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Abstract
We consider the following problem: for a given graph G and two integers k and d,
can we apply a fixed graph operation at most k times in order to reduce a given
graph parameter π by at least d? We show that this problem is NP-hard when the
parameter is the independence number and the graph operation is vertex deletion or
edge contraction, even for fixed d = 1 andwhen restricted to chordal graphs.We give a
polynomial time algorithm for bipartite graphs when the operation is edge contraction,
the parameter is the independence number and d is fixed. Further, we complete the
complexity dichotomy for H -free graphs when the parameter is the clique number
and the operation is edge contraction by showing that this problem is NP-hard in
(C3 + P1)-free graphs even for fixed d = 1. When the operation is edge deletion and
the parameter is the chromatic number, we determine the computational complexity
of the associated problem for cographs and complete multipartite graphs. Our results
answer several open questions stated in Diner et al. (Theor Comput Sci 746:49–72,
2012, https://doi.org/10.1016/j.tcs.2018.06.023).

Keywords Blocker problems · Edge contraction · Vertex deletion · Edge deletion ·
Chromatic number · Independence number · Clique number

1 Introduction

Blocker problems are a type of graph modification problems which are characterised
by a set O of graph modification operations (for example, vertex deletion or edge
contraction), a graph parameter π and an integer threshold d ≥ 1. The aim of the
problem is to determine, for a given graph G, the smallest sequence of operations
from O which transforms G into a graph G ′ such that π(G ′) ≤ π(G) − d.
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As in the case of regular graph modification problems, we often consider a set
of operations consisting each of a single graph operation, typically vertex deletion,
edge contraction, edge addition or edge deletion. Amongst the parameters which have
been studied are the chromatic number χ (see [16]), the matching number μ (see
[18]), the length of a longest path (see [5, 14]), the (total or semitotal) domination
number γ (γt and γt2, respectively) (see [9–11]), the clique number ω (see [15]) and
the independence number α (see [3]).

In this paper, the set of allowed graph operations will always consist of only one
operation, either vertex deletion, edge contraction or edge deletion. Given a graph
G, we denote by G − U the graph from which a subset of vertices U ⊆ V (G) has
been deleted. Given an edge uv ∈ E(G), contracting the edge uv means deleting the
vertices u and v and replacing them with a single new vertex which is adjacent to
every neighbour of u or v. We denote by G/S the graph in which every edge from an
edge set S ⊆ E(G) has been contracted. Further, we denote by G − S the graph G
from which a subset of edges S ⊆ E(G) has been deleted. We consider the following
problems, where d ≥ 1 is a fixed integer.

d-Deletion Blocker (π )

Instance: A graph G and an integer k.
Question: Is there a set U ⊆ V (G), |U | ≤ k, such that π(G −U ) ≤ π(G) − d?

d-Contraction Blocker (π )

Instance: A graph G and an integer k.
Question: Is there a set S ⊆ E(G), |S| ≤ k, such that π(G/S) ≤ π(G) − d?

d-Edge Deletion Blocker (π )

Instance: A graph G and an integer k.
Question: Is there a set S ⊆ E(G), |S| ≤ k, such that π(G − S) ≤ π(G) − d?

When d is not fixed but part of the input, the problems are called Deletion

Blocker(π ), Contraction Blocker(π ) and Edge Deletion Blocker(π ),
respectively.

When π = α or π = ω, we know from [8] that Deletion Blocker(π ) and
Contraction Blocker(π ) are NP-hard for general graphs. From [2] we know that
Edge Deletion Blocker(χ ) is NP-hard for general graphs. So it is natural to ask if
these problems remain NP-hard when the input is restricted to special graph classes.

The authors of [8] show that Contraction Blocker(α) in bipartite and chordal
graphs as well as Deletion Blocker(α) in chordal graphs are NP-hard when the
threshold d is part of the input. However, as an open question, they ask for the com-
plexity of both problems when d is fixed. In this paper, we show that Contraction
Blocker(α) in bipartite graphs is solvable in polynomial time if d is fixed and that
both problems are NP-hard for chordal graphs even if d = 1. An overview of the
complexities in some graph classes is given in Table 1.

A monogenic graph class is characterised by a single forbidden induced subgraph
H . For a given graph parameter π , it is interesting to establish a complexity dichotomy
for monogenic graph classes, that is, to determine the complexity of (d-)Deletion
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Table 1 The table of complexities for some graph classes

Class Contraction Blocker(π ) Deletion Blocker(π )
π = α π = ω π = α π = ω

Tree P P P P

Bipartite NP-h P P P

d fixed: P

Cobipartite d = 1: NP-c NP-c P P

d fixed: P

Cograph P P P P

Split NP-c NP-c NP-c NP-c

d fixed: P d fixed: P d fixed: P d fixed: P

Interval ? P ? P

Chordal d=1: NP-c d = 1: NP-c d=1: NP-c d = 1: NP-c

Perfect d = 1: NP-h d = 1: NP-h d=1: NP-c d = 1: NP-c

Here, P means solvable in polynomial time, whereas NP-h and NP-c mean NP-hard and NP-complete,
respectively. A question mark means that the case is open. Everything in bold are new results from this
paper, all other cases are referenced in [8], where an older version of this table is given

Blocker(π ) or (d-)Contraction Blocker(π ) in H -free graphs, for every graph
H . For example, such a dichotomy has been established for Deletion Blocker(π )
for all π ∈ {α,ω, χ} and Contraction Blocker(π ) for π ∈ {α, χ} (all [8]),
Contraction Blocker(γt2) (for d = k = 1, [11]), Contraction Blocker(γt )
(for d = k = 1, [9]) and Contraction Blocker(γ ) (for d = k = 1, [10]). In
[8], the computational complexity of Contraction Blocker(ω) in H -free graphs
has been determined for every H except H = C3 + P1. We show that this case is
NP-hard even when d = 1 and complete hence the dichotomy. For the problem Edge

Deletion Blocker(χ ), the authors of [8] observe that the complexity of the problem
is known for H -free graphs for all H except H = P4 and H = P2 + P1. We show that
Edge Deletion Blocker(χ ) is NP-complete for (P2 + P1)-free graphs (and thus,
for P4-free graphs as well). For P4-free graphs, we show that the problem is solvable
in polynomial time when the difference between d and the chromatic number of the
input graph is bounded. We also solve d-Edge Deletion Blocker(χ ) for P4-free
graphs in polynomial time for any fixed d.

2 Preliminaries

Throughout this paper, we assume that all graphs are connected unless stated differ-
ently.

We refer the reader to [7] for any terminology not defined here.
For any natural number n, we denote by [n] the set {1, . . . , n} and by [0..n] the set

{0, . . . , n}. For a graphG, we denote by V (G) the vertex set of the graph and by E(G)

its edge set. For two graphs G and H , we denote by G+H the disjoint union of G and
H . For two graphs G and H with disjoint vertex sets, we denote by G × H the graph
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with vertex set V (G)∪V (H) and edge set E(G)∪E(H)∪{uv|u ∈ V (G), v ∈ V (H)}.
For two vertices u, v ∈ V (G), we denote by distG(u, v) the distance between u and
v, which is the number of edges in a shortest path between u and v. For two sets of
vertices U ,W ⊆ V (G), the distance between U and W , denoted by distG(U ,W ),
is given by minu∈U ,w∈W distG(u, w). For a set of edges S ⊆ E(G), we denote by
V (S) the set of vertices in V (G) which are endpoints of at least one edge of S.
Let v ∈ V (G), then the (open) neighbourhood of v, denoted by NG(v), is the set
{u ∈ V (G) : distG(u, v) = 1}. The closed neighbourhood of v, denoted by NG[v], is
the set NG(v)∪{v}. For a setU ⊆ V (G), we define the (open) neighbourhood ofU as
NG(U ) = ⋃

v∈U N (v) and the closed neighbourhood ofU as NG[U ] = NG(U )∪U .
If the graph G is clear from the context, we can omit the index. For a vertex v ∈ V (G)

and a set of verticesU ⊆ V (G), we say that v is complete to U if v is adjacent to every
vertex of U . Let G be a graph and S ⊆ E(G). We denote by G

∣
∣
S the graph whose

vertex set is V (G) and whose edge set is S. For any U ⊆ V (G), we denote by G[U ]
the subgraph of G induced byU . For anyU ⊆ V (G), we denote by G −U the graph
G[V (G) \U ]. For any vertex v ∈ V (G), we denote by G − v the graph G − {v}.

Let S ⊆ E(G). We denote by G − S the graph with vertex set V (G) and edge
set E(G) \ S. Further, we denote by G/S the graph whose vertices are in one-to-one
correspondence to the connected components of G

∣
∣
S and two vertices u, v ∈ V (G/S)

are adjacent if and only if their corresponding connected components A, B of G
∣
∣
S

satisfy distG(V (A), V (B)) = 1. This is equivalent to the regular notion of contracting
the edges in S. However, this definition allows us to make the notation in the proofs
simpler and less confusing. Let S, S′ ⊆ E(G) such that for every connected component
A of G

∣
∣
S , there is a connected component A′ of G

∣
∣
S′ with V (A) = V (A′). Then,

G/S = G/S′ and thus we get the following corollary, which we will use later.

Corollary 1 Let G be a graph and S ⊆ E(G) a minimal π -contraction-critical set of
edges. Then, G

∣
∣
S is a forest.

