxima-
tion is given by the monodomain model presented in Section 3.3 (Colli Franzone
et al. [2014]).
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3.3 Monodomain model

In this section we derive the monodomain approximation following Colli Fran-
zone et al. [2014]. The monodomain model describes the transmembrane po-
tential v(x , t) = ui(x , t) − ue(x , t) under the assumption that the intracellular
and the extracellular domains have the same anisotropy ratio. We consider the
total current density J tot : Ω×(0, T )→ R3 given by J tot(x , t) = J i(x , t)+Je(x , t).
By Equation (3.5) and since ui(x , t) = v(x , t) + ue(x , t), we have

J tot(x , t) = −Di(x )∇ui(x , t)− De(x )∇ue(x , t)

= −Di(x )∇v(x , t)−
�

Di(x ) + De(x )
�

∇ue(x , t),

which is equivalent to

De(x )∇ue(x , t) =− De(x )
�

Di(x ) + De(x )
�−1

Di(x )∇v(x , t)

− De(x )
�

Di(x ) + De(x )
�−1

J tot(x , t). (3.10)

By Equation (3.6) and since f l(x ) f l(x )
ᵀ+ f t(x ) f t(x )

ᵀ+ f n(x ) f n(x )
ᵀ = I , which

is equivalent to f l(x ) f l(x )
ᵀ = I − f t(x ) f t(x )

ᵀ − f n(x ) f n(x )
ᵀ, we have

De(x )
�

Di(x ) + De(x )
�−1
=

σl
e(x )

σl
i (x ) +σl

e(x )
f l(x ) f l(x )

ᵀ

+
σt

e(x )

σt
i (x ) +σt

e(x )
f t(x ) f t(x )

ᵀ

+
σn

e (x )

σn
i (x ) +σn

e (x )
f n(x ) f n(x )

ᵀ

=
σl

e(x )

σl
i (x ) +σl

e(x )
I

+

�

σt
e(x )

σt
i (x ) +σt

e(x )
−

σl
e(x )

σl
i (x ) +σl

e(x )

�

f t(x ) f t(x )
ᵀ

+

�

σn
e (x )

σn
i (x ) +σn

e (x )
−

σl
e(x )

σl
i (x ) +σl

e(x )

�

f n(x ) f n(x )
ᵀ.

Under the equal anisotropy ratio assumption, which states that

σl
i (x )

σl
e(x )

=
σt

i (x )

σt
e(x )

=
σn

i (x )

σn
e (x )

,
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the latter two terms in the above equation vanish and we obtain

De(x )
�

Di(x ) + De(x )
�−1
=

σl
e(x )

σl
i (x ) +σl

e(x )
I .

By additionally defining the monodomain conductivity tensor Dm : Ω→ R3×3 as

Dm(x ) := De(x )
�

Di(x ) + De(x )
�−1

Di(x ),

Equation (3.10) becomes

De(x )∇ue(x , t) = −Dm(x )∇v(x , t)−
σl

e(x )

σl
i (x ) +σl

e(x )
J tot(x , t). (3.11)

Equations (3.3) and (3.4) imply that

∇ · J tot(x , t) =∇ · J i(x , t) +∇ · Je(x , t) = β
�

Iapp,i(x , t) + Iapp,e(x , t)
�

and, consequently, from Equation (3.11) we obtain

∇ ·
�

De(x )∇ue(x , t)
�

=−∇ ·
�

Dm(x )∇v(x , t)
�

− β
σl

e(x )

σl
i (x ) +σl

e(x )

�

Iapp,i(x , t) + Iapp,e(x , t)
�

. (3.12)

By combining Equation (3.12) with the second equation of the bidomain sys-
tem (3.9) and by defining the monodomain applied current Iapp : Ω× (0, T )→ R
as

Iapp(x , t) :=
σl

e(x )Iapp,i(x , t)−σl
i (x )Iapp,e(x , t)

σl
i (x ) +σl

e(x )
,

we get

∇ ·
�

Dm(x )∇v(x , t)
�

= β
�

Cm
∂

∂ t
v(x , t) + Iion(v, w , c)− Iapp(x , t)

�

. (3.13)

Concerning the boundary condition, Equation (3.7) implies that

n(x )ᵀJ tot(x , t) = n(x )ᵀJ i(x , t) + n(x )ᵀJe(x , t) = 0

and, consequently, from Equation (3.11) and the fourth equation in the bidomain
system (3.9) we obtain

n(x )ᵀDm(x )∇v(x , t) = −n(x )ᵀDe(x )∇ue(x , t) = 0. (3.14)
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By combining the Equations (3.13) and (3.14) with the Equations (3.1) and (3.8)
we obtain the monodomain system


















∇ · (Dm∇v) = β
�

Cm
∂
∂ t v + Iion(v, w , c)− Iapp

�

in Ω× (0, T ),
∂
∂ t w −Gw (v, w ) = 0, ∂

∂ t c −Gc(v, w , c) = 0 in Ω× (0, T ),

nᵀDm∇v = 0 in ∂Ω× (0, T ),

v(·, 0) = v0(·), w (·, 0) = w 0(·), c(·, 0) = c0(·) in Ω.

(3.15)

This system is composed of a parabolic reaction-diffusion equation, the ionic
ODE system and the boundary and initial conditions. In the parabolic equation,
the reaction term is the ionic current Iion and the diffusion term is ∇ · (Dm∇v).
In this work we set the capacitance Cm = 1 µF/cm2 and the surface-to-volume
ratio β = 800 cm−1 (Gharaviri et al. [2020]). Moreover, note that the resting
transmembrane potential is approximately −80 mV.

3.4 Pacing protocol

The main focus of this work is the inducibility of AF. The AF inducibility is typi-
cally evaluated from the outcome of a tissue stimulation with a pacing protocol.
In this section we introduce the pacing protocol for the high fidelity model. The
pacing protocol is encoded in the function Iapp and consists of a sequence of Nstim

stimuli of the form

Iapp(x , t; x stim,τstim) =

¨

Imax, (x , t) ∈ Br(x stim)×∪
Nstim
j=1 [τ j,τ j +∆τ],

0, otherwise,

where x stim is the pacing site, τstim = {τ j}
Nstim
j=1 are the stimulation times, Imax

is the strength of the stimuli, Br(x stim) = {x ∈ Ω: x stim ≤ x ≤ x stim + 2r} is
a neighborhood of the pacing site with radius r and ∆τ is the duration of the
stimuli. Our pacing protocol is tailored to the ionic model and has been tested
in a single-cell preparation (Potse et al. [2018], Potse [2019], Gharaviri et al.
[2021b], Gharaviri et al. [2021a]). The result is a pacing protocol consisting of
Nstim = 14 stimuli applied at the delivery times τstim reported in Figure 3.1, with
decreasing temporal distance. Each stimulus has strength Imax = 800 µA cm−2,
radius r = 0.4 cm and duration ∆τ= 4 ms.

After the pacing protocol is over, depending on the pacing site x stim, AF is in-
duced or not. If the pacing results in a vanishing wave, i.e. if the system asymp-
totically approaches the resting state, then the induction of AF is not successful.
Instead, if the pacing results in a self-sustained activity, then the induction of AF
is successful.
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0 280 450 610 765 915 1060 1200 1335 1465 1591 1715 1839 1963
time [ms]
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Figure 3.1. Pacing protocol encoded in Iapp.

3.5 Atrial model

The atrial model on which we numerically solve the monodomain equation is
described in Gharaviri et al. [2020]. In this section we summarize its main as-
pects. The atrial anatomy reproduces the features described in Section 2.2 and
illustrated in Figure 2.4, including the bundles and the fibers. The atrial geome-
try Ω is obtained from imaging data, while the bundles and the fibers are added
based on anatomical studies. The numerical solution of the monodomain sys-
tem (3.15) is performed on a computational mesh of hexahedrons discretizing
Ω with resolution h. Each hexahedral element is assigned to a tissue type and a
fiber orientation.

The tissue type determines the longitudinal and transversal conductivities
σl

i,e(x ) and σt
i,e(x ). Table 3.1 shows the intracellular and extracellular conduc-

tivities along and across the fiber direction associated to the tissue types. The
conductivities are expressed in mS/cm. For the across-sheet conductivities, we

Type σl
i σt

i σl
e σt

e

atrium 3.0 0.3 3.0 1.2
bundle 9.0 0.3 9.0 1.2

intercaval 1.5 1.5 1.5 1.5
endomysial fibrosis 3.0 0.0 3.0 1.2

diffuse fibrosis 0.75 0.075 0.75 0.3

Table 3.1. Conductivities in mS/cm

assume σn
i,e(x ) = σ

t
i,e(x ), so that the conductivity tensors are given by

Di,e(x ) = σ
t
i,e(x )I +

�

σl
i,e(x )−σ

t
i,e(x )

�

f l(x ) f l(x )
ᵀ.

Most of the healthy atrial tissue has type "atrium". The healthy tissue that is not
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assigned to the type "atrium" is located in the Bachmann’s bundle, in the bun-
dles connecting the coronary sinus to the left atrium or between the superior
and the inferior vena cava. In the bundles the conduction along the fibers direc-
tion is increased. Therefore the tissue type "bundle" has increased longitudinal
conductivities. In the intercaval region the conduction is isotropic. Thus the tis-
sue type "intercaval" has equal longitudinal and transversal conductivities. The
presence of fibrosis is modeled by a random field sampled on the atrial geom-
etry (Pezzuto et al. [2019]). In particular, the random field is the average of a
large-scale random field determining the patchyness and a small-scale random
field. The hexahedral elements whose values of the random field are above a
certain threshold are then marked as fibrotic. The threshold is selected such that
a given fraction of the atrial tissue is marked as fibrotic, taking into account that
the fibrosis does not extend to the bundles. The endomysial fibrosis associated to
AF hinders the propagation across the fibers direction. Therefore the tissue type
"endomysial fibrosis" has zero transversal intracellular conductivity. In this work
we also consider another type of fibrosis, namely diffuse fibrosis, which reduces
the conduction both along and across the fibers direction (Zahid et al. [2016]).
Thus the tissue type "diffuse fibrosis" has reduced intracellular and extracellular
conductivities. The presence of ablated tissue is simply modeled by marking the
ablated elements as non-conductive.

The fiber orientation is encoded in the angles α(x ), γ(x ) and θ (x ) that are
assigned to the hexahedral elements. These angles determine the entries



































































a11(x ) = sin
�

γ(x )
�

cos
�

θ (x )
�

,

a12(x ) = sin
�

γ(x )
�

sin
�

θ (x )
�

,

a13(x ) = cos
�

γ(x )
�

,

a21(x ) = sin
�

α(x )
�

sin
�

θ (x )
�

− cos
�

α(x )
�

cos
�

γ(x )
�

cos
�

θ (x )
�

,

a22(x ) = − sin
�

α(x )
�

cos
�

θ (x )
�

− cos
�

α(x )
�

cos
�

γ(x )
�

sin
�

θ (x )
�

,

a23(x ) = cos
�

α(x )
�

sin
�

γ(x )
�

,

a31(x ) = cos
�

α(x )
�

sin
�

θ (x )
�

+ sin
�

α(x )
�

cos
�

γ(x )
�

cos
�

θ (x )
�

,

a32(x ) = − cos
�

α(x )
�

cos
�

θ (x )
�

+ sin
�

α(x )
�

cos
�

γ(x )
�

sin
�

θ (x )
�

,

a33(x ) = − sin
�

α(x )
�

sin
�

γ(x )
�

of the matrix

A(x ) =





a11(x ) a12(x ) a13(x )
a21(x ) a22(x ) a23(x )
a31(x ) a32(x ) a33(x )



 ,
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which, together with the conductivities, determines the conductivity tensors as

Di,e(x ) = A(x )ᵀ





σn
i,e(x ) 0 0
0 σt

i,e(x ) 0
0 0 σl

i,e(x )



A(x ).

3.6 Numerical solution of the monodomain equation

In this section we present the numerical methods that we employ to solve the
monodomain system (3.15). We perform the simulations on the computational
mesh of hexahedral elements with resolution h. We use a second-order finite
difference method for the spatial discretization of the diffusion term∇·(Dm∇v).
The finite difference scheme follows from the second-order Taylor expansion of
the products between the coefficients of the monodomain conductivity tensor
Dm and the transmembrane potential v (Asencor and Panizo [1991], Saleheen
and Ng [1997]). Notice that the transmembrane potential v is computed on the
nodes of the computational mesh. The fact that the monodomain conductivity
tensor Dm is defined on the elements of the computational mesh introduces dis-
continuities in the conductivity coefficients at the boundaries between different
elements. To handle this difficulty and the consequent singularities in the deriva-
tives of the conductivity coefficients, we use the transition layer method (Panizo
et al. [1977], Saleheen and Ng [1997]).

The monodomain system is non-degenerate and, as a consequence, explicit
schemes can be employed for its time integration. We use the first-order ex-
plicit Euler method for the transmembrane potential v and the concentration
variables c and we employ the Rush-Larsen method for the gating variables w .
The schemes are applied with the time step ∆t. The partial derivatives of v and
c with respect to time are thus approximated by

∂

∂ t
v(x , t)≈

v(x , t +∆t)− v(x , t)
∆t

and
∂

∂ t
c(x , t)≈

c(x , t +∆t)− c(x , t)
∆t

.

The Rush-Larsen method (Rush and Larsen [1978]) can be applied to gating
variables w: Ω× (0, T )→ R that satisfy an ODE of the form

∂

∂ t
w(x , t) = a(v)

�

1− w (x , t)
�

− b(v)w (x , t), (3.16)

where a and b are some voltage-dependent rate constants. By assuming that a
and b are constant, the solution of (3.16) reads

w(x , t) = w(x ,∞)−
�

w(x ,∞)−w(x , 0)
�

exp
�

− (a+ b)t
�

,
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where w(x ,∞) = a/(a+b) is the steady state solution. The Rush-Larsen scheme
for the update of the gating variable therefore is

w(x , t +∆t) = w(x ,∞)−
�

w(x ,∞)−w(x , t)
�

exp
�

− (a+ b)∆t
�

,

where the rate constants are computed from the transmembrane potential at
time t, i.e. a = a

�

v(x , t)
�

and b = b
�

v(x , t)
�

. The Rush-Larsen scheme is first-
order explicit and it is more stable than the forward Euler scheme. The increased
stability is necessary as 1/(a+ b) is very small for some gating variables.

We perform the monodomain simulations using the Propag-5 software (Potse
et al. [2006], Krause et al. [2012]) on CSCS (Swiss National Supercomputing
Centre). Similarly to the bidomain equation, also the monodomain equation
needs to be solved numerically with a fine spatial discretization and a small
time step, in order to capture the steep and short upstroke that characterizes
the transmembrane potential v during the activation. Even though the mon-
odomain model is less accurate than the bidomain model, in this work our high
fidelity model is the monodomain system (3.15) solved numerically on a hexa-
hedral mesh with resolution h = 0.02 cm and with the time step ∆t = 0.01 ms
(Gharaviri et al. [2020]).



26 3.6 Numerical solution of the monodomain equation



Chapter 4

Re-excitable eikonal low fidelity model

In this chapter we introduce the low fidelity model based on the algorithmic
solution of the eikonal equation. The eikonal equation is an approximation of
the monodomain equation that allows a fast computation of the activation times
thanks to solution algorithms such as the FMM (Kimmel and Sethian [1998],
Sethian and Vladimirsky [2000]). The eikonal equation models a single activa-
tion and does not take into account the re-excitability of the tissue. Since the
electrical activity during AF is characterized by re-entrant wavelets that deter-
mine multiple activations, the re-excitability is a key feature that needs to be
included in our low fidelity model. Therefore, our eikonal low fidelity model
consists of an adaptation of the FMM to account for the re-excitability. Our goal
is to maximize the similarity between the low fidelity model and the high fidelity
model of Chapter 3. Therefore, the re-excitability included in the FMM is based
on the restitution properties of the monodomain model. We test the accuracy of
the eikonal low fidelity model in qualitative and quantitative studies. We first
visually compare the 2D simulations of a re-entrant spiral wave obtained with
the high and the low fidelity models. In particular, we study the effect of fibrosis
and anisotropy. The effect of fibrosis is also investigated in a quantitative study
in the non re-entrant case. Then, we compare the models in 2D numerical exper-
iments where a re-entry is initiated by a S1-S2 stimulation in presence of scars.
Finally, we move to 3D numerical experiments on the atrial geometry and to the
comparison of the models in terms of AF inducibility after the stimulation by a
pacing protocol.

The eikonal equation is introduced in Section 4.1. The restitution curves
of the high fidelity model are shown in Section 4.2 and the eikonal algorithm
with re-excitability is presented in Section 4.3. The effect of fibrosis is studied
in Section 4.4 and the anisotropy is studied in Section 4.5. The 2D simulations
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of spiral waves are shown along Sections 4.3, 4.4 and 4.5. The 2D numerical
experiments in presence of scars are shown in Section 4.6 and the 3D numerical
experiments are presented in Section 4.7. A discussion follows in Section 4.8.

In this chapter, for the sake of simplicity, we consider the computational do-
main of the eikonal model to be a surface discretized by triangular elements,
instead of a geometry discretized by tetrahedral elements. This approximation
is motivated by the fact that the atrial wall is thin. Moreover, we consider the
healthy tissue to be all of type "atrium". Additionally, we consider the fibrotic tis-
sue type to be "diffuse fibrosis". The reason for this choice is that, with the tissue
type "endomysial fibrosis", due to the zero transversal intracellular conductivity,
the monodomain simulations might exhibit numerical artifacts that would hinder
the comparison with the eikonal simulations.

4.1 Eikonal equation

In this section we derive the eikonal equation, we explain its link to the mon-
odomain equation and we state its solution. The eikonal equation is derived in
Subsection 4.1.1 and its relation to the monodomain equation is shown in Sub-
section 4.1.2. The solution is formulated in Subsection 4.1.3.

4.1.1 Derivation

In this subsection we derive the eikonal equation for the activation time φ : Ω→
R on the atrial tissue Ω ⊂ R3. We consider the local fibers direction f l : Ω→ R3,
the transversal direction f t : Ω→ R3 and the across-sheet direction f n : Ω→ R3

introduced in Section 3.2, which form an orthonormal basis of R3. We assume
that the conduction velocities along f l , f t and f n are known and are given by
CVl : Ω → R, CVt : Ω → R and CVn : Ω → R, respectively. We then consider
an arbitrary unit direction d : Ω → R3 given by d(x ) = dl f l(x ) + dt f t(x ) +
dn f n(x ) with

q

d2
l + d2

t + d2
n = 1. The conduction velocity CVd : Ω → R along

the direction d is given by

CVd(x ) =
q

d2
l CV 2

l (x ) + d2
t CV 2

t (x ) + d2
n CV 2

n (x )

= CVl(x )
Æ

d(x )ᵀD(x )d(x ), (4.1)

where the tensor D : Ω→ R3×3 describes the anisotropy and is given by

D(x ) = f l(x ) f l(x )
ᵀ +

CVt(x )2

CVl(x )2
f t(x ) f t(x )

ᵀ +
CVn(x )2

CVl(x )2
f n(x ) f n(x )

ᵀ.
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The conduction velocity CVd is also given by the inverse of the directional deriva-
tive of φ along d, i.e.

CVd(x ) =

�

lim
h→0

φ
�

x + hd(x )
�

−φ(x )
h

�−1

=
1

∇dφ(x )
=

1
∇φ(x )ᵀd(x )

. (4.2)

Since φ is the activation time, the unit direction of propagation is given by
d(x ) = ∇φ(x )/‖∇φ(x )‖ (Colli Franzone et al. [1990a]). By substituting the
propagation direction into Equation (4.1), we obtain

CVd(x ) =
CVl(x )
‖∇φ(x )‖

Æ

∇φ(x )ᵀD(x )∇φ(x ). (4.3)

Similarly, by substituting the propagation direction into Equation (4.2), we ob-
tain

CVd(x ) =
1

‖∇φ(x )‖
. (4.4)

By combining the Equations (4.3) and (4.4), we obtain the eikonal equation

CVl(x )
Æ

∇φ(x )ᵀD(x )∇φ(x ) = 1. (4.5)

4.1.2 Relation to the monodomain equation

In this subsection we show the relation between the eikonal equation (4.5) and
the monodomain equation

∇ ·
�

Dm(x )∇v(x , t)
�

= β
�

Cm
∂

∂ t
v(x , t) + Iion(v)

�

. (4.6)

Note that, compared to the monodomain equation (3.13), we assume here that
the ionic current Iion depends only on the transmembrane potential v and we
neglect the applied current Iapp. We look for solutions to Equation (4.6) taking
the form

v(x , t) = u
�

t −φ(x )
�

= u(ξ). (4.7)

It holds
Dm(x )∇v(x , t) = −Dm(x )∇φ(x )u′(ξ),

thus

∇ ·
�

Dm(x )∇v(x , t)
�

=∇φ(x )ᵀDm(x )∇φ(x )u′′(ξ)−∇ ·
�

Dm(x )∇φ(x )
�

u′(ξ).

Moreover, we have
∂

∂ t
v(x , t) = u′(ξ).
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So, by plugging the solution (4.7) into the monodomain equation (4.6), we ob-
tain

β−1∇φ(x )ᵀDm(x )∇φ(x )u′′(ξ)−
�

β−1∇ ·
�

Dm(x )∇φ(x )
�

+ Cm

�

u′(ξ)−Iion(u) = 0.

