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Abstract

In this paper, we consider the selective graph coloring problem. Given an integer k ≥ 1 and a graph G = (V , E) with a partition V1, . . . , 
Vp of V , it consists in deciding whether there exists a set V ∗ in G such that |V ∗ ∩ Vi| = 1 for all i ∈ {1, . . . , p}, and such that the graph 
induced by V ∗ is k-colorable. We investigate the complexity status of this problem in various classes of graphs.

1. Introduction and related works

Scheduling problems appearing in real-life situations may often be modeled as graph coloring problems (see [2,26,
13,16,20,24,27]). For instance, scheduling problems involving only incompatibility constraints correspond to the classical
vertex coloring problem in undirected graphs. If in addition precedence constraints occur, the problem may be handled
using the vertex coloring problem in mixed graphs (i.e., graphs containing both undirected and directed edges). Thus many
types of graph coloring problems are of interest: precoloring extension, list-coloring, multicoloring, mixed graph coloring,
T -coloring, edge coloring, etc.

In this paper,we consider the selective graph coloringproblem. Consider anundirected graphG = (V , E) and apartition
V1, . . . , Vp of its vertex setV . For some integer k ≥ 1, the selective graph coloringproblemconsists in finding a subsetV ∗ ⊆ V
such that |V ∗ ∩Vi| = 1 for all i ∈ {1, . . . , p} and such that the graph induced by V ∗ is k-colorable (see Fig. 1 for an example).

Consider the following scheduling problem: we are given a set of p tasks t1, . . . , tp each of which needs to be executed
on one of k identical machines m1, . . . ,mk; each task tj has a given length ℓj, for j = 1, 2, . . . , p; for each task tj of length
lj, j ∈ {1, . . . , p}, we are given a list of possible time intervals I1(j), . . . , Inj(j), each of length lj, during which the task
may be executed. Suppose that each machine mi cannot process more than one task simultaneously, for i = 1, 2, . . . , k.
Furthermore, the tasks are supposed to be non preemptive, i.e., once a machine started executing a task, the execution
cannot be interrupted temporarily but the task must be finished on that machine. The goal is to determine for each task
tj, j ∈ {1, . . . , p}, one feasible time interval among I1(j), . . . , Inj(j) such that all tasks can be executed using at most k
machines.
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Fig. 1. A graph G = (V , E) with a partition V1, V2, V3 of V and a set V ∗ (encircled vertices) which induces a 1-colorable graph.

In order to solve this scheduling problem, we may use the selective graph coloring model in an interval graph. Indeed,
with each task tj, j ∈ {1, . . . , p}, and each time interval Ii(j), i = 1, . . . , nj, we associate a vertex vij; then we add an
edge between two vertices u, v if the corresponding time intervals have a non empty intersection; thus we obtain an
interval graph G = (V , E). Finally we define a partition V1, . . . , Vp as follows: Vj = {v1j, . . . , vnjj} for j = 1, . . . , p. Clearly,
there exists a feasible schedule using at most k machines if and only if G admits a selective graph coloring with at most k
colors.

Note that the ‘‘selective framework" of the graph coloring problem also exists for other combinatorial optimization
problems, for instance the Traveling SalesmanProblem (TSP). This problem is knownasGeneralized TSP,Group-TSP orOne-of-
a-set TSP (see for instance [19,25]) and is defined as follows. A salesman needs to visit n customers c1, . . . , cn. Each customer
ci, i ∈ {1, . . . , n}, specifies some locations l1(i), . . . , lni(i) in which he/she is willing tomeet the salesman. The goal is then to
find a tour of minimum length such that the salesman visits each customer ci, i ∈ {1, . . . , n}, once and such that themeeting
takes place in one of the specified locations l1(i), . . . , lni(i). Thus if each customer specifies exactly one location, we obtain
the classical TSP problem. Further combinatorial optimization problems with this selective framework can be found in [12]
or [22].

The selective graph coloring problem was introduced in [17] under the name of partition coloring problem in the frame
of routing and wavelength assignment in networks. For this application, the problem was defined in the edge intersection
graph of some preselected paths in the network. Several heuristic methods have been designed in this context (see for
instance [23]).

Notice that the selective coloring problem is related to another type of coloring problem, called the empire coloring
problem (see for instance [8,21]). We are given a planar graph G = (V , E) whose vertex set is partitioned into sets
V1, . . . , Vp such that each such set contains exactly r vertices, for some fixed positive integer r . Then, for some fixed positive
integer k, the empire coloring problem (in its decision version) consists in deciding whether there exists a coloring of the
vertices of G with at most k colors such that adjacent vertices in different sets get different colors and all the vertices in a
same set get a same color, disregarding the adjacencies. Thus this problem can be seen as a kind of generalization of the
selective graph coloring problem since instead of coloring exactly one vertex per cluster, we color all the vertices in each
cluster.

Another problem which is related to the selective graph coloring problem is the so-called multicolored clique problem
(Mcc). In this problem, we are given an integer r and a connected graph G = (V , E) as well as a partition of its vertex
set V1, . . . , Vr such that every set Vi induces a stable set. Then the question is whether there exists a clique of size r in G.
This problem has been studied for instance in [11] from a parametrized complexity point of view and it was shown to be
W [1]-hard. Obviously, theMcc problem in G is equivalent to asking whether the complement of G admits a selective graph
coloring using exactly one color.

Finally, note also that the selective graph coloring problem has some natural connections with the inverse chromatic
number problem (see [7]). For a graphG and an integer k, this problem consists inmodifying the graph as little as possible such
that the chromatic number of the resulting graph is at most k. For an interval graph, suppose that the possible modifications
of the graph correspond to shifting intervals to the left or to the right in the interval representation. Furthermore, we
associate a cost with each such modification. Then for each interval, we define a cluster as the set of all possible locations
of that interval. Now the problem consists in selecting in each cluster one interval (i.e., one vertex) such that the resulting
graph is k-colorable and the total cost of the selected intervals is minimum.

All these close problems or particular cases of the selective graph coloring problem justify considering it in a systematic
way from a theoretical point of view. This work is such a first attempt to better understand its complexity status in different
classes. Since the classical graph coloring problem is a special case of the selective graph coloring problemwhen |Vi| = 1 for
all i ∈ {1, . . . , p}, it follows that the selective graph coloring problem is N P -hard in general. To the best of our knowledge,
there exists no better hardness result. In this paper, we investigate some classical classes of graphs and determine the



complexity status of the selective graph coloring problem in these classes. Furthermore, for some classes of graphs for which
the problem is N P -hard, we present polynomial-time approximation algorithms.

Our paper is organized as follows. In Section 2, we give some notations and definitions which will be used throughout
the paper. Section 3 deals with split graphs, Section 4 with complete q-partite graphs and Section 5 with bipartite graphs. In
Section 6,we consider the casewhen each setVi of the partition induces a clique. Finally, in Section 7wepresent some further
results for some special classes of graphs and a conclusion is given in Section 8, where we also present a table containing all
our results of this paper.

2. Preliminaries

All graphs in this paper are finite, simple and loopless. Let G = (V , E) be a graph. For a vertex v ∈ V , let N(v) denote the
set of vertices in G that are adjacent to v, i.e., the neighbors of v. N(v) is called the neighborhood of vertex v.

Let V ′ ⊆ V . We denote by G[V ′] the graph induced by V ′, i.e., the graph obtained from G by deleting the vertices of V − V ′
and all edges incident to at least one vertex of V − V ′. For two graphs H and G = (V , E), G is called H-free if there is no
V ′ ⊆ V such that G[V ′] is isomorphic to H . G is called (H1, . . . ,Hp)-free if it is Hi-free for any i = 1, . . . , p.

A stable set in a graph G = (V , E) is a set S ⊆ V of pairwise nonadjacent vertices. The maximum size of a stable set in a
graph G is called the stability number of G and is denoted by α(G). A clique in a graph G = (V , E) is a set of pairwise adjacent
vertices. A matching in a graph G = (V , E) is a set of pairwise nonadjacent edges. In a graph G = (V , E), a matching M is
said to saturate a set V ′ ⊆ V if for every vertex v ∈ V ′ there exists an edge in M incident to v.

