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Introduction

Rapid advances in new technologies are poised to shape the future of labor markets, fueling concerns

that the automation of labor through robots and artificial intelligence is going to displace millions of

workers in the near future (Brynjolfsson and McAfee, 2014, Susskind, 2020). Although technological

change is also creating millions of new occupations (Autor et al., 2021), skill mismatches are likely

to prevent displaced workers from performing these jobs (Jaimovich et al., 2020, Restrepo, 2015).

This is an issue with profound implications, since displaced workers may leave the labor market to

seek alternative sources of income (Ford, 2015).

This thesis investigates the effects of the introduction of industrial robots – one of the leading

automation technologies of the last decades – on US local labor markets. Pioneering work of

Acemoglu and Restrepo (2020) has shown that industrial robots have negative effects on employment

and wages of workers in the US. This finding has been the starting point for a broad stream of

research studying the impact of robots on different aspects of individuals’ professional and private

lives, providing evidence that progress in automation technologies is not only shaping labor markets,

but societies as a whole. In particular, robots have been shown to affect voting behavior (Anelli et

al., 2019), physical and mental health (Gihleb et al., 2022), job reshoring (Bonfiglioli et al., 2020,

Faber, 2020), family and fertility behavior (Anelli et al., 2021), and internal migration flows (Faber

et al., 2022). However, little is known about how these effects are spreading across the population,

and where workers who have been displaced from the labor market end up. These questions are

addressed in the three chapters of this thesis.

The first chapter studies how the introduction of industrial robots has affected the employ-

ment prospects across demographic groups, focusing on the development of the gender and the

race/ethnicity employment gap. I find that robots have decreases employment among all demo-

graphic groups, but relatively more for men and racial/ethnic minorities than for women and whites,

contributing to the secular decline in the gender employment gap, but increasing the race/ethnicity

employment gap. These effects are driven by the persistent occupational segregation in the US labor

market, as men and minorities are over-represented in blue-collar jobs which require physical skills

that can be easily automated. Although robots are mostly adopted in the manufacturing sector, I

find that their adverse effects spill over also to local service industries, in particular for Blacks and
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Hispanics.

The second chapter investigates the margins of adjustment of workers after they get displaced

by the introduction of industrial robots. I show that almost eight percent of the non-participants

respond by enrolling in college, 10.5 percent claim disability benefits, and 40 percent retire early.

The residual non-participants rely on income from their household members or live off their savings.

These margins differ with the socio-demographic characteristics of individuals. My results further

show that the rising disability take-up has been fueled by a deterioration of non-participants’ health

conditions, including self-reported health issues and hospitalization rates related to severe mental

disorders and substance abuse.

The third chapter analyzes the link between automation and education in more detail. I find

that the exposure to robots increases enrollment rates in community colleges. This finding goes

beyond the effect on non-participation, including also individuals who are unemployed or employed

part-time. Graduation rates of enrolled students are not affected significantly by the shock. How-

ever, I observe a shift in graduations towards more applied fields, such as Computer Science and

Engineering. I show that these results are driven by low-skilled individuals who invest in human

capital as a form of self-insurance against the risks of automation (due to lower opportunity costs of

schooling), rather than due to increases in the college wage premium, as supposed by the skill-biased

technological change literature.
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Chapter 1

From Blue to Steel-Collar Jobs:
The Decline in Employment Gaps?

1 From Blue to Steel-Collar Jobs: The Decline in Employment

Gaps?
1.1 Introduction

Technological progress in robotics and artificial intelligence is poised to shape the future of labor

markets, fueling concerns that advances in automation are going to displace millions of workers in

the coming years (Brynjolfsson and McAfee, 2014, Susskind, 2020). Despite the growing importance

of these technologies, little is known about how their effects are spreading across the population and

how they affect labor market outcomes across demographic groups. This paper addresses this policy-

relevant question by investigating the impact of industrial robots, one of the leading automation

technologies of the last decades, on gender and race/ethnicity employment differentials in the US

labor market.

Industrial robots are machines that can be programmed to autonomously perform blue-collar

work in the manufacturing sector. Between 1993 and 2014, the stock of robots in the US has

increased by more than 180,000 units, displacing thousands of workers from so-called “steel-collar

jobs” (Acemoglu and Restrepo, 2020).1 Whether and why their introduction has had a different

impact on the employment prospects of men, women, whites and non-whites remains an open

question.

Demographic-specific employment rates have fluctuated substantially since the 1980s. As doc-

umented in Figure 1.1, the gender and the race/ethnicity employment gap have both experienced

a secular decline, but still persist in recent years. These trends follow from decades of declining

employment among men and increasing employment among women (Goldin, 2006), as well as the

fact that employment levels among racial/ethnic minorities have been slowly catching up with those
1 The term “steel-collar jobs” was first coined in the early 1980s to refer to the increasing threat of industrial robots
to blue-collar jobs in US manufacturing, since robots are well suited to perform these jobs and steel is one of the
main materials from which they are made.
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Figure 1.1: Trends in employment

Panel A: Gender Panel B: Race and ethnicity

Notes: This figure illustrates employment rates and gaps by gender and race/ethnicity in the US between 1980 and 2019 using
data from the Annual Social and Economic Supplement (ASEC) of the Current Population Survey (CPS) (Flood et al., 2020).
To correct for secular demographic change which has influenced employment rates since the 1980s, I fix the age and education
profile of the population at its levels in 1980. Specifically, I build employment rates within subgroups of the population using
5-year age groups (25-29 years, 30-34 years, 35-39 years, ...) and two education groups (with and without a college education)
for each year and compute the aggregate employment rate as a weighted average of these rates, keeping the subgroup population
shares constant at their 1980 levels.

of whites since the 1990s.2 In addition, the US labor market is also characterized by a persistent

industrial and occupational segregation across demographic groups. In particular, men and non-

white workers are more likely to be employed in blue-collar manufacturing jobs, which exposes them

to a higher risk of automation through robots. Women and white workers, on the other hand, are

often employed in occupations that require more cognitive and less physical skills, which are more

difficult to automate (Acemoglu and Autor, 2011). I document these patterns using data from the

US Census and the American Community Survey (ACS) matched with occupational data from the

Dictionary of Occupation Titles (DOT).

To investigate the impact of robots on the employment prospects of different demographic

groups, I match Census and ACS data with industry-level data about the adoption of robots from

the International Federation of Robotics (IFR). I conduct a local labor market level analysis using

commuting zones (CZs) as proxies for US local labor markets (Tolbert and Sizer, 1996). Following

Acemoglu and Restrepo (2020), I build a measure of robot exposure using a shift-share approach

that interacts baseline industry employment shares within local labor markets with the introduction

of robots in the US. Identification builds on the assumption that advances in robotics vary by indus-

try and expose local labor markets differently based on their industrial composition of employment.
2 I use the terms “racial and ethnic minorities” and “non-whites” interchangeably. These include Blacks, Hispanics,
Asians, American Indian, Alaska Natives and other not elsewhere classified races.
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I account for endogeneity concerns from domestic demand shocks and identify robot adoption that

is driven by exogenous advances in robotics using an instrumental variables strategy. The shift

component is instrumented using the simultaneous adoption of robots in Europe and the share

component uses plausibly exogenous industry employment shares that precede the introduction of

industrial robots in the 1980s.

In line with Acemoglu and Restrepo (2020), I show that robot exposure has decreased employ-

ment and wages in the US labor market, but I find significant heterogeneity in the effect across

demographic groups. First, I find that one additional robot per thousand workers displaces men

more than twice as often as women, decreasing local employment rates by 2.34 and 1.04 percentage

points, respectively, and contributing to the secular decline in the gender employment gap.3 This

effect is driven by workers without a college education who are employed in steel-collar jobs (i.e.

blue-collar manufacturing jobs). I find that college-educated workers are also negatively affected in

their employment prospects by the use of robots, but that the effect is smaller and does not differ

significantly by worker gender.

Although a narrowing employment gap appears to be beneficial for the achievement of gender

equality, it is important to consider that this effect is driven by an employment loss that is relatively

larger for men than for women, an outcome that is far from desirable. This finding is also visible

in the analysis of the impact of robots on wages, with men experiencing a decline in their average

wage level which exceeds that of women by almost 0.35 percent, as documented also in Ge and Zhou

(2020).

Second, I find that robots widen the race and ethnicity employment gap, slowing its secular

decline. Specifically, I show that one additional robot per thousand workers decreases the local

employment rate of whites by 1.16 percentage points and that of racial/ethnic minorities by 2.87

percentage points. In other words, the impact of robots on employment is about two-and-a-half

times stronger for non-whites than for whites, a result borne by Black and Hispanic workers and

that does not depend on whether they were born in the US or abroad. These findings are again

driven by blue-collar workers without a college education.
3 Displaced workers are individuals who do not find a job or who lost their job directly or indirectly due to the
adoption of robots. The repeated cross-sectional nature of the data does not allow me to disentangle direct from
indirect displacement effects of robots, since I am tracing local labor markets rather than the career trajectories of
individual workers.
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Although industrial robots are primarily used in the manufacturing sector, their impact on the

labor market is not limited to these industries. This result is likely to follow from a reduction

in manufacturing employment which contracts aggregate demand in the local economy, decreasing

also the demand for labor in industries that are not directly affected by the shock (Acemoglu and

Restrepo, 2020, Faber et al., 2022, Helm, 2020).

Interestingly, I find no significant differences in the negative effect of robot exposure on manu-

facturing employment by race and ethnicity, but I do find differences in how the effect spills over to

the local service sector, where minorities suffer from greater employment losses relative to whites.

This result could be fueled by two channels. First, displaced manufacturing workers who are white

are more likely to be re-employed in the service sector than non-whites due to a comparative skill

advantage in these jobs (Kletzer, 1991). Second, the labor market effects of robots cannot be ex-

plained using observables and might be the result of discrimination against minorities in these jobs

(Bertrand and Mullainathan, 2004).

Finally, I show that, despite robots are widening the employment gap, they are decreasing the

race/ethnicity wage gap by 1.28 percent. This result is due to a decline in the average wage level

of white workers, while the wages of non-whites are unaffected by robot exposure. A plausible

explanation for this result is again that middle-skilled white workers who have been displaced by

robots are more likely to be re-employed in low-paying service sector jobs, contributing to the

increasing job polarization of the US labor market (Autor and Dorn, 2013), while Blacks and

Hispanics are more likely to drop out of the labor force (Lerch, 2020), leaving their average wages

unaffected.

To pin down the mechanism through which the introduction of robots affects employment across

demographic groups, I use a simple Roy model with heterogeneous individuals and endogenous job

sorting in which workers compete with robots in the execution of tasks (Roy, 1951). Based on the

patterns observed in the data, robots are relative substitutes of brawn labor, in which men have a

comparative advantage, and they are relative complements to brain labor, in which racial/ethnic

minorities have a comparative disadvantage.4

4 Men have a biologically rooted comparative advantage in physical skills compared to women (Ngai and Petron-
golo, 2017, Rendall, 2017), while racial and ethnic minorities suffer from persistent discrepancies in educational
attainment caused by generations of labor market discrimination, giving them a comparative disadvantage in cog-
nitive skills compared to whites (Alesina et al., 2001, Altonji and Blank, 1999, Cook, 2014, Derenoncourt, 2022,
Derenoncourt et al., 2022).
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The model shows that as robot capital accumulates, firms demand less brawn labor, since robots

become a relatively cheaper substitute of human labor (displacement effect), and they demand

more brain labor, since robots complement human labor in these tasks (productivity effect). The

impact of robots on employment is ambiguous and depends on which of these two effects prevails.5

Nevertheless, the model shows that robots unambiguously reduce the gender employment gap and

increase the race/ethnicity employment gap, because women benefit from a stronger productivity

effect than men and non-whites suffer from a larger displacement effect than whites.

The rest of the paper is organized as follows. Section 1.2 presents the related literature. Section

1.3 describes the data. Section 1.4 presents the identification strategy. Section 1.5 shows the

empirical results. Section 1.6 discusses the mechanism through which robots affect the demand for

human skills and the employment gaps. Section 1.7 concludes.

1.2 Literature

This paper contributes to the growing number of studies on the disruptive effects of technological

progress on the labor market and the demand for human skills. The debate over the influence

of the use of new technologies on the occupational structure has long been dominated by the

assumption that technological change favors highly skilled occupations (Goldin and Katz, 2009,

Katz and Murphy, 1992, Krueger, 1993). Recent evidence argues, however, that labor markets are

instead experiencing an increasing job polarization, suggesting that new technologies are primarily

displacing workers employed in middle-skill occupations (Acemoglu, 1999, Goos et al., 2009, Goos

and Manning, 2007). This finding stems from the fact that automation is increasingly taking over

jobs with a large routine task content, but that it is not yet able to perform jobs that require creative,

problem-solving and coordination skills (Acemoglu and Autor, 2011, Autor and Dorn, 2013, Autor

et al., 2003).

At the same time, rapid advances in robotics and artificial intelligence are fueling concerns

that technological change could displace millions of workers from the labor market in the coming

years (Brynjolfsson and McAfee, 2014, Ford, 2015, Frey and Osborne, 2017). In line with these

concerns, Acemoglu and Restrepo (2020) show that the introduction of industrial robots in the US
5 The empirical results show that the displacement effect outweighs the productivity effect among all demographic
groups.
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has decreased aggregate employment and wages between 1993 and 2007. They estimate that each

additional robot adopted in a local labor market has displaced about six workers. Among others,

robots have been shown to affect also voting behavior (Anelli et al., 2019), physical and mental

health (Gihleb et al., 2022), job reshoring (Bonfiglioli et al., 2020, Faber, 2020), family and fertility

behavior (Anelli et al., 2021), and internal migration flows (Faber et al., 2022). However, little is

known about how their effects are distributed across the population, and about their implications

for the increasing inequality in the labor market.6

Related to this paper, recent work by Ge and Zhou (2020) studies the effect of robots on

pay differences between men and women in the US. The authors find that the adoption of robots

decreases average wages and that the reduction is stronger for men than for women, narrowing the

gender wage gap.7 These findings are in line with Bacolod and Blum (2010) and Yamaguchi (2018),

who argue that the gender gap is strongly influenced by the relative price of the skills in which

men and women have a comparative advantage. Although this is not the main focus on the paper,

I briefly replicate their results on the gender wage gap and further analyze how the introduction

of robots has affected the race/ethnicity wage gap. To my knowledge, this is the first study that

analyzes the impact of automation on wage inequality by race and ethnicity.

Despite the insightful results on gender pay differences, the heterogeneous impact of robots on

the extensive margin of employment of men and women remains unclear. Anelli et al. (2021) address

this question when investigating the effect of robots on marital status and fertility behavior, but

they do not find significant differences in the impact on employment by gender in the short term.

This result is likely to follow from the fact that labor markets need some time to adjust to the shock.

This paper departs from their work as it explores the long-term impacts of robotics on the gender

employment gap and, based on the industrial and occupational segregation observed in the data,

investigates the mechanism through which the adoption of industrial robots affects employment
6 The adverse effects of robots on employment are less visible in European countries (including countries with high
robot intensity such as Germany and Italy), where the displacement of low-skilled manufacturing workers is almost
fully compensated by the employment growth in other jobs (Dauth et al., 2021, Dottori, 2020, Graetz and Michaels,
2018). However, even if there are no aggregate effects in these countries, technological change may still affect the
composition of labor markets, as many of the newly created jobs are unlikely to be performed by the displaced
workers due to a skill mismatch.

7 This trend is different among European countries, where robots have a positive effect on wages of medium- and high-
skill jobs in which women are usually under-represented (Aksoy et al., 2021, Pavlenkova et al., 2021). This result is
not surprising given the fact that the adoption of robots in European countries is mainly causing a reallocation of
human labor across industries and occupations with negligible effects on aggregate employment, with the exception
of France (Acemoglu et al., 2020, Bonfiglioli et al., 2020).
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opportunities for men and women.

Also related to this paper, Acemoglu and Restrepo (2020) show that the adverse long-term effects

of robots on employment are larger for men, but they do not analyze the underlying mechanism that

leads to this result either. This paper further adds to this literature by analyzing the heterogeneous

impact of industrial robots on employment across race and ethnicity groups, an important issue

that has not been studied so far.8

I also contribute to the literature that studies the determinants of labor market inequalities

by gender, race and ethnicity. In the US, employment and wage gaps are declining since the

implementation of the Civil Right Act in 1964, but they are still highly persistent. A vast body

of the literature argues that inequalities persist because of discriminatory reasons (see Guryan and

Charles (2013) for a review) and labor supply factors (Altonji and Blank, 1999, Blau and Kahn, 2017,

Marianne, 2011). However, recent evidence suggests that also demand-side factors, such as the rise

of the service economy, are increasingly important determinants of the existence and development

of pay differences and employment gaps (Ngai and Petrongolo, 2017, Petrongolo and Ronchi, 2020).

A striking example is the rise of white-collar jobs in the service sector through the diffusion of

information and communication technologies (ICT). The transition towards these occupations has

favored the employment opportunities of women, reducing substantially the gender employment

gap (Bacolod and Blum, 2010, Beaudry and Lewis, 2014, Black and Spitz-Oener, 2010, Blau, 1998,

Cortes et al., 2020, Olivetti and Petrongolo, 2016, Weinberg, 2000). This trend may not persist

in the future though, since these jobs are also increasingly threatened by the risks of automation

(Brussevich et al., 2019, Chuan and Zhang, 2021, Ge and Zhou, 2020). I contribute to this literature

by providing evidence on the impact of industrial robots, an increasingly important demand-side

factor which is poised to shape the composition of labor markets, on the secular decline of the

employment gaps in the US, both by gender and race/ethnicity.
8 To date, there is only descriptive evidence about the over-representation of Blacks and Hispanics in jobs at the
lower end of the skill distribution (Couch and Daly, 2002, King, 1992), suggesting that these workers may be more
exposed to the adverse effects of automation than whites in the coming decades (Cook et al., 2019, Muro et al.,
2019).
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1.3 Data

This section describes the main data sources along with a set of summary statistics on secular trends

in robot adoption and the occupational and industrial segregation of the US labor market.

1.3.1 Industrial robots

I obtain data about the adoption of robots from the International Federation of Robotics (IFR,

2018). The IFR is a survey that collects data on the shipment and operational stock of industrial

robots by country, industry and year ranging back to 1993 for 50 countries.9

Industrial robots are machines that can be programmed to autonomously perform several manual

tasks (such as assembly, material handling, packing and welding) without the intervention of a

human worker. The IFR defines them as “automatically controlled, reprogrammable, multipurpose

manipulators, programmable in three or more axes, which can be either fixed in place or mobile for

use in industrial automation applications” (IFR, 2018, p.29). They do not include conveyor belts,

cranes or elevators, since these machines do not meet this definition.

Between 1993 and 2014, the stock of industrial robots in the US has increased by about 1.58

robots per thousand workers (roughly 180,000 units), corresponding to five times its level in 1993.

According to the IFR, these values are expected to grow even more in coming years (IFR, 2018,

pp.535–540).

The IFR breaks down the stock of operational robots according the International Standard In-

dustrial Classification (ISIC), Fourth Revision, and provides consistent data for six broad industries

outside of the manufacturing sector and 13 industries within the manufacturing sector. Table 1.1

illustrates the distribution of robots across these industries for the US and for Europe. The growth

rate of the stock of robots at the industry level is computed as the difference in the stock of robots

in terms of industry employment in 1993:

Rij,14 −Rij,93

Lij,93

(1)

where Rij,t is the stock of robots in industry j of country i at time t, and Lij,93 is the employment

9 These data are praised for their reliability, but they include also some limitations that are addressed in Appendix
A1.

10



level in 1993.

Table 1.1: Descriptive statistics: Industrial robots

Robots in the US Robots in EU7 Employment
per thousand countries per in

workers thousand workers thousands

1993 ∆14−93 1993 ∆14−93 1993

[1] [2] [3] [4] [5]

Panel A: High robot-intensive manufacturing
Automotive 24.25 82.69 18.2 57.12 1111
Basic Metals 1.39 5.37 0.84 7.34 712
Electronics 2.01 10.99 2.34 3.31 2868
Food and Beverages 1.02 4.62 0.38 8.93 1862
Metal Products 1.69 6.51 6.91 11.13 1689
Plastics and Chemicals 1.80 7.43 2.85 16.04 2205

Panel B: Low robot-intensive manufacturing
Industrial Machinery 0.39 1.52 3.01 6.18 1541
Minerals 0.04 0.58 0.60 3.64 558
Miscellaneous 0.49 11.66 2.56 2.93 690
Paper and Printing 0.00 0.10 0.19 0.83 2467
Shipbuilding and Aerospace 0.02 0.44 0.73 2.18 1111
Textiles 0.00 0.05 0.24 0.88 1848
Wood and Furniture 0.00 0.12 1.14 2.75 1048

Panel C: Non-manufacturing
Agriculture 0.00 0.03 0.00 0.18 2552
Construction 0.00 0.02 0.00 0.11 7108
Education and Research 0.00 0.04 0.03 0.33 12636
Mining 0.00 0.05 0.23 1.36 763
Services 0.00 0.00 0.00 0.00 84776
Utilities 0.00 0.02 0.00 0.25 745

Notes: This table illustrates the number of industrial robot units adopted in the United States and the average robot adoption
among seven European countries (Denmark, Finland, France, Italy, Spain, Sweden and the United Kingdom) by year and
industry. Panel A reports the count of robots in the six manufacturing industries with the largest adoption of robots between
1993 and 2014. Panel B reports the count of robots in the remaining manufacturing industries. Panel C reports the count of
robots for the six other sectors. Columns 1 and 3 report the stock robots per thousand workers in 1993. Columns 2 and 4
report the change in the stock of robots between 1993 and 2014 per thousand workers in 1993. Column 5 reports the number
of workers by industry in 1993 in the US.

The statistics show that robots are mainly adopted in a subset of industries of the manufacturing

sector, including Automotive, Basic Metals, Electronics, Food and Beverages, Metal Products,

and Plastics and Chemicals. I refer to these industries as “High Robot-Intensive Manufacturing”

industries. I refer to manufacturing industries which adopt less robots in their production processes

as “Low Robot-Intensive Manufacturing” industries. These industries include Industrial Machinery,

Minerals, Paper and Printing, Shipbuilding and Aerospace, Textiles, Wood and Furniture, and

miscellaneous manufacturing. Finally, I group the six residual sectors into “Non-Manufacturing”

industries. These industries adopt only few robots in their production compared to manufacturing

industries. They include Agriculture, Construction, Education and Research, Mining, Services and
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Utilities.

1.3.2 Employment

To measure changes in the local labor market structure contemporaneous to the introduction of

industrial robots, I obtain data on employment and relevant socio-demographic characteristics from

the decennial US Census samples for 1970, 1980, 1990 and 2000, and the American Community

Survey (ACS) for the years 2007 and 2014.10 These datasets are publicly provided by the Integrated

Public Use Microdata Series (IPUMS) and are repeated cross-sectional surveys that include between

1 and 5 percent of the US population (Ruggles et al., 2019). They provide a rich set of information

on each sampled individual, including gender, race, ethnicity, age, education, employment, industry,

occupation, income, and the county group of residence.

I restrict my sample to the non-institutionalized civilian population between 25 and 64 years of

age and aggregate the counts to 722 Commuting Zones (CZs) that cover all metropolitan and rural

areas of the US mainland, acting as proxies of US local labor markers (Tolbert and Sizer, 1996).

CZs represent economically relevant regions for local labor markets and are formed by clusters of

counties with strong commuting ties within the area and weak commuting ties across CZs (Autor

and Dorn, 2013).11

I use these data to measure employment rates of different demographic groups and compute

employment gaps by gender and race/ethnicity at the local labor market level:

EG
(M,W )
c,t = EMc,t − EWc,t (2)

where Egc,t = Lgc,t/N
g
c,t is the employment rate (employment count divided by the working-age pop-

ulation) of demographic group g ∈ {M,W} in CZ c at time t. In case of the gender employment

gap, M and W represent men and women, while they represent whites and non-whites for the

race/ethnicity employment gap. Racial and ethnic minorities (non-whites) include Blacks, Hispan-

ics, Asians, American Indian or Alaska Natives, and other (not elsewhere classified) races.
10 I follow the literature and increase the sample size of the ACS samples using data from the 3-year sample of

2006-2008 and the 5-year sample of 2012-2016.
11 The IPUMS provide county groups or Public Use Microdata Areas as lowest geographic units. I follow Autor

and Dorn (2013) and aggregate data at the CZ level using a crosswalk which provides a probabilistic matching of
sub-state geographic units in US Census Public Use Files to CZs.
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Table 1.2: Summary statistics: Employment

All 1st quartile 4th quartile

1990 ∆14−90 1990 ∆14−90 1990 ∆14−90

[1] [2] [3] [4] [5] [6]

Panel A: Gender

Men 84.3 -4.46 83.8 -4.14 84.4 -4.73
Women 66.0 1.64 65.4 1.23 65.8 2.32
Gender gap 18.3 -6.10 18.3 -5.37 18.6 -7.06

Panel B: Race and ethnicity

White 76.7 -1.42 76.3 -2.17 76.4 -0.83
Non-white 68.8 0.94 70.0 1.01 67.2 0.99
Race and ethnicity gap 7.89 -2.37 6.22 -3.18 9.13 -1.82

Observations 722 722 181 181 180 180

Notes: This table illustrates average employment rates for men, women, whites, and non-whites, and average employment gaps
by gender and race/ethnicity. Columns 1, 3 and 5 show values in 1990, and Columns 2, 4 and 6 show changes between 1990
and 2014, weighted by CZ population in 1990. Columns 1 and 2 reports averages over all 722 CZs in the sample. Columns 3
to 6 split the sample into quartiles according to the CZ’s exposure to robots between 1993 and 2014, reporting averages for the
first and the fourth quartile.

Table 1.2 reports summary statistics of the main employment variables for 1990 and their changes

between 1990 and 2014. Columns 1 and 2 report averages over all 722 US CZs in the sample, while

the remaining two column pairs split CZs according to their exposure to industrial robots, reporting

averages for the first (least exposed) and fourth (most exposed) quartile.

In general, men and whites have higher employment rates than women and racial/ethnic mi-

norities. At the beginning of the 1990s, the employment gaps were 18.3 and 7.89 percentage points

respectively. However, both gaps declined by roughly one third during my sample period. In CZs

that are more exposed to the adoption of robots, the decline of the gender employment gap has

been larger, while it has been smaller for the race/ethnicity employment gap.12

Figure A1 in the Appendix provides information about the distribution of the employment gaps

across US local labor markets. Specifically, the gender gap is particularly large in Texas and in CZs

of the northern part of the Jell-O Belt (especially in Idaho and Utah), while the race and ethnicity

gap is largest in states of the northern part of the Wheat Belt (Minnesota, North Dakota and South

Dakota).13

Table A1 further decomposes the employment rate of racial and ethnic minorities between Blacks,

Hispanics, Asians, American Indian or Alaska Natives, and other races, providing details on their
12 The values of Columns 4 and 6 are statistically different at the 1 percent level.
13 Figure A2 also shows the distribution of the population of non-whites across CZs. The highest shares of non-whites

are in states of the Sun Belt, including Arizona, Florida, New Mexico, Mississippi, South Carolina, and Texas.
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relative contribution to the group of non-whites in 1990. Blacks account for 37.6 percent of the

racial and ethnic minority group (11.4 percent in the total population), Hispanics account for 41.8

percent (12.6 percent), Asians account for 14.6 percent (4.4 percent), American Indian or Alaska

Natives account for 2.1 percent (0.6 percent), and other not elsewhere classified races account for

3.9 percent (1.2 percent). Moreover, the table shows that in 1990 the employment rates of all groups

were between 68 and 72 percent (similar to the group’s average). Until 2014, employment of Blacks

and American Indian/Alaska Natives has decreased, while employment of Hispanics, Asians, and

the residual group experienced an increase of about 1.5 percentage points.

1.3.3 Occupational and industrial segregation

Besides the existence of employment gaps, the US labor market is characterized by a persistent

industrial and occupational segregation of workers who belong to different demographic groups,

exposing them differently to the risks of automation through industrial robots.

The IFR provides information about the industry composition of the stock of robots, but it does

not provide detailed data about the occupations in which they are deployed. As defined previously,

industrial robots can be programmed to perform manual tasks, such as assembly and welding.

Based on this definition, I investigate the relative exposure of workers to the introduction of robots

at the occupational level by measuring the manual (brawn) and cognitive (brain) task content of

occupations.

I measure the task intensity of labor using information on the skill requirements of jobs at

detailed occupation level from the Dictionary of Occupational Titles (DOT, 1977). The DOT is a

survey administered by the US Department of Labor performed on a random sample of workers to

accurately collect information about the task content of jobs (Autor et al., 2003).

To extrapolate the relevant task content of occupations, I follow Ge and Zhou (2020) in defining

an occupation’s brawn task intensity based on five scores which measure the workload of manual

tasks of jobs: (i) eye, hand and foot coordination, (ii) motor coordination, (iii) finger dexterity, (iv)

manual dexterity, and (v) physical strength. The brain task intensity of occupations is based on

temperaments which require cognitive and social skills: (i) quantitative reasoning, language, and

verbal and numerical aptitude, (ii) direction, control and planning for activity, (iii) interpreting feel-

ing, ideas, facts in terms of personal viewpoint, (iv) influencing people in their opinions, attitudes or
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judgment about ideas or things, (v) making generalizations, evaluations, or decisions based on sen-

sory or judgmental criteria, (vi) making generalization, judgments, or decisions based on measurable

or verifiable criteria, (vii) and dealing with people beyond giving and receiving instructions.

This information is used to compute brawn and brain task measures from averages of the rel-

evant DOT variables and are standardized using the percentile values of their ranks in the 1970

employment distribution, a decade before the introduction of industrial robots in the US. These

measures are then matched with 315 occupations from the Census.

Based on the occupational distribution within industries, I use these data to build measures

of the brawn and brain task-intensity of IFR industries.14 Figure 1.2 illustrates the relationship

between robot exposure and brawn task intensity (Panel A) and brain task intensity (Panel B) at

the industry level. Unsurprisingly, industrial robots are adopted more in manufacturing industries

with a large brawn task content and less in industries that are intensive in brain tasks, suggesting

that they are more substitutable for brawn skills than for brain skills.

Figure 1.2: Industries and job tasks: Brawn versus brain

Panel A: Brawn Panel B: Brain

Notes: This figure illustrates the relationship between the growth in the (log) stock of robots per thousand workers at the IFR
industry level between 1993 and 2014 (see Equation 1) and the brawn and brain task content in these industries. The task
content at the industry level is expressed as the mean standardized task content of occupations within each industry weighted
by the industry’s occupational employment in 1990.

14 Every IFR industry is composed by a set of occupations, each of which has been assigned a score for its brawn and
brain task intensity. I compute brawn and brain task measures at the industry level using the weighted average of
the occupation scores within each industry. I use employment at the occupation level as weights.
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I use this evidence to identify the relative exposure to robots of census occupations. For this

purpose, I use a double median split of the standardized measures of brawn and brain task intensity

of jobs and build four occupation groups with common task characteristics. Although occupations

combine elements from each task category and task intensity varies among occupations within these

broad groups, they capture the central tendencies of the data (Acemoglu and Autor, 2011).

The first group includes occupations that are both brawn and brain task intensive (e.g. me-

chanical engineers). I refer to them as “Skill-Intensive” occupations. The second group includes

“White-Collar” occupations that are intensive in brain tasks, but require only few brawn skills (e.g.

secretaries). The third group includes “Blue-Collar” occupations that are intensive in brawn tasks

and need only few brain skills (e.g. structural metal workers).15 These are the occupations which,

according to Figure 1.2, should be most exposed to the adoption of industrial robots. Finally, I

refer to occupations that do not require particular brawn or brain skills as “Low-Skill” occupations

(e.g. household cleaners and servants).

To identify the industrial and occupational segregation in the labor market, Figure 1.3 breaks

down employment within industry and occupation groups by the demographic characteristics of

workers. Panel A reports the results by gender and Panel B by race/ethnicity.