Using the change of variables

ξ̂= ξβ−1/2
Æ

∇φ(x )ᵀDm(x )∇φ(x ),

we get

u′′(ξ̂)−
β−1∇ ·

�

Dm(x )∇φ(x )
�

+ Cm

β−1/2
p

∇φ(x )ᵀDm(x )∇φ(x )
u′(ξ̂)− Iion(u) = 0. (4.8)

Under suitable assumptions, the eigenvalue problem

¨

u′′(ξ)−ρu′(ξ)− Iion

�

u(ξ)
�

= 0, ξ ∈ R,

Iion

�

u(ξ)
�

→ 0, |ξ| →∞
(4.9)

has a unique solution (Colli Franzone et al. [2014]). By comparing the Equa-
tions (4.8) and (4.9), we deduce

ρ =
β−1∇ ·

�

Dm(x )∇φ(x )
�

+ Cm

β−1/2
p

∇φ(x )ᵀDm(x )∇φ(x )
,

where ρ ∈ R is a parameter that depends on the ionic model. By rearranging we
obtain the eikonal-diffusion equation

ρ

Cm

p

β

Æ

∇φ(x )ᵀDm(x )∇φ(x )−
1

Cmβ
∇ ·

�

Dm(x )∇φ(x )
�

= 1. (4.10)

With reasonable values for the parameters ρ, Cm, β and for the conductivities,
the advection term of the eikonal-diffusion equation (4.10) is dominant over the
diffusion term. The pure eikonal approximation is obtained by disregarding the
diffusion term. Thus the eikonal equation is

ρ

Cm

p

β

Æ

∇φ(x )ᵀDm(x )∇φ(x ) = 1. (4.11)

The pure eikonal equation (4.11) and the eikonal-diffusion equation (4.10) cor-
respond when the monodomain conductivity tensor Dm is constant and the front
is planar, i.e. ∇2φ = 0. The pure eikonal model does not account for the diffu-
sion currents due to heterogeneities in the conductivity or in the propagation.
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We recall that the monodomain conductivity tensor Dm : Ω→ R3×3 is

Dm(x ) = σ
l
m(x ) f l(x ) f

ᵀ
l (x ) +σ

t
m(x ) f t(x ) f

ᵀ
t (x ) +σ

n
m(x ) f n(x ) f

ᵀ
n(x ),

where the monodomain longitudinal, transversal and across-sheet conductivities
σl,t,n

m : Ω→ R are given by

σl,t,n
m (x ) =

σl,t,n
e (x )σl,t,n

i (x )

σl,t,n
e (x ) +σl,t,n

i (x )
.

We again consider the unit propagation direction d(x ) =∇φ(x )/‖∇φ(x )‖ and
we write it as d(x ) = dl f l(x ) + dt f t(x ) + dn f n(x ) with

q

d2
l + d2

t + d2
n = 1. By

substituting ∇φ(x ) = ‖∇φ(x )‖d(x ) into the eikonal equation (4.11) we obtain

ρ‖∇φ(x )‖
Cm

p

β

q

d2
l σ

l
m(x ) + d2

t σ
t
m(x ) + d2

nσ
n
m(x ) = 1. (4.12)

Similarly, by substituting∇φ(x ) = ‖∇φ(x )‖d(x ) into the eikonal equation (4.5)
we obtain

‖∇φ(x )‖
q

d2
l CV 2

l (x ) + d2
t CV 2

t (x ) + d2
n CV 2

n (x ) = 1,

which, by Equation (4.1), is equivalent to

‖∇φ(x )‖CVd(x ) = 1. (4.13)

By combining the Equations (4.12) and (4.13), we find that the CV along the
propagation direction is given by

CVd(x ) =
ρ
q

d2
l σ

l
m(x ) + d2

t σ
t
m(x ) + d2

nσ
n
m(x )

Cm

p

β
. (4.14)

Equation (4.14) allows to estimate the parameter ρ from the CV of the mon-
odomain model. Since the monodomain CV is affected by a spatial discretiza-
tion error (Pezzuto et al. [2016]), a good estimate needs to be computed at a
fine spatial resolution h. We choose h = 0.005 cm and we use the implicit Eu-
ler method with the usual time step ∆t = 0.01 ms for the time integration of
the monodomain equation. We perform a 1D numerical experiment in a tissue
line of type "atrium" to compute the conduction velocity along the fibers direc-
tion and obtain CVl = 68 cm/s. Since in the tissue of type "atrium" we have
σl

m = 1.5 mS/cm, by Equation (4.14) we obtain the estimate ρ = 1.57.
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The eikonal-diffusion equation (4.10) complemented by a boundary condi-
tion and an initial condition leads to the eikonal-diffusion system











ρ

Cm

p
β

p

∇φ(x )ᵀDm(x )∇φ(x )−
1

Cmβ
∇ ·

�

Dm(x )∇φ(x )
�

= 1, x ∈ Ω,

n(x )ᵀDm(x )∇φ(x ) = 0, x ∈ ∂Ω,

φ(x ) = 0, x ∈ Ω0,
(4.15)

where n : ∂Ω → R3 is the unit outward normal to ∂Ω and Ω0 ⊂ Ω denotes
the region where the action potential is initiated. The eikonal-diffusion equa-
tion (4.10) accounts for the wavefront curvature effects that are not captured by
the pure eikonal equation (4.11). Moreover, the eikonal-diffusion system (4.15)
can be solved numerically by the finite element method. Contrary to the space-
time monodomain equation (4.6), the eikonal-diffusion equation (4.10) only
depends on the spatial component. Therefore, the eikonal-diffusion model is
computationally less costly than the monodomain model. However, since in
the eikonal-diffusion equation (4.10) the advection term is dominant over the
diffusion term, the spatial resolution h of the computational mesh needs to be
sufficiently small to guarantee the numerical stability. The pure eikonal equa-
tion (4.11) has no diffusion term, so its numerical solution is not subject to
constraints on the spatial resolution h of the computational mesh. Moreover,
the numerical solution of the pure eikonal equation (4.11) can be computed
algorithmically following procedures that iteratively move through the nodes
of the mesh and update the activation times. Several iterative procedures are
available, so that there is no need to use the finite element method. Therefore,
the computational cost of the pure eikonal model is lower than the cost of the
eikonal-diffusion model. Furthermore, the eikonal-diffusion equation (4.10) de-
scribes the activation times of a single activation and is not appropriate to model
re-entrant activities during which several activations occur. The pure eikonal
equation (4.11) also describes a single activation, but its algorithmic numerical
solution methods are potentially more suitable to be extended to model the re-
excitability and multiple activations. Therefore, in this work we focus on the
pure eikonal model. Our goal is to compare the eikonal low fidelity model to
the monodomain high fidelity model of Chapter 3, where the spatial resolution
is h= 0.02 cm. Since the spatial discretization affects the monodomain CV (Pez-
zuto et al. [2016]), the high fidelity model does not achieve the CV predicted
by Equation (4.14). Therefore, we prefer the formulation (4.5) of the eikonal
equation over the formulation (4.11), as it allows to set the CVs computed with
the monodomain high fidelity model. The eikonal equation (4.5) complemented
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by an initial condition leads to the eikonal system
¨

CVl(x )
p

∇φ(x )ᵀD(x )∇φ(x ) = 1, x ∈ Ω,

φ(x ) = 0, x ∈ Ω0.
(4.16)

In this work, we consider the eikonal model on the atrial surfaceS ⊂ Ω. Thus
we only consider the fibers direction f l : S → R3 and the transversal direction
f t : S → R3, which span the tangent space ofS , so that the tensor D : S → R3×3

describing the anisotropy is given by

D(x ) = f l(x ) f l(x )
ᵀ +

CVt(x )2

CVl(x )2
f t(x ) f t(x )

ᵀ.

Moreover, the gradient of the activation time is the surface gradient

∇S φ(x ) =∇φ(x )−
�

∇φ(x )ᵀn(x )
�

n(x ),

where n : S → R3 is the unit normal to S . The eikonal system formulated on
the surface reads

¨

CVl(x )
p

∇S φ(x )ᵀD(x )∇S φ(x ) = 1, x ∈ S ,

φ(x ) = 0, x ∈ S0,
(4.17)

where S0 ⊂ S denotes the region where the action potential is initiated.

4.1.3 Viscosity solution

In this subsection we formulate the solution of the eikonal equation (4.17). The
eikonal equation (4.17) is a static Hamilton-Jacobi equation of the form

¨

H
�

x ,∇S φ(x )
�

= 0, x ∈ S ,

φ(x ) = φ0(x ), x 0 ∈ S0,

where H is the Hamiltonian and φ0 is the Dirichlet data. The solutions of the
Hamilton-Jacobi equations have been extensively studied in Lions [1982]. Since,
in general, there are many solutions that satisfy the Hamilton-Jacobi equation
almost everywhere, the concept of viscosity solution has been introduced. The
viscosity solutions additionally satisfy an entropy condition where ∇S φ does
not exist and there is no initial condition. Under suitable assumptions on the
Hamiltonian and the Dirichlet data, the viscosity solution exists and is unique
(Lions [1982], Bornemann and Rasch [2006]). The viscosity solution is given by
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the Hopf-Lax formula (Lions [1982], Bornemann and Rasch [2006]), that, in the
case of the eikonal equation (4.17), reads (Mirebeau [2012], Mirebeau [2014])

φ(x ) = inf
ψ∈C1([0,1],S ),
ψ(0)∈S0, ψ(1)=x

length(ψ), (4.18)

where the length of the path ψ connecting S0 to x ∈ S is

length(ψ) =

∫ 1

0

CV−1
l

�

ψ(s)
�

Ç

ψ′(s)ᵀD−1
�

ψ(s)
�

ψ′(s) ds. (4.19)

4.2 Restitution curves of the high fidelity model

AF is characterized by re-entrant wavelets that chaotically propagate on the atrial
tissue. During an AF event, the atrial cells undergo several consecutive activa-
tions. The cells alternate between the active, the repolarized and the excitable
states. The interval between consecutive activations is called cardiac cycle. The
eikonal equation (4.17) describes the activation times of a single activation.
Since we aim to simulate AF events using the eikonal model, we have to include
the re-excitability to allow for multiple activations. Our goal is to maximize the
similarity between the eikonal low fidelity model and the high fidelity model of
Chapter 3. Therefore, the re-excitability properties that we include in the eikonal
model are based on the monodomain model. In this section we numerically com-
pute the required re-excitability properties of the high fidelity model.

The shape of the action potential is determined by the ionic model. Fig-
ure 4.1 shows the action potential obtained with the ionic model of Section 3.1.
The transmembrane potential v resulting from two stimuli delivered with a cycle
length of 300 ms is computed with the high fidelity model at a fixed location and
plotted over time. One cardiac cycle starts with the activation and consists of the
APD and the DI. In this work, we define the activation time as the time instant
when the transmembrane potential reaches the −62 mV threshold and we define
the APD as the time interval during which the transmembrane potential is above
the −62 mV threshold. The APD is followed by the DI, which is the time inter-
val until the next activation. After the action potential following an activation is
over, the cell needs some resting time before becoming re-excitable. Therefore,
for the next activation to be possible, the DI has to be larger than a threshold
DImin. Moreover, the APD and the CV of a stimulus depend on the DI of the pre-
vious cardiac cycle through the so-called restitution curves (Colli Franzone et al.
[2014]).
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Figure 4.1. Action potential over time at a fixed location.

We compute the APD and CV restitution curves in 1D numerical experiments
on a line of tissue of length 5 cm using the high fidelity model. Typically, the resti-
tution curves are computed by delivering several stimuli with a fixed cycle length
and then measuring the APD and the CV of the last stimulus (Xie et al. [2002],
Cherry et al. [2008], Wilhelms et al. [2013]). The purpose of the sequence of
stimuli is to reach the equilibrium values of the DI, APD and CV associated to the
cycle length. To test this methodology, we measure the APD and the CV of 100
stimuli delivered with a cycle length of 300 ms on the tissue of type "atrium" and
we report the results in the plots of Figure 4.2. The values of the APD do not

(A) (B)

Figure 4.2. APDs (panel A) and CVs (panel B) of the stimuli delivered with a
cycle length of 300 ms.

stabilize, meaning that the APD and the DI do not reach an equilibrium value.
Similarly, the values of the CV oscillate and do not reach an equilibrium as well.
The reason for the instabilities is likely the drift of some ionic concentrations
due to the lack of the charge conservation, which is caused by the stimulations
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(Colli Franzone et al. [2014]). Specifically, the stimulations carry some charges
that break the charge conservation property of the ionic model. It is possible
to modify the ionic model equations to account for the applied current and to
maintain the charge conservation (Colli Franzone et al. [2014]). Our current
implementation of the Courtemanche model does not include this modification.
An alternative is to compute the restitution curves on a ring with periodic bound-
ary conditions, so that one tissue stimulation is sufficient to obtain multiple ac-
tivations (Courtemanche et al. [1996]). In this work, we are interested in the
short term comparison to the high fidelity model. Therefore, we compute the
restitution curves by delivering only two stimuli and measuring the APD and the
CV of the second stimulus. The two stimuli have size 0.2 cm and are delivered
from one end of the tissue line.

In the numerical experiments of this chapter, we consider the healthy tis-
sue of type "atrium" and the fibrotic tissue of type "diffuse fibrosis". There-
fore, we compute the restitution curves on both tissue types. But first, we com-
pute the initial CV on both tissues. To do so, we compute the activation times
along the line following the first stimulation. Figure 4.3 shows the activation
times obtained on the healthy and the fibrotic tissues. As expected, the acti-
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Figure 4.3. Activation times on the fibrotic (black line) and the healthy (dashed
line) tissues.

vation times on the fibrotic tissue are higher than the activation times on the
healthy tissue. The activation times determine the CVs. The initial conduc-
tion velocity on the healthy tissue is CVl,init,h = 65 cm/s. On the fibrotic tis-
sue the initial conduction velocity is CVl,init,f = 28 cm/s. Notice that on the
healthy tissue we have σl

m = σh = 1.5 mS/cm and on the fibrotic tissue we have
σl

m = σf = 0.375 mS/cm= 0.25 ·σh. By Equation (4.14), the ratio between the
fibrotic and the healthy CVs should be

p

σf/σh = 0.5. However, our numerical
ratio is CVl,init,f/CVl,init,h = 0.43. The discrepancy is due to the numerical error
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introduced by the space discretization (Pezzuto et al. [2016]).
Now we focus on the numerical computation of the restitution curves. We

perform 1D simulations with cycle lengths ranging between 150 ms and 3150 ms.
The APD of the second stimulus is computed from the time instants when the
potential is equal to −62 mV at a fixed location. The CV of the second stimulus
is computed from the activation times at two locations. In the restitution curves
the APD and the CV are plotted against the DI. The restitution curves of the
APD are shown in Figures 4.4 and 4.5, panels A, for the healthy and the fibrotic
tissues, respectively. The APD curves of the healthy and the fibrotic tissues do not
match. Moreover, both APD curves show a discontinuity. To investigate whether
the mismatch and the discontinuity are due to numerical discretization errors,
we compute the restitution curves for the finer spatial resolutions h = 0.01 cm
and h = 0.005 cm. In these two cases, the time integration of the monodomain
equation is done implicitly with the usual time step∆t = 0.01 ms. The restitution
curves obtained at the usual resolution h = 0.02 cm and at the finer resolutions
h= 0.01 cm and h= 0.005 cm are shown in Figures 4.4 and 4.5 for the healthy
and the fibrotic tissues, respectively. The panels A show the restitution curves of
the APD and the panels B show the restitution curves of the CV. The size of the

(A) (B)

Figure 4.4. Restitution curves of the APD (panel A) and the CV (panel B) at
various resolutions for the healthy tissue.

discontinuity in the APD restitution curve decreases as h decreases. This suggests
that the APD restitution curve converges to a continuous function as h → 0.
Moreover, the mismatch between the APD restitution curves on the healthy and
the fibrotic tissues disappears for h= 0.005 cm. The CV restitution curves show a
similar shape. Only the CV restitution curve computed on the healthy tissue with
h= 0.005 cm slightly differs from the others. However, the CV restitution curves
are shifted because the finer space discretizations have the effect of increasing
the CV (Pezzuto et al. [2016]).
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(A) (B)

Figure 4.5. Restitution curves of the APD (panel A) and the CV (panel B) at
various resolutions for the fibrotic tissue.

To summarize, the restitution curve of the APD is independent of the tissue
type and is a smoothed version of the curves computed with h= 0.005 cm. There-
fore, to obtain the restitution curve of the APD, we apply a Savitzky-Golay filter
(Savitzky and Golay [1964]) to the curve of Figure 4.4, panel A, computed with
h= 0.005 cm. The result is shown in Figure 4.6, panel A. Instead, the restitution
curve of the CV depends on the tissue type, but only in terms of scaling, not in
terms of shape. Therefore, to obtain the restitution curves of the CV, we rescale
the curve of Figure 4.4, panel B, computed with h= 0.005 cm to match the initial
conduction velocities CVl,init,h = 65 cm/s and CVl,init,f = 28 cm/s. The results are
shown in Figure 4.6, panel B, for the healthy and the fibrotic tissues. Moreover,

(A) (B)

Figure 4.6. Restitution curve of the APD (panel A) and the CV (panel B).

to determine the initial action potential duration APDinit and the threshold DImin,
we exploit the computations performed at the resolution h= 0.005 cm. The APD
of the first stimulus is APDinit = 158 ms and the minimal DI for which the second
stimulus propagates is DImin = 32 ms.
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4.3 Eikonal algorithm

The numerical solution of the eikonal equation (4.17) is computed on a trian-
gulated mesh discretizing the atrial surface S . Several algorithms have been
developed for the solution of the eikonal equation. The common procedure is
to iteratively pass through the nodes of the mesh until acceptance of the corre-
sponding activation times. Our goal is to adapt an existing algorithm to account
for the re-excitability of the tissue. In particular, a global time variable is needed
in order to determine when the action potential on an activated node is over,
to compute the DI and to determine when a previously activated node becomes
re-excitable. Therefore, the underlying iterative procedure has to guarantee the
monotonous increase of the global time variable and has to be single-pass, mean-
ing that the activation time of each node is accepted only once per cardiac cycle.
These requirements exclude the FIM (Fu et al. [2011]) and the method presented
in Bornemann and Rasch [2006] based on an adaptive Gauss-Seidel iteration,
and determine our choice of the FMM (Kimmel and Sethian [1998], Sethian and
Vladimirsky [2000]). The FMM is a Dijkstra-like method that allows node up-
dates coming from the triangles of the mesh, in contrast to the standard Dijkstra’s
method (Dijkstra [1959]) that only considers updates from the edges. Our adap-
tation of the FMM additionally needs to account for the variation of the APD and
the CV determined by the restitution curves. To this end, a time-stepping needs
to be introduced to perform the update of the DI. In this section we present the
adaptation of the FMM.

The standard FMM is introduced in Subsection 4.3.1 and its convergence to
the viscosity solution of the eikonal equation is analyzed in Subsection 4.3.2. The
adaptation of the FMM to include the computation of the global time variable,
the time-stepping and the restitution properties is presented in Subsection 4.3.3.
The 2D simulations of a spiral wave in which we compare the eikonal model with
re-excitability and the monodomain model in an homogeneous isotropic case are
presented in Subsection 4.3.4.

4.3.1 Fast marching method

In this subsection we introduce the standard FMM. The FMM is an iterative al-
gorithm to solve the eikonal equation (4.17) on a triangulated mesh discretizing
S . In the original formulation of the FMM, the conduction velocity CVl along
the fibers and the anisotropy tensor D are assigned to the nodes of the mesh.
In this work, the CVl and D are determined from the monodomain high fidelity
model of Chapter 3. Specifically, the CVl and D assigned to the eikonal com-
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putational mesh depend on the tissue type and the fibers direction assigned to
the hexahedrons of the monodomain computational mesh. Therefore, in order
to facilitate the mapping between the two meshes, here we slightly deviate from
the original FMM and we assign the CVl and D to the triangles of the mesh. The
algorithm computes the activation times φ on the nodes of the mesh. We denote
by X the set of nodes of the mesh and by X0 ⊂ X the set of nodes in S0. The iter-
ative procedure starts from the nodes x 0 ∈ X0 and moves through all the nodes
x ∈ X . During the procedure three states are associated to the nodes, namely Ac-
cepted, Considered and Far. The Accepted nodes are those whose activation time
is known. The Considered nodes have a temporary activation time that has not
yet been accepted. The Far nodes have no activation time. At each iteration the
node among the Considered with minimal temporary activation time is moved to
the Accepted and its Far neighbors are moved to the Considered. Moreover, the
temporary activation times of the Considered nodes are updated at each iteration.
The pseudo-code of the FMM is reported in Algorithm 1. For a node x ∈ X , the
set of neighbors is denoted by N(x ) and the set of triangles having x as vertex is
denoted by T (x ). The temporary activation time is denoted by φ̃.