We denote by nG the disjoint union of n copies of a graph G. As usual Pn (respectively Cn) denotes the induced path (resp.
the induced cycle) on n vertices. A clique on n vertices will be denoted by Kn. Consider two graphs G and H . Then we denote
by G+ H the disjoint union of G and H .

Let G = (V , E) be a graph. A k-coloring of G is a mapping c : V → {1, . . . , k} such that c(u) ≠ c(v) for all uv ∈ E.
The smallest integer k such that G is k-colorable is called the chromatic number of G and is denoted by χ(G). Consider now
a partition V = (V1, V2, . . . , Vp) of the vertex set V of G. The sets V1, . . . , Vp will be called clusters. A selective k-coloring of
G with respect to V is a mapping c : V ∗ → {1, . . . , k}, where V ∗ ⊆ V with |V ∗ ∩ Vi| = 1 for all i ∈ {1, . . . , p}, such that
c(u) ≠ c(v) for all uv ∈ E. Thus determining a selective k-coloring with respect to V consists in finding a set V ∗ ⊆ V such
that |V ∗ ∩ Vi| = 1 for all i ∈ {1, . . . , p} and such that G[V ∗] admits a k-coloring. The smallest integer k for which a graph G
admits a selective k-coloring with respect to V is called the selective chromatic number of Gwith respect to V and is denoted
by χSEL(G, V). It is obvious to see that χSEL(G, V) ≤ χ(G) for every partition V of V .

In this paper we will be interested in the following two problems.
Sel-Col

Input: An undirected graph G = (V , E); a partition V = (V1, . . . , Vp) of V .
Question: Find a set V ∗ ⊆ V such that |V ∗ ∩ Vi| = 1 for all i ∈ {1, . . . , p} and such that χ(G[V ∗]) is minimum.

Let k ≥ 1 be a fixed integer.
k-Dsel-Col

Input: An undirected graph G = (V , E); a partition V = (V1, . . . , Vp) of V .
Question: Does there exist a set V ∗ ⊆ V such that |V ∗ ∩ Vi| = 1 for all i ∈ {1, . . . , p} and such that G[V ∗] is k-colorable?

For instance, 1-Dsel-Col consists in deciding whether there exists a stable set V ∗ ⊆ V such that |V ∗ ∩ Vi| = 1 for all
i ∈ {1, . . . , p}. Clearly, k-Dsel-Col and Sel-Col are related problems. Consider a graph class G. If for some fixed k, k-Dsel-
Col is N P -complete in G, then Sel-Col is N P -hard in G and if Sel-Col is polynomial-time solvable in G, then k-Dsel-Col
is polynomial-time solvable in G for every fixed k. However, these two problems are not equivalent from a complexity point
of view since for split graphs and complete q-partite graphs for instance, we will see that Sel-Col is N P -hard whereas
k-Dsel-Col is polynomial-time solvable for every fixed k.

Consider a minimization (resp. maximization) problem Π and an instance I of Π . Let S be a solution of I. We denote
by f (I, S) the value of solution S, and by OPT (I) the value of an optimal solution of I. Then an algorithm is said to be a
c-approximation algorithm for problem Π , where c ≥ 1 (resp. where c ≤ 1), if for any instance I of the problem it gives a
solution S such that f (I, S) ≤ c · OPT (I) (resp. f (I, S) ≥ c · OPT (I)).

An algorithm A is an approximation scheme for a minimization problem Π , if for any instance I of Π and for any ε > 0,
A gives a solution S such that f (I, S) ≤ (1+ ε) · OPT (I). A is said to be a polynomial time approximation scheme (PTAS) if for
each fixed ε > 0, its running time is bounded by a polynomial in the size of instance I. If its running time is bounded by a
polynomial in the size of I and 1

ε
, then A is said to be a fully polynomial time approximation scheme (FPTAS).

Notice that if Sel-Col is N P -hard in a graph class G, then Sel-Col does not admit a FPTAS for G unless P = N P .
Moreover, if k-Dsel-Col is N P -complete in G, then Sel-Col does not admit a ( k+1

k − ε)-approximation in G for every ε > 0
and conversely, if Sel-Col admits a PTAS for G then k-Dsel-Col is polynomial-time solvable in G for every fixed k. Finally,
since Sel-Col contains the usual graph coloring problem (when all clusters have size one), it follows that Sel-Col isN P -hard
and 3-Dsel-Col is N P -complete in general graphs.

For all graph theoretical terms not defined here the reader is referred to [28] and for allN P -completeness related notions
and definitions, the reader is referred to [14].



Fig. 2. Example for clauses u1 = (x1 ∨ x2 ∨ x3), u2 = (x1 ∨ x2 ∨ x3).

3. Split graphs

A split graph G = (V , E) is a graph whose vertex set V can be partitioned into two sets: a clique K and a stable
set S. Notice that |K | ≤ χ(G) ≤ |K | + 1. Furthermore, if χ(G) = |K |, then for every vertex s ∈ S, there exists
a vertex u ∈ K which is nonadjacent to s. Since every induced subgraph of G is also a split graph, we conclude that
|V ∗ ∩ K | ≤ χ(G[V ∗]) ≤ |V ∗ ∩ K | + 1 for any set V ∗ ⊆ V . Thus, if V ∗ ⊆ V is a solution of SEL-COL with respect to
some partition V of V , we have |V ∗ ∩ K | ≤ χSEL(G, V) ≤ |V ∗ ∩ K | + 1.

Consider now a partition V = (V1, . . . , Vp) of V . Suppose that there exists a cluster Vi, i ∈ {1, . . . , p}, such that
Vi ∩ K , Vi ∩ S ≠ ∅. Consider a solution V ∗ of Sel-Col such that V ∗ ∩ Vi ⊆ K . Let V ∗ ∩ Vi = {v} and let u ∈ Vi ∩ S. We claim
that V ∗

′

= (V ∗ − {v})∪{u} is also a solution of Sel-Col. Indeed, since N(u) ⊆ N(v), we clearly have χ(G[V ∗
′

]) ≤ χ(G[V ∗]).
So it is always a good strategy to choose in each cluster a vertex from S (if possible). Thus wemay assume now that for every
cluster Vi, i ∈ {1, . . . , p}, of the partition we have either Vi ⊆ K or Vi ⊆ S. It follows from the above that if V1, . . . , Vq ⊆ K
and Vq+1, . . . , Vp ⊆ S, then q ≤ χSEL(G, V) ≤ q+ 1.

Theorem 3.1. Sel-Col is N P -hard for split graphs even if the partition V1, . . . , Vp satisfies |Vi| ≤ 2 for all i ∈ {1, . . . , p}.

Proof. Wewill use a reduction from 3Satwhich is known to beN P -complete (see [14]). This problem is defined as follows:
we are given a set U of variables and a collection C of clauses over U such that each clause c ∈ C satisfies |c| = 3; then we
askwhether there exists a satisfying truth assignment for C . Consider an instance I of 3Satwith n variables x1, . . . , xn andm
clauses Cn+1, . . . , Cn+m. We construct a split graph G = (V , E) as follows: with each variable xi, i ∈ {1, . . . , n}, we associate
two vertices vi and v̄i; with each clause Cj, j ∈ {n+1, . . . , n+m}, we associate a vertex uj; we add all the edges between the
vertices associatedwith the variables; we add an edge between vertices vi (resp. v̄i) and uj if and only if xi (resp. x̄i) is a literal
not appearing in clause Cj. Thus the vertices v1, v̄1, . . . , vn, v̄n induce a clique K of size 2n and the vertices un+1, . . . , un+m
induce a stable set S of size m (see Fig. 2 for an example). Now we define the following partition V of V : for every vertex
vi, we set Vi = {vi, v̄i} and for every vertex uj, we set Vj = {uj}, for i = 1 . . . , n and j = n + 1, . . . , n + m. Thus we get an
instance I′ of Sel-Col in a split graph G. Notice that it follows from the discussion above that n ≤ χSEL(G, V) ≤ n+ 1.

Now suppose that I is a yes-instance. Then for every clause Cj, consider a literal xi ∈ Cj (respectively x̄i ∈ Cj) which is
true and add the vertices uj and vi (resp. vi) to V ∗i . This clearly gives us a set V ∗ = ∪i=1,...,nV ∗i such that |V ∗ ∩ Vℓ| = 1 for
ℓ = 1, . . . , n+m. Furthermore G[V ∗] is n-colorable since for every i ∈ {1, . . . , n}, V ∗i is a stable set. Thus χSEL(G, V) = n.