An h-colouring of G is a map from V (G) to [h]. For an h-colouring c of G and a
set U ⊆ V (G), we denote by c(U ) the set

⋃
v∈U c(v).

We say that a set I ⊆ V (G) is independent if the vertices contained in it are pairwise
non-adjacent. We denote by α(G) the size of a maximum independent set in G. The
decision problem Independent Set takes as input a graph G and an integer k and
outputs Yes if and only if there is an independent set of size at least k in G. We say
that a set U ⊆ V (G) is a clique if every two vertices in U are adjacent. We denote
by ω(G) the size of a maximum clique in G. We call a set U ⊆ V (G) a vertex cover,
if, for every edge uv ∈ E(G), we have that u ∈ U or v ∈ U . The decision problem
Vertex Cover takes as input a graph G and an integer k and outputs Yes if and
only if there is a vertex cover of size at most k in G. We denote by τ(G) the size
of a minimum vertex cover in G. Furthermore, we call a graph M a matching of a
graph G, if V (M) ⊆ V (G), E(M) ⊆ E(G) and each vertex in V (M) has exactly
one neighbour in M . We say that a matching is a maximum matching if it contains the
maximum possible number of edges and denote this number by μ(G). Observe that
we did not use the standard definition of a matching as a set of non-adjacent edges.
This was done in order to simplify the notation in the proofs. However, the edge set
of a matching in our definition follows the conventional definition.
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Fig. 1 The paw

A graph without cycles is called a forest and a connected forest is a tree. It is
well-known that a tree has one more vertex than it has edges. Let T be a tree. We call
a vertex of T a leaf if it has exactly one neighbour. A vertex which is not a leaf is
called an interior vertex of T . A tree T is called rooted if there is a designated vertex
called the root of T . The children of a vertex v ∈ T are those neighbours of v whose
distance to the root s is larger than dist(v, s). A rooted binary tree is a rooted tree in
which every interior vertex has exactly two children. A graph is said to be chordal, if
it has no induced cycle of length at least four. A graph G is bipartite, if we can find
a partition of the vertices into two sets V (G) = U ∪ W such that U and W are both
independent sets. For a given graph H , we say that the graph G is H -free if it does
not contain H as an induced subgraph.

A graph G is called complete multipartite if we can partition the vertex set V (G)

into disjoint independent sets I1, . . . , I� and G is isomorphic to I1 × · · · × I�. We
call the independent sets I1, . . . , I� the parts of G. It is easy to see that complete
multipartite graphs are exactly the (P2 + P1)-free graphs.

A graph G is called a cograph if one of the following conditions holds:

– G = K1,
– there are cographs H , H ′ such that G = H + H ′, or
– there are cographs H , H ′ such that G = H × H ′.

A graph is a cograph if and only if it is P4-free (see [6]).
Let T be a rooted binary tree with root s whose interior (or non-leaf) vertices are

labelled either 0 or 1. We call the vertices of T nodes and the interior vertices 0- or
1-node, according to their label. To every node p of T we associate a cograph Tp as
follows:

– if p is a leaf, then Tp = K1,
– if p is a 0-node with children q and r , then Tp = Tq + Tr ,
– if p is a 1-node with children q and r , then Tp = Tq × Tr .

If Ts is isomorphic to a cograph G, then we say that T is a cotree corresponding to G.
For a node p ∈ V (T ), we denote by Tp the vertex set V (G) \ V (Tp). It was shown
in [4] that every cograph has a corresponding cotree. Let p be a node of a cograph
T with children q and r . It is easy to see that χ(Tp) = max

{
χ(Tq), χ(Tr )

}
if p is a

0-node and χ(Tp) = χ(Tq) + χ(Tr ) if p is a 1-node.
For a positive integer i , we denote by Pi and Ci the path and the cycle on i vertices,

respectively. We call the graph which is given in Fig. 1 a paw.
For a given graph parameter π , we say that a set S ⊆ E(G) is π -contraction-

critical if π(G/S) < π(G). We say that a set U ⊆ V (G) is π -deletion-critical if
π(G −U ) < π(G).

We will use the following two results. The first one is due to Kőnig, the second one
is well-known and easy to see.
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Lemma 1 (see [7]) Let G be a bipartite graph. Then, μ(G) = τ(G).

Lemma 2 Let G be a graph and let I ⊆ V (G) be a maximum independent set. Then,
V (G) \ I is a minimum vertex cover and hence τ(G) + α(G) = |V (G)|.
In [17] it was shown that Independent Set is NP-complete in C3-free graphs. This
and Lemma 2 imply the following corollary.

Corollary 2 Vertex Cover is NP-complete in C3-free graphs.

3 Edge Contractions

3.1 Algorithms

In this sectionwe give a polynomial-time algorithm for d-Contraction Blocker(α)
in bipartite graphs. In Theorem 1, we consider the case of a graph with at least 2d + 2
vertices where we are allowed to contract at least 2d + 1 edges. We show that this
case always leads to a Yes-instance. In Theorem 2, we consider the remaining cases,
in which the graph has few vertices or we contract only few edges. We will see that
we can solve these cases with brute force, by contracting each allowed subset of the
edge set and computing the independence number of the resulting graph. We have to
be careful here because the contraction can lead to odd cycles, so the resulting graph
is not necessarily bipartite. We will use the fact that most of the resulting graph will
still be bipartite.

Algorithm 1
Input: A bipartite graph G, a maximum matching M in G, an integer d ≥ 1
Output: A tree T

Choose an arbitrary edge uu′ ∈ E(M).
2: Set V (T ) = {u, u′}, E(T ) = {uu′}.

while |E(T )| ≤ 2d − 1 do
4: Choose two vertices w ∈ NG (T ) \ V (T ), and w′ ∈ NG (w) ∩ V (T ).

if w ∈ V (M) then
6: Let v ∈ V (M) s.t. vw ∈ E(M).

V (T ) = V (T ) ∪ {v, w}, E(T ) = E(T ) ∪ {w′w, vw}
8: else V (T ) = V (T ) ∪ {w}, E(T ) = E(T ) ∪ {w′w}

end if
10: end while

return T

Theorem 1 Let G be a connected, bipartite graph with |V (G)| ≥ 2d+2, where d ≥ 1
is an integer. Then (G, 2d + 1) is a Yes-instance of d-Contraction Blocker(α).

Proof LetG be a bipartite graphwith |V (G)| ≥ 2d+2. LetM be amaximummatching
of G. Since G is connected, M is non-empty. Note that G has an independent set of
size at least d + 1 since it is bipartite and |V (G)| ≥ 2d + 2. Consider Algorithm 1,
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Fig. 2 An example of Algorithm 1 for bipartite graphs, when d = 3 and we are allowed to contract at least
2d + 1 edges. In this example the algorithm does four steps, which are shown in a–d. In a the four thick
edges form a maximum matching of the graph. The algorithm starts with one edge uu′ (see a) and ends
when there are 2d = 6 edges in T (see d). The graph resulting from the contraction of T is shown in e. We
can see that the resulting graph is not bipartite anymore

which constructs a tree T , which is a subgraph of G. An example of Algorithm 1 is
given in Fig. 2.

We claim that the resulting graph T is a tree. Indeed, the initial graph is a single
edge and thus a tree. Observe that every time there are vertices and edges added to T
in lines 7 or 8, the resulting graph remains connected. Further, the number of added
vertices and added edges is the same. It follows that T is connected and has exactly
one more vertex than it has edges and is thus a tree. It is easy to see that T has 2d or
2d + 1 edges.

We consider the graph G ′ = G − V (T ). For every v ∈ V (M) ∩ V (T ), the unique
vertex u ∈ V (M) with uv ∈ E(M) is also contained in V (T ) and uv ∈ E(T ).

Thus, there are at most
⌊ |V (T )|

2

⌋
edges in E(M) which have an endvertex in T . Since

M − V (T ) is a matching in G ′ we have that μ(G ′) ≥ μ(G) −
⌊ |V (T )|

2

⌋
. Applying

Lemma 1 and Lemma 2, we get for the independence number of G ′:

α(G ′) = |V (G ′)| − μ(G ′) ≤ |V (G)| − |V (T )| − μ(G) +
⌊ |V (T )|

2

⌋

= α(G) −
⌈ |V (T )|

2

⌉

= α(G) − d − 1.

Let G∗ = G/E(T ). Observe that G
∣
∣
E(T )

contains exactly one connected component,
say A, which has more than one vertex, namely the connected component correspond-
ing to T . Let v∗ ∈ V (G∗) be the vertex which corresponds to A. Since G∗ − v∗ is
isomorphic to G ′, we obtain that α(G∗) ≤ α(G ′) + 1 ≤ α(G) − d. 
�
Theorem 2 d-Contraction Blocker(α) is solvable in polynomial time in bipartite
graphs.

Proof Let G be a bipartite graph and k a positive integer. If |V (G)| ≤ 2d +1 there are
at most 2d(d+1) subsets of E(G) and at most 22d+1 subsets of V (G). We can check
for every subset S ⊆ E(G) if α(G/S) ≤ α(G) − d in constant time by computing

123



Algorithmica

the graph G/S and checking for each subset of V (G/S) if it is independent. Thus, we
can check in constant time if G is a Yes-instance for d-Contraction Blocker(α).

In the followingwemay assume that |V (G)| ≥ 2d+2. ByTheorem1,we know that
for k ≥ 2d + 1, we can reduce the independence number by at least d by contracting
at most k edges. Thus, we can further assume that k ≤ 2d.