Algorithm 1: Fast marching method
# Initialization
for x 0 ∈ X0 do

tag x 0 as Accepted
set φ(x 0) = 0

for x ∈ X\X0 do
tag x as Far
set φ(x ) =∞

# Update the neighbors
for x n ∈ N(X0)\Accepted do

tag x n as Considered
compute φ̃(x n) = HL

�

φ
�

N(x n)
�

, CVl

�

T (x n)
�

, D
�

T (x n)
�

�

# Iterate over the nodes
while Considered 6= ; do

tag x a = argminx∈Consideredφ̃(x ) as Accepted
set φ(x a) = φ̃(x a)
for x n ∈ N(x a)\Accepted do

tag x n as Considered
compute φ̃(x n) = HL

�

φ
�

N(x n)
�

, CVl

�

T (x n)
�

, D
�

T (x n)
�

�
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The HL function determining the temporary activation time of a node x ∈ X
is based on a local discretization of the Hopf-Lax formula (4.18), (4.19) given by
(Mirebeau [2012], Mirebeau [2014])

φ̃(x ) = HL
�

φ
�

N(x )
�

, CVl

�

T (x )
�

, D
�

T (x )
�

�

= min
T ∈T (x )

n

min
λ

¦

φλ + CVl(T )−1
Æ

(x − xλ)ᵀD−1(T )(x − xλ)
©
o

, (4.20)

where, denoting by x 1 and x 2 the other vertices of a triangle T ∈ T (x ), we
have xλ = λ1x 1 + λ2x 2 with λ1,λ2 ≥ 0 and λ1 + λ2 = 1, and φλ is a first
order approximation of φ(xλ) given by φλ = λ1φ(x 1)+λ2φ(x 2). The Hopf-Lax
update (4.20) consists of two minimizations. One minimization is over the set
T (x ) of triangles having x as vertex. To solve this minimization problem, we
simply compute the objective function for all triangles T ∈ T (x ) in order to find
the minimizer. The other minimization is over the points xλ on the edge of the
triangle T opposite to x , which are determined by λ1 and λ2. Specifically, for
each triangle T ∈ T (x ), we need to solve

φ̂T (x ) =min
λ

¦

φλ + CVl(T )−1
Æ

(x − xλ)ᵀD−1(T )(x − xλ)
©

. (4.21)

This objective function is convex, which implies that a unique minimum exists.
To solve this minimization problem, we include the equality constraint in the
objective function, which becomes

L (λ,µ) = λ1φ1+λ2φ2+CVl(T )−1
Æ

(x − xλ)ᵀD−1(T )(x − xλ)+µ(1−λ1−λ2),

where µ is the Lagrange multiplier and we use the notations φ1 := φ(x 1) and
φ2 := φ(x 2). For i = 1,2 and using the notation p i := x − x i, the optimality
conditions read

0=
∂

∂ λi
L (λ̂, µ̂) = φi + CVl(T )−1

pᵀi D−1(T )(x − x λ̂)
Æ

(x − x λ̂)ᵀD
−1(T )(x − x λ̂)

− µ̂.

These conditions are equivalent, for i = 1, 2, to

µ̂= φi + CVl(T )−1
pᵀi D−1(T )(x − x λ̂)

Æ

(x − x λ̂)ᵀD
−1(T )(x − x λ̂)

.

By combining these conditions with the equality constraint on λ̂1, λ̂2 and by the
formulation of the minimization problem (4.21), we get

µ̂= (λ̂1 + λ̂2)µ̂= λ̂1φ1 + λ̂2φ2 + CVl(T )−1 (λ̂1p1 + λ̂2p2)
ᵀD−1(T )(x − x λ̂)

Æ

(x − x λ̂)ᵀD
−1(T )(x − x λ̂)

= φλ̂ + CVl(T )−1
q

(x − x λ̂)ᵀD
−1(T )(x − x λ̂) = φ̂T (x ).
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Therefore the optimality conditions are equivalent, for i = 1,2, to

φ̂T (x )−φi = CVl(T )−1
pᵀi D−1(T )(x − x λ̂)

Æ

(x − x λ̂)ᵀD
−1(T )(x − x λ̂)

.

Denoting by P the matrix whose rows are p1, p2 and using the notations φ1,2 :=
(φ1,φ2)ᵀ and 1 := (1, 1)ᵀ, the optimality conditions lead to

P−1(φ̂T (x ) · 1−φ1,2) = CVl(T )−1 D−1(T )(x − x λ̂)
Æ

(x − x λ̂)ᵀD
−1(T )(x − x λ̂)

.

By squaring the expression and rearranging some terms, we obtain

(φ̂T (x ) · 1−φ1,2)
ᵀP−ᵀD(T )P−1(φ̂T (x ) · 1−φ1,2) = CVl(T )−2,

which is a quadratic equation for φ̂T (x ). Note that the quadratic equation cor-
responds to the discretization of the eikonal equation (4.5) on T with linear
φ. The quadratic equation has either zero, one or two solutions. A solution
φ̂T (x ) is valid only if the conditions λ̂1, λ̂2 ≥ 0 are satisfied. With the notation
λ̂ := (λ̂1, λ̂2)ᵀ and since x − x λ̂ = Pᵀλ̂, we obtain

φ̂T (x ) · 1−φ1,2 = CVl(T )−1 PD−1(T )Pᵀλ̂
Æ

(x − x λ̂)ᵀD
−1(T )(x − x λ̂)

. (4.22)

Therefore it is sufficient to check the sign of P−ᵀD(T )P−1(φ̂T (x ) · 1 − φ1,2) to
verify the condition λ̂≥ 0 and the validity of the solution φ̂T (x ). If both solutions
of the quadratic equation are valid, then the solution to the optimization problem
is the minimum among them. If the quadratic equation has no solution or none
of the solutions is valid, then we can conclude that the update of the temporary
activation time φ̃(x ) does not come from the considered triangle T ∈ T (x ).

4.3.2 Convergence to the viscosity solution

In this subsection we analyze the convergence of the FMM. The FMM determines
an ordering of the nodes and sequentially updates the temporary activation times
exploiting the local discrete Hopf-Lax formula (4.20). The convergence of the so-
lution obtained with the FMM to the viscosity solution of the eikonal equation
given by the Hopf-Lax formula (4.18)-(4.19) depends on the ordering. It has
been shown that the convergence is guaranteed if the causality property is sat-
isfied (Kimmel and Sethian [1998], Sethian and Vladimirsky [2000], Mirebeau
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[2012], Mirebeau [2014]). Locally, the causality property is satisfied if, assum-
ing that the update for a node x ∈ X comes from within the triangle T ∈ T (x )
with vertices x , x 1 and x 2, then φ̃(x )>max{φ(x 1),φ(x 2)}.

By Equation (4.22), φ̂T (x ) · 1−φ1,2 has the same sign as

PD−1(T )Pᵀλ̂=
�

pᵀ1D−1(T )(λ̂1p1 + λ̂2p2)
pᵀ2D−1(T )(λ̂1p1 + λ̂2p2)

�

. (4.23)

The fact that the update comes from within the triangle T means that λ̂1, λ̂2 > 0.
Moreover, since the anisotropy tensor D(T ) is symmetric positive definite, so is
its inverse D−1(T ). Thus we have pᵀ1D−1(T )p1 > 0 and pᵀ2D−1(T )p2 > 0. As a
consequence, a sufficient condition for the terms in Equation (4.23) to be positive
is

pᵀ1D−1(T )p2 = pᵀ2D−1(T )p1 > 0. (4.24)

Therefore, a sufficient condition for the causality property to be satisfied globally
is that the condition (4.24) holds for all T ∈ T (x ), for all x ∈ X .

In the isotropic case we have D(T ) = I for all triangles T of the mesh, so
requiring the condition (4.24) to hold globally is equivalent to requiring that
all the triangles of the mesh are acute. In the anisotropic case the acuteness
condition is meant with respect to the metric defined by D−1(T ), for all triangles
T of the mesh. In the numerical experiments of this chapter, we use the Mmg
software (Dobrzynski and Frey [2008]) to create meshes in which the number
of triangles satisfying the acuteness condition, with respect to the considered
metrics, is maximized. To illustrate the dependence of the FMM solution on the
triangulation, we consider an anisotropic square with side length of 1 cm and an
action potential initiated on the lower left corner. The anisotropy is defined by
the diagonal fibers direction, the longitudinal conduction velocity CVl = 65 cm/s
and the anisotropy ratio CVt/CVl = 0.33. We compute the activation times with
the FMM method on a mesh adapted to the metric determined by the anisotropy
tensor and on a non-adapted mesh. Both meshes have resolution h = 0.1 cm.
The results are shown in Figure 4.7, panels A and B. Moreover, to illustrate the
importance of considering updates coming from the triangles, in panel C we show
the activation times computed with the edge Dijkstra’s method on the adapted
mesh. The solution obtained with the FMM method on the adapted mesh is more
accurate than the one computed on the non-adapted mesh and the one obtained
with the Dijkstra’s method.

Alternatives to the mesh adaptation approach have been proposed in Sethian
and Vladimirsky [2003] and Alton and Mitchell [2012]. These are ordered up-
wind methods that guarantee the convergence to the viscosity solution on any
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(A) (B) (C)

Figure 4.7. Contour plots of the activation times obtained with the FMM
method on an adapted mesh (panel A), the FMM method on a non-adapted
mesh (panel B) and the Dijkstra’s method on an adapted mesh (panel C).

computational mesh. However, these algorithms are not suitable for our pur-
pose of taking into account the re-excitability of the cardiac tissue. Indeed, the
method from Sethian and Vladimirsky [2003] does not guarantee the monoton-
ical acceptance of the nodes and the method from Alton and Mitchell [2012] is
two-pass.

4.3.3 Algorithm with re-excitability

In this subsection we present the eikonal algorithm with re-excitability. The
adaptation of the FMM of Subsection 4.3.1 to include the re-excitability requires
several modifications. The activation time φ at the nodes of the mesh is now
computed at each beat. The re-excitability is determined by the APD and the
DI defined in Section 4.2, which are assigned to the nodes. When a node ac-
tivates, the APD determines the time interval during which it is active and the
DI determines when the node becomes re-excitable. The activation time ∞ is
assigned between the beats, i.e. when the nodes are excitable. To facilitate the
comparison between the eikonal low fidelity model and the monodomain high
fidelity model, we define a pseudo-potential v, that we assign to the nodes. The
variable v takes the value 1 when the node is active and the value 0 when the
node is not active. The state Accepted is assigned to the non-excitable nodes.
The state Considered is assigned to the excitable nodes whose activation times
are being computed. Again, the Considered nodes have a temporary activation
time φ̃. The state Far is assigned to the excitable nodes that are not Considered.
Again, the conduction velocity CVl along the fibers and the anisotropy tensor D
are assigned to the triangles of the mesh. The APD and the CVl depend on the DI
through the restitution curves. The function determining the APD from the DI
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is denoted by a and is plotted in Figure 4.6, panel A. The function determining
the CVl from the tissue type and the DI is denoted by c. The function c is plotted
in Figure 4.6, panel B, for the healthy tissue of type "atrium" and for the fibrotic
tissue of type "diffuse fibrosis". The tissue type is assigned to the triangles and is
denoted by T T .

The temporary activation time of a Considered node x is computed when
a neighbor x ′ activates. When computing the temporary activation time of a
Considered node x , the CVl of the triangles having x as vertex need to be known.
Since the CVl assigned to the triangles depends on the DI assigned to the nodes,
a single triangle might take different CVl values depending on which node is
being considered. Therefore we use the notation T (x , x ′) to denote the set of
triangles having both x and x ′ as vertices and to refer to the propagation from
x ′ to x . The CVl assigned to the triangles in T (x , x ′) depends on the DI of x
at the moment when x ′ activates. Note that T (x ′, x ) represents the same set
of triangles as T (x , x ′), but T (x ′, x ) refers to the propagation from x to x ′.
Moreover, we use the notation T (x , :) to denote the set of triangles having x as
vertex and to refer to the propagation to x .

Since we are now taking into account the re-excitability, we can consider
several action potential initiations. Therefore we consider Nstim stimuli. For
i = 1, ..., Nstim, the i-th stimulus is delivered from Si ⊂ S at time t i. We denote
by X i ⊂ X the set of nodes in Si, for i = 1, ..., Nstim. Note that t1 < ...< tNstim

. Al-
gorithm 2 provides the pseudo-code of our eikonal algorithm with re-excitability.
The current time of the simulation is denoted by t, the time step is denoted by
∆t and the final time of the simulation is denoted by T .

The FMM implementation relies on a min-heap structure to efficiently find the
Considered node with minimal temporary activation time at each iteration. With
such implementation, the computational complexity of the FMM is O(N log N),
where N is the number of nodes in the mesh (Kimmel and Sethian [1998],
Sethian and Vladimirsky [2000]). Indeed, the number of iterations needed to
reach each node is O(N) and, at each iteration, the heap is updated and re-
ordered in O(log N) steps. Our implementation of Algorithms 1 and 2 is done in
Python. The heap queue algorithm provided by the heapq module in Python is
inappropriate for our purpose, as it does not allow to update the values in the
heap. In the FMM, when a node becomes Accepted, its Far neighbors enter the
heap and its Considered neighbors, which are already in the heap, get an up-
dated temporary activation time. The update is allowed by the heap class in the
scikit-fmm module, which we will use in our implementation. Notice that our
Python implementation of Algorithm 1 is considerably less efficient than the im-
plementation of the FMM provided by the scikit-fmm module, which is based
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Algorithm 2: Eikonal algorithm with re-excitability
# Initialization
for x ∈ X do

tag x as Far
set φ(x ) =∞, v(x ) = 0
set DI(x ) =∞, APD(x ) = APDinit, CVl

�

T (x , :)
�

= CVl,init

�

T (x )
�

set t = t1

while t<T do
# Check for stimuli
if t ≤ t i < t +∆t for some i = 1, ..., Nstim then

for x i ∈ X i\Accepted do
tag x i as Accepted
set φ(x i) = t i , v(x i) = 1
set APD(x i) = a

�

DI(x i)
�

, DI(x i) = 0, CVl

�

T (x i , :)
�

= 0
for x n ∈ N(x i)\(X i ∪ Accepted) do

tag x n as Considered
set CVl

�

T (x n, x i)
�

= c
�

T T
�

T (x n, x i)
�

, DI(x n)
�

compute φ̃(x n) = HL
�

φ
�

N(x n)
�

, CVl

�

T (x n, :)
�

, D
�

T (x n, :)
�

�

# Iterate within one time step
while minx∈Consideredφ̃(x )< t +∆t do

tag x a = argminx∈Consideredφ̃(x ) as Accepted
set φ(x a) = φ̃(x a), v(x a) = 1
set APD(x a) = a

�

DI(x a)
�

, DI(x a) = 0, CVl

�

T (x a, :)
�

= 0
for x n ∈ N(x a)\Accepted do

tag x n as Considered
set CVl

�

T (x n, x a

�

= c
�

T T
�

T (x n, x a)
�

, DI(x n)
�

compute φ̃(x n) = HL
�

φ
�

N(x n)
�

, CVl

�

T (x n, :)
�

, D
�

T (x n, :)
�

�

set t = t +∆t
# Updates for the next time step
for x ∈ Accepted such that φ(x ) + APD(x )< t do

set v(x ) = 0, DI(x ) = t −
�

φ(x ) + APD(x )
�

for x /∈ Accepted do
set DI(x ) = DI(x ) +∆t

for x ∈ Accepted such that DI(x )≥ DImin do
tag x as Far
set φ(x ) =∞
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on C++. The adaptations to the FMM required to include the re-excitability do
not influence the computational complexity, which is O(N log N) also for Algo-
rithm 2, but further reduce the efficiency of the implementation.

4.3.4 2D simulation of a spiral wave

In this subsection we perform a 2D numerical experiment to compare the eikonal
model with re-excitability to the monodomain model of Chapter 3 in the case
of a re-entrant spiral wave generated on an homogeneous isotropic tissue. In
particular, we consider an isotropic square tissue slab of type "atrium" with 15 cm
side length. To simulate the isotropic case with the monodomain model, we
choose an arbitrary fiber direction and we set the transversal conductivities equal
to the longitudinal conductivities, i.e. σt

i,e(x ) = σ
l
i,e(x ) = 3.0 mS/cm for all

x ∈ Ω. The monodomain simulation is performed on a hexahedral mesh with
one element thickness and with spatial resolution h = 0.02 cm. The time step
for the monodomain simulation is ∆t = 0.01 ms.

The eikonal simulation is performed on a triangulated mesh. In the eikonal
model we set the transversal conduction velocity equal to the longitudinal con-
duction velocity, i.e. CVt(T ) = CVl(T ) for any triangle T of the mesh. As a
consequence, the anisotropy tensor is equal to the identity, i.e. D(T ) = I for any
triangle T of the mesh. The initial conduction velocity is CVl,init(T ) = 65 cm/s
and the restitution function c is the curve plotted in panel B of Figure 4.6 corre-
sponding to the healthy tissue, for any triangle T of the mesh. Moreover, we set
APDinit = 158 ms and the restitution function a of the APD is the curve plotted
in panel A of Figure 4.6. Additionally, we set DImin = 32 ms. For the eikonal
simulation we use the coarser spatial resolution h = 0.1 cm, as in Pezzuto et al.
[2017] and Quaglino et al. [2018]. We generate a triangulated mesh using the
Mmg software. Only 0.18% of the triangles are non-acute. Furthermore, in the
eikonal algorithm we set the time step ∆t = 1 ms.

We first apply a stimulus to the left side at time t = 0 ms. Then we apply a
second stimulus that generates a spiral wave. The second stimulus is applied to
the lower left rectangle of size 6 cm× 12 cm at time t = 275 ms. Note that at
time t = 275 ms part of the stimulated tissue might not be excitable. In the mon-
odomain simulation, the stimulation in the non-excitable tissue results in a quick
increase of the transmembrane potential, that then rapidly decreases back to
its pre-stimulation value, without affecting the overall dynamics. In the eikonal
simulation, because of the implementation of the eikonal algorithm, the non-
excitable tissue is not activated. We perform the monodomain and the eikonal
simulations with T = 1000 ms and we report the results in Figure 4.8. The figure



48 4.3 Eikonal algorithm

illustrates the snapshots at five time instants. The active tissue is shown in red
and the inactive tissue is shown in blue. Panel A shows the monodomain simula-
tion, in which the tissue is active where the transmembrane potential v is above
the −62 mV threshold. Note that the simulation is performed on a mesh with
resolution h = 0.02 cm, but the result is visualized on a mesh with 0.1 cm reso-
lution. Panel B shows the eikonal simulation, in which the tissue is active where
the pseudo-potential v computed by the algorithm is 1. The result is visualized
on the computational mesh with resolution h = 0.1 cm. At time t = 275 ms

t = 275 ms t = 390 ms t = 450 ms t = 525 ms t = 1000 ms

Not active Active

(A
) M

on
od

om
ai
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Figure 4.8. Monodomain (panel A) and eikonal (panel B) simulations of a
spiral wave in the homogeneous isotropic case.

part of the tissue is still active due to the first stimulus and the second stimu-
lus is applied. At time t = 275 ms the right part of the tissue is not excitable,
therefore the second stimulus can only propagate upwards. Between t = 275 ms
and t = 390 ms the right part of the tissue becomes re-excitable and the sec-
ond stimulus can propagate in the right direction from above. The propagation
then continues towards the right and downwards. At time t = 390 ms the por-
tion activated by the second stimulus becomes inactive, but not yet re-excitable.
Therefore the front can not yet propagate in the left direction. Around the time
t = 420 ms the portion activated by the second stimulus becomes re-excitable
and the front can propagate also towards the left, as we can see in the snapshots
at time t = 450 ms. The front then starts a re-entrant propagation that induces a
spiral wave around the time t = 525 ms. The re-entry self-sustains until the end
of the simulation at time t = T = 1000 ms, when a spiral wave is still present.
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The CV of a front is not only determined by the tissue and the restitution
properties. The curvature of the wavefront also affects the CV (Fast and Kléber
[1997]). In particular, compared to a planar front, a convex front propagates
with a reduced CV and a concave front propagates with an increased CV. This is
due to the fact that, compared to a planar propagation, the current at the front
diffuses to a larger tissue area during a convex propagation and to a smaller tissue
area during a concave propagation. These curvature effects are captured by the
monodomain model. In contrast, since the eikonal equation does not account
for the diffusion currents, the eikonal model does not capture the wavefront
curvature effects on the CV.

Hence, the curvature effects generate some differences between our mon-
odomain and eikonal simulations. Since the first stimulus generates a planar
front, the propagation and the following re-excitability occur in the same way in
the two simulations. Therefore, at time t = 275 ms, when the second stimulus
is applied, the snapshots correspond, except for the instantaneous effect of the
stimulation of the non-excitable tissue in the monodomain simulation. The sec-
ond stimulus generates a convex front, therefore after t = 275 ms the CV of the
monodomain front is lower than the CV of the eikonal front. The faster propaga-
tion of the eikonal front can be observed in the snapshots at time t = 390 ms. As
a consequence, compared to the monodomain re-entry, the eikonal re-entry is ini-
tiated lower in the tissue, as we can see in the snapshots at time t = 450 ms. This
is the reason why the spiral wave initiated by the eikonal simulation is delayed
compared to the one initiated by the monodomain simulation, as we can observe
in the snapshots at time t = 525 ms. The eikonal re-entry remains shifted in
space and time until the end of the simulation at time t = T = 1000 ms.

However, the spiral waves resulting from the two simulations have a similar
shape. Moreover, compared to the monodomain result, the eikonal result is ob-
tained with much lower computational resources. Indeed, the computing time
of the monodomain simulation is 1 h 10min with Propag-5 on CSCS, whereas
the computing time of the eikonal simulation is only 3 min with our Python im-
plementation of Algorithm 2 on a laptop.

4.4 Effect of fibrosis

In this section we compare the eikonal and the monodomain models in presence
of diffuse fibrosis. We first quantitatively compare the two models in the non re-
entrant case. Then, we move to the re-entrant case by comparing the two models
in 2D simulations of a spiral wave. The quantitative study in the non re-entrant
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case is presented in Subsection 4.4.1 and the 2D simulations of a re-entrant spiral
wave are shown in Subsection 4.4.2.

