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A B S T R A C T

We investigate two maximal covering location problems with capacity restrictions, minimum workload, and
transportation. The problems are inspired by a waste collection problem in which large waste containers are
scattered throughout the municipality, and the residents bring their waste to these containers. We take the
residents’ preferences into account when allocating them to locations. When a container is full, a vehicle
transports an empty container from the disposal facility (depot) to that location and replaces it. We propose
a mixed-integer linear programming formulation for the problems in which vehicles can carry one or two
containers, and apply a logic-based Benders decomposition approach for the latter. Here, the sub problem is a
multi-period minimum weight perfect matching problem. We show that our logic-based Benders decomposition
approach outperforms the direct formulation in terms of solution quality and speed. We further show that
transportation of two containers at a time reduces the distance to be driven by 29.5% on average, without
compromising the covering level. Furthermore, we analyze the effect of imposing a minimum workload as
well as the effect of changing the focus between transportation and covering.
1. Introduction

This article considers two variants of a covering problem that con-
sists in identifying a subset of candidate locations to obtain maximum
coverage over a set of demand nodes while minimizing the underlying
total transportation cost. We refer to this problem as the maximal
covering location problem (MCLP) that considers the underlying trans-
portation (MCLP-T). We assume that a given amount of demand is
associated with each demand node. To justify the opening of a can-
didate location, the total amount of demand assigned to it must lie
between a given minimum and maximum threshold. For each demand
node, we assume a total preference ordering of the candidate loca-
tions according to some convenience measure (e.g., walking distance,
proximity to interesting points), and it must be assigned to its most
preferred location that is opened. It is considered covered if its demand
is allocated to a candidate location that lies within a given maximal
distance, and we refer to such a location as acceptable for that demand
node. All other candidate locations are considered unacceptable for
that demand node. If no acceptable candidate location is available, a
demand node is assigned to the most preferred unacceptable location
as a last resort.

∗ Corresponding author.
E-mail addresses: vera.fischer@unifr.ch (V. Fischer), sanw@econ.au.dk (S. Wøhlk).

Given the set of selected candidate locations and their capacities,
the total demand assigned to each location and the number of visits
needed within a given time horizon can be deduced. Demand is evenly
distributed over the whole time horizon, such that each location is
visited at regular intervals. In other words, given the day of the first
visit to one of the locations, the days of all subsequent visits to that
location are known. We consider two variants of the problem. In the
first variant, we consider vehicles that can satisfy the demand of exactly
one location at a time. The locations are then visited as many days
as needed. In the second variant, we consider vehicles that can satisfy
up to two locations on a single trip. Since in both problem variants
there is a maximum number of two visits in each trip, we do not need
to determine a sequence of locations as is typically done in routing
problems. Consequently, both problems are defined as transportation
problems. Fig. 1 visualizes the idea of the two problems in a simplified
way. The green rectangles represent the selected locations, and the
green and blue arcs show a solution for vehicles of capacity one and
two, respectively. In this example, five of the six demand nodes are as-
signed to acceptable locations while one is allocated to an unacceptable
location.

We have observed this problem in the context of waste collection.
In many countries, a curbside system is applied for residential waste
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Fig. 1. Selection of candidate locations and solution with vehicles of capacity 1 or 2.
Fig. 2. Side loader vehicle carrying one container (Patent Alpenluft; SAAG).
consisting of heavy trucks stopping at almost each household, which
causes high fuel consumption, emissions and noise. We are interested
in designing more efficient and sustainable waste collection systems.
Therefore, in this article, we investigate an alternative design which
has been proposed by the industrial partner of the underlying research
project. In this system, large waste containers are scattered throughout
the municipality, and residents are asked to take their waste to these lo-
cations. At each of these locations exactly one container is established.
When a container is full, a special side loader vehicle as shown in Fig. 2
transports an empty container from the disposal facility (depot) to that
location and replaces it. The vehicle then transports the full container
back to the disposal facility and discharges it. Currently, such vehicles
can carry one container at a time, and we investigate the added benefit
of using vehicles that can carry up to two containers at a time. To the
best of our knowledge, this has not yet been analyzed.

The main contributions of this paper are the following. Based on
our observations in practice and following (Farahani et al., 2012)’s
recommendations, we formulate a capacitated version of the MCLP
that additionally considers a minimum threshold to justify the opening
of container locations. Second, we provide mathematical formulations
for the problems with vehicle capacities of one and two containers,
respectively. Third, we propose a logic-based Benders decomposition
approach that decomposes the problem with vehicle capacity two into
an MCLP in the master problem and a minimum cost perfect matching
2

problem over a time period in the sub problem. This approach allows
to overcome the weakness of the exact formulation with its additional
indicator variables and big-M-constraints. Fourth, we derive managerial
insights with respect to the different vehicle capacities, the integration
of the transportation distance in the objective, the imposition of a mini-
mum workload on container locations, and the allocation of uncovered
demand.

The remainder of the paper is organized as follows. In Section 2, we
briefly position our work in relation to existing literature. The problem
is formally defined in Section 3 where we also discuss our assumptions.
The two covering problems are presented in Sections 4 and 5. To be
more specific, we define the problem and its two variants in the context
of waste collection. The logic-based Benders decomposition approach is
described in Section 6. The computational experiments using data from
our industrial partner are reported in Section 7, and concluding remarks
follow in Section 8.

2. Related work

Our problems fall into the category of so-called covering problems
in which a customer is said to be covered by a facility, if the facility
lies close enough to the customer, as defined by the problem statement
(Kolen and Tamir, 1984). Covering problems represent one of the most
popular problems among facility location problems (FLP). Schilling
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(1993) and Farahani et al. (2012) present consecutive literature reviews
on covering problems in facility location. They classify models which
use the concept of covering in two main categories: set covering loca-
tion problem (SCLP), where coverage of demand is required, and MCLP
where coverage of demand is optimized. They also present areas that
can be considered for further research such as capacitated facilities and
multi-objective covering problems. More recently, García and Marín
(2019) provide a review on covering problems and their main models
and results. They introduce a general covering model which can be
adapted to model specific situations as they can be seen as particular
cases of the general model. For a general overview of location-covering
problems see Laporte et al. (2019) and Church et al. (2018).

The SCLP aims at finding locations to place facilities at minimum
cost while satisfying a specified level of coverage, i.e., service distance
(Toregas et al., 1971). In practice, limited resources might, however,
not allow to cover all the demand for a given level of coverage. Church
and ReVelle (1974) introduce the MCLP that locates a given fixed
number of facilities such that the amount of demand covered within
the acceptable service distance is maximized. Most of the articles in
existing literature on covering problems consider facilities that are un-
capacitated. To overcome this limitation, Current and Storbeck (1988)
present a capacitated version of the MCLP formulation. The MCLP is
most applicable in the public sector (e.g., governmental organizations)
where the goal is to maximize service to people with limited resources,
such as in waste collection (Schilling, 1993).

Current and Schilling (1994) introduce the maximal covering tour
problem (MCTP) in which the tour must visit only 𝑝 of the 𝑛 nodes on
the network. The MCTP maximizes the total demand covered, as does
the MCLP, but it also minimizes the total tour length. In general, these
two objectives conflict with each other such that no single solution
exists that optimizes all of the objectives simultaneously. A set of
efficient solutions can be found, for which an improvement in one
objective requires a degradation in the other objective. The authors
propose a heuristic to generate an approximation of the set of efficient
solutions. To measure the performance of solutions to the MCTP, a
weighted sum of the two objectives can be used. The MCTP belongs
to the location-routing problems (LRP) that represent an approach to
model and solve locational problems while considering vehicle routing
aspects to decrease the overall system cost (Prodhon and Prins, 2014;
Nagy and Salhi, 2007). We refer the reader to these references for
an overview on LRP, as the problems considered in this article (see
Section 1) are defined as transportation problems in which no classical
routing decisions are made.