Results show that men are employed more often in blue-collar occupations of the manufacturing

sector (also referred to as steel-collar jobs) than women, suggesting that they are more likely to be

exposed to the risks of automation through robots. While there is no clear over-representation or

under-representation of racial and ethnic minorities across industries, there is evidence of signifi-

cant segregation by race and ethnicity across occupations. In particular, non-whites are employed

more often in blue-collar and low-skills jobs, and they are under-represented in brain task-intensive

occupations, exposing them to a larger risk of displacement through industrial robots.

A list of occupations with the highest and lowest occupation shares by gender and race/ethnicity

is illustrated in Table A2. Additionally, Table A3 decomposes the summary statistics on employment

rates and gaps from Table 1.2 by industries and occupations, showing similar results about the

industrial and occupational segregation of the US labor market by gender and race/ethnicity as
15 For instance, Table A2 in the Appendix shows that the brawn and brain task intensities of structural metal workers

are at the 67 and the 25 percentile of the distribution.
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Figure 1.3: Industrial and occupational segregation

Panel A: Gender

Panel A1: Industry Panel A2: Occupation

Panel B: Race and ethnicity

Panel B1: Industry Panel B2: Occupation

Notes: This figure illustrates the shares of women and non-whites within industry and occupation groups in 1990. The share
of a demographic group is computed as the number of workers who belong to this group divided by total employment in the
industry or occupation. The dashed line shows the overall share of women and non-whites among employed workers. If a colored
bar intersects the dashed line, the demographic group is over-represented in the industry or occupation group. If it does not,
it is under-represented.

Figure 1.3.16

16 Table 1.2 complements the results from Figure 1.3 without correcting for relative employment rates of demographic
groups. This does not always make the size of the industrial and occupational segregation in the labor market
obvious at first glance, since one needs first to correct for demographic-specific employment rate differentials.
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1.4 Identification strategy

I estimate the effect of the introduction of industrial robots on employment across demographic

groups using a stacked first-difference specification with 722 CZs and three time periods (1993-

2000, 2000-07, 2007-14).17 The key estimating equation is given by:

∆Egc,(t0,t1) = βgUS robot exposurec,(t0,t1) + X′c,(t0,t1)Γ
g + εgc,(t0,t1) (3)

where ∆Egc,(t0,t1) is the change in the employment rate among working-age individuals of demo-

graphic group g ∈ {M,W} in CZ c between year t0 and t1. I test for significant differences in the

impact of robots on employment across demographic groups using changes in the employment gaps:

∆EG(M,W )
c,(t0,t1) = β(M,W )US robot exposurec,(t0,t1) + X′c,(t0,t1)Γ

(M,W ) + ε
(M,W )
c,(t0,t1) (4)

where ∆EG(M,W )
c,(t0,t1) = ∆EMc,(t0,t1) −∆EWc,(t0,t1), such that β(M,W ) = βM − βW .

To account for potential sources of bias that might confound the estimates of the labor market

effect of robots, I include state fixed effects, year dummies interacted with nine census-division fixed

effects, and a vector of time-invariant regional characteristics and economic variables, including the

industrial and occupational composition of employment, socio-demographic characteristics, and the

demographic composition of industries and occupations within CZs in 1990.18 I keep CZ charac-

teristics constant to avoid contamination by endogenous adjustments in the structure of local labor

markets in response to robot adoption. I further control for pre-existing trends in employment of

men, women, whites and non-whites between 1970 and 1990, and for structural labor market shocks

that are contemporaneous to the introduction of robots in the US, including the China trade shock,

as defined in Autor et al. (2013), the adoption of personal computers (PC) and IT capital intensity,

as defined in Acemoglu and Restrepo (2020), and routine-biased technological change (RBTC), as

defined in Autor and Dorn (2013). Further details about covariates are provided in Table A4 and

in Appendix A1.
17 Note that in the 1990s the IPUMS includes only data from the 1990 Census. For comparability across periods, I

rescale the 1990-2000 period to a 7-year equivalent change.
18 Census divisions are administrative divisions of the US territory in nine broad groups of states: New England,

Middle Atlantic, South Atlantic, East North Central, East South Central, West North Central, West South Central,
Mountain and Pacific.
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I build measures of US robot exposure at the CZ level from Equations 3 and 4 using a shift-share

approach. Following Acemoglu and Restrepo (2020), I match industry-level data on robot adoption

from the IFR with employment counts from the Census:

US robot exposurec,(t0,t1) =
∑
j∈J

`90
c,j

[
RUSj,t1 −R

US
j,t0

LUSj,90

− gUSj,(t0,t1)

RUSj,t0
LUSj,90

]
(5)

The term in brackets (shift component) is a measure of industrial robot density, computed as the US

wide change in the stock of robots in industry j ∈ J , relative to its workforce in 1990, and adjusted

for the adoption of robots that is driven by overall industry output growth, gUSj,(t0,t1) = ∆ ln(Y US
j,t ).19

The industry-level shock is apportioned across local labor markets using CZs’ industry employment

shares, `90
c,j = L90

c,j/L
90
c (share component). The baseline employment shares are kept constant to

avoid endogeneity and serial correlation across periods of my stacked first-difference specification.

Figure 1.4 illustrates the distribution of US robot exposure across CZs between 1993 and 2014.

The figure shows that the Midwest of the country is significantly more exposed to the adoption

of industrial robots, in particular the local labor markets of the Rust Belt (i.e. parts of Indiana,

Michigan and Ohio). This result follows from the specialization of these areas in the industrial

sector, including steel-making and automobile manufacturing industries, in which robots have been

heavily deployed in the production process. Some of these CZs experienced an increase of up to

11 robots per thousand workers between the early 1990s and the mid-2010s, exceeding the national

average of 1.578 by more than seven times.20 The average US robot exposure per sample period

(seven years) is equal to 0.526 robots per thousand workers, with a standard deviation of 0.491.

Identification builds on the assumption that advances in robotics vary by industry and expose

local labor markets differently depending on the industrial composition of employment. However,

US firms could also adopt robots in response to domestic industry-specific shocks which influence

also the demand for labor. For instance, positive demand shocks might induce US firms to raise both

capital and employment, biasing the estimates of the impact of robots on labor demand upwards. To
19 I obtain US data on employment and output at the industry level from the Integrated Industry-Level Production

Account (KLEMS) of the Bureau of Economic Affairs (BEA, 2021). I use comparable data for several European
countries from the EU KLEMS database (Jägger, 2017) to construct the instrument of my IV strategy (see Equation
6).

20 In Appendix A3, I perform a set of robustness checks that exclude these CZs from the analysis, showing that the
effect of robots on employment across different demographic groups is not solely driven by these areas.
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Figure 1.4: US robot exposure at the CZ level between 1993 and 2014

Notes: This figure illustrates the distribution of US robot exposure at the CZ level between 1993 and 2014. Means and standard
deviations (std.) are represented for the full sample period (1993-2014) and as averages of the subperiods (1993-2000, 2000-07,
2007-14).

address the endogeneity concern and identify robot adoption that is driven by exogenous advances

in robotics (supply shock), I apply an IV strategy and instrument the shift component of Equation 5

using contemporaneous changes in the stock of robots in seven European countries with a comparable

adoption of robots as the US:

EU7 robot exposurec,(t0,t1) =
∑
j∈J

`70
c,j

1

7

∑
i∈EU7

[
Rij,t1 −R

i
j,t0

Lij,90

− gij,(t0,t1)

Rij,t0
Lij,90

]
(6)

where Rij,t is the stock of robots in country i ∈ EU7 at time t in industry j. EU7 countries include

Denmark, Finland, France, Italy, Spain, Sweden and the United Kingdom. The share component

uses (plausibly exogenous) employment shares from 1970 to focus on the industrial composition

of employment that precedes the introduction of industrial robots, which started in the 1980s

(Acemoglu and Restrepo, 2020).21

The IV strategy aims at identifying the labor market effects of exogenous improvements in

robotics available to US firms. The strategy relies on the assumptions that the adoption of robots

in European countries is positively related to the adoption of robots in the US, but that it is not

directly affecting US labor market conditions. Figure 1.5 shows that there is a strong positive

correlation between the adoption of robots in the US and the seven European countries, supporting
21 Appendix A3 provides a set of robustness checks using alternative constructions of the shift-share measure, including

different combinations of countries, different employment shares, and by excluding the adjustment term. The results
of the empirical analysis are robust to these changes.
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Figure 1.5: First-stage: Robots in the US and in Europe

Notes: This figure illustrates the first-stage relationship between US robot exposure and EU7 robot exposure at the CZ level.
Each circle represents a CZ in one of the three sample periods. The size is proportional to the employment level in 1990. The
black line displays the fitted values from the first-stage regression:

US robot exposurec,(t0,t1) = αEU7 robot exposurec,(t0,t1) + X′c,(t0,t1)Γ + νc,(t0,t1)

The slope of the line is equal to α̂ = 0.401. The standard error of the estimate is equal to 0.03. The Kleibergen-Paap F statistic
is 180.31. Standard error are robust against heteroskedasticity and allow for clustering at the state level. Regressions include
the full battery of controls, they are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at
the 1%, 5% and 10% confidence level. Table A5 reports standardized first-stage estimates using different specifications. The
(non-standardized) estimates of this figure correpond to Column 6. To standardize coefficients, one has to divide them by the
standard deviation of 0.491 (Figure 1.4).

the relevance condition (the Kleibergen-Paap F statistic is well above 10). While I cannot test for

the exclusion restriction to hold, I perform a set of robustness checks of my identification strategy,

controlling for international product market competition between Europe and the US, as well as

pre-trends in local labor market conditions.22 The results are reported in Appendix A3. I do not

find evidence of a violation of the exclusion restriction through these potential sources of bias.23

22 International product market competition may violate the exclusion restriction, as the rapid adoption of robots in
Europe could have made European firms more competitive than their US peers, unveiling a possible causal link with
US labor market conditions. The instrument purposely does not include the countries with the world’s heaviest
adoption of industrial robots, i.e. South Korea, Germany, and Japan, since they are also among the main trading
partners of the US and could directly affect US labor market conditions through their national adoption of robots.
Appendix A3 stresses this assumption further and drops also the UK, Italy and France, using an instrument which
includes only countries with the lowest trade engagement with the US (Denmark, Finland, Spain and Sweden).
The results are unaffected (although noisier), and provide evidence in support of the exclusion restriction.

23 The exogeneity of the shares should strengthen further the confidence that the instrument is exogenous (Goldsmith-
Pinkham et al., 2020).
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1.5 Results

This section presents the empirical results about the labor market impact of robots on employ-

ment across demographic groups, and explores the influence of socio-demographic characteristics,

industries and occupations in the determination of the effects.

1.5.1 Robots and employment

I start the analysis by presenting the impact of industrial robots on employment using Equations

3 and 4. The OLS and IV estimates are reported in Table 1.3. Coefficients are standardized and

represent the estimated effect of a one standard deviation increase in US robot exposure on the

change in the respective employment rate and employment gap in percentage points. Regressions

include the full battery of controls and are weighted by the CZ population in 1990. Standard errors

allow for arbitrary clustering at the state level.24

Results show that robots decrease employment across all demographic groups.25 The absolute

size of OLS estimates is smaller than that of IV estimates, since US robot adoption is likely to be

correlated with omitted demand shocks that bias the estimates of the underlying effect upwards.

Panel A shows that a one standard deviation increase in robot exposure decreases the local

employment rate of men by 1.15 percentage points and the employment rate of women by 0.51

percentage points. In other words, employment rates decrease by 2.34 and 1.04 percentage points

for each additional robot per thousand workers.26 This result shows that men are losing their job

more than twice as often as women, suggesting that the introduction of robots has contributed

to the decrease of the gender employment gap. On the other hand, Panel B shows that a one

standard deviation increase in robot exposure has decreased employment among racial and ethnic
24 As outlined in Cadena and Kovak (2016), when examining outcomes across labor markets of different sizes, efficient

weights must consider individuals’ sampling weights to account for inherent heteroskedasticity. They also show that
optimal weights are strongly correlated with initial population sizes of the unit of reference. Here, it is important to
note that there are two sources of heteroskedasticity in the distribution of the population of different demographic
groups. First, CZs strongly differ in their population size. Second, CZs differ in the shares of racial and ethnic
minorities in the local population (see Figure A2). I examine the role of weights in Appendix A3.

25 Table A5 shows that estimates are not significantly affected by the sequential inclusion of covariates.
26 This computation follows from the de-standardization of the estimates to obtain the effect of one additional robot

per thousand workers using the standard deviation reported in Figure 1.4 (e.g. 1.148/0.491 = 2.34). To obtain
estimates of the effect of the introduction of industrial robots between 1993 and 2014, I multiply these estimates
with the average increase in the stock of robots from Figure 1.4 (e.g. 2.34 × 1.578 = 3.7). Appendix A2 compares
and discusses the magnitude of these estimates with the findings of Acemoglu and Restrepo (2020).
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Table 1.3: The effect of robots on employment

Panel A: Gender

Men Women Gap

[1] [2] [3]

Panel A1: OLS estimates
US robot exposure -0.468∗∗∗ -0.178∗ -0.291∗∗∗

(0.144) (0.090) (0.096)

Panel A2: IV estimates
US robot exposure -1.148∗∗∗ -0.507∗∗ -0.644∗∗∗

(0.243) (0.189) (0.166)

Observations 2166 2166 2166

Panel B: Race and ethnicity

Whites Non-whites Gap

[1] [2] [3]

Panel B1: OLS estimates
US robot exposure -0.186∗∗∗ -0.587∗∗∗ 0.400∗∗

(0.066) (0.200) (0.153)

Panel B2: IV estimates
US robot exposure -0.569∗∗∗ -1.415∗∗∗ 0.846∗∗∗

(0.097) (0.315) (0.276)

Observations 2166 2166 2166

Covariates: X X X

Notes: This table presents OLS and IV estimates of the effect of US robot exposure on employment rates and gaps by gender
and race/ethnicity at the CZ level. Changes are expressed in percentage points of the working-age population of the respective
demographic group and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation
of one. There are three time periods and 722 CZs. All regressions include state fixed effects, time-varying division fixed effects,
pre-trends in employment of men, women, whites and non-whites between 1970 and 1990, controls for the adoption of PCs,
IT capital intensity and RBTC, exposure to Chinese imports, demographic characteristics (share of Blacks, Hispanics, women,
population with less than a college degree, three age groups (25-34, 35-44 and 45-54 years), and the logarithmic population), the
industry (employment share in construction, manufacturing, mining, research, service and utilities) and occupation composition
of employment (employment share in offshorable, skill-intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990,
and the composition of industry and occupation employment by gender and race/ethnicity of CZs in 1990. Standard errors
are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted by CZ population in
1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

minorities about two-and-a-half times as much as for whites, 1.41 and 0.57 percentage points respec-

tively (2.87 and 1.16 percentage points for each additional robot per thousand workers), widening

the race/ethnicity employment gap. These results show that each additional robot per thousand

workers has decreased the gender employment gap by 1.30 percentage points and has increased the

race/ethnicity employment gap by 1.72 percentage points, slowing its secular decline.

Table A6 in the Appendix shows that the effects are economically and statistically significant

already before the start of the Great Recession. This finding suggests that the alteration of labor
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market conditions during this period of time is not driving my results.27 Table A7 further shows that

robots affect labor force participation gaps in the same direction as they do with the employment

gaps. Interestingly, women are not leaving the labor force in response to robot exposure, implying

that changes in the gender labor force participation gap are driven by changes in the labor force

participation of men (Lerch, 2020).

Table A8 compares the labor market impact of robots with the impact of the China trade shock

from Autor et al. (2013) and other technology shocks that are contemporaneous to the introduction

of industrial robots, including PC adoption and IT capital intensity (Acemoglu and Restrepo, 2020),

and RBTC (Autor and Dorn, 2013). These shocks are part of the vector of covariates of Equations

3 and 4.28 I find that also the China trade shock has contributed to the decrease of the gender

employment gap, but to a smaller extent than robots, and that the estimate is not statistically

significant to the exclusion of the Great Recession period (2007-14).29 On the other hand, RBTC

appears to increase the gender employment gap, although this estimate is not particularly robust

either. I do not find evidence of the trade shock and RBTC having affected the employment gap

by race and ethnicity. However, I find that the exposure to PCs has increased the gap to a similar

extent as robots, because of a reduction in employment among non-whites, but no significant change

in the employment rate of whites. This finding suggests that the adverse impact of new technologies

on racial and ethnic disparities could not be limited to the introduction of industrial robots.

1.5.2 Socio-demographic characteristics

Table 1.4 decomposes the previous effects of robots on employment by socio-demographic charac-

teristics of workers, including education (college and non-college educated workers) and age (25-34,

35-44, 45-54 and 55-64 years). The employment rates from Table 1.3 are the result of the weighted

sum of socio-demographic specific employment rates, Eg,sc,t :

Egc,t =
∑
s

Ng,s
c,t

Ng
c,t

Lg,sc,t
Ng,s
c,t

=
∑
s

Ng,s
c,t

Ng
c,t

Eg,sc,t (7)

27 Note, however, that the estimate on the gender employment gap almost halves in size (from -0.644 to -0.343), due
to a smaller impact of robots on employment of men before 2007.

28 Appendix A1 provides details about the construction of these shocks.
29 This specification mimics the sample period used in Autor et al. (2013), 1993-2000 and 2000-07. Similar to their

results, I find that import exposure decreases employment of men and women, but without significant differences
by gender.
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where Eg,sc,t is the employment rate in CZ c at time t among individuals from demographic group

g with characteristics s. Panel A illustrates the estimates by gender and Panel B by race and

ethnicity.

Table 1.4: The effect of robots on employment by socio-demographic characteristics

Panel A: Gender

Race and ethnicity Education Age

Whites Non-whites College
degree

Less than
college

25-34
years

35-44
years

45-54
years

55-64
years

[1] [2] [3] [4] [5] [6] [7] [8]

Panel A1: Employment rate of men
US robot exposure -0.897∗∗∗ -1.804∗∗∗ -0.403∗∗∗ -1.445∗∗∗ -1.329∗∗∗ -0.964∗∗∗ -1.006∗∗∗ -1.250∗∗∗

(0.120) (0.421) (0.113) (0.318) (0.327) (0.246) (0.230) (0.229)

Panel A2: Employment rate of women
US robot exposure -0.250∗∗ -1.039∗∗∗ -0.470∗∗∗ -0.530∗∗ -0.244 -0.503∗∗ -0.578∗∗∗ -0.525∗∗

(0.108) (0.291) (0.146) (0.221) (0.204) (0.244) (0.167) (0.203)

Panel A3: Employment gap
US robot exposure -0.647∗∗∗ -0.766∗∗ 0.067 -0.915∗∗∗ -1.085∗∗∗ -0.461∗∗ -0.428∗∗ -0.725∗∗∗

(0.127) (0.361) (0.187) (0.190) (0.308) (0.211) (0.171) (0.201)

Observations 2166 2166 2166 2166 2166 2166 2166 2166

Panel B: Race and ethnicity

Gender Education Age

Men Women College
degree

Less than
college

25-34
years

35-44
years

45-54
years

55-64
years

[1] [2] [3] [4] [5] [6] [7] [8]

Panel B1: Employment rate of whites
US robot exposure -0.897∗∗∗ -0.250∗∗ -0.426∗∗∗ -0.622∗∗∗ -0.512∗∗∗ -0.506∗∗∗ -0.439∗∗∗ -0.690∗∗∗

(0.120) (0.108) (0.082) (0.108) (0.139) (0.146) (0.064) (0.109)

Panel B2: Employment rate of racial and ethnic minorities
US robot exposure -1.804∗∗∗ -1.039∗∗∗ -0.729∗∗ -1.611∗∗∗ -1.262∗∗∗ -1.381∗∗∗ -1.665∗∗∗ -1.150∗∗∗

(0.421) (0.291) (0.299) (0.365) (0.375) (0.409) (0.338) (0.337)

Panel B3: Employment gap
US robot exposure 0.908∗∗ 0.789∗∗∗ 0.303 0.989∗∗∗ 0.750∗∗ 0.875∗∗ 1.226∗∗∗ 0.459

(0.358) (0.282) (0.302) (0.300) (0.299) (0.414) (0.314) (0.360)

Observations 2166 2166 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates and gaps by gender and
race/ethnicity at the CZ level. Columns decompose the outcomes by demographics, education and age groups. Changes
are expressed in percentage points of the working-age population of the respective demographic group and are multiplied
by 100. Independent variables are standardized to have mean zero and standard deviation of one. There are three time
periods and 722 CZs. All regressions include state fixed effects, time-varying division fixed effects, pre-trends in employment of
men, women, whites and non-whites between 1970 and 1990, controls for the adoption of PCs, IT capital intensity and RBTC,
exposure to Chinese imports, demographic characteristics (share of Blacks, Hispanics, women, population with less than a college
degree, three age groups (25-34, 35-44 and 45-54 years), and the logarithmic population), the industry (employment share in
construction, manufacturing, mining, research, service and utilities) and occupation composition of employment (employment
share in offshorable, skill-intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990, and the composition of industry
and occupation employment by gender and race/ethnicity of CZs in 1990. Standard errors are robust against heteroskedasticity
and allow for clustering at the state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗
are significant at the 1%, 5% and 10% confidence level.
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Results show that the adverse impact of robots is strongest for non-white men and weakest for

white women. I further find that the effects are significantly larger for individuals without a college

degree, in particular for men and non-whites, and that the impact on these individuals is driving the

results on the employment gaps from Table 1.3. Although workers with a college degree experience

also a negative impact of robots, there are no significant differences by gender and race/ethnicity,

leaving the employment gaps among college-educated workers almost unchanged.

The effect of robots on the employment gaps is relatively stable and persistent across age groups.

By gender, the effect is lowest between 35 and 54 years, when the effect on male workers is slightly

smaller. By race/ethnicity, it has a peak between 45 and 54 years, when the impact on racial and

ethnic minorities is strongest, and drops from the age of 55 years.

It is also important to consider that racial and ethnic minorities are a fairly heterogenous group

of individuals, which includes Blacks, Hispanics, American Indian, Alaska Natives, and Asians,

among others. For this purpose, Table 1.5 disaggregates this broad group and analyzes whether

the impact of robots differs across narrower race/ethnicity subgroups. Panel A reports estimates of

the effect of robot exposure on the employment rates of whites, Blacks, Hispanics and other races

(including American Indian, Alaska Natives, Asians, or other, not elsewhere classified, races), while

Panel B reports estimates on the employment gaps.30

I find that the effect of robots is strongest for Hispanics and Blacks, followed by other races,

and whites. As a consequence, robot exposure has increased mostly the employment gaps between

whites and Hispanics, and between whites and Blacks. The employment gap between Blacks and

Hispanics has not been affected significantly, suggesting that the impact of robots on employment

is similar among these two groups. Moreover, I find that the employment gap between other races

and Blacks or Hispanics has increased, while it has not changed significantly with whites.

Table 1.6 further decomposes the groups of whites and racial/ethnic minorities from Table 1.3

between US natives and immigrants. Panel A shows that robots have decreased employment among

all demographic groups (although estimated imprecisely for white immigrants), but relatively more

for non-whites. This result is also visible in Panel B, which reports estimates of the impact of

robots on the employment gaps between natives and immigrants, showing that they increase the
30 As shown in Table A1, Blacks account for about 38 percent of the group of racial/ethnic minorities, Hispanics

account for nearly 42 percent, and other races account for about 20 percent.
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Table 1.5: The effect of robots on employment: Whites, Blacks, Hispanics, and other races

Panel A: Employment rates

Whites Blacks Hispanics Other races

[1] [2] [3] [4]

US robot exposure -0.569∗∗∗ -1.724∗∗∗ -2.023∗∗∗ -0.951∗∗∗
(0.097) (0.436) (0.385) (0.318)

Observations 2166 2166 2166 2166

Panel B: Employment gaps

Whites Blacks Hispanics Other races

[1] [2] [3] [4]

1) Whites
US robot exposure −

2) Blacks
US robot exposure 1.156∗∗∗ −

(0.390)

3) Hispanics
US robot exposure 1.454∗∗∗ 0.298 −

(0.374) (0.461)

4) Other races
US robot exposure 0.383 -0.777∗∗∗ -1.071∗∗∗ −

(0.275) (0.245) (0.349)

Observations 2166 2166 2166

Covariates: X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates and gaps by race/ethnicity at
the CZ level. Columns decompose workers between whites, Blacks, Hispanics and other races (including American Indian or
Alaska Natives, Asians, and other not elsewhere classified races). Changes are expressed in percentage points of the working-age
population of the respective demographic group and are multiplied by 100. Independent variables are standardized to have
mean zero and standard deviation of one. There are three time periods and 722 CZs. All regressions include state fixed effects,
time-varying division fixed effects, pre-trends in employment of men, women, whites and non-whites between 1970 and 1990,
controls for the adoption of PCs, IT capital intensity and RBTC, exposure to Chinese imports, demographic characteristics
(share of Blacks, Hispanics, women, population with less than a college degree, three age groups (25-34, 35-44 and 45-54 years),
and the logarithmic population), the industry (employment share in construction, manufacturing, mining, research, service and
utilities) and occupation composition of employment (employment share in offshorable, skill-intensive, white-collar, blue-collar
and low-skill jobs) of CZs in 1990, and the composition of industry and occupation employment by gender and race/ethnicity
of CZs in 1990. Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions
are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

race/ethnicity employment gap, independently on whether white or non-white workers were born

in the US or abroad.

1.5.3 Occupations and industries

As shown in Section 1.3, men and racial and ethnic minorities are over-represented in blue-collar

occupations that are more susceptible to the risks of automation through industrial robots. In this

section, I investigate to which extent US labor market segregation drives the impact of robots on
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Table 1.6: The effect of robots on employment: The origin of workers by race and ethnicity

Panel A: Employment rates

Natives Immigrants

Whites Non-whites Whites Non-whites

[1] [2] [3] [4]

US robot exposure -0.578∗∗∗ -1.262∗∗∗ -0.360 -1.114∗∗∗
(0.101) (0.261) (0.351) (0.313)

Observations 2166 2166 2166 2166

Panel B: Employment gaps

Native whites
Native non-whites

Native whites
Non-white immigrants

White immigrants
Native non-whites

White immigrants
Non-white immigrants

[1] [2] [3] [4]

US robot exposure 0.684∗∗∗ 0.536∗ 0.902∗∗ 0.754∗
(0.249) (0.299) (0.378) (0.435)

Observations 2166 2166 2166 2166

Covariates: X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates and gaps by race/ethnicity at
the CZ level. Columns decompose workers between natives and immigrants. Changes are expressed in percentage points of the
working-age population of the respective demographic group and are multiplied by 100. Independent variables are standardized
to have mean zero and standard deviation of one. There are three time periods and 722 CZs. All regressions include state
fixed effects, time-varying division fixed effects, pre-trends in employment of men, women, whites and non-whites between
1970 and 1990, controls for the adoption of PCs, IT capital intensity and RBTC, exposure to Chinese imports, demographic
characteristics (share of Blacks, Hispanics, women, population with less than a college degree, three age groups (25-34, 35-44
and 45-54 years), and the logarithmic population), the industry (employment share in construction, manufacturing, mining,
research, service and utilities) and occupation composition of employment (employment share in offshorable, skill-intensive,
white-collar, blue-collar and low-skill jobs) of CZs in 1990, and the composition of industry and occupation employment by
gender and race/ethnicity of CZs in 1990. Standard errors are robust against heteroskedasticity and allow for clustering at the
state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5%
and 10% confidence level.

the employment gaps by breaking down workers by occupation groups (skill-intensive, white-collar,

blue-collar and low-skill workers, see Section 1.3 for details):

Egc,t =
∑
o

Lg,oc,t
Ng
c,t

(8)

where Lg,oc,t is the employment count of demographic group g in occupation group o. I repeat this

exercise by industry group (high robot-intensive manufacturing, low robot-intensive manufacturing

and non-manufacturing industries) to analyze the effect of robots on employment also from an

industrial perspective. The results are presented in Table 1.7. Panel A illustrates the results by

gender and Panel B by race and ethnicity.

I find that robot exposure is significantly narrowing the gender employment gap through a

reduction in employment of men in blue-collar jobs. Women are not affected in their employment
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Table 1.7: The effect of robots on employment by occupation and industry

Panel A: Gender

Occupation Industry

Skill
intensive

White
collar

Blue
collar

Low
skills

High
robot-

intensive

Low
robot-

intensive

Non-
manufac-
turing

[1] [2] [3] [4] [5] [6] [7]

Panel A1: Employment rate of men
US robot exposure -0.245∗∗∗ -0.146∗∗ -0.627∗∗∗ -0.041 -0.627∗∗∗ 0.018 -0.551∗∗∗

(0.055) (0.068) (0.135) (0.054) (0.122) (0.053) (0.182)

Panel A2: Employment rate of women
US robot exposure -0.013 -0.250∗∗∗ -0.039 -0.052 -0.144∗∗∗ 0.077∗∗ -0.448∗∗∗

(0.043) (0.087) (0.067) (0.065) (0.043) (0.032) (0.149)

Panel A3: Employment gap
US robot exposure -0.232∗∗∗ 0.104 -0.588∗∗∗ 0.011 -0.483∗∗∗ -0.058 -0.103

(0.047) (0.081) (0.095) (0.065) (0.092) (0.037) (0.166)

Observations 2166 2166 2166 2166 2166 2166 2166

Panel B: Race and ethnicity

Occupation Industry

Skill
intensive

White
collar

Blue
collar

Low
skills

High
robot-

intensive

Low
robot-

intensive

Non-
manufac-
turing

[1] [2] [3] [4] [5] [6] [7]

Panel B1: Employment rate of whites
US robot exposure -0.089∗∗ -0.162∗∗ -0.197∗∗∗ -0.018 -0.346∗∗∗ 0.048 -0.270∗∗∗

(0.037) (0.066) (0.050) (0.034) (0.051) (0.053) (0.078)

Panel B2: Employment rate of racial and ethnic minorities
US robot exposure -0.099 -0.290∗∗ -0.830∗∗∗ -0.080 -0.490∗∗ 0.042 -0.962∗∗∗

(0.101) (0.113) (0.195) (0.112) (0.220) (0.061) (0.263)

Panel B3: Employment gap
US robot exposure 0.010 0.128 0.632∗∗∗ 0.062 0.144 0.007 0.692∗∗∗

(0.111) (0.135) (0.179) (0.115) (0.180) (0.079) (0.254)

Observations 2166 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates and gaps by gender and
race/ethnicity at the CZ level. Columns decompose the outcomes by industry and occupation groups. Changes are expressed in
percentage points of the working-age population of the respective demographic group and are multiplied by 100. Independent
variables are standardized to have mean zero and standard deviation of one. There are three time periods and 722 CZs. All
regressions include state fixed effects, time-varying division fixed effects, pre-trends in employment of men, women, whites and
non-whites between 1970 and 1990, controls for the adoption of PCs, IT capital intensity and RBTC, exposure to Chinese
imports, demographic characteristics (share of Blacks, Hispanics, women, population with less than a college degree, three age
groups (25-34, 35-44 and 45-54 years), and the logarithmic population), the industry (employment share in construction, manu-
facturing, mining, research, service and utilities) and occupation composition of employment (employment share in offshorable,
skill-intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990, and the composition of industry and occupation
employment by gender and race/ethnicity of CZs in 1990. Standard errors are robust against heteroskedasticity and allow for
clustering at the state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant
at the 1%, 5% and 10% confidence level.

prospects in these jobs. The adverse effects of robots, however, are not limited to blue-collar

occupations, but spill over also to skill-intensive and, in particular for women, to white-collar jobs.
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Although this effect might seem surprising at first, it has to be considered that the employment

reduction in the certain occupations and sectors could contract aggregate demand in the local

economy, decreasing also the demand for labor in jobs that are not directly affected by the shock

(Acemoglu and Restrepo, 2020, Faber et al., 2022, Helm, 2020).

At the industry level, I find that changes in the gender employment gap are driven by the

manufacturing industries with the heaviest adoption of robots. The effect is again not limited to

these industries, but spills over also to non-manufacturing industries, decreasing employment both

among men and women, but without significant differences by gender.