Algorithm 2
Input: A bipartite graph G, an integer k, a fixed integer d
Output: Yes if (G, k) is a Yes-instance of d-Contraction Blocker(α),

No if not
2: for every S ⊆ E(G) of size at most k do

Let β = 0.
4: Let G′ = G/S.

Let U = {
v ∈ V (G′) : v corresponds to a connected component of G

∣
∣
S

which contains at least 2 vertices} .

6: for every subset U ′ ⊆ U do
if U ′ is independent then

8: β = max(β, α(G′ − (U ∪ NG′ (U ′))) + |U ′|)
end if

10: end for
if β ≤ α(G) − d then

12: return Yes

end if
14: end for

return No

Consider now Algorithm 2 which takes as input G, k and d and outputsYes orNo.
Algorithm 2 considers every subset S ⊆ E(G) of edges of cardinality at most k and
computesα(G/S). If there is some S such thatα(G/S) ≤ α(G)−d thenwe returnYes,
andNo otherwise. In order to computeα(G/S) for such a subset S of edges, we first set
G ′ = G/S. We then consider the set of vertices U ⊆ V (G ′) which have been formed
by contracting some edges in S (see line 4 of the algorithm). Observe thatG[V (G ′)\U ]
is isomorphic toG−V (S) and induces thus a bipartite graph. Every independent set of
G ′ can be partitioned into a set U ′ ⊆ U and a set W ⊆ V (G ′)\(U ∪ NG ′(U ′)). Thus,
we can find the independence number of G ′ by considering every independent subset
U ′ of U and computing α(G ′ − (U ∪ NG ′(U ′))) + |U ′|. The largest of these values
is then α(G ′). The independence number of the bipartite graph G ′ − (U ∪ NG ′(U ′))
can be computed in polynomial time, see Lemma 2 and [1].

The number of subsets of E(G) of cardinality at most k is in O(|E(G)|k) =
O(|V (G)|4d). For any such subset S, the number of subsets U ′ ⊆ U is at most
2k ≤ 22d . Thus, the running time of Algorithm 2 is polynomial. 
�

3.2 Hardness proofs

In this section, we answer several questions asked in [8]. Indeed,
Theorem 3 settles the missing case of [8, Theorem 24] and completes the complexity
dichotomy for H -free graphs, which is given after the theorem. We further settle the
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computational complexity of 1-Contraction Blocker(α) in chordal graphs, which
is an open case in Table 1.

Theorem 3 The decision problem 1- Contraction Blocker(ω) is NP-hard in (C3+
P1)-free graphs.

Proof We use a reduction from Vertex Cover in C3-free graphs which is NP-
complete due to Corollary 2. Let (G, k) be an instance of Vertex Cover where
G is a C3-free graph. Since Vertex Cover is trivial to solve for a graph without
edges, we can assume that E(G) is non-empty. We construct an instance (G ′, k) of
1- Contraction Blocker(ω) such that (G, k) is aYes-instance of Vertex Cover

if and only if (G ′, k) is a Yes-instance of 1- Contraction Blocker(ω) and G ′ is
(C3 + P1)-free. Let G ′ be a graph with V (G ′) = V (G) ∪ {w}, w /∈ V (G), and
E(G ′) = E(G) ∪ {wv, v ∈ V (G)}. In other words, we add a universal vertex w to G
in order to obtain G ′. See Fig. 3 for an example.

Since G is C3-free, every copy of C3 in G ′ has to contain w. Furthermore, since
w is adjacent to every other vertex in V (G ′), it follows that every vertex of G ′ has
distance at most one to every copy of C3. Thus, G ′ is (C3 + P1)-free. Also, note that
ω(G ′) = 3 and that every maximum clique in G ′ is a copy of C3 which contains w

and exactly two vertices of V (G).
Let us assume that (G, k) is a Yes-instance of Vertex Cover. Let

{v1, . . . , vk} ⊆ V (G) be a vertex cover of G. Set S = {viw : i ∈ {1, . . . , k}} and
let G∗ = G ′/S. We claim that S is ω-contraction-critical. Notice that the contrac-
tion of an edge vw ∈ S is equivalent to deleting the vertex v, since the new vertex
remains adjacent to all other vertices. Thus, G∗ is isomorphic to G − (V (S)\ {w}).
Since {v1, . . . , vk} is a minimum vertex cover of G, there are no edges in G∗ − w.
This means that G∗ is C3-free and thus ω(G∗) ≤ 2. Hence (G ′, k) is a Yes-instance
of 1- Contraction Blocker(ω).

For the other direction, assume that (G ′, k) is a Yes-instance of 1- Contraction
Blocker(ω). Let S ⊆ E(G ′) be a minimum ω-contraction-critical set of edges with
|S| ≤ k and let G∗ = G ′/S.

We construct a set U of vertices of G as follows: For the connected component T
of G ′∣∣

S that contains w, add every vertex of V (T ) except w to U . For every other
connected component T of G ′∣∣

S , we add to U all vertices of V (T ) except one, which
can be chosen arbitrarily. We claim that U is a vertex cover of G of size at most k.

To see that |U | ≤ k, observe that for every connected component T of G ′∣∣
S , we

have added |V (T )| − 1 vertices toU . Since T is a tree (see Corollary 1), we have that
|V (T )| − 1 = |E(T )|. Thus, we have added as many vertices to U as there are edges
in S and hence |U | = |S| ≤ k.

In order to show thatU is a vertex cover, suppose for a contradiction that there is an
edge uv ∈ E(G) for which neither u nor v is contained in U . Consider the connected
components Au , Av and Aw of G ′∣∣

S which contain u, v and w, respectively. It follows
from the construction of U that in every connected component T of G ′∣∣

S there is at
most one vertex of T which is not contained in U . Hence, Au �= Av . We have that
w /∈ U by construction, so the same argument can be used to show that Au �= Aw and
Av �= Aw. Thus, Au , Av , Aw correspond to three different vertices in G∗. Since the
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a) b) c)

Fig. 3 a shows a graph G, where a minimum vertex cover is highlighted with blue vertices. In b the graph
G′ constructed in Theorem 3 forG is shown. The thick blue edges are a 1-contraction blocker ofG′. Finally,
c shows the graph G′ after the contraction of the edges in the 1-contraction blocker

components are pairwise at distance one, their corresponding vertices induce a C3 in
G∗, a contradiction to S being ω-contraction-critical. Thus, U is a vertex cover in G
and (G, k) a Yes-instance of Vertex Cover. 
�

Theorem 4 Let H be a graph. If H is an induced subgraph of P4 or of the paw,
then Contraction Blocker(ω) is polynomial-time solvable for H-free graphs.
Otherwise, it is NP-hard or co-NP-hard for H-free graphs.

In order to simplify the notation of the proof of the following theorem, we restate
Vertex Cover as a satisfiability problem.

Weighted Positive 2- SAT

Instance: A variable set X , a clause set C in which all clauses contain exactly two
literals and every literal is positive, as well as an integer k.

Question: Is there a truth assignment of the variables (that is, a mapping f : X →
{true, false}) such that at least one literal in each clause is true and there
are at most k variables which are true.

If Φ = (G, k) is an instance of Vertex Cover then taking X = V (G) as the
variable set and C = {(u ∨ w) : uw ∈ E(G)} as the set of clauses yields an instance
(X ,C, k) of Weighted Positive 2- SAT which is clearly equivalent to Φ. Since
Vertex Cover is known to be NP-hard (see Corollary 2), it follows that Weighted

Positive 2- SAT is NP-hard, too.

Theorem 5 1-Contraction Blocker(α) is NP-complete in chordal graphs.

Proof It was shown in [13] that Independent Set can be solved in polynomial
time for chordal graphs. Since the family of chordal graphs is closed under edge
contractions, for a given chordal graph G and a set S ⊆ E(G), it is possible to check
in polynomial time whether S is α-contraction-critical. It follows that 1-Contrac-
tion Blocker(α) is in NP for chordal graphs. In order to show NP-hardness, we
reduce from Weighted Positive 2- SAT, which was shown to be NP-hard above.
Let Φ = (X ,C, k) be an instance of Weighted Positive 2- SAT. We construct a
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Fig. 4 This is the graph
corresponding to the instance of
Weighted Positive 2- SAT

given by the variables w, x, y, z
and the clauses
c1 = w ∨ x, c2 = x ∨ y and
c3 = x ∨ z. The rectangular box
corresponds to G[KC ], the
vertices contained in it induce a
clique. Every set Ki induces a
clique and the lines between a
vertex and a set Ki mean that
this vertex is complete to Ki

Kw

vw

Kx

vx

Ky

vy

Kz

vz

vc1 vc2 vc3

KC

chordal graph G such that (G, k) is a Yes-instance for 1-Contraction Blocker(α)
if and only if Φ is a Yes-instance for Weighted Positive 2- SAT, as follows:

For every variable x ∈ X , we introduce a set of vertices Gx with Gx = {vx } ∪ Kx .
Here, Kx is a set of 2k + 1 vertices which induce a clique. We make vx complete to
Kx . For every clause c ∈ C , we introduce a vertex vc. We define KC = ⋃

c∈C {vc}.
We add edges so that G[KC ] is a clique. For every clause c ∈ C , c = (x ∨ y), we
make vc complete to Kx and Ky (see Fig. 4 for an example).