In the context of waste collection, Adeleke and Olukanni (2020)
present an overview on facility location problems in solid waste man-
agement. They focus on the decision of locating waste collection fa-
cilities such as recycling centers, waste-to-energy facilities, or con-
tainers/bins within a waste collection network. To design an effective
solid waste management system, locating the waste containers is very
crucial. Ghiani et al. (2012) propose an integer programming model
for the capacitated location of collection sites while considering the
quality of service such that each customer is served by the collection
site nearest to him. They minimize the total number of sites to be
opened and determine the optimal allocation of waste bins to the
collection sites such that all the demands are satisfied. They also
propose a construction heuristic for obtaining good solution quality
within an extremely reduced computational time. Computational re-
sults on real-life data of the city Nardò in Italy show that both exact
and heuristic approaches provide consistently better solutions than the
approach currently implemented with fewer collection sites and bins
used. Cubillos and Wøhlk (2020) address the location-routing problem
of recycling drop-off stations by solving an MCTP. They propose a
heuristic approach inspired by a variable neighborhood search, which
can effectively find good quality solutions. Based on a set of real-life
instances, they show the trade-off between covering and collection costs
3

for urban and rural areas. t
3. Problem definition

In this section, we formally define our problem. To make it more
tangible for the reader, we phrase it in the context of waste collection.
The problem is defined over a complete graph 𝐺 = (𝑁,𝐴), with 𝑁 = 𝐹∪
∪{𝜎}. 𝐹 is a set of candidate locations, and for each location 𝑗 ∈ 𝐹 , we
eed to decide whether or not to place a waste container there. 𝑉 is the
et of demand nodes representing the residential buildings. 𝜎 represents
he disposal facility (depot) that holds a sufficiently large fleet of
dentical vehicles. We use 𝑑𝑖𝑗 to denote the (potentially asymmetric)
istance from 𝑖 ∈ 𝑁 to 𝑗 ∈ 𝑁 . It may be that a candidate location
s the same physical place as one of the residential nodes. In this case,
hey are represented by separate nodes with a distance of zero between
hem.

Each node 𝑖 ∈ 𝑉 can refer to a single residential building or group
everal together, as buildings are assigned to the nearest node in 𝑉 .
e denote its waste by 𝑤𝑖. Let 𝜌 be the maximal acceptable walking

istance for a resident. Then for each residential node 𝑖 ∈ 𝑉 , the set
f candidate locations 𝐹 is partitioned into an acceptable set 𝐹+

𝑖 and
n unacceptable set 𝐹−

𝑖 , with 𝐹 = 𝐹+
𝑖 ∪ 𝐹−

𝑖 , 𝐹+
𝑖 ∩ 𝐹−

𝑖 = ∅ ∀𝑖 ∈ 𝑉
uch that 𝑑𝑖𝑗 ≤ 𝜌 ∀𝑗 ∈ 𝐹+

𝑖 and 𝑑𝑖𝑗 > 𝜌 ∀𝑗 ∈ 𝐹−
𝑖 . Residents could take

heir waste to unacceptable locations if no container is placed within
n acceptable distance. This is typically the case for distant residential
uildings for which the placement of additional containers would be
njustifiable and would have a disproportionate impact on the final
olution. Note that residents can walk in both directions, which is why
heir distance matrix becomes symmetric. More precisely, for any 𝑖
nd 𝑗, if 𝑑𝑗𝑖 < 𝑑𝑖𝑗 , we assume for both directions the shorter one 𝑑𝑗𝑖.
urthermore, we assume a total ordering 𝜋(𝑖, 𝑗) of 𝑗 ∈ 𝐹 for every
∈ 𝑉 such that 𝜋(𝑖, 𝑗) < 𝜋(𝑖, 𝑗′) if 𝑗 is preferred over 𝑗′ by 𝑖 and
(𝑖, 𝑗) < 𝜋(𝑖, 𝑗′) ∀𝑗 ∈ 𝐹+

𝑖 , 𝑗′ ∈ 𝐹−
𝑖 . In case two locations, {𝑗, 𝑗′}, are

qually preferred by 𝑖, their ordering is built arbitrarily.
At most 𝑝 locations can be established with a container, and a

ontainer 𝑗 ∈ 𝐹 has a limited capacity 𝑄. A container can only be
laced at a candidate location if it gathers a minimum amount of waste
i.e., minimum workload) 𝑤min. Each resident must be assigned to its
ost preferred container location. Let 𝑆 ⊆ 𝐹 be the set of established

ocations. Then 𝑖 ∈ 𝑉 must be assigned to 𝑗 ∈ 𝑆 such that 𝜋(𝑖, 𝑗) <
(𝑖, 𝑗′) ∀𝑗′ ∈ 𝑆 ⧵ {𝑗}. If 𝑖 ∈ 𝑉 is assigned to a location in 𝐹+

𝑖 , then 𝑖 is
aid to be covered. Otherwise, it is said to be uncovered.

Let  = {1,… , 𝑇 } be the set of days in the time period considered
or this problem. Note that this set of 𝑇 days will repeat itself over a
onger time horizon. We assume that each location 𝑗 ∈ 𝐹 is visited at
ost once a day 𝑡 ∈  . To ensure that enough capacity is available, the

ollowing equation must hold: 𝑝𝑄𝑇 ≥ 𝑤tot, where 𝑤tot =
∑

𝑖∈𝑉 𝑤𝑖.
To replace the container at an established location 𝑗 ∈ 𝐹 , we con-

ider special side loader vehicles (see Fig. 2) and model our problems
s transportation problems in which vehicles do not perform classical
outes. In the first problem variant, a vehicle with a capacity of one
ontainer must perform the round trip 𝜎 - 𝑗 - 𝜎, which induces a
ransportation cost of 𝑐𝑗 = 𝑑𝜎𝑗 + 𝑑𝑗𝜎 . In the second problem variant, a
ehicle with a capacity of two containers may also perform a round trip
hich induces a transportation cost of 𝑐𝑗𝑗′ = min{(𝑑𝜎𝑗+𝑑𝑗𝑗′+𝑑𝑗′𝜎 ), (𝑑𝜎𝑗′+
𝑗′𝑗 +𝑑𝑗𝜎 )}. Note that such a vehicle takes the shorter round trip, which
s why we use the smaller travel cost.

A subset 𝑆 ⊆ 𝐹 represents a feasible solution if the minimum
orkload and the capacity of the containers installed at locations in
are respected, and the waste of each residential node is allocated to

ts most preferred location in 𝑆. Note that, in contrast to the MCLP,
e do satisfy demand of uncovered residential nodes. Indeed, for each

esidential node 𝑖 ∈ 𝑉 , we allocate its waste to its most preferred
ocation in 𝑆, even if uncovered. Considering that the total demand
t each location must be between a given minimum and maximum
hreshold, the allocation of uncovered demand might therefore affect

he location decision such that more locations are established which lie
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closer to the uncovered residential nodes. This effect will be discussed
in Section 7.6.

The goal of the optimization problem is to determine the subset
𝑆 ⊆ 𝐹 that maximizes the total amount of waste of the residential
nodes 𝑖 ∈ 𝑉 that have been assigned to acceptable locations, i.e., a
location 𝑗 ∈ 𝐹+

𝑖 ∩ 𝑆, or equivalently, minimizes the waste that is
assigned to unacceptable locations, and that also minimizes the total
transportation distance that arises from the number of replacements of
containers performed during  . To balance these two objectives, we
use a weighting parameter 𝛼.

.1. Model assumptions

To define our problem in a concise manner, we make the following
ssumptions. Some of these assumptions simplify reality and exclude,
or instance, uncertainty in demand. However, we believe that they are
easonable to build a first model of the problem.

A1): The amount of demand at each location is deterministically known.
n our problem, we consider the locations of waste containers, which
s a long-term decision. Containers are placed such that they cover

maximum amount of waste from the residents, while keeping the
otal transportation distances as low as possible. However, we do not
rovide solutions for any transportation operations that may have to
e executed on-demand due to received sensor information on the fill
evels of the containers. Furthermore, our observation from real-life
perations is that fluctuations in demand are reduced when aggre-
ating over multiple households. As in reality the amount of demand
s uncertain, demand estimations can be based on the maximum or
5% quantiles of the demand distributions (instead of the average or
edian) to ensure service quality in any situation.

A2): The demand is evenly distributed over time. Within a time horizon
of seven days, we assume that each day is equally preferred by all
residents to dispose their waste. It can be argued that in reality resi-
dents may have different preferences, as they might, for instance, have
more waste to dispose on weekend days. Nevertheless, as a starting
point, we choose to model our problem using a uniform distribution
of aggregated waste over time.

(A3): Residents bring the waste to their most preferred location. Given
the locations of the waste containers, it makes sense to assume that
residents would choose the location that is most convenient for them.
Our model is capable of handling any preference ordering of the con-
tainer locations with respect to some convenience measure such as, for
instance, walking distance or proximity to interesting points (e.g., train
station, shopping center). In our experiments, we use the walking
distances from the residential buildings to the container locations as
a measure, which is the most natural indicator. Moreover, it seems fair
to assume that residents would always bring their waste to the same
location, rather than changing it from one day to another, since people
generally tend to repeat their actions out of habit (e.g., going to work
every day).