Conversely, suppose now that χSEL(G, V) = n and let V ∗ be the corresponding solution. Since we have n clusters
contained in the clique K and since each vertex in S represents a cluster, it follows that for every vertex uj ∈ S there exists
a vertex vi ∈ K (respectively v̄i ∈ K ) nonadjacent to uj and such that uj, vi ∈ V ∗ (resp. uj, v̄j ∈ V ∗). Indeed, if this is not
the case then χ(G[V ∗]) ≥ n + 1, a contradiction. Now we recall that a vertex vi which is nonadjacent to some vertex uj
represents a literal appearing in the clause Cj. Thus, by setting to true every literal xi (resp. x̄i) such that the corresponding
vertex vi (resp. v̄i) belongs to V ∗ and to false the remaining literals, we obtain a truth assignment such that every clause Cj
contains at least one true literal. Hence I is a yes-instance. �

Notice that the result given in Theorem 3.1 is the best possible with respect to the maximum size of the clusters. Indeed,
if |Vi| ≤ 1 for all i ∈ {1, . . . , p}, then Sel-Col is equivalent to the usual graph coloring problem which is polynomial-time
solvable in split graphs.

Remark 3.1. Notice that if G = (V , E) is a threshold graph, then Sel-Col becomes polynomial-time solvable. Indeed, a
threshold graph is a split graph in which the vertices may be ordered v1, . . . , vn with N(v1) ⊆ N(v2) ⊆ · · · ⊆ N(vn).
Without loss of generality we may assume that v1, . . . , vℓ ∈ S and vℓ+1, . . . , vn ∈ K . Let q be the number of clusters which
are contained in the clique K . Recall that q ≤ χSEL(G, V) ≤ q+ 1. Thus the answer to Sel-Col is q if and only if there exists
a vertex v ∈ K such that v is nonadjacent to vℓ.

Although Sel-Col is N P -hard, we will now show that Sel-Col admits a PTAS if the input graph is a split graph.

Theorem 3.2. Let G = (V , E) be a split graph. Then Sel-Col admits a PTAS for G.



Proof. Consider a split graph G = (V , E) with clique K , stable set S and |V | = n. Let V = (V1, . . . , Vp) be a partition of
V and let ε > 0 be fixed. As mentioned above, we may assume that for every cluster Vi, i ∈ {1, . . . , p}, we have either
Vi ⊆ K or Vi ⊆ S. Without loss of generality, we may assume that V1, . . . , Vq ⊆ K and Vq+1, . . . , Vp ⊆ S. Recall that
q ≤ χSEL(G, V) ≤ q+ 1. We will distinguish two cases.

(i) If q < 1
ε
, thenweobtain anoptimal solution in polynomial time. Indeed, for every possible choice of vertices inV1, . . . , Vq

to be added to V ∗, we need to check if every cluster Vq+1, . . . , Vp contains at least one vertex which is nonadjacent to
some previously chosen vertex in V1∪· · ·∪Vq. If this is true, thenwe get a solution of value q; if not, the optimal solution
is q + 1, and we obtain such a solution by an arbitrary choice of vertices to be added to V ∗ and by coloring all vertices
of V ∗ ∩ S with a same color. Since q < 1

ϵ
, the number of clusters contained in K is bounded by a constant and hence the

number of choices mentioned above is bounded by a polynomial in n.
(ii) If q ≥ 1

ε
, then let OPT denote the value of an optimal solution of Sel-Col in G. Clearly 1

ε
≤ OPT and thus 1 ≤ ε·OPT. By

arbitrarily choosing one vertex in each cluster and adding it to V ∗, we obtain (as explained above) a solution for Sel-col
of value VAL such that OPT≤ VAL≤ OPT+1. Hence VAL≤ (1+ ε)·OPT.

Since the algorithm described above is clearly polynomial in n, we conclude that Sel-Col admits a PTAS if G is a split
graph. �

The following is an immediate consequence of Theorem 3.2.

Corollary 3.3. For every k ≥ 1, k-Dsel-Col is polynomial-time solvable in split graphs.

4. Complete partite graphs

A graph G = (V , E) is a complete q-partite graph if V can be partitioned into q stable sets L1, . . . , Lq such that there exist
all possible edges between any two stable sets Li, Lj, i, j ∈ {1, . . . , q}with i ≠ j. These graphs are recognizable in polynomial
time because they are exactly the (K1 + K2)-free graphs.

Consider a partition V = (V1, . . . , Vp) of V . Notice that for every u, v ∈ Lj, j ∈ {1, . . . , q}, we have N(u) = N(v). Thus
wemay assume that |Vi ∩ Lj| ≤ 1 for every i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. Hence |Vi| ≤ q for every i ∈ {1, . . . , p}. Finally,
notice that for a complete q-partite graph Gwe have 1 ≤ χSEL(G, V) ≤ q.

Theorem 4.1. Sel-Col is polynomial-time solvable for complete q-partite graphs when q is fixed.

Proof. Asmentioned above, for a complete q-partite graph G, we have 1 ≤ χSEL(G, V) ≤ q. In order to determineχSEL(G, V),
we proceed as follows: for k = 1, . . . , q and for every possible choice of k sets Li1 , . . . , Lik among L1, . . . , Lq, we color
all vertices in Lij with color j for j = 1, . . . , k; if necessary we may uncolor some vertices such that every cluster Vi,
i ∈ {1, . . . , p}, contains at most one colored vertex; we add all colored vertices to V ∗ and check if |V ∗ ∩ Vi| = 1 for all
i = 1, . . . , p. Since q is fixed, it follows that the above algorithm determines χSEL(G, V) in polynomial time. �

Theorem 4.2. For every k ≥ 1, k-Dsel-Col is polynomial-time solvable for complete q-partite graphs.

Proof. The proof is similar to the one of Theorem 4.1. For every possible choice of k sets Li1 , . . . , Lik among L1, . . . , Lq, we
color all vertices in Lij with color j for j = 1, . . . , k; if necessary we may uncolor some vertices such that every cluster Vi,
i ∈ {1, . . . , p}, contains at most one colored vertex; we add all colored vertices to V ∗ and check if |V ∗ ∩ Vi| = 1 for all
i = 1, . . . , p. Since k is fixed, this yields a polynomial-time algorithm. �

While Sel-Col is polynomial-time solvable in complete q-partite graphs when q is fixed, we will show now that it is
N P -hard even if the sets Lj and Vi, i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, have all fixed sizes.

Theorem 4.3. Sel-Col is N P -hard for complete q-partite graphs G = (L1, . . . , Lq, E) even if |Lj| = 3 for all j ∈ {1, . . . , q} and
the partition V = (V1, . . . , Vp) satisfies |Vi| = 2 for all i ∈ {1, . . . , p}.

Proof. We use a reduction from Vertex Cover which is known to be N P -hard even in cubic graphs (see [15]). Recall that
Vertex Cover consists in finding in a graph G = (V , E), a subset V ′ ⊆ V with minimum size which covers the edges of G
(i.e., ∀uv ∈ E, u ∈ V ′ or v ∈ V ′).

Consider an instance I of Vertex Cover in a cubic graph H = (VH , EH) with |VH | = q. We construct a complete q-partite
graph G = (L1, . . . , Lq, E) such that |Lj| = 3 for all j ∈ {1, . . . , q} as follows: with each vertex vi ∈ VH , we associate a set
Li = {vi1 , vi2 , vi3}, for i = 1, . . . , n; we add all possible edges between any two sets Li, Lj for i, j ∈ {1, . . . , q} with i ≠ j.
Now we define a partition V of V : with every edge vivj ∈ EH we associate a cluster Vij = {viℓ , vjq} for ℓ, q ∈ {1, 2, 3}. Thus
we obtain an instance I′ of Sel-Col.

Now suppose that I has a feasible solution of value s ≤ q and let V ′ be a vertex cover of size s. Then, for every vi ∈ V ′,
i ∈ {1, . . . , s}, we add the vertices of Li to V ∗. Thus we obtain a set V ∗ containing at least one vertex from each cluster. If
necessary, we delete some vertices from V ∗ such that it contains exactly one vertex from each cluster. Since |V ′| = s, there
are at most s sets Li such that V ∗ ∩ Li ≠ ∅ for i ∈ {1, . . . , q}. Thus G[V ∗] is s-colorable.



