On the complexity of the selective graph coloring problem in some special classes of graphs

Marc Demange ${ }^{1}$, Jérôme Monnot ${ }^{2,3}$, Petrica Pop ${ }^{4}$, Bernard Ries ${ }^{3,2}$
${ }^{1}$ ESSEC Business School and LAMSADE UMR 7243, Paris, France
${ }^{2}$ CNRS, LAMSADE UMR 7243, France
${ }^{3}$ PSL, Université Paris-Dauphine, 75775 Paris Cedex 16, France
${ }^{4}$ Technical University of Cluj-Napoca, North University Center of Baia Mare, Romania

Abstract

In this paper, we consider the selective graph coloring problem. Given an integer $k \geq 1$ and a graph $G=(V, E)$ with a partition V_{1}, \ldots, V_{p} of V, it consists in deciding whether there exists a set V^{*} in G such that $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$, and such that the graph induced by V^{*} is k-colorable. We investigate the complexity status of this problem in various classes of graphs.

Keywords: Computational complexity, Approximation algorithms, PTAS, Scheduling, Bipartite graphs, Split graphs, Complete q-partite graphs Clustering

1. Introduction and related works

Scheduling problems appearing in real-life situations may often be modeled as graph coloring problems (see [2,26, $13,16,20,24,27])$. For instance, scheduling problems involving only incompatibility constraints correspond to the classical vertex coloring problem in undirected graphs. If in addition precedence constraints occur, the problem may be handled using the vertex coloring problem in mixed graphs (i.e., graphs containing both undirected and directed edges). Thus many types of graph coloring problems are of interest: precoloring extension, list-coloring, multicoloring, mixed graph coloring, T-coloring, edge coloring, etc.

In this paper, we consider the selective graph coloring problem. Consider an undirected graph $G=(V, E)$ and a partition V_{1}, \ldots, V_{p} of its vertex set V. For some integer $k \geq 1$, the selective graph coloring problem consists in finding a subset $V^{*} \subseteq V$ such that $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$ and such that the graph induced by V^{*} is k-colorable (see Fig. 1 for an example).

Consider the following scheduling problem: we are given a set of p tasks t_{1}, \ldots, t_{p} each of which needs to be executed on one of k identical machines m_{1}, \ldots, m_{k}; each task t_{j} has a given length ℓ_{j}, for $j=1,2, \ldots, p$; for each task t_{j} of length $l_{j}, j \in\{1, \ldots, p\}$, we are given a list of possible time intervals $I_{1}(j), \ldots, I_{n_{j}}(j)$, each of length l_{j}, during which the task may be executed. Suppose that each machine m_{i} cannot process more than one task simultaneously, for $i=1,2, \ldots, k$. Furthermore, the tasks are supposed to be non preemptive, i.e., once a machine started executing a task, the execution cannot be interrupted temporarily but the task must be finished on that machine. The goal is to determine for each task $t_{j}, j \in\{1, \ldots, p\}$, one feasible time interval among $I_{1}(j), \ldots, I_{n_{j}}(j)$ such that all tasks can be executed using at most k machines.

Fig. 1. A graph $G=(V, E)$ with a partition V_{1}, V_{2}, V_{3} of V and a set V^{*} (encircled vertices) which induces a 1-colorable graph.
In order to solve this scheduling problem, we may use the selective graph coloring model in an interval graph. Indeed, with each task $t_{j}, j \in\{1, \ldots, p\}$, and each time interval $I_{i}(j), i=1, \ldots, n_{j}$, we associate a vertex $v_{i j}$; then we add an edge between two vertices u, v if the corresponding time intervals have a non empty intersection; thus we obtain an interval graph $G=(V, E)$. Finally we define a partition V_{1}, \ldots, V_{p} as follows: $V_{j}=\left\{v_{1 j}, \ldots, v_{n_{j} j}\right\}$ for $j=1, \ldots, p$. Clearly, there exists a feasible schedule using at most k machines if and only if G admits a selective graph coloring with at most k colors.

Note that the "selective framework" of the graph coloring problem also exists for other combinatorial optimization problems, for instance the Traveling Salesman Problem (TSP). This problem is known as Generalized TSP, Group-TSP or One-of-a-set TSP (see for instance $[19,25]$) and is defined as follows. A salesman needs to visit n customers c_{1}, \ldots, c_{n}. Each customer $c_{i}, i \in\{1, \ldots, n\}$, specifies some locations $l_{1}(i), \ldots, l_{n_{i}}(i)$ in which he/she is willing to meet the salesman. The goal is then to find a tour of minimum length such that the salesman visits each customer $c_{i}, i \in\{1, \ldots, n\}$, once and such that the meeting takes place in one of the specified locations $l_{1}(i), \ldots, l_{n_{i}}(i)$. Thus if each customer specifies exactly one location, we obtain the classical TSP problem. Further combinatorial optimization problems with this selective framework can be found in [12] or [22].

The selective graph coloring problem was introduced in [17] under the name of partition coloring problem in the frame of routing and wavelength assignment in networks. For this application, the problem was defined in the edge intersection graph of some preselected paths in the network. Several heuristic methods have been designed in this context (see for instance [23]).

Notice that the selective coloring problem is related to another type of coloring problem, called the empire coloring problem (see for instance $[8,21]$). We are given a planar graph $G=(V, E)$ whose vertex set is partitioned into sets V_{1}, \ldots, V_{p} such that each such set contains exactly r vertices, for some fixed positive integer r. Then, for some fixed positive integer k, the empire coloring problem (in its decision version) consists in deciding whether there exists a coloring of the vertices of G with at most k colors such that adjacent vertices in different sets get different colors and all the vertices in a same set get a same color, disregarding the adjacencies. Thus this problem can be seen as a kind of generalization of the selective graph coloring problem since instead of coloring exactly one vertex per cluster, we color all the vertices in each cluster.

Another problem which is related to the selective graph coloring problem is the so-called multicolored clique problem (Mcc). In this problem, we are given an integer r and a connected graph $G=(V, E)$ as well as a partition of its vertex set V_{1}, \ldots, V_{r} such that every set V_{i} induces a stable set. Then the question is whether there exists a clique of size r in G. This problem has been studied for instance in [11] from a parametrized complexity point of view and it was shown to be W[1]-hard. Obviously, the Mcc problem in G is equivalent to asking whether the complement of G admits a selective graph coloring using exactly one color.

Finally, note also that the selective graph coloring problem has some natural connections with the inverse chromatic number problem (see [7]). For a graph G and an integer k, this problem consists in modifying the graph as little as possible such that the chromatic number of the resulting graph is at most k. For an interval graph, suppose that the possible modifications of the graph correspond to shifting intervals to the left or to the right in the interval representation. Furthermore, we associate a cost with each such modification. Then for each interval, we define a cluster as the set of all possible locations of that interval. Now the problem consists in selecting in each cluster one interval (i.e., one vertex) such that the resulting graph is k-colorable and the total cost of the selected intervals is minimum.

All these close problems or particular cases of the selective graph coloring problem justify considering it in a systematic way from a theoretical point of view. This work is such a first attempt to better understand its complexity status in different classes. Since the classical graph coloring problem is a special case of the selective graph coloring problem when $\left|V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$, it follows that the selective graph coloring problem is $\mathcal{N} \mathcal{P}$-hard in general. To the best of our knowledge, there exists no better hardness result. In this paper, we investigate some classical classes of graphs and determine the
complexity status of the selective graph coloring problem in these classes. Furthermore, for some classes of graphs for which the problem is $\mathcal{N} \mathcal{P}$-hard, we present polynomial-time approximation algorithms.

Our paper is organized as follows. In Section 2, we give some notations and definitions which will be used throughout the paper. Section 3 deals with split graphs, Section 4 with complete q-partite graphs and Section 5 with bipartite graphs. In Section 6, we consider the case when each set V_{i} of the partition induces a clique. Finally, in Section 7 we present some further results for some special classes of graphs and a conclusion is given in Section 8, where we also present a table containing all our results of this paper.

2. Preliminaries

All graphs in this paper are finite, simple and loopless. Let $G=(V, E)$ be a graph. For a vertex $v \in V$, let $N(v)$ denote the set of vertices in G that are adjacent to v, i.e., the neighbors of $v . N(v)$ is called the neighborhood of vertex v.

Let $V^{\prime} \subseteq V$. We denote by $G\left[V^{\prime}\right]$ the graph induced by V^{\prime}, i.e., the graph obtained from G by deleting the vertices of $V-V^{\prime}$ and all edges incident to at least one vertex of $V-V^{\prime}$. For two graphs H and $G=(V, E), G$ is called H-free if there is no $V^{\prime} \subseteq V$ such that $G\left[V^{\prime}\right]$ is isomorphic to $H . G$ is called $\left(H_{1}, \ldots, H_{p}\right)$-free if it is H_{i}-free for any $i=1, \ldots, p$.

A stable set in a graph $G=(V, E)$ is a set $S \subseteq V$ of pairwise nonadjacent vertices. The maximum size of a stable set in a graph G is called the stability number of G and is denoted by $\alpha(G)$. A clique in a graph $G=(V, E)$ is a set of pairwise adjacent vertices. A matching in a graph $G=(V, E)$ is a set of pairwise nonadjacent edges. In a graph $G=(V, E)$, a matching M is said to saturate a set $V^{\prime} \subseteq V$ if for every vertex $v \in V^{\prime}$ there exists an edge in M incident to v.

We denote by $n G$ the disjoint union of n copies of a graph G. As usual P_{n} (respectively C_{n}) denotes the induced path (resp. the induced cycle) on n vertices. A clique on n vertices will be denoted by K_{n}. Consider two graphs G and H. Then we denote by $G+H$ the disjoint union of G and H.

Let $G=(V, E)$ be a graph. A k-coloring of G is a mapping $c: V \rightarrow\{1, \ldots, k\}$ such that $c(u) \neq c(v)$ for all $u v \in E$. The smallest integer k such that G is k-colorable is called the chromatic number of G and is denoted by $\chi(G)$. Consider now a partition $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{p}\right)$ of the vertex set V of G. The sets V_{1}, \ldots, V_{p} will be called clusters. A selective k-coloring of G with respect to \mathcal{V} is a mapping $c: V^{*} \rightarrow\{1, \ldots, k\}$, where $V^{*} \subseteq V$ with $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$, such that $c(u) \neq c(v)$ for all $u v \in E$. Thus determining a selective k-coloring with respect to \mathcal{V} consists in finding a set $V^{*} \subseteq V$ such that $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$ and such that $G\left[V^{*}\right]$ admits a k-coloring. The smallest integer k for which a graph G admits a selective k-coloring with respect to \mathcal{V} is called the selective chromatic number of G with respect to \mathcal{V} and is denoted by $\chi_{\text {SEL }}(G, \mathcal{V})$. It is obvious to see that $\chi_{\text {SEL }}(G, \mathcal{V}) \leq \chi(G)$ for every partition \mathcal{V} of V.