(A4): A time horizon of seven days is considered. In practice, waste
collection is often executed using weekly plans, such that the same
collection tours are repeated every week. Assuming a time horizon of
seven days, which will repeat itself over a longer time horizon, can
therefore be justified.

(A5): Activities can be done in any order. Vehicles with a capacity of
two containers can visit up to two locations consecutively. We assume
that each of the empty containers on the vehicle can be replaced by a
full container without rearranging them. This is also our observation
in practice, where vehicles are equipped with cranes that can handle
containers individually. Furthermore, as is common in the academic lit-
erature, we minimize the travel distances and do not consider operation
4

times in our problems. M
(A6): The number of containers installed is restricted by their minimum and
maximum capacity. In our problem, we impose a minimum workload
and a maximum capacity at each container location and due to these
restrictions, it may not be allowed to add a container to a location,
considering the other container locations. Hence, these two constraints
have the joint effect of limiting the number of container locations.

4. Covering problem with vehicles with a capacity of one con-
tainer

To model the covering problem with vehicles of capacity one math-
ematically, we use three sets of variables. Let 𝑦𝑗 be a binary variable
that is equal to 1 if a container is established at location 𝑗 ∈ 𝐹 , and
𝑖𝑗 be a binary variable that is equal to 1 if a residential node 𝑖 ∈ 𝑉
and thereby its waste 𝑤𝑖) is allocated to the location 𝑗. Let 𝑠𝑗 be an
nteger variable that represents the number of visits at location 𝑗 ∈ 𝐹 .
he problem is formulated in (1). We refer to this formulation as the
ap1-formulation in the remainder of the paper.

in 𝛼(
∑

𝑖∈𝑉

∑

𝑗∈𝐹 -
𝑖

𝑤𝑖𝑎𝑖𝑗 ) + (1 − 𝛼)(
∑

𝑗∈𝐹
𝑐𝑗𝑠𝑗 ) (1a)

s.t.
∑

𝑗∈𝐹
𝑎𝑖𝑗 = 1 ∀𝑖 ∈ 𝑉 (1b)

∑

𝑗′∈𝐹∶𝜋(𝑖,𝑗′)>𝜋(𝑖,𝑗)
𝑎𝑖𝑗′ ≤ 1 − 𝑦𝑗 ∀𝑖 ∈ 𝑉 , 𝑗 ∈ 𝐹 (1c)

∑

𝑖∈𝑉
𝑤𝑖𝑎𝑖𝑗 ≥ 𝑤min𝑦𝑗 ∀𝑗 ∈ 𝐹 (1d)

∑

𝑖∈𝑉
𝑤𝑖𝑎𝑖𝑗 ≤ 𝑠𝑗𝑄 ∀𝑗 ∈ 𝐹 (1e)

∑

𝑗∈𝐹
𝑦𝑗 ≤ 𝑝 (1f)

𝑠𝑗 ≤ 𝑦𝑗𝑇 ∀𝑗 ∈ 𝐹 (1g)

𝑎𝑖𝑗 , 𝑦𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑉 , 𝑗 ∈ 𝐹 (1h)

𝑠𝑗 ∈ Z≥0,≤𝑇 ∀𝑗 ∈ 𝐹 (1i)

The first term of the objective function (1a) defines the goal of min-
mizing the total waste that is assigned to unacceptable locations, while
he second term represents the minimization of the total transportation
ost. Constraints (1b) ensure that the waste of each residential node
s assigned to exactly one location. Constraints (1c) impose that each
esidential node is allocated to its most preferred open location. Con-
traints (1d) enforce the minimum workload 𝑤min on open locations.
onstraints (1e) enforce that over the whole planning period, a location
is limited to the capacity 𝑄 times the number of visits 𝑠𝑗 at location

. Constraints (1f) state that at most 𝑝 containers can be placed at the
andidate locations. Constraints (1g) ensure that a residential node can
nly be allocated to a location if it is opened. Constraints (1h)–(1i)
efine the domains of the variables.

. Covering problem with vehicles with a capacity of two contain-
rs

In this section, we present our model for the problem with vehicles
f capacity two. As the model is not directly solvable, we present two
ifferent approaches for solving it. First, in Section 5.1, we linearize the
odel. Second, in Section 6, we take a logic-based Benders approach

o solve the problem.
Considering our assumptions in Section 3.1, the covering problem

ith vehicles of a capacity of two containers is formally defined as
ollows. Let 𝜁 be a dummy location and define 𝐹 ′ = 𝐹 ∪ {𝜁}. This
ummy location enables a feasible matching of locations on days where
n odd number of locations needs collection. Note that due to the
riangle equation, at most one location will be visited alone in one day.

′ ′ ′
ore precisely, the cost of visiting locations 𝑗 ∈ 𝐹 and 𝑗 ∈ 𝐹 in
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a single trip is less or equal to the cost of visiting each location in a
separate trip, i.e., 𝑐𝑗𝑗′ ≤ 𝑐𝑗 +𝑐𝑗′ , where the matching cost to the dummy
ocation 𝑐𝑗𝜁 is equal to the transportation cost 𝑐𝑗 . The goal thus becomes

to find a subset 𝑆 ⊆ 𝐹 with maximum coverage and to define for each
day 𝑡 ∈  pairs of locations {𝑗, 𝑗′} ∈ 𝑆′, 𝑆′ = 𝑆 ∪ {𝜁} that are visited in
he same trip in order to minimize the total transportation distance.

Let 𝑥𝑡𝑗𝑗′ be a binary variable that takes value 1 if locations 𝑗, 𝑗′ ∈
𝐹 ′ ∶ 𝑗 ≠ 𝑗′ are visited in the same trip in period 𝑡 ∈  . For each location
𝑗 ∈ 𝐹 , we introduce the integer variables 𝑙𝑗 and 𝑢𝑗 that define a lower
and upper bound on the number of consecutive days without a visit,
such that the capacity 𝑄 is never exceeded. The problem is formulated
in (2) keeping the variables defined in formulation (1).

min 𝛼(
∑

𝑖∈𝑉

∑

𝑗∈𝐹 -
𝑖

𝑤𝑖𝑎𝑖𝑗 )

+ (1 − 𝛼)(
∑

𝑡∈

∑

𝑗∈𝐹 ′

∑

𝑗′∈𝐹 ′

𝑐𝑗𝑗′𝑥
𝑡
𝑗𝑗′ ) (2a)