Panel B shows that also in case of the race/ethnicity employment gap robot exposure decreases

employment relatively more for racial and ethnic minorities in blue-collar occupations. Again,

the effect spills over to skill-intensive and white-collar occupations, but in similar proportions by

race and ethnicity. At the industry level, I find that robots decrease employment in high robot-

intensive industries without significant differences between whites and non-whites. However, I do

find substantial differences in how the effect spills over to non-manufacturing industries, in which

non-whites suffer from greater employment losses than whites. These spillovers are likely to be the

main driver of the effect of robots on the overall race/ethnicity employment gap.

Table A9 in the Appendix breaks down the effect of robots on the race/ethnicity employment

gap in non-manufacturing sectors from Column 7 of Table 1.7 into individual sectors, showing that it

is driven by worse employment prospects for non-white workers in the service sector.31 This result

could be fueled by two channels (which cannot be disentangled at the local labor market level).

First, displaced whites are more likely to be re-employed in the service sector due to a comparative

advantage in brain skills (Kletzer, 1991).32 Second, the labor market impact of robots goes beyond

broad composition effects, which cannot be explained using observables. For instance, the spillover

effect of robots on the employment of racial and ethnic minorities in the service sector could be

fueled by non-observable factors such as discrimination against Black and Hispanic workers in these
31 Column 7 of Panel B shows that the employment rate of racial and ethnic minorities in non-manufacturing industries

decreases by more than 0.96 percentage points relative to less than 0.27 for whites. This effect appears implausibly
strong at first glance. However, it has to be considered that these results are expressed in percentage points of the
population of reference. While the proportional loss of jobs among non-whites is large, the magnitude of the loss in
absolute terms is similar across racial and ethnic groups, as illustrated in Table A10. This result follows from the
fact that the population of reference of non-whites is much smaller than the population of whites. For instance,
in 1990 the average share of racial and ethnic minorities in the US was about 15 percent, and increased up to 23
percent in 2014.

32 Figure 1.3 shows that the service sector is the second largest brain task-intensive sector after education and research.
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jobs (Bertrand and Mullainathan, 2004).

Table A11 provides further evidence of the spillover channel by decomposing US robot exposure

(right-hand side of Equation 4) into industry groups to estimate their effects separately.33 Results

show that the adverse effects of robots originate indeed in the manufacturing sector (high and low

robot-intensive industries), but then spill over heterogeneously by race and ethnicity to the service

sector. The adoption of robots in the service sector, on the other hand, has no detectable direct

effects on the race/ethnicity employment gap.

1.5.4 Robots and wages

After discussing exhaustively the impact of robots on employment, this section shows how their

adoption has affected wages. For this purpose, I use the natural logarithm of the average wages by

demographic group at the CZ level. The wage gap is defined as the difference in log-wages between

two groups:

WG
(M,W )
c,t = ln(ωMc,t)− ln(ωWc,t) (9)

I estimate the effect of robots on wages using regressions analogous to Equations 3 and 4. The

results are illustrated in Table 1.8.

The impact of robots on the gender wage gap have already been addressed in previous studies.

In particular, Acemoglu and Restrepo (2020) and Ge and Zhou (2020) show that robot exposure has

decreased wages of both genders, but relatively more for men. According to Ge and Zhou (2020),

one additional robot per thousand workers decreases the gender wage gap by roughly 0.3 percent,

suggesting that the introduction of robots has contributed to the secular decline in the gap. I find

a similar result in Panel A. Specifically, I also find that robots decrease wages of men more than for

women, and estimate that each additional robot per thousand workers decreases the gender wage

gap by 0.348 percent (-0.171/0.491), suggesting that advances in robotics move the gender wage

gap and the gender employment gap in the same direction.

In Panel B, I analyze the heterogeneous effect of robots on wages by race and ethnicity. This is

a question that has not been addressed by previous research, and whose answer is not as straight-

forward. In fact, I find that robot exposure is actually decreasing the race and ethnicity wage gap,
33 Note that Table 1.7 decomposes only the left-hand side variable of Equation 4.
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Table 1.8: The effect of robots on wages

Panel A: Gender

Men Women Gap

[1] [2] [3]

US robot exposure -0.359∗∗∗ -0.188∗∗∗ -0.171∗
(0.078) (0.061) (0.089)

Observations 2166 2166 2166

Panel B: Race and ethnicity

Whites Non-whites Gap

[1] [2] [3]

US robot exposure -0.587∗∗∗ 0.040 -0.627∗
(0.191) (0.163) (0.338)

Observations 2166 2166 2166

Covariates: X X X

Notes: This table presents IV estimates of the effect of US robot exposure on wages and wage gaps by gender and race/ethnicity
at the CZ level. Changes are expressed as natural logarithms and are multiplied by 100. Independent variables are standardized
to have mean zero and standard deviation of one. There are three time periods and 722 CZs. All regressions include state
fixed effects, time-varying division fixed effects, pre-trends in employment of men, women, whites and non-whites between
1970 and 1990, controls for the adoption of PCs, IT capital intensity and RBTC, exposure to Chinese imports, demographic
characteristics (share of Blacks, Hispanics, women, population with less than a college degree, three age groups (25-34, 35-44
and 45-54 years), and the logarithmic population), the industry (employment share in construction, manufacturing, mining,
research, service and utilities) and occupation composition of employment (employment share in offshorable, skill-intensive,
white-collar, blue-collar and low-skill jobs) of CZs in 1990, and the composition of industry and occupation employment by
gender and race/ethnicity of CZs in 1990. Standard errors are robust against heteroskedasticity and allow for clustering at the
state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5%
and 10% confidence level.

while increasing the employment gap (Table 1.3). This result is caused by a drop in the average

wage level among white workers, while average wages of non-whites are not affected by the adoption

of robots.

A plausible explanation for this finding is that, after being displaced by robots, middle-skill

white workers are more likely to be re-employed in low-skill jobs than Blacks and Hispanics (Kletzer,

1991), decreasing the average wage level among whites. This supposition is in line with the rising

job polarization of the labor market caused by automation technologies (Autor and Dorn, 2013).

On the other hand, middle-skill non-white workers who have been displaced are more likely to

drop out of the labor force (Lerch, 2020), leaving average wages among racial and ethnic minorities

unaffected.34 This finding is also in line with the cross-industry spillover effects documented in the

previous section.
34 Figure A3 shows that middle-skill occupations are most susceptible to automation through industrial robots. The

exit of workers employed in these occupations from the labor market, therefore, does not affect significantly the
mean of the wage distribution.
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1.6 Conceptual framework

The empirical analysis shows that there is significant segregation in the US labor market. In par-

ticular, Figure 1.3 shows that men are employed more often in jobs that are intensive in brawn

tasks, including skill-intensive and blue-collar jobs, and that racial and ethnic minorities are em-

ployed more often in jobs that do not require much brain skills, such as blue-collar and low-skill

jobs. Based on these pattern in the data, this section uses a simple Roy model with heterogeneous

workers and endogenous job sorting to exposit the mechanism through which the adoption of robots

affects the demand for human skills and employment across demographic groups (Roy, 1951). The

model builds on Autor et al. (2003), but extends their framework by using workers with different

demographic characteristics and by allowing them to choose whether to supply labor or not, a

necessary condition to study the effects of automation on the employment gaps.

I consider a production model with two task inputs, manual and non-manual tasks, that are

used to produce an output good Y in a competitive labor supply-demand framework in a closed

economy. Tasks can be carried out by three factor inputs. Manual tasks (A) can be carried out by

brawn labor, LA, or they can be automated through the adoption of robot capital, R. Non-manual

tasks (B) can be carried out only by brain labor, LB (they cannot be automated). The production

of goods combines both types of labor and robot capital, measured in efficiency units, using the

following technology:

Yt =
(
Rρt + LρA,t

)β
ρL1−β

B,t (10)

with β, ρ ∈ (0, 1) and β < ρ. In this simple setting, robot capital is an imperfect substitute of LA

and a relative complement to LB. The elasticity of substitution between manual and non-manual

tasks is equal to 1, while the elasticity of substitution between robot capital and brawn labor is

1
1−ρ > 1. Perfect competition in the economy implies that in equilibrium labor is paid its marginal

productivity. The first order conditions of the production function with respect to labor inputs

provide the following endogenous labor demand functions:

ωA,t = β
(
Rρt + LρA,t

)β
ρ
−1
Lρ−1
A,t L

1−β
B,t (11)

ωB,t = (1− β)
(
Rρt + LρA,t

)β
ρL−βB,t (12)
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where ωA and ωB are the respective labor wages per efficiency unit.

Robots are produced and competitively supplied each period using the following technology

Rt = YR,t
eδt

θ , where YR,t is the amount of the final output allocated to produce robots, θ = eδ is an

efficiency parameter, and productivity increases at rate δ > 0 (Autor and Dorn, 2013).35 The price

of robots, which is given by pt = θe−δt, is falling exogenously over time due to technical advances.36

This is the causal force of the model. From here on, I omit time subscripts.

Labor is supplied by a unit continuum of individuals i ∈ [0, 1] who are endowed with skills in

both tasks, ξi = [xA,i, xB,i].37 Skills are distributed independently and identically over all individ-

uals according to a density function f(xA,i, xB,i) with support over xj,i ∈ [εj , 1 + εj ], where εj is

sufficiently small and j = {A,B}.38

Price-taking workers are equipped with one unit of labor supply and, given their skill endowment

and labor wages, choose the employment allocation that maximizes their income:

Ui(ω,x) = max{ωAxA,i, ωBxB,i, ωN} (13)

They may supply labor by choosing between LA, LB or any convex combination of the two, or,

alternatively, they may choose not to supply any labor and consume one unit of leisure, earning

exogenous non-labor income ωN . Hence, workers supply:
Brawn labor if xA,i > xA and xB,i < x∗B,i

Brain labor if xA,i > xA and xB,i > x∗B,i or if xA,i < xA and xB,i > xB

No labor if xA,i < xA and xB,i < xB

(14)

where xA = ωN
ωA

, xB = ωN
ωB

, x∗B,i = ωA
ωB
xA,i. Individuals choose brawn labor if they have sufficient

brawn skills, they supply brain labor if they have enough brain skills, and they do not supply any
35 This assumption implies that robot capital fully depreciates in each period or, in other words, that the flow of

services provided by robots is continuously paid its rental price as these services are consumed (Autor and Dorn,
2013).

36 In the first period (t = 1), one unit of YR can be used to produce one efficiency unit of R (1 = eδ

θ
). Competition

guarantees that the real price of robot capital (per efficiency unit) is equal to marginal (and average) cost: pt =
θe−δt. Productivity increases at rate δ > 0 due to technological progress.

37 It is important to draw a distinction between skills and tasks. Tasks are units of work activity that produce output,
while skills are a worker’s stock of capabilities for performing tasks in exchange for wages (Autor, 2013).

38 As shown below, εA ∈ [0, xA) and εB ∈ (xB − 1, 0].
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labor if they are not particularly skilled in either task. The model abstracts from involuntarily

unemployment so that labor markets clear.

The shares of individuals who are employed in brawn and brain labor and those who are not

employed are given by:

NA =

∫ 1+εA

xA

∫ x∗B,i

εB

f(xA,i, xB,i)dxB,idxA,i (15)

NB =

∫ xA

εA

∫ 1+εB

xB

f(xA,i, xB,i)dxB,idxA,i +

∫ 1+εA

xA

∫ 1+εB

x∗B,i

f(xA,i, xB,i)dxB,idxA,i (16)

NN =

∫ xA

εA

∫ xB

εB

f(xA,i, xB,i)dxB,idxA,i (17)

where NN = 1 − NA − NB.39 I quantify aggregate labor supplies by summing over workers’ skill

endowments in efficiency units:

LA =

∫ 1+εA

xA

∫ x∗B,i

εB

xA,if(xA,i, xB,i)dxB,idxA,i (18)

LB =

∫ xA

εA

∫ 1+εB

xB

xB,if(xA,i, xB,i)dxB,idxA,i +

∫ 1+εA

xA

∫ 1+εB

x∗B,i

xB,if(xA,i, xB,i)dxB,idxA,i (19)

In equilibrium, wages adjust such that labor supply (Equations 18 and 19) equals labor demand

(Equations 11 and 12).

Suppose now that there are two types of individuals in equal proportions, let’s say men, M , and

women, W , and that men hold a biologically rooted comparative advantage in brawn skills (Pitt et

al., 2012, Rendall, 2017). The comparative advantage is given by a right-shift of the support over

the distribution of brawn skills:

xgA,i ∈ [εgA, 1 + εgA] ∀g ∈ {M,W} (20)

where εMA > εWA = 0 and εB = 0 for both genders.

Separately, suppose that non-whites have a comparative disadvantage in brain skills due to
39 To ensure that NA > 0, NB > 0 and NN > 0, it must hold that εA < xA and xB ≤ 1 + εB . Moreover, ωN

must be sufficiently small, i.e. ωN < min{ωA, ωB} is always true, such that not all workers with εj = 0 choose
non-employment over labor (LA = 0 or LB = 0). Finally, starting from t = 1 the wage per efficiency unit of
brain labor has to be larger than the wage of brawn labor, ωB = ωA + µ with µ > 0. This assumption ensures
a well-defined solution of the model and is based on patterns observed in the data which show that, on average,
white-collar labor is paid more than blue-collar labor (see Figure A4).
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persisting discrepancies in the educational achievement caused by generations of labor market dis-

crimination against racial and ethnic minorities (Alesina et al., 2001, Altonji and Blank, 1999, Cook,

2014, Derenoncourt, 2022, Derenoncourt et al., 2022). The comparative disadvantage is given by a

left-shift of the support over the distribution of brain skills, i.e. εNWB < εWH
B = 0 and εA = 0 for

whites and non-whites.

These assumptions follow from the empirical evidence provided in Figure 1.3, which shows that

men are employed more often in brawn task-intensive occupations and non-whites are employed

more often in occupations with less brain tasks, and are in line with the notion that workers sort

into jobs according to their comparative skill advantage (Bacolod and Blum, 2010, Yamaguchi,

2018).

Proposition 1 The comparative advantage of men in brawn skills and the comparative disadvantage

of non-whites in brain skills imply that they are over-represented in brawn labor, that men have a

higher employment rate than women, and that non-whites have a lower employment rate than whites.

Using demographic-specific forms of Equation 17 and by computing the difference in the employment

rates, it is straightforward to show that both the gender and the race/ethnicity employment gap

are positive:

EG(M,W ) = (1−NM
N )− (1−NW

N ) =

∫ εMA

0

∫ xB

0
f(xA,i, xB,i)dxB,idxA,i > 0 (21)

EG(WH,NW ) = (1−NWH
N )− (1−NNW

N ) =

∫ xA

0

∫ 0

εNWB

f(xA,i, xB,i)dxB,idxA,i > 0 (22)

The full proof of Proposition 1 is provided in Appendix A4, which shows also that men are employed

more often in brawn task-intensive jobs than women, and that non-whites are employed less often

in brain task-intensive jobs than whites, reflecting the empirical evidence from Figure 1.3.

Let’s now focus on the impact of an increase in robots on employment by gender and race/ethnicity

through an exogenous drop in the price of robot capital. As robots become a relatively cheaper pro-

duction input, firms decrease their demand of brawn labor, lowering wages ωA. As a consequence,

brawn workers with sufficiently high brain skills are better off by moving to brain labor, while less

skilled workers become non-employed. I define the transition from brawn labor to non-employment

as the “displacement effect” of robots.
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At the same time, the inflow of robot capital more than offsets the decrease in brawn labor,

yielding a net increase in the intensity of the manual task input in firms’ production (it becomes

cheaper to produce with capital). This condition boosts the productivity of brain labor, raising

wages ωB, and inducing even more workers to reallocate their labor supply from brawn labor to

brain labor. Moreover, some previously non-employed individuals might also join the workforce and

supply brain labor, if they have enough brain skills. I refer to this effect as the “productivity effect”.

Theoretically, the overall effect of robots on employment is ambiguous and depends on the

relative size of the displacement and the productivity effect (see Appendix A4). The empirical

analysis shows that in the US labor market the displacement effect dominates the productivity

effect among all demographic groups (see Table 1.3). The model, however, unambiguously shows

that, independently of the aggregate employment effect:

Proposition 2 The comparative advantage of men in brawn skills and the comparative disadvantage

of non-whites in brain skills imply that the adoption of robot capital reduces the gender employment

gap and increases the race/ethnicity employment gap.

This proposition follows from the fact that women benefit more from the productivity effect of

robots than men:
∂EG(M,W )

∂p
= −

∫ εMA

0
f(xA,i, xB)

xB
ωB

∂ωB
∂p

dxA,i > 0 (23)

and because non-whites suffer from a larger displacement effect than whites:

∂EG(WH,NW )

∂p
= −

∫ 0

εNWB

f(xA, xB,i)
xA
ωA

∂ωA
∂p

dxB,i < 0 (24)

Note that ∂R
∂p < 0. These results show that robots decrease the gender employment gap, since

more women join the labor force to work in white-collar jobs than men. On the other hand, the

race/ethnicity employment gap increases because non-white workers are displaced more often from

blue-collar jobs than whites. The full proof of Proposition 2 is again provided in Appendix A4.
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1.7 Conclusion

The adoption of industrial robots has already been shown to have displaced thousands of US workers

over the last decades (Acemoglu and Restrepo, 2020). However, little is known about how these

technologies are shaping the composition of the labor force, and how they affect inequality across

demographic groups. This paper investigates this issue and analyzes how the effects of robots are

spreading across the population, focusing on gender and race/ethnicity employment differentials in

the US labor market.

Results show that robot exposure decreases employment with substantial differences across de-

mographic groups. Between 1993 and 2014, the introduction of industrial robots has decreased local

employment rates of men and women by 3.7 and 1.6 percentage points, contributing to the secular

decline in the gender employment gap. At the same time, it has decreased employment of whites

and non-whites by 1.8 and 4.5 percentage points, slowing the secular decline in the race/ethnicity

employment gap.

These findings are driven by the over-representation of male and non-white workers in blue-

collar occupations as a result of their comparative advantage in physical skills. Using a simple

task-based model, I show that women benefit more from the productivity effect of robots than men

(although it is offset by the displacement effect), and that racial/ethnic minorities suffer from a

larger displacement effect than whites. These forces unambiguously narrow the gender employment

gap and widen the race/ethnicity employment gap.

Despite their predominance in the manufacturing sector, the labor market impacts of robots are

not confined to these industries. In fact, I find significant spillover effects to the service sector, in

particular for Blacks and Hispanics. Finally, I show that the introduction of robots has narrowed

both the gender and the race/ethnicity wage gap. These results follow from wages of men having

decreased more than those of women, and wages of whites having decreased, while average wages

of non-whites have not been affected by robot exposure.
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Appendix A

A1 Data

This section discusses the data sources and the construction of the variables.

A1.1 Current Population Survey

Figure 1.1 illustrates employment rates and gaps across demographic groups using data from the

Annual Social and Economic Supplement (ASEC) of the Current Population Survey between 1980

and 2019 (Flood et al., 2020). These data are publicly available at IPUMS and include monthly

repeated cross-sectional surveys. The frequency with which these data are collected comes at the

expense of the scale of the survey, making it representative at the national level, but not at the CZ

level. I use these data in Figure 1.1 to trace the development of employment across demographic

groups in the US on a yearly basis. In the empirical analysis, however, I use data from the US

Census and the ACS.

A1.2 Industrial robots

IFR data on industrial robots are praised for their reliability, but they include also some limitations.

First, a fraction of the stock of industrial robots is not attributed to any industry and is referred

to as “unclassified”. I attribute unclassified robots proportionally to an industry’s share of total

classified robots for each year (Graetz and Michaels, 2018). Second, up to 2011, the IFR provides

data on the operational stock of robots only for North America as a whole, which includes the United

States, Canada and Mexico. This aggregation introduces noise, but is not a major concern for the

identification of US robot adoption, since the Unites States account for more than 90 percent of the

North American market and the IV strategy purges this type of measurement error (Acemoglu and

Restrepo, 2020). Third, the stock of robots by industry going back to the 1990s is only available

for a subset of European countries: Denmark, Finland, France, Germany, Italy, Norway, Spain,

Sweden, and the United Kingdom. The IFR provides data on the total stock of robots in North

America from 1993, but it does not provide industry breakdowns until 2004. For these years, I

attribute the aggregate number of robots to industries proportionally to their shares of the total
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stock in 2004. I use the same procedure to impute the stock of robots for Denmark, for which the

industry breakdown starts in 1996.

A1.3 Import exposure

China – I follow Autor et al. (2013) in using a shift-share approach to measure the exposure of

local labor markets to imports from China. I interact CZs’ industry employment shares in the

manufacturing sector prior to the admission of China to the World Trade Organization in 2001 with

the growth in product trade flows from China to the US. Since US imports from China may also

be endogenous to demand shocks, I use a similar identification strategy to Equation 6 and exploit

plausibly exogenous variation in the trade shock by instrumenting the shift component with trade

flows from China to other industrialized countries with a similar trade development as the US:

Import exposurec,(t0,t1) =
∑
j∈J

1

8

∑
i∈OT8

`90
c,j∆IM

i
j,(t0,t1) (25)

where ∆IM i
j,(t0,t1) is the change in industry j ∈ J imports from China in thousand dollars per worker

of country i ∈ OT8, which includes Australia, Denmark, Finland, Germany, Japan, New Zealand,

Spain, and Switzerland. I keep the baseline employment shares constant to avoid endogeneity and

serial correlation concerns.

To build this measure, I collect product-level data at the six-digit Harmonized System (HS) on

Chinese imports from the UN Comtrade Database (UN Comtrade, 2019) which I match with indus-

try employment shares from the 1991 County Business Patterns (CBP, 2019). The CBP classifies

industry employment according to the Standard Classification System (SIC) until 1997 and accord-

ing to the North American Industry Classification System (NAICS) afterwards. These systems are

more detailed than the industrial classification system used in the IPUMS. I use crosswalks from

Autor et al. (2013) to convert SIC and NAICS manufacturing industries and six-digit HS product-

level trade data to 392 four-digit SIC industries. I construct the import penetration measure by

matching local employment shares with converted product-level trade data on imports from China.

For confidentiality reasons, county-industry observations with few cases are reported as ranges. In

reconstructing these data, I follow Acemoglu et al. (2016).

Europe – I build a measure of international product market competition from Europe using a shift-
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share approach as described in the previous section. The share component is the same as in Equation

25, while the shift component does not account for imports from China, but for average trade flows

from Denmark, Finland, France, Italy, Spain, Sweden and the United Kingdom (EU7 countries)

to the US from UN Comtrade. Since US imports are again subject to endogeneity concerns, I

instrument imports to the US with trade flows from Europe to Canada, an industrialized country

with a comparable trade engagement with European countries as the US, but whose import intensity

is less likely to be affected by US domestic shocks than the US itself.

A1.4 Technology shocks

I account for technology shocks other than industrial robots using shift-share measures of the adop-

tion of PCs and IT capital intensity, and a measure of routine task-intensity at the CZ level in

1990.

Exposure to PCs – I measure PC adoption at the CZ level following Acemoglu and Restrepo

(2020). The measure is computed by interacting the share of workers using a computer in each

industry from the 1993 Current Population Survey (shift component) with CZ baseline employment

shares from the Census (share component). Ge and Zhou (2020) show that computer capital in the

1990s is a strong predictor of subsequent computer adoption.

IT capital intensity – I use a measure of IT capital intensity from Acemoglu and Restrepo (2020).

The measure is computed by interacting the industry share of IT investments in 1992 from the

Annual Survey of Manufactures (ASM, 2020) (shift component) with baseline CZ employment shares

from the Census (share component). Industry data are available for 4-digit SIC87 manufacturing

industries.

Routine-biased technological change – I build a measure of RBTC using the share of routine

task-intensive employment in a local labor market in 1990. For this purpose, I match the classifi-

cation of occupational routine task-intensity from Autor and Dorn (2013) with employment data

from the Census and compute the corresponding employment shares at the CZ level.
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A1.5 CZ characteristics

I construct time-invariant controls for CZ characteristics from the 1990 Census, which include

demographic characteristics, the industrial and occupational composition of employment, and the

demographic-specific composition of workers within industries and occupations.

Demographics of the population – These controls include the population share of women,

Blacks, Hispanics, college-educated individuals, and three age groups (25-34, 35-44 and 45-54 years),

as well as the log-population in 1990. Shares are computed in terms of the total population in the

CZ.

Industry and occupation – These controls include the employment share in the construction,

education and research, manufacturing, mining, services, and utilities industry, as well as the share

of offshorable, skill-intensive, white-collar, blue-collar and low-skill occupations in 1990. I use a

measure of offshorability of occupations from Autor and Dorn (2013). Shares are computed in

terms of total employment in the CZ.

Demographics of employment – These covariates control for the initial composition of em-

ployment of women and racial/ethnic minorities within industries (high robot-intensive manufac-

turing and low-robot intensive manufacturing) and occupations (skill-intensive, white-collar and

blue-collar). I compute these measures as the number of women (non-whites) who are employed in

industry or occupation j divided by total employment in j. This measure is also used to represent

the industrial and occupational segregation of the US labor market in Figure 1.3.

A2 Comparison with Acemoglu and Restrepo (2020)

The results of this paper account for partial equilibrium effects of robot adoption and do not consider

aggregate effects resulting from cross-CZ spillovers that could influence the gender- or race/ethnicity-

specific demand for labor in other areas. A parametric model to quantify the general equilibrium

effects of robots on employment is presented in Acemoglu and Restrepo (2020), although it does

not allow to differentiate for demographic-specific cross-CZ effects either.

It is worth noting that the magnitude of the employment estimates of this paper are larger than

those reported in Acemoglu and Restrepo (2020), since the authors are not exploring variation in US

42



robot exposure within states, but within census divisions. However, as demographic-specific labor

market outcomes are highly heterogeneous across US states, it is critical to account for systematic

differences across these areas in this type of analysis.

To compare the consistency of my results with Acemoglu and Restrepo (2020), Table A12 reports

estimates of the effect of robots on employment rates and gaps, controlling only for time-varying

division fixed effects, the vector of time-invariant regional characteristics and economic variables,

pre-trends and structural labor market shocks contemporaneous to the introduction of robots from

Equations 3 and 4. This specification does not include state fixed effects.

Results show that the relative size of the effects by gender and race/ethnicity is similar to that

in Table 1.3, even when excluding state fixed effects (despite changes in the absolute size). Using

this specification, the results on the overall population (Column 1) are similar to the finding of

Acemoglu and Restrepo (2020), i.e. that each industrial robot reduces local employment by six

workers (3.3 workers when accounting for general equilibrium effects across CZs).

Based on this result, my findings suggest that each robot displaces four men and two women

or, when looking at differences by race/ethnicity, 3.6 whites and 2.4 non-whites. These values

are illustrated in Table A13, which reports estimates of the impact of robots on employment by

demographic groups as shares of the total local population.

A3 Robustness checks

This section performs a set of robustness checks in support of the identification strategy and of

my preferred specification. I report results for the overall population and the population without a

college education, which is driving my results.

A3.1 Product market competition

A concern that I need to address is that the adoption of robots in Europe is influencing US labor

market conditions through increased product market competition, violating the exclusion restriction

of my IV strategy. Although I cannot rule out this possibility, I can show that it is rather unlikely

that my results are driven by this causal link.

In Table A14, I estimate the labor market impact of robots on the employment gaps when
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controlling for international competition on the product market using a shift-share measure of US

imports from Europe à la Autor et al. (2013), as defined in Appendix A1. Between the mid-1990s

and 2014, trade flows from Europe to the US have increased substantially. This increase is mainly

driven by a rise in imports of manufacturing goods that is positively related to the introduction

of robots in Europe (Figure A5, Panel A). Since US imports could be subject to domestic shocks

that affect also local labor demand (demand shocks), I account for endogeneity of imports by using

trade flows from Europe to Canada, a country with a comparable trade engagement with European

countries as the US (Figure A5, Panel B). My estimates are not significantly affected by the inclusion

of these additional controls.

In a second approach, I omit from the instrument the European countries with the largest trade

engagement with the US, namely the UK, Italy and France. By including only countries that are

less likely to impact US labor market conditions through product market competition because of

their national adoption of robots, the results lose some precision (because of the heavier exposure

of the instrument to labor market shocks in Nordic countries and in Spain), but remain statistically

significant at conventional levels. These findings suggest that my estimates are unlikely to be driven

by higher product market competition through the heavier utilization of robots in Europe.

A3.2 Pre-trends

The secular decline in the gender and the race/ethnicity employment gap raises the concern that

changes in the employment gaps and the adoption of industrial robots are driven by some common

factors. For instance, changes in the employment gaps and the adoption of robots could both stem

from a labor market’s industrial composition of employment. In this case, my estimates could

confound the impact of robot exposure with pre-existing local labor market trends. I account for

this concern in my preferred specification by controlling for past changes in the employment gaps

between 1970 and 1990 and the employment composition of industries and occupations by gender

and race/ethnicity in 1990.

I report estimates of pre-trends in employment of men, women, whites and non-whites between

1970 and 1990 in Table A15. There is no evidence of pre-trends affecting subsequent employment by

gender. However, I do find that increases in employment of whites between 1970 and 1990 decrease

the race/ethnicity employment gap between 1990 and 2014, and that increases in employment of
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non-whites widen it (although to a smaller extent). Nevertheless, Table A5 shows that there is no

evidence of these pre-trends confounding the estimated effect of industrial robots on the employment

gaps (see sequential inclusion of controls).

A3.3 Weights

Figure A2 in the Appendix shows that there is substantial variation in the distribution of racial

and ethnic minorities in the US, with the largest concentration in states of the Sun Belt because of

their proximity to Mexico and the Caribbean islands. Table A16 examines the role of population

weights and the geographic distribution of non-whites for the determination of the effect of robots

on changes in the race/ethnicity employment gap.

I start by estimating Equations 3 and 4 using as regression weights the initial population of non-

whites in the CZ. The size of the estimates is larger than in my preferred specification, suggesting

that the effect is likely to emerge from labor markets with a larger population of racial and ethnic

minorities. Column 2 estimates the effect of robots on the employment gaps without any weights.

The results are not economically nor statistically significant, since CZs with a small population of

non-whites receive too much weight. Column 3 restricts the sample to CZs with a large population

of racial and ethnic minorities (see Panel B of Figure A2) and repeats the exercise of the previous

column, showing that the results specific to these CZs are similar to my preferred specification’s

estimates in Table 1.3.40 This finding suggests that my main results are indeed driven by CZs with

a sufficiently large population of racial and ethnic minorities, and that this effect is captured by the

population weight of my preferred specification.

The homogeneous distribution of men and women across labor markets does not expose my

results to the above mentioned concerns. As illustrated in Panel B of Table A16, the estimates of

the labor market effect of robots on the gender employment gap are economically and statistically

significant across all specifications, independently of the regression weights.
40 I perform a double median split and select the 275 CZs with a population of non-whites and a share of the non-white

population above the US local labor market median, as shown in Figure A2.
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A3.4 Shift-share measure

Table A17 shows that the exact construction of the shift-share measure is not affecting my results.

Panels A1, A2, B1 and B2 report estimates with a different mix of European countries used in

the construction of the instrument. Panels A3 and B3 report estimates using an instrument with

baseline employment shares from 1990, `90
c,j , rather than those from 1970. Panels A4 and B4 report

estimates using measures that omit the adjustment for industry growth, gj,(t0,t1)
Rj,t0
Lj,90

. The estimates

are not significantly different from my preferred specification’s results.

A3.5 Exclusion of CZs

Table A18 excludes a set of outlying CZs with the heaviest adoption of robots. Panels A1 and B1

report estimates when excluding the area around Detroit (MI), which is the CZ with the largest

exposure to robots, while Panels A2 and B2 exclude CZs in the top 1 percentile of the distribution

of robot exposure during my sample period. The results lose some precision, because most of the

identification is coming from CZs in the Rust Belt (see Figure 1.4), but they are not significantly

different from my baseline results, especially for individuals without a college degree. These findings

suggest that my results are not solely driven by the subset of CZs with the largest adoption of robots.