Observe first that the graph G is indeed chordal: if a cycle of length at least four
contains at least three vertices of KC , it follows immediately that the cycle cannot
be induced, since KC induces a clique. Otherwise, such a cycle contains at most two
vertices of KC . Assume that there are two vertices w and w′ of the cycle which are
contained in Gx and Gy , respectively, with x, y ∈ X , x �= y. Then, the cycle has to
contain a chord in G[KC ] and is thus not induced. If all vertices of the cycle are in
KC ∪Gx for some fixed x ∈ X , then there are at least two verticesw andw′ contained
in Kx . Hence, the cycle cannot be induced since w and w′ are adjacent and have the
same neighbourhood. It follows that G cannot have any induced cycle of length at
least 4 and is thus chordal.

Since Gx induces a clique for every x ∈ X , it can contain at most one vertex in
any independent set; the same applies to KC . Thus, α(G) ≤ |X | + 1. Let c ∈ C .
Since the set {vx : x ∈ X} ∪ {vc} is an independent set of size |X | + 1, it follows that
α(G) = |X | + 1.

Let us assume that Φ is a Yes-instance of Weighted Positive 2- SAT. Let X+
be the set of positive variables of a satisfying assignment of Φ. For each x ∈ X+,
let ex be an edge incident to vx and let S = {ex |x ∈ X+}. Let G ′ = G/S. We claim
that α(G ′) < α(G). To see this, observe first that for any x ∈ X+, contracting ex is
equivalent to deleting the vertex vx , since NG(vx ) = Kx induces a clique. Therefore,
we have that G ′ � G − {vx : x ∈ X+}. Suppose for a contradiction that there is an
independent set I of G ′ of size |X | + 1. Since |I ∩ Kx | ≤ 1 (for x ∈ X+) and
|I ∩ Gx | ≤ 1 (for all x ∈ X \ X+), it follows that there exists c ∈ C such that
vc ∈ KC ∩ I . Furthermore, the inequalities above all have to be equalities. By the
choice of X+, it follows that there is x ∈ X+ such that x is a literal in c. Since
|I ∩ Kx | = 1, there is a vertex w ∈ I ∩ Kx which is adjacent to vc, contradicting the
fact that I is independent. It follows that S is α-contraction-critical.
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For the other direction, assume thatΦ ′ = (G, k) is a Yes-instance of 1-Contrac-
tion Blocker(α). Let S be a minimum α-contraction-critical set of edges such that
|S| ≤ k. By Corollary 1, the graph G

∣
∣
S is a forest.

For any x ∈ X , there is a vertex ux ∈ Kx \ V (S). This follows from the
fact that k edges can be incident to at most 2k vertices and
|Kx | = 2k + 1. Let H be the graph with vertex set V (H) = KC and edge set
E(H) = {uv ∈ S : u, v ∈ KC }.

We will show that for every connected component of H , there is a variable x ∈ X
with distG(Gx , V (T )) = 1 andGx ∩V (S) �= ∅. Suppose for a contradiction that there
is a connected component T of H such that for every x ∈ X with distG(Gx , V (T )) =
1,wehaveGx∩V (S) = ∅. In otherwords, for every c = (x ∨ y) ∈ C withvc ∈ V (T ),
we have Gx ∩V (S) = Gy ∩V (S) = ∅. So we have that NG [V (T )] ∩V (S) ⊆ V (T ),
and thus T is also a connected component in G

∣
∣
S . For every x ∈ X , the set {ux } is

a connected component in G
∣
∣
S , that is, ux is not incident to any edge in S. Further,

for every x ∈ X where distG(Gx , V (T )) = 1, we have that Gx ∩ V (S) = ∅. Thus,
{vx } is a connected component in G

∣
∣
S . Let X1 = {x ∈ X : distG(ux , V (T )) = 1}

and X2 = X\X1. Consider the set I = T ∪ {{vx } : x ∈ X1} ∪ {{ux } : x ∈ X2} of
connected components of G

∣
∣
S . Each two connected components in the set correspond

to vertices in G/S who are at distance at least two. In other words, I corresponds to
an independent set in G/S of cardinality |X | + 1, a contradiction to the assumption
that S is α-contraction-critical. It follows that there is no connected component T of
H such that for every x ∈ X with distG(Gx , V (T )) = 1, we have Gx ∩ V (S) = ∅.

We can obtain a truth assignment of the variables satisfyingΦ as follows: Set every
x to true for which Gx ∩ V (S) is non-empty. For every clause c = (x ∨ y) ∈ C for
which both Gx ∩ V (S) and Gy ∩ V (S) are empty, set one of its variables to true.
This assignment is clearly satisfying, it remains to show that we set at most |S| ≤ k
variables to true. Consider a connected component T of H . Recall that T is a tree,
and so its number of vertices is one more than its number of edges. We have shown
that there is a vertex vc ∈ V (T ), c = (x ∨ y), for which Gx ∩ V (S) �= ∅. Thus,
there are at most |E(T )| vertices vc ∈ T , c = (x ∨ y), for which both Gx ∩ V (S) and
Gy ∩ V (S) are empty. This implies that for every connected component T of H , we
set at most |E(T )| variables to true. Further, the number of variables x ∈ X which
we set to true because Gx ∩ V (S) is non-empty cannot be larger than the number of
edges of S which are not contained in G[KC ]. This shows that, in total, we set at most
|S| variables to true, which concludes the proof. 
�

4 Vertex Deletions

In this section, we settle another open case of Table 1. Interestingly, 1- Deletion
Blocker(α) and 1-Contraction Blocker(α) are equivalent on the instance Φ ′
constructed in the proof of Theorem 5 and thus the same construction can be used to
show NP-hardness of 1- Deletion Blocker(α) in chordal graphs.

Theorem 6 1- Deletion Blocker(α) is NP-complete in chordal graphs.
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Proof It has been shown in [13] that it is possible to determine the independence num-
ber of chordal graphs in polynomial time. Since chordal graphs are closed under vertex
deletion, it is possible to check in polynomial time whether the deletion of a given set
of vertices reduces the independence number. Hence 1- Deletion Blocker(α) is in
NP for chordal graphs.

In order to show NP-hardness, we reduce from Weighted Positive 2- SAT.
Let Φ be an instance of Weighted Positive 2- SAT, Φ = (X ,C, k). Let
Φ ′ = (G, k) be the instance of 1-Contraction Blocker(α) which is described
in Theorem 5 and which has been shown to be equivalent to Φ. Further, let Kx ,Gx

and vx for each x ∈ X , KC , and vc for each c ∈ C be as in the proof of Theorem 5.
Recall that we have shown that α(G) = |X | + 1 and that G is chordal.

We show that Φ ′ is a Yes-instance of 1- Deletion Blocker(α) if and only if Φ

is a Yes-instance of Weighted Positive 2- SAT.
Assume first that Φ is a Yes-instance of Weighted Positive 2- SAT and that

X+ is the set of positive variables in a satisfying assignment of Φ. We have shown
in the proof of Theorem 5 that α(G − {vx : x ∈ X+}) < α(G). Hence, (G, k) is a
Yes-instance of 1- Deletion Blocker(α).

Conversely, assume that Φ ′ is a Yes-instance of 1- Deletion Blocker(α) and
let W be an α-deletion-critical set of vertices of cardinality at most k. For every
x ∈ X , there exists a vertex ux ∈ Kx \ W , since |W | < |Kx |. Define a set
Z = {x ∈ X : vx ∈ W } and initialize a set Z ′ = ∅. For every clause c ∈ C with
vc ∈ W , we choose one of the variables contained in c and add it to Z ′. We claim
that setting the variables of Z ∪ Z ′ to true yields a satisfying assignment of Φ with
at most k true variables. Observe first that |Z ∪ Z ′| ≤ |W | ≤ k by construction.
Suppose for a contradiction that there is a clause c ∈ C , c = (x ∨ y), such that
neither x nor y is contained in Z ∪ Z ′. It follows that vx , vy, vc /∈ W . But then
{vc, vx , vy} ∪ {uz : z ∈ X\ {x, y}} ⊆ G − W is an independent set of size |X | + 1, a
contradiction to the α-deletion-criticalness of W . Hence, the assignment is satisfying
and has at most k true variables, which implies the theorem. 
�

Since perfect graphs are a superclass of chordal graphs, we obtain the following
corollary.

Corollary 3 1- Deletion Blocker(α) is NP-complete in perfect graphs.

Observe that Corollary 3 could also be shown as follows. Complements of perfect
graphs are again perfect graphs. Further, 1- Deletion Blocker(α) is a Yes-instance
for a graph G if and only if 1- Deletion Blocker(ω) is a Yes-instance for G. Since
it was shown in [8] that 1- Deletion Blocker(ω) is NP-hard in perfect graphs, the
corollary follows.

5 Edge Deletions

Given a colouring c of the vertices of a graph G, we say that an edge uv, with u, v ∈
V (G), is a monochromatic edge of c if c(u) = c(v). Using this terminology, a proper
colouring is a colouring without monochromatic edges. The following problem is a
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generalization of the well-known h-Chromatic Number, in the sense that we ask if
there is a colouring with few monochromatic edges.

h-Chromatic number

Instance: A graph G.
Question: Is there an h-colouring of G without monochromatic edges?

h-Monochromatic Edges

Instance: A graph G and an integer m.
Question: Is there an h-colouring of G with at most m monochromatic edges?

As above, we sometimes consider h to be part of the input. The problem is then
called Monochromatic Edges.