In this paper we will be interested in the following two problems.
Sel-Col
Input: An undirected graph $G=(V, E)$; a partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ of V.
Question: Find a set $V^{*} \subseteq V$ such that $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$ and such that $\chi\left(G\left[V^{*}\right]\right)$ is minimum.
Let $k \geq 1$ be a fixed integer.
k-Dsel-Col
Input: An undirected graph $G=(V, E)$; a partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ of V.
Question: Does there exist a set $V^{*} \subseteq V$ such that $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$ and such that $G\left[V^{*}\right]$ is k-colorable?
For instance, 1-Dsel-Col consists in deciding whether there exists a stable set $V^{*} \subseteq V$ such that $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$. Clearly, k-Dsel-Col and Sel-Col are related problems. Consider a graph class q. If for some fixed k, k-DselCol is $\mathcal{N} \mathcal{P}$-complete in \mathcal{g}, then Sel-Col is $\mathcal{N} \mathscr{P}$-hard in \mathcal{g} and if Sel-Col is polynomial-time solvable in \mathcal{g}, then k-Dsel-Col is polynomial-time solvable in g for every fixed k. However, these two problems are not equivalent from a complexity point of view since for split graphs and complete q-partite graphs for instance, we will see that Sel-Col is $\mathcal{N} \mathcal{P}$-hard whereas k-Dsel-Col is polynomial-time solvable for every fixed k.

Consider a minimization (resp. maximization) problem Π and an instance ℓ of Π. Let S be a solution of ℓ. We denote by $f(\ell, S)$ the value of solution S, and by $\operatorname{OPT}(\ell)$ the value of an optimal solution of ℓ. Then an algorithm is said to be a c-approximation algorithm for problem Π, where $c \geq 1$ (resp. where $c \leq 1$), if for any instance l of the problem it gives a solution S such that $f(\ell, S) \leq c \cdot O P T(\ell)($ resp. $f(\ell, S) \geq c \cdot O P T(\ell))$.

An algorithm A is an approximation scheme for a minimization problem Π, if for any instance ℓ of Π and for any $\varepsilon>0$, A gives a solution S such that $f(\ell, S) \leq(1+\varepsilon) \cdot O P T(\ell)$. A is said to be a polynomial time approximation scheme (PTAS) if for each fixed $\varepsilon>0$, its running time is bounded by a polynomial in the size of instance ℓ. If its running time is bounded by a polynomial in the size of ℓ and $\frac{1}{\varepsilon}$, then A is said to be a fully polynomial time approximation scheme (FPTAS).

Notice that if Sel-Col is $\mathcal{N} \mathscr{P}$-hard in a graph class q, then Sel-Col does not admit a FPTAS for \mathcal{G} unless $\mathcal{P}=\mathcal{N} \mathscr{P}$. Moreover, if k-Dsel-Col is $\mathcal{N} \mathcal{P}$-complete in \mathcal{g}, then Sel-Col does not admit a $\left(\frac{k+1}{k}-\varepsilon\right)$-approximation in \mathcal{g} for every $\varepsilon>0$ and conversely, if SEL-Col admits a PTAS for g then k-Dsel-Col is polynomial-time solvable in g for every fixed k. Finally, since Sel-Col contains the usual graph coloring problem (when all clusters have size one), it follows that Sel-Col is $\mathcal{N} \mathcal{P}$-hard and 3-Dsel-Col is $\mathcal{N} \mathcal{P}$-complete in general graphs.

For all graph theoretical terms not defined here the reader is referred to [28] and for all $\mathcal{N} \mathcal{P}$-completeness related notions and definitions, the reader is referred to [14].

Fig. 2. Example for clauses $u_{1}=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right)$, $u_{2}=\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right)$.

3. Split graphs

A split graph $G=(V, E)$ is a graph whose vertex set V can be partitioned into two sets: a clique K and a stable set S. Notice that $|K| \leq \chi(G) \leq|K|+1$. Furthermore, if $\chi(G)=|K|$, then for every vertex $s \in S$, there exists a vertex $u \in K$ which is nonadjacent to s. Since every induced subgraph of G is also a split graph, we conclude that $\left|V^{*} \cap K\right| \leq \chi\left(G\left[V^{*}\right]\right) \leq\left|V^{*} \cap K\right|+1$ for any set $V^{*} \subseteq V$. Thus, if $V^{*} \subseteq V$ is a solution of SEL-COL with respect to some partition \mathcal{V} of V, we have $\left|V^{*} \cap K\right| \leq \chi_{S E L}(G, \mathcal{V}) \leq\left|V^{*} \cap K\right|+1$.

Consider now a partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ of V. Suppose that there exists a cluster $V_{i}, i \in\{1, \ldots, p\}$, such that $V_{i} \cap K, V_{i} \cap S \neq \emptyset$. Consider a solution V^{*} of Sel-Col such that $V^{*} \cap V_{i} \subseteq K$. Let $V^{*} \cap V_{i}=\{v\}$ and let $u \in V_{i} \cap S$. We claim that $V^{*^{\prime}}=\left(V^{*}-\{v\}\right) \cup\{u\}$ is also a solution of Sel-Col. Indeed, since $N(u) \subseteq N(v)$, we clearly have $\chi\left(G\left[V^{*^{\prime}}\right]\right) \leq \chi\left(G\left[V^{*}\right]\right)$. So it is always a good strategy to choose in each cluster a vertex from S (if possible). Thus we may assume now that for every cluster $V_{i}, i \in\{1, \ldots, p\}$, of the partition we have either $V_{i} \subseteq K$ or $V_{i} \subseteq S$. It follows from the above that if $V_{1}, \ldots, V_{q} \subseteq K$ and $V_{q+1}, \ldots, V_{p} \subseteq S$, then $q \leq \chi_{S E L}(G, \mathcal{V}) \leq q+1$.

Theorem 3.1. Sel-Col is $\mathcal{N} \mathcal{P}$-hard for split graphs even if the partition V_{1}, \ldots, V_{p} satisfies $\left|V_{i}\right| \leq 2$ for all $i \in\{1, \ldots, p\}$.
Proof. We will use a reduction from 3Sat which is known to be $\mathcal{N} \mathcal{P}$-complete (see [14]). This problem is defined as follows: we are given a set U of variables and a collection C of clauses over U such that each clause $c \in C$ satisfies $|c|=3$; then we ask whether there exists a satisfying truth assignment for C. Consider an instance ℓ of 3 SAT with n variables x_{1}, \ldots, x_{n} and m clauses C_{n+1}, \ldots, C_{n+m}. We construct a split graph $G=(V, E)$ as follows: with each variable $x_{i}, i \in\{1, \ldots, n\}$, we associate two vertices v_{i} and \bar{v}_{i}; with each clause $C_{j}, j \in\{n+1, \ldots, n+m\}$, we associate a vertex u_{j}; we add all the edges between the vertices associated with the variables; we add an edge between vertices v_{i} (resp. \bar{v}_{i}) and u_{j} if and only if x_{i} (resp. \bar{x}_{i}) is a literal not appearing in clause C_{j}. Thus the vertices $v_{1}, \bar{v}_{1}, \ldots, v_{n}, \bar{v}_{n}$ induce a clique K of size $2 n$ and the vertices u_{n+1}, \ldots, u_{n+m} induce a stable set S of size m (see Fig. 2 for an example). Now we define the following partition \mathcal{V} of V : for every vertex v_{i}, we set $V_{i}=\left\{v_{i}, \bar{v}_{i}\right\}$ and for every vertex u_{j}, we set $V_{j}=\left\{u_{j}\right\}$, for $i=1 \ldots, n$ and $j=n+1, \ldots, n+m$. Thus we get an instance ℓ^{\prime} of Sel-Col in a split graph G. Notice that it follows from the discussion above that $n \leq \chi_{\text {SEL }}(G, \mathcal{V}) \leq n+1$.

Now suppose that ℓ is a yes-instance. Then for every clause C_{j}, consider a literal $x_{i} \in C_{j}$ (respectively $\bar{x}_{i} \in C_{j}$) which is true and add the vertices u_{j} and v_{i} (resp. \bar{v}_{i}) to V_{i}^{*}. This clearly gives us a set $V^{*}=\cup_{i=1, \ldots, n} V_{i}^{*}$ such that $\left|V^{*} \cap V_{\ell}\right|=1$ for $\ell=1, \ldots, n+m$. Furthermore $G\left[V^{*}\right]$ is n-colorable since for every $i \in\{1, \ldots, n\}, V_{i}^{*}$ is a stable set. Thus $\chi_{\text {SEL }}(G, \mathcal{V})=n$.

Conversely, suppose now that $\chi_{\text {SEL }}(G, \mathcal{V})=n$ and let V^{*} be the corresponding solution. Since we have n clusters contained in the clique K and since each vertex in S represents a cluster, it follows that for every vertex $u_{j} \in S$ there exists a vertex $v_{i} \in K$ (respectively $\bar{v}_{i} \in K$) nonadjacent to u_{j} and such that $u_{j}, v_{i} \in V^{*}$ (resp. $u_{j}, \bar{v}_{j} \in V^{*}$). Indeed, if this is not the case then $\chi\left(G\left[V^{*}\right]\right) \geq n+1$, a contradiction. Now we recall that a vertex v_{i} which is nonadjacent to some vertex u_{j} represents a literal appearing in the clause C_{j}. Thus, by setting to true every literal x_{i} (resp. \bar{x}_{i}) such that the corresponding vertex v_{i} (resp. \bar{v}_{i}) belongs to V^{*} and to false the remaining literals, we obtain a truth assignment such that every clause C_{j} contains at least one true literal. Hence ℓ is a yes-instance.

Notice that the result given in Theorem 3.1 is the best possible with respect to the maximum size of the clusters. Indeed, if $\left|V_{i}\right| \leq 1$ for all $i \in\{1, \ldots, p\}$, then Sel-Col is equivalent to the usual graph coloring problem which is polynomial-time solvable in split graphs.

Remark 3.1. Notice that if $G=(V, E)$ is a threshold graph, then Sel-Col becomes polynomial-time solvable. Indeed, a threshold graph is a split graph in which the vertices may be ordered v_{1}, \ldots, v_{n} with $N\left(v_{1}\right) \subseteq N\left(v_{2}\right) \subseteq \cdots \subseteq N\left(v_{n}\right)$. Without loss of generality we may assume that $v_{1}, \ldots, v_{\ell} \in S$ and $v_{\ell+1}, \ldots, v_{n} \in K$. Let q be the number of clusters which are contained in the clique K. Recall that $q \leq \chi_{S E L}(G, \mathcal{V}) \leq q+1$. Thus the answer to SEL-COL is q if and only if there exists a vertex $v \in K$ such that v is nonadjacent to v_{ℓ}.