A3.6 Covariates and CZ trends

Table A19 shows that unobserved heterogeneity does not alter my results. Panels A1 and B1 include

covariates of CZ characteristics at the beginning of each subperiod (1990, 2000 and 2007) instead

of covariates from 1990. Panels A2 and B2 use a more demanding specification and include CZ

fixed effects (CZ trends). Using both specifications, the results are quantitatively and qualitatively

significant at conventional levels.

A4 Conceptual framework: Proofs

In this part of the Appendix, I provide proofs and further results of the equilibrium labor market

impact of robots on the demand for human skills and the employment gaps.

The model presents a basic production function which combines labor (brawn labor, LA, and
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brain labor, LB) and robot capital, R, to produce an output good Y (Equation 10). The perfectly

competitive environment implies that input factors are paid their marginal productivity (Equations

11 and 12). Robot capital is produced and competitively supplied each period using the following

technology, Rt = YR,t
eδt

θ , where YR,t is the amount of the final output allocated to produce robots

and eδ(t−1) is the total factor productivity (Autor and Dorn, 2013). That is, firms can sell their

output good Y at the normalized price of 1 or they can invest a share of their production, YR, in

the production of robot capital at price p:

πt = YR,t − ptRt (26)

Taking the first order condition of Equation 26 with respect to YR,t gives:

∂πt
∂YR,t

= 1− pt
eδt

θ
= 0 (27)

which solves to pt = θe−δt.

Labor is supplied by a unit continuum of individuals who are endowed with independently and

identically distributed skills on two input tasks, f(xA,i, xB,i) with support xj,i ∈ [εj , 1 + εj ], where

j = {A,B}, εA ∈ [0, xA) and εB ∈ (xB − 1, 0].

Workers want to maximize their income and may supply labor by choosing between brawn

labor, brain labor or any convex combination of the two, or they may choose not to supply any

labor and consume one unit of leisure. These assumptions imply that workers choose tasks according

to their comparative advantage, given their skills and equilibrium wages. The share of individuals

who supply labor is determined by Equations 15 and 16, while the share of individuals who is not

employed is given by Equation 17. Labor supplies are determined by Equations 18 and 19. In

equilibrium, wages adjust such that labor demand and labor supply are equal.

Figure A6 illustrates the distribution of individuals in NA, NB and NN graphically in a two-

dimensional space in which every point designates the endowment of brawn and brain skills (xA,i, xB,i)

of an individual i. The yellow area denotes the share of individuals who are employed in brawn

labor, the green area those who are employed in brain labor and the blue area those who are not

employed.
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According to Proposition 1, the comparative advantage of men in brawn skills implies that they

are employed more often in brawn labor and that women opt more often for non-employment.

Moreover, whites are employed more often in brain labor, given their comparative advantage in

brain skills, and racial/ethnic minorities opt more often for non-employment. Therefore, the gender

employment gap and the race/ethnicity employment gap are both positive.

I prove the first part of the proposition by supposing that men have a comparative advantage in

brawn skills, εMA > 0, εWA = 0 and εB = 0. The gender employment gap, expressed as the difference

between the employment rate of men and the employment rate of women, can be computed using

gender-specific forms of Equation 17:

EG(M,W ) = (1−NM
N )− (1−NW

N ) =

∫ εMA

0

∫ xB

0
f(xA,i, xB,i)dxB,idxA,i > 0 (28)

The positive sign of this expression suggests that the employment rate of men is higher than the

employment rate of women. Panel A of Figure A6 shows that men have the same support over

the distribution of brain skills as women (εB = 0), but on average they hold more brawn skills

(εMA > εWA ), such that in equilibrium women opt more often for non-employment.41 Note that

Equation 28 denotes the density of the population in the bottom left rectangle (light blue area) of

Figure A6. The comparative advantage implies also that in equilibrium men are employed more

often in brawn task-intensive jobs:

EG
(M,W )
A = NM

A −NW
A =

∫ εMA

0

∫ x∗B,i

0
f(xA,i, xB,i)dxB,idxA,i > 0 (29)

To compute the employment gap by race and ethnicity, I assume that non-whites have a compar-

ative disadvantage in brain skills, i.e. εNWB < 0, εWH
B = 0 and εA = 0. The comparative advantage

of whites in brain skills implies that a higher proportion of them supplies brain labor in equilibrium:

EG
(WH,NW )
B = NWH

B −NNW
B =

∫ 1

0

∫ 0

εNWB

f(xA,i, xB,i)dxB,idxA,i > 0 (30)

41 The claim that fewer men opt for non-employment works with any skill distribution function which assumes that
men have a comparative advantage in brawn skills, conditional on men and women having the same skill density
between [εA, 1].
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Using Equation 17, the computation of the race and ethnicity employment gap is straightforward:

EG(WH,NW ) = (1−NWH
N )− (1−NNW

N ) =

∫ xA

0

∫ 0

εNWB

f(xA,i, xB,i)dxB,idxA,i > 0 (31)

Panel B of Figure A6 shows that if non-whites have the same support over the distribution of brawn

skills (εA = 0), but on average they hold less brain skills (εNWB < εWH
B ), they are employed less often

in brain task-intensive jobs, and in equilibrium they have a lower employment rate than whites.

To sum up, as stated in Proposition 1, Equations 28 and 29 show that the comparative advantage

of men in brawn skills implies that in equilibrium they are employed more often in brawn labor

and that the gender employment gap is positive. Moreover, Equations 30 and 31 show that the

comparative advantage of whites in brain skills implies that they are employed more often in brain

labor and that the race/ethnicity employment gap is positive too. �

From Equation 27, we know that the price of robots decreases over time due to exogenous

technological progress, increasing robot capital in the production of output good Y . An increase in

the adoption of robots has adverse effects on the demand for labor and, through changes in wages,

also on the labor supply.

To understand the mechanism through which the adoption of robots influences the demand of

labor in the economy, I compute the components of the following equations, showing the partial

derivatives of brawn and brain labor with respect to the price of robots:

∂LA
∂p

=
∂LA
∂ωA

∂ωA
∂p

+
∂LA
∂ωB

∂ωB
∂p

(32)

∂LB
∂p

=
∂LB
∂ωA

∂ωA
∂p

+
∂LB
∂ωB

∂ωB
∂p

(33)

I start with the computation of the partial derivatives of LA and LB with respect to labor wages:

∂LA
∂ωA

=−

[
∂

∂xA

∫ 1+εA

xA

(∫ x∗B,i

εB

xA,if(xA,i, xB,i)dxB,i

)
dxA,i

]
xA
ωA

+

+

∫ 1+εA

xA

(xA,i)
2f(xA,i, ωxA,i)

1

ωB
dxA,i > 0

(34)

where ω = ωA
ωB

such that x∗B,i = ωxA,i.
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∂LA
∂ωB

= −
∫ 1+εA

xA

(xA,i)
2f(xA,i, ωxA,i)

ω

ωB
dxA,i < 0 (35)

∂LB
∂ωA

=−
∫ 1+εB

xB

xB,if(xA, xB,i)
xA
ωA

dxB,i−

−

[
∂

∂xA

∫ 1+εA

xA

(∫ 1+εB

x∗B,i

xB,if(xA,ixB,i)dxB,i

)
dxA,i

]
xA
ωA
−

−
∫ 1+εA

xA

(xA,i)
2f(xA,i, ωxA,i)

ω

ωB
dxA,i < 0

(36)

The positive term in the second line of Equation 36 is outweighed by the other terms.

∂LB
∂ωB

=

∫ xA

εA

f(xA,i, xB)
(xB)2

ωB
dxA,i+

+

∫ 1+εA

xA

(xA,i)
2f(xA,iωxA,i)

ω2

ωB
dxA,i > 0

(37)

These equations show that the supply of brawn (brain) labor increases as brawn (brain) wages

increase and decreases if brain (brawn) wages increase.

Next, I compute changes in equilibrium wages in response to an increase in the price of robots.

Taking total differentials of Equations 11 and 12, I obtain that:

∂ωA
∂p

= −

(
β
ρ − 1

)
ρRρ−1LB(

Rρ + LρA
)[(β

ρ − 1
)
ρLρ−1

A LB
Rρ+LρA

∂LA
∂ωA

+ (ρ− 1)LBLA
∂LA
∂ωA

+ (1− β)∂LB∂ωA
− LB

ωA

] ∂R
∂p

> 0 (38)

∂ωB
∂p

= − βRρ−1(
Rρ + LρA

)[ βLρ−1
A

Rρ+LρA

∂LA
∂ωB
− β

LB
∂LB
∂ωB
− 1

ωB

] ∂R
∂p

< 0 (39)

because of 0 < β < ρ < 1, ∂R
∂p < 0 and Equations 34 to 37. Inserting Equations 34 to 39 in

Equations 32 and 33 already shows that, as the price of robots falls, in equilibrium, the demand for
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brawn labor decreases and the demand for brain labor increases:

∂LA
∂p

=−

[
∂

∂xA

∫ 1+εA

xA

(∫ x∗B,i

εB

xA,if(xA,i, xB,i)dxB,i

)
dxA,i

]
xA
ωA

∂ωA
∂p

+

+

∫ 1+εA

xA

(xA,i)
2f(xA,i, ωxA,i)

1

ωB

[
∂ωA
∂p
− ω∂ωB

∂p

]
dxA,i > 0

(40)

∂LB
∂p

=

∫ xA

εA

f(xA,i, xB)
(xB)2

ωB

∂ωB
∂p

dxA,i−

−
∫ 1+εB

xB

xB,if(xA, xB,i)
xA
ωA

∂ωA
∂p

dxB,i−

−
∫ 1+εA

xA

(xA,i)
2f(xA,i, ωxA,i)

ω

ωB

[
∂ωA
∂p
− ω∂ωB

∂p

]
dxA,i−

−

[
∂

∂xA

∫ 1+εA

xA

(∫ 1+εB

x∗B,i

xB,if(xA,i, xB,i)dxB,i

)
dxA,i

]
xA
ωA

∂ωA
∂p

< 0

(41)

since the positive term in the fourth line of Equation 41 is outweighed by the other terms. This result

follows from the fact that there is a more than offsetting increase in the demand for manual tasks

in the form of robot capital (since it becomes relatively cheaper) which increases the productivity

of brain labor (and therefore its wage), raising its equilibrium level.

Following the procedure outlined above, we can show that the share of workers who supply brawn

labor decreases. These workers are either reallocating their labor supply towards brain labor, as the

relative wage ωB
ωA

increases, or they opt for non-employment, as also ωN
ωA

increases.

∂NA

∂p
=−

[
∂

∂xA

∫ 1+εA

xA

(∫ x∗B,i

εB

f(xA,i, xB,i)dxB,i

)
dxA,i

]
xA
ωA

∂ωA
∂p

+

+

∫ 1+εA

xA

xA,if(xA,i, ωxA,i)
1

ωB

[
∂ωA
∂p
− ω∂ωB

∂p

]
dxA,i > 0

(42)

Note again that ∂R
∂p < 0. Panels A2 and B2 of Figure A6 show how the decrease in brawn wages

makes brain labor and non-labor income relatively more attractive to workers, who respond by

moving away from brawn task-intensive jobs.

The share of brain workers increases, since a fraction of workers who were previously employed

in brawn labor reallocates towards brain task-intensive jobs (see previous equation) and some non-
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employed individuals enter the workforce to supply brain labor, as ωN
ωB

decreases.

∂NB

∂p
=

∫ xA

εA

f(xA,i, xB)
xB
ωB

∂ωB
∂p

dxA,i−

−
∫ 1+εB

xB

f(xA, xB,i)
xA
ωA

∂ωA
∂p

dxB,i−

−
∫ 1+εA

xA

xA,if(xA,i, ωxA,i)
1

ωB

[
∂ωA
∂p
− ω∂ωB

∂p

]
dxA,i−

−

[
∂

∂xA

∫ 1+εA

xA

(∫ 1+εB

x∗B,i

f(xA,i, xB,i)dxB,i

)
dxA,i

]
xA
ωA

∂ωA
∂p

< 0

(43)

The positive term in the fourth line of Equation 43 is outweighed by the other terms.42

Altogether, robots could increase or decrease aggregate employment depending on whether the

displacement effect or the productivity effect prevails:

∂NN

∂p
=−

∫ xB

εB

f(xA, xB,i)
xA
ωA

∂ωA
∂p

dxB,i−

−
∫ xA

εA

f(xA,i, xB)
xB
ωB

∂ωB
∂p

dxA,i ≶ 0

(44)

or simply:

∂NN

∂p
= 1− ∂NA

∂p
− ∂NB

∂p
≶ 0 (45)

Despite the ambiguous effect of robot adoption on employment, robots clearly reduce the gender

employment gap:

∂EG(M,W )

∂p
= −

∫ εMA

0
f(xA,i, xB)

xB
ωB

∂ωB
∂p

dxA,i > 0 (46)

Analogously, using Equation 31, it can be shown that the adoption of robots is widening the race
42 This result is visible from changes in the areas of the shapes in Figure A6, where the share of brain workers, NB ,

is formed by a rectangle and a trapezoid. The shift of xA to the left decreases the rectangle (second term) and at
the same time increases the trapezoid (fourth term), without affecting the area of NB . This, however, is going to
change with shifts in x∗B,i and xB .
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and ethnicity employment gap:

∂EG(WH,NW )

∂p
= −

∫ 0

εNWB

f(xA, xB,i)
xA
ωA

∂ωA
∂p

dxB,i < 0. (47)

These results emerge from one of three scenarios. First, robots reduce male (non-white) employment

more than female (white) employment. Second, robots increase male (non-white) employment less

than female (white) employment. Third, robots reduce male (non-white) employment and increase

female (white) employment. The empirical analysis shows that US labor markets experience the

first scenario.

One could also investigate which scenario occurs theoretically by assuming a closed form solution

for the skill distribution, f(xA,i, xB,i), as well as values for the exogenous parameters ωN , ρ, β and

εgj with j ∈ {A,B} and g ∈ {(M,W ), (WH,NW )}.

To sum up, as stated in Proposition 2, Equations 46 and 47 show that an increase in the adoption

of robots in the production of output Y decreases the gender employment gap and increases the

race/ethnicity employment gap. �

These findings come along with a decrease (increase) in the gender (race/ethnicity) employment

gap in brawn labor as robot capital increases:

∂EG
(M,W )
A

∂p
=

∫ εMA

0
xA,if(xA,i, ωxA,i)

1

ωB

[
∂ωA
∂p
− ω∂ωB

∂p

]
dxA,i > 0 (48)

∂EG
(WH,NW )
A

∂p
= −

∫ 0

εNWB

f(xA, xB,i)
xA
ωA

∂ωA
∂p

dxA,i < 0 (49)

where EG(M,W )
A = NM

A − NW
A . Conversely, the adoption of robots generates an ambiguous effect

on the gender employment gap in brain labor:

∂EG
(M,W )
B

∂p
=−

∫ εMA

0
f(xA,i, xB)

xB
ωB

∂ωB
∂p

dxA,i−

−
∫ εMA

0
xA,if(xA,i, ωxA,i)

1

ωB

[
∂ωA
∂p
− ω∂ωB

∂p

]
dxA,i ≶ 0

(50)

where EG(M,W )
B = NM

B − NW
B and does not influence the race and ethnicity employment gap in
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brain labor (Equation 30):

∂EG
(WH,NW )
B

∂p
= 0 (51)

Example using a uniform skill distribution – I provide an illustrative example of the impact

of robots on the employment gaps using a uniform skill distribution, f(xA,i, xB,i) = 1. To keep

the notation simple, I focus on the gender case and assume that εB = 0. The shares of workers

(Equations 15 and 16) and of non-employed individuals (Equation 17) simplify to:

NA =
1

2
ω

[
(1 + εA)2 − (xA)2

]
(52)

NB = 1− xB(xA − εA)− 1

2
ω

[
(1 + εA)2 − (xA)2

]
(53)

NN = xB(xA − εA) (54)

with εA < xA and ωB > ωN + 1
2ωA to ensure that NB > 0 and NN > 0. Using Equation 54, we can

again compute the gender employment gap (Equation 21):

EG(M,W ) = NW
N −NM

N = εMA xB > 0 (55)

Analogously, the employment rates of whites and non-whites are equal to 1− xA(xB − εB) and the

race/ethnicity employment gap is given by:

EG(WH,NW ) = −εNWB xA > 0 (56)

where εB = 0 for whites and εB < 0 for non-whites.

To compute the effect of the adoption of robots on employment, I need to define again all

components of Equations 32 and 33. Let’s start with the computation of the brawn and brain labor
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supply (Equations 18 and 19):

LA =
1

3
ω

[
(1 + εA)3 − (xA)3

]
(57)

LB =
1

2

[
1− (xA − εA)(xB)2 − 1

3
ω2
[
(1 + εA)3 − (xA)3

]]
(58)

Next, we take first derivatives of the labor supplies with respect to wages (as in Equations 34

to 37):
∂LA
∂ωA

=
1

3ωB

[
(1 + εA)3 + 2(xA)3

]
> 0 (59)

∂LA
∂ωB

= −1

3

ω

ωB

[
(1 + εA)3 − (xA)3

]
< 0 (60)

∂LB
∂ωA

=
1

2

[
xA(xB)2

ωA
− 1

3

ω

ωB

[
2(1 + εA)3 + (xA)3

]]
< 0 (61)

∂LB
∂ωB

=

[
(xB)2

ωB
(xA − εA) +

1

3

ω2

ωB

[
(1 + εA)3 − (xA)3

]]
> 0 (62)

where Equations 60 and 62 hold since εA < xA and Equation 61 holds since ωA > ωN . The partial

derivatives of wages with respect to the price of robot capital are the same as in Equations 38 and

39, since they depend on the distribution of skills only through Equations 59 to 62.

Using these equations, it is possible to compute the impact of an exogenous decline in the price

of robots on the equilibrium levels of labor and employment:

∂LA
∂p

=
∂ωA
∂p

[
(1 + εA)3 + 2(xA)3

]
1

3ωB
− ∂ωB

∂p

[
(1 + εA)3 − (xA)3

]
ω

3ωB
> 0 (63)

∂LB
∂p

=
∂ωA
∂p

[
(xA)2xB −

1

3
ω
[
2(1 + εA)3 + (xA)3

]] 1

2ωB
+

+
∂ωB
∂p

[
xB(xA − εA) +

1

3
ω2
[
(1 + εA)3 − (xA)3

]] 1

ωB
< 0

(64)
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∂NA

∂p
=
∂ωA
∂p

[
(1 + εA)2 + (xA)2

]
1

2ωB
− ∂ωB

∂p

[
(1 + εA)2 − (xA)2

]
ω

2ωB
> 0 (65)

∂NB

∂p
=− ∂ωA

∂p

[
(1 + εA)2 − (xA)2

]
1

2ωB
+

+
∂ωB
∂p

[
(1 + εA)2 − (xA)2 + 2

xB(xA − εA)

ω

]
ω

2ωB
< 0

(66)

∂NN

∂p
=
∂ωA
∂p

[
− xAxB

]
1

ωA
+
∂ωB
∂p

[
(−xA + εA)xB

]
1

ωB
≶ 0 (67)

where the signs of the equations hold as long as ωN < ωA and εA < xA. Again, an increase in the

stock of robots unambiguously reduces the gender employment gap:

∂EG(M,W )

∂p
= −εMA

xB
ωB

∂ωB
∂p

> 0 (68)

and increases the race/ethnicity employment gap:

∂EG(WH,NW )

∂p
= εNWB

xA
ωA

∂ωA
∂p

< 0. (69)

Results by gender are represented visually in Figure A7 in a 3-dimensional space, showing the im-

pact of changes of robot capital and ρ on wages, labor quantities, employment and the employment

gap.

Wages – The previous results focus on the mechanism through which an increase in robot capital

affects the employment gaps. Interestingly, the effect of robots on employment depends on how it

influences labor wages, raising the question of whether an increase in robot capital affects also the

wage gap. The gender wage gap can be simply computed using Equations 11, 12, 18 and 19:

WGM,W =
ωM

ωW
=
ωAL

M
A + ωBL

M
B

ωALWA + ωBLWB
(70)
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where the gender-specific wage is determined by gender-specific labor supplies and marginal products

of labor. Analogously, the race and ethnicity employment gap can be computed substituting men

(M) with whites and women (W ) with non-whites. Note that the wage gap considers only wages

of employed individuals (ωN is excluded, since it includes unemployment benefits, Social Security

income, welfare assistance, etc.). To compute the effect of a decrease in the price of robot capital

on Equation 70, one could use the results from Equations 38, 39, 40 and 41.

An increase in robot capital has an ambiguous effect on both ωM and ωW , since robots decrease

the wage of brawn labor, ωA, and increase the wage of brain labor, ωB (and respectively affect labor

supplies). I provide insights on how the adoption of robots affects wages across demographic groups

in the empirical analysis. For a detailed theoretical illustration of the mechanism through which

robot adoption affects the gender wage gap, see Ge and Zhou (2020).
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A5 Additional figures and tables

Figure A1: Employment gaps at the commuting zone level

Panel A: Employment gaps in 1990

Gender Race and ethnicity

Panel B: Change in employment gaps between 1990 and 2014

Gender Race and ethnicity

Notes: This figure illustrates the geographic distribution of the gender and race/ethnicity employment gap in 1990 and their
changes between 1990 and 2014 at the CZ level, all multiplied by 100.
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Figure A2: Racial and ethnic minorities at the commuting zone level in 1990

Panel A: Share of non-whites

Panel B: Commuting zones with a large population of non-whites

Notes: This figure illustrates the geographic distribution of non-whites in the US in 1990. Panel A shows the CZ share of
non-whites multiplied by 100. Panel B shows the CZs with a population of non-whites and a share of non-whites both above
the US local labor market median.
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Figure A3: Robots along the skill distribution

Notes: This figure illustrates the share of occupations that are replaceable by robots, as defined in Graetz and Michaels (2018),
by occupational skill percentile. This is a modified version of Figure 4 in Autor and Dorn (2013).

Figure A4: Wages in white-collar and blue-collar occupations

Notes: This figure illustrates the average hourly wages in white-collar and in blue-collar occupations in 1990 and 2014, expressed
in 2007 prices. Occupation groups are computed from a median split of the standardized measures of the brawn and brain
task content of jobs. White-collar jobs include occupations that are brain task intensive and require only few brawn skills.
Blue-collar jobs include occupations that are brawn task intensive and require only few brain skills.
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Figure A5: Robot exposure in Europe and imports to the US and Canada

Panel A: Robot exposure in Europe and
imports to the US

Panel B: Industry trade flows from Europe
to the US and Canada

Notes: Panel A of this figure presents the unweighted correlation between robot exposure in seven European countries (Denmark,
Finland, France, Italy, Spain, Sweden and the United Kingdom), as presented in Equation 6, and a shift-share measure of imports
from these countries to the US. The size of the circles represent a labor market’s size in terms of population in 1990. The
solid line represents a prediction for US import exposure from European countries from a linear regression on robot exposure
in Europe. Panel B presents the unweighted correlation between imports from the seven European countries to the US and
Canada. Imports are represented by 392 SIC industry of the manufacturing sector in billions of US dollars in 2017 prices. For
visual purposes, I omitt outlying industries with imports that exceed five billion US dollars in the US or three billion US dollars
in Canada. These industries are ice cream and frozen desserts (2024), food preparations, nec (2099), hardwood dimension
and flooring mills (2426), millwork (2431), pharmaceutical preparations (2834), petroleum refining (2911), women’s handbags
and purses (3171), primary nonferrous metals, nec (3339), electronic connectors (3678), motor vehicles and car bodies (3711),
motor vehicle parts and accessories (3714), aircraft (3721), aircraft engines and engine parts (3724). The solid line represents
a prediction for US import exposure from European countries from a linear regression on Canadian import exposure from
European countries based on all 392 SIC industries of the manufacturing sector.
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Figure A6: Robots and labor

Panel A: Gender

Panel A1: Employment rates Panel A2: The effect of robots

Panel B: Race and ethnicity

Panel B1: Employment rates Panel B2: The effect of robots

Notes: This figure illustrates theoretically the impact of robots on employment outcomes across demographic groups. Panel A
shows the results by gender and Panel B by race/ethnicity. Panels A1 and B1 illustrate the employment allocation by gender
and race/ethnicity in equilibrium. NA, NB and NN represent the share of individuals that supply brawn labor, brain labor
and no labor. εA > 0 accounts for the comparative advantage of men in brawn skills, εB < 0 accounts for the comparative
disadvantage of non-whites in brain skills, xA = ωN

ωA
, xB = ωN

ωB
and x∗B,i = ωA

ωB
xA,i. Panels A2 and B2 illustrate the effect

of an exogenous decrease in the price of robot capital on relative wages and the equilibrium allocation of labor across these
demographic groups.
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Figure A7: Robots, elasticity of substitution and the gender employment gap

Wage of brawn labor, ωA Wage of brain labor, ωB

Brawn labor, LA Brain labor, LB

Employment Employment gap, EG(M,W )

Notes: This figure illustrates the impact of changes in R (through changes in p) and ρ on equilibrium wages, labor, employment
rates and gaps by solving for Equations 11, 12, 18 and 19. The model is calibrated using a uniform skill distribution with the
following parameters: β = 0.33 (based on employment in blue-collar jobs in 1970), ωN = 0.25, εMA = 0.2.
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Table A1: Summary statistics: Racial and ethnic minorities

Population rates Employment rates

All Minorities All 1st quartile 4th quartile

1990 1990 1990 ∆14−90 1990 ∆14−90 1990 ∆14−90

[1] [2] [3] [4] [5] [6] [7] [8]

Blacks 11.4 37.6 69.1 -1.8 72.6 -2.2 66.8 -0.9
Hispanics 12.6 41.8 71.2 1.4 72.3 1.2 70.3 1.5
Asians 4.4 14.6 71.6 1.7 71.4 2.1 72.0 1.0
American Indian or Alaska Natives 0.6 2.1 68.0 -5.3 68.8 -6.0 67.5 -4.2
Other 1.2 3.9 68.2 1.5 72.1 -0.8 66.3 1.5

Observations 722 722 722 722 181 181 180 180

Notes: This table illustrates average population and employment rates for Blacks, Hispanics, Asians, American Indian or Alaska
Natives, and other not elsewhere classified races. Columns 1, 2, 3, 5 and 7 show values in 1990, and Columns 4, 6 and 8 show
changes between 1990 and 2014 weighted by CZ population in 1990. Columns 1 reports the share of each subgroup in the
population, while Columns 2 reports the share among racial and ethnic minorities. Columns 1 to 4 reports averages over all
722 CZs in the sample. Columns 5 to 8 split the sample into quartiles according to the CZ’s exposure to robots between 1993
and 2014, reporting averages for the first and the fourth quartile.
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Table A2: Occupations with the largest and smallest shares of non-whites and women

Racial and ethnic minorities Women

% Type Brawn Brain % Type Brawn Brain

[1] [2] [3] [4] [5] [6] [7] [8]

Panel A: Top 15 occupations Panel A: Top 15 occupations

Private household cleaners and servants 62.03 Low skill 32 5 Secretaries 98.98 White collar 48 88
Parking lot attendants 59.38 Low skill 1 13 Dental hygenists 98.33 White collar 20 53
Housekeepers, maids, butlers and related 53.58 Low skill 42 5 Kindergarten and earlier school teachers 98.21 White collar 45 64
Elevator operators 50.34 Blue collar 63 24 Dental assistants 97.52 White collar 3 60
Baggage porters 47.50 Low skill 36 28 Receptionists 96.96 Low skill 22 41
Materials movers 47.10 Low skill 41 6 Child care workers 96.58 Low skill 3 37
Garbage and recyclable material collectors 45.56 Low skill 23 1 Typists 95.38 Low skill 35 39
Textile sewing machine operators 45.53 Blue collar 83 7 Private household cleaners and servants 94.80 Low skill 32 5
Laundry workers 45.19 Low skill 49 1 Teacher’s aides 94.62 White collar 4 59
Waiter’s assistant 45.05 Low skill 1 13 Home economics instructors 94.52 White collar 38 100
Taxi cab drivers and chauffeurs 44.74 Skill intensive 87 55 Registered nurses 94.50 Skill intensive 65 84
Farm workers 44.21 Blue collar 50 18 Licensed practical nurses 93.85 Skill intensive 65 50
Tailors 44.04 Blue collar 92 37 Dressmakers and seamstresses 93.66 Blue collar 83 28
Graders and sorters in manufacturing 43.40 Blue collar 50 2 Bank tellers 93.54 Skill intensive 98 65
Vehicle washers and equipment cleaners 42.96 Low skill 21 2 Health record tech specialists 93.40 White collar 1 84

Panel B: Bottom 15 occupations Panel B: Bottom 15 occupations

Tool and die markers and die setters 7.71 Skill intensive 86 53 Automobile mechanics 1.87 Skill intensive 80 56
Psychology instructors 7.61 White collar 1 100 Structural metal workers 1.82 Blue collar 67 25
Lawyers 7.53 White collar 2 96 Excavating and loading machine operators 1.82 Blue collar 64 11
Other health and therapy 7.22 Skill intensive 87 94 Materials movers 1.71 Low skill 41 6
Veterinarians 7.17 Skill intensive 97 75 Operating engineers of construction equipm. 1.70 Blue collar 84 33
Optometrists 7.04 Skill intensive 91 69 Carpenters 1.64 Blue collar 89 45
Writers and authors 6.79 White collar 10 83 Mason, tilers, and carpet installers 1.59 Blue collar 81 31
Podiatrists 6.65 White collar 36 88 Roofers and slaters 1.44 Blue collar 91 27
Foresters and conservation scientists 6.52 Low skill 46 47 Electric power installers and repairers 1.44 Skill intensive 92 48
Dental hygenists 6.00 White collar 20 53 Plumbers, pipe fitters, and steamfitters 1.38 Blue collar 90 46
Geologists 5.44 Skill intensive 63 95 Railroad brake, coupler, and switch operators 1.36 Blue collar 65 23
History instructors 4.74 White collar 1 100 Concrete and cement workers 1.35 Blue collar 80 25
Sales engineers 4.62 White collar 39 94 Heating, air cond., and refrig. mechanics 1.22 Blue collar 67 42
Airplane pilots and navigators 4.60 Skill intensive 97 66 Paving, surfacing, tamping equipm. operators 1.07 Blue collar 91 23
Farmers (owners and tenants) 2.88 White collar 22 58 Heavy equipm. and farm equipm. mechanics 0.86 Blue collar 92 43

Notes: This table presents a set of occupations with the corresponding share of non-white and female workers, the percentile of the standardized brawn and brain task content in
the distribution of occupations and the respective occupation group. Occupation groups are computed from a median split of the standardized measures of the brawn and brain
task content of jobs. Skill-intensive jobs include occupations that are both brawn and brain task intensive. White-collar jobs include occupations that are brain task intensive
and require only few brawn skills. Blue-collar jobs include occupations that are brawn task intensive and require only few brain skills. Low-skill jobs include occupations that
do not require particular brawn or brain skills. Panel A shows the 15 occupations with the highest share of non-whites and women. Panel B shows the 15 occupations with the
highest share of whites and men.
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Table A3: Summary statistics: Employment by occupation and industry

Occupation Industry

Skill-intensive White-collar Blue-collar Low-skill High robot-int. Low robot-int. Non-manuf.