To keep the notation more simple, we will focus on Monochromatic edges

instead of Edge Deletion Blocker(χ ) in this chapter. This is justified by the
following proposition.

Lemma 3 The tuple (G,m) is a Yes-instance for h-Monochromatic Edges if and
only if (G,m) is a Yes-instance for (χ(G) − h)- Edge Deletion

Blocker(χ).

Proof Let G be a graph and m an integer. If (G,m) is a Yes-instance for h-
Monochromatic Edges, then there is an h-colouring c of G with at most m
monochromatic edges. Let S ⊆ E(G) be the set of monochromatic edges of c. Then,
c is a proper h-colouring ofG−S. It follows that deleting |S| ≤ m edges fromG yields
a graphwhose chromatic number is at most h. In other words, (G,m) is aYes-instance
for (χ(G) − h)-Edge Deletion Blocker(χ ). For the other direction, assume that
(G,m) is a Yes-instance for (χ(G)− h)-Edge Deletion Blocker(χ ). Thus, there
is a set of edges S ⊆ E(G) such that |S| ≤ m andχ(G−S) ≤ χ(G)−(χ(G)−h) = h.
Let c be a proper h-colouring of G − S. When we colour the vertices of G accord-
ing to c, then the only monochromatic edges can be the edges in S. Thus, c is an
h-colouring of G with at most m monochromatic edges, which completes the proof.


�
The following lemma is a simple observation about reducing the number of

monochromatic edges by recolouring the vertices.

Lemma 4 Let G be a graph, and I ⊆ V (G) an independent set such that for any
v ∈ I , we have N (v) = N (I ). If c is an h-colouring of G, then there is a colour
j ∈ c(I ) such that recolouring every vertex of I with j yields an h-colouring of G
which has at most as many monochromatic edges as c.

Proof For each i ∈ [h], we denote by ni the number of vertices in I which receive
colour i by c. Similarly, for every i ∈ [h], we denote by n′

i the number of vertices in
N (I ) which receive colour i by c. Since I is independent, no colouring can have any
monochromatic edges between two vertices of I . The number ofmonochromatic edges
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between I and N (I ) is
∑

i∈[h] nin′
i . Let j ∈ c(I ) be such that n′

j is minimum amongst
all colours in c(I ). After recolouring all vertices in I with colour j , the number of
monochromatic edges between I and N (I ) is |I |n′

j = ∑
i∈[h] nin′

j ≤ ∑
i∈[h] nin′

i .
This concludes the proof. 
�

5.1 Algorithms

Theorem 7 For a fixed integer h, the decision problem h-Monochromatic Edges

is solvable in polynomial time for cographs.

Proof Let G be a cograph with associated cotree T . For every p ∈ V (T ), we
define a function f p which takes as input an h-tuple of non-negative integers
a p = (a p

1 , . . . , a p
h ) whose entries sum up to |V (Tp)|. Below, we will give a defi-

nition of f p and show that its output can be computed in polynomial time. Then, we
will show the following claim:

Claim. For every p ∈ V (T ) and every h-tuple a p = (a p
1 , . . . , a p

h ) of non-negative
integers with

a p
1 + . . . + a p

h = |Tp|, (1)

the value of f p(a p) is the minimum number of monochromatic edges of all
h-colourings of Tp, in which colour i appears a p

i times, for every i ∈ [h].
We will now give the definition of f p. If p is a leaf, then f p(a p) = 0 for any valid

input. If p is not a leaf, let q and r be the children of p. If p is a 0-node, then

f p(a p) = min
aq ,ar∈[0..n]h

aq1+...+aqh=|Tq |
ar1+...+arh=|Tr |
aqi +ari =a p

i , i∈[h]

(
f q(aq) + f r (ar )

)
.

If p is a 1-node, then

f p(a p) = min
aq ,ar∈[0..n]h

aq1+...+aqh=|Tq |
ar1+...+arh=|Tr |
aqi +ari =a p

i , i∈[h]

(

f q(aq) + f r (ar ) +
h∑

i=1

aqi a
r
i

)

.

This defines the values of f p for every p ∈ V (T ). Observe that for every node
p ∈ V (T ), there are at most O(nh) possible inputs a p. To compute the values of f p,
we consider every pair of h-tuples aq , ar ∈ [0..n]h , of which there are O(n2h).
Checking whether they sum to the correct values and computing the term given in the
formula above takes constant time. So, we can compute the function f p in polynomial
time.
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Proof of the claim. Observe first that the claim holds when p is a leaf, since then
there are no edges in Tp. If p is not a leaf, let q and r be the children of p and assume
that the claim holds for q and r .

Let a p = (a p
1 , . . . , a p

h ) be an h-tuple which satisfies (1). Let cp be an h-colouring
of Tp which assigns colour i to exactly a p

i vertices, for every i ∈ [h], and which
minimizes the number of monochromatic edges amongst all such colourings. Let mp

be the number of monochromatic edges in cp. Let cq and cr be the h-colourings of Tq
and Tr , respectively, which we obtain by restricting cp to Tq and Tr , respectively. For
every i ∈ [h], let aqi be the number of vertices in Tq which receive the colour i from
cq . Define ari analogously for all i ∈ [h]. Clearly, a p

i = aqi + ari for every i ∈ [h], as
well as

∑h
i=1 a

q
i = |Tq | and ∑h

i=1 a
r
i = |Tr |.

It follows from the definition of f p that f p(a p) ≤ f q(aq) + f r (ar ) if p is a
0-node. Analogously, f p(a p) ≤ f q(aq) + f r (ar ) + ∑h

i=1 a
q
i a

r
i if p is a 1-node.

Let mq be the number of monochromatic edges of cq , and define mr analo-
gously. Since the claim holds for q and r , it follows that f q(aq) ≤ mq and
f r (ar ) ≤ mr . If p is a 0-node then the monochromatic edges of cp are exactly
the disjoint union of the monochromatic edges of cq and those of cr . Thus, the
number of monochromatic edges of cp is mp = mq + mr which implies that
f p(a p) ≤ mq + mr = mp. If p is a 1-node, the monochromatic edges of cp
are the monochromatic edges of cq , those of cr and the monochromatic edges
between Tq and Tr . For each colour i ∈ [h], there are aqi a

r
i monochromatic edges

between Tq and Tr whose endpoints are coloured i . Thus, in total, the number of
monochromatic edges of cp is mp = mq + mr + ∑h

i=1 a
q
i a

r
i . This implies that

f p(a p) ≤ mq + mr + ∑h
i=1 a

q
i a

r
i = mp.

Suppose for a contradiction that f p(a p) < mp. Then there are h-tuples of non-
negative integers bq = (bq1 , . . . , b

q
h ) and br = (br1, . . . , b

r
h) such that

– bq1 + . . . + bqh = |Tq |,
– br1 + . . . + brh = |Tr |,
– bqi + bri = a p

i for all i ∈ [h],
– f q(bq) + f r (br ) = f p(a p) < mp = mq + mr if p is a 0-node and
– f q(bq) + f r (br ) + ∑h

i=1 b
q
i b

r
i = f p(a p) < mp = mq + mr + ∑h

i=1 a
q
i a

r
i if p

is a 1-node.

We assume that the claim holds for q and r . It follows that there is an h-colouring
c′
q of Tq which assigns colour i to bqi vertices in Tq , for every i ∈ [h]. There is also
an analogously defined function c′

r .
Let us colour Tp by colouring the vertices in Tq according to c′

q and the vertices
in Tr according to c′

r . This yields a well-defined h-colouring c′
p of Tp since V (Tp) is

a disjoint union of V (Tq) and V (Tr ). The number of monochromatic edges of c′
p is

f q(bq)+ f r (br ) = f p(a p) if p is a 0-node. Similarly, the number of monochromatic
edges of c′

p is f q(bq) + f r (br ) + ∑h
i=1 b

q
i b

r
i = f p(a p) if p is a 1-node. Since

f p(a p) < mp, it follows that c′
p is an h-colouring of Tp which assigns the colour i to

bqi +bri = a p
i vertices, for every i ∈ [m]. Also, c′

p has less monochromatic edges than
cp, a contradiction. It follows that f p(a p) is the number of monochromatic edges of
cp and thus that the claim holds for p.

123



Algorithmica

Wehave shown that for every node p ∈ V (T ) and every h-tuple a p , we can compute
in polynomial time the smallest number of monochromatic edges of all h-colourings
of Tp whose i-th colour class has size a

p
i , for each i ∈ [h]. Let s be the root of T . The

value of f s(as) is the minimum number of monochromatic edges of all h-colourings
of T whose i-th colour class has size asi for each i ∈ [h]. There are O(nh) possibilities
how to fix the sizes of h colour classes which partition n vertices. We can determine
the minimum number of monochromatic edges of h-colourings for each partition and
then take the minimum of all of them. This can be done in polynomial time and shows
thus the theorem. 
�

We have shown that we can solve Monochromatic Edges if the number of
available colours is bounded. We will now consider the case where the number of
available colours is almost the chromatic number of the graph. To be precise, the
difference between the available colours and the chromatic number is bounded by a
constant. In order to tackle this problem, we will first show that, for any h, there are
h-colourings of the graph which minimize the number of monochromatic edges and
which have a very specific structure. In particular, for a cotree T of a graph and a
node p ∈ V (T ) with children q and r , we will give conditions for colours which
appear in both Tq and Tr , depending on whether p is a 0- or a 1-node. We will then
show in Lemmas 5 and 6 that there are h-colourings of the graph which minimize the
number of monochromatic edges and which satisfy these conditions for every node of
the corresponding cotree.