Fig. 3. The construction of G = (L1, . . . , L3, E) for S1 = {x1, x2}, S2 = {x2, x3, x4}, S3 = {x2, x4}. The clusters are Vx1 = {v
1
1}, Vx2 = {v

1
2 , v

2
2 , v

3
2}, Vx3 = {v

2
3},

Vx4 = {v
2
4}.

Conversely, suppose that I′ has a feasible solution of value s ≤ q. We construct a vertex cover V ′ of H with |V ′| ≤ s as
follows: for every set Li such that V ∗ ∩ Li ≠ ∅, i ∈ {1, . . . , p}, we add vi to V ′. Since V ∗ intersects at most s sets Li (recall that
G[V ∗] is s-colorable), i ∈ {1, . . . , p}, we obtain that |V ′| ≤ s. Furthermore, since V ∗ intersects every cluster exactly once, it
follows that for each edge in EH at least one endvertex belongs to V ′. Thus V ′ is a vertex cover with |V ′| ≤ s. �

Notice that, as previously, the result given in Theorem 4.3 is best possible with respect to the maximum size of the
clusters. Next we will focus on a polynomial-time approximation algorithm for Sel-Col in complete q-partite graphs. First
we obtain the following.

Theorem 4.4. From an approximation point of view, Sel-Col in complete q-partite graphs is equivalent to Set-Cover.

Proof. We will use two approximation preserving reductions from and to Set Cover which is defined as follows: we are
given a collection S = {S1, . . . , Sn} of subsets of a finite set X = {x1, . . . , xm}; we want to find a subset S′ ⊆ S of minimum
size such that every element of X belongs to at least onemember of S′. This problem is known to beN P -hard even if |Si| ≤ 3
for all i ∈ {1, . . . , n} (see [14]). Furthermore it is H(maxi=1,...,n |Si|)-approximable (see [6]) where H(r) is the r-th harmonic
number and it is not (1− ε) logm-approximable for any ε > 0 unless N P ⊂ TIME(nO(log log n)) (see [10]).

The reduction from Set Cover is defined as follows: given an instance I = (S, X) of Set Cover, where S = {S1, . . . , Sn},
X = {x1, . . . , xm} and |Si| ≤ 3 for all i ∈ {1, . . . , n}, we construct a complete q-partite graph G = (L1, . . . , Lq, E) where
q = n as follows: for each occurrence of xj in a set Si, we create a vertex vi

j; we set Li = {vi
j : xj ∈ Si} for all i ∈ {1, . . . , n}.

Finally, we define m clusters each of which corresponds to an element of X: for j = 1, . . . ,m, Vxj = {v
i
j : xj ∈ Si} and

V = (Vx1 , . . . , Vxm). This clearly gives us an instance of Sel-Col in a complete q-partite graph G (see Fig. 3 for an example).
Let S∗ ⊆ S be an optimal solution for instance I of value OPT (I). For each xj ∈ X , j = 1, . . . ,m, let f (xj) ∈ {1, . . . , n}

such that xj ∈ Sf (xj) ∈ S∗. Let V ∗ = {v
f (xj)
j : xj ∈ X}. Obviously, V ∗ is such that |V ∗ ∩ Vxj | ≥ 1 for all j ∈ {1, . . . ,m}. If

necessary, we delete some vertices in V ∗ such that |V ∗ ∩ Vxj | = 1 for all j ∈ {1, . . . ,m}. Thus V ∗ is a feasible solution of
Sel-Col in G and G[V ∗] is |S∗| = OPT (I)-colorable since G is a complete partite graph. Hence,

χSEL(G, V) ≤ χ(G[V ∗]) = |S∗| = OPT (I) (1)

Conversely, let V ∗ be a feasible solution for Sel-Col in G and set S′ = {Si : V ∗ ∩ Li ≠ ∅, i = 1, . . . , n}. We claim that
S′ is a set cover of X and thus a feasible solution of Set Cover for I. Indeed, for every xj ∈ X , j ∈ {1, . . . ,m}, there exists
i ∈ {1, . . . , n} such that {vi

j} = V ∗ ∩ Vxj since |V
∗
∩ Vxℓ | = 1 for all ℓ ∈ {1, . . . ,m}. It follows that xj ∈ Si ∈ S′ and hence S′

is a set cover of X . Finally, notice that G[V ∗] contains a clique K of size |S′| because G is a complete partite graph. Thus,

|S′| = |K | ≤ χ(G[V ∗]) (2)

Since |S′| ≥ OPT (I) and since inequalities (1) and (2) hold for any feasible solution V ∗ of Sel-Col, we may apply them to an
optimal solution V ∗

′

of Sel-Col and obtain that χSEL(G, V) = OPT (I). Furthermore, from any ρ-approximation for Sel-Col
on G, we polynomially get a ρ-approximation for SET-COVER on I.

The reduction to Set Cover is defined as follows: consider an instance of SEL-COL in a complete q-partite graph
G = (L1, . . . , Lq, E) with partition V1, . . . , Vp of its vertex set; we will construct an instance I of Set Cover by setting
X = {x1, . . . , xp} and defining the subsets Si, i = 1, . . . , q, as follows: xj ∈ Si if and only if Vj ∩ Li ≠ ∅ for j = 1, . . . , p.

Consider an optimal solution V ∗ of Sel-Col for G with value χSEL(G). Then we clearly obtain a feasible solution of Set
Cover for instance I by taking S′ = {Si : Li ∩ V ∗ ≠ ∅, i = 1, . . . , q}. Thus

OPT (I) ≤ |S′| = χSEL(G, V) (3)

Now consider any set cover S′ = {Si1 , . . . , Sir } of I with size r = |S′|. Then we obtain a feasible solution of Sel-Col for G as
follows: for j = 1, . . . , r , we add the vertices of Lij to V ∗; if necessary we delete some vertices of V ∗ such that |V ∗ ∩ Vi| = 1
for i = 1, . . . , p. This gives us a feasible solution of Sel-Col such that

χ(G[V ∗]) ≤ |S′| (4)



Fig. 4. An instance of Sel-Col for which we obtain C1
1 = x1 ∨ y1, C2

1 = x1 ∨ x2, C1
2 = x2 ∨ x3, C2

2 = x2 ∨ x3, C3 = y2, C = x1 ∨ y2, C ′ = x2 ∨ y1, C ′′ = x3 ∨ y2,
C ′′′ = x3 ∨ y1.

Using inequalities (3) and (4), we deduce that χSEL(G, V) = OPT (I). Furthermore, from any ρ-approximation for Set Cover
on I, we polynomially get a ρ-approximation for Sel-Col in G. �

Corollary 4.5. Let G = (L1, . . . , Lq, E) be a complete q-partite graph and let V1, . . . , Vp be a partition of its vertex set. Then there
exists a polynomial-time H(α(G))-approximation algorithm for Sel-Col, where H(r) =

r
i=1

1
i , and there exists no (1−ε) log p-

approximation of Sel-Col for any ε > 0 unless N P ⊂ TIME(nO(log log n)).

Proof. First, using the H(maxi=1,...,n |Si|)-approximation of [6] for Set Cover, it follows from Theorem 4.4 that there exists a
polynomial-timeH(α(G))-approximation for Sel-Col in complete q-partite graphs sinceα(G) = maxi=1,...,n |Si| in the above
construction. Furthermore, using the negative result of [10] for Set Cover, we conclude that there exists no (1 − ε) log p-
approximation for Sel-Col in complete q-partite graphs since in the construction given in Theorem 4.4, we have |X | = p. �

5. Bipartite graphs

In this section, we consider the class of bipartite graphs. Since for a bipartite graph G = (V , E) we have χ(G) ≤ 2, it
follows that the only interesting case for k-Dsel-Col is when k = 1. Furthermore, it follows that if 1-Dsel-Col is polynomial-
time solvable, then the selective chromatic number can be determined in polynomial time.

First we obtain the following result for general bipartite graphs.

Theorem 5.1. Sel-Col is polynomial-time solvable in bipartite graphs if the partition V = (V1, . . . , Vp) satisfies |Vi| ≤ 2 for all
i ∈ {1, . . . , p}.