s.t. (1b) − (1g) (2b)
∑

𝑗′∈𝐹 ′

𝑥𝑡𝑗𝑗′ + 𝑥𝑡𝑗′𝑗 ≤ 𝑦𝑗 ∀𝑗 ∈ 𝐹 , 𝑡 ∈ 

(2c)
∑

𝑡∈

∑

𝑗′∈𝐹 ′

𝑥𝑡𝑗𝑗′ + 𝑥𝑡𝑗′𝑗 = 𝑠𝑗 ∀𝑗 ∈ 𝐹

(2d)
∑

𝑡′∈{𝑡,…,𝑡+𝑙𝑗−1}

∑

𝑗′∈𝐹 ′

𝑥𝑡′𝑗𝑗′ + 𝑥𝑡′𝑗′𝑗 ≤ 1 ∀𝑗 ∈ 𝐹 , 𝑡 ∈  ∶ 𝑡 ≤ 𝑇 − 𝑙𝑗 + 1

(2e)
∑

𝑡′∈{𝑡,…,𝑇 }

∑

𝑗′∈𝐹 ′

𝑥𝑡′𝑗𝑗′ + 𝑥𝑡′𝑗′𝑗

+
∑

𝑡′∈{1,…,𝑡+𝑙𝑗−𝑇−2}

∑

𝑗′∈𝐹 ′

𝑥𝑡′𝑗𝑗′ + 𝑥𝑡′𝑗′𝑗 ≤ 1 ∀𝑗 ∈ 𝐹 , 𝑡 ∈  ∶ 𝑡 ≥ 𝑇 − 𝑙𝑗 + 2

(2f)
∑

𝑡′∈{𝑡,…,𝑡+𝑢𝑗−1}

∑

𝑗′∈𝐹 ′

𝑥𝑡′𝑗𝑗′ + 𝑥𝑡′𝑗′𝑗 ≥ 1 ∀𝑗 ∈ 𝐹 , 𝑡 ∈  ∶ 𝑡 ≤ 𝑇 − 𝑢𝑗 + 1

(2g)
∑

𝑡′∈{𝑡,…,𝑇 }

∑

𝑗′∈𝐹 ′

𝑥𝑡′𝑗𝑗′ + 𝑥𝑡′𝑗′𝑗

+
∑

𝑡′∈{1,…,𝑡+𝑢𝑗−𝑇−2}

∑

𝑗′∈𝐹 ′

𝑥𝑡′𝑗𝑗′ + 𝑥𝑡′𝑗′𝑗 ≥ 1 ∀𝑗 ∈ 𝐹 , 𝑡 ∈  ∶ 𝑡 ≥ 𝑇 − 𝑢𝑗 + 2

(2h)
𝑥𝑡𝑗𝑗′ = 0 ∀𝑗, 𝑗′ ∈ 𝐹 ′, 𝑗 ≥ 𝑗′, 𝑡 ∈ 

(2i)
∑

𝑗∈𝐹

∑

𝑗′∈𝐹 ′

𝑥1𝑗𝑗′ + 𝑥1𝑗′𝑗 ≥
∑

𝑗∈𝐹
𝑠𝑗∕𝑇 (2j)

𝑙𝑗 ≤ 𝑢𝑗 ≤ 𝑙𝑗 + 1 ∀𝑗 ∈ 𝐹

(2k)
𝑠𝑗 , 𝑙𝑗 , 𝑢𝑗 ∈ Z≥0,≤𝑇 ∀𝑗 ∈ 𝐹

(2l)
𝑎𝑖𝑗 , 𝑦𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑉 , 𝑗 ∈ 𝐹

(2m)
𝑥𝑡𝑗𝑗′ ∈ {0, 1} ∀𝑗, 𝑗′ ∈ 𝐹 ′, 𝑡 ∈ 

(2n)

The Eq. (2a) defines the two goals of minimizing the total waste that
is assigned to unacceptable locations and minimizing the total match-
ing cost. Constraints (2b) define the covering problem with vehicles
of capacity one in (1), and they remain unaltered for this extended
problem. Constraints (2c)–(2d) ensure that each location 𝑗 is visited at
most once a day 𝑡 and over the whole time period exactly 𝑠𝑗 times. Con-
straints (2e)–(2h) impose that the number of consecutive days without a
5

visit must be between the two bounds 𝑙𝑗 and 𝑢𝑗 . Constraints (2k) specify t
the relationship between the lower and upper bounds. Constraints (2i)
forbid a matching of two locations {𝑗, 𝑗′} such that 𝑗 ≥ 𝑗′, since a
matching 𝑖− 𝑗 is equivalent to 𝑗 − 𝑖 and thus has the effect of removing
symmetry. To mitigate the negative effects of the inherent symmetry
obtained with the time period index 𝑡 on the x-variables, we introduce
symmetry breaking constraints as follows. Let 𝑠tot =

∑

𝑗∈𝐹 𝑠𝑗 be the
total number of visits to all locations in the time period  . Now we
assume that at least the average number of visits, namely 𝑠tot∕𝑇 , are
made in the first period 𝑡 = 1. This leads us to constraints (2j). Finally,
constraints (2l)–(2n) define the domains of the variables.

5.1. Linearizing the problem

Clearly, this model is not solvable with the 𝑙𝑗 and 𝑢𝑗 variables
in sum and set statements (see constraints (2e)–(2h)). To overcome
this issue, we introduce additional variables 𝑑𝑗𝑘 and 𝛿𝑗𝑘 that indicate
whether a visit is needed at location 𝑗 ∈ 𝐹 within a period of 𝑘 ∈ 
consecutive days according to 𝑙𝑗 and 𝑢𝑗 . More precisely, if 𝑘 ≤ 𝑙𝑗 ,
then 𝑑𝑗𝑘 = 1, and if 𝑘 ≥ 𝑢𝑗 , then 𝛿𝑗𝑘 = 1. Such variables are called
indicator variables and are linked to other variables in the problem to
indicate certain states (Williams, 2013). Using these additional vari-
ables, constraints (2e)–(2h) can be replaced by (3c)–(3i), which results
in formulation (3). We refer to this formulation as the BigM -formulation
in the remainder of the paper.

min (2a) (3a)

s.t. (2b)–(2d), (2i)–(2j) (3b)
𝑙𝑗 ≤ 𝑀𝑑𝑗𝑘 + 𝑘 − 1 ∀𝑗 ∈ 𝐹 , 𝑘 ∈ 

(3c)
𝑢𝑗 ≥ 𝑘 + 1 −𝑀𝛿𝑗𝑘 ∀𝑗 ∈ 𝐹 , 𝑘 ∈ 

(3d)
∑

𝑡′∈{𝑡,…,𝑡+𝑘−1}

∑

𝑗′∈𝐹 ′
𝑥𝑡

′

𝑗𝑗′

+ 𝑥𝑡
′

𝑗′𝑗 ≤ 1 +𝑀 −𝑀𝑑𝑗𝑘 ∀𝑗 ∈ 𝐹 , 𝑘 ∈  , 𝑡 ∈  ∶ 𝑡 ≤ 𝑇 − 𝑘 + 1

(3e)
∑

𝑡′∈{𝑡,…,𝑇 }

∑

𝑗′∈𝐹 ′
𝑥𝑡

′

𝑗𝑗′ + 𝑥𝑡
′

𝑗′𝑗

+
∑

𝑡′∈{1,…,𝑡+𝑘−𝑇−2}

∑

𝑗′∈𝐹 ′
𝑥𝑡

′

𝑗𝑗′

+ 𝑥𝑡
′

𝑗′𝑗 ≤ 1 +𝑀 −𝑀𝑑𝑗𝑘 ∀𝑗 ∈ 𝐹 , 𝑘 ∈  , 𝑡 ∈  ∶ 𝑡 ≥ 𝑇 − 𝑘 + 2

(3f)
∑

𝑡′∈{𝑡,…,𝑡+𝑘−1}

∑

𝑗′∈𝐹 ′
𝑥𝑡

′

𝑗𝑗′

+ 𝑥𝑡
′

𝑗′𝑗 ≥ 1 +𝑀𝛿𝑗𝑘 −𝑀 ∀𝑗 ∈ 𝐹 , 𝑘 ∈  , 𝑡 ∈  ∶ 𝑡 ≤ 𝑇 − 𝑘 + 1

(3g)
∑

𝑡′∈{𝑡,…,𝑇 }

∑

𝑗′∈𝐹 ′
𝑥𝑡

′

𝑗𝑗′ + 𝑥𝑡
′

𝑗′𝑗

+
∑

𝑡′∈{1,…,𝑡+𝑘−𝑇−2}

∑

𝑗′∈𝐹 ′
𝑥𝑡

′

𝑗𝑗′

+ 𝑥𝑡
′

𝑗′𝑗 ≥ 1 +𝑀𝛿𝑗𝑘 −𝑀 ∀𝑗 ∈ 𝐹 , 𝑘 ∈  , 𝑡 ∈  ∶ 𝑡 ≥ 𝑇 − 𝑘 + 2

(3h)
𝑑𝑗𝑘, 𝛿𝑗𝑘 ∈ {0, 1} ∀𝑗 ∈ 𝐹 , 𝑘 ∈ 

(3i)

(2k)–(2n) (3j)

Constraints (3c)–(3d) link the indicator variables 𝑑𝑗𝑘 and 𝛿𝑗𝑘 with
he bound variables 𝑙𝑗 and 𝑢𝑗 , where 𝑀 is a constant representing an
pper bound for 𝑙𝑗 and 𝑢𝑗 . Constraints (3e)–(3h) define for each period
f 𝑘 consecutive days starting at day 𝑡 whether location 𝑗 has to be
isited at most/least one time. Constraints (3i) define the domains of

he indicator variables.
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6. Logic-based Benders decomposition approach

The formulation developed in Section 5.1 is quite weak due to
the extra variables and BigM -constraints. In this section, we propose

logic-based Benders decomposition approach, originally introduced
y Hooker and Ottosson (2003), to decompose the problem into the
ollowing two sub problems:

The master problem comprises the selection of a subset of candidate
ocations that cover a maximum amount of waste from the residential
odes. We call such a subset a max cover. At each integer node of the
ranch and bound tree of the master problem, we provide the solution
which is a max cover) to the sub problem.