In the 2D numerical experiments of this section we consider the isotropic case.
In the eikonal model, the initial conduction velocity is CVl,init(T ) = 65 cm/s for
the triangles T in the healthy regions and CVl,init(T ) = 28 cm/s for the triangles
T in the fibrotic regions. Moreover, the anisotropy tensor is D(T ) = I for any
triangle T of the mesh, as the transversal conduction velocity is equal to the
longitudinal conduction velocity, i.e. CVt(T ) = CVl(T ) for any triangle T of
the mesh. In the monodomain model, we choose an arbitrary fibers direction
and we set the transversal conductivities equal to the longitudinal conductivities.
Thus we set σt

i,e(x ) = σ
l
i,e(x ) = 3.0 mS/cm for x in the healthy regions and

σt
i,e(x ) = σ

l
i,e(x ) = 0.75 mS/cm for x in the fibrotic regions.

4.4.1 Quantitative study in the non re-entrant case

In this subsection we quantitatively compare the monodomain and the eikonal
models in propagations in presence of diffuse fibrosis. Moreover, since we focus
on the non re-entrant case, we also consider the eikonal-diffusion model. The
work presented in this subsection has been done in collaboration with Prof. Rolf
Krause, Prof. Martin Weiser, Prof. Francisco Sahli Costabal and Prof. Simone Pez-
zuto (Gander et al. [2023]). Some sentences are taken from Gander et al. [2023]
ad verbatim.

In order to allow the comparison to the monodomain and the pure eikonal
models, the CV of the eikonal-diffusion model needs to be adapted. To this end,
we modify the parameter ρ according to Equation (4.14). In particular, we set
the parameter ρh in the healthy regions and the parameter ρf in the fibrotic
regions. These parameters are obtained from the longitudinal conduction veloc-
ities CVl on the healthy and the fibrotic tissues, which are respectively 65 cm/s
and 28 cm/s. Moreover, the longitudinal conductivity σl

m is σh = 1.5 mS/cm in
the healthy tissue and σf = 0.375 mS/cm in the fibrotic tissue. Thus, by Equa-
tion (4.14), the resulting parameters are ρh = 1.51 and ρf = 1.32.

We first consider the 2D case of a square with 15 cm side length. The mon-
odomain computational mesh consists of hexahedral elements with resolution
h= 0.02 cm and has one element thickness. We sample the fibrosis on this hexa-
hedral mesh following the procedure described in Section 3.5. The fraction of fi-
brotic tissue is 50% and the resulting fibrotic pattern is shown in Figure 4.9, panel
A. The monodomain computational mesh can be seen as a 2D mesh of squares.
The eikonal-diffusion and the pure eikonal equations are solved numerically on
a triangulated mesh. We use the mesh obtained by splitting each square into two
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(A)

activation time [ms]

(B) (C) (D)

fibrotic tissue
healthy tissue

Figure 4.9. Panel A: fibrosis pattern. Panels B, C and D: contour plots of the
activation times obtained with the monodomain, the eikonal-diffusion and the
pure eikonal models, respectively.

triangles, so that the resolution h = 0.02 cm is the same as in the monodomain
case and the fibrotic pattern is correctly captured. We consider a stimulus deliv-
ered from the left side of the square and we compute the activation times in the
whole domain with the monodomain, the eikonal-diffusion and the pure eikonal
models. The computing times of the simulations are 28 min with Propag-5 on
CSCS for the monodomain model, 1 min with FEniCS on a laptop for the eikonal-
diffusion model and 225 s with our Python implementation of Algorithm 1 on a
laptop for the pure eikonal model. The computing time of the pure eikonal simu-
lation is 0.25 s with the scikit-fmm module on a laptop. Since the maximum ac-
tivation time is approximately 340 ms, the ratio between the computing and the
simulation times is 250 ms/340 ms = 0.74 for the eikonal model implemented
by the scikit-fmm module. Therefore, the eikonal model is (better than) real-
time, but our Python implementation is slower by a factor of 225 s/0.25 s= 900.
Note that, contrary to Algorithm 1, the FMM of the scikit-fmm module oper-
ates on a uniform grid where the CV is assigned to the nodes. The ratio between
the computing and the simulation times is 6 · 104 ms/340 ms = 176 for the
eikonal-diffusion model and 1.68 · 106 ms/340 ms = 4941 for the monodomain
model. The results of the simulations are shown in panels B, C and D of Fig-
ure 4.9 for the monodomain, the eikonal-diffusion and the pure eikonal models,
respectively. The activation times are reported in terms of isochrones with 20 ms
spacing. The thick contour illustrates the position of the front after 220 ms. The
pure eikonal activation times are smaller than the eikonal-diffusion activation
times, which in turn are similar to the monodomain activation times. Indeed,
the maximum difference between the eikonal-diffusion and the monodomain ac-
tivation times is 7 ms, whereas the maximum difference between the pure eikonal
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and the monodomain activation times is 52 ms. The fact that the pure eikonal
model does not account for the diffusion currents is the reason of the mismatch
compared to the eikonal-diffusion and the monodomain models. The diffusion
currents are due to heterogeneities in the propagation, e.g. because of the wave-
front curvature, or in the conductivity, e.g. because of discontinuous coefficients.
To quantify the effect of the discontinuity in the conductivity, due to the presence
of fibrosis, on the eikonal approximation, we perform some 1D numerical experi-
ments. In all the 1D cases we consider an action potential propagating on a tissue
line from left to right and we compute the activation times of the monodomain,
the eikonal-diffusion and the pure eikonal models.

First, we perform two numerical experiments on a tissue line of length 15 cm.
We again consider the spatial resolution h = 0.02 cm, the healthy conductivity
σh = 1.5 mS/cm and the fibrotic conductivity σf = 0.375 mS/cm. In the first
numerical experiment, the tissue line is extracted from the 2D domain and con-
sists of a random fibrotic pattern shown at the bottom of Figure 4.10, panel A,
with 62.4% fibrotic tissue. The activation times of the first numerical experi-

healthy tissue
fibrotic tissue

(A) (B)

Figure 4.10. Activation times in 1D tissue with a random fibrotic pattern
(panel A) and with an ordered fibrotic pattern (panel B).

ment are reported in the plot of Figure 4.10, panel A. The activation times of the
monodomain model are higher than the activation times of the eikonal-diffusion
model, which in turn are slightly higher than the activation times of the pure
eikonal model. This can be translated in terms of average CV, which is 31 cm/s
for the monodomain model, 35 cm/s for the eikonal-diffusion model and 36 cm/s
for the pure eikonal model. In the second numerical experiment, the tissue line
consists of an ordered pattern in which the healthy tissue is on the left and the
fibrotic tissue is on the right, as shown at the bottom of Figure 4.10, panel B.
Note that the percentage of fibrotic tissue is the same as in the first numerical ex-
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periment. The activation times of the second numerical experiment are reported
in the plot of Figure 4.10, panel B. The activation times of the monodomain,
the eikonal-diffusion and the pure eikonal models are now very similar. As a
consequence, the average CV is approximately 36 cm/s for the three models.

These observations suggest that the mismatch between the activation times
of the three models is due to the discontinuities in the conductivity introduced
at the boundaries between the healthy and the fibrotic tissue. Indeed, in the first
numerical experiment the domain contains 151 discontinuities and the mismatch
is significant, whereas in the second numerical experiment the domain contains
only one discontinuity and the mismatch is negligible. To further investigate
this aspect, we perform a numerical experiment in a tissue line of length 6 cm
consisting of three portions of length 2 cm each. The first and the last portions
are healthy tissue, whereas the middle portion is fibrotic tissue. We compare
the activation times of the monodomain and the eikonal-diffusion models to the
activation times of the pure eikonal model. Figure 4.11 shows the difference
in the activation times compared to the pure eikonal model in this case where
only two discontinuities are introduced. The plot shows two curves, one for the

Figure 4.11. Difference in the activation times compared to the eikonal model.
There is a negative jump when the front propagates from the healthy to the
fibrotic tissue and a positive jump when the front propagates from the fibrotic
to the healthy tissue. The sum of the two jumps is positive and is the delay.

monodomain model and one for the eikonal-diffusion model. Note that we dis-
card the results in the first and last portions of length 1 cm because they are
affected by some boundary effects. Both curves show a negative jump as the
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action potential propagates from the healthy to the fibrotic tissue and a positive
jump as the action potential propagates from the fibrotic to the healthy tissue.
In both cases the two jumps are asymmetric, indeed the amplitude of the pos-
itive jump is higher than the amplitude of the negative jump. This asymmetry
introduces a delay, which is the sum of the two jumps, in the monodomain and
the eikonal-diffusion simulations compared to the eikonal simulation. When the
conductivity presents many discontinuities, the total delay becomes significant,
as in the numerical experiment of Figure 4.10, panel A. Moreover, the delay in
the monodomain case is higher than in the eikonal-diffusion case. This explains
why, in Figure 4.10, panel A, the total delay of the monodomain model is more
apparent than the total delay of the eikonal-diffusion model.

To better understand the effect of the discontinuity in the conductivity on
the propagations, we now consider various spatial resolutions h in the mon-
odomain model and various fibrotic conductivities σf corresponding to different
ratios of the healthy conductivity σh. In particular, we consider the coarse res-
olution h = 0.04 cm, the resolution h = 0.02 cm and the two finer resolutions
h = 0.01 cm and 0.005 cm. At the resolution h = 0.04 cm, the time integration
of the monodomain equation is done explicitly with time step ∆t = 0.02 ms.
Instead, at the resolutions h = 0.01 cm and h = 0.005 cm, the time integration
is done implicitly with the usual time step ∆t = 0.01 ms. We study 40 ratios
σf/σh ranging between 0.025 and 1 and we consider a domain consisting of two
portions with different conductivities. We denote the conductivities on the left
and right portions respectively by σleft and σright. When setting the healthy por-
tion to the left and the fibrotic portion to the right, the ratio σright/σleft takes
our 40 values between 0.025 and 1. Instead, when setting the fibrotic portion to
the left and the healthy portion to the right, the ratio σright/σleft takes 40 values
between 1 and 40. For each of these 80 cases, we simulate the propagation with
the monodomain and the eikonal-diffusion models and we compute the jump
of the difference between the resulting activation times and the activation times
of the pure eikonal model. The CVs in the fibrotic regions are computed from
the monodomain simulations and are used in the pure eikonal model and for
the adaptation of the parameter ρf in the eikonal-diffusion model. The jumps
are plotted in Figure 4.12, panel A, against

Æ

σright/σleft. The dashed lines are
vertical asymptotes that indicate the propagation failure, which occurs with the
monodomain model at all resolutions. As h → 0, the monodomain curve con-
verges towards the eikonal-diffusion curve computed with h = 0.02 cm, which
is a straight line. Moreover, the jump is asymmetric, i.e. the amplitude of the
jump at

p

σh/σf is higher than the amplitude at
p

σf/σh. The delay introduced
compared to the pure eikonal model is the sum of the jumps at

p

σf/σh and at
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(A) (B)

Figure 4.12. Panel A: jump of the difference in the activation times compared
to the eikonal model for a front propagating from left to right. Panel B: delay
introduced compared to the eikonal model.

p

σh/σf. These delays are plotted in Figure 4.12, panel B, against
p

σf/σh. The
dashed lines again illustrate the propagation failure. Again, there is convergence
of the monodomain curve towards the eikonal-diffusion curve as h→ 0.

These numerical experiments show that the monodomain results converge to-
wards the eikonal-diffusion results, therefore the eikonal-diffusion model is very
accurate. The difference between the monodomain and the eikonal-diffusion
delays depends on both the spatial resolution h and the value of

p

σf/σh, see
Figure 4.12, panel B. The pure eikonal model does not capture the delays, there-
fore the error compared to the eikonal-diffusion model is given by the eikonal-
diffusion delays, which depend on

p

σf/σh, see Figure 4.12, panel B. The fibrosis
model is determined by the value of

p

σf/σh, which is inversely proportional to
the difference between the healthy and the fibrotic CVs. Therefore, the accuracy
of the monodomain and the pure eikonal models depends on the fibrosis model.
Additionally, the accuracy of the monodomain model is also affected by the spa-
tial resolution. To guarantee the accuracy of the monodomain model, the spatial
resolution needs to be selected based on the fibrosis model. In contrast, there is
no straightforward way to guarantee the accuracy of the pure eikonal model, as
it only depends on the fibrosis model.

In the specific fibrosis model of this work we have
p

σf/σh = 0.5. Our mon-
odomain spatial resolution h = 0.02 cm is sufficiently small to avoid artificial
conduction blocks. However, the delay introduced by the monodomain model
with h = 0.02 cm is 2.17 ms, which is significantly bigger than the delay of
0.20 ms introduced by the eikonal-diffusion model. Therefore, in 1D propaga-
tions, the pure eikonal model is more accurate than the monodomain model
with h = 0.02 cm, as we can observe in Figure 4.10, panel A. However, in the
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2D case, the monodomain model with h = 0.02 cm is more accurate than the
pure eikonal model, as we can observe in Figure 4.9, panels B, C and D. This
occurs because the effect of the wavefront curvature on the propagation is more
significant than the effect of the delays introduced by the presence of fibrosis.
The pure eikonal model does not capture these two effects. The monodomain
model with h = 0.02 cm amplifies the delays but is accurate in describing the
effect of the wavefront curvature.

We conclude this subsection with the derivation of a formula for the jump.
We first consider the eikonal-diffusion equation (4.15) on Ω= [0, L] with Ω0 = 0
given by

(

ρ

Cm

p
β

p

σ(x)|φ′(x)| − 1
Cmβ

�

σ(x)φ′(x)
�′
= 1, x ∈ (0, L),

φ(0) = 0, φ′(L) = 0
(4.25)

We consider a discontinuous conductivity in ` ∈ (0, L), i.e.

σ(x) =

¨

σleft, x ∈ (0,`),

σright, x ∈ (`, L),

so that the eikonal-diffusion equation (4.25) is meant as a distributional ODE. By
multiplying the eikonal-diffusion equation (4.25) by a test function u ∈ H1([0, L])
with u(0) = 0 and by integrating we obtain

ρ

Cm

p

β

∫ L

0

Æ

σ(x)|φ′(x)|u(x)dx −
1

Cmβ

∫ L

0

�

σ(x)φ′(x)
�′

u(x)dx =

∫ L

0

u(x)dx .

By integrating by parts the second term and by using the boundary conditions,
we obtain
∫ L

0

�

σ(x)φ′(x)
�′

u(x)dx =

∫ L

0

σ(x)φ′(x)u′(x)dx

=−σleft

∫ `

0

φ′(x)u′(x)dx −σright

∫ L

`

φ′(x)u′(x)dx

=σleft

∫ `

0

φ′′(x)u(x)dx −σleftφ
′(`−)u(`−)

+σright

∫ L

`

φ′′(x)u(x)dx +σrightφ
′(`+)u(`+)

=

∫ L

0

�

σ(x)φ′(x)
�′

u(x)dx

−
�

σleftφ
′(`−)−σrightφ

′(`+)
�

u(`),
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where in the last step we use the fact that the test function u is continuous. Since
the equalities have to hold for every u ∈ H1([0, L]), we deduce that σleftφ

′(`−) =
σrightφ

′(`+). The eikonal-diffusion equation (4.25) can be rewritten as


























ρ
p
σleft

Cm

p
β
|φ′left(x)| −

σleft
Cmβ
φ′′left(x) = 1, x ∈ (0,`),

ρ
p
σright

Cm

p
β
|φ′right(x)| −

σright

Cmβ
φ′′right(x) = 1, x ∈ (`, L),

φleft(`) = φright(`), σleftφ
′
left(`) = σrightφ

′
right(`),

φleft(0) = 0, φ′right(L) = 0.

(4.26)

Using the change of variables

φ̂left/right = CVleft/rightφleft/right =
ρ
p

σleft/right

Cm

p

β
φleft/right,

obtained from Equation (4.14), and the notation

εleft/right :=

p

σleft/right

ρ
p

β
,

Equation (4.26) becomes






















|φ̂′left(x)| − εleftφ̂
′′
left(x) = 1, x ∈ (0,`),

|φ̂′right(x)| − εrightφ̂
′′
right(x) = 1, x ∈ (`, L),

1p
σleft
φ̂left(`) =

1p
σright

φ̂right(`),
p
σleftφ̂

′
left(`) =

p

σrightφ̂
′
right(`),

φ̂left(0) = 0, φ̂′right(L) = 0.

(4.27)

Since we are considering a propagation from the left to the right of the interval
[0, L], the functions φ̂′left/right are positive. Therefore, the two ODEs in Equa-
tion (4.27) have the form

¨

φ̂′(x)− εφ̂′′(x) = 1, x ∈ (x0, xend),

φ̂(x0) = φ̂0, φ̂′(x0) = φ̂′0.
(4.28)

Note that ε is an estimate of the front thickness. The solution to Equation (4.28)
reads

φ̂(x) = φ̂0 + ε(1− φ̂′0) + x − x0 + ε(φ̂
′
0 − 1)exp

�

(x − x0)/ε
�

. (4.29)

Since
φ̂′(x) = 1+ (φ̂′0 − 1)exp

�

(x − x0)/ε
�

,
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Equation (4.29) is equivalent to

φ̂(x) = φ̂0 + x − x0 + ε
�

φ̂′(x)− φ̂′0
�

. (4.30)

The ODE for φ̂left in Equation (4.27) is of the form of Equation (4.28) with ε =
εleft, x0 = 0 and φ̂0 = 0. Moreover we have

φ̂′0 = φ̂
′
left(0) = CVleftφ

′
left(0)≈ CVleft

1
CVleft

= 1.

Therefore, by Equation (4.30) we get

φ̂left(`)≈ `+ εleft

�

φ̂′left(`)− 1
�

. (4.31)

Similarly, we have

φ̂′right(`) = CVrightφ
′
right(`)≈ CVright

1
CVright

= 1.

Thus, from one of the boundary conditions in Equation (4.27), we obtain

φ̂′left(`) =

√

√σright

σleft
φ̂′right(`)≈

√

√σright

σleft
.

By substituting this in Equation (4.31), we obtain

φ̂left(`)≈ `+ εleft

�√

√σright

σleft
− 1

�

. (4.32)

By rescaling Equation (4.32) back to the original quantity we get

φleft(`)≈
`

CVleft
+
εleft

CVleft

�√

√σright

σleft
− 1

�

. (4.33)

In order to obtain an estimate of the jump, we need the value of the activation
time at ` obtained from the pure eikonal model. Therefore, we now consider the
eikonal equation (4.16) on Ω= [0,`] with Ω0 = 0 given by

¨

CVleft|φ′eiko(x)|= 1, x ∈ (0,`],

φeiko(0) = 0.
(4.34)

Again, since we are considering a propagation from the left to the right of the
interval [0,`], the function φ′eiko is positive. The solution to Equation (4.34) is
thus

φeiko(x) =
x

CVleft
. (4.35)
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By Equation (4.35) we get

φeiko(`) =
`

CVleft
. (4.36)

Finally, by combining Equations (4.33) and (4.36), we obtain the estimate of the
jump given by

jump= φleft(`)−φeiko(`)≈
εleft

CVleft

�√

√σright

σleft
− 1

�

=
Cm

ρ2

�√

√σright

σleft
− 1

�

. (4.37)

Equation (4.37) highlights the asymmetry in the jump. Moreover, Equation (4.37)
compares well to the numerical values for the jump obtained with the eikonal-
diffusion model and shown in Figure 4.12, panel A. For example, for the case rep-
resented in Figure 4.11, the formula predicts the jumps −0.19 ms and 0.43 ms,
while the numerical values are −0.20 ms and 0.41 ms.

4.4.2 2D simulation of a spiral wave

In this subsection we extend the 2D numerical experiment of Subsection 4.3.4
to the presence of diffuse fibrosis. We consider the fibrotic pattern of Figure 4.9,
panel A, sampled on the hexahedral mesh with resolution h = 0.02 cm used for
the monodomain simulation. For the eikonal simulation we use again a trian-
gulated mesh with coarser resolution h = 0.1 cm. Since we are in the isotropic
case, we use the mesh introduced in Subsection 4.3.4. The tissue type is assigned
to the triangles based on the assignment to the hexahedral elements. Since the
hexahedral mesh has one element thickness, it can also be seen as a 2D mesh of
squares. We first map each square to the closest triangle. The distance is com-
puted from the middle of the square to the centroid of the triangle. Then, for a
fixed triangle, we consider all the squares mapped to it and we assign the tissue
type based on a majority rule. We repeat this assignment procedure for all the
mapped triangles. If there are some unmapped triangles, we assign the tissue
type based on the assignment to the adjacent triangles. In particular, for each
unmapped triangle, we consider all the adjacent triangles and, if at least one of
those has been assigned to a tissue type, we use again a majority rule to assign
the tissue type to the unmapped triangle. We repeat this procedure until all the
triangles have been assigned to a tissue type. The resulting fibrotic pattern is
shown in Figure 4.13, panel B, where the centroids of the triangles are colored
based on the assigned tissue type. The panel A shows the original fibrotic pat-
tern, i.e. the one of Figure 4.9, panel A. The large-scale features of the hexahedral
mesh are captured by the triangulated mesh, whereas some small-scale features
might not be present.
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(A) (B)

fibrotic tissue
healthy tissue

Figure 4.13. Fibrosis distribution in the hexahedral mesh with resolution 0.02
cm (panel A) and in the triangulated mesh with resolution 0.1 cm (panel B).