Proof. We first check whether χSEL(G, V) = 1 by using a reduction to 2Satwhich is known to be polynomial-time solvable
(see [14]). Consider an instance I of Sel-Col, i.e, a bipartite graph G = (V , E) and a partition V1, . . . , Vp of V such that for all
i ∈ {1, . . . , p} we have |Vi| ≤ 2. We define an instance of 2Sat as follows: (i) with each vertex x we associate a variable x;
(ii) with each cluster Vi, i ∈ {1, . . . , p}, such that Vi = {x}, we associate a clause Ci = x; (iii) with each cluster Vi,
i ∈ {1, . . . , p}, such that Vi = {x, y}, we associate two clauses C1

i = x ∨ y and C2
i = x̄ ∨ ȳ; (iv) with each edge xy ∈ E

such that x, y belong to different clusters, we associate a clause C = x̄ ∨ ȳ. This clearly defines an instance I′ of 2Sat (see
Fig. 4 for an example).

Now suppose that I has a feasible solution of value 1. For all vertices that are in V ∗, we set the corresponding variables
to true. Thus all clauses associated with clusters are satisfied. Furthermore, since V ∗ is a stable set, it follows that all clauses
associated with edges of G are satisfied as well. Thus I′ is a yes-instance.

Conversely, suppose now that I′ is a yes-instance. For all variables that are true, we add the corresponding vertices to
V ∗. Due to the definition of the clauses associated with the clusters and the edges, this clearly gives us a stable set V ∗ such
that |V ∗ ∩ Vi| = 1 for all i ∈ {1, . . . , p}. Thus I′ has a feasible solution of value 1.

Now, suppose that by applying the above reduction we conclude that χSEL(G, V) > 1. Then we arbitrarily choose one
vertex in every cluster and add it to V ∗. Clearly G[V ∗] is bipartite and thus it is 2-colorable. Hence χSEL(G, V) = 2. �

Next we consider graphs which are the disjoint union of C4’s or the disjoint union of P3’s. We obtain the following.

Theorem 5.2. 1-Dsel-Col isN P -complete for the disjoint union of C4’s even if the partitionV = (V1, . . . , Vp) satisfies |Vi| = 3
for all i ∈ {1, . . . , p}.

Proof. Weuse a reduction from (3, B2)-Satwhichwas shown to beN P -complete in [4]. This problem is defined as follows:
we are given a set of clauses each of which contains exactly three literals and every literal appears exactly two times; then
we want to decide whether there exists a truth assignment such that each clause contains at least one true literal.

Consider an instance I of (3, B2)-Sat consisting of p clauses and n variables. With each variable x, we associate a C4
with edge set {x1x̄1, x̄1x2, x2x̄2, x̄2x1}. This clearly gives us a graph G = (V , E) isomorphic to nC4. Then we define a partition
V = (V1, . . . , Vp) of V as follows: for each variable x, if it appears as a positive literal in a clause Ci, we add x1 or x2 to Vi;



if it appears as a negative literal in a clause Ci, we add x̄1 or x̄2 to Vi. Since each clause contains exactly three literals and
since each literal appears exactly two times, this clearly gives us a partition V = (V1, . . . , Vp) of V such that |Vi| = 3 for all
i ∈ {1, . . . , p}. We set k = 1. Thus we obtain an instance I′ of 1-Dsel-Col.

Now suppose that I is a yes-instance. For every variable x, if x is true, then we add x1 and x2 into V ∗; if x is false we add
x̄1 and x̄2 into V ∗. Since every clause contains at least one true literal, it follows that |V ∗ ∩ Vi| ≥ 1 for all i ∈ {1, . . . , p}. If
necessary we delete some vertices from V ∗ such that |V ∗ ∩ Vi| = 1 for all i ∈ {1, . . . , p}. Clearly V ∗ is a stable set. Thus I′ is
a yes-instance.

Conversely, suppose that I′ is a yes-instance. For every set Vi, i ∈ {1, . . . , p}, if V ∗ ∩ Vi = {xj}, for j ∈ {1, 2}, we
set the corresponding variable x to true; if V ∗ ∩ Vi = {x̄j}, for j ∈ {1, 2}, we set the corresponding variable x to false.
Now recall that each vertex in a set Vi corresponds to a literal appearing in clause Ci. Thus by setting to true each literal
corresponding to a vertex of Vi ∩ V ∗, for i = 1, 2, . . . , p, we obtain that clause Ci contains one true literal and hence I is a
yes-instance. �

It follows from Theorem 5.2 that deciding whether χSEL(G, V) = 1 or χSEL(G, V) = 2 is N P -complete if G is the disjoint
union of C4’s and its vertex partition V satisfies |Vi| = 3 for all i ∈ {1, . . . , p}. The next result shows that if the clusters of
a partition V in such a graph satisfy |Vi| ≥ 4 for all i ∈ {1, . . . , p}, then we always have χSEL(G, V) = 1 and thus Sel-Col
becomes polynomial-time solvable.

Theorem 5.3. Let G = (V , E) be the disjoint union of C4’s and let V = (V1, . . . , Vp) be a partition of V satisfying |Vi| ≥ 4 for all
i ∈ {1, . . . , p}. Then χSEL(G, V) = 1.

Proof. Consider an instance of Sel-Col in a disjoint union of n cycles C4 and let V = (V1, . . . , Vp) be a partition of its vertex
set satisfying |Vi| ≥ 4 for all i ∈ {1, . . . , p}. Denote the cycles by C1

4 , . . . , C
n
4 . We will construct the following auxiliary

bipartite multigraphH = (X, Y , E): we associate with every cluster Vi, for i ∈ {1, . . . , p}, a vertex xi (→ set X); we associate
with every cycle Cj

4, j ∈ {1, . . . , n}, a vertex yj (→ set Y ); finally for every vertex u ∈ Vi∩V (Cj
4), i ∈ {1, . . . , p}, j ∈ {1, . . . , n},

we add an edge between xi and yj.
Notice that since |Vi| ≥ 4 for all i ∈ {1, . . . , p}, it follows that p ≤ n. Thus |X | ≤ |Y |. Furthermore, notice that d(xi) ≥ 4

and d(yj) = 4, for i ∈ {1, . . . , p}, j ∈ {1, . . . , n}. Thus minxi∈X d(xi) ≥ maxyj∈Y d(yj). Using a result of [3], we conclude that
there exists a matchingM in H which saturates X .

To finish the proof, we will show that a matching M in H which saturates X corresponds to a set V ∗ ⊆ V satisfying
|V ∗ ∩ Vi| = 1 for all i ∈ {1, . . . , p} and such that χ(G[V ∗]) = 1.

Consider a matching M in H which saturates X . For every edge xiyj ∈ M , i ∈ {1, . . . , p} and j ∈ {1, . . . , n}, we add a
vertex of Vi ∩ V (Cj

4) to V ∗. Since M is a matching which saturates X , it follows that |V ∗ ∩ Vi| = 1 for all i ∈ {1, . . . , p}.
Furthermore, sinceM is a matching, we have that |V (Cj

4) ∩ V ∗| ≤ 1. Hence χ(G[V ∗]) = 1. �

Theorem 5.4. 1-Dsel-Col is N P -complete for the disjoint union of P3’s even if the partition V = (V1, . . . , Vp) satisfies
2 ≤ |Vi| ≤ 3 for all i ∈ {1, . . . , p}.

Proof. Consider the problem (2, 1)-3Sat which is defined as follows: we are given a set U of variables as well as a set C of
clauses over U such that each clause contains either two or three literals; furthermore each variable occurs exactly three
times, once as a negative literal and twice as a positive literal; we want to decide whether there exists a truth assignment
such that each clause contains at least one true literal. (2, 1)-3Sat was shown to be N P -complete in [9].

Now we use a reduction from (2, 1)-3Sat. Consider an instance I of (2, 1)-3Sat containing n variables and p clauses.
We construct the following graph G = (V , E): with each variable x we associate a path P3 with edge set {xx̄, x̄x′}. Thus G
is isomorphic to nP3. Now consider the following partition V of V : for each clause Ci, if the variable x appears in Ci as a
positive literal, then we add x or x′ to Vi; if the variable x appears a negative literal in Ci, then we add x̄ to Vi. This clearly
gives us a partition V1, . . . , Vp with 2 ≤ |Vi| ≤ 3 for all i ∈ {1, . . . , p}. We set k = 1. Thus we obtain an instance I′ of
1-Dsel-Col.