The sub problem involves a matching of locations in the max cover
i.e., pairs of locations visited in the same trip) over the time horizon 
t minimum total cost. If the master problem solution satisfies all the
ounds produced by the sub problems, convergence has been achieved.
o get an integer solution at the end of the solution process, we simply
eturn the best combined solution found over all iterations.

Due to the integer variables in the sub problem, standard linear
uality cannot be used to develop classical Benders cuts. Therefore, we
enerate a Benders cut based on the bound on the total cost provided
y the sub problem implied by the given max cover, which is then
dded to the master problem. This decomposition allows us to avoid
he variables 𝑙𝑗 and 𝑢𝑗 , since their values can be derived from the
olution of the master problem. Hence, 𝑙𝑗 and 𝑢𝑗 are parameters of the
ub problem so that the initial constraints (2e)–(2h) can be used in the
ub problem. Thereby, the indicator variables 𝑑𝑗𝑘 and 𝛿𝑗𝑘 and all the
inearization constraints (3c)–(3i) are no longer needed. We refer to this
pproach as the Benders in the remainder of the paper.

.1. Master problem

The master problem is formulated in (4). To tighten the bounds,
e add a relaxation of the sub problem to the master problem. More
recisely, we keep the linear constraints on the matching ((2c), (2d),
2i)–(2j)) in the formulation, but relax the variables 𝑥𝑡𝑗𝑗′ . The associated
ost is then added to the objective function (4b).

in 𝑍 (4a)
s.t. 𝑍 = 𝛼(

∑

𝑖∈𝑉

∑

𝑗∈𝐹 -
𝑖

𝑤𝑖𝑎𝑖𝑗 )

+ (1 − 𝛼)(
∑

𝑡∈

∑

𝑗∈𝐹 ′

∑

𝑗′∈𝐹 ′
𝑐𝑗𝑗′𝑥

𝑡
𝑗𝑗′ ) (4b)

(2b)–(2d), (2i)–(2j) (4c)

𝑎𝑖𝑗 , 𝑦𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑉 , 𝑗 ∈ 𝐹 (4d)

𝑠𝑗 ∈ Z≥0,≤𝑇 ∀𝑗 ∈ 𝐹 (4e)

𝑥𝑡𝑗𝑗′ ≥ 0 ∀𝑗, 𝑗′ ∈ 𝐹 ′,∀𝑡 ∈  (4f)

𝑍 ≥ 0 (4g)

.2. Sub problem

In the sub problem, we solve a matching problem for a given
olution to the master problem (4). Let 𝑆 ⊆ 𝐹 be a max cover that
epresents a feasible solution to the master problem. More precisely, 𝑆
onsists of the locations for which 𝑦𝑗 = 1 in the current master problem
olution. Given the locations of the containers, let 𝑞𝑗 =

∑

𝑖∈𝑉 𝑤𝑖𝑎𝑖𝑗 be
he total waste that is gathered at each location 𝑗 ∈ 𝑆. The number of
isits needed at each location 𝑗 ∈ 𝑆 can thus be deduced as 𝑠𝑗 =

⌈

𝑞𝑗∕𝑄
⌉

,
nd the lower and upper bounds on the number of consecutive days
ithout a visit, 𝑙𝑗 and 𝑢𝑗 , are calculated as 𝑙𝑗 =

⌊

𝑇 ∕𝑠𝑗
⌋

and 𝑢𝑗 =
𝑇 ∕𝑠𝑗

⌉

, respectively. Note that 𝑠𝑗 , 𝑙𝑗 and 𝑢𝑗 are constants in the sub
roblem. Furthermore, let 𝑆′ = 𝑆∪{𝜁}, with 𝜁 being a dummy location
6

e

o always guarantee a feasible matching of locations. The objective
unction (5a) defines the goal of minimizing the total transportation
ost of the vehicles. Constraints (5b) specify the matching problem.
onstraints (5c) define the domains of the 𝑥𝑡𝑗𝑗′ -variables, which are
inary in the sub problem.

in 𝑍𝑠𝑢𝑏 =
∑

𝑡∈

∑

𝑗∈𝑆′

∑

𝑗′∈𝑆′
𝑐𝑗𝑗′𝑥

𝑡
𝑗𝑗′ (5a)

s.t. (2c)–(2j) (5b)

𝑥𝑡𝑗𝑗′ ∈ {0, 1} ∀𝑗, 𝑗′ ∈ 𝑆′, 𝑡 ∈  (5c)

.3. Benders cuts

Given an optimal solution to the sub problem, let 𝑣𝑎𝑙(𝑍) = 𝛼𝑍𝑢𝑛𝑐𝑜 +
1 − 𝛼)𝑍𝑠𝑢𝑏 be the combined value of the objective function (5a) of
he sub problem and the uncovered cost 𝑍𝑢𝑛𝑐𝑜 =

∑

𝑖∈𝑉
∑

𝑗∈𝐹−
𝑖 ∶𝑗∈𝑆 𝑤𝑖𝑎𝑖𝑗

f the subset 𝑆. The Benders cut (6) states that the objective function
alue of future master problems 𝑍 must be greater or equal to 𝑣𝑎𝑙(𝑍),
f all the candidate locations of the subset 𝑆 ⊆ 𝐹 are opened and the
andidate locations 𝑗 ∈ 𝐹 ⧵𝑆 are closed. This Benders cut is then added
o the master problem.

≥ 𝑣𝑎𝑙(𝑍) − 𝑣𝑎𝑙(𝑍)(
∑

𝑗∈𝑆
(1 − 𝑦𝑗 ) +

∑

𝑗∈𝐹⧵𝑆
𝑦𝑗 ) (6)

. Computational experiments

In this section, we present the results of our computational ex-
eriments. The MILP formulations and the logic-based Benders de-
omposition approach have been implemented in Java. To solve the
ormulations, we use the Gurobi 9.1.2 MIP solver via its Java API. In the
enders master problem, we make use of the Gurobi callback function
nd solve the Benders sub problem for each integer master solution.
iven the sub problem solution, we then generate a Benders cut which

s added as a lazy constraint to the master problem. The instances were
ested on a computer with a 2.7 GHz Intel Core i5 processor, 32 GB of
AM, operating under Windows 10. A time limit (TL) of 3 hours was

mposed on each instance and formulation.
In Section 7.1, we describe the various problem instances consid-

red for the tests. Section 7.2 compares the BigM -formulation (Sec-
ion 5.1) against the Benders approach (Section 6) to obtain algorithmic
nsight. Section 7.3 assesses the benefit of having vehicles with a
apacity of two containers for transportation opposed to capacity one
ehicles, and Section 7.4 analyzes the impact of including the trans-
ortation distances in the objective. Finally, Sections 7.5–7.6 discuss
he impact of imposing a minimum workload on container locations
nd the effect of satisfying demand of uncovered residential nodes
n the location decision, respectively. In all tables, we mark the best
esults in bold.

.1. Problem instances

To derive the set of instances, we consider four datasets based on
eal data from Switzerland. These datasets represent directed road-
etwork graphs. The nodes of each graph 𝐺 either represent residential
odes (𝑉 ), candidate locations for the containers (𝐹 ), or they belong
o the so-called ‘‘intersection’’ nodes that constitute the road network.
he four datasets are called S|𝑉 | with |𝑉 | ∈ {15, 50, 100, 200} being
he number of residential nodes. Fig. 3 shows the street networks and
esidential nodes of the four datasets. The smallest dataset serves to
erive toy instances for development purposes. For each residential
ode 𝑖 ∈ 𝑉 , we partition the set of candidate locations 𝐹 into an
cceptable set 𝐹+

𝑖 and an unacceptable set 𝐹−
𝑖 based on the maximal

alking distance (𝜌). To determine the transportation distances, we
onstruct a distance matrix based on the shortest paths in 𝐺 between

′
ach pair of candidate locations {𝑗, 𝑗 } ∈ 𝐹 and the depot 𝜎.
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Fig. 3. Street networks and residential nodes of the four datasets.
We specify a capacity of 𝑄 =
⌈