Since we simulate a re-entrant spiral wave, we need the restitution proper-
ties of the tissue. The restitution function c of the CV depends on the tissue
type. Thus we consider the two restitution curves plotted in Figure 4.6, panel B,
corresponding to the healthy and the fibrotic tissues.

Figure 4.14 shows the monodomain (panel A) and eikonal (panel B) simula-
tions. The propagation of the first stimulus in the eikonal simulation is different
from the propagation in the monodomain simulation, as we can see in the snap-
shots at the times t = 275 ms, t = 390 ms and t = 450 ms. This happens
because of the observations of Subsection 4.4.1 and of the wavefront curvature
affecting the monodomain propagation. Moreover, due to the presence of fibro-
sis, the propagation is slower than in the homogeneous case of Subsection 4.3.4.
As a consequence, the portion of the tissue stimulated at time t = 275 ms that
is excitable is smaller. Also the spiral wave generated by the second stimulus
is affected by the heterogeneity of the tissue. As a consequence, since in the fi-
brotic regions the propagation is slower than in the healthy regions, the spiral
wave is deformed, as we can observe in the snapshots at the times t = 390 ms,
t = 450 ms, t = 525 ms and t = T = 1000 ms. The eikonal re-entry is shifted
in space and time compared to the monodomain re-entry. This is due to the
differences between the monodomain and the eikonal activation times in the
boundaries of the tissue types studied in Subsection 4.4.1. Moreover, as in Sub-
section 4.3.4, the comparison is also affected by the effect of the wavefront cur-
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Figure 4.14. Monodomain (panel A) and eikonal (panel B) simulations of a
spiral wave in the fibrotic isotropic case.

vature on the CV, which is present in the monodomain model and is not captured
by the eikonal model. However, again, the shapes of the spiral waves resulting
from the monodomain and the eikonal simulations are similar. Moreover, again,
obtaining the the eikonal result has a much lower computational cost than ob-
taining the monodomain result.

4.5 Anisotropy

In this section we compare the eikonal model with re-excitability to the mon-
odomain model in some anisotropic cases. Specifically, we extend the 2D sim-
ulation of a spiral wave shown in Subsection 4.3.4 to some anisotropic cases.
In the anisotropic case, the anisotropy tensor of the eikonal model is no longer
equal to the identity matrix. The anisotropy tensor D depends on the fiber di-
rection f l and on the anisotropy ratio CVt/CVl between the transversal and the
longitudinal conduction velocities. Since the anisotropy ratio does not depend
on the restitution, it is sufficient to know CVt,init/CVl,init. The initial transversal
CV needs to be computed numerically from the monodomain model. Moreover,
the triangulated mesh used in the eikonal simulation needs to be adapted to the
metric defined by the anisotropy tensor, so that the acuteness condition is satis-
fied on the triangles. In the monodomain model the fiber orientation is encoded
in the angles α, γ and θ defined in Section 3.5. The description of the anisotropy



62 4.5 Anisotropy

is completed by the conductivities σl
i,e and σt

i,e given in Table 3.1.
We first consider the homogeneous non-fibrotic case and then we consider

the heterogeneous case in which the fibrosis is present. The simulations are
presented in Subsection 4.5.1 for the homogeneous case and in Subsection 4.5.2
for the heterogeneous case.

4.5.1 2D simulation of a spiral wave in the homogeneous case

In this subsection we consider the homogeneous tissue of type "atrium" and two
anisotropic cases. In the first case the fibers are horizontally oriented and in the
second case the fibers are diagonally oriented. In other words, the fiber direction
is f l(x ) = [1,0, 0]ᵀ in the first case and f l(x ) =

�p
2/2,

p
2/2,0

�ᵀ
in the second

case, for all x ∈ Ω. To obtain these fiber directions, in the monodomain model
we set γ(x ) = −π and θ (x ) = −π/2 for all x ∈ Ω. Moreover, we set α(x ) = 0 in
the first case and α(x ) = −π/4 in the second case, for all x ∈ Ω. Furthermore,
in the monodomain model the conductivities σl

i,e(x ) and σt
i,e(x ) are given by the

values in Table 3.1 corresponding to the tissue type "atrium" for all x ∈ Ω.
In the eikonal model the fiber direction defines the anisotropy tensor to-

gether with the anisotropy ratio. The initial longitudinal conduction velocity
is CVl,init(T ) = 65 cm/s for any triangle T of the mesh. The restitution func-
tion c of the CV is the curve plotted in panel B of Figure 4.6 corresponding to
the healthy tissue. The initial transversal CV is obtained from a monodomain
computation. We perform two 2D numerical experiments on our computational
domains, i.e. the anisotropic square tissue slabs of type "atrium" with 15 cm side
length. In the first numerical experiment the fibers are horizontally oriented and
in the second numerical experiment the fibers are diagonally oriented. We de-
liver a stimulus of radius 0.1 cm from the middle of the domains that generates
an action potential that propagates in all directions. We perform the simula-
tions with the monodomain model and we compute the activation times along
the fibers direction and in the transversal direction. In particular, in the first nu-
merical experiment we compute the activation times along the horizontal and
vertical directions, whereas in the second numerical experiment we compute the
activation times along the two diagonal directions. Figure 4.15 shows the ac-
tivation times along the longitudinal and transversal directions. Panel A shows
the results of the numerical experiment with the horizontally oriented fibers and
panel B shows the results of the numerical experiment with the diagonally ori-
ented fibers. As expected, in both numerical experiments the activation times
along the transversal direction are higher than the activation times along the
longitudinal direction. The activation times determine the CVs. The CV along
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(A) (B)

Figure 4.15. Activation times along the directions longitudinal and transversal
to the fibers in a domain of type "atrium". Panel A: results for the case of
horizontally oriented fibers. Panel B: results for the case of diagonally oriented
fibers.

the transversal direction is different in the two numerical experiments. When the
fibers are horizontally oriented, the transversal conduction velocity is 21 cm/s,
so that CVt,init(T ) = 21 cm/s for any triangle T of the mesh. As a consequence,
the anisotropy ratio in the first case is CVt,init(T )/CVl,init(T ) = 21/65 = 0.32
for any triangle T of the mesh. When the fibers are diagonally oriented, the
transversal conduction velocity is 32 cm/s, so that CVt,init(T ) = 32 cm/s for any
triangle T of the mesh. Consequently, in the second case the anisotropy ratio
is CVt,init(T )/CVl,init(T ) = 32/65 = 0.49 for any triangle T of the mesh. The
differences are due to the fact that in the second numerical experiment the fibers
are not aligned with the computational grid (Pezzuto et al. [2016]). In both
cases, the anisotropy ratio and the fiber direction define the anisotropy tensor
D(T ) for any triangle T of the mesh.

Since we change the anisotropy tensor, we have to ensure that the triangles
of the mesh satisfy the acuteness condition. The mesh used in Subsection 4.3.4 is
not appropriate for our anisotropic cases as the percentage of triangles not satis-
fying the acuteness condition is significant. Indeed, that percentage is 91.0% in
the first case and 43.9% in the second case. Therefore we use the Mmg software
to adapt the mesh to the metrics defined by the anisotropy tensors. This gener-
ates two adapted meshes that are appropriate for our anisotropic cases. Indeed,
the adapted meshes have a less significant percentage of triangles not satisfy-
ing the acuteness condition. The percentage is only 1.1% for the first mesh and
0.9% for the second mesh. Figure 4.16 shows a detail of the meshes adapted
to the cases of horizontal fibers (panel A) and diagonal fibers (panel B). Note
that we ensure that, in terms of number of nodes, the two adapted meshes are
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(A) (B)

Figure 4.16. Details of the adapted meshes for the anisotropic cases with
horizontally oriented fibers (panel A) and diagonally oriented fibers (panel B).

comparable to the mesh used in Subsection 4.3.4.
Figure 4.17 shows the monodomain (panel A) and the eikonal (panel B) sim-

ulations in the case of horizontally oriented fibers. The first stimulus propa-
gates in the fibers direction, therefore, until the second stimulus is applied, the
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Figure 4.17. Monodomain (panel A) and eikonal (panel B) simulations of a
spiral wave in the homogeneous anisotropic case with horizontally oriented
fibers.
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simulations are the same as those presented in Subsection 4.3.4. Indeed, the
snapshots at time t = 275 ms correspond to the snapshots of Figure 4.8 at the
same time. Instead, the second stimulus, which generates a spiral wave, propa-
gates in all directions. In the anisotropic case the propagation in the directions
non-longitudinal to the fibers is slower than in the isotropic case. Moreover, the
velocity decreases as the angle between the propagation direction and the fibers
direction increases. Therefore, the spiral wave generated in this anisotropic case
is deformed horizontally, as we can see in the snapshots at the times t = 390 ms,
t = 450 ms, t = 525 ms and t = T = 1000 ms.

Figure 4.18 shows the monodomain (panel A) and the eikonal (panel B) sim-
ulations in the case of diagonally oriented fibers. In this case the first stimulus
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Figure 4.18. Monodomain (panel A) and eikonal (panel B) simulations of
a spiral wave in the homogeneous anisotropic case with diagonally oriented
fibers.

does not propagate in the fibers direction. Therefore the propagation is slower
than in the isotropic case of Subsection 4.3.4, mainly in the lower part of the do-
main. As a consequence, the portion of the tissue stimulated at time t = 275 ms
that is excitable is smaller. The snapshots at the times t = 275 ms, t = 390 ms
and t = 450 ms show a slight mismatch between the CV of the first stimulus in the
comparison between the monodomain and the eikonal simulations. In particu-
lar, the monodomain propagation is slightly slower than the eikonal propagation.
This is due to the wavefront curvature affecting the monodomain CV. Again, the
second stimulus generates a spiral wave and propagates in all directions. Since
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we are in an anisotropic case, the velocity decreases as the propagation direc-
tion deviates from the fibers direction. Therefore, the spiral wave generated in
this case is deformed diagonally, as we can see in the snapshots at the times
t = 390 ms, t = 450 ms, t = 525 ms and t = T = 1000 ms.

In both anisotropic cases, the eikonal re-entry is shifted in space and time
compared to the monodomain re-entry. This is again mainly due to the effect of
the wavefront curvature on the CV, which is captured by the monodomain model
and is not present in the eikonal model. However, again, the spiral waves re-
sulting from the eikonal simulations have a similar shape to those resulting from
the monodomain simulations. Moreover, again, obtaining the eikonal results is
computationally much less demanding than obtaining the monodomain results.

4.5.2 2D simulation of a spiral wave in the heterogeneous case

In this subsection we extend the two anisotropic cases of Subsection 4.5.1 to the
presence of diffuse fibrosis. Thus we consider horizontally and diagonally ori-
ented fibers, with the corresponding fiber direction f l(x ) and angles α(x ), γ(x ),
θ (x ) given in Subsection 4.5.1 for all x ∈ Ω. Moreover, we consider the fibrotic
pattern of Figure 4.9, panel A. In the monodomain model the heterogeneity of
the tissue is encoded in the conductivities. For x in the healthy regions the con-
ductivities σl

i,e(x ) and σt
i,e(x ) are given by the values in Table 3.1 corresponding

to the tissue type "atrium", whereas for x in the fibrotic regions the conductivi-
ties σl

i,e(x ) and σt
i,e(x ) are given by the values in Table 3.1 corresponding to the

tissue type "diffuse fibrosis".
In the eikonal model, the heterogeneity of the tissue is encoded in the CVs.

The initial longitudinal conduction velocity is CVl,init(T ) = 65 cm/s for the tri-
angles T in the healthy regions and CVl,init(T ) = 28 cm/s for the triangles T
in the fibrotic regions. The restitution function c of the CV depends on the tis-
sue type and is given by the two curves in Figure 4.6, panel B, corresponding
to the healthy and the fibrotic tissues. For the triangles T in the healthy re-
gions, the initial transversal conduction velocity is CVt,init(T ) = 21 cm/s when
the fibers are horizontally oriented and CVt,init(T ) = 32 cm/s when the fibers
are diagonally oriented. Thus, for the healthy triangles T , the anisotropy ra-
tio is CVt,init(T )/CVl,init(T ) = 21/65 = 0.32 for the case of horizontally ori-
ented fibers and CVt,init(T )/CVl,init(T ) = 32/65 = 0.49 for the case of diago-
nally oriented fibers. The initial transversal CV in the fibrotic regions needs to
be determined numerically from the monodomain model. We repeat the two
numerical experiments of Subsection 4.5.1 in two anisotropic square tissue slabs
of type "diffuse fibrosis". The obtained activation times along the longitudinal
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and transversal directions are shown in Figure 4.19. The results correspond-
ing to the case of horizontally oriented fibers is shown in panel A and the re-
sults corresponding to the case of diagonally oriented fibers is shown in panel
B. The activation times determine the CVs. When the fibers are horizontally ori-

(A) (B)

Figure 4.19. Activation times along the directions longitudinal and transversal
to the fibers in a domain of type "diffuse fibrosis". Panel A: results for the
case of horizontally oriented fibers. Panel B: results for the case of diagonally
oriented fibers.

ented, the transversal conduction velocity is 6 cm/s, so that CVt,init(T ) = 6 cm/s
for the triangles T in the fibrotic regions. Consequently, in the first case the
anisotropy ratio is CVt,init(T )/CVl,init(T ) = 6/28 = 0.21 for the fibrotic trian-
gles T . When the fibers are diagonally oriented, the transversal conduction
velocity is 15 cm/s, so that CVt,init(T ) = 15 cm/s for the triangles T in the
fibrotic regions. As a consequence, in the second case the anisotropy ratio is
CVt,init(T )/CVl,init(T ) = 15/28 = 0.54 for the fibrotic triangles T . Again, the
differences between the two anisotropic cases are due to the fact that in the sec-
ond case the fibers are not aligned with the computational grid (Pezzuto et al.
[2016]). In both anisotropic cases, the fiber direction and the anisotropy ratios
define two anisotropy tensors D(T ), one for the healthy triangles T and one for
the fibrotic triangles T .

Since we are considering the anisotropic cases, we have to adapt the com-
putational mesh to the metrics defined by the anisotropy tensors, in order to
maximize the percentage of triangles satisfying the acuteness condition. More-
over, since in both anisotropic cases the anisotropy ratios of the healthy and the
fibrotic tissue differ, we can not use the same meshes as in Subsection 4.5.1.
Therefore, we repeat the process of generating two meshes from the mesh of
Subsection 4.3.4 using the Mmg software. The percentage of triangles of the
mesh of Subsection 4.3.4 not satisfying the acuteness condition is 93.5% for the
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case of the horizontal fiber direction and 38.6% for the case of the diagonal fiber
direction. This percentage reduces to 4.7% for the adapted mesh of the case of
horizontally oriented fibers and to 0.9% for the adapted mesh of the case of diag-
onally oriented fibers. The tissue type is assigned to the triangles of the adapted
meshes following the procedure described in Subsection 4.4.2. Again, the tri-
angulated meshes reproduce the large-scale features of the hexahedral mesh,
whereas some small-scale features might not be captured.

The monodomain and the eikonal simulations are shown in Figures 4.20 and
4.21 for the cases of horizontally and diagonally oriented fibers, respectively.
The monodomain simulations are shown in panels A and the eikonal simulation
are shown in panels B. The figures show the snapshots at the times t = 275 ms,
t = 390 ms, t = 450 ms, t = 525 ms and t = T = 1000 ms. The propagations
are slower than in the homogeneous isotropic case of Subsection 4.3.4 because
of both the anisotropy and the presence of fibrosis. Moreover, for the same rea-
sons, the spiral waves are deformed. Again, there are differences between the
monodomain and the eikonal simulations, both in the propagation of the first
stimulus and in the re-entry generated by the second stimulus. These differences
are due to two main reasons. First, the tissue heterogeneity due to the presence
of fibrosis introduces a mismatch in the activation times, as observed in Subsec-
tion 4.4.1. Second, the wavefront curvature has an effect on the CV which is
captured by the monodomain model and is not present in the eikonal model.
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Figure 4.20. Monodomain (panel A) and eikonal (panel B) simulations of a
spiral wave in the fibrotic anisotropic case with horizontally oriented fibers.
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Figure 4.21. Monodomain (panel A) and eikonal (panel B) simulations of a
spiral wave in the fibrotic anisotropic case with diagonally oriented fibers.

However, again, the results obtained with the cheap eikonal model are similar to
the results obtained with the much more expensive monodomain model.

4.6 2D numerical experiments in presence of scars

In this section we perform some 2D numerical experiments in presence of non-
conductive scars. In patients with ventricular tachycardia, the initiation of the
arrhythmia is related to the presence of conductive channels between the scars
(Pernod et al. [2011], Gionti et al. [2022]). We consider a square tissue slab
with side length of 15 cm and with the two scars shown in Figure 4.22, panel
A. We simulate the electrical activity during and after an S1-S2 stimulation. The
first stimulus is applied at time t = 0 ms in the middle of the gap between the
two scars, whereas the second stimulus is applied at the bottom of the gap be-
tween the two scars, see Figure 4.22, panel A. Both stimuli have radius 0.5 cm.
The action potential generated by the first stimulus propagates in two directions
around the scars. If the second stimulus is applied early, the surrounding tis-
sue is not excitable and the generated action potential can not propagate. The
result is a vanishing action potential, as illustrated in Figure 4.22, panel B. If
the second stimulus is applied on time, only one side of the surrounding tissue
is excitable and the generated action potential only propagates upwards. Sub-
sequently, the action potential rotates around the scars and reaches again the
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Figure 4.22. Panel A: tissue with two scars and locations of the two stimuli.
Panel B: early S2 stimulation. Panel C: on time S2 stimulation. Panel D: late
S2 stimulation. In panels B, C and D, two snapshots at different times show
the result of the S2 stimulation.

location where the second stimulus was applied, as shown in Figure 4.22, panel
C. A self-sustained re-entry is thus initiated that lasts until the end of the simu-
lation. A similar dynamics underlies the initiation of ventricular tachycardia. If
the second stimulus is applied late, the surrounding tissue is excitable and the
generated action potential propagates in two directions around the scars. As a
consequence, the two fronts collide, as illustrated in Figure 4.22, panel D, and
the action potential vanishes. Therefore, there is a vulnerability interval during
which the S2 stimulation induces a re-entry.

In this section we compare the vulnerability intervals and the dynamics of the
re-entries obtained with the monodomain and the eikonal models. We consider
the homogeneous non-fibrotic case and the heterogeneous case in which fibro-
sis is present, as well as the isotropic and the anisotropic cases. The homoge-
neous and the heterogeneous isotropic cases are presented in Subsections 4.6.1
and 4.6.2, respectively. The homogeneous and the heterogeneous anisotropic
cases are presented in Subsections 4.6.3 and 4.6.4, respectively.

4.6.1 Homogeneous isotropic case

In this subsection we present the homogeneous isotropic case. We consider the
same setting as in Subsection 4.3.4. The scars are modeled as non-conductive
tissue for the monodomain simulations. In the eikonal algorithm the nodes in
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the scar regions are ignored.

The vulnerability interval obtained with the monodomain model is [198, 216]
ms, whereas the one obtained with the eikonal model is [205, 220] ms. The
length of the vulnerability interval is thus 18 ms in the monodomain case and
15 ms in the eikonal case. The length of the vulnerability interval roughly corre-
sponds to the time needed by the action potential generated by the first stimulus
to propagate through the region activated by the second stimulus, i.e. 1 cm

0.065 cm/ms≈
15 ms. Therefore, the lengths of the vulnerability intervals obtained with the
two models are similar. The eikonal vulnerability interval is determined by the
restitution properties of Section 4.2, which approximate the monodomain resti-
tution curves as h→ 0. The monodomain restitution curves obtained with spa-
tial resolution h = 0.02 cm differ from the restitution curves as h → 0. This
might be the reason why the eikonal vulnerability interval is shifted compared to
the monodomain vulnerability interval. Moreover, in Section 4.2 the restitution
properties are computed from 1D numerical experiments, but the monodomain
restitution properties might be different in the 2D case in which the tissue area
where the current is applied is larger.

To compare the re-entries induced with the monodomain and the eikonal
models, we consider the case where the second stimulus is applied at time t =
210 ms. The monodomain and the eikonal simulations are shown in panels A and
B of Figure 4.23, respectively. The snapshots at five times are shown. The final
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Figure 4.23. Monodomain (panel A) and eikonal (panel B) simulations of a
re-entry induced by a S1-S2 stimulation in the homogeneous isotropic case.
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time of the simulations is T = 2000 ms. After the second stimulus is delivered,
the action potential propagates upwards between the two scars, as we can see
in the snapshots at time t = 240 ms. The action potential then reaches the top
of the gap between the two scars and rotates around them, as we can observe
in the snapshots at the times t = 310 ms and t = 390 ms. Subsequently, the
action potential reaches again the bottom of the gap between the two scars, as
we can observe in the snapshots at time t = 470 ms. The action potential then
keeps rotating around the scars until the end of the simulation. The monodomain
and the eikonal simulations are very similar. The similarity is higher compared
to the spiral wave simulation of Subsection 4.3.4. The reason is that here the
rotation is anchored to the scars, whereas in the case of a spiral wave the tip of
the rotor is free to move in the domain. The differences due to the fact that the
eikonal model does not capture the wavefront curvature effects on the CV are
limited. Indeed, these are visible only in the snapshots at time t = T = 2000 ms,
which show that the eikonal propagation is slightly faster than the monodomain
propagation. The computing time of the monodomain simulation is 1 h 30 min
with Propag-5 on CSCS. The computing time of the eikonal simulation is much
lower, indeed it is 7 min with our Python implementation of Algorithm 2 on a
laptop.