Although Sel-Col is $\mathcal{N} \mathcal{P}$-hard, we will now show that Sel-Col admits a PTAS if the input graph is a split graph.
Theorem 3.2. Let $G=(V, E)$ be a split graph. Then Sel-Col admits a PTAS for G.

Proof. Consider a split graph $G=(V, E)$ with clique K, stable set S and $|V|=n$. Let $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ be a partition of V and let $\varepsilon>0$ be fixed. As mentioned above, we may assume that for every cluster $V_{i}, i \in\{1, \ldots, p\}$, we have either $V_{i} \subseteq K$ or $V_{i} \subseteq S$. Without loss of generality, we may assume that $V_{1}, \ldots, V_{q} \subseteq K$ and $V_{q+1}, \ldots, V_{p} \subseteq S$. Recall that $q \leq \chi_{\text {SEL }}(G, \mathcal{V}) \leq q+1$. We will distinguish two cases.
(i) If $q<\frac{1}{\varepsilon}$, then we obtain an optimal solution in polynomial time. Indeed, for every possible choice of vertices in V_{1}, \ldots, V_{q} to be added to V^{*}, we need to check if every cluster V_{q+1}, \ldots, V_{p} contains at least one vertex which is nonadjacent to some previously chosen vertex in $V_{1} \cup \cdots \cup V_{q}$. If this is true, then we get a solution of value q; if not, the optimal solution is $q+1$, and we obtain such a solution by an arbitrary choice of vertices to be added to V^{*} and by coloring all vertices of $V^{*} \cap S$ with a same color. Since $q<\frac{1}{\epsilon}$, the number of clusters contained in K is bounded by a constant and hence the number of choices mentioned above is bounded by a polynomial in n.
(ii) If $q \geq \frac{1}{\varepsilon}$, then let OPT denote the value of an optimal solution of Sel-Col in G. Clearly $\frac{1}{\varepsilon} \leq$ OPT and thus $1 \leq \varepsilon \cdot$ OPT. By arbitrarily choosing one vertex in each cluster and adding it to V^{*}, we obtain (as explained above) a solution for Sel-col of value VAL such that $\mathrm{OPT} \leq \mathrm{VAL} \leq \mathrm{OPT}+1$. Hence VAL $\leq(1+\varepsilon)$. OPT.
Since the algorithm described above is clearly polynomial in n, we conclude that Sel-Col admits a PTAS if G is a split graph.

The following is an immediate consequence of Theorem 3.2.
Corollary 3.3. For every $k \geq 1, k$-Dsel-Col is polynomial-time solvable in split graphs.

4. Complete partite graphs

A graph $G=(V, E)$ is a complete q-partite graph if V can be partitioned into q stable sets L_{1}, \ldots, L_{q} such that there exist all possible edges between any two stable sets $L_{i}, L_{j}, i, j \in\{1, \ldots, q\}$ with $i \neq j$. These graphs are recognizable in polynomial time because they are exactly the $\left(K_{1}+K_{2}\right)$-free graphs.

Consider a partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ of V. Notice that for every $u, v \in L_{j}, j \in\{1, \ldots, q\}$, we have $N(u)=N(v)$. Thus we may assume that $\left|V_{i} \cap L_{j}\right| \leq 1$ for every $i \in\{1, \ldots, p\}$ and $j \in\{1, \ldots, q\}$. Hence $\left|V_{i}\right| \leq q$ for every $i \in\{1, \ldots, p\}$. Finally, notice that for a complete q-partite graph G we have $1 \leq \chi_{\text {SEL }}(G, \mathcal{V}) \leq q$.

Theorem 4.1. Sel-Col is polynomial-time solvable for complete q-partite graphs when q is fixed.
Proof. As mentioned above, for a complete q-partite graph G, we have $1 \leq \chi_{S E L}(G, \mathcal{V}) \leq q$. In order to determine $\chi_{S E L}(G, \mathcal{V})$, we proceed as follows: for $k=1, \ldots, q$ and for every possible choice of k sets $L_{i_{1}}, \ldots, L_{i_{k}}$ among L_{1}, \ldots, L_{q}, we color all vertices in $L_{i_{j}}$ with color j for $j=1, \ldots, k$; if necessary we may uncolor some vertices such that every cluster V_{i}, $i \in\{1, \ldots, p\}$, contains at most one colored vertex; we add all colored vertices to V^{*} and check if $\left|V^{*} \cap V_{i}\right|=1$ for all $i=1, \ldots, p$. Since q is fixed, it follows that the above algorithm determines $\chi_{S E L}(G, \mathcal{V})$ in polynomial time.

Theorem 4.2. For every $k \geq 1, k$-Dsel-Col is polynomial-time solvable for complete q-partite graphs.
Proof. The proof is similar to the one of Theorem 4.1. For every possible choice of k sets $L_{i_{1}}, \ldots, L_{i_{k}}$ among L_{1}, \ldots, L_{q}, we color all vertices in $L_{i_{j}}$ with color j for $j=1, \ldots, k$; if necessary we may uncolor some vertices such that every cluster V_{i}, $i \in\{1, \ldots, p\}$, contains at most one colored vertex; we add all colored vertices to V^{*} and check if $\left|V^{*} \cap V_{i}\right|=1$ for all $i=1, \ldots, p$. Since k is fixed, this yields a polynomial-time algorithm.

While Sel-Col is polynomial-time solvable in complete q-partite graphs when q is fixed, we will show now that it is $\mathcal{N} \mathcal{P}$-hard even if the sets L_{j} and $V_{i}, i \in\{1, \ldots, p\}$ and $j \in\{1, \ldots, q\}$, have all fixed sizes.

Theorem 4.3. Sel-Col is $\mathcal{N} \mathcal{P}$-hard for complete q-partite graphs $G=\left(L_{1}, \ldots, L_{q}, E\right)$ even if $\left|L_{j}\right|=3$ for all $j \in\{1, \ldots, q\}$ and the partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ satisfies $\left|V_{i}\right|=2$ for all $i \in\{1, \ldots, p\}$.

Proof. We use a reduction from Vertex Cover which is known to be $\mathcal{N} \mathcal{P}$-hard even in cubic graphs (see [15]). Recall that Vertex Cover consists in finding in a graph $G=(V, E)$, a subset $V^{\prime} \subseteq V$ with minimum size which covers the edges of G (i.e., $\forall u v \in E, u \in V^{\prime}$ or $v \in V^{\prime}$).

Consider an instance ℓ of Vertex Cover in a cubic graph $H=\left(V_{H}, E_{H}\right)$ with $\left|V_{H}\right|=q$. We construct a complete q-partite graph $G=\left(L_{1}, \ldots, L_{q}, E\right)$ such that $\left|L_{j}\right|=3$ for all $j \in\{1, \ldots, q\}$ as follows: with each vertex $v_{i} \in V_{H}$, we associate a set $L_{i}=\left\{v_{i_{1}}, v_{i_{2}}, v_{i_{3}}\right\}$, for $i=1, \ldots, n$; we add all possible edges between any two sets L_{i}, L_{j} for $i, j \in\{1, \ldots, q\}$ with $i \neq j$. Now we define a partition \mathcal{V} of V : with every edge $v_{i} v_{j} \in E_{H}$ we associate a cluster $V_{i j}=\left\{v_{i_{\ell}}, v_{j_{q}}\right\}$ for $\ell, q \in\{1,2,3\}$. Thus we obtain an instance ℓ^{\prime} of Sel-Col.

Now suppose that ℓ has a feasible solution of value $s \leq q$ and let V^{\prime} be a vertex cover of size s. Then, for every $v_{i} \in V^{\prime}$, $i \in\{1, \ldots, s\}$, we add the vertices of L_{i} to V^{*}. Thus we obtain a set V^{*} containing at least one vertex from each cluster. If necessary, we delete some vertices from V^{*} such that it contains exactly one vertex from each cluster. Since $\left|V^{\prime}\right|=s$, there are at most s sets L_{i} such that $V^{*} \cap L_{i} \neq \emptyset$ for $i \in\{1, \ldots, q\}$. Thus $G\left[V^{*}\right]$ is s-colorable.

Fig. 3. The construction of $G=\left(L_{1}, \ldots, L_{3}, E\right)$ for $S_{1}=\left\{x_{1}, x_{2}\right\}, S_{2}=\left\{x_{2}, x_{3}, x_{4}\right\}, S_{3}=\left\{x_{2}, x_{4}\right\}$. The clusters are $V_{x_{1}}=\left\{v_{1}^{1}\right\}, V_{x_{2}}=\left\{v_{2}^{1}, v_{2}^{2}, v_{2}^{3}\right\}, V_{x_{3}}=\left\{v_{3}^{2}\right\}$, $V_{x_{4}}=\left\{v_{4}^{2}\right\}$.

Conversely, suppose that ℓ^{\prime} has a feasible solution of value $s \leq q$. We construct a vertex cover V^{\prime} of H with $\left|V^{\prime}\right| \leq s$ as follows: for every set L_{i} such that $V^{*} \cap L_{i} \neq \emptyset, i \in\{1, \ldots, p\}$, we add v_{i} to V^{\prime}. Since V^{*} intersects at most s sets L_{i} (recall that $G\left[V^{*}\right]$ is s-colorable), $i \in\{1, \ldots, p\}$, we obtain that $\left|V^{\prime}\right| \leq s$. Furthermore, since V^{*} intersects every cluster exactly once, it follows that for each edge in E_{H} at least one endvertex belongs to V^{\prime}. Thus V^{\prime} is a vertex cover with $\left|V^{\prime}\right| \leq s$.

Notice that, as previously, the result given in Theorem 4.3 is best possible with respect to the maximum size of the clusters. Next we will focus on a polynomial-time approximation algorithm for Sel-Col in complete q-partite graphs. First we obtain the following.

Theorem 4.4. From an approximation point of view, Sel-Col in complete q-partite graphs is equivalent to Set-Cover.

Proof. We will use two approximation preserving reductions from and to SET Cover which is defined as follows: we are given a collection $\delta=\left\{S_{1}, \ldots, S_{n}\right\}$ of subsets of a finite set $X=\left\{x_{1}, \ldots, x_{m}\right\}$; we want to find a subset $\delta^{\prime} \subseteq s$ of minimum size such that every element of X belongs to at least one member of δ^{\prime}. This problem is known to be $\mathcal{N} \mathcal{P}$-hard even if $\left|S_{i}\right| \leq 3$ for all $i \in\{1, \ldots, n\}$ (see [14]). Furthermore it is $H\left(\max _{i=1, \ldots, n}\left|S_{i}\right|\right)$-approximable (see [6]) where $H(r)$ is the r-th harmonic number and it is not $(1-\varepsilon) \log m$-approximable for any $\varepsilon>0$ unless $\mathcal{N} \mathcal{P} \subset \operatorname{TIME}\left(n^{O(\log \log n)}\right)$ (see [10]).