0.1𝑤tot⌉ kilograms (kg) for each
candidate location and 𝑇 = 7 days for the time horizon. Following
our assumption (A6, Section 3), we define an infinite upper bound (𝑝)
on the number of containers placed. To derive multiple instances from
each graph, we define three different values for the maximal walking
distance 𝜌 ∈ {0, 150, 300} meters (m) and the minimum workload
𝑤min ∈ {1, ⌊0.5𝑄⌋ , ⌊0.75𝑄⌋} kg. Note that to examine the impact of
imposing a minimum workload on locations (Section 7.5), we also
include instances where the 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (1d) are ignored, i.e., 𝑤min = 1.
To evaluate the trade-off between the two conflicting objectives, we
define 11 values for the weighting parameter 𝛼 ∈ {𝜖, 0.1,… , 0.9, 1 − 𝜖},
with 𝜖 = 0.001 so that both objectives are weighted in all instances.
This results in a total of 3 ⋅ 3 ⋅ 11 = 99 instances for each of the
four datasets. To support future research in this area, we prepared a
subset of those instances for benchmark tests, which is available under
www.optimization.dk/MCTP. In the following sections, detailed results
for those benchmark instances are provided along with analyses based
on aggregated results. The set of benchmark instances was selected to
be as representative as possible over all the datasets by keeping all
parameters but one fixed while also aiming at keeping the number
of instances low. More precisely, for each dataset we set the maximal
walking distance and the minimum workload to their middle values
as a starting point, namely 𝜌 = 150 and 𝑤min = ⌊0.5𝑄⌋, and selected
three representable values for 𝛼 ∈ {0.2, 0.5, 0.8}. To account for other
values of 𝜌 and 𝑤min, we added some instances for the two medium-
sized datasets by varying only one of the two parameter values at a
time. Upon request, further instances can be shared.

7.2. Comparison of the Benders approach and the BigM-formulation

In this section, we compare the Benders approach with the BigM -
formulation for the covering problem with vehicles of a capacity of
two containers. For each of the two approaches and each graph size,
Table 1 presents the total number of instances, the number of instances
solved to optimality, the number of instances solved to near optimality,
i.e., Gurobi gap ≤ 1% (excluding the ones solved to optimality), and
7

the sum of the two. Furthermore, the table reports the average and
the worst Gurobi gaps for those instances that were not solved to
optimality. For a fair comparison of the average computation times,
we only consider the subset of instances that were solved to optimality
within the TL by both approaches, namely the Benders approach and
the BigM -formulation. This results in a total of 99 instances of dataset
S15, 62 instances of dataset S50, 12 instances of dataset S100, and no
instance of dataset S200. These are the instances which are included
in the calculation of the average computation times in the last line of
Table 1.

We observe that both approaches could solve all toy instances to
optimality but only a few instances of the biggest dataset. The main
differences are observed for instances of sizes 50 and 100. For these
instances, the Benders approach was able to solve more instances to
optimality or near optimality. Over all datasets, the Benders approach
was faster in finding optimal solutions and reported lower average and
worst gaps for the instances that were not solved to optimality. This
clearly shows the superiority of our Benders approach. In general, with
increasing size of the datasets, both approaches return fewer optimal
solutions, report higher computation times for those instances solved
to optimality, and have higher gaps for the remaining instances.

Table 2 shows detailed results for the benchmark instances intro-
duced in Section 7.1, which is a selected subset of all instances that
is available online to support future research, and reports computation
times, best obtained feasible solutions, lower bounds, and Gurobi gaps
for each of the two approaches. The same pattern as in the aggregated
table can be observed here. Both approaches reach the TL for the largest
instances, while the smallest instances could be solved to optimality,
whereas for the medium sized instances, the Benders approach generally
shows better performance.

Fig. 4 visualizes the evolution of the upper and lower bound values
over time for the Benders and the BigM approach for four of the
benchmark instances. Each point in the plots represents a new value
reported by Gurobi. We observe that for the first two instances of
datasets S15 and S50 the Benders method converges quicker than the
BigM approach. For the other two instances neither of the approaches
is able to prove optimality within the given TL, however, the Benders
method is able to find a bound and a feasible solution faster and thus
provides better bounds early in the solution process.

http://www.optimization.dk/MCTP
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Table 1
Aggregated results of the Benders approach and the BigM -formulation for each of the four datasets.
Dataset S15 S50 S100 S200

BigM Benders BigM Benders BigM Benders BigM Benders

# instances 99 99 99 99 99 99 99 99
# optimal 99 99 72 81 16 17 3 3
# nearly optimal 0 0 0 6 1 7 2 8
# opt. + nearly opt. 99 99 72 87 17 24 5 11
average gap (%) – – 11.7 3.8 28.4 14.9 33.6 20.2
worst gap (%) – – 18.9 15.7 94.0 50.1 100.0 84.0
average comp. time (s) 214.0 51.8 1013.1 444.4 5363.6 1421.3 – –
Table 2
Results of the Benders approach and the BigM -formulation for the benchmark instances.

Instance Alpha Comp. time (s) Upper bound Lower bound Gap (%)

(|𝑉 | − 𝜌 −𝑤min) BigM Benders BigM Benders BigM Benders BigM Benders

15-150-0.5Q 0.2 107.5 15.1 27.1 27.1 27.1 27.1 0.0 0.0
15-150-0.5Q 0.5 226.1 57.1 21.9 21.9 21.9 21.9 0.0 0.0
15-150-0.5Q 0.8 257.6 58.1 8.8 8.8 8.8 8.8 0.0 0.0

50-150-0.5Q 0.2 9374.2 2542.8 106.5 106.5 106.5 106.5 0.0 0.0
50-150-0.5Q 0.5 9270.2 527.9 87.9 87.9 87.9 87.9 0.0 0.0
50-150-0.5Q 0.8 1145.9 178.5 58.6 58.6 58.6 58.6 0.0 0.0

100-150-0.5Q 0.2 TL TL 163.5 164.0 135.1 134.0 17.3 18.3
100-150-0.5Q 0.5 TL TL 146.1 141.5 115.7 117.0 20.8 17.3
100-150-0.5Q 0.8 TL TL 97.4 97.4 80.8 81.6 17.1 16.2

200-150-0.5Q 0.2 TL TL 726.8 735.6 572.4 583.2 21.2 20.7
200-150-0.5Q 0.5 TL TL 661.6 641.2 470.0 441.6 29.0 31.1
200-150-0.5Q 0.8 TL TL 483.2 440.4 260.7 284.8 46.1 35.3

50-150-1 0.5 TL 1397.9 87.1 87.1 81.6 87.1 6.3 0.0
50-150-0.75Q 0.5 1645.1 289.1 87.9 87.9 87.9 87.9 0.0 0.0
50-0-0.5Q 0.5 116.1 28.2 182.0 182.0 182.0 182.0 0.0 0.0
50-300-0.5Q 0.5 TL 3646.6 78.4 78.4 68.9 78.4 12.0 0.0

100-150-1 0.5 TL TL 129.1 126.7 112.2 115.4 13.1 8.9
100-150-0.75Q 0.5 TL TL 147.1 143.7 122.2 123.4 16.9 14.1
100-0-0.5Q 0.5 4369 1933.5 337.2 337.2 337.2 337.2 0.0 0.0
100-300-0.5Q 0.5 TL TL 203.7 100.6 83.4 84.4 59.1 16.1
These experiments show the superiority of the Benders approach
both from a computational speed and solution quality point of view.
Fig. 5 presents boxplots of the number of Benders cuts introduced for
the instances that were solved to optimality or near optimality by this
approach. Each of the four boxplots represents one dataset, where the
number of instances included is indicated below. We observe a large
variance of the number of cuts for the considered instances going from
zero to almost 6000 cuts and with an average of 283 cuts. For readability
reasons, the plots only show outlier values up to 2500 cuts.

7.3. Benefit of vehicles with a capacity of two containers

To assess the benefit of vehicles with a capacity of two containers
rather than one, we first compare the two formulations (Cap1 and
enders) with respect to optimality and computation times. Due to
he better performance of the Benders approach (as discussed in the
revious Section 7.2), we use this approach (instead of the BigM -
ormulation) to compare the two different covering problems in this
ection. Table 3 presents the same key information as Table 1, but for
he Cap1-formulation and the Benders approach. Note that the values
or Benders are the same as in Table 1, except for the average compu-
ation times for which only instances that were solved to optimality by
oth approaches are considered.