4.6.2 Heterogeneous isotropic case

In this subsection we present the heterogeneous isotropic case. We consider
the fibrosis pattern shown in Figure 4.13, panel A, and the setting of Subsec-
tion 4.4.2.

The vulnerability intervals obtained respectively with the monodomain and
the eikonal models are [202,223]ms and [206,220]ms. Thus the lengths of the
vulnerability intervals are 21 ms and 14 ms, respectively for the monodomain and
the eikonal models. The monodomain vulnerability interval is shifted compared
to the homogeneous case of Subsection 4.6.1 since the propagation of the action
potential generated by the first stimulus is slower due to the presence of fibrosis.
For the same reason, the monodomain vulnerability interval is longer than in the
homogeneous case. The eikonal vulnerability interval is not affected in the same
way because, in presence of fibrosis, the eikonal propagation is faster than the
monodomain propagation, as observed in Subsection 4.4.1.

The monodomain and the eikonal simulations in which the second stimulus
is applied at time t = 210 ms are shown in panels A and B of Figure 4.24, re-
spectively. Because of the presence of fibrosis, the propagation is slower than
in the homogeneous case of Subsection 4.6.1 and the waves are deformed. The
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Figure 4.24. Monodomain (panel A) and eikonal (panel B) simulations of a
re-entry induced by a S1-S2 stimulation in the heterogeneous isotropic case.

eikonal propagation is faster than the monodomain propagation, as we can see in
the snapshots at the times t = 250 ms, t = 350 ms, t = 470 ms and t = 590 ms.
This is a consequence of the tissue heterogeneity, as observed in Subsection 4.4.1.

4.6.3 Homogeneous anisotropic case

In this subsection we present the homogeneous anisotropic case. We consider
the case of horizontally oriented fibers and the setting of the first numerical ex-
periment of Subsection 4.5.1.

The vulnerability interval obtained with the monodomain model is [211, 258]
ms, whereas the one obtained with the eikonal model is [239, 286] ms. There
is agreement on the length of the vulnerability interval, which is 47 ms for both
models. Since the action potential generated by the first stimulus initially propa-
gates in the direction transversal to the fibers, its propagation is slower compared
to the isotropic case of Subsection 4.6.1. As a consequence, both vulnerability
intervals are shifted compared to the isotropic case. For the same reason, the
vulnerability intervals are longer since, again, the length roughly corresponds to
the time needed by the action potential generated by the first stimulus to propa-
gate through the region activated by the second stimulus, i.e. 1 cm

0.021 cm/ms ≈ 48 ms.
The eikonal vulnerability interval is again shifted compared to the monodomain
vulnerability interval. The possible reason is again the way in which we com-
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puted the restitution properties in Section 4.2. Additionally, in the anisotropic
case, the shift might be even more pronounced, as the 1D computation of the
monodomain restitution properties is done only in the fibers direction.

We consider the case where the second stimulus is applied at time t = 250 ms
to compare the re-entries induced with the monodomain and the eikonal models.
The monodomain and the eikonal simulations are shown in panels A and B of
Figure 4.25, respectively. The snapshots at the times t = 350 ms, t = 470 ms, t =
690 ms, t = 820 ms and t = T = 2000 ms are shown. Because of the anisotropy,
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Figure 4.25. Monodomain (panel A) and eikonal (panel B) simulations of a
re-entry induced by a S1-S2 stimulation in the homogeneous anisotropic case.

the propagation is slower than in the isotropic case of Subsection 4.6.1. The
monodomain and the eikonal simulations are very similar.

4.6.4 Heterogeneous anisotropic case

In this subsection we present the heterogeneous anisotropic case. We consider
the fibrosis pattern shown in Figure 4.13, panel A, and the case of horizontally
oriented fibers. The setting is thus the one of the first numerical experiment in
Subsection 4.5.2.

The vulnerability intervals obtained respectively with the monodomain and
the eikonal models are [219,276]ms and [240,288]ms. Thus the lengths of the
vulnerability intervals are 57 ms and 48 ms, respectively for the monodomain and
the eikonal models. Again, the propagation of the action potential generated by
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the first stimulus is slower than in the homogeneous case of Subsection 4.6.3
due to the presence of fibrosis. Therefore, compared to the homogeneous case,
the monodomain vulnerability interval is shifted and longer. Again, the eikonal
vulnerability interval is not affected in the same way because of the observations
of Subsection 4.4.1.

The monodomain and the eikonal simulations in which the second stimulus
is applied at time t = 250 ms are shown in panels A and B of Figure 4.26, re-
spectively. Due to the presence of fibrosis, the propagation is slower than in the
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Figure 4.26. Monodomain (panel A) and eikonal (panel B) simulations of a
re-entry induced by a S1-S2 stimulation in the heterogeneous anisotropic case.

homogeneous case of Subsection 4.6.3 and the waves are deformed. Again, the
eikonal propagation is faster than the monodomain propagation, as we can see in
the snapshots at the times t = 390 ms, t = 570 ms, t = 850 ms and t = 1080 ms.
This is again a consequence of the tissue heterogeneity, as observed in Subsec-
tion 4.4.1.

4.7 3D numerical experiments

In this section we perform some 3D numerical experiments on the atrial geome-
try. We simulate the electrical activity during and after a pacing protocol with the
eikonal model and we evaluate the AF inducibility. The pacing protocol is tailored
to the restitution properties. The restitution curves included in the eikonal algo-
rithm and computed in Section 4.2 result from two monodomain stimulations.
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The restitution properties of the monodomain model depend on the number of
stimulations, see Figure 4.2. Therefore, when several stimuli are applied, the
restitution properties of the monodomain and the eikonal models do not match.
As a consequence, the pacing protocol for the monodomain model introduced
in Section 3.4 can not be applied to the eikonal model. To design an appro-
priate pacing protocol for the eikonal model, we resort to the idea introduced
in Azzolin et al. [2021], i.e. pacing at the end of the ERP. The pacing protocol
presented in Azzolin et al. [2021] consists of delivering a sequence of stimuli
with interval between delivery times given by the ERP. The ERP is the sum of the
APD and the DImin. Here we consider APDinit = 158 ms, DImin = 32 ms and the
restitution function a of the APD given by the curve plotted in Figure 4.6, panel
A. Therefore, in the pacing protocol for the eikonal model, the first interval be-
tween delivery times is APDinit+DImin and the next intervals are a(DImin)+DImin.
The downside of this pacing protocol design is that there is no defined way to
select the number of stimuli Nstim. However, we know that the number of stim-
uli required by the pacing protocol introduced in Azzolin et al. [2021] is lower
than the number of stimuli required by a pacing protocol such as the one intro-
duced in Section 3.4. Therefore, for the eikonal pacing protocol we decide to
set Nstim = 14 as in the monodomain case, since we know that additional stimuli
would be superfluous. In some cases this choice of Nstim might lead to incorrect
inducibility outcomes. Indeed, at some pacing sites AF could be induced after
less than Nstim = 14 stimuli and the successive stimuli could interfere with the
induced AF dynamics and terminate it. However, we expect these cases to be
rare. Moreover, we prefer to avoid that, at some pacing sites, AF is inducible but
the inducibility outcome is incorrect because less than Nstim = 14 stimuli are not
sufficient, as we expect these cases to be more frequent. Note that we apply the
pacing protocol of the eikonal model to pacing sites with radius 0.4 cm, as for
the monodomain model. A direct comparison between the eikonal simulations
and the monodomain simulations is not possible, as the pacing protocols for the
two models are different. However, the similarity between the monodomain and
the eikonal models in terms of AF inducibility can be investigated.

The computational domain is the epicardium of the atrial geometry described
in Section 2.2 and illustrated in Figure 2.4, without coronary sinus. Notice that
the domain does not include the trabecular networks, since these are attached to
the endocardium. The computational mesh for the eikonal simulations consists
of triangular elements and discretizes the epicardial surface. The computational
mesh for the monodomain simulations discretizes the epicardium and consists of
hexahedral elements. The presence of fibrosis is necessary for the pacing protocol
to induce AF. Therefore, we consider the heterogeneous isotropic and anisotropic
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cases. The eikonal simulations are presented in Subsection 4.7.1 for the isotropic
case and in Subsection 4.7.2 for the anisotropic case. The comparison between
the monodomain and the eikonal models in terms of AF inducibility is shown in
Subsection 4.7.3.

4.7.1 Isotropic case

In this subsection we present the eikonal simulations in the isotropic case. We set
CVl,init(T ) = 65 cm/s for the triangles T in the healthy regions and CVl,init(T ) =
28 cm/s for the triangles T in the fibrotic regions. Moreover, the restitution
function c of the CV depends on the tissue type and is given by the curves in Fig-
ure 4.6, panel B, for either the healthy or the fibrotic tissues. Since we consider
the isotropic case, we set CVt(T ) = CVl(T ) for any triangle T of the mesh, so
that the anisotropy tensor is equal to the identity, i.e. D(T ) = I for any triangle
T of the mesh. We use the Mmg software to generate an appropriate triangu-
lated mesh for the eikonal simulations. The resolution h = 0.1 cm used in the
2D numerical experiments is not appropriate here because, in the resulting mesh,
the percentage of triangles not satisfying the acuteness condition is 11.7%, which
is significant. Therefore, we consider the finer resolution h= 0.05 cm, for which
the percentage of triangles not satisfying the acuteness condition in the result-
ing mesh is 3.2%, which is acceptable. The fibrosis pattern is sampled on the
hexahedral mesh with resolution h = 0.04 cm. We set the percentage of fibrotic
tissue to 70% and we follow the sampling procedure described in Section 3.5,
exploiting only the large-scale random field. The resulting fibrosis pattern is
shown in Figure 4.27, panel A. The patchyness is needed for the monodomain

(A) (B)

fibrotic tissue
healthy tissue

Figure 4.27. Fibrosis distribution in the hexahedral mesh with resolution 0.04
cm (panel A) and in the triangulated mesh with resolution 0.05 cm (panel B).
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and the eikonal models to induce AF. To assign the tissue type to the triangles of
the eikonal computational mesh, we follow a procedure that slightly differs from
the one described in Subsection 4.4.2, as the hexahedral mesh is thicker than
the triangulated mesh and because the resolutions are similar (h = 0.04 cm for
the hexahedrons and h = 0.05 cm for the triangles). Specifically, the tissue type
assigned to the triangles is the one of the closest hexahedron, where the distance
is computed from the centroid of the triangle to the middle of the hexahedron.
The result is shown in Figure 4.27, panel B, where the centroids of the triangles
are colored based on their tissue type. The pattern is very similar to the original
pattern of panel A.

We consider 20 pacing sites. The set of pacing sites is obtained by maximizing
the spread on the epicardial surface. In particular, given our triangulated mesh,
we first randomly choose a node and include it in the set. Then, we select the
node that is further away from the starting node in terms of geodesic distance
and add it to the set. We then repeat this procedure and at each iteration we add
to the set the node that is further away from all the nodes already included in
the set. We stop the procedure when the set reaches the requested size. For each
pacing site we simulate the electrical activity during and after the pacing protocol
with the eikonal model and we evaluate the AF inducibility. The computing time
of one eikonal simulation with T = 4000 ms is 2 h 10 min with our Python
implementation of Algorithm 2 on one CSCS node. The eikonal model induces
AF in 9 cases, corresponding to 45% inducibility.

For one case in which the eikonal model induces AF, the simulation is shown
in Figure 4.28. The figure shows ten snapshots of the electrical activity. The
pacing site is indicated by the green star in the snapshot at time t = 1890 ms.
The time t = 1890 ms is shortly after the delivery of the last stimulus of the
pacing protocol. The front generated by the last stimulus collides with the front
generated by the second-last stimulus, as we can see in the snapshot at time t =
1910 ms. As a consequence, the action potential generated by the last stimulus
can not propagate in all directions and this dynamics creates a re-entrant path
visible in the snapshots at the times t = 1930 ms, t = 1980 ms and t = 2030 ms.
A re-entry is thus initiated, as we can observe in the snapshots at the times t =
2070 ms, t = 2120 ms, t = 2170 ms and t = 2220 ms. The self-sustained
re-entrant activity then lasts until the end of the simulation at time t = T =
4000 ms.
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t = 1890 ms t = 1910 ms t = 1930 ms t = 1980 ms t = 2030 ms
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Figure 4.28. Eikonal simulation of a re-entry induced by a pacing protocol in
the isotropic case. The green star illustrates the pacing site.

4.7.2 Anisotropic case

In this subsection we present the eikonal simulations in the anisotropic case.
Again, we set CVl,init(T ) = 65 cm/s for the healthy triangles T and CVl,init(T ) =
28 cm/s for the fibrotic triangles T . Moreover, again, the restitution function c
of the CV is given by the curves in Figure 4.6, panel B, depending on the tissue
type. To define the fibers orientation, we consider a simple vector field, obtained
by projecting the horizontal vector on the epicardial surface. In particular, to
assign the fibers orientation to the triangular elements of the mesh, we project
the horizontal vector on the planes determined by the triangles. In Section 4.5
we have seen that the monodomain CV anisotropy ratio depends on both the tis-
sue type and the fiber orientation. In this 3D setting, the fiber orientation varies
over the epicardial domain. It is therefore unfeasible to set the anisotropy ra-
tio of the eikonal model from the anisotropy ratio of the monodomain model.
Thus, in order to set the anisotropy ratio for the eikonal simulations, we ex-
ploit Equation (4.14). By Equation (4.14), the anisotropy ratio CVt/CVl is equal
to
Æ

σt
m/σ

l
m. The monodomain conductivities σl

m and σt
m are determined by

the intracellular and extracellular conductivities σl
i,e and σt

i,e given in Table 3.1
and corresponding to the healthy tissue of type "atrium" and the fibrotic tissue
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of type "diffuse fibrosis". In both the healthy and the fibrotic tissues, we have
Æ

σt
m/σ

l
m = 0.4. Therefore, for the eikonal simulations, we set the anisotropy

ratio CVt(T )/CVl(T ) = 0.4 for any triangle T of the mesh. Together with the
fiber orientation, the anisotropy ratio determines the anisotropy tensor D(T ) for
any triangle T of the mesh. The computational mesh needs to be adapted to
the metrics defined by the anisotropy tensors. Indeed, the mesh used in Subsec-
tion 4.7.1 is not suitable in this anisotropic case, since the percentage of triangles
not satisfying the acuteness condition is 75.1%. Therefore, we use the Mmg soft-
ware to adapt the mesh. In the resulting mesh, the percentage of triangles not
satisfying the acuteness condition is 8.8%. The triangles that do not satisfy the
acuteness condition are mostly located at the boundaries of the domain or in
the regions where the surface curvature is high. Note that the adapted mesh is
comparable to the mesh of Subsection 4.7.1 in terms of number of nodes. The
assignment of the tissue type to the triangles of the adapted mesh with resolution
h = 0.05 cm from the hexahedral mesh with resolution h = 0.04 cm follows the
procedure described in Subsection 4.7.1. Again, the resulting fibrosis pattern is
very similar to the original one.

We evaluate the AF inducibility of the eikonal model following the pacing pro-
tocol at the 20 pacing sites introduced in Subsection 4.7.1. The eikonal model
induces AF in 14 cases, corresponding to 70% inducibility. The increased in-
ducibility compared to the isotropic case is due to the increased variability in
the action potential propagation caused by the anisotropy and is captured by the
eikonal model.

The electrical activity of one case in which the eikonal model induces AF is
shown in the ten snapshots of Figure 4.29. The pacing site is again indicated by
the green star in the snapshot at time t = 1890 ms, which is shortly after the
last stimulus of the pacing protocol is delivered. Again, the front generated by
the last stimulus collides with the front generated by the second-last stimulus,
as we can see in the snapshot at time t = 1930 ms. Consequently, a re-entrant
path is created, as we can observe in the snapshots at the times t = 1970 ms,
t = 1990 ms and t = 2020 ms. A re-entry is thus initiated, see the snapshots
at the times t = 2050 ms, t = 2110 ms, t = 2170 ms and t = 2200 ms, and
the self-sustained re-entrant activity again lasts until the end of the simulation
at time t = T = 4000 ms.
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Figure 4.29. Eikonal simulation of a re-entry induced by a pacing protocol in
the anisotropic case. The green star illustrates the pacing site.

4.7.3 Comparison to the high fidelity model

In this subsection we compare the eikonal model to the monodomain model
in terms of AF inducibility. For the monodomain simulations, we set σl

i,e(x ) =
3.0 mS/cm for x in the healthy regions of type "atrium" andσl

i,e(x ) = 0.75 mS/cm
for x in the fibrotic regions of type "diffuse fibrosis". For the sake of simplicity,
we focus only on the isotropic case. Thus we consider an arbitrary fibers direc-
tion and we set σt

i,e(x ) = σ
l
i,e(x ) for all x . The mesh used for the monodomain

simulations has resolution h = 0.02 cm. The assignment of the tissue type to
the hexahedral elements is based on the tissue type assigned to the coarse hexa-
hedrons with resolution h = 0.04 cm that overlap with the fine elements. Thus
the resulting fibrosis pattern corresponds to the original pattern of Figure 4.27,
panel A.

We consider the 20 pacing sites introduced in Subsection 4.7.1 and shown
in Figure 4.30, panel A. For each pacing site we simulate the electrical activity
during and after the pacing protocol with the monodomain model and we eval-
uate the AF inducibility. The computing time of one monodomain simulation
with T = 4000 ms is 1 h 40 min with Propag-5 on 8 CSCS nodes. The agree-
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Figure 4.30. Panel A: 20 pacing sites. Panel B: agreement between the mon-
odomain and the eikonal models.

ment between the inducibility outcomes obtained with the monodomain and the
eikonal models is shown in Figure 4.30, panel B as a confusion matrix. The two
models agree only in 9 cases, corresponding to 45% of the cases. In 3 cases
(15%) the simulation performed with the monodomain model results in an AF
event, whereas the one performed with the eikonal model does not. In 8 cases
(40%) the AF induction is not successful with the monodomain model, whereas
it is successful with the eikonal model. The monodomain model induces AF in 4
cases, corresponding to 20% inducibility, which is lower than the inducibility of
the eikonal model.

4.8 Discussion

In this chapter we developed and tested a low fidelity model for atrial fibrillation
based on the eikonal model, specifically on the FMM to solve the eikonal equa-
tion. The eikonal low fidelity model consists of an adaptation of the FMM to
include the re-excitability and the restitution properties. The anisotropy is han-
dled by adapting the computational mesh to the metric defined by the anisotropy
tensor using the Mmg software. To maximize the similarity to the high fidelity
model, we adjusted the CV in the eikonal model to the monodomain model.
Moreover, we computed the restitution curves included in the eikonal algorithm
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from the monodomain model.
The eikonal model captures the main features of the re-entries. Indeed, it is

very similar to the monodomain model in simulations of re-entries that rotate
around scars in homogeneous tissue, see Subsections 4.6.1 and 4.6.3. However,
the monodomain and the eikonal models are less similar in simulations of spi-
ral waves whose rotor tip is free to move in the domain, see Subsections 4.3.4
and 4.5.1, or in presence of tissue heterogeneities, see Section 4.4 and Subsec-
tions 4.5.2, 4.6.2 and 4.6.4. Concerning the vulnerability interval of a S1-S2
simulation, the two models lead to different results, but similar in terms of inter-
val length in the case of homogeneous tissue, see Section 4.6. Concerning the AF
inducibility following a pacing protocol, the outputs computed with two models
considerably differ, see Subsection 4.7.3. The main reasons of the discrepancies
between the monodomain and the eikonal models are summarized as follows:

• Compared to the monodomain equation, the eikonal equation can be solved
with a larger spatial resolution. To reduce the computational cost, the com-
putational mesh used for the eikonal simulations is coarser than the mesh
used for the monodomain simulations. As a consequence, a mapping needs
to be defined to transfer the tissue information from the monodomain to
the eikonal mesh. The mappings defined here allow the eikonal mesh to
reproduce the large scale features of the computational domain, but some
small scale features might not be captured. To avoid this issue, a finer mesh
could be used, but the computational cost would increase.

• Our computation of the restitution curves does not guarantee that the resti-
tution properties included in the eikonal algorithm always match the resti-
tution properties of the monodomain model. Indeed, the restitution curves
are computed from two monodomain stimulations. We have observed that
the restitution properties computed with the monodomain model vary de-
pending on the considered number of stimuli. Thus, the eikonal restitu-
tion properties differ from the monodomain restitution properties when
several activations occur. This difference affects the evaluation of the AF
inducibility, since, consequently, the pacing protocol used for the eikonal
simulations is different from the pacing protocol used for the monodomain
simulations. Moreover, the restitution curves are computed in 1D numer-
ical experiments. Hence, the eikonal restitution properties might differ
from the monodomain restitution properties in 2D and 3D numerical ex-
periments. This difference might be amplified in presence of anisotropy.
Furthermore, the monodomain restitution curves depend on the spatial
resolution and on the tissue type. Instead, in the eikonal algorithm we use
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the restitution curves at convergence, which do not depend on the tissue
type (up to a scaling factor for the CV). To overcome some of these issues,
the ionic model could be modified to guarantee the charge conservation
(Colli Franzone et al. [2014]). Alternatively, the restitution curves could
be computed on a ring with periodic boundary conditions (Courtemanche
et al. [1996]).