The reduction from Set Cover is defined as follows: given an instance $\ell=(\&, X)$ of Set Cover, where $\delta=\left\{S_{1}, \ldots, S_{n}\right\}$, $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left|S_{i}\right| \leq 3$ for all $i \in\{1, \ldots, n\}$, we construct a complete q-partite graph $G=\left(L_{1}, \ldots, L_{q}, E\right)$ where $q=n$ as follows: for each occurrence of x_{j} in a set S_{i}, we create a vertex v_{j}^{i}; we set $L_{i}=\left\{v_{j}^{i}: x_{j} \in S_{i}\right\}$ for all $i \in\{1, \ldots, n\}$. Finally, we define m clusters each of which corresponds to an element of X : for $j=1, \ldots, m, V_{x_{j}}=\left\{v_{j}^{i}: x_{j} \in S_{i}\right\}$ and $\mathcal{V}=\left(V_{x_{1}}, \ldots, V_{x_{m}}\right)$. This clearly gives us an instance of Sel-Col in a complete q-partite graph G (see Fig. 3 for an example).

Let $8^{*} \subseteq s$ be an optimal solution for instance ℓ of value $O P T(\ell)$. For each $x_{j} \in X, j=1, \ldots, m$, let $f\left(x_{j}\right) \in\{1, \ldots, n\}$ such that $x_{j} \in S_{f\left(x_{j}\right)} \in s^{*}$. Let $V^{*}=\left\{v_{j}^{f\left(x_{j}\right)}: x_{j} \in X\right\}$. Obviously, V^{*} is such that $\left|V^{*} \cap V_{x_{j}}\right| \geq 1$ for all $j \in\{1, \ldots, m\}$. If necessary, we delete some vertices in V^{*} such that $\left|V^{*} \cap V_{x_{j}}\right|=1$ for all $j \in\{1, \ldots, m\}$. Thus V^{*} is a feasible solution of Sel-Col in G and $G\left[V^{*}\right]$ is $\left|\delta^{*}\right|=O P T(\ell)$-colorable since G is a complete partite graph. Hence,

$$
\begin{equation*}
\chi_{S E L}(G, \mathcal{V}) \leq \chi\left(G\left[V^{*}\right]\right)=\left|\delta^{*}\right|=O P T(\ell) \tag{1}
\end{equation*}
$$

Conversely, let V^{*} be a feasible solution for Sel-Col in G and set $\delta^{\prime}=\left\{S_{i}: V^{*} \cap L_{i} \neq \emptyset, i=1, \ldots, n\right\}$. We claim that s^{\prime} is a set cover of X and thus a feasible solution of SET Cover for ℓ. Indeed, for every $x_{j} \in X, j \in\{1, \ldots, m\}$, there exists $i \in\{1, \ldots, n\}$ such that $\left\{v_{j}^{i}\right\}=V^{*} \cap V_{x_{j}}$ since $\left|V^{*} \cap V_{x_{\ell}}\right|=1$ for all $\ell \in\{1, \ldots, m\}$. It follows that $x_{j} \in S_{i} \in s^{\prime}$ and hence s^{\prime} is a set cover of X. Finally, notice that $G\left[V^{*}\right]$ contains a clique K of size $\left|\delta^{\prime}\right|$ because G is a complete partite graph. Thus,

$$
\begin{equation*}
\left|s^{\prime}\right|=|K| \leq \chi\left(G\left[V^{*}\right]\right) \tag{2}
\end{equation*}
$$

Since $\left|\delta^{\prime}\right| \geq O P T(\ell)$ and since inequalities (1) and (2) hold for any feasible solution V^{*} of Sel-Col, we may apply them to an optimal solution $V^{*^{\prime}}$ of Sel-Col and obtain that $\chi_{\text {SEL }}(G, \mathcal{V})=O P T(\ell)$. Furthermore, from any ρ-approximation for Sel-Col on G, we polynomially get a ρ-approximation for SET-COVER on ℓ.

The reduction to Set Cover is defined as follows: consider an instance of SEL-COL in a complete q-partite graph $G=\left(L_{1}, \ldots, L_{q}, E\right)$ with partition V_{1}, \ldots, V_{p} of its vertex set; we will construct an instance ℓ of Set Cover by setting $X=\left\{x_{1}, \ldots, x_{p}\right\}$ and defining the subsets $S_{i}, i=1, \ldots, q$, as follows: $x_{j} \in S_{i}$ if and only if $V_{j} \cap L_{i} \neq \emptyset$ for $j=1, \ldots, p$.

Consider an optimal solution V^{*} of Sel-Col for G with value $\chi_{\text {SEL }}(G)$. Then we clearly obtain a feasible solution of Set Cover for instance ℓ by taking $\ell^{\prime}=\left\{S_{i}: L_{i} \cap V^{*} \neq \emptyset, i=1, \ldots, q\right\}$. Thus

$$
\begin{equation*}
O P T(\ell) \leq\left|\delta^{\prime}\right|=\chi_{S E L}(G, \mathcal{V}) \tag{3}
\end{equation*}
$$

Now consider any set cover $s^{\prime}=\left\{S_{i_{1}}, \ldots, S_{i_{r}}\right\}$ of ℓ with size $r=\left|s^{\prime}\right|$. Then we obtain a feasible solution of Sel-Col for G as follows: for $j=1, \ldots, r$, we add the vertices of $L_{i_{j}}$ to V^{*}; if necessary we delete some vertices of V^{*} such that $\left|V^{*} \cap V_{i}\right|=1$ for $i=1, \ldots, p$. This gives us a feasible solution of Sel-Col such that

$$
\begin{equation*}
\chi\left(G\left[V^{*}\right]\right) \leq\left|s^{\prime}\right| \tag{4}
\end{equation*}
$$

Fig. 4. An instance of Sel-Col for which we obtain $C_{1}^{1}=x_{1} \vee y_{1}, C_{1}^{2}=\bar{x}_{1} \vee \bar{x}_{2}, C_{2}^{1}=x_{2} \vee x_{3}, C_{2}^{2}=\bar{x}_{2} \vee \bar{x}_{3}, C_{3}=y_{2}, C=\bar{x}_{1} \vee \bar{y}_{2}, C^{\prime}=\bar{x}_{2} \vee \bar{y}_{1}, C^{\prime \prime}=\bar{x}_{3} \vee \bar{y}_{2}$, $C^{\prime \prime \prime}=\bar{x}_{3} \vee \bar{y}_{1}$.

Using inequalities (3) and (4), we deduce that $\chi_{S E L}(G, \mathcal{V})=O P T(\ell)$. Furthermore, from any ρ-approximation for SET Cover on ℓ, we polynomially get a ρ-approximation for Sel-Col in G.

Corollary 4.5. Let $G=\left(L_{1}, \ldots, L_{q}, E\right)$ be a complete q-partite graph and let V_{1}, \ldots, V_{p} be a partition of its vertex set. Then there exists a polynomial-time $H(\alpha(G))$-approximation algorithm for SEL-CoL, where $H(r)=\sum_{i=1}^{r} \frac{1}{i}$, and there exists no $(1-\varepsilon) \log p$ approximation of Sel-Col for any $\varepsilon>0$ unless $\mathcal{N} \mathcal{P} \subset \operatorname{TIME}\left(n^{O(\log \log n)}\right)$.

Proof. First, using the $H\left(\max _{i=1, \ldots, n}\left|S_{i}\right|\right)$-approximation of [6] for SET Cover, it follows from Theorem 4.4 that there exists a polynomial-time $H(\alpha(G))$-approximation for Sel-Col in complete q-partite graphs since $\alpha(G)=\max _{i=1, \ldots, n}\left|S_{i}\right|$ in the above construction. Furthermore, using the negative result of [10] for Set Cover, we conclude that there exists no $(1-\varepsilon) \log p$ approximation for Sel-Col in complete q-partite graphs since in the construction given in Theorem 4.4, we have $|X|=p$.

5. Bipartite graphs

In this section, we consider the class of bipartite graphs. Since for a bipartite graph $G=(V, E)$ we have $\chi(G) \leq 2$, it follows that the only interesting case for k-Dsel-CoL is when $k=1$. Furthermore, it follows that if 1-Dsel-Col is polynomialtime solvable, then the selective chromatic number can be determined in polynomial time.

First we obtain the following result for general bipartite graphs.
Theorem 5.1. Sel-Col is polynomial-time solvable in bipartite graphs if the partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ satisfies $\left|V_{i}\right| \leq 2$ for all $i \in\{1, \ldots, p\}$.

Proof. We first check whether $\chi_{\text {SEL }}(G, \mathcal{V})=1$ by using a reduction to 2 SAT which is known to be polynomial-time solvable (see [14]). Consider an instance ℓ of Sel-Col, i.e, a bipartite graph $G=(V, E)$ and a partition V_{1}, \ldots, V_{p} of V such that for all $i \in\{1, \ldots, p\}$ we have $\left|V_{i}\right| \leq 2$. We define an instance of 2SAt as follows: (i) with each vertex x we associate a variable x; (ii) with each cluster $V_{i}, i \in\{1, \ldots, p\}$, such that $V_{i}=\{x\}$, we associate a clause $C_{i}=x$; (iii) with each cluster V_{i}, $i \in\{1, \ldots, p\}$, such that $V_{i}=\{x, y\}$, we associate two clauses $C_{i}^{1}=x \vee y$ and $C_{i}^{2}=\bar{x} \vee \bar{y}$; (iv) with each edge $x y \in E$ such that x, y belong to different clusters, we associate a clause $C=\bar{x} \vee \bar{y}$. This clearly defines an instance ℓ^{\prime} of 2Sat (see Fig. 4 for an example).

Now suppose that ℓ has a feasible solution of value 1 . For all vertices that are in V^{*}, we set the corresponding variables to true. Thus all clauses associated with clusters are satisfied. Furthermore, since V^{*} is a stable set, it follows that all clauses associated with edges of G are satisfied as well. Thus ℓ^{\prime} is a yes-instance.

Conversely, suppose now that ℓ^{\prime} is a yes-instance. For all variables that are true, we add the corresponding vertices to V^{*}. Due to the definition of the clauses associated with the clusters and the edges, this clearly gives us a stable set V^{*} such that $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$. Thus ℓ^{\prime} has a feasible solution of value 1 .

Now, suppose that by applying the above reduction we conclude that $\chi_{S E L}(G, \mathcal{V})>1$. Then we arbitrarily choose one vertex in every cluster and add it to V^{*}. Clearly $G\left[V^{*}\right]$ is bipartite and thus it is 2-colorable. Hence $\chi_{\text {SEL }}(G, \mathcal{V})=2$.