We will need the following definitions. Let � be a positive integer, a = (a1, . . . , a�)

and a′ = (a′
1, . . . , a

′
�) two �-tuples of real numbers and λ ≤ � a positive integer. We

want to associate λ entries of one tuple to λ entries of the other tuple.
We say that a λ-matching μ of two �-tuples is a λ-tuple ((i1, i ′1), . . . , (iλ, i ′λ)) ∈

([�] × [�])λ such that for all j, j ′ ∈ [λ], j �= j ′, we have that i j �= i j ′ and i ′j �= i ′j ′ .
Intuitively, we can imagine that a λ-matching encodes the edges of a matching in
a complete bipartite graph whose vertices correspond to the entries of two �-tuples,
see Fig. 5 for an example. For any μ j = (i j , i ′j ), j ∈ [λ], we say that the index i j
is matched with the index i ′j . For the �-tuples a and a′, we say that the entry ai j is
matched with the entry a′

i ′j
. The value of a λ-matching μ applied to the �-tuples a and

a′ is denoted by val(μ, a, a′) and is defined as
∑λ

j=1 ai j a
′
i ′j
.

We now want to create a new tuple from a and a′ and a λ-matching μ. A μ-
merge of a and a′ is a (2� − λ)-tuple whose j-th entry is ai j + a′

i ′j
for all j ∈ [λ].

The next � − λ entries contain the unmatched entries of a, and the last � − λ

entries contain the unmatched entries of a′, see Fig. 5 for an example. We obtain
a sorted μ-merge of a and a′ if we sort the entries of any μ-merge of a and a′
in ascending order. Observe that there might be several (unsorted) μ-merges of
a and a′, but there is only one sorted μ-merge. Given a λ-matching μ and two
�-tuples a and a′, we denote the sorted μ-merge of a and a′ by merge(μ, a, a′). We
denote the i-th entry of merge(μ, a, a′) by merge(μ, a, a′, i), for every i ∈ [2� − λ].
Property 1 Let G be a cograph with corresponding cotree T . A colouring c of T is
said to have Property 1 if, for every 0-node p of T with children q and r , the i-th
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Fig. 5 Left: The 3-matching
μ = ((1, 2), (3, 4), (4, 3))
visualized on the 4-tuples
a = (a1, . . . , a4) and
a′ = (a′

1, . . . , a
′
4). Right: A

corresponding μ-merge

a1

a2

a3

a4

a′
1

a′
2

a′
3

a′
4

a1 + a′
2

a3 + a′
4

a4 + a′
3

a2

a′
1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

largest colour class of Tq has the same colour as the i-th largest colour class of Tr for
all i ∈ [χ(Tp)], unless one of them is empty.

Lemma 5 Let G be a cograph with associated cotree T . Let d be a non-negative
integer. There is a (χ(G) − d)-colouring c of G with the minimum possible number
of monochromatic edges which satisfies Property 1.

Proof Let p ∈ V (T ) be a 0-node with children q and r . Suppose that there
is an i ∈ [χ(Tp)] such that the i-th largest colour class of Tq and the i-th
largest colour class of Tr are both non-empty and have different colours. Assume
further that i is the smallest such number. By construction of the cotree, all
vertices in Tp have the same neighbourhood in Tp. Denote by nq and nr the
number of vertices in Tp which have the same colour as the vertices in the
i-th largest colour class of Tq and Tr , respectively, and which are adjacent to the
vertices in Tp. Assume, without loss of generality, that nq ≥ nr . Denote by aq and ar
the number of vertices of the i-th largest colour class of Tq and Tr , respectively. Denote
by a′

q the number of vertices in Tq which have the colour of the i-th largest colour
class of Tr . Denote by a′

r the number of vertices in Tr which have the colour of the i-th
largest colour class of Tq . Observe that a′

q ≤ aq and a′
r ≤ ar , since we assumed that i

is the smallest index for which the i-th largest colour classes of Tq and Tr do not have
the same colour. There are nq(aq + a′

r ) + nr (ar + a′
q) monochromatic edges between

Tp and Tp whose endpoints have the colours of the i-th colour classes of Tq or Tr .
Recolour the vertices in the i-th largest colour class of Tq with the colour of the i-th
largest colour class of Tr . Similarly, recolour the vertices in Tq which have the colour
of the i-th largest colour class in Tr with the colour of the i-th largest colour class of Tq .
Observe that we only exchanged the colours of two colour classes in Tq . Thus, we can
only have changed the number ofmonochromatic edges between Tp and Tp which have
the colours of the i-th largest colour classes of Tp and Tq . After recolouring, this num-
ber is now nr (aq +ar )+nq(a′

q +a′
r ). The difference of the number of monochromatic

edges is nq(aq +a′
r )+nr (ar +a′

q)−nr (aq +ar )+nq(a′
q +a′

r ) = (nr −nq)(a′
q −aq),

which is the product of two non-positive numbers and thus non-negative. This shows
that the recolouring did not increase the number of monochromatic edges. Repeating
this step for each i ∈ [χ(Tp)] as above yields a colouring which satisfies Property 1
above.

Observe that if Property 1 holds for any descendant q of p in the original colouring,
then it still holds forq after the recolouring, since any twovertices inTq having the same
colour in the original colouring will still have the same colour after the recolouring
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step. We can thus apply the recolouring procedure starting at the leaves and working
our way up to the root. We end up with a colouring of the graph for which Property 1
holds for every node of the cotree. 
�
Lemma 6 Let G be a cograph with associated cotree T whose root p is a 1-node with
children q and r. Let a p = (a p

1 , . . . , a p
� ) be an �-tuple of non-negative integers and

let λ,Δ be non-negative integers. Assume that there is a (χ(Tp) − Δ)-colouring cp
of Tp for which the following four conditions hold:

– Property 1 holds,
– the i-th smallest colour class of cp has at most a

p
i vertices for every i ∈ [�],

– there are exactly λ colours which appear in both Tq and Tr ,
– cp has theminimumnumber ofmonochromatic edges of all (χ(Tp)−Δ)-colourings
of Tp which satisfy the first three conditions above.

Then, there is a (χ(Tp) − Δ)-colouring c′
p of Tp which satisfies all of the four

conditions above and this following condition, too:

– there is no j > � + λ such that the colour of the j-th smallest colour class of Tq
(or Tr ) appears in Tr (or Tq , respectively).

Proof Let cp be a (χ(Tp)−Δ)-colouring of Tp which satisfies the first four conditions
in the statement of the lemma. If there is no j > � + λ such that the j-th smallest
colour class of Tq shares its colour with some vertices in Tr , or vice versa, we are done.
If not, suppose, without loss of generality, that there are j > �+λ and j ′ such that the
j-th smallest colour class of Tq and the j ′-th smallest colour class of Tr have the same
colour. Besides the j-th smallest colour class, there are λ − 1 other colour classes in
Tq whose colour also appears in Tr . Since j ≥ � + λ + 1, there is an i ∈ [� + λ] such
that the i-th smallest colour class in Tq has a colour which does not appear in Tr and
which is not one of the � smallest colour classes of Tp. Recolour the vertices of the
i-th and the j-th smallest colour classes of cq by exchanging their colours. This does
not change the number of monochromatic edges with both ends in Tq . The number
of monochromatic edges between Tq and Tr cannot increase since the i-th smallest
colour class does not contain more vertices than the j-th smallest one. It follows that
the new colouring did not increase the number of monochromatic edges or the number
of colours used. Further, it did not change the sizes of the � smallest colour classes.
It is also clear that the new colouring still has Property 1. Repeating this process for
every j as above yields a colouring as desired. 
�
Theorem 8 For a fixed integer d, (χ(G) − d)-Monochromatic Edges is solvable
in polynomial time for cographs.

Proof LetG be a cographwith associated cotree T and let d ≤ χ(G) be a fixed integer.
For every � ∈ [0..d] and every node p ∈ V (T ), we define a function f p� which takes
as input an �-tuple of non-negative integers a p = (a p

1 , . . . , a p
� ) with a p

i ≤ a p
j , for

every i ≤ j , and a non-negative integer Δ with Δ ≤ d − �.
Below, we will give a definition of f pl and show that its output can be computed in

polynomial time. Then, we will show the following claim:
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Claim. Let � ∈ [d], p ∈ V (T ) be such that (a p,Δ) is a valid input of f p� . Then,
f p� (a p,Δ) is the smallest number of monochromatic edges of all (χ(Tp) − Δ)-
colourings of Tp which have Property 1 and whose i-th smallest colour class has
size at most a p

i , for all i ∈ [�].
Observe that the correctness of the claim would show the theorem: Indeed, let s be

the root of T and () an empty tuple of length 0. The correctness of the claim implies
that f s0 ((), d) is the smallest number of monochromatic edges that any (χ(G) − d)-
colouring of G satisfying Property 1 can have. It follows then from Lemma 5 that this
coincides with the smallest number of monochromatic edges amongst all (χ(G)−d)-
colourings of G.