• The eikonal model does not capture the effect of the wavefront curvature
on the CV. Indeed, the eikonal model does not account for the diffusion
currents due to the heterogeneity in the propagation. In order to take into
account the effect of the curvature, the eikonal-diffusion model could be
employed. However, the inclusion of the re-excitability would require the
solution of the eikonal-diffusion equation to be computed on the whole
computational domain at each time step. Moreover, the eikonal-diffusion
model would require a finer spatial resolution than the pure eikonal model.
These constraints would lead to a higher computational cost. Alterna-
tively, the eikonal-curvature model could be employed. The solution of
the eikonal-curvature equation could, in principle, be obtained by itera-
tive algorithms suitable to include the re-excitability, but an estimate of
the curvature would be needed at each iteration.

• On the one hand, the eikonal model does not capture the jumps in the
activation times and the delays introduced by the discontinuities in the
conductivity in heterogeneous tissue. On the other hand, the discretized
monodomain model amplifies these jumps and delays. This discrepancy is
a novel aspect that had not been analyzed before, to the best of our knowl-
edge. The eikonal model does not account for the diffusion currents due
to the heterogeneity in the conductivity. In order to take into account the
effect of discontinuous conductivity on the front propagation, the eikonal-
diffusion model could be employed. However, again, the computational
cost would increase.

• The convergence of the FMM to the viscosity solution of the eikonal equa-
tion is guaranteed if all the triangles of the computational mesh satisfy an
acuteness condition. The mesh adaptation with the Mmg software min-
imizes the number of triangles that do not satisfy the acuteness condi-
tion. However, in some cases, the percentage of triangles not satisfying the
acuteness condition might remain relevant. To overcome this issue, one
could employ the FIM, which converges on all triangulations. However,
since the FIM is not single-pass and does not guarantee the monotone ac-
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ceptance of the activation times, the inclusion of the re-excitability would
lead to a higher computational cost. Indeed, the eikonal equation would
need to be solved on the whole computational domain at each time step.

The current speed-up obtained by the eikonal model varies depending on the
application. The eikonal model is approximately 23 times faster than the mon-
odomain model in the 2D simulations of spiral waves, approximately 13 times
faster in the 2D simulations of re-entries in presence of scars and approximately
6 times faster in the 3D simulation of re-entries. The differences are due to the
number of node updates performed in the various applications of the eikonal al-
gorithm and to the resolution of the eikonal computational mesh, which is finer
in the 3D numerical experiments than in the 2D cases. The current implementa-
tion of Algorithm 2 is not optimized. Indeed, the implementation of the FMM is
done in Python instead of C++ and the adaptations to include the re-excitability
are naively implemented. The eikonal algorithm can potentially be real-time, see
Subsection 4.4.1.

The evaluation of the AF inducibility following a pacing protocol is challeng-
ing and the eikonal model is inaccurate. However, the eikonal model is qualita-
tively accurate in simpler numerical experiments and is potentially very cheap.
Since the eikonal model is robust to changes in the ionic model (up to a re-
computation of the restitution curves) and in the underlying anatomy (up to a
re-computation of the CVs if the conductivity properties change), it might be em-
ployed in computational studies of cardiac arrhythmias characterized by simpler
dynamics that occur on simpler anatomies, such as ventricular tachycardia. The
qualitative accuracy and the low cost make the eikonal model attractive for in-
silico studies where the computational resources are limited and motivate our
interest in improving the model. Our future work includes the optimization of
the algorithm implementation and the reduction of the discrepancies compared
to the monodomain model. The improvement of the accuracy is likely to lead to
an increase in the computational cost. Our future goal is to quantify this accura-
cy/cost trade-off.



86 4.8 Discussion



Chapter 5

Low fidelity model based on coarser
discretization parameters

In this chapter we introduce the low fidelity model based on coarser discretiza-
tion parameters in the numerical solution of the monodomain system (3.15).
Our goal is to maximize the correlation between the low fidelity model and the
high fidelity model of Chapter 3 when evaluating the AF inducibility. To achieve
this correlation, some aspects need to be taken into account. In particular, the
coarsening of the atrial model of Section 3.5 needs to be appropriately defined.
Moreover, since the coarsening of the computational mesh affects the CV (Pez-
zuto et al. [2016]), the CV of the low fidelity model has to be adapted to match
the one of the high fidelity model.

The coarsening of the atrial model is presented in Section 5.1 and the adjust-
ment of the CV is presented in Section 5.2. The numerical experiments in which
we compare the high and the low fidelity models in terms of AF inducibility after
the stimulation by a pacing protocol are shown in Section 5.3 and a discussion
follows in Section 5.4.

5.1 Coarsening of the atrial model

In this section we present the coarsening of the atrial model. The atrial model
of Section 3.5 consists of a mesh of hexahedral elements, in which each element
is assigned to a tissue type and to three angles that determine the local fiber
orientation. To use a larger spatial resolution h in the numerical solution of the
monodomain equation, we need a coarser computational mesh. In the coarse
mesh, the tissue type and the angles assigned to each hexahedral element depend
on the assignments to the hexahedral elements of the fine mesh that overlap with
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the coarse element. In this work we double the spatial resolution and set it to
h= 0.04 cm, so that eight fine elements overlap with each coarse element.

The assignment of the tissue type is based on a majority rule, i.e. the tissue
type that is mostly represented among the fine elements is assigned to the coarse
element. To illustrate the coarsening of the computational mesh, we consider an
atrial model with 70% fibrotic tissue. The atrial anatomy is the one described
in Section 3.5, which reproduces the features described in Section 2.2 and illus-
trated in Figure 2.4. Figure 5.1 shows the fine and the coarse meshes, where
the hexahedral elements are colored according to their tissue type. The large-

Atrium
Bundle
Intercaval
Fibrosis

(B)(A)

Figure 5.1. Tissue types assigned to the fine (panel A) and the coarse (panel
B) computational meshes.

scale features of the fine mesh are present in the coarse mesh, whereas some
small-scale features might not be captured by the coarse spatial discretization.

The majority rule is appropriate for variables taking few discrete values, as in
the case of the tissue type. The angles take continuous values in [−π,π]. There-
fore, the assignment of the angles is not based on a majority rule. Instead, the
procedure sequentially inspects the fine elements and the first value in [−π,π]
found is assigned to the coarse element.

In this low fidelity model we also double the time step and set it to ∆t =
0.02 ms. As a consequence, the low fidelity model is approximately 16 times
faster than the high fidelity model.

5.2 Conduction velocity adjustment

In this section we present the CV adjustment. With finite differences, the coarser
spatial discretization has the effect of reducing the CV (Pezzuto et al. [2016]).
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We verify this fact with a 1D numerical experiment on a line of tissue of type
"atrium" of length 5 cm. We deliver a stimulus of size 0.2 cm from one end
that generates an action potential that propagates towards the other end. We
perform one simulation with the fine discretization where the spatial resolution
is h= 0.02 cm and the time step is∆t = 0.01 ms and another simulation with the
coarse discretization where the spatial resolution is h= 0.04 cm and the time step
is ∆t = 0.02 ms. Figure 5.2 shows the activation times along the line obtained
with the two simulations. The points on the line activate later with the coarse
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Figure 5.2. Activation times obtained with the fine (black line) and the coarse
(dashed line) spatial discretizations.

level simulation than with the fine level simulation, as a consequence of the
reduced CV due to the coarser spatial discretization. Indeed, the CV measured
on the fine level is 65 cm/s, whereas the one measured on the coarse level is
57 cm/s. This 12% difference is substantial and can not be neglected.

The reduction in the CV affects the low fidelity model. In order to increase the
inter-model correlation, the low fidelity model has to be adjusted to match the CV
of the high fidelity model. To this end, we exploit Equation (4.14). Specifically,
since the CV is inversely proportional to

p

β , we reduce the surface-to-volume
ratio in the low fidelity model. By repeating the 1D simulation on the coarse
level with β = 450 cm−1, we obtain the same activation times and the same CV
as obtained on the fine level with β = 800 cm−1. Therefore, in the low fidelity
model we set β = 450 cm−1.

5.3 Numerical experiments

In this section we compare the high and the low fidelity models in terms of AF
inducibility after the stimulation by a pacing protocol. Since the pacing protocol
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is tailored to the ionic model, the evaluation of the AF inducibility with the low
fidelity model also exploits the pacing protocol of Section 3.4. In these numerical
experiments we consider the atrial model of Figure 5.1 with endomysial fibrosis
and the 20 pacing sites of Gharaviri et al. [2021a] and Gharaviri et al. [2021b],
shown in Figure 5.3, panel A. For each pacing site we simulate the electrical

(A) (B)

Figure 5.3. Panel A: 20 pacing sites. Panel B: agreement between the high and
the low fidelity models.

activity during and after the pacing protocol and we evaluate the AF inducibility
outcome with both the high and the low fidelity models. The agreement between
the two models is shown in Figure 5.3, panel B as a confusion matrix. The two
models agree on the inducibility result in 18 cases, corresponding to 90% of the
cases. In one case (5%) the simulation performed with the high fidelity model
results in an AF event, whereas the one performed with the low fidelity model
does not. In one other case (5%) the AF induction is not successful with the
high fidelity model, whereas it is successful with the low fidelity model. This
determines the correlation between the AF inducibility results, which is 0.79.
For both models, AF is induced in 12 cases, corresponding to 60% inducibility.

For one case in which the two models agree on the AF induction, the elec-
trical activity simulated with the high and the low fidelity models is shown in
Figure 5.4. The figure shows five snapshots of the transmembrane potential v
computed with the high (panel A) and the low (panel B) fidelity models. The
final time of the simulations is T = 4000 ms. Both simulations are visualized
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on the coarse atrial mesh used for the low fidelity simulation. However, note
that the high fidelity simulation is performed on the fine atrial mesh. The green
star on the snapshots at time t = 1965 ms indicates the pacing site. The time
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Figure 5.4. High (panel A) and low (panel B) fidelity simulations inducing AF.
The green star illustrates the pacing site.

t = 1965 ms is shortly after the delivery of the last stimulus of the pacing proto-
col. In the high fidelity simulation, the fronts generated by the second-last and
the last stimuli collide in a portion of the domain. As a consequence, the action
potential generated by the last stimulus can not propagate in all directions, as
we can see in the snapshot of panel A at time t = 2025 ms. This dynamics gen-
erates a re-entry, see the snapshot of panel A at time t = 2100 ms, that initiates
a self-sustained activity, see the snapshot of panel A at time t = 2200 ms. The
self-sustained activity lasts until the end of the simulation, as we can onserve in
the snapshot of panel A at time t = T = 4000 ms. In the low fidelity simulation
the dynamics is different, but again the collision between the fronts generated
by the second-last and the last stimuli of the pacing protocol induces a re-entry
that initiates a self-sustained activity, see the snapshots of panel B at the times
t = 2025 ms, t = 2100 ms and t = 2200 ms. Again, the self-sustained activity
lasts until the end of the simulation, as we can observe in the snapshot of panel
B at time t = T = 4000 ms. Therefore, even though the dynamics of the low
fidelity simulation is different from the dynamics of the high fidelity simulation,
the low fidelity model agrees with the high fidelity model on the induction of
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AF. Moreover, performing the low fidelity simulation requires less computational
effort than performing the high fidelity simulation. Indeed, with Propag-5 on
CSCS, the computing time of the high fidelity model is 1 h 40 min with 8 nodes,
whereas the computing time of the low fidelity model is 14 min with 4 nodes.

5.4 Discussion

In this chapter we developed a low fidelity model based on a coarser discretiza-
tion of the computational domain in the numerical solution of the monodomain
equations. We tested the agreement to the high fidelity model in terms of AF
inducibility in a numerical experiment. To maximize this agreement, we defined
the coarsening of the underlying atrial model and we adjusted the CV in the low
fidelity model to match the one of the high fidelity model.

The preliminary numerical results show that there is high correlation between
the high and the low fidelity models when used to evaluate the AF inducibil-
ity. This high correlation is achieved since the low fidelity model inherits many
properties from the high fidelity model and because the coarsening of the atrial
model and the adjustment of the CV are properly addressed. Since there is high
correlation, in the next chapter we combine the two models in a multi-fidelity
framework to estimate atrial inducibility maps.

The high and the low fidelity models can be applied to any underlying atrial
model. Indeed, the atrial geometry and the local conduction properties can be
encoded in the fine mesh and can be transferred to the coarse mesh using the
coarsening procedure. In this chapter we presented the numerical results on a
single atrial model. In the next chapter we consider various atrial models ob-
tained by combining different fibrosis patterns and different ablation strategies.



Chapter 6

Multi-fidelity characterization of the
atrial inducible regions

In this chapter we combine the high fidelity model of Chapter 3 and the low fi-
delity model based on coarser discretization parameters of Chapter 5 in a multi-
fidelity framework to characterize the atrial inducible regions. We characterize
the atrial regions depending on the outcome of a stimulation by the pacing pro-
tocol of Section 3.4. The two possible outcomes, i.e. whether AF is induced or
not, lead to our definition of the inducibility map of the atria. The problem of
obtaining the inducibility map is thus a binary classification problem. To solve
the problem, we design a multi-fidelity GP classifier that operates on the atrial
surface. We perform some numerical experiments to evaluate the performance
of the multi-fidelity GP classifier by comparing it to two single-fidelity classifiers,
namely the nearest neighbor and the standard GP classifiers. The work presented
in this chapter has been done in collaboration with Prof. Simone Pezzuto, Dr. Ali
Gharaviri, Prof. Rolf Krause, Prof. Paris Perdikaris and Prof. Francisco Sahli Costa-
bal (Gander et al. [2022]). Some sentences are taken from Gander et al. [2022]
ad verbatim.

The classification problem is defined in Section 6.1. The two single-fidelity
and the one multi-fidelity classifiers are presented in Section 6.2. The numerical
experiments are shown in Section 6.3 and a discussion follows in Section 6.4.

6.1 The classification problem

In this section we define the classification problem, i.e. obtaining an AF inducibil-
ity map of the atria. We evaluate the AF inducibility from the outcome of the
tissue stimulation with the pacing protocol of Section 3.4. The success of the
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pacing protocol in inducing AF depends on the pacing site. Indeed, the stimula-
tion from some pacing sites leads to an AF event, whereas stimulating from some
other pacing sites does not lead to an AF event. These two different outcomes
allow us to define the inducibility map of the atria as a map showing the pacing
sites that induce AF if stimulated by the pacing protocol.

In this work, we simulate the electrical activity on the atrial geometry Ω dur-
ing and after pacing from various locations x stim. Since the atrial wall is thin,
we restrict the pacing sites to be on a mid-wall atrial surface S ⊂ Ω. Our goal
is to determine the set A ⊂ S such that, if x stim ∈ A , then AF is induced. In
other words, we want to learn the indicator function F : S → {0, 1} such that
F−1(1) = A . The function F is thus a map showing the regions where AF is
inducible. The problem of determining the inducibility map F is a binary classi-
fication problem.

In some cases, it might be useful to reduce the inducibility map into one
metric. This metric is the inducibility I ∈ R, which is defined as the fraction of
tissue where AF is inducible, i.e.

I =
|A |
|S |

=
1
|S |

∫

S
F(x )dx .

6.2 Classifiers

In this section we present three classification methods to learn the inducibility
map from the limited data contained in a training set. The first two methods,
namely the nearest neighbor and the standard GP classifiers, are single-fidelity.
The third method is the multi-fidelity GP classifier. In the single-fidelity classi-
fication, the training set contains only high fidelity data. In the multi-fidelity
classification, the low fidelity data are also included. The classifiers allow to
predict the class output at locations that are not contained in the training set.
Therefore, by making predictions at a sufficiently large set of unknown inputs, it
is possible to obtain an inducibility map of the atria.

The nearest neighbor classifier is introduced in Subsection 6.2.1. The single-
fidelity and the multi-fidelity GP classifiers are presented in Subsections 6.2.2
and 6.2.3, respectively.

6.2.1 Nearest neighbor classifier

In this subsection we present the nearest neighbor classifier. The single-fidelity
training set consists of N high fidelity input/output pairs of the form {(x i, yi)}Ni=1,
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where, for i = 1, ..., N , the inputs x i ∈ S are some pacing sites and the outputs
yi ∈ {0,1} are the corresponding class labels. The nearest neighbor classifier
simply assigns to unknown locations the class label of the point in the training
set that is closer in terms of geodesic distance. In other words, the prediction y∗

for a new pacing site x ∗ ∈ S is given by

y∗ = yi∗ with i∗ = arg min
i=1,...,N

dS (x
∗, x i),

where dS denotes the geodesic distance on the atrial surface S . To compute the
geodesic distance on the manifold, we use the heat method (Crane et al. [2013]).

6.2.2 Single-fidelity Gaussian process classifier

In this subsection we present the single-fideity GP classifier. GP classification is
based on an intermediate variable f (x ) at the location x ∈ S computed from
a latent function f with GP prior (Rasmussen and Williams [2006]). By assum-
ing, without loss of generality, standardized datasets, the zero-mean GP prior
assigned to the latent function takes the form

f ∼ GP
�

0, k(x , x ′;θ )
�

,

where k is the covariance kernel, which depends on the parameters θ . In con-
trast to nearest neighbor classification, GP classification includes the uncertainty
in the prediction, by returning a class probability. This is done by passing the
latent function f through a non-linear warping function σ : R→ [0, 1]. The out-
put is then the class probability P[y = 1] = σ

�

f (x )
�

(Nickisch and Rasmussen
[2008]). Our choice for the warping function σ is the commonly used logistic
sigmoid function σ( f ) =

�

1+ exp(− f )
�−1

.
The covariance kernel is a fundamental element in GP classification. A com-

mon choice is the Matérn kernel, which, in a Euclidean space, reads

k(x , x ′;θ ) = η2 21−ν

Γ (ν)

�p
2ν
‖x − x ′‖
`

�ν

Kν

�p
2ν
‖x − x ′‖
`

�

,

where Γ is the gamma function and Kν is the modified Bessel function of the
second kind. The parameters are θ = (η,`), which respectively control the vari-
ance of the GP and the spatial correlation length-scale. The value ν controls the
regularity of the latent function f , so this kernel allows to include smoothness
assumptions (Rasmussen and Williams [2006]). However, the kernel can not
be straightforwardly applied to our case, as we are working on the atrial sur-
face S . The definition of the kernel in the Euclidean space can not be extended
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to manifolds simply by replacing the Euclidean distance with the geodesic dis-
tance. Indeed, this approach can not guarantee the positive semi-definiteness of
the covariance matrix resulting from the evaluation of k at input points, which
is a necessary property for a kernel (Pezzuto et al. [2019], Borovitskiy et al.
[2020]). So we need to follow an alternative approach based on the solution of
a stochastic partial differential equation (Lindgren et al. [2011]). This approach
guarantees the positive semi-definiteness of the covariance matrix when working
on manifolds (Borovitskiy et al. [2020]). Moreover, the kernel can be expressed
explicitly. The formulation of the kernel is based on the eigenpairs {(λi,ψi)}∞i=1
of the Laplace-Beltrami operator −∆ with zero Neumann boundary condition,
satisfying

¨

−∆ψi(x ) = λiψi(x ), x ∈ S ,

−n(x ) · ∇ψi(x ) = 0, x ∈ ∂S ,

for i ∈ N. The Matérn kernel on the manifold is then given by (Borovitskiy et al.
[2020])

k(x , x ′;θ ) =
η2

C

∞
∑

i=1

�

1
`2
+λi

�−ν− d
2

ψi(x )ψi(x
′),

where C is a normalizing constant, d is the dimension of the manifold, ν is the
smoothness value and θ = (η,`) are the parameters. For the practical com-
putation of the kernel, we use a triangulated mesh to discretize the atrial sur-
face and we use finite elements shape functions to solve the eigenvalue problem.
Moreover, we truncate the eigendecomposition to a finite number of eigenpairs,
starting from the pair with the smallest eigenvalue. Notice that the eigendecom-
position needs to be computed only once.

Now we can describe the single-fidelity GP classification in more detail. The
training set of N high fidelity input/output pairs {(x i, yi)}Ni=1 = {X , y} is defined
in Subsection 6.2.1. In the Bayesian approach, prior distributions are assigned
to the kernel parameters (Neal [1998]). Our assumption for the priors over the
parameters θ = (η,`) is

η∼ HalfNormal(σ = 1000),

`∼ Gamma(α= 1,β = 1).

The posterior distributions over θ can be estimated based on the training set.
For this purpose, we use the No-U-Turn sampler (Hoffman and Gelman [2014])
to perform the Bayesian inference. The posterior distributions over θ determine
the posterior distribution of f , which allows to predict the classification output at
a new pacing site x ∗ ∈ S as follows. The posterior distribution of the predictive
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latent function f ∗ is obtained by conditioning on the training data (Rasmussen
and Williams [2006]). Thus the predictive latent function follows a normal dis-
tribution f ∗(x ∗)∼N

�

µ(x ∗),Σ(x ∗)
�

with mean and variance given by

µ(x ∗) = k(x ∗, X ;θ )k(X , X ;θ )−1 f (X),

Σ(x ∗) = k(x ∗, x ∗;θ )− k(x ∗, X ;θ )k(X , X ;θ )−1k(X , x ∗;θ ).

The mean and the variance can be sampled using θ and f drawn from the pos-
terior distributions. The resulting Ns samples µi and Σi, for i = 1, ..., Ns, can be
averaged to obtain

µ̂=
1
Ns

Ns
∑

i=1

µi and Σ̂=
1
Ns

Ns
∑

i=1

Σi.

Finally, the predictive latent function is drawn from f̂ ∗ ∼ N (µ̂, Σ̂) and the pre-
diction at the new location is given by y∗ = σ( f̂ ∗).