Both approaches could solve all toy instances to optimality. For the
nstances of the other three datasets, the Cap1-formulation found more
ptimal solutions. In total, however, the Benders approach provides

more optimal and near optimal solutions for the largest dataset. The
average gap of those six near optimal solutions of the Benders approach
lies below 0.4%. Over all datasets, the Cap1-formulation was faster
in proving optimality for the instances that were solved to optimality
within the TL by both approaches (Cap1 and Benders, resulting in
8

99 of S15, 81 for S50, 11 for S100 and 0 for S200 instances) and
reported lower average and worst gaps for the remaining instances.
This indicates that the problem in which the vehicle can only carry
one container is easier to solve. Similar to the previous section, the
table shows that with increasing size of the datasets, both approaches
solve less instances to optimality, report higher computation times to
prove optimality and higher average and worst gaps. The benchmark
results are shown in Table 4. We observe again that both approaches
reach TL for the large instances, except that Benders was able to solve
the instance S100-0-0.5Q to optimality while Cap1 was not. The small
instances could all be solved to optimality by both approaches, and
Cap1 was faster in doing so, except for the instance S50-150-0.75Q
for which Benders returned an optimal solution in almost half of the
time. In addition, this table provides a first managerial insight, namely,
that the upper bound values of the Benders approach are smaller for all
instances. These values represent the combined objectives of uncovered
waste units and transportation distances.

To analyze the savings gained by carrying two containers for each
of the objectives separately, Fig. 6 presents for each of the datasets
a boxplot of the improvement in distance (%) and the coverage ra-
tio of solutions that were solved to optimality or near optimality
by both approaches (99 of S15, 88 for S50, 20 for S100, and 5
for S200). More precisely, the distance improvement was computed
as (𝐷𝑖𝑠𝑡𝐶𝑎𝑝1 − 𝐷𝑖𝑠𝑡𝐵𝑒𝑛𝑑𝑒𝑟𝑠)∕𝐷𝑖𝑠𝑡𝐶𝑎𝑝1 ∗ 100 and the coverage ratio as
𝐶𝑜𝑣𝐵𝑒𝑛𝑑𝑒𝑟𝑠∕𝐶𝑜𝑣𝐶𝑎𝑝1, with distance values in meters and coverage values
in %. Fig. 6(a) clearly shows an improvement in distance with vehicles
of a capacity of two containers as opposed to vehicles of a capacity
of one container. On average, transportation distances were 29.5%
shorter, with 21.3% for dataset S15, 40.4% for dataset S50 and 30.2%
for dataset S100. For dataset S200, the average distances increased by

3.5%. In the five instances included for this dataset, the respective
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Fig. 4. Convergence graph of the Benders and the BigM approach for four benchmark instances.

Fig. 5. Number of Benders cuts added to the master problem for instances solved to optimality or near optimality (gap ≤ 1%).
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Table 3
Aggregated results of the Cap1-formulation and the Benders approach for each of the four datasets.
Dataset S15 S50 S100 S200

Cap1 Benders Cap1 Benders Cap1 Benders Cap1 Benders

# instances 99 99 99 99 99 99 99 99
# optimal 99 99 99 81 32 17 5 3
# nearly optimal 0 0 0 6 2 7 2 8
# opt. + nearly opt. 99 99 99 87 34 24 7 11
average gap (%) – – – 3.8 11.4 14.9 13.0 20.2
worst gap (%) – – – 15.7 38.1 50.1 78.3 84.0
average comp. time (s) 1.1 51.8 295.0 1408.9 3114.1 3616.8 – –
Table 4
Results of the Cap1-formulation and the Benders approach for the benchmark instances.
Instance Alpha Comp. time (s) Upper bound Gap (%)

(|𝑉 | − 𝜌 −𝑤min) Cap1 Benders Cap1 Benders Cap1 Benders

15-150-0.5Q 0.2 0.8 15.1 32.8 27.1 0.0 0.0
15-150-0.5Q 0.5 1.1 57.1 34.4 21.9 0.0 0.0
15-150-0.5Q 0.8 1.0 58.1 13.8 8.8 0.0 0.0

50-150-0.5Q 0.2 1491.9 2542.8 168.8 106.5 0.0 0.0
50-150-0.5Q 0.5 502.0 527.9 136.6 87.9 0.0 0.0
50-150-0.5Q 0.8 87.0 178.5 78.8 58.6 0.0 0.0

100-150-0.5Q 0.2 TL TL 272.2 164.0 15.5 18.3
100-150-0.5Q 0.5 TL TL 212.9 141.5 9.8 17.3
100-150-0.5Q 0.8 TL TL 131.1 97.4 1.8 16.2

200-150-0.5Q 0.2 TL TL 1269.0 735.6 12.5 20.7
200-150-0.5Q 0.5 TL TL 960.8 641.2 13.2 31.1
200-150-0.5Q 0.8 TL TL 579.8 440.4 12.4 35.3

50-150-1 0.5 127.7 1397.9 136.1 87.1 0.0 0.0
50-150-0.75Q 0.5 543.7 289.1 136.6 87.9 0.0 0.0
50-0-0.5Q 0.5 12.5 28.2 228.6 182.0 0.0 0.0
50-300-0.5Q 0.5 1300.9 3646.6 122.1 78.4 0.0 0.0

100-150-1 0.5 TL TL 201.0 126.7 4.0 8.9
100-150-0.75Q 0.5 TL TL 212.9 143.7 8.7 14.1
100-0-0.5Q 0.5 TL 1933.5 417.1 337.2 2.9 0.0
100-300-0.5Q 0.5 TL TL 167.3 100.6 7.7 16.1
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𝛼-values were either 0.9 or 1, which means that more focus was
given to the coverage objective than to the transportation distances.
Furthermore, for three out of the five instances, only covering was
considered with 𝛼 = 1. Looking at Fig. 6(b), the boxplot of dataset
S200 supports this observation, such that in these five instances (where
focus was on coverage) both approaches were able to cover the same
amount of waste, with the exception of one instance where Benders
reached higher coverage. Coming back to dataset S200 in Fig. 6(a),
we conclude that the increase in distance for Benders is due to the
focus on coverage. Considering the few other instances with negative
distance improvement values (datasets S15 and S100), we observe that
coverage is always higher for Benders, such that the increase in distance
was compensated by an increase in coverage. Finally, when ignoring
temporarily the smallest dataset, we observe a general increase in the
variance of the values for the bigger datasets that include less instances.

Fig. 6(b) shows that for almost all instances, the same amount of
waste or more could be covered with vehicles of a capacity of two
containers. On average, the coverage of carrying two containers is 1.2
times the coverage of carrying only one (corresponding to an increase
in coverage of 20%), with the highest value observed being almost
6 times as high coverage for instance S50-150-0.5Q and 𝛼 = 0. For
ach of the four datasets, we report average values of 1.3, 1.1, 1.4,
nd 1.2, respectively. These average values above 1 clearly show that
he savings in transportation distances were not achieved at expense
f coverage. On the contrary, we even observe higher coverage values
t shorter distances. Considering the few instances with coverage ratio
elow 1 (dataset S50), we observe that the respective 𝛼-values were all
elow or equal to 0.5, which means that more focus was given to the
istance objective. Furthermore, for the instance with the most extreme
overage ratio below 1 (S50-150-0.75Q), only distance was considered
𝛼 = 0).
10
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.4. Impact of including transportation distances in the objective

To analyze the impact of including transportation distances in the
bjective, Fig. 7 visualizes the optimal and nearly optimal solutions
gap ≤ 1%) provided by the Cap1-formulation for one example instance
S100-0-1). The curve shows a clear trade-off between the coverage
%) and the transportation distances (km), as expected in bi-objective
roblems. We observe the same trend in Table 5, which presents aver-
ge distance and coverage values over instances solved to optimality or
ear optimality for each of the four datasets and each value of 𝛼. Please
ote that we aggregate the values for each line separately to get a more
omplete view with a high number of instances, but consequently the
umber of instances may differ from line to line. With an increase of
(more focus on coverage), the average coverage values increase at

he cost of increased distance. For a few cases, the average coverage
ecreases compared to the previous value, which is due to the different
umber of instances considered in each line.