Now suppose that I is a yes-instance. For each variable x which is true, we add x, x′ to V ∗. For each variable x which is
false, we add x̄ to V ∗. Thus we obtain a stable set V ∗ such that |V ∗ ∩ Vi| ≥ 1 for all i ∈ {1, . . . , p}. If necessary we delete
some vertices in V ∗ such that |V ∗ ∩ Vi| = 1 for all i ∈ {1, . . . , p}. Thus I′ is a yes-instance.

Conversely, suppose now that I′ is a yes-instance. We proceed as follows: for each path P3, if x ∈ V ∗ or x′ ∈ V ∗ we set
the variable x to true; if x̄ ∈ V ∗, then we set x to false. Since each cluster Vi, i ∈ {1, . . . , p}, corresponds to a clause Ci, it
follows that I is a yes-instance. �

Notice that the result given in Theorem 5.4 is best possible in the sense that if G is the disjoint union of P2’s, then SEL-COL
is polynomial-time solvable (see Theorem 7.2).

Now using similar arguments as in the proof of Theorem 5.3, we obtain the following result.

Theorem 5.5. Let G = (V , E) be the disjoint union of P3’s and let V = (V1, . . . , Vp) be a partition of V satisfying |Vi| ≥ 3 for all
i ∈ {1, . . . , p}. Then χSEL(G, V) = 1.



From Theorem 5.4 we obtain the following.

Corollary 5.6. 1-Dsel-Col is N P -complete for paths even if the partition V = (V1, . . . , Vp) satisfies 2 ≤ |Vi| ≤ 3 for all
i ∈ {1, . . . , p}.

Proof. We use a reduction from 1-Dsel-Col for the union of P3’s which we previously showed to be N P -complete even if
the partition V1, . . . , Vp satisfies 2 ≤ |Vi| ≤ 3 for all i ∈ {1, . . . , p}.

Consider the following instance I of 1-Dsel-Col. Let G = (V , E) be isomorphic to nP3 and let V = (V1, . . . , Vp) be a
partition of V satisfying 2 ≤ |Vi| ≤ 3 for all i ∈ {1, . . . , p}. We denote by P1

3 = {x11x12, x12x13}, . . . , P
n
3 = {xn1xn2, xn2xn3}

the P3’s of G. We construct a path P = (V ′, E ′) as follows. For j = 1, . . . , n − 1, we add a path {yj1yj2, yj2yj3} as well as the
edges xj3yj1, yj3x(j+1)1. We obtain a partition V ′ of V ′ by using the sets V1, . . . , Vp as well as the sets Vp+1, . . . , Vp+n−1, where
Vp+j = {yj1, yj2, yj3}. This gives us an instance I′ of 1-Dsel-Col.

Clearly if I′ is a yes-instance, then I is a yes-instance.
Conversely, suppose now that I is a yes-instance. Let V ∗ be the stable set in a solution of I. Then we clearly obtain a

solution V ∗
′

of I′ by adding to V ∗ the vertices y12, . . . , y(n−1)2. Thus I′ is a yes-instance. �

Applying similar arguments, we obtain the following result.

Corollary 5.7. 1-Dsel-Col is N P -complete for cycles even if the partition V = (V1, . . . , Vp) satisfies 2 ≤ |Vi| ≤ 3 for all
i ∈ {1, . . . , p}.

It follows from Corollaries 5.6 and 5.7, that Sel-Col cannot be approximated within a factor less than 2 in paths or cycles
with clusters of size 2 or 3, unless P = N P .

6. Compact clustering

In this section, we consider the special case when every cluster Vi, i ∈ {1, . . . , p}, of the partition V induces a clique.
We will say that V is a compact clustering. It can be immediately deduced from the definition of Sel-Col that the solution
does not change if one changes edges between vertices of the same cluster and in particular if we replace each cluster by a
clique. However this same argument cannot be applied if we consider specific graph classes not stable under edge adding
operation. Therefore ifwe do not consider only general graphs the problem is not necessary equivalent in the case of compact
clustering.

We are interested in this particular case for twomain reasons, one theoretical and one dealingwith potential applications.
From the theoretical point of view, most of reductions pointing out N P -hard cases involve instances of Sel-Col for which
clusters are stable sets. The case when clusters are cliques then becomes natural. Moreover, in several applications, compact
clustering corresponds to natural situations. Note first that, for the multicolored clique problem (Mcc) (see Section 1), the
instance of Sel-Col associated to any instance ofMcc corresponds to a compact clustering. Considering now the scheduling
problemmentioned in Section 1, a compact clustering corresponds to the casewhen, for each task tj, all the possible intervals
I1(j), . . . , Inj(j) share a common point; this is natural when a preferred starting time is determined with some flexibility
represented by a collection of admissible intervals around this preferred time or when a specific event scheduled at a fixed
date must occur during the execution of the task.

Theorem 6.1. Let G = (V , E) be a graph and let V = (V1, . . . , Vp) be a compact clustering. Then χSEL(G, V) = 1 if and only if
α(G) = p.

Proof. Suppose that α(G) = p and let S be a stable set in G of size p. Since G[Vi] is a clique, for i = 1, 2, . . . , p, it follows that
|S ∩ Vi| = 1. It follows that S is a solution of Sel-Col in G with respect to V and thus χSEL(G, V) = 1.

Conversely, suppose that χSEL(G, V) = 1. Thus there exists a stable set S in G such that |S ∩ Vi| = 1 for all i ∈ {1, . . . , p}.
It follows that |S| = p. Since G[Vi] is a clique, for i = 1, 2, . . . , p, there exists no stable set S ′ in G such that |S ∩ Vi| ≥ 2 for
some i ∈ {1, . . . , p}. Hence α(G) = p. �

Let us denote by ST AB the class of graphs G for which the stability number α(G) can be determined in polynomial time.
Then the following is an immediate consequence of Theorem 6.1.

Corollary 6.2. Let G ∈ ST AB and letV = (V1, . . . , Vp) be a compact clustering. Then 1-Dsel-Col is polynomial-time solvable.

Theorem 6.3. 1-Dsel-Col is N P -complete in planar graphs of maximum degree 3 when V = (V1, . . . , Vp) is a compact
clustering and |Vi| ≤ 3 for all i ∈ {1, . . . , p}.

Proof. We use a reduction from Restricted Planar 3-Sat which is defined as follows: we are given a set U of variables as
well as a set C of clauses over U such that each clause contains either two or three literals; furthermore each variable occurs
exactly three times, once as a negative literal and twice as a positive literal; finally the bipartite graph H = (U ∪ V , E),
where uc ∈ E if the variable corresponding to u appears (as positive or negative literal) in the clause corresponding to c, is



Fig. 5. Replacement of xi in H .

planar; we want to decide whether there exists a truth assignment such that each clause contains at least one true literal.
Restricted Planar 3-Satwas shown to be N P -complete in [9].

Let I be an instance of Restricted Planar 3-Satwith variables x1, . . . , xn and clauses c1, . . . , cm. Consider the associated
planar bipartite graph H = (U ∪ C, E). Notice that every vertex in U has degree exactly three. Consider a vertex xi ∈ U
(corresponding to variable xi) as well as its neighbors ci1, ci2, ci3 ∈ C (corresponding to the clauses in which xi appears).
Suppose that xi appears as a negative literal in ci2 (and hence it appears as positive literal in ci1 and in ci3). We delete xi and
replace it by the graph Hi with vertex set {x1i , x

′

i, x
′′

i , xi, x
2
i } and edge set {x1i x

′

i, x
′

ix
2
i , x
′

ix
′′

i , x
′′

i xi}; then we make ci1 adjacent to
x1i , ci2 adjacent to xi and ci3 adjacent to x2i (see Fig. 5). We do this for every vertex xi ∈ U . Clearly the resulting graph is still
planar and has maximum degree 3. Finally, we delete every vertex cj ∈ C and make its three neighbors pairwise adjacent.
This can clearly be done in such a way that the resulting graph G = (V , E ′) is still planar. Notice that G has still maximum
degree 3. We define a partition V = (V1, . . . , Vm+n) of V by adding to Vi, i = 1, . . . ,m, the vertices in V representing the
literals occurring in clause ci, furthermore for every variable xi we define a cluster Vm+i = {x′i, x

′′

i }. Thus every cluster Vi
induces a clique (of size 2 or 3), i = 1, . . . ,m+ n, and hence we obtain an instance I′ of 1-Dsel-Col in a planar graph with
maximum degree 3 with a compact clustering V such that |Vi| ≤ 3 for all i ∈ {1, . . . ,m+ n}.