1990 ∆14−90 1990 ∆14−90 1990 ∆14−90 1990 ∆14−90 1990 ∆14−90 1990 ∆14−90 1990 ∆14−90

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

Panel A: Gender

Men 13.3 -1.60 31.4 -0.12 24.1 -3.70 8.22 0.95 9.78 -2.70 9.39 -3.90 65.0 1.71
Women 9.86 2.55 30.9 1.34 12.2 -3.70 9.06 0.76 4.07 -1.20 4.99 -2.80 56.9 5.94
Gender gap 3.47 -4.20 0.53 -1.40 11.8 -0.00 -0.84 0.19 5.70 -1.50 4.40 -1.10 8.03 -4.20

Panel B: Race and ethnicity

Whites 12.2 0.36 34.8 2.11 16.4 -4.30 7.38 -0.23 6.70 -2.00 7.05 -3.10 62.8 3.61
Non-whites 9.49 1.35 19.8 3.55 21.9 -4.50 12.2 0.75 7.64 -2.10 6.89 -3.40 54.2 6.78
Race and ethnicity gap 2.71 -0.99 15.0 -1.40 -5.40 0.23 -4.90 -0.98 -0.94 0.13 0.15 0.30 8.67 -3.10

Observations 722 722 722 722 722 722 722 722 722 722 722 722 722 722

Notes: This table illustrates employment rates and gaps of demographic groups by occupation and industry groups in 1990 and their changes between 1990 and 2014. Averages
are weighted by the CZ population in 1990. Occupation groups are computed from a median split of the standardized measures of the brawn and brain task content of jobs.
Skill-intensive jobs include occupations that are both brawn and brain task intensive. White-collar jobs include occupations that are brain task intensive and require only few
brawn skills. Blue-collar jobs include occupations that are brawn task intensive and require only few brain skills. Low-skill jobs include occupations that do not require particular
brawn or brain skills. As shown in Table 1.1, industry groups are created according to the relative adoption of industrial robots of industries. High robot-intensive manufacturing
industries include the industries with the heaviest adoption of industrial robots. Low robot-intensive manufacturing industries include the remaining manufacturing industries,
while non-manufacturing industries include all industries outside of the manufacturing sector.
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Table A4: Summary statistics: Covariates

US robot exposure
1993-2014

All Q1 Q2 Q3 Q4

[1] [2] [3] [4] [5]

Pre-trends
Employment men -5.09 -3.98 -5.0 -3.93 -6.25
Employment women 19.8 20.3 19.7 19.2 19.9
Employment whites 9.43 10.4 9.41 9.62 8.94
Employment non-whites 3.16 5.51 5.04 4.14 0.54
Labor market shocks
Import exposure 3.61 1.70 3.34 4.34 5.06
PC exposure 44.8 44.5 44.8 44.2 45.3
IT capital 2.02 1.40 1.92 2.32 2.15
Routine task-intensity 35.0 33.6 35.1 35.1 35.4
Demographics
Black 10.9 9.33 12.1 9.82 11.5
Hispanic 7.94 15.8 7.92 10.2 3.62
Women 51.1 50.9 51.3 50.7 51.4
Less educated 77.1 76.6 75.4 77.7 78.0
Log population 13.3 12.8 13.4 13.4 13.4
25-34 years 33.9 34.1 34.2 34.5 33.2
35-44 years 29.4 29.4 29.7 29.5 29.3
45-54 years 20.0 19.7 19.8 19.9 20.3
Industries
Construction 6.24 7.72 6.17 6.24 5.73
Manufacturing 24.4 14.8 21.3 27.3 28.3
Mining 0.99 1.45 1.05 0.96 0.81
Research and education 1.91 1.89 1.98 1.76 1.96
Services 63.0 69.4 65.9 60.1 60.5
Utilities 1.49 1.59 1.46 1.40 1.52
Occupations
Skill-intensive 16.1 17.0 16.2 15.5 16.2
White-collar 41.4 42.1 42.6 40.2 41.0
Blue-collar 28.3 26.1 27.1 30.1 29.0
Offshorable 37.2 37.2 38.0 37.4 36.6
Employment composition
Women in high robot-intensive industries 30.8 31.9 32.3 32.2 28.7
Women in low robot-intensive industries 35.3 35.1 36.8 36.8 33.6
Non-whites in high robot-intensive industries 23.8 30.7 24.9 29.3 17.3
Non-whites in low robot-intensive industries 22.7 30.0 25.4 28.1 15.3
Women in skill-intensive occupations 47.3 47.5 47.3 46.2 47.8
Women in white-collar occupations 50.8 51.4 51.0 50.0 50.8
Women in blue-collar occupations 35.3 34.0 36.0 36.1 35.0
Non-whites in skill-intensive occupations 17.9 24.1 19.1 20.9 13.0
Non-whites in white-collar occupations 13.3 19.1 13.6 15.6 9.64
Non-whites in blue-collar occupations 29.2 38.1 31.2 35.2 21.0
Observations 722 181 180 181 180

Notes: This table illustrates averages of the covariates used in the main analysis. Column 1 reports averages over all 722 CZs
in the sample. Columns 2 to 5 split the sample into four quartiles, accounting for a labor market’s exposure to robots between
1993 and 2014. Pre-trends account for changes in employment of men, women, whites and non-whites between 1970 and 1990.
Labor market shocks include the China trade shock, a measure of exposure to PCs, IT capital intensity and the share of workers
who are employed in routine task-intensive occupations. Demographics, industries and occupations include measures of the
population composition in 1990. The remaining variables report the employment composition by demographic group within
industries and occupations in 1990.
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Table A5: The effect of robots on the employment gaps and first-stage estimates

[1] [2] [3] [4] [5] [6]

Panel A: Gender employment gap

US robot exposure -0.508∗∗∗ -0.497∗∗∗ -0.519∗∗∗ -0.519∗∗∗ -0.618∗∗∗ -0.644∗∗∗
(0.141) (0.143) (0.144) (0.144) (0.158) (0.166)

Panel B: Race/ethnicity employment gap

US robot exposure 0.640∗∗∗ 0.685∗∗∗ 0.687∗∗∗ 0.687∗∗∗ 0.804∗∗∗ 0.846∗∗∗
(0.232) (0.221) (0.225) (0.225) (0.268) (0.276)

Panel C: First-stage

EU7 robot exposure 0.568∗∗∗ 0.565∗∗∗ 0.555∗∗∗ 0.555∗∗∗ 0.497∗∗∗ 0.478∗∗∗
(0.047) (0.042) (0.051) (0.053) (0.049) (0.036)

Kleibergen-Paap F stat 146.98 177.31 119.76 107.91 103.18 180.31

Observations 2166 2166 2166 2166 2166 2166

Covariates:
Region X X X X X X
Year X X X X X X
Pre-trends X X X X X
Computer & IT X X X X
Chinese imports X X X
Demographics X X
Occupations X X
Industries X X
Composition X

Notes: This table presents IV estimates of the effect of US robot exposure on employment gaps by gender and race/ethnicity
and first-stage estimates at the CZ level adding covariates sequentially. Changes in Panel A and B are expressed in percentage
points of the working-age population of the respective demographic group and are multiplied by 100. Independent variables are
standardized to have mean zero and standard deviation of one. Panel C standardizes also the dependent variable. There are
three time periods and 722 CZs. Column 1 includes only state fixed effects and time-varying division fixed effects. Column 2
includes also pre-trends in employment of men, women, whites and non-whites between 1970 and 1990. Column 3 controls for the
adoption of PCs, IT capital intensity and RBTC. Column 4 includes the exposure to Chinese imports. Column 5 controls also for
demographic characteristics (share of Blacks, Hispanics, women, population with less than a college degree, three age groups (25-
34, 35-44 and 45-54 years), and the logarithmic population), the industry (employment share in construction, manufacturing,
mining, research, service and utilities) and occupation composition of employment (employment share in offshorable, skill-
intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990. Column 6 controls also for the initial composition of
industry and occupation employment by gender and race/ethnicity in 1990. Standard errors are robust against heteroskedasticity
and allow for clustering at the state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗
are significant at the 1%, 5% and 10% confidence level.
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Table A6: Robots and employment: Exclusion of the Great Recession period (2007-14)

Panel A: Gender

Men Women Gap

[1] [2] [3]

US robot exposure -0.695∗∗∗ -0.357∗∗∗ -0.343∗∗∗
(0.137) (0.121) (0.072)

Observations 1444 1444 1444

Panel B: Race and ethnicity

Whites Non-whites Gap

[1] [2] [3]

US robot exposure -0.375∗∗∗ -0.958∗∗∗ 0.583∗∗∗
(0.050) (0.194) (0.155)

Observations 1444 1444 1444

Covariates: X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates and gaps by gender and
race/ethnicity at the CZ level. Changes are expressed in percentage points of the working-age population of the respective
demographic group and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation
of one. There are two time periods and 722 CZs. Time periods are 1990-2000 and 2000-07. All regressions include state fixed
effects, time-varying division fixed effects, pre-trends in employment of men, women, whites and non-whites between 1970 and
1990, controls for the adoption of PCs, IT capital intensity and RBTC, exposure to Chinese imports, demographic characteristics
(share of Blacks, Hispanics, women, population with less than a college degree, three age groups (25-34, 35-44 and 45-54 years),
and the logarithmic population), the industry (employment share in construction, manufacturing, mining, research, service and
utilities) and occupation composition of employment (employment share in offshorable, skill-intensive, white-collar, blue-collar
and low-skill jobs) of CZs in 1990, and the composition of industry and occupation employment by gender and race/ethnicity
of CZs in 1990. Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions
are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A7: Robots and labor force participation

Panel A: Gender

Men Women Gap

[1] [2] [3]

US robot exposure -0.633∗∗∗ -0.113 -0.520∗∗∗
(0.182) (0.150) (0.136)

Observations 2166 2166 2166

Panel B: Race and ethnicity

Whites Non-whites Gap

[1] [2] [3]

US robot exposure -0.167∗ -0.805∗∗∗ 0.638∗∗∗
(0.091) (0.228) (0.232)

Observations 2166 2166 2166

Covariates: X X X

Notes: This table presents IV estimates of the effect of US robot exposure on labor force participation rates and gaps by gender
and race/ethnicity at the CZ level. Changes are expressed in percentage points of the working-age population of the respective
demographic group and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation
of one. There are three time periods and 722 CZs. All regressions include state fixed effects, time-varying division fixed effects,
pre-trends in employment of men, women, whites and non-whites between 1970 and 1990, controls for the adoption of PCs,
IT capital intensity and RBTC, exposure to Chinese imports, demographic characteristics (share of Blacks, Hispanics, women,
population with less than a college degree, three age groups (25-34, 35-44 and 45-54 years), and the logarithmic population), the
industry (employment share in construction, manufacturing, mining, research, service and utilities) and occupation composition
of employment (employment share in offshorable, skill-intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990,
and the composition of industry and occupation employment by gender and race/ethnicity of CZs in 1990. Standard errors
are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted by CZ population in
1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A8: The effect of labor market shocks on employment

Panel A: Gender

Full sample Exclude Great Recession

Men Women Gap Men Women Gap

[1] [2] [3] [4] [5] [6]

EU7 robot exposure -0.553∗∗∗ -0.245∗∗∗ -0.308∗∗∗ -0.583∗∗∗ -0.263∗ -0.321∗∗∗
(0.104) (0.079) (0.085) (0.154) (0.133) (0.065)

Import exposure -0.328∗∗∗ -0.141 -0.187∗∗∗ -0.403∗∗∗ -0.328∗∗ -0.075
(0.112) (0.129) (0.067) (0.125) (0.133) (0.094)

PC exposure 0.002 0.057 -0.055 0.065 -0.020 0.085
(0.081) (0.059) (0.050) (0.070) (0.084) (0.069)

IT capital intensity -0.022 -0.016 -0.006 0.034 -0.011 0.045
(0.095) (0.094) (0.068) (0.114) (0.097) (0.077)

Routine task-intensity 0.137 -0.072 0.209∗∗∗ 0.101 -0.047 0.148
(0.083) (0.092) (0.061) (0.097) (0.112) (0.096)

Observations 2166 2166 2166 1444 1444 1444

Panel B: Race and ethnicity

Full sample Exclude Great Recession

Whites Non-whites Gap Whites Non-whites Gap

[1] [2] [3] [4] [5] [6]

EU7 robot exposure -0.272∗∗∗ -0.676∗∗∗ 0.404∗∗∗ -0.266∗∗∗ -0.713∗∗∗ 0.447∗∗∗
(0.039) (0.135) (0.126) (0.059) (0.210) (0.164)

Import exposure -0.147∗ -0.298∗ 0.150 -0.291∗∗∗ -0.352∗ 0.062
(0.079) (0.166) (0.161) (0.098) (0.188) (0.206)

PC exposure 0.084 -0.264∗∗∗ 0.348∗∗∗ 0.085 -0.486∗∗∗ 0.571∗∗∗
(0.064) (0.093) (0.075) (0.061) (0.148) (0.151)

IT capital intensity -0.022 -0.078 0.056 -0.037 0.088 -0.125
(0.073) (0.145) (0.096) (0.074) (0.197) (0.161)

Routine task-intensity 0.027 -0.015 0.042 -0.014 -0.097 0.083
(0.072) (0.137) (0.105) (0.080) (0.187) (0.179)

Observations 2166 2166 2166 1444 1444 1444

Covariates: X X X X X X

Notes: This table presents reduced form estimates of the effect of robot exposure, import exposure, PC adoption, IT capital
intensity and routine task-intensity on employment rates and gaps by gender and race/ethnicity at the CZ level. Changes are
expressed in percentage points of the working-age population of the respective demographic group and are multiplied by 100.
Independent variables are standardized to have mean zero and standard deviation of one. There are three time periods and 722
CZs. All regressions include state fixed effects, time-varying division fixed effects, pre-trends in employment of men, women,
whites and non-whites between 1970 and 1990, controls for demographic characteristics (share of Blacks, Hispanics, women,
population with less than a college degree, three age groups (25-34, 35-44 and 45-54 years), and the logarithmic population), the
industry (employment share in construction, manufacturing, mining, research, service and utilities) and occupation composition
of employment (employment share in offshorable, skill-intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990,
and the composition of industry and occupation employment by gender and race/ethnicity of CZs in 1990. Standard errors
are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted by CZ population in
1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A9: Robots and race/ethnicity employment gaps in non-manufacturing industries

Agricul-
ture

Construc-
tion Mining

Research
and

Education
Services Utilities

[1] [2] [3] [4] [5] [6]

US robot exposure 0.068∗ -0.003 -0.015 -0.043∗ 0.662∗∗∗ 0.029∗
(0.040) (0.052) (0.013) (0.025) (0.200) (0.016)

Observations 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on the employment gap by race/ethnicity at the CZ
level. Columns decompose the outcomes by sectors outside of manufacturing. Changes are expressed in percentage points of the
working-age population of the respective demographic group and are multiplied by 100. Independent variables are standardized
to have mean zero and standard deviation of one. There are three time periods and 722 CZs. All regressions include state
fixed effects, time-varying division fixed effects, pre-trends in employment of men, women, whites and non-whites between
1970 and 1990, controls for the adoption of PCs, IT capital intensity and RBTC, exposure to Chinese imports, demographic
characteristics (share of Blacks, Hispanics, women, population with less than a college degree, three age groups (25-34, 35-44
and 45-54 years), and the logarithmic population), the industry (employment share in construction, manufacturing, mining,
research, service and utilities) and occupation composition of employment (employment share in offshorable, skill-intensive,
white-collar, blue-collar and low-skill jobs) of CZs in 1990, and the composition of industry and occupation employment by
gender and race/ethnicity of CZs in 1990. Standard errors are robust against heteroskedasticity and allow for clustering at the
state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5%
and 10% confidence level.

Table A10: Robots and industry employment by race/ethnicity as a share of total population

High robot-intensive Low robot-intensive Non-manufacturing

White Non-white White Non-white White Non-white

[1] [2] [3] [4] [5] [6]

US robot exposure -0.271∗∗∗ -0.109∗∗∗ 0.042 0.002 -0.275∗∗∗ -0.220∗
(0.056) (0.029) (0.045) (0.017) (0.094) (0.121)

Observations 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates by race/ethnicity at the CZ level.
Columns decompose the outcomes between industry groups. Changes are expressed in percentage points of the overall working-
age population and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation
of one. There are three time periods and 722 CZs. All regressions include state fixed effects, time-varying division fixed effects,
pre-trends in employment of men, women, whites and non-whites between 1970 and 1990, controls for the adoption of PCs,
IT capital intensity and RBTC, exposure to Chinese imports, demographic characteristics (share of Blacks, Hispanics, women,
population with less than a college degree, three age groups (25-34, 35-44 and 45-54 years), and the logarithmic population), the
industry (employment share in construction, manufacturing, mining, research, service and utilities) and occupation composition
of employment (employment share in offshorable, skill-intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990,
and the composition of industry and occupation employment by gender and race/ethnicity of CZs in 1990. Standard errors
are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted by CZ population in
1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A11: Robots and race/ethnicity employment gap by industry

High
robot-

intensive

Low
robot-

intensive

Non
manufac-
turing

[1] [2] [3]

Robots in high robot-intensive 0.070 0.012 0.327∗∗∗
(0.083) (0.034) (0.116)

Robots in low robot-intensive 0.066 -0.050 0.423∗∗∗
(0.056) (0.045) (0.155)

Robots in non-manufacturing 0.014 0.105∗ 0.197
(0.077) (0.054) (0.226)

Observations 2166 2166 2166

Covariates: X X X

Notes: This table presents IV estimates of the effect of US robot exposure by industry group on the employment gap by
race/ethnicity at the CZ level. Columns decompose the outcomes (employment) by industry group. Changes are expressed in
percentage points of the working-age population of the respective demographic group and are multiplied by 100. Independent
variables are standardized to have mean zero and standard deviation of one. There are three time periods and 722 CZs. All
regressions include state fixed effects, time-varying division fixed effects, pre-trends in employment of men, women, whites and
non-whites between 1970 and 1990, controls for the adoption of PCs, IT capital intensity and RBTC, exposure to Chinese
imports, demographic characteristics (share of Blacks, Hispanics, women, population with less than a college degree, three age
groups (25-34, 35-44 and 45-54 years), and the logarithmic population), the industry (employment share in construction, manu-
facturing, mining, research, service and utilities) and occupation composition of employment (employment share in offshorable,
skill-intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990, and the composition of industry and occupation
employment by gender and race/ethnicity of CZs in 1990. Standard errors are robust against heteroskedasticity and allow for
clustering at the state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant
at the 1%, 5% and 10% confidence level.
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Table A12: Robots and employment: No state fixed effects

Panel A: Gender

All Men Women Gap

[1] [2] [3] [4]

US robot exposure -0.588∗∗∗ -0.794∗∗∗ -0.392∗∗∗ -0.408∗∗∗
(0.112) (0.138) (0.108) (0.113)

Observations 2166 2166 2166 2166

Panel B: Race and ethnicity

All Whites Non-whites Gap

[1] [2] [3] [4]

US robot exposure -0.588∗∗∗ -0.439∗∗∗ -1.026∗∗∗ 0.587∗∗∗
(0.112) (0.060) (0.188) (0.174)

Observations 2166 2166 2166 2166

Covariates: X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates and gaps by gender and
race/ethnicity at the CZ level. Changes are expressed in percentage points of the working-age population of the respective
demographic group and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation
of one. There are three time periods and 722 CZs. All regressions include time-varying division fixed effects (but no state
fixed effects), pre-trends in employment of men, women, whites and non-whites between 1970 and 1990, controls for the
adoption of PCs, IT capital intensity and RBTC, exposure to Chinese imports, demographic characteristics (share of Blacks,
Hispanics, women, population with less than a college degree, three age groups (25-34, 35-44 and 45-54 years), and the
logarithmic population), the industry (employment share in construction, manufacturing, mining, research, service and utilities)
and occupation composition of employment (employment share in offshorable, skill-intensive, white-collar, blue-collar and low-
skill jobs) of CZs in 1990, and the composition of industry and occupation employment by gender and race/ethnicity of CZs in
1990. Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted
by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A13: Robots and employment: Shares of total population

Panel A: Gender

All Men Women

[1] [2] [3]

US robot exposure -0.826∗∗∗ -0.559∗∗∗ -0.267∗∗∗
(0.202) (0.132) (0.096)

Relative contribution 100.0 67.7 32.3

Observations 2166 2166 2166

Panel B: Race and ethnicity

All Whites Non-whites

[1] [2] [3]

US robot exposure -0.826∗∗∗ -0.494∗∗∗ -0.332∗∗
(0.202) (0.144) (0.165)

Relative contribution 100.0 59.8 40.2

Observations 2166 2166 2166

Covariates: X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates by gender and race/ethnicity
at the CZ level and the relative contribution of each demographic group to the aggregate effect (in percent). Changes are
expressed in percentage points of the total working-age population in the CZ and are multiplied by 100. Independent variables
are standardized to have mean zero and standard deviation of one. There are three time periods and 722 CZs. All regressions
include time-varying division fixed effects (but no state fixed effects), pre-trends in employment of men, women, whites and non-
whites between 1970 and 1990, controls for the adoption of PCs, IT capital intensity and RBTC, exposure to Chinese imports,
demographic characteristics (share of Blacks, Hispanics, women, population with less than a college degree, three age groups (25-
34, 35-44 and 45-54 years), and the logarithmic population), the industry (employment share in construction, manufacturing,
mining, research, service and utilities) and occupation composition of employment (employment share in offshorable, skill-
intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990, and the composition of industry and occupation employment
by gender and race/ethnicity of CZs in 1990. Standard errors are robust against heteroskedasticity and allow for clustering at
the state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%,
5% and 10% confidence level.
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Table A14: Robots and employment: Product market competition from Europe

Panel A: Gender

All Less than college

Men Women Gap Men Women Gap

[1] [2] [3] [4] [5] [6]

Panel A1: Import competition in the US
US robot exposure -1.114∗∗∗ -0.490∗∗∗ -0.624∗∗∗ -1.385∗∗∗ -0.497∗∗ -0.888∗∗∗

(0.231) (0.177) (0.160) (0.302) (0.206) (0.179)
US imports from EU7 -0.113 -0.059 -0.054 -0.159 -0.088 -0.071

(0.095) (0.063) (0.069) (0.102) (0.073) (0.077)

Panel A2: Import competition in Canada
US robot exposure -1.157∗∗∗ -0.513∗∗∗ -0.644∗∗∗ -1.446∗∗∗ -0.530∗∗ -0.916∗∗∗

(0.243) (0.190) (0.166) (0.318) (0.221) (0.190)
CAN imports from EU7 0.099 0.054 0.045 0.108 0.022 0.086

(0.119) (0.115) (0.062) (0.122) (0.117) (0.078)

Panel A3: Include only countries with least trade with the US
US robot exposure -0.916∗∗∗ -0.596∗ -0.320∗∗ -1.141∗∗∗ -0.678∗ -0.463∗∗∗

(0.318) (0.328) (0.130) (0.417) (0.380) (0.165)

Observations 2166 2166 2166 2166 2166 2166

Panel B: Race and ethnicity

All Less than college

Whites Non-whites Gap Whites Non-whites Gap

[1] [2] [3] [4] [5] [6]

Panel B1: Import competition in the US
US robot exposure -0.573∗∗∗ -1.348∗∗∗ 0.775∗∗∗ -0.619∗∗∗ -1.520∗∗∗ 0.901∗∗∗

(0.098) (0.301) (0.264) (0.102) (0.350) (0.287)
US imports from EU7 0.011 -0.179 0.191∗ -0.007 -0.244∗ 0.236∗∗

(0.049) (0.115) (0.105) (0.047) (0.123) (0.107)

Panel B2: Import competition in Canada
US robot exposure -0.569∗∗∗ -1.417∗∗∗ 0.847∗∗∗ -0.623∗∗∗ -1.613∗∗∗ 0.990∗∗∗

(0.098) (0.316) (0.277) (0.108) (0.366) (0.300)
CAN imports from EU7 0.066 0.140 -0.073 0.047 0.107 -0.060

(0.105) (0.173) (0.121) (0.097) (0.175) (0.145)

Panel B3: Include only countries with least trade with the US
US robot exposure -0.537∗∗ -1.132∗∗∗ 0.596∗ -0.652∗∗∗ -1.304∗∗∗ 0.653∗

(0.202) (0.393) (0.338) (0.230) (0.467) (0.369)

Observations 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates and gaps by gender and
race/ethnicity at the CZ level. Changes are expressed in percentage points of the working-age population of the respective
demographic group and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation
of one. There are three time periods and 722 CZs. Panels A1 and B1 include a shift-share measure of US imports from the
seven European countries included in the instrument. Panels A2 and B2 include a shift-share measure of Canadian imports
from the seven European countries included in the instrument. Panels A3 and B3 report IV estimates using an instrument
that includes only the four European countries with the lowest trade engagement with the US (Denmark, Finland, Spain
and Sweden). Columns 1 to 3 report results for all individuals, while Columns 4 to 6 report results for individuals without
a college degree. All regressions include state fixed effects, time-varying division fixed effects, pre-trends in employment of
men, women, whites and non-whites between 1970 and 1990, controls for the adoption of PCs, IT capital intensity and RBTC,
exposure to Chinese imports, demographic characteristics (share of Blacks, Hispanics, women, population with less than a college
degree, three age groups (25-34, 35-44 and 45-54 years), and the logarithmic population), the industry (employment share in
construction, manufacturing, mining, research, service and utilities) and occupation composition of employment (employment
share in offshorable, skill-intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990, and the composition of industry
and occupation employment by gender and race/ethnicity of CZs in 1990. Standard errors are robust against heteroskedasticity
and allow for clustering at the state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗
are significant at the 1%, 5% and 10% confidence level.
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Table A15: Robots and employment: Pre-trends

Panel A: Gender

Men Women Gap

[1] [2] [3]

US robot exposure -1.148∗∗∗ -0.507∗∗ -0.644∗∗∗
(0.243) (0.189) (0.166)

Employment of men, 1970-1990 -0.041 -0.029 -0.009
(0.041) (0.030) (0.024)

Employment of women, 1970-1990 0.037 0.006 0.032
(0.040) (0.032) (0.030)

Employment of whites, 1970-1990 -0.024 0.026 -0.054
(0.070) (0.052) (0.052)

Employment of non-whites, 1970-1990 0.001 0.006 -0.006
(0.007) (0.005) (0.005)

Observations 2166 2166 2166

Panel B: Race and ethnicity

Whites Non-whites Gap

[1] [2] [3]

US robot exposure -0.569∗∗∗ -1.415∗∗∗ 0.846∗∗∗
(0.097) (0.315) (0.276)

Employment of men, 1970-1990 -0.001 -0.091 0.090∗
(0.024) (0.059) (0.048)

Employment of women, 1970-1990 0.050∗∗ -0.010 0.060
(0.025) (0.050) (0.042)

Employment of whites, 1970-1990 -0.054 0.117 -0.171∗∗
(0.042) (0.094) (0.078)

Employment of non-whites, 1970-1990 0.006 -0.025∗ 0.032∗∗
(0.005) (0.015) (0.012)

Observations 2166 2166 2166

Covariates: X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates and gaps by gender and
race/ethnicity at the CZ level. Changes are expressed in percentage points of the working-age population of the respective
demographic group and are multiplied by 100. US robot exposure has been standardized to have mean zero and standard
deviation of one. Changes in the employment rates between 1970 and 1990 are demographic specific and are multiplied by
100. There are three time periods and 722 CZs. All regressions include state fixed effects, time-varying division fixed effects,
pre-trends in employment of men, women, whites and non-whites between 1970 and 1990, controls for the adoption of PCs,
IT capital intensity and RBTC, exposure to Chinese imports, demographic characteristics (share of Blacks, Hispanics, women,
population with less than a college degree, three age groups (25-34, 35-44 and 45-54 years), and the logarithmic population), the
industry (employment share in construction, manufacturing, mining, research, service and utilities) and occupation composition
of employment (employment share in offshorable, skill-intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990,
and the composition of industry and occupation employment by gender and race/ethnicity of CZs in 1990. Standard errors
are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted by CZ population in
1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A16: Robots and employment: Weights

Panel A: Gender

All Less than
college All Less than

college All Less than
college

[1] [2] [3] [4] [5] [6]

Panel A1: Employment rate of men
US robot exposure -1.662∗∗∗ -2.091∗∗∗ -1.015∗∗∗ -1.216∗∗∗ -1.309∗∗∗ -1.370∗∗∗

(0.307) (0.400) (0.300) (0.342) (0.371) (0.358)

Panel A2: Employment rate of women
US robot exposure -0.753∗∗∗ -0.812∗∗∗ -0.124 -0.037 -0.767∗∗ -0.730∗∗

(0.262) (0.264) (0.132) (0.164) (0.283) (0.271)

Panel A3: Employment gap
US robot exposure -0.909∗∗∗ -1.279∗∗∗ -0.890∗∗∗ -1.179∗∗∗ -0.542∗∗ -0.640∗∗

(0.202) (0.256) (0.320) (0.393) (0.244) (0.282)

Observations 2166 2166 2166 2166 825 825

Panel B: Race and ethnicity

All Less than
college All Less than

college All Less than
college

[1] [2] [3] [4] [5] [6]

Panel B1: Employment rate of whites
US robot exposure -0.658∗∗∗ -0.750∗∗∗ -0.516∗∗∗ -0.528∗∗∗ -0.691∗∗∗ -0.606∗∗∗

(0.154) (0.138) (0.152) (0.174) (0.213) (0.221)

Panel B2: Employment rate of non-whites
US robot exposure -1.888∗∗∗ -2.164∗∗∗ -0.469 -0.640 -1.476∗∗∗ -1.614∗∗∗

(0.365) (0.435) (0.382) (0.457) (0.395) (0.425)

Panel B3: Employment gap
US robot exposure 1.230∗∗∗ 1.414∗∗∗ -0.047 0.111 0.785∗∗ 1.008∗∗

(0.355) (0.402) (0.403) (0.509) (0.319) (0.400)

Observations 2166 2166 2166 2166 825 825

Covariates:
Division X X X X X X
Year X X X X X X
Computer & IT X X X X X X
Chinese imports X X X X X X
Demographics X X X X X X
Occupations X X X X X X
Industries X X X X X X
Non-white population weights X X
Unweighted X X X X
Non-white CZs X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates and gaps by gender and
race/ethnicity at the CZ level. Changes are expressed in percentage points of the working-age population of the respective
demographic group and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation
of one. There are three time periods and 722 CZs in the first four columns and three time periods and 275 CZs in the last
pair of columns. The latter restrict the sample to CZs with a population of non-whites and a share of non-whites above the
respective local labor market median in 1990. Columns 1 to 3 report results for all individuals, while Columns 4 to 6 report
results for individuals without a college degree. All regressions include state fixed effects, time-varying division fixed effects,
pre-trends in employment of men, women, whites and non-whites between 1970 and 1990, controls for the adoption of PCs,
IT capital intensity and RBTC, exposure to Chinese imports, demographic characteristics (share of Blacks, Hispanics, women,
population with less than a college degree, three age groups (25-34, 35-44 and 45-54 years), and the logarithmic population), the
industry (employment share in construction, manufacturing, mining, research, service and utilities) and occupation composition
of employment (employment share in offshorable, skill-intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990,
and the composition of industry and occupation employment by gender and race/ethnicity of CZs in 1990. Standard errors are
robust against heteroskedasticity and allow for clustering at the state level. Regressions in Columns 1 and 4 are weighted by
the population of non-whites in the CZ in 1990. Regressions in the remaining columns are unweighted. Coefficients with ∗∗∗,
∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A17: Robots and employment: Alternative construction of the instrument

Panel A: Gender

All Less than college

Men Women Gap Men Women Gap

[1] [2] [3] [4] [5] [6]

Panel A1: EU7 countries and Germany
US robot exposure -0.975∗∗∗ -0.408∗∗∗ -0.568∗∗∗ -1.223∗∗∗ -0.422∗∗ -0.801∗∗∗

(0.212) (0.141) (0.148) (0.280) (0.170) (0.172)

Panel A2: EU5 countries (Acemoglu and Restrepo, 2020)
US robot exposure -1.254∗∗∗ -0.627∗∗ -0.627∗∗∗ -1.567∗∗∗ -0.682∗∗ -0.885∗∗∗

(0.309) (0.269) (0.164) (0.403) (0.306) (0.197)

Panel A3: EU7 countries with `90j,c
US robot exposure -1.161∗∗∗ -0.573∗∗∗ -0.588∗∗∗ -1.464∗∗∗ -0.672∗∗∗ -0.793∗∗∗

(0.250) (0.198) (0.161) (0.334) (0.242) (0.203)

Panel A4: EU7 countries without gj,(t0,t1)
Rj,t0
Lj,90

US robot exposure -0.918∗∗∗ -0.404∗∗ -0.514∗∗∗ -1.143∗∗∗ -0.375∗∗ -0.768∗∗∗
(0.179) (0.151) (0.166) (0.226) (0.166) (0.184)

Observations 2166 2166 2166 2166 2166 2166

Panel B: Race and ethnicity

All Less than college

Whites Non-whites Gap Whites Non-whites Gap

[1] [2] [3] [4] [5] [6]