We will now give the definition of f pl . If p is a leaf, then f p� will output 0 for every
� and every input. If p is not a leaf, let q and r be the children of p. Let � and Δ be
non-negative integers with � + Δ ≤ d and let a p = (a p

1 , . . . , a p
� ) be an �-tuple as

above.
If p is a 0-node, then assume, without loss of generality, that χ(Tq) ≥ χ(Tr ) and

let δ = χ(Tq) − χ(Tr ).
We distinguish the following three cases:
Case 1: If Δ ≥ δ we set

f p� (a p,Δ) = min
aq ,ar∈[0..n]�

aqi +ari ≤a p
i ,i∈[�]

f q� (aq ,Δ) + f r� (ar ,Δ − δ).

Case 2: If Δ < δ and Δ + � ≥ δ we set

f p� (a p,Δ) = min
aq ,ar∈[0..n]�−δ+Δ

aqδ−Δ+i+ari ≤a p
δ−Δ+i ,i∈[�−δ+Δ]

f q� (a p
1 , . . . , a p

δ−Δ, aq ,Δ) + f r�−δ+Δ(ar , 0).

Case 3: If Δ < δ and Δ + � < δ we set

f p� (a p,Δ) = f q� (a p,Δ).

If p is a 1-node, then

f p� (a p,Δ) = min
Δq ,Δr ,λ≥0

Δq+Δr+λ=Δ

aq ,ar∈[0..n]�+λ

μλ−matching of (�+λ)-tuples
merge(μ,aq ,ar ,i)≤a p

i ,i∈[�]

f q�+λ(a
q ,Δq) + f r�+λ(a

r ,Δr ) + val(μ, aq , ar ).

This defines the values of f p� for every � ∈ [0..d] and p ∈ V (T ). Observe that
for every f p� , there are at most (n + 1)�(d − � + 1) possible inputs. In order to
compute the value of f p� for one of them,we consider atmost (n + 1)2(�+Δ) = O(n2d)
possible pairs of tuples aq and ar if p is a 0-node. Analogously, there are at most
Δ3n2(�+λ)�2λ = O(n2d) choices for Δq ,Δr , λ, aq , ar and μ if p is a 1-node. Thus,
we can compute the function f p� in polynomial time.

123



Algorithmica

aq
3

aq
2

aq
1

ar
3

ar
2

ar
1

δ
Δ

�

χ(Tq)

χ(Tr)

Tq Tr

(a) Case 1: Δ ≥ δ
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(b) Case 2: Δ < δ
and Δ + � ≥ δ
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χ(Tq)

χ(Tr)

Tq Tr

(c) Case 3: Δ < δ
and Δ + � < δ

Fig. 6 Illustration of the relation between δ, Δ and � in the three cases we consider in the proof if p is
a 0-node. We represent a (χ(Tp) − Δ)-colouring with Property 1 as a χ(Tp)-colouring with Property 1
whose smallest Δ colour classes are empty. Each ellipse represents a colour class in Tq or Tr and they are
sorted ascendingly in size from top to bottom. By Property 1, two horizontally adjacent ellipses correspond
to the same colour class in Tp

It remains to show the correctness of the claim.
Proof of the Claim. Let p ∈ V (T ) and let � and Δ be non-negative integers with

� + Δ ≤ d and a p = (a p
1 , . . . , a p

� ) ∈ [0..n]�.
Observe first that the value of f p� is correct when p is a leaf since then there are

no edges in Tp. If p is not a leaf let q and r be the children of p and assume that the
claim holds for q and r .

Let cp be a (χ(Tp) − Δ)-colouring of Tp which satisfies Property 1, whose i-th
smallest colour class has at most a p

i vertices, for every i ∈ [�], and which has the
smallest number of monochromatic edges amongst all such colourings. We need to
show that the number of monochromatic edges of cp, which we denote by mp, is
identical to the value of f p� (a p,Δ). Let cq and cr be the colourings which we obtain
by restricting cp to Tq and Tr , respectively. LetΔq be an integer such that χ(Tq)−Δq

is the exact number of colours we use in cq . We define Δr analogously. For every
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i ∈ [�], denote by aqi and ari the number of vertices of the i-th smallest colour class of
cq and cr , respectively. Observe that the i-th smallest colour classes of cq and cr do not
necessarily have the same colour. Let mq and mr be the numbers of monochromatic
edges of cq and cr , respectively.

Assume first that p is a 0-node, set δ = χ(Tq) − χ(Tr ) and assume without loss
of generality that δ ≥ 0. Recall that χ(Tp) = χ(Tq) and mq + mr = mp, since p is
a 0-node. It follows from Property 1 that for every i > χ(Tr ), the i-th largest colour
class of cp is entirely contained in Tq . To prove the claim, we distinguish the following
three cases, see Fig. 6 for an illustration.

Case 1: Δ ≥ δ

We first show that f p� (a p,Δ) ≤ mp. The colouring cp uses χ(Tq) − Δ colours
on Tp. We have that χ(Tq) − Δ = χ(Tr ) − (Δ − δ) ≤ χ(Tr ). It follows that cq
is a (χ(Tq) − Δ)-colouring of Tq and cr is a (χ(Tr ) − (Δ − δ))-colouring of Tr .
By Property 1 we know that the i-th largest colour class of cp on Tp consists of
the i-th largest colour class of cq and the i-th largest colour class of cr , for every
i ∈ [χ(Tq) − Δ]. This implies in particular that a p

i ≥ aqi + ari for every i ∈ [�].
We have that cq is a (χ(Tq) − Δ)-colouring of Tq whose i-th smallest colour class

contains aqi vertices and that the claim holds for q. It follows that f q� (aq ,Δ) ≤ mq

and analogously f r� (ar ,Δ − δ) ≤ mr . Hence

f p� (a p,Δ) ≤ f q� (aq ,Δ) + f r� (ar ,Δ − δ) ≤ mq + mr = mp.

It remains to show that f p� (a p,Δ) = mp. We suppose for a contradiction that
there are aq , ar ∈ [0..n]� such that aqi + ari ≤ a p

i , for all i ∈ [�], and f p� (a p,Δ) =
f q� (aq ,Δ) + f r� (ar ,Δ − δ) < mp. Since the claim holds for q and r , it follows that
there is a (χ(Tq) − Δ)-colouring c′

q of Tq and a (χ(Tr ) − (Δ − δ))-colouring c′
r of

Tr , such that:

– c′
q and c′

r both have Property 1,
– the i-th smallest colour class of c′

q (c′
r , respectively) contains at most aqi vertices

(ari vertices, respectively), for each i ∈ [�],
– the sum of the number of monochromatic edges in c′

q and c′
r is strictly less than

mp.

Construct a (χ(Tp) − Δ)-colouring c′
p of Tp with Property 1 such that the i-th

largest colour class of c′
p contains exactly the vertices of the i-th largest colour class

of c′
q and the vertices of the i-th largest colour class of c′

r , for every i ∈ [χ(Tq) − Δ].
It follows that the size of the i-th smallest colour class of c′

p is at most a p
i , for every

i ∈ [�]. Since p is a 0-node, the number of monochromatic edges of c′
p is exactly the

sum of the numbers of monochromatic edges of c′
q and c′

r and thus less than mp. By
construction, c′

p has Property 1. Thus, c
′
p is a (χ(Tp)−Δ)-colouring of Tp which has

Property 1, whose i-th smallest colour class has size at most a p
i , for every i ∈ [�], and

which has less monochromatic edges than cp, a contradiction to the choice of cp.
Case 2: Δ < δ and Δ + � ≥ δ

Again we first show that f p� (a p,Δ) ≤ mp. Since cp uses χ(Tq) − Δ colours,
it follows from Property 1 that the smallest χ(Tq) − Δ − χ(Tr ) = δ − Δ colour
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classes of cp are entirely contained in Tq . Thus, a
q
i ≤ a p

i , for each i ∈ [δ − Δ].
Further, cr uses χ(Tr ) colours. For every i ∈ {δ − Δ + 1, . . . , �}, the i-th smallest
colour class of c consists of the i-th smallest colour class of cq and the (i − δ + Δ)-
th smallest colour class of cr . It follows that a

p
i ≥ aqi + ari−δ+Δ. This implies that

f q� (a p
1 , . . . , a p

δ−Δ, aqδ−Δ+1, . . . , a
q
� ,Δ) ≤ f q� (aq ,Δ) ≤ mq and f r�−δ+Δ(ar , 0) ≤

mr . It follows that

f p� (a p,Δ) ≤ f q� (a p
1 , . . . , a p

δ−Δ, aqδ−Δ+1, . . . , a
q
� ,Δ) + f r�−δ+Δ(ar , 0)

≤ mq + mr = mp.

It remains to show that f p� (a p,Δ) = mp. Again,we suppose for a contradiction that
there are aq , ar ∈ [0..n]�−δ+Δ such that aqi+δ−Δ+ari ≤ a p

i+δ−Δ, for all i ∈ [�−δ+Δ],
and f q� (a p

1 , . . . , a p
δ−Δ, aq ,Δ) + f r�−δ+Δ(ar , 0) < mq + mr . Since we assumed that

the claim holds for q and r , it follows that there is a (χ(Tq) − Δ)-colouring c′
q of Tq

and a χ(Tr )-colouring c′
r of Tr such that

– c′
q and c′

r both have Property 1,
– the i-th smallest colour class of c′

q contains at most a p
i vertices, for every i ∈

[δ − Δ],
– the (i + δ − Δ)-th smallest colour class of c′

q contains at most aqi+δ−Δ vertices,
for each i ∈ [� − δ + Δ],

– the i-th smallest colour class of c′
r contains at most ari vertices, for each i ∈

[� − δ + Δ],
– the sum of monochromatic edges in c′

q and c′
r is less than mq + mr .