Now suppose that I is a yes-instance. For every variable xi which is set to true, we add the corresponding vertices x1i , x
2
i

to V ∗; similarly for every variable xi which is set to false, we add the corresponding vertex xi to V ∗. Furthermore, if xi is set to
true, we add x′′i to V ∗; otherwise, if xi is set to false we add x′i to V ∗. From the construction of G, it follows that |V ∗ ∩ Vi| ≥ 1
for i = 1, . . . ,m+ n. If necessary we may delete some vertices from V ∗ to obtain |V ∗ ∩ Vi| = 1 for i = 1, . . . ,m+ n. This
implies that V ∗ is necessarily a stable set. Thus I′ is a yes-instance.

Conversely, suppose now that I′ is a yes-instance. Let V ∗ be a solution of I′, i.e., V ∗ is a stable set such that |V ∗ ∩ Vi| = 1
for all i ∈ {1, . . . ,m + n}. We obtain a solution of I as follows: for i = 1, . . . ,m, if V ∗ ∩ Vi = {xi1} (or V ∗ ∩ Vi = {xi2})
then we set the corresponding variable xi to true; otherwise, if V ∗ ∩ Vi = {xi}, then we set the corresponding variable xi to
false. All remaining variables are arbitrarily set to true or false. From the construction of G and the fact that V ∗ is a stable
set, it follows that this gives us a feasible truth assignment and furthermore since every Vi corresponds to a clause ci, for
i = 1, . . . ,m, it follows that every clause contains at least one true literal. Thus I is a yes-instance. �

Theorem 6.4. Let G = (V , E) be a graphwithmaximum degree 3 and a compact clusteringV = (V1, . . . , Vp) such that |Vi| ≤ 3.
Then there exists a polynomial-time 2-approximation algorithm for Sel-Col in G.

Proof. Consider an instance I of Sel-Col consisting of a graph G = (V , E)withmaximumdegree 3 and a compact clustering
V = (V1, . . . , Vp) such that |Vi| ≤ 3. Consider the graph G′ induced by all vertices belonging to a cluster Vi with |Vi| ≤ 2,
for i ∈ {1, . . . , p}. We check whether there exists a stable set S in G′ which contains exactly one vertex of each cluster in G′.
This can be done in polynomial time (see Corollary 7.1).

If such a stable set does not exist, then the optimal solution of Sel-Col for I, OPT (I) must satisfy OPT (I) ≥ 2.
Since G has maximum degree 3, it follows that we can color the vertices of G with at most 4 colors in polynomial time
by assigning greedily the first available color to each vertex. Thus we can obtain a set V ∗ in polynomial time such that
χ(G[V ∗]) ≤ 4 ≤ 2 · OPT (I).

If such a stable set S exists, then we add all vertices of S to V ∗ and proceed as follows: for each cluster Vi in G such that
|Vi| = 3, we arbitrarily choose one vertex in Vi and add it to V ∗. We claim that every connected component of G[V ∗] is
isomorphic to one of the following graphs: K1, K2, P3, K1,3. Indeed, suppose that a connected component of G[V ∗] contains a
triangle on vertices a, b, c. Since S is a stable set it follows that at least two of the vertices a, b, c belong to a cluster of size 3.
Without loss of generality, we may assume that a and b belong both to such a cluster. Since we chose exactly one vertex in
each such cluster, it follows that a ∈ Vi, b ∈ Vj with i ≠ j and |Vi| = |Vj| = 3. Furthermore, for the same reason, c ∉ Vi, Vj. But
this implies that a and bmust have degree at least 4, a contradiction. We conclude that no connected component contains a
triangle. Finally, suppose that a connected component of G[V ∗] contains a path (not necessarily induced) on 4 vertices, say
a, b, c, d with edges ab, bc, cd. First notice that b cannot belong to a cluster Vi with |Vi| = 3. Indeed, since G has maximum
degree 3, this would imply that either a or c belong to Vi as well, a contradiction because we chose exactly one vertex in
each cluster of size 3. By symmetry the same holds for c. But this implies each of b, c belongs to a cluster of size at most
two. This contradicts the fact that S exists. Thus no connected component of G[V ∗] contains a path on 4 vertices. Hence



every connected component of G[V ∗]must be isomorphic to one of the following graphs: K1, K2, P3, K1,3. This implies that
χ(G[V ∗]) ≤ 2 ≤ 2 · OPT (I). �

7. Further results

Using a similar approach as for Theorem 5.1, we obtain the following.

Corollary 7.1. 1-Dsel-Col is polynomial-time solvable if the partition V = (V1, . . . , Vp) satisfies |Vi| ≤ 2 for all i ∈ {1, . . . , p}.

Next we will consider the disjoint union of cliques. Let G be the disjoint union of n cliques K 1, . . . , Kq and let V =
(V1, . . . , Vp) be a partition of its vertex set. Notice that since for every two vertices u, v belonging to a same clique we have
N(u) \ {v} = N(v) \ {u}, we may assume that |Vi ∩ K j

| ≤ 1 for all i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. Furthermore notice that
we have 1 ≤ χSEL(G, V) ≤ maxj=1,...,q{|K j

|}. We obtain the following.

Theorem 7.2. Sel-Col is polynomial-time solvable for the disjoint union of cliques.

Proof. Consider an instance I of Sel-Col in a graph G = (V , E) which is the disjoint union of n cliques K 1, . . . , Kq and let
V = (V1, . . . , Vp) be a partition of V . As mentioned above, we may assume that |Vi ∩ K j

| ≤ 1 for all i ∈ {1, . . . , p} and
j ∈ {1, . . . , n}.

We use a reduction to the Maximum Flow problem which can be solved in polynomial time (see [1]). We construct the
following network N: with every cluster Vi, i ∈ {1, . . . , p}, we associate a vertex xi; with every clique K j, j ∈ {1, . . . , q}, we
associate a vertex yj; we add a vertex s and arcs (s, xi) for i ∈ {1, . . . , p} aswell as a vertex t and arcs (yj, t) for j ∈ {1, . . . , q};
for i ∈ {1, . . . , p} and j ∈ {1, . . . , q} we add an arc (xi, yj) if and only if Vi ∩ K j

≠ ∅; finally we assign a capacity of one to
all arcs (s, xi), i ∈ {1, . . . , p}, and to all arcs (xi, yj) for i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, and a capacity of k ≥ 1 to all arcs
(yj, t) for j ∈ {1 . . . , q}. This clearly gives us an instance I′ of the Maximum Flow problem.

Nowsuppose thatI has a solution of value s ≤ k and letV ∗ be a set of vertices inG such that |V ∗∩Vi| = 1 for i ∈ {1, . . . , p}
and such that G[V ∗] is s-colorable. We will show that there exists a flow of value p in N . For every vertex v ∈ V ∗ we proceed
as follows: if v ∈ Vi ∩ K j, i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, then we add a unit of flow on the path {sxi, xiyj, yjt}. Since G[V ∗]
is s-colorable, with s ≤ k, it follows that |V ∗ ∩ K j

| ≤ k for every j ∈ {1, . . . , q}. Thus we obtain a flow of value p.
Conversely, assume that there exists a flow inN of value p. Thus every arc (s, xi) is used by one flowunit for i ∈ {1, . . . , p}.