Panel B1: EU7 countries and Germany
US robot exposure -0.477∗∗∗ -1.205∗∗∗ 0.728∗∗∗ -0.528∗∗∗ -1.368∗∗∗ 0.840∗∗∗

(0.074) (0.279) (0.245) (0.087) (0.322) (0.265)

Panel B2: EU5 countries (Acemoglu and Restrepo, 2020)
US robot exposure -0.631∗∗∗ -1.566∗∗∗ 0.935∗∗∗ -0.712∗∗∗ -1.784∗∗∗ 1.073∗∗∗

(0.144) (0.383) (0.313) (0.156) (0.444) (0.342)

Panel B3: EU7 countries with `90j,c
US robot exposure -0.497∗∗∗ -1.446∗∗∗ 0.950∗∗∗ -0.597∗∗∗ -1.627∗∗∗ 1.030∗∗∗

(0.107) (0.319) (0.276) (0.122) (0.381) (0.310)

Panel B4: EU7 countries without gj,(t0,t1)
Rj,t0
Lj,90

US robot exposure -0.461∗∗∗ -1.115∗∗∗ 0.654∗∗∗ -0.468∗∗∗ -1.272∗∗∗ 0.804∗∗∗
(0.097) (0.260) (0.231) (0.097) (0.293) (0.250)

Observations 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates and gaps by gender and
race/ethnicity at the CZ level. Changes are expressed in percentage points of the working-age population of the respective
demographic group and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation
of one. There are three time periods and 722 CZs. Panels A1 and B1 report estimates using an instrument which includes
seven European countries and Germany. Panels A2 and B2 report estimates using an instrument that includes only five
European countries. I exclude Spain and the United Kingdom as in Acemoglu and Restrepo (2020). Panels A3 and B3 report
estimates using an instrument with seven European countries, but US employment shares of 1990 instead of 1970. Panels A4
and B4 report estimates using an endogenous variable and an instrument of robot density without the adjustment term of
industry growth. Columns 1 to 3 report results for all individuals, while Columns 4 to 6 report results for individuals without
a college degree. All regressions include state fixed effects, time-varying division fixed effects, pre-trends in employment of
men, women, whites and non-whites between 1970 and 1990, controls for the adoption of PCs, IT capital intensity and RBTC,
exposure to Chinese imports, demographic characteristics (share of Blacks, Hispanics, women, population with less than a college
degree, three age groups (25-34, 35-44 and 45-54 years), and the logarithmic population), the industry (employment share in
construction, manufacturing, mining, research, service and utilities) and occupation composition of employment (employment
share in offshorable, skill-intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990, and the composition of industry
and occupation employment by gender and race/ethnicity of CZs in 1990. Standard errors are robust against heteroskedasticity
and allow for clustering at the state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗
are significant at the 1%, 5% and 10% confidence level.
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Table A18: Robots and employment: Exclude CZs with highest robot exposure

Panel A: Gender

All Less than college

Men Women Gap Men Women Gap

[1] [2] [3] [4] [5] [6]

Panel A1: Exclusion of Detroit area
US robot exposure -1.292∗∗∗ -0.764∗ -0.528∗ -1.570∗∗ -0.815 -0.755∗∗

(0.460) (0.450) (0.283) (0.595) (0.511) (0.355)

Observations 2163 2163 2163 2163 2163 2163

Panel A2: Exclusion of CZs in top 1 percentile
US robot exposure -1.561∗∗ -1.019 -0.542 -1.888∗∗ -1.009 -0.879∗

(0.646) (0.746) (0.390) (0.828) (0.853) (0.454)

Observations 2142 2142 2142 2142 2142 2142

Panel B: Race and ethnicity

All Less than college

Whites Non-whites Gap Whites Non-whites Gap

[1] [2] [3] [4] [5] [6]

Panel B1: Exclusion of Detroit area
US robot exposure -0.614∗∗ -1.688∗∗∗ 1.074∗∗ -0.649∗∗ -1.974∗∗∗ 1.325∗∗

(0.269) (0.546) (0.456) (0.286) (0.648) (0.500)

Observations 2163 2163 2163 2163 2163 2163

Panel B2: Exclusion of CZs in top 1 percentile
US robot exposure -0.781∗ -1.772∗∗ 0.990 -0.771 -2.149∗∗ 1.378∗

(0.454) (0.792) (0.654) (0.483) (0.974) (0.739)

Observations 2142 2142 2142 2142 2142 2142

Covariates: X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates and gaps by gender and
race/ethnicity at the CZ level. Changes are expressed in percentage points of the working-age population of the respective
demographic group and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation
of one. There are three time periods and 722 CZs. Panels A1 and B1 exclude Detroit from the sample. Panels A2 and B2
exclude the CZs in the top 1 percentile of US robot exposure between 1993 and 2014. Columns 1 to 3 report results for all
individuals, while Columns 4 to 6 report results for individuals without a college degree. All regressions include state fixed
effects, time-varying division fixed effects, pre-trends in employment of men, women, whites and non-whites between 1970 and
1990, controls for the adoption of PCs, IT capital intensity and RBTC, exposure to Chinese imports, demographic characteristics
(share of Blacks, Hispanics, women, population with less than a college degree, three age groups (25-34, 35-44 and 45-54 years),
and the logarithmic population), the industry (employment share in construction, manufacturing, mining, research, service and
utilities) and occupation composition of employment (employment share in offshorable, skill-intensive, white-collar, blue-collar
and low-skill jobs) of CZs in 1990, and the composition of industry and occupation employment by gender and race/ethnicity
of CZs in 1990. Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions
are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table A19: Robots and employment: Unobserved heterogeneity

Panel A: Gender

All Less than college

Men Women Gap Men Women Gap

[1] [2] [3] [4] [5] [6]

Panel A1: CZ characteristics at t− 1

US robot exposure -0.985∗∗∗ -0.415∗∗ -0.570∗∗∗ -1.244∗∗∗ -0.449∗∗ -0.795∗∗∗
(0.237) (0.178) (0.133) (0.307) (0.218) (0.157)

Panel A2: CZ fixed effects
US robot exposure -1.606∗∗∗ -0.872∗∗∗ -0.735∗∗∗ -2.087∗∗∗ -0.993∗∗∗ -1.094∗∗∗

(0.304) (0.259) (0.190) (0.382) (0.307) (0.220)

Observations 2166 2166 2166 2166 2166 2166

Panel B: Race and ethnicity

All Less than college

Whites Non-whites Gap Whites Non-whites Gap

[1] [2] [3] [4] [5] [6]

Panel B1: CZ characteristics at t− 1

US robot exposure -0.479∗∗∗ -1.229∗∗∗ 0.750∗∗∗ -0.552∗∗∗ -1.396∗∗∗ 0.845∗∗∗
(0.077) (0.280) (0.230) (0.104) (0.324) (0.247)

Panel B2: CZ fixed effects
US robot exposure -0.797∗∗∗ -2.098∗∗∗ 1.301∗∗∗ -0.930∗∗∗ -2.470∗∗∗ 1.540∗∗∗

(0.104) (0.372) (0.305) (0.150) (0.407) (0.313)

Observations 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on employment rates and gaps by gender and
race/ethnicity at the CZ level. Changes are expressed in percentage points of the working-age population of the respective
demographic group and are multiplied by 100. Independent variables are standardized to have mean zero and standard deviation
of one. There are three time periods and 722 CZs. Panels A1 and B1 use time-varying covariates. Panels A2 and B2 include
CZ fixed effects. Columns 1 to 3 report results for all individuals, while Columns 4 to 6 report results for individuals without
a college degree. All regressions include state fixed effects, time-varying division fixed effects, pre-trends in employment of
men, women, whites and non-whites between 1970 and 1990, controls for the adoption of PCs, IT capital intensity and RBTC,
exposure to Chinese imports, demographic characteristics (share of Blacks, Hispanics, women, population with less than a college
degree, three age groups (25-34, 35-44 and 45-54 years), and the logarithmic population), the industry (employment share in
construction, manufacturing, mining, research, service and utilities) and occupation composition of employment (employment
share in offshorable, skill-intensive, white-collar, blue-collar and low-skill jobs) of CZs in 1990, and the composition of industry
and occupation employment by gender and race/ethnicity of CZs in 1990. Standard errors are robust against heteroskedasticity
and allow for clustering at the state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗
are significant at the 1%, 5% and 10% confidence level.
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Chapter 2

Robots and Non-participation in the US:
Where Have All the Workers Gone?

2 Robots and Non-participation in the US: Where Have All the

Workers Gone?
2.1 Introduction

Advances in labor-replacing technologies are poised to shape the future of labor markets, fueling

concerns that the automation of labor through robots and artificial intelligence is going to displace

millions of workers in the years to come (Brynjolfsson and McAfee, 2014, Susskind, 2020).43 This is

an issue with profound implications, since information technologies are disrupting labor markets at

an unprecedented speed, forcing displaced workers to leave the labor force and to seek alternative

sources of income (Ford, 2015). Despite growing interest in the impact of new technologies on

the labor market, little is known about how displaced workers adapt to automation. This paper

investigates the margins of adjustment of workers after they get displaced by the introduction of

industrial robots in the United States between 1993 and 2014, and offers first evidence about where

these individuals end up, highlighting the need to design policies that facilitate the transition of the

workforce to new jobs.

Industrial robots have been among the leading automation technologies of the last decades. The

International Federation of Robotics (IFR) defines them as fully autonomous machines that can be

programmed to perform various manual tasks without the intervention of a human worker. The

astonishing advances in robotics in recent decades, along with a decline in their quality-adjusted

prices, have led to a widespread adoption of robots in many countries, affecting the demand for

labor (Graetz and Michaels, 2018). In the US, the stock of industrial has increased from less than

half a robot to more than two robots per thousand workers (about 180,000 units) between 1993 and

2014, displacing thousands of workers from their jobs (Acemoglu and Restrepo, 2020).

Although technological change is also creating millions of new jobs (Autor et al., 2021), these
43 Frey and Osborne (2017) project that 47 percent of total US employment is at high risk of automation in the next

two decades, raising concerns about the future of work.
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jobs often require the interplay of humans with machines, and may not be performed by workers who

have been displaced by automation due to a skill mismatch (Restrepo, 2015). Displaced workers

are therefore likely to become unemployed or to drop out of the labor force altogether (Grigoli et

al., 2020, Jaimovich et al., 2020), unless they are endowed with easily redeployable human capital

(Goldin and Katz, 2010).

Figure 2.1: Labor force non-participation and robots in the US

Notes: This figure illustrates the non-participation rate of men and women indexed at 100 at the start of the sample period
(left axis), and the stock of industrial robots per thousand workers in the US (right axis). The number of workers used for the
computation of the stock of robots is kept constant at its 1993 level. Labor force participation has been computed using data
from the Current Population Survey.

Figure 2.1 shows that, while labor force participation among women has remained relatively

stable over the past decades, the US have been experiencing a secular surge in the non-participation

rate of men, which increased by more than 40 percent since the early 1990s (from 11 to 15 percent).

The adoption of industrial robots in the labor market has been acknowledged to play a crucial role

for labor force participation in the country (Abraham and Kearney, 2020), raising questions about

where workers have gone in the aftermath of a displacement. In particular, how can they afford not

to work? Do they leave the labor market temporary to acquire new skills that increase their labor

market competitiveness? Do they drop out of the labor force permanently to retire early or claim

disability benefits? Do they live off their parents’ or their partner’s income? Or are they just idle?

To identify the margins of adjustment of individuals, I use individual-level information about
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the labor force status and detailed socio-demographic characteristics of the US population from

the Census and the American Community Survey (ACS), including college enrollment, disability

take-up, early retirement, income, and their recent migration history. I match these data with

industry-level data about the adoption of industrial robots from the IFR. I follow Acemoglu and

Restrepo (2020) in constructing a plausibly exogenous measure of robot exposure at the local labor

market level using a shift-share approach that interacts baseline industry employment shares within

local labor markets, proxied by commuting zones (CZs, Tolbert and Sizer, 1996), with the adoption

of robots in the US. Identification builds on the assumption that advances in robotics vary by

industry and expose CZs differently based on their industrial composition of employment.

In line with Acemoglu and Restrepo (2020), I document that the introduction of robots has

decreased US labor force participation. Estimates suggest that each additional robot drives four

workers out of the local labor force.44 I further show that this result is fully driven by men. Although

women are also affected negatively in their job prospects, there is no evidence of robot exposure

affecting their labor force participation rate.

The literature on regional shocks would expect workers’ geographic mobility to be one of the

key mechanisms through which labor markets adjust to local economic shocks (Blanchard and Katz,

1992, Howard, 2020). However, there is only limited support for this hypothesis in the context of

industrial robots, as they reduce the inflow of individuals to exposed areas (affecting the behavior

of prospective migrants), but they do not affect migration outflows from these CZs (Faber et al.,

2022).45 Nevertheless, this result raises the possibility that changes in the labor force participation

rate reflect changes in the composition of local labor markets, rather than an increase in labor force

dropouts. I account for this concern by restricting my analysis to the population of individuals born

in the same US state to exclude individuals who have migrated across labor markets.46 The results

are economically and statistically unaffected when using the restricted sample, providing confidence

in the interpretation of labor force participation changes reflecting changes in individuals’ behavior
44 Displaced workers are individuals who do not find a job or who lost their job directly or indirectly due to the

adoption of robots. The repeated cross-sectional nature of the data does not allow me to disentangle direct from
indirect displacement effects of robots, since I am tracing local labor markets rather than the career progression of
individual workers.

45 In line with this finding, Monras (2018), Foote et al. (2019), Yagan (2019) and Notowidigdo (2020) show that
in recent decades internal migration does not constitute a primary margin of adjustment of displaced workers
anymore.

46 This result is far from perfect, as it cleans out only migration flows across US states. Unfortunately, the Census/ACS
do not provide more granular information about the birthplace of individuals.
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rather than changes in the composition of local labor markets.

To understand the underlying causes that drive individuals out of the labor market, it is impor-

tant to take into account that robots might influence individuals’ labor supply decisions differently

based on their demographic characteristics. For instance, above a certain age, workers are more

likely to retire early, when displaced by robots, instead of investing in additional human capital.

For this purpose, I decompose the non-participating population into narrow age and education

groups, and analyze their margins of adjustment separately. I also distinguish between whites and

racial/ethnic minorities, since there are noteworthy differences in the adjustment margins of these

individuals.

I find that young whites delay their labor market entry or temporarily leave the labor force to

enroll in college. These individuals usually have already an undergraduate degree, and they enroll

in graduate or professional schools to acquire additional skills to increase their competitiveness on

the labor market. This result does not hold for young individuals belonging to minorities nor for

older age groups, who are not investing in human capital as a margin of adjustment against robot

exposure.

I instead find that middle-aged workers often enroll in Social Security Disability Insurance (SSDI)

and claim disability benefits. This is the main margin of adjustment of whites aged between 35

and 44 years. These workers are unlikely to rejoin the labor force in the future, since only a small

fraction of disability beneficiaries exits the program again (Liebman, 2015, Raut, 2017). I observe an

increase in disability take-up also among racial/ethnic minorities, although this is not their primary

adjustment margin.

The rising enrollment in SSDI is likely to be fueled by two channels. First, the labor market

impact of robot exposure has a procyclical effect on workers’ health (Schaller and Stevens, 2015),

making them medically eligible for disability benefits (Frank et al., 2019). Second, displaced workers

are misusing SSDI as an insurance against adverse shocks (Deshpande and Lockwood, 2021, Ford,

2015). While I cannot exclude the latter channel, I find that displaced prime-aged individuals who

are exposed to robots do suffer from a deterioration of their physical and mental health. I do

not find evidence of robot exposure affecting negatively the health condition of employed workers,

suggesting that the labor market status is a crucial determinant of the impact of robots on health

(Gihleb et al., 2022).
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A plausible explanation for this result, which is supported by the data, is that for many US

workers, the job loss is associated with losing health insurance. The inability to be treated by a

doctor for cost reasons may substantially worsen the course of a disease (Lang et al., 2019) which, if

neglected for too long, may become severe and require surgery, and eventually lead to a disability. In

line with this mechanism, I find that robot exposure increases the hospitalization rates of patients

with acute health issues, in particular those diagnosed with mental disorders that are common

among disability beneficiaries, potentially justifying the rising disability take-up. I also find that

robots increase the share of severe hospital admissions related to substance abuse, including alcohol,

drug and tobacco abuse, which are often associated with mental disorders. These results are in line

with the findings of Gihleb et al. (2022), who show that robots led to an increase in drug-related

and alcohol-related deaths in the US.47

The impact of robots on non-participation becomes stronger with age. As the retirement age

approaches, most of the displaced individuals drop out of the labor force and start claiming Social

Security early retirement benefits or withdraw their pension plan income. In other words, they

retire early.

Table 2.1 summarizes the relative contribution of the margins of adjustment discussed so far

for the aggregate increase in non-participation. According to my estimates, almost eight percent of

the non-participants enroll in college, 10.5 percent receive disability benefits, and nearly 40 percent

retire early. These findings show that almost half of the non-participants do not fall in any of these

categories, in particular among racial and ethnic minorities.

Table 2.1: Margins of adjustment of non-participants

College
enrollment

Disability
take-up

Early
retirement

Reliance on
household Savings Idle

[1] [2] [3] [4] [5] [6]

7.7% 10.5% 39.3% 25.1% 14.3% 4.7%

Notes: This table illustrates the relative contribution of each margin of adjustment to the increase in non-participation after a
displacement due to the introduction of robots. In terms of Equations 71, 72 and 73, each column reports the ratio between
the coefficient of interest from a regression of the change in NPm/ NP on robot exposure (and covariates). This clarification is
useful when coming back to this table after reading the paper.

47 Aside from the results on mental health problems related to substance abuse, Gihleb et al. (2022) focus on the
impact of robots on workers (rather than on non-participants) and find that their adoption has reduced work-
related injury rates, in particular at manufacturing firms. According to their estimates, between 2005 and 2011
the introduction of industrial robots saved the US economy $1.69 billion per year in injury costs.
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I investigate two further (rather passive) margins of adjustment that may explain how displaced

workers can afford not to work. First, I find that half of these non-participants live in households

in which they can rely on income from other household members, such as their partner or their

parents. This source of income is also important for non-participants who are enrolled in college.

Second, a significant share of non-participants has earned some wage income in the previous 12

months, suggesting that they are likely to live off their savings, and that they have not been out

of the labor force for too long. This could make them qualitatively more similar to unemployed

individuals than to permanent labor force non-participants (Jones et al., 2002). These additional

margins of adjustment are particularly popular among racial/ethnic minorities. Taken together with

the previous results, they can explain where more than 95 percent of the displaced workers, who

leave the labor force because of robots, end up.

The rest of the paper is organized as follows. Section 2.2 briefly summarizes the related liter-

ature. Section 2.3 describes the data. Section 2.4 presents the empirical strategy and challenges

to identification. Section 2.5 reports results about the effect of robots on non-participation, while

Section 2.6 investigates the margins of adjustment of displaced workers. Section 2.7 concludes.

2.2 Related literature

This paper contributes to the growing literature that studies the disruptive labor market impacts

of automation. Although to date there is no general consensus on its aggregate implications on

the labor market, the literature agrees on the fact that technological progress is rapidly changing

the demand for skills and the nature of work (Acemoglu, 1999, Autor and Dorn, 2013, Goos et al.,

2009, Goos and Manning, 2007, Katz and Murphy, 1992). Building on the stream of the literature

that warns about the race of humans against machines (Acemoglu and Restrepo, 2018, Goldin and

Katz, 2010), I investigate the question of where workers, who have presumably lost this race, end

up. This paper further builds on the pioneering work by Acemoglu and Restrepo (2020), who show

that industrial robots have reduced aggregate employment and wages in the US. I complement their

work by providing a comprehensive assessment of the margins of adjustment of workers who leave

the labor force because of robots, analyzing systematic differences in the adjustment across narrow

demographic groups.
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The adverse effects of robots on employment are less visible in Europe. In these countries, the

displacement of workers from low-skill (Graetz and Michaels, 2018), routine task-intensive (De Vries

et al., 2020) and manufacturing jobs (Dauth et al., 2021) has often been compensated by the

employment growth in other occupations and industries.48 However, it is important to account for

the fact that even among European countries a fraction of the displaced workers may drop out of

the labor force due to a skill mismatch with the newly created jobs (Grigoli et al., 2020), leaving

open the question of where they end up, and suggesting that the findings of this paper are also

interesting for Europe.

2.3 Data

This section describes the main data sources along with a set of descriptive statistics.

2.3.1 Industrial robots

I obtain data on the adoption of robots from the International Federation of Robotics (IFR). The

IFR is a survey that collects data about shipments and operational stocks of industrial robots by

country, industry and year ranging back to 1993 for 50 countries. The IFR defines an industrial

robot as an “automatically controlled, reprogrammable, multipurpose manipulator, programmable

in three or more axes, which can be either fixed in place or mobile for use in industrial automation

applications” (IFR, 2018, p.29). That is, industrial robots are machines that can be programmed to

autonomously perform several manual tasks (e.g. assembly, material handling, packing and welding)

without the intervention of a human worker. They are often designed as robotic arms and do not

include conveyor belts, cranes or elevators, since these machines do not meet the above requirements.

The IFR breaks down the stock of operational robots according to the International Standard

Industrial Classification (ISIC), Fourth Revision, and provides consistent data for six broad indus-

tries outside of the manufacturing sector (agriculture, forestry and fishing; construction; education,

research and development; manufacturing; mining; utilities; and other non-manufacturing branches,

such as services) and 13 industries within the manufacturing sector (automotive; basic metals; elec-

tronics; food and beverages; industrial machinery; metal products; minerals; paper and printing;
48 These findings do not apply for France, as documented in Acemoglu et al. (2020) and Bonfiglioli et al. (2020).
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plastics and chemicals; textiles; wood and furniture; other transport equipment (e.g. airplanes,

locomotives and ships); and other manufacturing branches). These data are praised for their relia-

bility and have been widely used in the literature. However, they include also some limitations that

are addressed in Appendix B2.

Figure 2.2: US robot exposure at the CZ level

Notes: This figure illustrates the geographic distribution of US robot exposure (in robots per thousand workers) at the com-
muting zone level between 1993 and 2014.

Figure 2.1 shows that the stock of industrial robots has increased by about 1.5 robots per thou-

sand workers in the US – a fivefold or roughly 180,000 units compared to its 1993 level. According

to the International Federation of Robotics, this number is expected to grow even more in the fu-

ture (IFR, 2018, pp.535-540). Industrial robots are mainly adopted in a subset of manufacturing

industries, such as the automotive, electronic, plastic and chemical, and metal production industry

(see Table B1 for details). This exposes the Midwest of the country significantly more to their

deployment, especially the local labor markets of the Rust Belt (including the states of Indiana,

Michigan and Ohio), due to their specialization in industrial manufacturing industries, a result that

is visible in Figure 2.2.

2.3.2 Margins of adjustment

To measure long-term changes in local labor market outcomes contemporaneous to the introduction

of industrial robots, I obtain data from the Integrated Public Use Microdata Series (IPUMS) of the

decennial Census for 1970, 1980, 1990 and 2000, and the ACS for 2007 and 2014 (Ruggles et al.,
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2019).49 These datasets are repeated cross-sectional surveys that include between 1 and 5 percent of

the US population and provide a comprehensive set of information at the individual and household

level, including the employment status, socio-demographic characteristics, income sources, and the

place of residence of households and their members.50

An individual is considered to be out of the labor force if he or she is not employed and is not

looking for work at the time the survey is conducted. Individuals are asked also about whether

they have recently migrated, if they are attending school, they receive Social Security income, and

their role in the household. I use these information in conjunction with their labor force status

to determine the margins of adjustment of non-participants. I focus on the non-institutionalized

population between 25 and 64 years of age. These individuals are above the usual full-time school

age and below the full retirement age.51

I aggregate individual-level data at the labor market level using 722 Commuting Zones (CZs)

that cover the entire US mainland and act as proxies of local labor markers (Tolbert and Sizer,

1996).52 This aggregation allows me to build a measure of the labor force non-participation rate at

the local labor market level:

NPc,t =
Lc,t
Nc,t

(71)

where Lc,t is the number of non-participants and Nc,t is the working-age population in CZ c in year t.

Then, I decompose the non-participation rate into population subgroups (using detailed information

on individuals’ socio-demographic characteristics) to identify the margins of adjustment of workers,

when they drop out of the labor force:

NPc,t =
∑
m

NPmc,t =
∑
m

Lmc,t
Nc,t

(72)

49 I follow the literature and increase the sample size of the ACS 2007 and 2014 samples using data from the 3-year
sample of 2006-2008 and the 5-year sample of 2012-2016.

50 Income sources include wages; Social Security income; business and farm income; welfare income (public assistance);
or interest, dividend and rental income. Appendix B3 discusses the institutional background of the US Social
Security and pension plan system, and points to some shortcomings in the data.

51 In the US, the usual high school age goes from 14 to 18 years, while undergraduate college starts at 19 years until
22 to 23 years. The full retirement age starts at 66 or 67 years, depending on the year of birth.

52 CZs represent economically relevant regions for labor markets and are formed by clusters of counties with strong
commuting ties within CZs and weak commuting ties across CZs. The IPUMS provide county groups or Public
Use Microdata Areas as lowest geographic units. Following Autor and Dorn (2013), I aggregate data at the CZ
level using a crosswalk that provides a probabilistic matching of sub-state geographic units in US Census Public
Use Files to CZs.
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where NPmc,t is the share of the population that is non-participant with margin of adjustment m

(e.g. student, disability beneficiary, or early retiree).

Table 2.2: Descriptive statistics: Main variables

US robot exposure
1993-2014

All Q1 Q2 Q3 Q4

[1] [2] [3] [4] [5]

Panel A: Labor force and margins of adjustment

Men
Non-participation rate (1990) 11.1 12.3 11.8 10.0 11.5

• Students 0.93 0.96 1.07 0.91 0.79
• Disability beneficiaries 1.35 1.53 1.35 1.20 1.52
• Early retirees 3.55 3.88 3.66 3.06 4.09

∆Non-participation rate (1990-2014) 4.37 3.83 3.78 4.36 5.37
∆Non-participation rate (1970-1990) 3.15 2.74 3.08 2.70 4.14

Women
Non-participation rate (1990) 30.4 31.5 31.3 29.0 30.9
∆Non-participation rate (1990-2014) -2.70 -3.50 -2.90 -2.10 -3.20

Panel B: Robots and imports from China (1993-2014)

US robot exposure 1.83 0.53 0.94 1.52 4.03
US import exposure 5.13 2.34 3.46 6.06 6.92

Panel C: Labor market covariates (1990)

Demographics
25–34 years 33.9 33.1 33.9 34.7 32.8
35–44 years 29.4 29.7 29.6 29.3 29.2
45–54 years 20.0 20.2 19.8 19.8 20.3
Black 10.9 12.1 11.2 11.5 9.19
White men 38.4 35.5 36.8 37.7 42.6
Hispanic 7.94 12.9 10.1 8.51 2.07
Women 51.1 51.1 51.2 51.0 51.3
Less than college 77.1 76.9 76.4 75.8 80.4
Log population 13.3 12.6 13.4 13.8 12.8
Same state of birth 54.8 40.5 49.4 54.9 67.5
Industries
Construction 6.24 7.64 6.84 6.01 5.27
Manufacturing 24.4 12.7 19.0 26.5 32.7
Mining 0.99 2.93 1.29 0.55 0.54
Research 1.91 1.94 1.86 2.00 1.80
Services 63.0 69.8 67.0 62.1 56.6
Utilities 1.49 1.75 1.60 1.36 1.44
Occupations
Offshorable 37.2 36.9 37.6 37.7 36.0
Routine 35.0 32.7 34.6 35.5 35.5
Observations 722 181 180 181 180

Notes: This table presents averages of the main variables used in the analysis, weighted by CZ population in 1990. Column
1 reports averages over all 722 CZs in the sample. Columns 2 to 5 split the sample into four quartiles, accounting for a labor
market’s exposure to robots between 1993 and 2014. Labor force participation indicators are expressed in terms of the working-
age population of reference in the CZ, demographics are expressed in terms of the overall working-age population (except for
log-population), and the industry and occupation covariates are expressed in terms of total CZ employment.

Table 2.2 shows that the US have been experiencing a significant rise in labor force non-
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participation of men over the last decades, increasing from 11.1 percent in 1990 to 15.3 percent

in 2014 (a 40 percent increase). About eight percent of the non-participants are enrolled in college

(0.93/11.1), one out of ten receives disability benefits from the SSDI, and almost one third receives

some form of retirement income (pension plan income or Social Security early retirement benefits).

Labor force non-participation of women decreased by 2.7 percentage points during this period of

time (almost 10 percent).

Columns 2 to 5 split the sample into four quartiles based on a CZ’s exposure to industrial robots

and provide means of the main variables used in the analysis for the respective quartile. Results

show that the increase in labor force participation of men is largest in CZs with a heavy utilization

of industrial robots (5.37 percentage points), while there is no particular correlation between the

decline in non-participation of women and robot exposure. Interestingly, male non-participation

was already on an increasing trend since the 1970s in more exposed areas and, as illustrated in

Panel B, these CZs are also highly exposed to import competition from China during my sample

period. These observations highlight the potentially confounding impact of other ongoing labor

market shocks, when analyzing the impact of industrial robots, especially in CZs that are intensive

in the manufacturing industry (see Panel C), a threat to identification that I take into account in

my empirical strategy.

2.3.3 Health

A potential margin of adjustment against robot exposure is disability enrollment. However, it is

not clear whether an increase in disability take-up is associated with a deterioration in the health

condition of displaced workers, or whether individuals are misusing the SSDI as a sort of permanent

unemployment insurance. I investigate this question by supplementing labor market data with

indicators on mental and physical health conditions at the CZ level from the Behavioral Risk Factor

Surveillance System (BRFSS) of the Centers for Disease Control and Prevention (CDC) and the

National Inpatient Sample (NIS) of the Healthcare Cost and Utilization Project (HCUP) for 1993,

2000, 2007 and 2011.53

The BRFSS is a health-related telephone survey that collects 400,000 adult interviews each
53 After 2011, the BRFSS and NIS datasets do not provide geographic indicators that allow me to identify observations

at the CZ level.
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year on health-related risk behaviors, chronic health conditions, and the use of preventive services.

For each individual, I have information on basic demographics, labor force status, self-reported

health, smoking and drinking habits, body height and weight, physical activity, healthcare coverage

and the use of healthcare services. Respondents are also asked about their physical and mental

health condition, and report whether they suffered from physical illness or injuries, or from stress,

depression or problems with emotions in the 30 days prior to the interview.

The NIS collects information on hospital stays each year using a 20-percent stratified sample

of discharges from US community hospitals. For each discharge, I observe information on up to 15

diagnoses using classification codes from the International Classification of Diseases, Ninth Revision

(ICD-9). I follow the Centers for Disease Control and Prevention (2009) and group ICD-9 codes

into the most common causes of disability (arthritis and rheumatism; back and spine problems;

circulatory system diseases; respiratory system diseases; mental disorders; and diabetes) and into

other conditions that are not directly related to a disability. A detailed description of the data is

provided in Appendix B2.

2.4 Empirical strategy

I estimate the effect of robots on the margin of adjustment of non-participants using a stacked first-

difference specification with 722 CZs and three time periods (1993-2000, 2000-07, 2007-14).54,55 The

key estimating equation is given by:

∆NPmc,(t0,t1) = βmUS robot exposurec,(t0,t1) + X′c,(t0,t1)Γ
m + εmc,(t0,t1) (73)

where ∆NPmc,(t0,t1) is the change in the share of the population of CZ c that is non-participant

with margin of adjustment m. To account for potential sources of bias that might confound the

estimates of the labor market effect of robots, Equation 73 includes also year fixed effects, US Census
54 Since I use data on labor market outcomes from the 1990 Census and health outcomes from the BRFSS and NIS

that range only up to 2011, I rescale the 1990-2000 and 2007-11 periods to 7-year equivalent changes to achieve
comparability across periods.