Construct a (χ(Tq) − Δ)-colouring c′
p of Tp with Property 1 as follows:

– for every i ∈ [δ − Δ], the i-th smallest colour class of c′
p contains exactly the

vertices of the i-th smallest colour class of c′
q ,

– for every i ∈ {
δ − Δ + 1, . . . , χ(Tq) − Δ

}
, the i-th smallest colour class of c′

p
contains exactly the vertices of the i-th smallest colour class of c′

q and the vertices
of the (i − δ + Δ)-th smallest colour class of c′

r .

It follows that the size of the i-th smallest colour class of c′
p has size at most a p

i ,
for every i ∈ [�]. It is also clear that the number of monochromatic edges of c′

p is
exactly the sum of the numbers of monochromatic edges of c′

q and c
′
r and thus less than

mq + mr . So c′
p is a (χ(Tq) − Δ)-colouring of Tp which has Property 1, whose i-th

colour class has size at most a p
i , for every i ∈ [�], and which has less monochromatic

edges than cp, a contradiction to the choice of cp.
Case 3: Δ < δ and Δ + � < δ

In this case, the colours used in the � smallest colour classes of c do not appear in
Tr . Clearly, f r� (ar ,Δ) = 0 and thus f p� (a p,Δ) ≤ f q� (aq ,Δ) + f r� (ar ,Δ) ≤ mq .

Suppose for a contradiction that f q� (aq ,Δ) < mq . Then, there is a (χ(Tq) − Δ)-
colouring c′

q of Tq with Property 1 such that the i-th smallest colour class of c′
q contains

at most a p
i vertices, for each i ∈ [�], and the number of monochromatic edges of c′

q is
less than mq . Let c′

r be a proper colouring of Tr with Property 1 using χ(Tr ) colours.
Construct a (χ(Tp) − Δ)-colouring c′

p of Tp with Property 1 as follows:
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– for each i ∈ [δ − Δ], the i-th smallest colour class of c′
p contains exactly the

vertices of the i-th smallest colour class of c′
q ,

– for i ∈ {δ − Δ + 1, . . . , χ(Tr ) − Δ}, the i-th smallest colour class of c′
p contains

exactly the vertices of the i-th smallest colour class of c′
q and the (i − δ + Δ)-th

smallest colour class of c′
r .

Since � < δ −Δ, it follows that the � smallest colour classes of c′
p are all contained

in Tq . Thus, c′
p is a (χ(Tp) − Δ)-colouring of Tp whose i-th smallest colour class

contains at most a p
i vertices, for each i ∈ [�]. Since the number of monochromatic

edges of c′
p is equal to the number of monochromatic edges of c′

q , it follows that c
′
p

has less monochromatic edges than cp, a contradiction. This completes the third case
and thus the claim holds for p if p is a 0-node.

Assume that p is a 1-node. Let λ be the number of colours that are used by both cq
and cr . Following Lemma 6 we can assume that only the �+λ smallest colour classes
have colours which appear in both Tq and Tr . The number of colours used by cp is
χ(Tq)−Δq +χ(Tr )−Δr −λ = χ(Tp)−(Δq +Δr +λ), and soΔq +Δr +λ = Δ. Let
μ be a λ-matching on tuples of length � + λ which matches i with j if and only if the
i-th smallest colour class of cq and the j-th smallest colour class of cr have the same
colour. It follows that merge(μ, (aq1 , . . . , aq�+λ), (a

r
1, . . . , a

r
�+λ), i) is the size of the i-

th smallest colour class of cp, for every i ∈ [�]. Observe that cq (and cr , respectively) is
a (χ(Tq)−Δq)-colouring of Tq with Property 1 (or a (χ(Tr )−Δr )-colouring of Tr with
Property 1, respectively) whose i-th colour class has exactly aqi vertices (ari vertices,
respectively), for every i ∈ [� + λ]. Thus, by the assumption that the claim holds for
q and r , f q�+λ((a

q
1 , . . . , aq�+λ),Δq) ≤ mq and f r�+λ((a

r
1, . . . , a

r
�+λ),Δr ) ≤ mr . It is

easy to see that the number of monochromatic edges of cp ismq +mr +val(μ, aq , ar ).
This implies that f p� (a,Δ) is less than or equal to the number of monochromatic edges
of cp.

Suppose for a contradiction that f p� (a,Δ) is strictly smaller than the number of
monochromatic edges of cp. This implies that there are

– Δ′
q ,Δ

′
r , λ

′ ≥ 0 with Δ′
q + Δ′

r + λ′ = Δ,

– tuples bq , br ∈ [0..n]�+λ′
,

– a λ′-matching μ′ of (� + λ′)-tuples such that merge(μ′, bq , br )i ≤ a p
i , for each

i ∈ [�], and
– f q�+λ(b

q ,Δ′
q)+ f r�+λ(b

r ,Δ′
r )+ val(μ′, bq , br ) is strictly less than the number of

monochromatic edges of cp.

By the assumption of correctness of the claim for q and r , there are

– a (χ(Tq) − Δ′
q)-colouring c′

q of Tq with Property 1,
– a (χ(Tr ) − Δ′

r )-colouring c′
r of Tr with Property 1, such that

– the number of monochromatic edges of c′
q and c′

r are m
′
q and m′

r , respectively,
– the i-th smallest colour class of c′

q (or of c′
r , respectively) has at most bqi vertices

(bri vertices, respectively), for each i ∈ [� + λ],
– m′

q +m′
r +val(μ′, bq , br ) is strictly less than the number of monochromatic edges

of cp.

Construct a (χ(Tp) − Δ)-colouring c′
p of Tp with Property 1 as follows:
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– Two vertices in Tq (in Tr , respectively) obtain the same colour if and only if they
obtain the same colour by c′

q (by c′
r , respectively).

– Let wq ∈ Tq and wr ∈ Tr be two vertices which are contained in the
i-th smallest colour class of c′

q and in the i
′-th smallest colour class of Tr , respec-

tively. They obtain the same colour if and only if i and i ′ are both at most � + λ′
and μ′ matches i with i ′.

It follows immediately from the definition of this newcolouring that c′
p is a (χ(Tp)−

Δ)-colouring of Tp with Property 1 such that its i-th smallest colour class contains at
most a p

i vertices, for every i ∈ [�]. Further, it has less monochromatic edges than cp,
a contradiction to the choice of cp. This shows the claim. 
�

5.2 Hardness Proofs

Theorem 9 Monochromatic Edges is NP-hard for complete multipartite graphs.

Proof Wereduce fromMinimum Sum of Squares,which takes as input an integer �,
an �-tuple a = (a1, . . . , a�) of integers, an integer h and an integer J . It asks whether
[�] can be partitioned into h sets Ai , i ∈ [h], such that

h∑

i=1

⎛

⎝
∑

j∈Ai

a j

⎞

⎠

2

≤ J .

It was shown in [12] that this problem is NP-hard, when we consider
∑

j∈[�] a j as the
size of an instance. Given an instance (�, a, h, J ) of Minimum Sum of Squares,
we set D = 1

2

∑�
j=1 a

2
j . We construct a complete multipartite graph G as follows:

for every j ∈ [�], let Uj be a set of a j vertices such that Uj and Uj ′ are disjoint
for every j, j ′ ∈ [�], j �= j ′. Set V (G) = ⋃

j∈[�] Uj and let E(G) be such that
two vertices v ∈ Uj and w ∈ Uj ′ are adjacent if and only if j �= j ′. We claim
that (G, h, 1

2 J − D) is a Yes-instance for Monochromatic Edges if and only if
(�, a, h, J ) is a Yes-instance for Minimum Sum of Squares.

Assume first that (G, h, 1
2 J − D) is a Yes-instance forMonochromatic Edges.

We know from Lemma 4 that there is an h-colouring c of G minimizing the number
of monochromatic edges such that |c(Uj )| = 1, for every j ∈ [�].

For every i ∈ [h], let Ai ⊆ [�] be such that j ∈ [�] is contained in Ai if and only
if the vertices of Uj are coloured with colour i .

Then the number of monochromatic edges whose both ends are coloured with
colour i equals 1

2 (
∑

j∈Ai
a j )

2 − ∑
j∈Ai

a2j and the total number of monochromatic
edges is

1

2

h∑

i=1

⎛

⎜
⎝

⎛

⎝
∑

j∈Ai

a j

⎞

⎠

2

−
∑

j∈Ai

a2j

⎞

⎟
⎠ = 1

2

h∑

i=1

⎛

⎝
∑

j∈Ai

a j

⎞

⎠

2

− D.
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Thus,
h∑

i=1

⎛

⎝
∑

j∈Ai

a j

⎞

⎠

2

≤ 2

(
1

2
J − D + D

)

= J .

It follows that (�, a, h, J ) is a Yes-instance for Minimum Sum of Squares.
Assume now that (�, a, h, J ) is a Yes-instance for Minimum Sum of

Squares. For every j ∈ Ai , i ∈ [h], we colour the corresponding vertex set Uj

in G with colour i . As above, the number of monochromatic edges between vertices

with colour i is 1
2

∑h
i=1

(∑
j∈Ai

a j

)2 − D ≤ 1
2 J − D.

Thus, (G, h, 1
2 J − D) is a Yes-instance for Monochromatic Edges. 
�
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copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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