We construct a solution of I as follows: for every arc (xi, yj) used by one flow unit, we add the vertex Vi ∩K j to V ∗. Since the
arcs (yj, t), for j ∈ {1, . . . , q}, all have capacity k, it follows that |V ∗ ∩K j

| ≤ k. Thus we obtain a set V ∗ such that |V ∗ ∩Vi| = 1
for i ∈ {1, . . . , p} and such that |V ∗ ∩ K j

| ≤ k for j ∈ {1 . . . , q}. It follows that G[V ∗] is k-colorable.
The above shows that Sel-Col has a solution of value s ≤ k if and only if there exists amaximum flowof value p inN . Since

1 ≤ χSEL(G, V) ≤ maxj=1...,q{|K j
|} for the disjoint union of cliques, it follows that by taking k = 1, . . . ,maxj=1...,q{|K j

|}, we
can determine the selective chromatic number of G in polynomial time. �

Next, we consider graphs which have stability number at most 2. Clearly for such graphs G = (V , E) we have ⌈ p2⌉ ≤
χSEL(G, V) ≤ p, for any partition V of V . We obtain the following.

Theorem 7.3. Sel-Col is polynomial-time solvable for graphs with stability number at most 2.

Proof. Consider an instance I of Sel-Col in a graph G = (V , E) with stability number at most 2. If G is a clique, then clearly
χSEL(G, V) = p. Thus we may assume that G is not a clique and hence has stability number exactly 2.

We use a reduction to the Maximum Matching problem which is polynomial-time solvable (see for instance [18]). We
will build the following auxiliary graph H = (VH , EH): with every set Vi, i ∈ {1, . . . , p} we associate a vertex vi; we add an
edge between two vertices vi, vj, i, j ∈ {1, . . . , p}, if there exists two nonadjacent vertices u ∈ Vi and w ∈ Vj. This gives us
an instance I′ ofMaximumMatching.

First assume that I has a feasible solution of value p− k1, for 0 ≤ k1 ≤ ⌊
p
2⌋ and let c be a selective (p− k1)-coloring of

G. Notice that since G has stability number two, every color class has size at most 2. Thus k1 is the number of color classes
having size exactly 2.We build amatchingM inH as follows. For every pair u, w ∈ V ∗ such that c(u) = c(w), u ∈ Vi,w ∈ Vj,
for i, j ∈ {1, . . . , p}with i ≠ j, add the edge vivj toM . This gives us a feasible solution of size k1 for instance I′.

Conversely, suppose that I′ has a feasible solutionM of size k1. Then we obtain a feasible solution of value p− k1 for I as
follows. For every edge vivj ∈ M , we color the corresponding nonadjacent vertices u ∈ Vi and w ∈ Vj with a same color cij.
Thus there remain p− k1 sets of the partition not having any colored vertex yet. We arbitrarily choose one vertex in each of
these sets and color it with a new color. Thus we obtain a feasible selective (p− k1)-coloring of G. �

Let us finally conclude with a Log-APX result for Sel-Col in the case when all clusters have the same size. We denote by
Max k-Stable the problem consisting in finding a k-colorable induced subgraph of maximum size in a given graph G. In the
following, we suppose that there exists an approximation algorithm for this problem, where k is supposed to be part of the
input. A solution of this algorithm will be referred to as an approximated k-Stable.



Theorem 7.4. Consider an hereditary class of graphs H for which Max k-Stable can be approximated within ρ . Let G =
(V , E) ∈ H and let V a partition of V such that each cluster has the same size v ≥ 2. Then Sel-Col can be approximated
within (−

log(n)
log(1−ρ/v)

), where n is the number of vertices in G.

Algorithm 1
Require: G = (V , E) is a graph in H and V = V1, . . . , Vp a partition of V s.t. |Vi| = v ≥ 2, i = 1, . . . , p
1: for k = 1, . . . , p do
2: Nk ← 0; Vk

← ∅

3: repeat
4: compute an approximated k-Stable V ′ = S1 ∪ · · · ∪ Sk
5: for each cluster Vi such that Vi ∩ V ′ ≠ ∅, select one vertex in Vi ∩ V ′ and add it to Vk

6: for each i = 1, . . . , k such that Vk
∩ Si ≠ ∅, let Nk ← Nk + 1 and keep Vk

∩ Si as a new color
7: remove from V all clusters intersecting V ′
8: until V = ∅
9: let Ck be the resulting selective coloring of G[Vk

]

10: end for
11: Select the solution (Vk0 , Ck0) where k0 ∈ argmink=1,...,p(Nk)

Proof. Consider Algorithm 1 shown above. Its complexity is pnC(n) where C(n) is the complexity of the approximation
algorithm for Max k-Stable.

For each k = 1, . . . , p, the algorithm computes successively k stable sets and removes the clusters that are covered by
at least one of these sets. Consequently, it computes Nk ≤ kRk stable sets covering all clusters, where Rk is the number of
iterations in the Repeat-loop corresponding to k. Then it selects the solution thatminimizesNk, k = 1, . . . , p. Let us suppose
k0 = χSEL(G, V). Of course k0 ≤ p and consequently the solution computed is at least as good as the solution computed
during the Repeat-loop associated to k0. Consequently, the related ratio is not more than Rk0 .

Let us consider the Repeat-loop associated to k0. We have n = |V | = pv and a maximum k0-Stable of G is of
size at least p. Consequently the approximated k0-Stable contains at least ρp vertices and since all the covered clusters
are removed, the remaining graph contains at most pv(1 − ρ/v) vertices distributed among the p(1 − ρ/v) remaining
clusters. Since H is a hereditary class, the approximation algorithm stays valid in the remaining graph and consequently
the same argument can be repeated to justify that, after ℓ iterations of the Repeat-loop, the number of remaining vertices
is pv(1− ρ/v)ℓ = n(1− ρ/v)ℓ. After Rk0 − 1 iterations, there are at least v remaining vertices and consequently we have:

n(1− ρ/v)Rk0−1 ≥ v

implying

Rk0 ≤ 1−
log(n/v)

log(1− ρ/v)
≤ −

log(n)
log(1− ρ/v)

where the last inequality holds because v ≥ 1+ ρ. This completes the proof. �

Notice that we assumed that v ≥ 2 since if v = 1, the problem corresponds to the usual coloring problem and in this
case the ratio is 1− log(n)

log(1−ρ)
.

Consider now the case when H is the class of interval graphs for whichMax k-Stable is known to be polynomial [29] or
the class of chordal graphs for which there exists a 1

2 -approximation algorithm [5].
Corollary 7.5. Let G = (V , E) be an interval graph with a partition V of V in which each cluster has the same size v ≥ 2. Then
Sel-Col can be approximated within

−
log(n)

log(1− 1/v)
.

Let G = (V , E) be a chordal graph with a partition V of V in which each cluster has the same size v. Then Sel-Col can be
approximated within

−
log(n)

log(1− 1/(2v))
.

8. Conclusion

In this paper, we considered the selective graph coloring problem and analyzed its computational complexity in various
classes of graphs. Our results are summarized in Fig. 6.

We also proposed some first approximation results. It would be interesting to consider the selective graph coloring
problem in graphs where the partition satisfies some specific constraints. In Section 6 we started such an approach but
many other configurations are still to be analyzed.



Graph class |Vi| Sel-Col k-Dsel-Col
i = 1, . . . , p

split graphs ≤ 2 N P -hard P Theorem 3.1
Corollary 3.3

threshold graphs P P Remark 3.1
complete q-partite graphs P Theorem 4.2
complete q-partite graphs P Theorem 4.1

q fixed
complete q-partite graphs = 2 N P -hard Theorem 4.3
|Lj| = 3, j = 1, . . . , n

bipartite graphs ≤ 2 P P Theorem 5.1
nC4 = 3 N P -hard N P -complete, k = 1 Theorem 5.2
nC4 ≥ 4 P P Theorem 5.3
nP3 2 ≤ ≤ 3 N P -hard N P -complete, k = 1 Theorem 5.4
nP3 ≥ 3 P P Theorem 5.5
paths 2 ≤ ≤ 3 N P -hard N P -complete Corollary 5.6
cycles 2 ≤ ≤ 3 N P -hard N P -complete Corollary 5.7

≤ 2 P , k = 1 Corollary 7.1
disjoint union of cliques P P Theorem 7.2

α(G) ≤ 2 P P Theorem 7.3
ST AB compact P for k = 1 Corollary 6.2

planar, ∆(G) ≤ 3 ≤ 3 N P -hard N P -complete, k = 1 Theorem 6.3
compact

Fig. 6. Complexity results for SEL-COL and k-DSEL-COL.
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