55 It is documented that the 2000 Census measures lower employment levels than the CPS for that year, and the extent
of this issue varies across geography. However, measurement error is unlikely to be correlated with the instrument,
since, as described below, the exogenous shift-share measure of robot exposure uses employment shares of the
1970s. To address this issue further, I account for division × year fixed effects in all specifications, and I illustrate
the main results using a long-difference specification from 1993 to 2014 in Appendix B4.
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division trends, pre-existing trends in US labor force participation and manufacturing employment,

a measure of the China trade shock (Autor et al., 2013), and a vector of start-of-sample-period

regional characteristics and economic variables (gender, race, ethnicity, education, age, state of

birth, population, industry and occupation composition).56 I keep CZ characteristics constant at

their 1990 levels to avoid contamination by endogenous adjustments in the structure of local labor

markets in response to robot adoption. Further details about covariates are provided in Table 2.2

and in Appendix B2.

I build a measure of robot exposure at the CZ level using a shift-share approach. I follow

Acemoglu and Restrepo (2020) and match industry-level data from the IFR with employment counts

from the Census:

US robot exposurec,(t0,t1) =
∑
j∈J

`1990
c,j

[
RUSj,t1 −R

US
j,t0

LUSj,1990

− gUSj,(t0,t1)

RUSj,t0
LUSj,1990

]
(74)

The term in brackets (shift-component) is a measure of industrial robot density, computed as the US

wide change in the stock of robots in industry j ∈ J , relative to its workforce in 1990, and adjusted

for the adoption of robots that is driven by overall industry output growth, gUSj,(t0,t1) = ∆ ln(Y US
j,t ).57

The industry-level shock is apportioned across local labor markets using CZs’ industry employment

shares, `1990
c,j = L1990

c,j /L1990
c . The baseline employment shares are kept constant to avoid endogeneity

and serial correlation concerns across periods of my stacked first-difference specification.

Identification builds on the assumption that advances in robotics vary by industry and expose

CZs differently depending on the industrial composition of employment. The adoption of robots,

however, is likely to be correlated also with local labor market conditions that affect the demand

for labor and, therefore, labor force participation rates. For instance, positive demand shocks might

induce US firms to raise both capital and employment, biasing the estimates of the effect of robots

on labor demand upwards.

To address the endogeneity concern and identify robot adoption that is driven by the supply
56 Census divisions are administrative divisions of the US territory into nine groups of states: New England, Middle

Atlantic, South Atlantic, East North Central, East South Central, West North Central, West South Central,
Mountain and Pacific.

57 The IFR estimates the operational stock of robots using the sum of robot installations in the previous 12 years. I
stress this assumption in Appendix B4, and construct measures of the stock of robots based on yearly shipments
using the perpetual inventory method at different depreciation rates.
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channel, I instrument the shift-component of Equation 74 using contemporaneous changes in the

stock of robots in seven European countries with a comparable adoption of robots as the US:

EU7 robot exposurec,(t0,t1) =
∑
j∈J

`1970
c,j

1

7

∑
i∈EU7

[
Rij,t1 −R

i
j,t0

Lij,1990

− gij,(t0,t1)

Rij,t0
Lij,1990

]
(75)

where Rij,t is the stock of robots in country i ∈ EU7 at time t in industry j. EU7 countries

include Denmark, Finland, France, Italy, Spain, Sweden and the United Kingdom.58 The share-

component uses (plausibly exogenous) employment shares from 1970 to focus on the industrial

composition of employment that precedes the introduction of industrial robots, which started in the

1980s (Acemoglu and Restrepo, 2020).

The IV strategy aims at identifying the labor market effects of exogenous improvements in

robotics available to US firms. The strategy relies on the assumptions that the adoption of robots

in European countries is positively related to the adoption of robots in the US, but it is unrelated to

domestic labor market conditions. The first condition can be easily verified (see first-stage results

in Table 2.3), while I discuss possible threats to identification related to the exclusion restriction in

Appendix B4. Reassuringly, the empirical results are robust and outlive a variety of tests, including

checks for international product market competition from Europe, industry trends (Goldsmith-

Pinkham et al., 2020), and labor market pre-trends.

2.5 Robots and non-participation

I start the analysis by presenting the impact of robot exposure on US labor force non-participation.

Table 2.3 reports OLS and IV estimates, as well as first-stage results.59 The coefficients are stan-

dardized and represent the estimated labor market effect of a one standard deviation increase in

robot exposure.60 Regressions are weighted by the 1990 CZ population and standard errors allow
58 The instrument purposely does not include the countries with the world’s heaviest adoption of industrial robots,

namely South Korea, Germany, and Japan. These countries are also among the main trading partners of the US
and could directly affect US labor market conditions through their national adoption of robots.

59 Estimates of the effect of robot adoption on other labor market outcomes, including total employment, manufac-
turing employment and unemployment are reported in Table B2.

60 A one standard deviation increase of US robot exposure corresponds roughly to its average increase during a sample
period.
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for arbitrary clustering at the state level.61,62

Table 2.3: Robots and non-participation

Population Men Women

[1] [2] [3] [4] [5] [6]

Panel A: OLS results
US robot exposure 0.195∗∗ 0.191∗∗ 0.169∗∗∗ 0.092∗∗∗ 0.181∗∗∗ 0.006

(0.076) (0.073) (0.056) (0.034) (0.035) (0.035)

Panel B: IV results
US robot exposure 0.224∗∗ 0.242∗∗ 0.237∗∗∗ 0.192∗∗∗ 0.346∗∗∗ 0.045

(0.093) (0.095) (0.085) (0.063) (0.072) (0.062)

Panel C: First-stage
EU7 robot exposure 0.773∗∗∗ 0.792∗∗∗ 0.787∗∗∗ 0.740∗∗∗ 0.740∗∗∗ 0.740∗∗∗

(0.055) (0.044) (0.055) (0.049) (0.049) (0.049)

Kleibergen-Paap F stat 197.7 326.4 115.4 117.6 117.6 117.6

Observations 2166 2166 2166 2166 2166 2166

Covariates:
Divisions X X X X X X
Years X X X X X X
Pre-trends X X X X X
Chinese imports X X X X
Demographics X X X
Industries X X X
Occupations X X X

Notes: This table presents IV estimates of the effect of US robot exposure on the non-participation rate at the CZ level.
Changes are expressed in percentage points of the working-age population and are multiplied by 100. Independent variables
are standardized to have mean zero and standard deviation of one. There are three time periods and 722 CZs. Column 1
includes year dummies, nine census divisions and their interactions. Column 2 includes also changes in the non-participation
rate and in the manufacturing employment rate between 1970 and 1990. Column 3 includes a measure of exposure to Chinese
imports. Column 4 controls also for demographic (share of individuals aged between 25 and 34 years, 35 and 44 years, 45 and 54
years, the share of white men, Blacks, Hispanics, women, individuals born in the same US state of their current residency, and
individuals with less than a college degree and logarithmic population), industry (shares of employment in the construction,
manufacturing, mining, research, service and utilities sector) and occupation (share of offshorable and routine task-intensive
occupations) characteristics of CZ in 1990. Columns 5 and 6 report estimates of the effect for men and women separately.
Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions are weighted by
CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

Column 1 presents a baseline specification which accounts only for division-specific business

cycles. The following columns include further covariates that might confound the labor market

effect of robots. The IV coefficients are not affected neither in size nor in significance by the

inclusion of these controls. The absolute size of OLS estimates is smaller than that of IV estimates

across all specifications, since US robot adoption is likely to be correlated with omitted demand
61 As outlined in Cadena and Kovak (2016), when examining outcomes across labor markets of different sizes, efficient

weights must consider individuals’ sampling weights to account for inherent heteroskedasticity. They show that
optimal weights are strongly correlated with initial population sizes and therefore are well approximated by the
initial population of a local labor market.

62 In Appendix B4, I show that the results do not change when clustering at the industry level à la Borusyak et al.
(2021), and at the division level to account for potential correlations across CZs resulting from other industry or
region shocks.
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shocks that bias the estimates towards zero.

In line with the findings of Acemoglu and Restrepo (2020), results show that robots have an

adverse impact on US labor markets. On average, a one standard deviation increase in robot

exposure decreases labor force participation by 0.192 percentage points, which translates into a

decrease in the local labor force of about four workers for each additional robot.63 In Column

5, I show that this effect is fully driven by men. The magnitude of this result suggests that the

introduction of robots between 1993 and 2014 has had an impact on the labor force non-participation

rate of men that is equivalent to about 18 percent of its secular increase.64 Although women are

affected negatively in their job prospects too (see Table B2), there is no evidence that robots are

affecting their labor force participation rate.65 In the subsequent analysis, I therefore focus on the

margins of adjustment of men (Column 5).66,67

Migration – The literature on regional shocks would expect workers’ geographic mobility to be one

of the key channels through which labor markets adjust to local economic shocks (Blanchard and

Katz, 1992, Howard, 2020). I address this potential margin of adjustment by analyzing the impact

of the introduction of robots on internal migration flows across CZs in Table 2.4. Columns 3 and 4

show that robots trigger a significant reduction in the inflow of individuals to exposed areas both

from outside and within the state (although the latter is noisily estimated). However, there is no

evidence of them affecting migration outflows from these CZs (Columns 1 and 2). These findings

suggest that internal migration does not constitute a margin of adjustment of workers who have

been displaced (Foote et al., 2019, Notowidigdo, 2020, Yagan, 2019), but that robot exposure affects

the behavior of prospective migrants (Faber et al., 2022, Monras, 2018).

This finding raises the possibility of robots changing the composition of the population in a CZ
63 This number is obtained by de-standardizing the effect of robot exposure from Table 2.3 using the standard deviation

of the variable expressed in robots per thousand workers from Table B17. This results in the estimated effect in
terms of robots per thousand workers (0.192/0.491 = 0.391 percentage points). I use US population statistics from
the IPUMS and robot adoption from the IFR to estimate the average effect of one additional robot on the size of
the labor force.

64 I compute this number by de-standardizing the coefficient from Column 5, and dividing it for the adjusted secular
increase in labor force participation of men from Table 2.2 (0.346/0.491× 1/4.37× 24/21).

65 Acemoglu and Restrepo (2020) analyze the effect of robot exposure on employment and wages, finding that they are
fueled both by men and women. However, they do not investigate the gender-specific effects on non-participation
which, as it turns out, are driven exclusively by men.

66 The purpose of this paper is to investigate the margins of adjustment of workers who drop out of the labor force,
with focus on partial equilibrium effects. For a discussion about the general equilibrium effects of robot exposure
on non-participation, see Appendix B5.

67 I provide a set of robustness checks in support of my preferred specification, including controls for industry trends,
pre-trends, confounding labor market shocks, and alternative outcomes and covariates, in Appendix B4.
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Table 2.4: Internal migration and non-participation by origin

Migration Non-participation

Outflows Inflows Birthplace

Same state Other state Same state Other state Same state Other state Foreign country

[1] [2] [3] [4] [5] [6] [7]

US robot exposure 0.030 -0.048 -0.151∗ -0.133 0.299∗∗∗ 0.346∗∗∗ 0.399∗∗
(0.101) (0.105) (0.076) (0.088) (0.049) (0.068) (0.163)

Observations 2166 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on migration flows across CZs, both within and
outside of the state, as well as non-participation rates by state of birth. I compute outflows (inflows) in Columns 1 and 2
(Columns 3 and 4) as the share of individuals who migrated away from (to) a CZ. The denominator equals the population in
their CZ of residence before (after) moving. Note that the information about individuals’ migration status changes over time.
In particular, the Census asks whether a person changed its residence in the previous 5 years, while the ACS asks whether a
person changed its residence in the previous year. I follow Molloy et al. (2011) in building measures of 5-year migration flows
from the ACS by using four times the annual migration flow of a CZ. I compute non-participation rates in Columns 5, 6 and
7 as the number of non-participants of a particular group divided by the population of reference of this group. For instance,
Column 5 is computed as the number of non-participants in a CZ born in the same state of their current residency divided by
the population of the CZ born in the same state of their current residency. All regressions include the full battery of controls
from my preferred specification. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

by mechanically increasing the share of non-participants through the lack of incoming workers. I

account for this concern by restricting the population to individuals born in the same US state as

their current residence (Column 5). This approach should provide more confidence in the interpre-

tation of labor force participation changes reflecting changes in individuals’ behavior rather than

changes in the composition of local labor markets, since this sample of the population is not affected

by internal migration flows (at least across states). Unfortunately, the Census/ACS do not provide

more granular information about the birthplace of individuals.

Results show that the increase in non-participation among the share of the population that lives

in its state of birth is not economically nor statistically different from my preferred specification’s

estimates. For completeness, Column 6 and 7 include also the labor force participation rates of

individuals born in another US state or in a foreign country, showing that the introduction of

robots has increased the non-participation rate among these groups in similar proportions.

Demographics – To understand the underlying causes that drive individuals out of the labor force

(rather than to migrate), it is important to consider that robots might influence individuals’ labor

supply decisions differently based on their socio-demographic characteristics. For this purpose, I

break down the estimated effect of robots on non-participation of men by race and ethnicity (whites

and racial/ethnic minorities), age groups (25-34, 35-44, 45-54 and 55-64 years) and education levels
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(college-educated and less educated).68 This is achieved by using an analogous decomposition

exercise to Equation 72, but by using demographic groups g ∈ G instead of margins of adjustment

m ∈M :

NPc,t =
∑
g

NPgc,t =
∑
g

Lgc,t
Nc,t

(76)

where NPgc,t is the share of the population that is non-participant with demographic characteristics

g. Whites include individuals who, when asked about their race and ethnicity in the Census, report

to be “White” and of no “Hispanic, Latino, or Spanish” origin. Racial and ethnic minorities include

all demographic groups who are either not white (e.g. Blacks, Asians, American Indian and Alaska

natives), or are of Hispanic, Latino, or Spanish origin.

Table 2.5: Robots and non-participation: Breakdown by demographics

Whites Racial and ethnic minorities

25-34 35-44 45-54 55-64 25-34 35-44 45-54 55-64

[1] [2] [3] [4] [5] [6] [7] [8]

Panel A: College degree or more
US robot exposure 0.012∗∗∗ 0.004∗∗ 0.000 0.011 0.001 -0.000 -0.002 0.007∗∗∗

(0.003) (0.002) (0.003) (0.008) (0.004) (0.003) (0.003) (0.002)

% of total effect (βg/β × 100) 3.46 1.15 0.00 3.17 0.29 0.00 -0.58 2.02
% of population (Ng/N × 100) 6.76 7.73 4.55 3.04 1.27 1.18 0.65 0.31

Panel B: Less than a college degree
US robot exposure 0.010 0.018∗∗ 0.030∗∗∗ 0.094∗∗∗ 0.027 0.050∗ 0.047∗∗∗ 0.037∗∗∗

(0.007) (0.008) (0.010) (0.009) (0.029) (0.025) (0.012) (0.011)

% of total effect (βg/β × 100) 2.88 5.19 8.64 27.09 7.78 14.41 13.54 10.66
% of population (Ng/N × 100) 19.03 15.65 11.55 10.37 7.29 5.11 3.20 2.29

Observations 2166 2166 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X X X

Notes: This table presents IV estimates of the effect of robot exposure on the male non-participation rate by education, age,
and race/ethnicity. Percentages of the total effect are computed by dividing the estimates of the effect within each demographic
subgroup by the estimates of the effect on the working-age population of men (Column 5 of Table 2.3). The key estimating
equation is given by ∆NPg

c,(t0,t1)
= βg US robot exposurec,(t0,t1) + X′c,(t0,t1)Γ

g + εg
c,(t0,t1)

, and includes the full battery of
controls from my preferred specification. For convenience, in the following I also write down ∆NPc,(t0,t1) as ∆NPc,t for all
superscripts g and m. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level. Average shares
of population subgroups are computed for 1990. Between 1990 and 2014, the share of the population with a college degree, the
share of racial/ethnic minorities, and the share of individuals between 55 and 64 years have increased.

Using my preferred specification, Table 2.5 illustrates the relative contribution of each group

to the aggregate effect of robots on non-participation. Results show that the increase in non-

participation is fueled in equal proportions by whites and racial/ethnic minorities (51.6 and 48.4
68 The less educated group includes high school and undergraduate college dropouts, individuals who have achieved at

most a high school diploma, and students that are enrolled in college, but who have not achieved an undergraduate
degree.
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percent), and that it is caused predominantly by less educated workers (only ten percent of the non-

participants have a college degree). This result is in line with previous literature which argues that

college-educated workers are often employed in occupations that require the use of communication

and interpersonal skills that are more difficult to automate (Acemoglu and Autor, 2011). However,

this effect is also mechanically small due to the relatively low share of the population with a college

degree (Ng
c,t/Nc,t never exceeds 32 percent in my sample period, with g being “college education”).

The same reasoning applies to racial and ethnic minorities (who make up less than 36 percent of

the population). Finally, the impact of robots on labor force dropouts increases (not monotonically

among each group) with age (individuals aged between 55 and 64 years account for 40 percent of

the overall increase in non-participation). Again, this result is likely to be subject to underlying

composition effects, such as population aging, and due to older individuals having lower labor force

participation rates.

To clean out these effects from my results, I analyze changes in the non-participation rate within

population subgroups. This is achieved by multiplying and dividing NPgc,t by the population count

of each demographic group Ng
c,t:

NPgc,t =
Ng
c,t

Nc,t

Lgc,t
Ng
c,t︸︷︷︸

NPġc,t

(77)

As a result, Equation 77 provides a measure of the non-participation rate within demographic

groups, NPġc,t. The impact of robot exposure on demographic-specific non-participation rates is

illustrated in Figure 2.3.69

When accounting for the relative population size of demographic groups, the adverse effect of

robots on the non-participation rate of racial and ethnic minorities stands out. The increase is more

than twice that of whites. This result follows from the fact these workers are often over-represented

in blue-collar jobs with a high workload of manual tasks which are more susceptible to automation

through industrial robots (Lerch, 2021). The only demographic group that seems to benefit from

the adoption of robots are non-whites aged between 45 and 54 years. Figure B1 shows that the

decrease in labor force non-participation of this group is associated with an increase in employment.
69 For clarification, Table 2.5 shows that a one standard deviation increase in robot exposure increase the share of

white non-participants with a college degree who are aged between 25 and 34 years in the total population by 0.012
percentage points, while Figure 2.3 shows that within the population group with these demographic characteristics,
the non-participation rate increases by about 0.3 percentage points.
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Figure 2.3: Robots and non-participation within demographic groups

Panel A: College degree or more

Panel B: Less than a college degree

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on non-participation by race/ethnicity,
age and education (∆NPġc,t). Regressions include the full battery of controls from my preferred specification and are weighted
by CZ population in 1990. Confidence intervals are at the 95% level.

2.6 Where have all the workers gone?

Let’s now turn to the question of where individuals end up, when they leave the labor force after the

introduction of robots. The following analysis uses Figure 2.3 to identify the margins of adjustment

of non-participants that prevail within each demographic group.

2.6.1 College enrollment

A potential margin of adjustment, in particular among individuals in their early prime-age, is the

accumulation of additional human capital through the enrollment in college. In fact, individuals

may respond to negative labor demand shocks by enrolling in school due to lower opportunity cost

of being out of the labor force. This question has also occupied the previous literature, which

finds that adverse shocks have contributed to the rising high school graduation and college en-
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rollment rates in the US.70 Related to this paper, Di Giacomo and Lerch (2021) show that robot

adoption has increased enrollment in US community colleges, and Dauth et al. (2021) show that

robots have increased the share of college graduates in Germany, at the expense of the share of

workers who completed an apprenticeship. Although these results provide important evidence that

automation increases the level of education among young workers, the consequences that these edu-

cational choices have for the attachment to the labor force – and to which extent college enrollment

contributes to the increase in non-participation – are still unclear.

This section addresses these questions by investigating whether the decline in labor force par-

ticipation is fueled by individuals who leave the labor force temporarily or who delay their labor

market entry to enroll in post-secondary education institutions. For this purpose, I apply the de-

composition exercise from Equation 72 to the demographic-specific non-participation rate (NPġc,t)

shown in Figure 2.3, and I differentiate between non-participants who are enrolled in school (m1)

and those who are not (m0). Specifically,

NPġc,t = NPġ,m1
c,t + NPġ,m0

c,t (78)

where NPġ,mc,t = Lg,mc,t /N
g
c,t.

I define school enrollment as schooling which leads to a high school diploma, a college degree

or a graduate degree. School attendance identifies whether an individual is completing a schooling

degree or, after completing it, continues with a higher degree. It does not include enrollment in

a trade or business school, company training, or tutoring unless the course would be accepted for

credit at a regular college. Figure 2.4 illustrates the results.

I find that schooling is the main margin of adjustment for white non-participants who already

have a college degree and who are aged between 25 and 34 years. These individuals are either

delaying their labor market entry or they are temporarily leaving the labor force to enroll in graduate
70 In particular, research has focused on the impacts of business cycle fluctuations (Foote and Grosz, 2020, Weinstein,

2020), trade competition (Greenland and Lopresti, 2016) and immigration (Hickman and Olney, 2011, Hunt, 2017).
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Figure 2.4: College enrollment

Panel A: College degree or more

Panel B: Less than a college degree

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on non-participation by age and
education, and decomposes them by school enrollment (∆NPġ,mc,t ). Regressions include the full battery of controls from my
preferred specification and are weighted by CZ population in 1990. Confidence intervals of the estimates on non-participants
who are enrolled in school (left CI) and those who are not in school (right CI) are at the 95% level.

or professional schools to increase their competitiveness in the labor market.71 Figure B2 shows

that they have been employed (at least some time) in the previous five years, but that they have

not been working in the previous 12 months.

At this point, one may worry that students are moving across CZs to enroll in college, and hence

that migrants may not have been affected by the shock in the college’s CZ, but by the shock in the

CZ in which they grew up. Di Giacomo and Lerch (2021) address this concern and show that the

mobility of students is not affecting the results, and that the effect of robots on college enrollment
71 Figure B2 shows that a minority of the non-participants are PhD or undergraduate students, while nobody is

enrolled in high school. This result is fairly different from the findings of Di Giacomo and Lerch (2021), as it
focuses exclusively on non-participants. According to their estimates, these individuals account for only one third
of the overall increase in college enrollment due to the introduction of robots, with the remaining ones being either
unemployed or employed in part-time jobs. Moreover, a significant share of their finding on community college
enrollment stems from individuals aged between 19 and 24 years, who are not included in my population sample.
Finally, their sample includes men and women, while the analysis of the margins of adjustment of workers focuses
on men.
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is driven by students who enroll in a school which is located in their CZ of origin.72

Although I observe also an increase in schooling among non-white and less educated non-

participants, this effect is rather small and does not constitute their main margin of adjustment

against robot exposure. Figures B2 and B3 show that a significant share of these individuals does

not even have a high school diploma, and that the effect on schooling is driven by individuals who

are likely to be pursuing a GED.73

Figure 2.4 further shows that there is no evidence of an increase in college enrollment after the

age of 35 years. This finding suggests that this effect is limited to individuals in their early prime

age, since they have the most to gain from additional human capital, given their long career horizon

(and many of them not being financially independent). Older workers are instead leaving the labor

force for reasons that are discussed in the next sections.

2.6.2 Disability take-up

There is evidence that labor demand shocks and poor labor market conditions are significantly

affecting disability take-up in the US (e.g. Autor et al., 2013, Black et al., 2002, Maestas et al., 2015).

The fraction of disability claims that is related to hard-to-verify impairments has risen substantially

over the last decades (Autor and Duggan, 2003, Liebman, 2015), suggesting that SSDI could be

misused as a sort of permanent unemployment insurance against adverse shocks (Deshpande and

Lockwood, 2021, Ford, 2015).74

Other empirical work argues that poor labor market conditions could also have a direct impact

on workers’ health (Hollingsworth et al., 2017), and that poor health is one of the main reasons

for individuals not to join the labor force (Krueger, 2017, Parsons, 1980a,b). Evidence shows that

the high job insecurity during periods of poor labor market conditions and the exposure to trade

shocks during the 2000s led to a substantial increase in mental health problems among working-age

Americans (Adda and Fawaz, 2020, Lang et al., 2019, Pierce and Schott, 2018), with the strongest
72 Table B3 also shows that the results are robust to the inclusion of controls that account for the local supply of

educational institutions (e.g. public, non-profit and community colleges), which could confound the decision of
individuals to leave the labor force to enroll in college in response to robot exposure.

73 The General Educational Diploma (GED) is a high school equivalent diploma that is designed for individuals who
have not completed high school. The GED can be used to apply to college or for a job resume, just like a traditional
high school diploma.

74 There is no general consensus on this result though. Mueller et al. (2016), for example, find no indication that the
expiration of unemployment benefits has caused an increase in disability applications during the Great Recession
period.
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deterioration in health conditions among white males (Case and Deaton, 2015, 2017).75

This section investigates whether the decline in labor force participation is fueled by individuals

who leave the labor force permanently to enroll in disability insurance, and analyzes whether robot

exposure affects also workers’ health conditions directly, increasing the share of the population that

qualifies for SSDI. Acemoglu and Restrepo (2020) provide evidence of an increase in social benefits

in exposed areas, including Social Security, TAA, and unemployment benefits. However, it remains

unclear to which extent this increase is related to disability take-up of new non-participants, and

how they are related to individuals’ health conditions.

I start by breaking down the increase in non-participation from Figure 2.3 into non-participants

who receive Social Security income (disability or retirement benefits), non-participants who exclu-

sively withdraw income from their pension plans, and non-participants without any Social Security

or pension plan income (these margins can be denominated with m1, m2 and m0). This distinc-

tion allows me to identify the share of non-participants who respond to the automation shock by

enrolling in disability insurance. Before 62 years of age, non-participants may claim Social Security

income in form of disability benefits from the SSDI program.76 After 62 years, they become eligible

also for Social Security early retirement benefits. The point estimates of the effect of robots on the

change in non-participation by income source, age and education level are illustrated in Figure 2.5.

Let’s first focus on middle-aged individuals. As we know from previous results, the impact

of robots is weakest among white individuals in this age range. Although relatively small (but

significant), the increase in non-participants with a college degree between 35 to 44 years is almost

fully driven by SSDI beneficiaries. Interestingly, Figure B4 shows that only few of them claim also

Supplemental Security Income (SSI), suggesting that even if they are not working anymore, based

on their income and resources, they do not qualify for additional financial support from the Social
75 These papers mostly use data from 1990 onward and find that poor labor market conditions and the job loss have

a negative impact on people’s mental health conditions (Browning and Heinesen, 2012, Eliason and Storrie, 2009,
Sullivan and Von Wachter, 2009). In contrast, using US health data from the 1970s to the 1990s, scholars argue
that the relationship between health problems and recessions is mostly countercyclical (Miller et al., 2009, Ruhm,
2000, 2003). These findings are expected to result from rising opportunity cost of time and less leisure time during
economic upturns.

76 To be precise, from the age of 60 years, widows or widowers may also claim Social Security survivor benefits.
The adoption of robots could influence the number of survivor benefit recipients, if it affects the mortality rate
of spouses of male non-participants. Since I find a weaker impact of robots on employment and an insignificant
impact on labor force participation of women, I feel comfortable in excluding this potential causal link. Therefore,
I assume that the change in Social Security beneficiaries before the age of 62 years reflects the change in disability
benefit recipients. Appendix B3 provides further details on the Social Security system in the US.
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Figure 2.5: Social Security and pension plan income

Panel A: College degree or more

Panel B: Less than a college degree

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on non-participation by age and
education, and decomposes them by Social Security and pension plan income (∆NPġ,mc,t ). Regressions include the full battery
of controls from my preferred specification and are weighted by CZ population in 1990. Confidence intervals for Social Security
beneficiaries (left CI), pension plan income beneficiaries (middle CI), or for non-participants without any income from these
sources (right CI) are at the 95% level.

Security Administration.

I find that also among less educated whites between 35 and 54 years there is a statistically

significant increase in disability take-up. This margin of adjustment explains about one third of

their increase in non-participation. Disability take-up seems to play a minor role for non-whites.

Although a significant share of them is enrolling in disability insurance, this increase cannot explain

the strong rise in non-participation of this demographic group. In contrast with the finding for

whites, Figure B4 shows that a significant share of racial and ethnic minorities receives SSI, in

particular less educated non-participants between 45 and 54 years.

From the age of 55 years, I observe a sharp increase in non-participants who receive Social

Security or pension plan income. This increase reflects the fact that Social Security income includes

early retirement benefits for individuals aged more than 62 years, and penalties on early withdrawals
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of pension plan income are often waived from the age of 55. I discuss these results in the next section,

when analyzing the impact of robots on early retirement. Finally, I find that young non-participants

do not enroll in disability insurance. This result is mainly driven by the fact that these workers

have not paid enough Social Security taxes to be eligible for disability benefits.

The observed rise in disability take-up of prime-age workers after a displacement through robots

may be fueled by two channels. First, SSDI acts as a sort of permanent unemployment insurance

against the risks of automation and worse future job prospects. Second, adverse shocks affect the

health condition of workers who, as a consequence, become eligible for disability benefits. While

I cannot exclude that non-participants are misusing SSDI as an insurance against adverse labor

market shocks (Deshpande and Lockwood, 2021), I show that the increase in disability take-up

comes along with an increase in disability-related physical and mental impairments.

Health conditions – Table 2.6 reports estimates of the labor market effect of robot exposure

on self-reported health conditions, smoking and drinking habits, physical shape, and access to

healthcare services among non-employed individuals using data from the BRFSS. Table B4 reports

the same health results for employed workers and the entire population.77

I find that the exposure to robots increases regular drinking behavior and decreases physical

activity, raising the share of non-employed individuals who suffer from obesity, in particular among

whites.78 Overall, robot exposure is influencing negatively the self-perceived health of these indi-

viduals, and it is increasing the share of individuals who report a fair or bad health condition, as

well as those who report persistent physical or mental health problems (although the latter effect
77 I analyze the average health condition of individuals within (non-)employment groups for two reasons. First, an

increase in non-participation may mechanically increase the share of the population who reports to suffer from
health problems. However, I am primarily interested in the effect of robots on the health condition of these
individuals. If robot exposure leads to a deterioration in individuals’ physical and mental health condition that
exacerbates the impact on health beyond the mechanical effect of losing a job (Sullivan and Von Wachter, 2009), this
should be visible in the shares. Second, the negative effect of robots on displaced workers’ health may not be visible
when analyzing the average effect on the population, since it is offset by a positive effect on the health condition
of workers who work along with robots. For example, Gihleb et al. (2020) show that robot adoption reduces
work-related injuries in the manufacturing sector. For completeness and comparability with the previous results, I
report estimates in per capita terms in Table B5. In line with the findings from Table 2.6, these results suggest that
robot exposure increases the non-employment rate (unemployed and non-participants) of individuals who suffer
from health issues (but they include also the composition effect of robots on non-participation). Unfortunately,
the BRFSS does not explicitly distinguish between unemployed and non-participating individuals. Non-employed
individuals include individuals who report to be out of work, unable to work, homemakers, students, and retirees.

78 I consider regular drinkers as people who drink alcohol in at least five days per week.
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Table 2.6: Health and access to healthcare services among non-employed

Self-reported Smoking and Physical shape Access to healthcare
health drinking habits and activity services

No good
health

Physical
problems

Mental
problems Smoke Drink Obese Regular

exercise
Health
coverage

Checkup
last 12

Checkup
too costly

Checkup
more 24

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Panel A: Whites
US robot exposure 0.950∗∗ 0.977∗∗∗ 0.357 0.849 0.254∗∗∗ 0.840∗∗∗ -1.563∗∗∗ -1.174∗ 1.320 1.488∗∗ 0.897∗∗∗

(0.417) (0.244) (0.253) (0.723) (0.062) (0.311) (0.545) (0.616) (1.127) (0.704) (0.272)

Panel B: Racial and ethnic minorities
US robot exposure -1.031∗ 0.336 0.003 -0.323 -0.046 0.496 -2.214∗∗ 1.635 4.352∗∗∗ -1.698∗∗∗ -0.447

(0.600) (0.503) (0.451) (0.376) (0.059) (0.670) (0.962) (1.425) (1.570) (0.391) (0.306)

Observations 1238 1238 1238 1238 1238 1238 1238 1238 1238 1208 1238

Covariates: X X X X X X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on the change in self-reported health, smoking and
drinking habits, physical shape and exercises and access to healthcare services among non-employed individuals. Changes are

expressed in percentage points of non-employed individuals and are multiplied by 100 (∆
L
g,m
c,t

L
g
c,t

). Column 1 reports individuals

that report fair or poor health. Columns 2 and 3 report individuals that suffered from physical or mental problems in more
than 14 days of the previous 30 days. Columns 4 and 5 report smokers and individuals that consume alcohol in at least five
days per week. Column 6 reports individuals that suffer from obesity, i.e. a BMI of over 30. Column 7 reports individuals that
did physical activity outside of the work environment in at least one day in the previous 30 days. Column 8 reports individuals
with healthcare coverage. Column 9 reports individuals that had a medical checkup in the previous year (12 months). Column
10 reports individuals that could not visit a doctor when needed for cost reasons. Column 11 reports individuals that had no
medical checkup in the previous two years (24 months). All regressions include the full battery of controls from my preferred
specification. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

is estimated imprecisely).79 Table B4, on the other hand, shows that the adoption of robots has no

adverse effects on the self-perceived health of employed workers.