Next we consider graphs which are the disjoint union of C_{4} 's or the disjoint union of P_{3} 's. We obtain the following.
Theorem 5.2. 1-Dsel-CoL is $\mathcal{N} \mathcal{P}$-complete for the disjoint union of C_{4} 's even if the partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ satisfies $\left|V_{i}\right|=3$ for all $i \in\{1, \ldots, p\}$.
Proof. We use a reduction from (3, B2)-Sat which was shown to be $\mathcal{N} \mathcal{P}$-complete in [4]. This problem is defined as follows: we are given a set of clauses each of which contains exactly three literals and every literal appears exactly two times; then we want to decide whether there exists a truth assignment such that each clause contains at least one true literal.

Consider an instance ℓ of $(3, B 2)$-Sat consisting of p clauses and n variables. With each variable x, we associate a C_{4} with edge set $\left\{x_{1} \bar{x}_{1}, \bar{x}_{1} x_{2}, x_{2} \bar{x}_{2}, \bar{x}_{2} x_{1}\right\}$. This clearly gives us a graph $G=(V, E)$ isomorphic to $n C_{4}$. Then we define a partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ of V as follows: for each variable x, if it appears as a positive literal in a clause C_{i}, we add x_{1} or x_{2} to V_{i};
if it appears as a negative literal in a clause C_{i}, we add \bar{x}_{1} or \bar{x}_{2} to V_{i}. Since each clause contains exactly three literals and since each literal appears exactly two times, this clearly gives us a partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ of V such that $\left|V_{i}\right|=3$ for all $i \in\{1, \ldots, p\}$. We set $k=1$. Thus we obtain an instance ℓ^{\prime} of 1 -Dsel-Col.

Now suppose that l is a yes-instance. For every variable x, if x is true, then we add x_{1} and x_{2} into V^{*}; if x is false we add \bar{x}_{1} and \bar{x}_{2} into V^{*}. Since every clause contains at least one true literal, it follows that $\left|V^{*} \cap V_{i}\right| \geq 1$ for all $i \in\{1, \ldots, p\}$. If necessary we delete some vertices from V^{*} such that $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$. Clearly V^{*} is a stable set. Thus ℓ^{\prime} is a yes-instance.

Conversely, suppose that ℓ^{\prime} is a yes-instance. For every set $V_{i}, i \in\{1, \ldots, p\}$, if $V^{*} \cap V_{i}=\left\{x_{j}\right\}$, for $j \in\{1,2\}$, we set the corresponding variable x to true; if $V^{*} \cap V_{i}=\left\{\bar{x}_{j}\right\}$, for $j \in\{1,2\}$, we set the corresponding variable x to false. Now recall that each vertex in a set V_{i} corresponds to a literal appearing in clause C_{i}. Thus by setting to true each literal corresponding to a vertex of $V_{i} \cap V^{*}$, for $i=1,2, \ldots, p$, we obtain that clause C_{i} contains one true literal and hence ℓ is a yes-instance.

It follows from Theorem 5.2 that deciding whether $\chi_{S E L}(G, \mathcal{V})=1$ or $\chi_{S E L}(G, \mathcal{V})=2$ is $\mathcal{N} \mathcal{P}$-complete if G is the disjoint union of C_{4} 's and its vertex partition \mathcal{V} satisfies $\left|V_{i}\right|=3$ for all $i \in\{1, \ldots, p\}$. The next result shows that if the clusters of a partition \mathcal{V} in such a graph satisfy $\left|V_{i}\right| \geq 4$ for all $i \in\{1, \ldots, p\}$, then we always have $\chi_{\text {SEL }}(G, \mathcal{V})=1$ and thus Sel-Col becomes polynomial-time solvable.

Theorem 5.3. Let $G=(V, E)$ be the disjoint union of C_{4} 's and let $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ be a partition of V satisfying $\left|V_{i}\right| \geq 4$ for all $i \in\{1, \ldots, p\}$. Then $\chi_{\text {SEL }}(G, \mathcal{V})=1$.

Proof. Consider an instance of Sel-Col in a disjoint union of n cycles C_{4} and let $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ be a partition of its vertex set satisfying $\left|V_{i}\right| \geq 4$ for all $i \in\{1, \ldots, p\}$. Denote the cycles by $C_{4}^{1}, \ldots, C_{4}^{n}$. We will construct the following auxiliary bipartite multigraph $H=(X, Y, E)$: we associate with every cluster V_{i}, for $i \in\{1, \ldots, p\}$, a vertex $x_{i}(\rightarrow$ set $X)$; we associate with every cycle $C_{4}^{j}, j \in\{1, \ldots, n\}$, a vertex $y_{j}(\rightarrow \operatorname{set} Y)$; finally for every vertex $u \in V_{i} \cap V\left(C_{4}^{j}\right), i \in\{1, \ldots, p\}, j \in\{1, \ldots, n\}$, we add an edge between x_{i} and y_{j}.

Notice that since $\left|V_{i}\right| \geq 4$ for all $i \in\{1, \ldots, p\}$, it follows that $p \leq n$. Thus $|X| \leq|Y|$. Furthermore, notice that $d\left(x_{i}\right) \geq 4$ and $d\left(y_{j}\right)=4$, for $i \in\{1, \ldots, p\}, j \in\{1, \ldots, n\}$. Thus $\min _{x_{i} \in X} d\left(x_{i}\right) \geq \max _{y_{j} \in Y} d\left(y_{j}\right)$. Using a result of [3], we conclude that there exists a matching M in H which saturates X.

To finish the proof, we will show that a matching M in H which saturates X corresponds to a set $V^{*} \subseteq V$ satisfying $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$ and such that $\chi\left(G\left[V^{*}\right]\right)=1$.

Consider a matching M in H which saturates X. For every edge $x_{i} y_{j} \in M, i \in\{1, \ldots, p\}$ and $j \in\{1, \ldots, n\}$, we add a vertex of $V_{i} \cap V\left(C_{4}^{j}\right)$ to V^{*}. Since M is a matching which saturates X, it follows that $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$. Furthermore, since M is a matching, we have that $\left|V\left(C_{4}^{j}\right) \cap V^{*}\right| \leq 1$. Hence $\chi\left(G\left[V^{*}\right]\right)=1$.

Theorem 5.4. 1-Dsel-Col is $\mathcal{N} \mathcal{P}$-complete for the disjoint union of P_{3} 's even if the partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ satisfies $2 \leq\left|V_{i}\right| \leq 3$ for all $i \in\{1, \ldots, p\}$.

Proof. Consider the problem $(2,1)$-3Sat which is defined as follows: we are given a set U of variables as well as a set C of clauses over U such that each clause contains either two or three literals; furthermore each variable occurs exactly three times, once as a negative literal and twice as a positive literal; we want to decide whether there exists a truth assignment such that each clause contains at least one true literal. (2,1)-3SAT was shown to be $\mathcal{N} \mathcal{P}$-complete in [9].

Now we use a reduction from (2,1)-3SAT. Consider an instance ℓ of $(2,1)$-3SAT containing n variables and p clauses. We construct the following graph $G=(V, E)$: with each variable x we associate a path P_{3} with edge set $\left\{x \bar{x}, \bar{x} x^{\prime}\right\}$. Thus G is isomorphic to $n P_{3}$. Now consider the following partition \mathcal{V} of V : for each clause C_{i}, if the variable x appears in C_{i} as a positive literal, then we add x or x^{\prime} to V_{i}; if the variable x appears a negative literal in C_{i}, then we add \bar{x} to V_{i}. This clearly gives us a partition V_{1}, \ldots, V_{p} with $2 \leq\left|V_{i}\right| \leq 3$ for all $i \in\{1, \ldots, p\}$. We set $k=1$. Thus we obtain an instance ℓ^{\prime} of 1-Dsel-Col.

Now suppose that ℓ is a yes-instance. For each variable x which is true, we add x, x^{\prime} to V^{*}. For each variable x which is false, we add \bar{x} to V^{*}. Thus we obtain a stable set V^{*} such that $\left|V^{*} \cap V_{i}\right| \geq 1$ for all $i \in\{1, \ldots, p\}$. If necessary we delete some vertices in V^{*} such that $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$. Thus ℓ^{\prime} is a yes-instance.

Conversely, suppose now that ℓ^{\prime} is a yes-instance. We proceed as follows: for each path P_{3}, if $x \in V^{*}$ or $x^{\prime} \in V^{*}$ we set the variable x to true; if $\bar{x} \in V^{*}$, then we set x to false. Since each cluster $V_{i}, i \in\{1, \ldots, p\}$, corresponds to a clause C_{i}, it follows that ℓ is a yes-instance.

Notice that the result given in Theorem 5.4 is best possible in the sense that if G is the disjoint union of P_{2} 's, then SEL-COL is polynomial-time solvable (see Theorem 7.2).

Now using similar arguments as in the proof of Theorem 5.3, we obtain the following result.
Theorem 5.5. Let $G=(V, E)$ be the disjoint union of P_{3} 's and let $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ be a partition of V satisfying $\left|V_{i}\right| \geq 3$ for all $i \in\{1, \ldots, p\}$. Then $\chi_{\text {SEL }}(G, \mathcal{V})=1$.

From Theorem 5.4 we obtain the following.
Corollary 5.6. 1-Dsel-Col is $\mathcal{N} \mathcal{P}$-complete for paths even if the partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ satisfies $2 \leq\left|V_{i}\right| \leq 3$ for all $i \in\{1, \ldots, p\}$.

Proof. We use a reduction from 1-Dsel-Col for the union of P_{3} 's which we previously showed to be $\mathcal{N} \mathcal{P}$-complete even if the partition V_{1}, \ldots, V_{p} satisfies $2 \leq\left|V_{i}\right| \leq 3$ for all $i \in\{1, \ldots, p\}$.

Consider the following instance ℓ of 1-Dsel-Col. Let $G=(V, E)$ be isomorphic to $n P_{3}$ and let $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ be a partition of V satisfying $2 \leq\left|V_{i}\right| \leq 3$ for all $i \in\{1, \ldots, p\}$. We denote by $P_{3}^{1}=\left\{x_{11} x_{12}, x_{12} x_{13}\right\}, \ldots, P_{3}^{n}=\left\{x_{n 1} x_{n 2}, x_{n 2} x_{n 3}\right\}$ the P_{3} 's of G. We construct a path $P=\left(V^{\prime}, E^{\prime}\right)$ as follows. For $j=1, \ldots, n-1$, we add a path $\left\{y_{j 1} y_{j 2}, y_{j 2} y_{j 3}\right\}$ as well as the edges $x_{j 3} y_{j 1}, y_{j 3} x_{(j+1) 1}$. We obtain a partition \mathcal{V}^{\prime} of V^{\prime} by using the sets V_{1}, \ldots, V_{p} as well as the sets $V_{p+1}, \ldots, V_{p+n-1}$, where $V_{p+j}=\left\{y_{j 1}, y_{j 2}, y_{j 3}\right\}$. This gives us an instance ℓ^{\prime} of 1-DsEL-CoL.