.5. Impact of imposing minimum workload on container locations

As pointed out in Section 7.1, in this section, we analyze the impact
f imposing a minimum workload (𝑤min) on locations. Fig. 8 presents
he upper bound values of the Cap1-formulation and the Benders ap-

proach for different values of 𝑤min and 𝛼 for dataset S50 with 𝜌 =
150. Note that all these instances were solved to optimality or near
optimality by both approaches, except for the instance S50-150-1 at
𝛼 = 0.9 for which the Benders approach reported a gap of 3.1%, which
justifies using these instances for illustration. For each value of 𝛼, the
irst bar shows the upper bound obtained without imposing a minimum
orkload. Looking at each 𝛼 value individually, we observe that the

pper bound values generally increase when imposing a minimum
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b

Fig. 6. Distance improvement and coverage ratio of vehicles with a capacity of two containers compared to vehicles with a capacity of one container for instances solved to
optimality or near optimality (gap ≤ 1%).
Table 5
Average distance (km) and coverage (%) values over instances that were solved to optimality or near optimality (gap ≤ 1%) by the Cap1-formulation
for each dataset and each value of 𝛼.
Alpha S15 S50 S100 S200

Dist. (km) Cov. (%) Dist. (km) Cov. (%) Dist. (km) Cov. (%) Dist. (km) Cov. (%)

𝜖 3.3 38.7 15.3 46.9 22.2 3.1 – –
0.1 3.3 38.7 15.7 62.4 22.7 2.5 – –
0.2 3.3 38.7 16.3 66.5 23.0 4.2 – –
0.3 3.4 42.9 18.9 78.9 23.0 4.2 – –
0.4 3.9 53.5 19.5 80.6 24.9 9.2 – –
0.5 4.1 57.1 20.3 82.1 – – – –
0.6 6.0 80.5 22.0 84.2 35.2 48.0 – –
0.7 7.5 93.5 24.6 86.1 39.0 45.5 – –
0.8 7.8 94.6 28.0 87.8 55.2 52.7 210.1 92.9
0.9 8.4 96.4 33.5 89.3 100.8 71.3 235.3 44.6
1 − 𝜖 8.4 96.4 39.1 89.8 102.4 80.1 1274.7 100.0
Fig. 7. Trade-off between coverage (%) and distance (km) of solutions provided
y the Cap1-formulation for one instance of dataset S100 with 𝜌 = 0 and without

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (1d).

workload greater than 1. The labels on top of the bars indicate the
number of containers located in each solution. They clearly show that
a high required minimum workload leads to fewer containers (as stated
in assumption A6). When we consider the whole range of the chart, we
note that when the values of 𝛼 are increased (more focus on coverage),
the number of containers increases, which is most evident when not
imposing a minimum workload.

7.6. Impact of satisfying demand of uncovered demand nodes on the loca-
tion decision

In this section, we verify our claim from Section 3, saying that the
allocation of uncovered demand can have an effect on the location
11
decision such that locations lie closer to the uncovered residential
nodes. Fig. 9 visualizes the solutions of two example instances of
dataset S100 with 𝑤min = 0.5 and 𝜌 = 150 (top) and 𝜌 = 300 (bottom),
respectively, resulting from two different formulations. Figs. 9(a) and
9(c) present the solutions given by our Cap1-formulation with 𝛼 =
1 (focus only on covering) in which uncovered demand is assigned
and satisfied at container locations. Figs. 9(b) and 9(d) show the
solutions given by an adapted MCLP-formulation, in which preferences,
minimum workloads and capacities are considered, but demand of
uncovered demand nodes is left unsatisfied. We refer the reader to
Appendix A.1 for a complete formulation of this problem. We point out
that the Cap1-formulation is the more relevant formulation in practice
for waste collection, because even residents who are not formally
covered by having a container location close to them still need to
be assigned to a container. These figures clearly illustrate that with
the Cap1-formulation, the container locations are dragged towards the
uncovered residential nodes, while with the MCLP-formulation, con-
tainers are placed more centrally. Furthermore, we observe in Figs. 9(a)
and 9(b) that the same number of locations are selected by both
formulations whereas in Figs. 9(c) and 9(d) that number is lower in
the MCLP solution compared to the Cap1 solution. These effects can be
explained by the different treatment of uncovered demand in the two
formulations and the imposed capacity limits on container locations.

8. Conclusion

In this article, we formulated a capacitated MCLP and provided
mathematical formulations for two covering problems inspired from
a waste collection problem in which residents bring their waste to
container locations. One problem considers vehicles with a capacity
of one container, and the other considers vehicles with a capacity
of two containers. We proposed a logic-based Benders decomposition

approach for the latter problem and derived several managerial insights
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Fig. 8. Impact of imposing different values of minimum workload 𝑤min on the upper bound values for the Cap1-formulation and the Benders approach illustrated on dataset S50
with 𝜌 = 150 (the labels on top of the bars show the number of containers located).

Fig. 9. Optimal solutions of the Cap1- and MCLP-formulations for two example instances to illustrate the impact of satisfying demand of uncovered demand nodes.
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from the computational experiments conducted on a set of real-life in-
stances. The results show that the Benders approach clearly outperforms
the BigM -formulation with respect to the number of optimal and near
optimal solutions (225 and 198 in total, respectively), the average and

orst gaps (17.6% and 27.3%, and 92.4% and 100%, respectively), and
he average computation times (232.6 s and 833.8 s, respectively). The
enefit of vehicles with a capacity of two containers was demonstrated
y the decrease in transportation distances (29.5% on average) and
he increase in coverage (20% on average). Furthermore, we observed

clear trade-off between the coverage (%) and the transportation
istances (m), as expected in bi-objective problems. Finally, imposing
minimum workload on locations has the effect of placing fewer con-

ainers, resulting in lower coverage, and satisfying uncovered demand
eads to more selected container locations which are dragged towards
he uncovered residential nodes.

This paper opens several interesting paths for future research. To
etter represent reality, uncertain demand could be modeled by a set
f discrete scenarios with the goal to minimize the worst or average
ost (i.e., uncovered demand and transportation cost) over all of them.
urthermore, other distributions of waste over time could be consid-
red, so that days are associated with different preferences as residents
ight prefer working days over weekends to dispose their waste. To
efine the preference ordering of the container locations for residents,
n interesting extension could be the characterization of a convenience
easure that includes indicators related to candidate locations other

han walking distance, such as proximity to points of interest (e.g., train
tation, schools, playgrounds) and walkability (i.e., a measure of how
edestrian-friendly an area is).
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ppendix

.1. MCLP formulation

This formulation is based on the MCLP formulation presented
n Farahani et al. (2012) and on the notation defined in Section 3.
he binary variable 𝑦𝑗 is equal to 1 if a container is established at
13
ocation 𝑗 ∈ 𝐹 , and the binary variable 𝑎𝑖𝑗 is equal to 1 if residential
node 𝑖 ∈ 𝑉 is allocated to the location 𝑗. The objective function (A.1a)
defines the goal of maximizing the total waste that has been assigned to
acceptable locations. Constraints (A.1b) ensure that the waste of each
residential node is only assigned to a location that has been opened,
and constraints (A.1c) impose that each residential node is allocated
to its most preferred location. Constraints (A.1d) enforce the minimum
workload 𝑤min on open locations. Constraints (A.1e) define that over
the whole planning period, a location 𝑗 is limited to the capacity 𝑄
times the number of days 𝑇 . Constraints (A.1f) state that at most 𝑝
containers can be placed at the candidate locations. Constraints (A.1g)
define the domains of the variables. We refer to this formulation as the
MCLP-formulation.

max
∑

𝑖∈𝑉

∑

𝑗∈𝐹+
𝑖

𝑤𝑖𝑎𝑖𝑗 (A.1a)

s.t. 𝑎𝑖𝑗 ≤ 𝑦𝑗 ∀𝑖 ∈ 𝑉 , 𝑗 ∈ 𝐹+
𝑖 (A.1b)

∑

𝑗′∈𝐹+
𝑖 ∶𝜋(𝑖,𝑗′)>𝜋(𝑖,𝑗)

𝑎𝑖𝑗′ ≤ 1 − 𝑦𝑗 ∀𝑖 ∈ 𝑉 , 𝑗 ∈ 𝐹+
𝑖 (A.1c)

∑

𝑖∈𝑉 ∶𝑗∈𝐹+
𝑖

𝑤𝑖𝑎𝑖𝑗 ≥ 𝑤min𝑦𝑗 ∀𝑗 ∈ 𝐹 (A.1d)

∑

𝑖∈𝑉 ∶𝑗∈𝐹+
𝑖

𝑤𝑖𝑎𝑖𝑗 ≤ 𝑇𝑄 ∀𝑗 ∈ 𝐹 (A.1e)

∑

𝑗∈𝐹
𝑦𝑗 ≤ 𝑝 (A.1f)

𝑎𝑖𝑗 , 𝑦𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑉 , 𝑗 ∈ 𝐹 (A.1g)
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