6.2.3 Multi-fidelity Gaussian process classifier

In this subsection we present the multi-fidelity GP classifier. Multi-fidelity classi-
fication combines models with multiple levels of fidelity by handling a training
set that contains data generated at the various levels. In this work, we focus
on the two-level case, where the high fidelity model is combined with the low
fidelity model of Chapter 5. The idea is to offset most of the computational bur-
den to the fast low fidelity model, in order to gain in efficiency. To maintain the
desirable accuracy, the multi-fidelity approach exploits the correlation between
the high and the low fidelity model.

Considering two sources of information, the training set is composed of NL

low fidelity and NH high fidelity input/output pairs {(x L,i, yL,i)
NL
i=1, (x H,i, yH,i)

NH
i=1}=

{(XL, yL), (XH, yH)}, where the subscripts L and H refer to the low and the high fi-
delity data, respectively. Multi-fidelity GP classification is a generalization of the
single-fidelity framework of Subsection 6.2.2. In the multi-fidelity framework,
we introduce the low and high fidelity latent functions fL and fH. The two latent
functions are assumed to be related through the auto-regressive prior (Kennedy
and O’Hagan [2000])

fH(x ) = ρ fL(x ) +δ(x ),

where ρ is a scaling parameter and δ is another latent function, independent of
fL, that describes the difference between the two levels of fidelity. The functions
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fL and δ have zero-mean GP priors of the form (Kennedy and O’Hagan [2000])

fL ∼ GP
�

0, kL(x , x ′;θ L)
�

,

δ ∼ GP
�

0, kH(x , x ′;θH)
�

,

where the covariance kernels kL and kH, respectively depending on the parame-
ters θ L and θH, are associated to the low and the high fidelity levels, respectively.
As a consequence, the joint prior distribution over the latent functions fL(XL) and
fH(XH) takes the form

�

fL(XL)
fH(XH)

�

∼N
��

0
0

�

,

�

kLL(XL, XL;θ L) kLH(XL, XH;θ L,ρ)
kLH(XH, XL;θ L,ρ) kHH(XH, XH;θ L,θH,ρ)

��

,

with

kLL(XL, XL;θ L) = kL(XL, XL;θ L),

kLH(XL, XH;θ L,ρ) = ρkL(XL, XH;θ L),

kHH(XH, XH;θ L,θH,ρ) = ρ2kL(XH, XH;θ L) + kH(XH, XH;θH).

In the following, we will use the notation

K(XL, XH;θ L,θH,ρ) :=

�

kLL(XL, XL;θ L) kLH(XL, XH;θ L,ρ)
kLH(XH, XL;θ L,ρ) kHH(XH, XH;θ L,θH,ρ)

�

for the joint covariance matrix. The components kLL and kHH describe the spa-
tial correlation of the low and the high fidelity levels, respectively, whereas the
component kLH describes the cross-correlation between the two levels of fidelity.
The presence of the latter component is the reason why the multi-fidelity GP
classifier is able to exploit the inter-model correlation. In this work, we set both
kernels kL and kH to be of Matérn type, hence the parameters are θ L = (ηL,`L)
and θH = (ηH,`H). Similarly to Subsection 6.2.2, we prescribe prior distributions
over the kernel parameters θ L and θH and over the scaling parameter ρ. Our
assumption for the priors is

ηL,ηH ∼ HalfNormal(σ = 1000),

`L,`H ∼ Gamma(α= 2,β = 2),

ρ ∼ Normal(µ= 0,σ = 10).

The posterior distributions over θ L, θH and ρ, which in turn determine the poste-
rior distribution of the latent functions, can be inferred based on the training set
as in Subsection 6.2.2. The prediction of the classification output at a new pacing
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site x ∗ ∈ S is again performed by conditioning on the training data. The pos-
terior distribution of the predictive latent function is f ∗H(x

∗)∼N
�

µ(x ∗),Σ(x ∗)
�

with

µ(x ∗) = k̃(XL, XH, x ∗;θ L,θH,ρ)ᵀK(XL, XH;θ L,θH,ρ)−1

�

fL(XL)
fH(XH)

�

,

Σ(x ∗) = kHH(x
∗, x ∗;θ L,θH,ρ)

− k̃(XL, XH, x ∗;θ L,θH,ρ)ᵀK(XL, XH;θ L,θH,ρ)−1k̃(XL, XH, x ∗;θ L,θH,ρ),

where

k̃(XL, XH, x ∗;θ L,θH,ρ) =

�

kLH(XL, x ∗;θ L,ρ)
kHH(XH, x ∗;θ L,θH,ρ)

�

.

Similarly to Subsection 6.2.2, the mean µ and the variance Σ can be sampled us-
ing θ L, θH, ρ, fL and fH drawn from the posterior distributions. The samples are
then averaged and the predictive latent function f̂ ∗H is drawn from the posterior
distribution. Finally, the prediction at the new location is given by y∗H = σ( f̂

∗
H).

6.3 Numerical experiments

In this section we present some numerical experiments to evaluate the perfor-
mance of the classifiers introduced in Section 6.2. We consider nine atrial models
on a single atrial geometry, for which we estimate the AF inducibility map. The
atrial anatomy is the one described in Section 3.5, which reproduces the features
described in Section 2.2 and illustrated in Figure 2.4. We thus have a computa-
tional domain Ω that can be discretized on the fine and the coarse levels. The
atrial model properties set on the fine level can be transferred to the coarse level
following the procedure of Section 5.1. The high and the low fidelity simulations
are performed on Ω. We also have an atrial surface S , which is discretized by a
triangulated mesh with 3′298 nodes. The classification is performed on S . For
this purpose, we center the nodes around the origin and we normalize the geom-
etry by the largest standard deviation of one of its coordinates. The nine atrial
models are obtained by combining the three fibrosis patterns and the three ab-
lation treatments illustrated in Figure 6.1. Concerning the fibrosis, we consider
one pattern with 50% fibrotic tissue, corresponding to moderate fibrosis, and two
different patterns with 70% fibrotic tissue, corresponding to severe fibrosis. In
all cases we consider endomysial fibrosis. Concerning the ablation treatments,
we consider pulmonary veins isolation (PVI), which consists of creating ablation
lines around the pulmonary veins, and PVI with roof lines (PVI+BOX), which
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Fibrotic tissue
Healthy tissue Non ablated tissue

Pulmonary veins isolation
BOX isolation

(A) (B) (C) (D)

Figure 6.1. Atrial models. Panel A: moderate fibrosis pattern. Panel B: first
pattern of severe fibrosis. Panel C: second pattern of severe fibrosis. Panel D:
ablation lines.

consists of creating two ablation lines connecting the already present PVI lines.
These are two standard-of-care ablation strategies employed in clinical practice.
Additionally, we also consider the case of no ablation. We remark that the first
case of severe fibrosis without ablation corresponds to the atrial model illustrated
in Figure 5.1 and employed in Section 5.3.

We compare the performances of the nearest neighbor, the single-fidelity GP
and the multi-fidelity GP classifiers. The classifiers exploit the information ac-
quired on the training set to make predictions at all the nodes of the mesh dis-
cretizing the atrial surfaceS . The performance of the classifiers is then measured
by the balanced accuracy on a test set. This score is defined as

balanced accuracy=
1
2

�

# of predicted positives
# of real positives

+
# of predicted negatives

# of real negatives

�

.

This metric is suitable as it can handle imbalanced datasets. In particular, it
detects if a classifier predominately predicts the class that is mostly represented
in a dataset.

Our training and test sets contain 100 pacing sites and are obtained following
the procedure described in Subsection 4.7.1, thus maximizing the spread on the
atrial surface S . The resulting training and test sets are shown in Figure 6.2,
panel A. For each of our nine atrial models, we run the high fidelity model on
the test set and both the high and the low fidelity models on the training set.
This results in 1’800 high fidelity simulations and 900 low fidelity simulations,
for a total cost of around 25’000 node-hours. We compare the inducibility out-
puts of the high and the low fidelity models on the training set. In Figure 6.2,
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Figure 6.2. Panel A: training and test sets. Panel B: agreement between the
high and the low fidelity models on the training set.

panel B, we show the confusion matrix of the agreement of the two models over
900 simulations per fidelity. The outputs of our nine atrial models are colored
according to the level of fibrotic tissue. For more detailed results, we refer to
Table 6.1, where we report the high and the low fidelity inducibility and the
agreement separately for the nine atrial models. Here the inducibility is defined
as the fraction of the simulations on the training set that result in an AF event.
There is high agreement between the two models, with 81.8% of the low fidelity
outputs matching the high fidelity outputs. However, the low fidelity inducibility
is lower than the high fidelity inducibility, meaning that the low fidelity model is
biased towards not yielding the AF event when the high fidelity model yields it.
As expected, both models agree on the increase in inducibility as the degree of
fibrotic tissue increases and on the decrease in inducibility when more ablation
lines are present.

To analyze the performance of the classifiers, we consider an increasing size
of the training set. In particular, the classifiers are trained with high fidelity
input/output pairs ranging from 20 to 100. The multi-fidelity GP classifier ad-
ditionally exploits 100 low fidelity training input/output pairs. The cost of the
100 low fidelity simulations is comparable to the cost of only 100/16 = 6.25
high fidelity simulations. Additionally to the nearest neighbor, the single-fidelity
GP and the multi-fidelity GP classifiers, here we also consider the low fidelity
GP classifier trained following the procedure of Section 6.2.2 with 100 low fi-
delity input/output pairs. The cost of the low fidelity GP classifier is fixed and is
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Inducibility [%]

Fibrosis Ablation High fidelity Low fidelity Agreement [%]

Moderate - 58 55 77
Moderate PVI 43 41 76
Moderate PVI+BOX 40 38 78

Severe - case 1 - 62 52 82
Severe - case 1 PVI 50 42 86
Severe - case 1 PVI+BOX 47 36 85

Severe - case 2 - 65 57 84
Severe - case 2 PVI 54 44 84
Severe - case 2 PVI+BOX 48 38 84

Table 6.1. Inducibility and agreement on the training set.

comparable to the cost of 6.25 high fidelity simulations. The accuracy results for
our nine atrial models are shown in Figure 6.3. The balanced accuracies of the
nearest neighbor, the single-fidelity GP and the multi-fidelity GP classifiers are
plotted against the cost expressed in terms of high fidelity simulations. The line
corresponding to the multi-fidelity GP classifier is therefore shifted to the right by
the cost of 100 low fidelity simulations. The balanced accuracy of the low fidelity
GP classifier is represented by an horizontal line. As expected, for all the classi-
fiers the accuracy tends to increase as the size of the training set increases. In
general, for small training sets the multi-fidelity GP classifier reaches higher ac-
curacies than the nearest neighbor and the single-fidelity GP classifiers, whereas
for large training sets the accuracy of the classifiers is comparable. Interestingly,
for low costs, the accuracies of the nearest neighbor and the single-fidelity GP
classifiers are even below the accuracy of the low fidelity GP classifier.

Clinical studies attempting to design optimal ablation strategies are com-
monly based on the simulations resulting from the stimulation at 40 pacing sites
(Boyle et al. [2019]). Therefore, in the following we focus on the classifiers that
have the cost of 40 high fidelity simulations. The nearest neighbor and the single-
fidelity GP classifiers trained with 40 high fidelity input/output pairs have such
cost. The multi-fidelity alternative with equivalent cost is the multi-fidelity GP
classifier trained with 33 high fidelity and 100 low fidelity input/output pairs.
Additionally, we also consider the low fidelity GP classifier trained with 100 low
fidelity input/output pairs, that has lower cost. The balanced accuracies of the
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Figure 6.3. Balanced accuracy vs. cost of the nearest neighbor, the single-
fidelity GP and the multi-fidelity GP classifiers for the nine atrial models,
together with the balanced accuracy of the low fidelity GP classifier.
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four classifiers are illustrated in Figure 6.4. The lines connect the accuracies that
refer to the same atrial model. We use the Mann Whitney U test (Mann and Whit-
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Figure 6.4. Balanced accuracies of the nearest neighbor, the single-fidelity
GP, the low fidelity GP and the multi-fidelity GP classifiers for the nine atrial
models.

ney [1947], Sahli Costabal et al. [2019]) with 5% significance level to evaluate
whether the multi-fidelity GP and the low fidelity GP classifiers are more accu-
rate than the single-fidelity GP and the nearest neighbor classifiers. The multi-
fidelity GP classifier is significantly more accurate than the nearest neighbor (p-
value=0.06) and the single-fidelity GP (p-value=0.020) classifiers. On average,
the gain in accuracy of the multi-fidelity GP classifier is 6% compared to the
nearest neighbor classifier and 4.9% compared to the single-fidelity GP classifier.
Instead, the gain in accuracy of the low fidelity GP classifier on average is 2.8%
compared to the nearest neighbor classifier and 1.7% compared to the single-
fidelity GP classifier. However, the low fidelity GP classifier is not significantly
more accurate than the nearest neighbor (p-value=0.091) and the single-fidelity
GP (p-value=0.252) classifiers. These nearest neighbor, single-fidelity GP, multi-
fidelity GP and low fidelity GP classifiers are shown in Figures 6.5, 6.6 and 6.7
for our nine atrial models. The predicted classification outputs are shown on
the atrial surface. On top of the atrial surface, we show the classification out-
puts of the high fidelity simulations on the test set, which allow to compute the
balanced accuracy. In general, the nearest neighbor and the single-fidelity GP
classifiers show similar patterns and have comparable accuracies. Instead, the
multi-fidelity GP classifier shares some features with the low fidelity GP classifier
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Figure 6.5. Classifiers for the atrial models with moderate fibrosis.
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Figure 6.6. Classifiers for the atrial models with the first pattern of severe
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that, in general, allow to reach a higher accuracy. In many cases, even the accu-
racy of the low fidelity GP classifier is higher than the accuracies of the nearest
neighbor and the single-fidelity GP classifiers.

We conclude this section by remarking that the accuracy of the classifiers
depends on the length scale of the inducibility map. In particular, the accuracy
decreases as the length scale decreases. The shorter the length scale, the larger
the training set must be in order to capture the classification regions with small
characteristic size. An estimate of the length scale of the inducibility map can be
obtained by training a single-fidelity classifier from the dataset of input/output
pairs given by the high fidelity simulations run on both the training and test
sets. The resulting average length scale over our nine atrial models is 0.28 cm.
This small length scale of the inducibility maps indicates that pacing sites that
are close on the atrial surface might lead to opposite AF inducibility outcomes.
The average geodesic distance between the 100 pacing sites in the training set is
0.39 cm, which is larger than the average length scale of the inducibility maps.
This may explain why the balanced accuracies of the classifiers are lower than
90%. However, the inducibility score is not strongly affected by the length scale
of the inducibility map, as the overall fraction of tissue where AF is inducible is
only slightly affected by the number of disconnected inducibility regions and by
the smoothness of their boundaries.

6.4 Discussion

In this chapter we introduced a multi-fidelity GP classifier for the estimation of AF
inducibility maps of the atria. We combined the high fidelity model and the low
fidelity model based on coarser discretization parameters in this multi-fidelity
framework. We evaluated the performance of the multi-fidelity method by com-
paring it to two single-fidelity methods, namely the single-fidelity GP and the
nearest neighbor classifiers. The comparison was done in terms of accuracy and
computational cost.

The GP classification is efficient, as the cost of training and predicting with
the GP classifier is negligible compared to the cost of running the high fidelity
simulations and is comparable to the cost of the nearest neighbor classification.
Indeed, the training and the prediction phases take less than 5 min on a laptop.
Moreover, the GP classification framework is non-intrusive and the atrial model
is a black box. In this chapter we considered nine atrial models on a single ge-
ometry, but the same approach can be applied to any atrial model. In particular,
thanks to the standardization and the normalization of the atrial geometry, the
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same prior distributions can be assumed on generic anatomies. Additionally, the
topological properties of the anatomy are captured by the classifier, as it operates
directly on the atrial surface. The methodology is also robust to changes in the
local conduction properties of the tissue.

The low fidelity model is biased towards not inducing AF when the high fi-
delity model induces it. The reduced inducibility might be due to the fact that
the low fidelity model captures less fine scale details than the high fidelity model,
as it is based on a coarser discretization of the computational domain. The fine
computational mesh allows to detect more tissue heterogeneities, which increase
the risk of occurrence of an AF event. Another reason for the reduced inducibility
might be the increase of the CV in the low fidelity model to match the high fi-
delity CV. This change, achieved by decreasing the surface-to-volume ratio, may
be anti-arrhythmic. However, this change is required to reach higher correla-
tion between the high and the low fidelity models and, therefore, to enhance the
performance of the multi-fidelity GP classifier.

Indeed, compared to the single-fidelity classifiers, the multi-fidelity GP classi-
fier can achieve higher accuracy with a fixed computational cost or, equivalently,
it can achieve a target accuracy with lower computational cost. In particular,
the multi-fidelity GP classifier performs better than the nearest neighbor and the
single-fidelity GP classifiers for the typical cost of 40 high fidelity simulations. For
low costs, e.g. when only 20 high fidelity simulations are feasible (Gharaviri et al.
[2021a], Gharaviri et al. [2021b]), the nearest neighbor and the single-fidelity
GP classifiers do not achieve sufficient accuracy, whereas the multi-fidelity GP
classifier can already achieve a good estimate of the inducibility map. When the
computational budget is even more limited, the cheap low fidelity GP classifier is
a valid choice to get an insight into the inducible regions. Therefore it is worth
taking advantage of the cheap low fidelity model, either in a single-fidelity or in
a multi-fidelity framework. Moreover, the low fidelity model based on coarser
discretization parameters is easy to implement and it does not need a training
phase, so it does not require additional cost.



110 6.4 Discussion



Chapter 7

Conclusion

In this work we first presented the monodomain high fidelity model for atrial fib-
rillation. We then developed two low fidelity models, one based on the eikonal
model and one based on a coarser discretization of the computational domain
in the numerical solution of the monodomain equation. We tested the quality of
the low fidelity approximations compared to the high fidelity results in numerical
studies and we explained the discrepancies. The numerical experiments included
an evaluation of the AF inducibility. We finally employed the low fidelity model
based on coarser discretization parameters in a multi-fidelity framework to es-
timate atrial inducibility maps. We compared the accuracy of the multi-fidelity
estimates to the accuracy of estimates obtained from single-fidelity approaches
with equivalent cost.

Personalized clinical investigations on AF, such as the evaluation and the de-
sign of the ablation treatment, are based on in-silico studies. The starting point
is the patient-specific atrial anatomy (the geometry and the local conduction
properties), which can be acquired through imaging techniques (Oakes et al.
[2009], Siebermair et al. [2017]). The computational models then try to re-
produce the realistic electrophysiology of the patients, for which the amount of
measured data is very limited. The noise in the acquired anatomical data affects
both the monodomain (Pathmanathan et al. [2019]) and the eikonal (Quaglino
et al. [2018]) models. The effect of the variability in the anatomical data on the
electrophysiological outcomes has been analyzed in the uncertainty quantifica-
tion studies collected in Clayton et al. [2020]. In this work, we did not focus on
the acquisition of patient-specific atrial anatomies. Instead, we focused on the
electrophysiological models and on their applicability to personalized investiga-
tions. The accurate high fidelity model is computationally expensive and often
fails to meet the clinical time constraints. Therefore, less accurate but faster low

111



112

fidelity models need to be developed.
The eikonal low fidelity model is very attractive as it is potentially real-time.

This model consists of an adaptation of the FMM to include the re-excitability.
The model is qualitatively accurate in simple numerical experiments. However,
the accuracy decreases in presence of heterogeneities in conduction. Moreover,
when used to evaluate the AF inducibility, the model shows poor agreement with
the high fidelity results. These discrepancies occur despite the adjustment of the
CV and the use of the restitution properties computed from the monodomain
model. The main reasons for the discrepancies compared to the high fidelity
model are the fact that the eikonal model does not take into account the diffusion
currents, either due to heterogeneities in the propagation or in the conductivity,
and the fact that the restitution properties included in the eikonal algorithm do
not always match the restitution properties of the monodomain model. More-
over, the eikonal computational mesh is coarser than the monodomain compu-
tational mesh and not all its elements satisfy the acuteness condition required
by the FMM. The improvement of the accuracy of the eikonal low fidelity model
by reducing the discrepancies to the high fidelity model is part of our future
work. The computation of the restitution curves could be improved following
the approaches described in Colli Franzone et al. [2014] or in Courtemanche
et al. [1996]. Other improvements could be achieved by using the FIM to solve
the eikonal equation, by employing the eikonal-diffusion or the eikonal-curvature
models, or by refining the computational mesh. These improvements would lead
to an increase in the computational cost. The quantification of this accuracy/cost
trade-off is our future interest.

A valid alternative is the low fidelity model based on coarser discretization
parameters. This model is approximately 16 times faster than the high fidelity
model. Thanks to the adjustment of the CV and to the proper procedure to
coarsen the underlying atrial model, the model is sufficiently accurate. In par-
ticular, when used to evaluate the AF inducibility, the model highly agrees to the
high fidelity model. This high correlation can be exploited in the multi-fidelity
framework to efficiently estimate atrial inducibility maps. Indeed, at low com-
putational costs, the multi-fidelity estimates achieve higher accuracies than the
single-fidelity estimates. Moreover, when the computational budget is limited
and the high fidelity simulations are not feasible, the low fidelity model can be
employed in the single-fidelity setting to obtain cheap estimates of the inducibil-
ity maps.
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