Clearly if ℓ^{\prime} is a yes-instance, then ℓ is a yes-instance.
Conversely, suppose now that ℓ is a yes-instance. Let V^{*} be the stable set in a solution of ℓ. Then we clearly obtain a solution $V^{*^{\prime}}$ of ℓ^{\prime} by adding to V^{*} the vertices $y_{12}, \ldots, y_{(n-1) 2}$. Thus ℓ^{\prime} is a yes-instance.

Applying similar arguments, we obtain the following result.
Corollary 5.7. 1-Dsel-Col is $\mathcal{N} \mathcal{P}$-complete for cycles even if the partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ satisfies $2 \leq\left|V_{i}\right| \leq 3$ for all $i \in\{1, \ldots, p\}$.

It follows from Corollaries 5.6 and 5.7, that Sel-Col cannot be approximated within a factor less than 2 in paths or cycles with clusters of size 2 or 3 , unless $\mathcal{P}=\mathcal{N} \mathcal{P}$.

6. Compact clustering

In this section, we consider the special case when every cluster $V_{i}, i \in\{1, \ldots, p\}$, of the partition \mathcal{V} induces a clique. We will say that \mathcal{V} is a compact clustering. It can be immediately deduced from the definition of Sel-Col that the solution does not change if one changes edges between vertices of the same cluster and in particular if we replace each cluster by a clique. However this same argument cannot be applied if we consider specific graph classes not stable under edge adding operation. Therefore if we do not consider only general graphs the problem is not necessary equivalent in the case of compact clustering.

We are interested in this particular case for two main reasons, one theoretical and one dealing with potential applications. From the theoretical point of view, most of reductions pointing out $\mathcal{N} \mathcal{P}$-hard cases involve instances of Sel-Col for which clusters are stable sets. The case when clusters are cliques then becomes natural. Moreover, in several applications, compact clustering corresponds to natural situations. Note first that, for the multicolored clique problem (Mcc) (see Section 1), the instance of Sel-Col associated to any instance of Mcc corresponds to a compact clustering. Considering now the scheduling problem mentioned in Section 1, a compact clustering corresponds to the case when, for each task t_{j}, all the possible intervals $I_{1}(j), \ldots, I_{n_{j}}(j)$ share a common point; this is natural when a preferred starting time is determined with some flexibility represented by a collection of admissible intervals around this preferred time or when a specific event scheduled at a fixed date must occur during the execution of the task.

Theorem 6.1. Let $G=(V, E)$ be a graph and let $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ be a compact clustering. Then $\chi_{S E L}(G, \mathcal{V})=1$ if and only if $\alpha(G)=p$.

Proof. Suppose that $\alpha(G)=p$ and let S be a stable set in G of size p. Since $G\left[V_{i}\right]$ is a clique, for $i=1,2, \ldots, p$, it follows that $\left|S \cap V_{i}\right|=1$. It follows that S is a solution of SEl-Col in G with respect to \mathcal{V} and thus $\chi_{\text {SEL }}(G, \mathcal{V})=1$.

Conversely, suppose that $\chi_{\text {SEL }}(G, \mathcal{V})=1$. Thus there exists a stable set S in G such that $\left|S \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, p\}$. It follows that $|S|=p$. Since $G\left[V_{i}\right]$ is a clique, for $i=1,2, \ldots, p$, there exists no stable set S^{\prime} in G such that $\left|S \cap V_{i}\right| \geq 2$ for some $i \in\{1, \ldots, p\}$. Hence $\alpha(G)=p$.

Let us denote by $\varsigma \mathcal{T} \mathcal{A} \mathscr{B}$ the class of graphs G for which the stability number $\alpha(G)$ can be determined in polynomial time. Then the following is an immediate consequence of Theorem 6.1.

Corollary 6.2. Let $G \in s \mathcal{T} \mathcal{A B}$ and let $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ be a compact clustering. Then 1-Dsel-Col is polynomial-time solvable.
Theorem 6.3. 1-Dsel-Col is $\mathcal{N} \mathcal{P}$-complete in planar graphs of maximum degree 3 when $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ is a compact clustering and $\left|V_{i}\right| \leq 3$ for all $i \in\{1, \ldots, p\}$.

Proof. We use a reduction from Restricted Planar 3-Sat which is defined as follows: we are given a set U of variables as well as a set C of clauses over U such that each clause contains either two or three literals; furthermore each variable occurs exactly three times, once as a negative literal and twice as a positive literal; finally the bipartite graph $H=(U \cup V, E)$, where $u c \in E$ if the variable corresponding to u appears (as positive or negative literal) in the clause corresponding to c, is

Fig. 5. Replacement of x_{i} in H.
planar; we want to decide whether there exists a truth assignment such that each clause contains at least one true literal. Restricted Planar 3-Sat was shown to be $\mathcal{N} \mathcal{P}$-complete in [9].

Let ℓ be an instance of Restricted Planar 3-Sat with variables x_{1}, \ldots, x_{n} and clauses c_{1}, \ldots, c_{m}. Consider the associated planar bipartite graph $H=(U \cup C, E)$. Notice that every vertex in U has degree exactly three. Consider a vertex $x_{i} \in U$ (corresponding to variable x_{i}) as well as its neighbors $c_{i 1}, c_{i 2}, c_{i 3} \in C$ (corresponding to the clauses in which x_{i} appears). Suppose that x_{i} appears as a negative literal in $c_{i 2}$ (and hence it appears as positive literal in $c_{i 1}$ and in $c_{i 3}$). We delete x_{i} and replace it by the graph H_{i} with vertex set $\left\{x_{i}^{1}, x_{i}^{\prime}, x_{i}^{\prime \prime}, \overline{x_{i}}, x_{i}^{2}\right\}$ and edge set $\left\{x_{i}^{1} x_{i}^{\prime}, x_{i}^{\prime} x_{i}^{2}, x_{i}^{\prime} x_{i}^{\prime \prime}, x_{i}^{\prime \prime} \overline{x_{i}}\right\}$; then we make $c_{i 1}$ adjacent to $x_{i}^{1}, c_{i 2}$ adjacent to $\overline{x_{i}}$ and $c_{i 3}$ adjacent to x_{i}^{2} (see Fig. 5). We do this for every vertex $x_{i} \in U$. Clearly the resulting graph is still planar and has maximum degree 3 . Finally, we delete every vertex $c_{j} \in C$ and make its three neighbors pairwise adjacent. This can clearly be done in such a way that the resulting graph $G=\left(V, E^{\prime}\right)$ is still planar. Notice that G has still maximum degree 3 . We define a partition $\mathcal{V}=\left(V_{1}, \ldots, V_{m+n}\right)$ of V by adding to $V_{i}, i=1, \ldots, m$, the vertices in V representing the literals occurring in clause c_{i}, furthermore for every variable x_{i} we define a cluster $V_{m+i}=\left\{x_{i}^{\prime}, x_{i}^{\prime \prime}\right\}$. Thus every cluster V_{i} induces a clique (of size 2 or 3), $i=1, \ldots, m+n$, and hence we obtain an instance ℓ^{\prime} of 1-Dsel-Col in a planar graph with maximum degree 3 with a compact clustering \mathcal{V} such that $\left|V_{i}\right| \leq 3$ for all $i \in\{1, \ldots, m+n\}$.

Now suppose that ℓ is a yes-instance. For every variable x_{i} which is set to true, we add the corresponding vertices x_{i}^{1}, x_{i}^{2} to V^{*}; similarly for every variable x_{i} which is set to false, we add the corresponding vertex $\overline{x_{i}}$ to V^{*}. Furthermore, if x_{i} is set to true, we add $x_{i}^{\prime \prime}$ to V^{*}; otherwise, if x_{i} is set to false we add x_{i}^{\prime} to V^{*}. From the construction of G, it follows that $\left|V^{*} \cap V_{i}\right| \geq 1$ for $i=1, \ldots, m+n$. If necessary we may delete some vertices from V^{*} to obtain $\left|V^{*} \cap V_{i}\right|=1$ for $i=1, \ldots, m+n$. This implies that V^{*} is necessarily a stable set. Thus ℓ^{\prime} is a yes-instance.

Conversely, suppose now that ℓ^{\prime} is a yes-instance. Let V^{*} be a solution of ℓ^{\prime}, i.e., V^{*} is a stable set such that $\left|V^{*} \cap V_{i}\right|=1$ for all $i \in\{1, \ldots, m+n\}$. We obtain a solution of ℓ as follows: for $i=1, \ldots, m$, if $V^{*} \cap V_{i}=\left\{x_{i 1}\right\}$ (or $V^{*} \cap V_{i}=\left\{x_{i 2}\right\}$) then we set the corresponding variable x_{i} to true; otherwise, if $V^{*} \cap V_{i}=\left\{\bar{x}_{i}\right\}$, then we set the corresponding variable x_{i} to false. All remaining variables are arbitrarily set to true or false. From the construction of G and the fact that V^{*} is a stable set, it follows that this gives us a feasible truth assignment and furthermore since every V_{i} corresponds to a clause c_{i}, for $i=1, \ldots, m$, it follows that every clause contains at least one true literal. Thus ℓ is a yes-instance.

Theorem 6.4. Let $G=(V, E)$ be a graph with maximum degree 3 and a compact clustering $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ such that $\left|V_{i}\right| \leq 3$. Then there exists a polynomial-time 2-approximation algorithm for Sel-Col in G.

Proof. Consider an instance ℓ of Sel-Col consisting of a graph $G=(V, E)$ with maximum degree 3 and a compact clustering $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ such that $\left|V_{i}\right| \leq 3$. Consider the graph G^{\prime} induced by all vertices belonging to a cluster V_{i} with $\left|V_{i}\right| \leq 2$, for $i \in\{1, \ldots, p\}$. We check whether there exists a stable set S in G^{\prime} which contains exactly one vertex of each cluster in G^{\prime}. This can be done in polynomial time (see Corollary 7.1).

If such a stable set does not exist, then the optimal solution of Sel-Col for ℓ, OPT (ℓ) must satisfy OPT(ℓ) ≥ 2. Since G has maximum degree 3 , it follows that we can color the vertices of G with at most 4 colors in polynomial time by assigning greedily the first available color to each vertex. Thus we can obtain a set V^{*} in polynomial time such that $\chi\left(G\left[V^{*}\right]\right) \leq 4 \leq 2 \cdot$ OPT (ℓ).

If such a stable set S exists, then we add all vertices of S to V^{*} and proceed as follows: for each cluster V_{i} in G such that $\left|V_{i}\right|=3$, we arbitrarily choose one vertex in V_{i} and add it to V^{*}. We claim that every connected component of $G\left[V^{*}\right]$ is isomorphic to one of the following graphs: $K_{1}, K_{2}, P_{3}, K_{1,3}$. Indeed, suppose that a connected component of $G\left[V^{*}\right]$ contains a triangle on vertices a, b, c. Since S is a stable set it follows that at least two of the vertices a, b, c belong to a cluster of size 3 . Without loss of generality, we may assume that a and b belong both to such a cluster. Since we chose exactly one vertex in each such cluster, it follows that $a \in V_{i}, b \in V_{j}$ with $i \neq j$ and $\left|V_{i}\right|=\left|V_{j}\right|=3$. Furthermore, for the same reason, $c \notin V_{i}, V_{j}$. But this implies that a and b must have degree at least 4, a contradiction. We conclude that no connected component contains a triangle. Finally, suppose that a connected component of $G\left[V^{*}\right]$ contains a path (not necessarily induced) on 4 vertices, say a, b, c, d with edges $a b, b c, c d$. First notice that b cannot belong to a cluster V_{i} with $\left|V_{i}\right|=3$. Indeed, since G has maximum degree 3 , this would imply that either a or c belong to V_{i} as well, a contradiction because we chose exactly one vertex in each cluster of size 3. By symmetry the same holds for c. But this implies each of b, c belongs to a cluster of size at most two. This contradicts the fact that S exists. Thus no connected component of $G\left[V^{*}\right]$ contains a path on 4 vertices. Hence
every connected component of $G\left[V^{*}\right]$ must be isomorphic to one of the following graphs: $K_{1}, K_{2}, P_{3}, K_{1,3}$. This implies that $\chi\left(G\left[V^{*}\right]\right) \leq 2 \leq 2 \cdot$ OPT ($\left.\ell\right)$.

7. Further results

Using a similar approach as for Theorem 5.1, we obtain the following.
Corollary 7.1. 1-Dsel-Col is polynomial-time solvable if the partition $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ satisfies $\left|V_{i}\right| \leq 2$ for all $i \in\{1, \ldots, p\}$.
Next we will consider the disjoint union of cliques. Let G be the disjoint union of n cliques K^{1}, \ldots, K^{q} and let $\mathcal{V}=$ $\left(V_{1}, \ldots, V_{p}\right)$ be a partition of its vertex set. Notice that since for every two vertices u, v belonging to a same clique we have $N(u) \backslash\{v\}=N(v) \backslash\{u\}$, we may assume that $\left|V_{i} \cap K^{j}\right| \leq 1$ for all $i \in\{1, \ldots, p\}$ and $j \in\{1, \ldots, q\}$. Furthermore notice that we have $1 \leq \chi_{\text {SEL }}(G, \mathcal{V}) \leq \max _{j=1, \ldots, q}\left\{\left|K^{j}\right|\right\}$. We obtain the following.

Theorem 7.2. Sel-Col is polynomial-time solvable for the disjoint union of cliques.
Proof. Consider an instance ℓ of Sel-Col in a graph $G=(V, E)$ which is the disjoint union of n cliques K^{1}, \ldots, K^{q} and let $\mathcal{V}=\left(V_{1}, \ldots, V_{p}\right)$ be a partition of V. As mentioned above, we may assume that $\left|V_{i} \cap K^{j}\right| \leq 1$ for all $i \in\{1, \ldots, p\}$ and $j \in\{1, \ldots, n\}$.

We use a reduction to the Maximum Flow problem which can be solved in polynomial time (see [1]). We construct the following network N : with every cluster $V_{i}, i \in\{1, \ldots, p\}$, we associate a vertex x_{i}; with every clique $K^{j}, j \in\{1, \ldots, q\}$, we associate a vertex y_{j}; we add a vertex s and $\operatorname{arcs}\left(s, x_{i}\right)$ for $i \in\{1, \ldots, p\}$ as well as a vertex t and $\operatorname{arcs}\left(y_{j}, t\right)$ for $j \in\{1, \ldots, q\}$; for $i \in\{1, \ldots, p\}$ and $j \in\{1, \ldots, q\}$ we add an $\operatorname{arc}\left(x_{i}, y_{j}\right)$ if and only if $V_{i} \cap K^{j} \neq \emptyset$; finally we assign a capacity of one to all arcs $\left(s, x_{i}\right), i \in\{1, \ldots, p\}$, and to all arcs $\left(x_{i}, y_{j}\right)$ for $i \in\{1, \ldots, p\}$ and $j \in\{1, \ldots, q\}$, and a capacity of $k \geq 1$ to all arcs $\left(y_{j}, t\right)$ for $j \in\{1 \ldots, q\}$. This clearly gives us an instance ℓ^{\prime} of the Maximum Flow problem.

Now suppose that ℓ has a solution of value $s \leq k$ and let V^{*} be a set of vertices in G such that $\left|V^{*} \cap V_{i}\right|=1$ for $i \in\{1, \ldots, p\}$ and such that $G\left[V^{*}\right]$ is s-colorable. We will show that there exists a flow of value p in N. For every vertex $v \in V^{*}$ we proceed as follows: if $v \in V_{i} \cap K^{j}, i \in\{1, \ldots, p\}$ and $j \in\{1, \ldots, q\}$, then we add a unit of flow on the path $\left\{s x_{i}, x_{i} y_{j}, y_{j} t\right\}$. Since $G\left[V^{*}\right]$ is s-colorable, with $s \leq k$, it follows that $\left|V^{*} \cap K^{j}\right| \leq k$ for every $j \in\{1, \ldots, q\}$. Thus we obtain a flow of value p.

Conversely, assume that there exists a flow in N of value p. Thus every arc $\left(s, x_{i}\right)$ is used by one flow unit for $i \in\{1, \ldots, p\}$. We construct a solution of ℓ as follows: for every arc $\left(x_{i}, y_{j}\right)$ used by one flow unit, we add the vertex $V_{i} \cap K^{j}$ to V^{*}. Since the $\operatorname{arcs}\left(y_{j}, t\right)$, for $j \in\{1, \ldots, q\}$, all have capacity k, it follows that $\left|V^{*} \cap K^{j}\right| \leq k$. Thus we obtain a set V^{*} such that $\left|V^{*} \cap V_{i}\right|=1$ for $i \in\{1, \ldots, p\}$ and such that $\left|V^{*} \cap K^{j}\right| \leq k$ for $j \in\{1 \ldots, q\}$. It follows that $G\left[V^{*}\right]$ is k-colorable.

The above shows that Sel-CoL has a solution of value $s \leq k$ if and only if there exists a maximum flow of value p in N. Since $1 \leq \chi_{S E L}(G, \mathcal{V}) \leq \max _{j=1 \ldots, q}\left\{\left|K^{j}\right|\right\}$ for the disjoint union of cliques, it follows that by taking $k=1, \ldots, \max _{j=1 \ldots, q}\left\{\left|K^{j}\right|\right\}$, we can determine the selective chromatic number of G in polynomial time.

Next, we consider graphs which have stability number at most 2 . Clearly for such graphs $G=(V, E)$ we have $\left\lceil\frac{p}{2}\right\rceil \leq$ $\chi_{\text {SEL }}(G, \mathcal{V}) \leq p$, for any partition \mathcal{V} of V. We obtain the following.

Theorem 7.3. Sel-Col is polynomial-time solvable for graphs with stability number at most 2.
Proof. Consider an instance ℓ of Sel-Col in a graph $G=(V, E)$ with stability number at most 2 . If G is a clique, then clearly $\chi_{S E L}(G, \mathcal{V})=p$. Thus we may assume that G is not a clique and hence has stability number exactly 2 .

We use a reduction to the Maximum Matching problem which is polynomial-time solvable (see for instance [18]). We will build the following auxiliary graph $H=\left(V_{H}, E_{H}\right)$: with every set $V_{i}, i \in\{1, \ldots, p\}$ we associate a vertex v_{i}; we add an edge between two vertices $v_{i}, v_{j}, i, j \in\{1, \ldots, p\}$, if there exists two nonadjacent vertices $u \in V_{i}$ and $w \in V_{j}$. This gives us an instance ℓ^{\prime} of Maximum Matching.

First assume that ℓ has a feasible solution of value $p-k_{1}$, for $0 \leq k_{1} \leq\left\lfloor\frac{p}{2}\right\rfloor$ and let c be a selective ($p-k_{1}$)-coloring of G. Notice that since G has stability number two, every color class has size at most 2 . Thus k_{1} is the number of color classes having size exactly 2 . We build a matching M in H as follows. For every pair $u, w \in V^{*}$ such that $c(u)=c(w), u \in V_{i}, w \in V_{j}$, for $i, j \in\{1, \ldots, p\}$ with $i \neq j$, add the edge $v_{i} v_{j}$ to M. This gives us a feasible solution of size k_{1} for instance ℓ^{\prime}.

Conversely, suppose that ℓ^{\prime} has a feasible solution M of size k_{1}. Then we obtain a feasible solution of value $p-k_{1}$ for ℓ as follows. For every edge $v_{i} v_{j} \in M$, we color the corresponding nonadjacent vertices $u \in V_{i}$ and $w \in V_{j}$ with a same color $c_{i j}$. Thus there remain $p-k_{1}$ sets of the partition not having any colored vertex yet. We arbitrarily choose one vertex in each of these sets and color it with a new color. Thus we obtain a feasible selective ($p-k_{1}$)-coloring of G.

Let us finally conclude with a Log-APX result for Sel-Col in the case when all clusters have the same size. We denote by Max k-Stable the problem consisting in finding a k-colorable induced subgraph of maximum size in a given graph G. In the following, we suppose that there exists an approximation algorithm for this problem, where k is supposed to be part of the input. A solution of this algorithm will be referred to as an approximated k-Stable.

Theorem 7.4. Consider an hereditary class of graphs \mathscr{H} for which Max k-Stable can be approximated within ρ. Let $G=$ $(V, E) \in \mathcal{H}$ and let \mathcal{V} a partition of V such that each cluster has the same size $v \geq 2$. Then Sel-Col can be approximated within $\left(-\frac{\log (n)}{\log (1-\rho / v)}\right)$, where n is the number of vertices in G.

```
Algorithm 1
Require: \(G=(V, E)\) is a graph in \(\mathscr{H}\) and \(\mathcal{V}=V_{1}, \ldots, V_{p}\) a partition of \(V\) s.t. \(\left|V_{i}\right|=v \geq 2, i=1, \ldots, p\)
    for \(k=1, \ldots, p\) do
        \(N_{k} \leftarrow 0 ; V^{k} \leftarrow \emptyset\)
        repeat
            compute an approximated \(k\)-Stable \(V^{\prime}=S_{1} \cup \cdots \cup S_{k}\)
            for each cluster \(V_{i}\) such that \(V_{i} \cap V^{\prime} \neq \emptyset\), select one vertex in \(V_{i} \cap V^{\prime}\) and add it to \(V^{k}\)
            for each \(i=1, \ldots, k\) such that \(V^{k} \cap S_{i} \neq \emptyset\), let \(N_{k} \leftarrow N_{k}+1\) and keep \(V^{k} \cap S_{i}\) as a new color
            remove from \(V\) all clusters intersecting \(V^{\prime}\)
        until \(V=\emptyset\)
        let \(C_{k}\) be the resulting selective coloring of \(G\left[V^{k}\right]\)
    end for
    Select the solution \(\left(V^{k_{0}}, C_{k_{0}}\right)\) where \(k_{0} \in \operatorname{argmin}_{k=1, \ldots, p}\left(N_{k}\right)\)
```

Proof. Consider Algorithm 1 shown above. Its complexity is $p n C(n)$ where $C(n)$ is the complexity of the approximation algorithm for Max k-Stable.

For each $k=1, \ldots, p$, the algorithm computes successively k stable sets and removes the clusters that are covered by at least one of these sets. Consequently, it computes $N_{k} \leq k R_{k}$ stable sets covering all clusters, where R_{k} is the number of iterations in the Repeat-loop corresponding to k. Then it selects the solution that minimizes $N_{k}, k=1, \ldots, p$. Let us suppose $k_{0}=\chi_{S E L}(G, \mathcal{V})$. Of course $k_{0} \leq p$ and consequently the solution computed is at least as good as the solution computed during the Repeat-loop associated to k_{0}. Consequently, the related ratio is not more than $R_{k_{0}}$.

Let us consider the Repeat-loop associated to k_{0}. We have $n=|V|=p v$ and a maximum k_{0}-Stable of G is of size at least p. Consequently the approximated k_{0}-Stable contains at least ρp vertices and since all the covered clusters are removed, the remaining graph contains at most $p v(1-\rho / v)$ vertices distributed among the $p(1-\rho / v)$ remaining clusters. Since \mathscr{H} is a hereditary class, the approximation algorithm stays valid in the remaining graph and consequently the same argument can be repeated to justify that, after ℓ iterations of the Repeat-loop, the number of remaining vertices is $p v(1-\rho / v)^{\ell}=n(1-\rho / v)^{\ell}$. After $R_{k_{0}}-1$ iterations, there are at least v remaining vertices and consequently we have:

$$
n(1-\rho / v)^{R_{k_{0}}-1} \geq v
$$

implying

$$
R_{k_{0}} \leq 1-\frac{\log (n / v)}{\log (1-\rho / v)} \leq-\frac{\log (n)}{\log (1-\rho / v)}
$$

where the last inequality holds because $v \geq 1+\rho$. This completes the proof.
Notice that we assumed that $v \geq 2$ since if $v=1$, the problem corresponds to the usual coloring problem and in this case the ratio is $1-\frac{\log (n)}{\log (1-\rho)}$.

Consider now the case when \mathscr{H} is the class of interval graphs for which Max k-Stable is known to be polynomial [29] or the class of chordal graphs for which there exists a $\frac{1}{2}$-approximation algorithm [5].
Corollary 7.5. Let $G=(V, E)$ be an interval graph with a partition \mathcal{V} of V in which each cluster has the same size $v \geq 2$. Then Sel-Col can be approximated within

$$
-\frac{\log (n)}{\log (1-1 / v)}
$$

Let $G=(V, E)$ be a chordal graph with a partition \mathcal{V} of V in which each cluster has the same size v. Then Sel-Col can be approximated within

$$
-\frac{\log (n)}{\log (1-1 /(2 v))}
$$

8. Conclusion

In this paper, we considered the selective graph coloring problem and analyzed its computational complexity in various classes of graphs. Our results are summarized in Fig. 6.

We also proposed some first approximation results. It would be interesting to consider the selective graph coloring problem in graphs where the partition satisfies some specific constraints. In Section 6 we started such an approach but many other configurations are still to be analyzed.

Graph class	$\begin{gathered} \left\|V_{i}\right\| \\ i=1, \ldots, p \end{gathered}$	Sel-Col	k-Dsel-CoL	
split graphs	≤ 2	$\mathcal{N} \mathscr{P}$-hard	\mathcal{P}	Theorem 3.1 Corollary 3.3
threshold graphs		\mathcal{P}	\mathcal{P}	Remark 3.1
complete q-partite graphs			\mathcal{P}	Theorem 4.2
complete q-partite graphs q fixed		\mathcal{P}		Theorem 4.1
complete q-partite graphs $\left\|L_{j}\right\|=3, j=1, \ldots, n$	$=2$	$\mathcal{N} \mathscr{P}$-hard		Theorem 4.3
bipartite graphs	≤ 2	\mathcal{P}	\mathcal{P}	Theorem 5.1
$n C_{4}$	= 3	$\mathcal{N} \mathcal{P}$-hard	$\mathcal{N} \mathcal{P}$-complete, $k=1$	Theorem 5.2
$n C_{4}$	≥ 4	\mathcal{P}	\mathcal{P}	Theorem 5.3
$n \mathrm{P}_{3}$	$2 \leq \leq 3$	$\mathcal{N} \mathscr{P}$-hard	$\mathcal{N} \mathscr{P}$-complete, $k=1$	Theorem 5.4
$n \mathrm{P}_{3}$	≥ 3	\mathcal{P}	\mathcal{P}	Theorem 5.5
paths	$2 \leq \leq 3$	$\mathcal{N} \mathcal{P}$-hard	$\mathcal{N} \mathcal{P}$-complete	Corollary 5.6
cycles	$2 \leq \leq 3$	$\mathcal{N} \mathcal{P}$-hard	$\mathcal{N} \mathcal{P}$-complete	Corollary 5.7
	≤ 2		$\mathcal{P}, k=1$	Corollary 7.1
disjoint union of cliques		\mathcal{P}	\mathcal{P}	Theorem 7.2
$\alpha(G) \leq 2$		\mathcal{P}	\mathcal{P}	Theorem 7.3
¢T ABB	compact		\mathcal{P} for $k=1$	Corollary 6.2
planar, $\Delta(G) \leq 3$	≤ 3 compact	$\mathcal{N} \mathscr{P}$-hard	$\mathcal{N} \mathcal{P}$-complete, $k=1$	Theorem 6.3

Fig. 6. Complexity results for SEL-COL and k-DSEL-COL.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, 1993.
[2] M. Al-Mouhamed, A. Dandashi, Graph Coloring for class scheduling, in: IEEE/ACS Internation Conference on Computer Systems and Applications, AICCSA, 2010, pp. 1-4.
[3] C. Berge, Graphes et Hypergraphes, Dunod, Paris, 1970.
[4] P. Berman, M. Karpinski, A.D. Scott, Approximation Hardness of Short Symmetric Instances of MAX-3SAT, Electronic Colloquium on Computational Complexity, Technical Report TR03-049, 2003.
[5] V.T. Chakaravarthy, S. Roy, Approximating maximum weight K-colorable subgraphs in chordal graphs, Information Processing Letters 109 (2009) 365-368.
[6] V. Chvatál, A greedy heuristic for the set-covering problem, Mathematics of Operations Research 4 (3) (1979) 233-235.
[7] Y. Chung, J.F. Culus, M. Demange, On inverse chromatic number problems, Electronic Notes in Discrete Mathematics 36 (2010) 1129-1136.
[8] B. Coutoux, J. Monnot, S. Toubaline, Complexity Results for the Empire Problem in Collection of Stars, in: Lecture Notes in Computer Science (COCOA), vol. 7402, 2012, pp. 73-82.
[9] E. Dahlhaus, P.D. Seymour, C.H. Papadimitriou, M. Yannakakis, The complexity of multiterminal cuts, SIAM Journal of Computing 23 (1994) $864-894$.
[10] U. Feige, A threshold of $\ln n$ for approximating set cover, Journal of the ACM 45 (4) (1998) 634-652.
[11] M. Fellows, D. Hermelin, F.A. Rosamond, S. Vialette, On the parametrized complexity of multiple-interval graph problems, Theoretical Computer Science 410 (1) (2009) 53-61.
[12] C. Feremans, M. Labbe, G. Laporte, Generalized network design problems, European Journal of Operations Research 148 (2003) 1-13.
[13] M. Gamache, A. Hertz, J. Ouellet, A graph coloring model for a feasibility problem in crew scheduling, Computers and Operations Research 34 (2007) 2384-2395.
[14] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of $\mathcal{N} \mathcal{P}$-Completeness, Freeman, New York, 1979.
[15] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified $\mathcal{N} \mathscr{P}$-complete problems, in: Proceedings of the sixth annual ACM symposium on Theory of computing, 1974, pp. 47-63.
[16] K. Giaro, M. Kubale, P. Obszarski, A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with availability constraints, Discrete Applied Mathematics 157 (17) (2009) 3625-3630.
[17] L. Guangzhi, R. Simha, The partition coloring problem and its application to wavelength routing and assignment, in: Proceedings of the First Workshop on Optical Networks, Dallas, 2000.
[18] B. Korte, J. Vygen, Combinatorial Optimization, Theory and Algorithms, 4th Edition, Springer, 2008.
[19] H. Labordere, The record balancing problem: a dynamic programming solution of a generalized traveling salesman problem, RAIRO Operations Research 2 (1969) 43-49.
[20] D. Marx, Graph coloring problems and their applications in scheduling, Periodica Polytechnica Electrical Engineering 48 (1-2) (2004) 5-10.
[21] A.R.A. McGrae, M. Zito, Empires Make Cartography Hard: The Complexity of the Empire Colouring Problem, in: Lecture Notes in Computer Science (WG), vol. 6986, 2011, pp. 179-190.
[22] P. Pop, Generalized Network Design Problems, in: Series in Discrete Mathematics and Applications, De Gruyter, 2012.
[23] T.F. Noronha, C.C. Ribeiro, Routing and wavelength assignment by partition colouring, European Journal of Operational Research 171 (2006) $797-810$.
[24] B. Ries, Complexity of two coloring problems in cubic planar bipartite mixed graphs, Discrete Applied Mathematics 158 (2010) $592-596$.
[25] S. Safra, O. Schwartz, On the complexity of approximating TSP with neighborhoods and related problems, Computational Complexity 14 (2005) 281-307.
[26] Y.N. Sotskov, A. Dolgui, F. Werner, Unit-time job-shop scheduling via mixed graph coloring, International Journal of Mathematical Algorithms 2 (4) (2001) 289-325.
[27] Y.N. Sotskov, V.S. Tanaev, F. Werner, Scheduling problems and mixed graph colorings, Optimization 51 (2002) 597-624.
[28] D.B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, 2001.
[29] M. Yannakakis, F. Gavril, The maximum k-colorable subgraph problem for chordal graphs, Information Processing Letters 24 (2) (1987) 133-137.