These findings suggest that the impact of robots on individuals’ health depends on their em-

ployment status. Non-employed individuals are likely to suffer from a deterioration of their health

condition, while physical and mental problems of employed workers are not significantly affected

by their adoption (except for a slight reduction in physical problems among whites). Also at the

aggregate population level, the impact of robots on health is negligible.80

In Figure B5, I decompose the health effects on non-employed individuals by age groups. I find

that the increase in health issues among whites are driven by individuals aged between 35 and 44

years. For these individuals, also the effect on mental problems becomes statistically significant.
79 I define people that suffer from persistent problems as people who report physical or mental problems in at least 14

days (two weeks) of the 30 days prior to the interview. Table B6 shows that the results are robust to an increase
of the threshold up to 21 days, while the effect on persistent mental problems loses significance and becomes
economically small as I lower the threshold to seven days.

80 Gihleb et al. (2022) argue that at the population level there is a positive relationship between robot exposure
and the number of days in which individuals report to suffer from mental health problems. This result differs
fundamentally from (and complements) my findings. While Gihleb et al. (2022) show that, on average, individuals
suffer from mental problems half a day longer in a months due to an increase in robot exposure by one standard
deviation, I show that the share of non-employed individuals who report to suffer from persistent mental problems
increases in exposed areas (but it does not increase at the population level). These individuals are the ones most
likely to qualify for disability benefits.
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This finding is in line with the previous result that disability take-up increases the most for non-

participants in this age range.81 Additionally, I observe an increase in mental problems among

whites between 45 and 54 years, and an increase in physical health problems among individuals

between 55 and 64 years. Although the effects among racial and ethnic minorities are estimated

less precisely, there is evidence of robots increasing the share of individuals in their prime-age who

suffer from physical problems, and the share of individuals between 25 and 34 years who struggle

with mental disorders.

These results suggest that the negative impact of robots on the average health condition of

non-employed individuals could justify the increase in disability take-up among whites. According

to Table B5, almost eight in ten workers who have been displaced by robots suffer from persistent

physical health problems, and four in ten displaced workers suffer from persistent mental health

problems.82 These findings are in line with the literature which finds a procyclical effect of adverse

labor market shocks on workers’ health, including firms’ plant closures (Rege et al., 2009, Schaller

and Stevens, 2015, Sullivan and Von Wachter, 2009), and the China trade shock (Adda and Fawaz,

2020, Lang et al., 2019).

The adoption of robots might affect workers’ health conditions in two (not mutually exclusive)

ways. First, workers who already suffer from health problems are less productive and are therefore

more likely to be displaced by robots. These workers mechanically increase the share of non-

employed individuals who suffer from health problems (Frank et al., 2019).83 Second, the health

condition of displaced workers deteriorates after a job loss (Sullivan and Von Wachter, 2009). This

mechanism is likely to be reinforced by the fact that for many US workers, losing their job is

associated with losing health insurance (Schaller and Stevens, 2015). In fact, Table 2.6 shows that

robot exposure decreases the share of non-employed whites with healthcare coverage. This, in
81 Note that the subjective self-reported health condition may not fully reflect the underlying real health condition,

since non-participants who want to apply for disability benefits could have an incentive to over-report physical and
mental health problems. The same reasoning may hold for disability beneficiaries with mild conditions who report
to suffer from severe health problems for fear of losing eligibility. In the following, I address these concerns with
more objective measures of the health condition of individuals using hospitalization data from the NIS.

82 This result is expressed in population shares, similarly to Figures 2.4 and 2.5 (∆NPġ,mc,t ).
83 Frank et al. (2019) argue that workers affected by pre-existing mental disorders are predominantly employed in

routine task-intensive occupations. Work is often beneficial to them and has a therapeutic effect that leads to
better general well-being. However, these workers are also mostly exposed to the recent technological advances,
since most of the tasks they used to carry out are at high risk of automation (Autor and Dorn, 2013, Jaimovich
et al., 2020). The job loss could aggravate their health impairments and force them to leave the labor force, and
eventually apply for disability benefits.
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turn, increases the share of individuals who cannot afford to visit a doctor for cost reasons and

who had no medical checkup in the previous two years (these results do not apply for racial and

ethnic minorities, which are also not reporting to suffer from worse health in exposed areas). The

inability to be treated by a doctor in case of need may substantially worsen individuals’ health

conditions which, if neglected for too long, may become severe and require surgical intervention,

eventually leading to a disability. If this mechanism takes place, we should also observe a rise in

the hospitalization rates with acute health problems in areas that are more exposed to robots, a

question that I explore in the next paragraph.

To analyze the effect of robots on hospitalization by diagnosis and severity, I use data from the

NIS. Table 2.7 summarizes the results on the impact of robots on the share of hospital admissions

with a length of stay of more than seven days (they are most likely to be related to a severe health

condition) and a disability-related diagnosis.84,85 I use shares in terms of hospital admissions (rather

than in per capita terms) because the sample of US community hospitals is changing from year to

year, making a comparison of per capita values across years uninformative.

Results show that robots increase the share of admissions with an acute health condition and, in

particular, that they increase the share of admissions diagnosed with mental disorders.86 The rise

in severe disability-related admissions is visible both among whites and racial and ethnic minorities

(despite minorities not reporting to suffer from worse health in the BRFSS results from Table 2.6),

with the estimates being larger among the first. Figure B6 shows again that the adverse effects of

robots on health are strongest among prime-age individuals. Interestingly, I also find that robots

increase the share of severe hospital admissions related to substance abuse, such as alcohol, drug
84 The share of severe hospital admissions by diagnosis is calculated by dividing the count of hospital admissions with

a length of stay of more than seven days and a particular diagnosis by the number of hospital admissions in a CZ
in the year of reference. Appendix B2 provides more detailed information on the construction of the variables.

85 I consider hospital admissions with a length of stay of more than seven days to be serious and hence to be more
likely to be related to a disability. Table B7 shows that the estimates of the effect of robots on mental disorders
do not differ significantly when lowering the length-of-stay threshold for acute health conditions to four days or
when increasing it up to 14 days. Unfortunately, the NIS does not provide individual identifiers and therefore does
not allow me to identify the hospitalization of individuals who suffer from disability-related health problems that
require repeated short-term treatments.

86 The increase in hospital admissions related to severe mental disorders suggests that robots increase the share of
people suffering from mental disorders or that they worsen the general health condition of people who are already
suffering from these disorders. The latter interpretation is in line with the finding in Frank et al. (2019) discussed
in footnote 83.

110



Table 2.7: Hospital admissions with disability-related disorders

All
admissions

All disability-
related

admissions

Arthritis
& rheu-
matology

Back or
spine

problems

Ciculato-
ry system
diseases

Respira-
tory system
diseases

Mental
disorders Diabetes

[1] [2] [3] [4] [5] [6] [7] [8]

Panel A: Whites
US robot exposure 1.212∗ 1.251∗∗ 0.492∗ 0.174 0.693 0.574∗ 1.615∗∗∗ 0.137

(0.622) (0.595) (0.267) (0.220) (0.526) (0.312) (0.562) (0.197)

Panel B: Racial and ethnic minorities
US robot exposure 0.522 0.660∗ 0.037 -0.370 0.236 0.295 1.356∗∗∗ 0.133

(0.325) (0.337) (0.196) (0.293) (0.226) (0.229) (0.477) (0.129)

Observations 469 469 469 469 469 469 469 469

Covariates: X X X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on the share of hospital admissions with a length of
stay of more than seven days and a diagnosis related to a cause of disability. Changes are expressed in percentage points of CZ
hospital admissions multiplied by 100. Column 1 reports all admissions with a length of stay of more than seven days. Column
2 reports all disability-related admissions with a length of stay of more than seven days. Columns 3 to 8 report admissions
diagnosed with arthritis or rheumatology, back or spine problems, circulatory system diseases, respiratory system diseases,
mental disorders and diabetes with a length of stay of more than seven days. All regressions include the full battery of controls
from my preferred specification. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

(in particular opioid) and tobacco abuse. These diagnoses are often related to mental disorders.87

These findings suggest that the increasing disability take-up in CZs that are more exposed to

robots could be, at least partially, justified by a deterioration in individuals’ health condition, when

related to mental disorders. These disorders are, however, often hard to verify and leave some margin

of error in the decision on whether to grant disability benefits, which could be misused by displaced

workers whose real health condition does not prevent them from engaging in substantial gainful

activity.88 Therefore, I cannot exclude that SSDI may involuntarily act as a sort of permanent

unemployment insurance against the risks of automation for some workers (Ford, 2015).
87 Table B8 reports estimates of the effect of robots on the share of disability-related hospital admissions by diagnosis

including all admissions, while Table B9 reports estimates of the effect of robots on the share of diagnoses which
are not directly related to a disability. I find no evidence that robots are systematically affecting health outcomes
of these individuals. These results suggest that the spectrum of the health impact of robots is more limited than
the impact of international trade, which increases also hospitalizations related to external causes (e.g. injuries and
suicide attempts), as well as organic and physical diseases with a similar magnitude as mental health problems
(Adda and Fawaz, 2020).

88 Predictors that are often used in the literature as hard evidence of mental disorders are suicides and suicide
attempts (Harris and Barraclough, 1997). Table B9 shows that the labor market effect of robots on suicide
attempts is neither economically relevant nor statistically significant at conventional levels. Hence, I cannot ignore
the suspicion that a fraction of disability claimants is misusing the margin of error in the evaluation process of
hard-to-verify impairments. In line with this result, Gihleb et al. (2022) also do not find evidence of robot exposure
affecting the suicide rate in the US.
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2.6.3 Early retirement

Firms often invest in job training programs of prime-age workers to keep up with technological

progress (Bartel and Sicherman, 1998) and, even in case workers have been displaced, many of

them reallocate towards other occupations in the labor market (Autor and Dorn, 2013, Dauth et

al., 2021). This reasoning may not hold for older workers who are close to retirement though, as

the career horizon in which they can make use of the acquired skills is relatively short, and their

cognitive ability to keep up with technological progress declines with age (Mazzonna and Peracchi,

2012). In fact, above 55 years, most workers are eligible for some form of retirement income and

retire early when facing labor-displacing technological progress (Ahituv and Zeira, 2011, Bartel and

Sicherman, 1993, Burlon and Vilalta-Bufí, 2016, Peracchi and Welch, 1994), leaving the labor force

permanently. This section investigates the impact of industrial robots on early retirement, and

analyzes its contribution to the aggregate increase in non-participation.

To identify the share of non-participants who retire early, I break down the group of older

non-participants (55 to 64 years) into individuals aged between 55 and 61, and between 62 and 64

years. The first are not eligible for Social Security early retirement benefits, while the latter are.

Figure 2.6 reports the point estimates of the labor market effect of robots on changes in the elderly

non-participation rate by income source, age and education (similarly to Figure 2.5).

Results show that robots do not significantly affect the non-participation rate of college-educated

whites between 55 and 61 years. This finding is in line with the trend observed for individuals aged

between 45 and 54 years, and suggests that individuals between 45 and 61 years of age are least

affected by the adoption of robots in their labor supply decision. The result is different when we

look at individuals aged between 62 and 64 years. In fact, I find that robots have a strong impact

on the non-participation rate of workers in their early retirement age, who leave the labor force to

start claiming Social Security retirement benefits or pension plan income.

I find quite different results among racial and ethnic minorities. While robots are decreasing

the non-participation rate of individuals between 45 and 54 years, as soon as they reach the age

at which pension plans waive penalties on early withdrawals (this is usually at 55 years in case of

employment termination), they leave the labor force and live off pension plan income. Interestingly,

one third of these non-participants receives also disability benefits. The adverse effect of robots on
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Figure 2.6: Social Security and pension plan income of older non-participants

Panel A: College degree or more

Panel B: Less than a college degree

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on non-participation by age and
education, and decomposes them by Social Security and pension plan income (∆NPġ,mc,t ). Regressions include the full battery
of controls from my preferred specification and are weighted by CZ population in 1990. Confidence intervals for Social Security
beneficiaries (left CI), pension plan income beneficiaries (middle CI), or for non-participants without any income from these
sources (right CI) are at the 95% level.

non-participation persists beyond 62 years of age. Somewhat surprisingly, I do not find evidence of

an increase in Social Security early retirement benefit claims, with all of the non-participants still

living from pension plan income (note that confidence intervals are large due to the small sample

size of this group).

Panel B shows the effects on less educated non-participants. I find that robot exposure increases

the non-participation rate of whites already between 55 and 61 years, with a third of them receiving

disability benefits and the remaining ones withdrawing pension plan income early. Similarly to

Panel A, I find that robots have a strong positive effect on non-participation among individuals

aged between 62 and 64 years, leading to a sharp increase in Social Security early retirement benefit

claims.
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As for prime-age workers, the effect of robots on less educated non-white non-participants is

strong. I find that between the age of 55 and 61, almost two thirds of them withdraw their pension

plan income early, while after the age of 62 (unlike more educated ones), most of them start to

claim Social Security early retirement benefits.

To summarize, I show that robot exposure reduces labor force participation among older workers

significantly, leading to a rise in premature retirement decisions. These individuals opt for early

retirement and mainly live off disability benefits, pension plan income, and early retirement bene-

fits.89 The only exception are less educated non-white non-participants, with half of them receiving

no income from either of these sources. I investigate further how they can afford not to work in the

next section.

2.6.4 Alternative sources of income

The previous results suggest that college enrollment, disability take-up and early retirement are

among the main margins of adjustment of individuals who have been displaced by robots. This is

the case especially for highly educated non-participants and for less educated white non-participants

above the age of 45. However, a significant fraction of less educated non-participants, in particular

among racial and ethnic minorities, does not fall in any of these categories (see Figure B8 for a joint

representation of the margins of adjustment discussed to far). These workers account for almost

half of the increase in the total non-participation rate. Therefore, it is important to investigate

further where these workers have gone, and how can they afford not to work. The latter question

is also interesting for individuals who enroll in college.

Reliance on household members – One possibility is that the labor force dropout of displaced

men is compensated by the labor force participation of a family member (Lundberg, 1985, Ortigueira

and Siassi, 2013). I investigate this channel by decomposing non-participants who are the head (or

spouse) of their household and have a partner who is employed (m1), non-participants who are

not the head (or spouse) of the household (e.g. children, siblings, parents) (m2) and therefore are

likely to rely on the income of the household head (or spouse), and non-participants who are the
89 I further check to which extent older workers who leave the labor force because of robots rely on these income

sources and find that Social Security and pension plan income account for more than 90 percent of their total income
(see Figure B7). This result supports the hypothesis that these workers are leaving the labor force permanently to
retire early.
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Figure 2.7: Income from household members

Panel A: College degree or more

Panel B: Less than a college degree

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on non-participation by age and education,
decomposing them between household heads and spouses without a partner or with a non-employed partner, household heads
and spouses with an employed partner, and other household members (∆NPġ,mc,t ). Confidence for household heads and spouses
without an employed partner (left CI), those with an employed partner (middle CI) and other household members (right CI)
are at the 95% level.

household head and do not have a partner or who are the household head (or spouse) and have a

partner who is not employed (m0). Figure 2.7 illustrates the results.

I find that the reliance on income from household members plays a crucial role for the increase

in non-participation of less educated individuals from racial and ethnic minorities. Most of these

individuals live in a household in which they are neither the head nor the spouse and therefore are

likely to rely on the income from the respective household head (or spouse). I find similar results

also for white non-participants, in particular for less educated ones and for those who are enrolled

in college. There is also evidence of an increase in non-participation of household heads (or spouses)

who rely on their partner’s income, although this effect is smaller.

Wages, capital and welfare income – Another possibility for the absence of an active margin
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of adjustment of displaced workers is that they are still receiving some form of income after leaving

the labor force, or that they are out of the labor force for a limited period of time and live off

their savings. In Figure 2.8, I investigate this possibility by decomposing the non-participation rate

by various sources of income that non-participants received (or earned) in the previous 12 months,

including Social Security and pension plan income (same as in Figure 2.5) (m1); wage income (m2);

business, rental, welfare, and other income (m3). I denote non-participants without any income

using m0.

Figure 2.8: Personal income

Panel A: College degree or more

Panel B: Less than a college degree

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on non-participation by age and education
level, and decomposes them by source of income, including Social Security or pension plan income; wage income; business or
farm income; welfare (public assistance) income; interest, dividend and rental income; and no income in the previous twelve
months (∆NPġ,mc,t ). Regressions include the full battery of controls from my preferred specification and are weighted by CZ
population in 1990. Confidence intervals for non-participants with Social security and pension plan income (left CI), wage
income (middle-left CI), income from other sources (middle-right CI) and no income (right CI) are at the 95% level.

Results show that a considerable share of less educated non-participants, in particular prime-age

individuals belonging to racial and ethnic minorities, earned some wage income in the last year, and

therefore are likely to live off their savings. This finding suggests that these non-participants have
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not been out of the labor force for too long. These workers are likely to leave the labor force in the

short-term because they are discouraged from worse job prospects, but they may join it again in the

future, which makes them qualitatively more similar to unemployed individuals than to permanent

labor force non-participants (Jones et al., 2002). Income from sources other than past employment

and Social Security is limited (with some exceptions).

Figure 2.9: Idle non-participants

Panel A: College degree or more

Panel B: Less than a college degree

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on non-participation by age and education,
and decomposes them into individuals who fall into at least one of the margins of adjustment discussed in this paper, and idle
non-participants (∆NPġ,mc,t ). Regressions include the full battery of controls from my preferred specification and are weighted
by CZ population in 1990. Confidence intervals for non-idle (left CI) and idle (right CI) non-participants are at the 95% level.

Idle – Finally, Figure 2.9 illustrates the share of non-participants including all (active and passive)

margins of adjustment discussed in this paper and those who do not fall into any of these categories.

I refer to the latter group as “idle” non-participants. Except for some idle individuals among racial

and ethnic minorities aged between 45 and 54 years, all of the non-participants who have been

displaced by robots are either students, disability beneficiaries, early retirees, they rely on income

from their household members, or they live off their savings.
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2.6.5 Relative contribution of adjustment margins

To conclude, we can use the results from Sections 2.6.1 to 2.6.4 to compute the relative contribution

of each margin of adjustment for the increase in non-participation, as summarized in Table 2.1. To

do so, Panel A of Table B27 in the Appendix reports estimates of the effect of robot exposure on

non-participation as a share of the population subgroups, NPm,ġc,t (as in Figures 2.4 to 2.9), while

Panel B reports estimates as a share of the total population of men in a CZ, NPm,gc,t (note from

Equations 72 and 76 that NPc,t =
∑

m

∑
g NP

m,g
c,t ). The sum of the estimates from Panel B by

margin of adjustment, divided by the estimated effect of robots on overall non-participation from

Column 5 of Table 2.3, shows that almost eight percent of the non-participants enroll in college,

10.5 percent receive disability benefits, and nearly 40 percent retire early. Estimates further suggest

that about half of all the non-participants live in a household in which their parents or the partner

is employed, and almost one third have earned some wage or alternative form of income in the

previous year.

While the first three margins of adjustment are mutually exclusive among each other, there are

significant overlaps with the latter two margins. For example, students are usually not receiving

any Social Security benefits, but they are likely to live in a household with at least one parent who

is employed. Or, early retirees are unlikely to enroll in school, but they may have earned some

wage income in the previous year (if they were employed) or have a partner who is still employed.

Accounting only for the margins of adjustment of non-participants who are not enrolled in school,

who do not receive any disability benefits, and who are not retired, I find that 25.1 percent of them

rely on the income of other household members, and 14.3 percent live off their savings, suggesting

that only 4.7 percent of the non-participants do not fall in any of the categories analyzed in this

paper.

2.7 Conclusion

This paper investigates the margins of adjustment of US workers after they get displaced by in-

dustrial robots between 1993 and 2014, exploiting plausibly exogenous variation in robot exposure

across local labor markets over time. To identify the underlying causes that drive workers out of
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the labor force, I decompose the working-age population into narrow groups based on their socio-

demographic characteristics. I find that robots have an adverse effect on the labor force participation

of men, but not of women. Results further show that the impact is concentrated among workers

without a college degree, that it increases with age, and that it is strongest among racial and ethnic

minorities.

Overall, each additional robots drives four workers out of the labor market. The margins of

adjustment of these individuals include college enrollment (7.7 percent), disability take-up (10.5

percent), and early retirement (39.3 percent). Moreover, non-participants (in particular those who

do not fall in any of these categories) often rely on income of their household members or live off

their savings. The rising enrollment in SSDI comes along with robots affecting negatively workers’

self-reported health conditions, and an increasing share of hospital admissions diagnosed with acute

mental disorders.

The rapid progress in automation technologies is likely to intensify the mismatch between the

skill requirements of jobs and the skills of workers. As a result, workers may increasingly drop out

of the labor force to seek alternative sources of income, unless they are endowed with redeployable

human capital. These findings highlight the need for policymakers to design policies that facilitate

the transition of the workforce to new jobs, and to improve the interplay between workers and

machines through education and on-the-job training.
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Appendix B

B1 Figures and tables

Figure B1: Robots, unemployment and non-participation

Panel A: College degree or more

Panel B: Less than a college degree

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on the change in the employment rate of
men by age and education. Changes are expressed in percentage points of the population subgroup and are multiplied by 100.
Independent variables are standardized to have mean zero and standard deviation of one. There are three time periods and
722 CZs. The figure decomposes the change in employment that flows into unemployment and non-participation. Analytically,
EPgc,t = Egc,t/N

g
c,t, UP

g
c,t = Ugc,t/N

g
c,t and NPgc,t = Lgc,t/N

g
c,t, where E

g
c,t is the number of employed, Ugc,t is the number of

unemployed, Lgc,t is the number of non-participating individuals and Ng
c,t = Egc,t + Ugc,t + Lgc,t is the number of individuals in

age-education group g, in CZ c, at time t. By definition, −∆EPgc,t = ∆UPgc,t + ∆NPgc,t. Note that, since the effect of robots
on employment is negative, −∆EPgc,t > 0. Panel A (Panel B) reports the point estimates of the effect of US robots robot
exposure on the change in labor market outcomes among college-educated (less educated) individuals. Each column reports the
point estimates for a different age group. Standard errors are robust against heteroskedasticity and allow for clustering at the
state level. Regressions include the full battery of controls from my preferred specification and are weighted by CZ population
in 1990. Confidence intervals of the effects on non-participation (left CI) and unemployment (right CI) are at the 95% level.
Regressions include covariates of my preferred specification and are weighted by CZ population in 1990.
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Figure B2: Detailed education level and work history of young non-participants

Panel A: Schooling in more detail

Panel B: Worked in previous 5 years

Panel C: Worked in previous 12 months

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on the non-participation rate of individuals
between 25 and 34 years of age by education level, and decomposes school enrollment into detailed schooling (Panel A), working
experience in the last five years (Panel B) and working experience in the last twelve months (Panel C). The latter differentiates
also between part-time and full-time employment. I consider workers with an average working week of less than 30 hours (or
less than 1560 hours a year) as being employed part time. Regressions include the full battery of controls from my preferred
specification and are weighted by CZ population in 1990. Confidence intervals are at the 95% level.
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Figure B3: Robots and less educated non-participants

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on the change in the non-participation
rate of men by age and education, focusing on individuals without a college degree: no high school degree, high school degree,
some college. Changes are expressed in percentage points of the population without a college degree and are multiplied by 100.
Independent variables are standardized to have mean zero and standard deviation of one. There are three time periods and
722 CZs. Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions include
the full battery of controls from my preferred specification and are weighted by CZ population in 1990. Confidence intervals
of the effects on non-nonparticipants without a high school degree (left CI), with a high school degree (middle CI) and with
some college (right CI) are at the 95% level. Regressions include covariates of my preferred specification and are weighted by
CZ population in 1990.
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Figure B4: Supplemental Security Income

Panel A: College degree or more

Panel B: Less than a college degree

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on non-participation by age and
education, and decomposes them by Social Security Disability Insurance (SSDI) income and Supplemental Security income
(SSI) beneficiaries. Regressions include the full battery of controls from my preferred specification and are weighted by CZ
population in 1990. Confidence intervals of the effects on non-participants with SSDI benefits and SSI (left CI), only SSDI
benefits (middle-left CI), only SSI (middle-right CI) and no income (right CI) are at the 95% level. Regressions include covariates
of my preferred specification and are weighted by CZ population in 1990.
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Figure B5: Robots and health of non-employed by age

Panel A: Whites

Panel B: Racial and ethnic minorities

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on the share of non-employed individuals
that report a fair or poor health condition, and individuals that have suffered from physical or mental health problems in 14
days of the 30 days prior to the interview by age. Changes are expressed in percentage points of non-employed individuals of
the respective age group and are multiplied by 100. Independent variables are standardized to have mean zero and standard
deviation of one. Every bar reports the estimate for general health, physical health or mental health problems among non-
employed individuals of a specific age group. Regressions include covariates of my preferred specification and are weighted by
CZ population in the first period in which it appears in the sample. Confidence intervals are at the 95% level.
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Figure B6: Hospital admissions with mental or respiratory disorders by age

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on the share of hospital admissions with
a length of stay of more than seven days by diagnosis and age. Changes are expressed in percentage points of total hospital
admissions of the age group and are multiplied by 100. All variables are standardized to have mean zero and standard deviation
of one. Every barplot reports the effect for a specific diagnosis for different age groups. Standard errors are robust against
heteroskedasticity and allow for clustering at the state level. Regressions include covariates of my preferred specification and
are weighted by CZ hospital admissions. Confidence intervals are at the 95% level.
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Figure B7: Reliance on Social Security and pension plan income of older non-participants

Panel A: College degree or more

Panel B: Less than a college degree

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on non-participation by age and education,
decomposing them by the reliance on retirement income. Light-blue and light-green show non-participants who have at least
90 percent of their total income coming from Social Security or pension plan income. Regressions include the full battery of
controls from my preferred specification and are weighted by CZ population in 1990. Confidence intervals of the effects on
non-participants that do not rely on retirement income (left CI) and that fully rely on retirement income (right CI) are at the
95% level. Regressions are weighted by CZ population in 1990.
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Figure B8: Schooling, disability take-up and early retirement

Panel A: College degree or more

Panel B: Less than a college degree

Notes: This figure illustrates the IV point estimates of the effect of US robot exposure on non-participation rate by age and
education, decomposing them into non-participants who are students, disability beneficiaries or early retirees, and those who
do not fall in either of these categories. Regressions include the full battery of controls from my preferred specification and
are weighted by CZ population in 1990. Confidence intervals of the effects on non-participants that idle (left CI) and non-idle
(right CI) are at the 95% level.
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Table B1: Descriptive statistics: Industrial robots

Robots in the US Robots in EU7 Employment
per thousand countries per in

workers thousand workers thousands

1993 ∆14−93 1993 ∆14−93 1993

[1] [2] [3] [4] [5]

Panel A: Manufacturing industries
Automotive 24.25 82.69 18.2 57.12 1111
Basic Metals 1.39 5.37 0.84 7.34 712
Electronics 2.01 10.99 2.34 3.31 2868
Food and Beverages 1.02 4.62 0.38 8.93 1862
Industrial Machinery 0.39 1.52 3.01 6.18 1541
Metal Products 1.69 6.51 6.91 11.13 1689
Minerals 0.04 0.58 0.60 3.64 558
Miscellaneous 0.49 11.66 2.56 2.93 690
Paper and Printing 0.00 0.10 0.19 0.83 2467
Plastics and Chemicals 1.80 7.43 2.85 16.04 2205
Shipbuilding and Aerospace 0.02 0.44 0.73 2.18 1111
Textiles 0.00 0.05 0.24 0.88 1848
Wood and Furniture 0.00 0.12 1.14 2.75 1048

Panel B: Non-manufacturing industries
Agriculture 0.00 0.03 0.00 0.18 2552
Construction 0.00 0.02 0.00 0.11 7108
Education and Research 0.00 0.04 0.03 0.33 12636
Mining 0.00 0.05 0.23 1.36 763
Services 0.00 0.00 0.00 0.00 84776
Utilities 0.00 0.02 0.00 0.25 745

Notes: This table reports the stock of industrial robots adopted in the US and in seven European countries (Denmark, Finland,
France, Italy, Spain, Sweden and the United Kingdom) by year and industry. Panel A reports information on 13 manufacturing
industries, while Panel B reports information on six sectors outside of manufacturing. Columns 1 and 3 report industry values
of the stock robots in 1993, and Columns 2 and 4 report the respective changes between 1993 and 2014. Finally, Column 5
reports the baseline industry employment in the US.

128



Table B2: Labor market outcomes by gender

All Men Women

[1] [2] [3]

Panel A: Employment
US robot exposure -0.391∗∗∗ -0.564∗∗∗ -0.226∗∗∗

(0.079) (0.087) (0.081)

Panel B: Manufacturing employment
US robot exposure -0.115∗∗∗ -0.308∗∗∗ 0.064∗∗∗

(0.039) (0.068) (0.024)

Panel C: Unemployment
US robot exposure 0.196∗∗∗ 0.217∗∗∗ 0.175∗∗∗

(0.024) (0.028) (0.025)

Observations 2166 2166 2166

Covariates: X X X

Notes: This table presents IV estimates of the effect of US robot exposure on the share of employment, manufacturing em-
ployment, and unemployment by gender. All regressions include the full battery of controls from my preferred specification.
Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

Table B3: School enrollment and institution controls

Whites Racial/ethnic minorities

[1] [2] [3] [4]

Panel A: College degree or more
US robot exposure 0.229∗∗∗ 0.191∗∗∗ 0.064 -0.002

(0.064) (0.036) (0.083) (0.092)

Panel B: Less than a college degree
US robot exposure 0.034 0.042∗ 0.067∗ 0.052

(0.021) (0.021) (0.036) (0.039)

Observations 2166 2166 2166 2166

Covariates:
Divisions X X X X
Years X X X X
Chinese imports X X X X
Demographics X X X X
Industries X X X X
Occupations X X X X
Institutions in 1990 X X
Institutions in t0 X X

Notes: This table presents IV estimates of the effect of US robot exposure on the share of non-participants aged 25-34 who are
enrolled in school. Every regression includes the covariates from my preferred specification. Additionally, I include covariates
that account for the characteristics of educational institutions in the CZ (number of public institutions, for-profit institutions,
non-profit institutions, community colleges and the number of top 20 schools in the university ranking) in 1990 and at the
beginning of each subperiod. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table B4: Health and access to healthcare services in the population

Self-reported Smoking and Physical shape Access to healthcare
health drinking habits and activity services

No good
health

Physical
problems

Mental
problems Smoke Drink Obese Regular

exercise
Health
coverage

Checkup
last 12

Checkup
too costly

Checkup
more 24

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Part I. Employed workers
Panel A: Whites
US robot exposure -0.101 -0.201∗ -0.041 -0.315 0.211∗∗∗ 0.024 -1.908∗∗∗ 0.313 2.272∗∗ 0.088 0.543∗∗

(0.078) (0.101) (0.121) (0.250) (0.069) (0.259) (0.696) (0.294) (0.879) (0.067) (0.221)

Panel B: Racial and ethnic minorities
US robot exposure -0.759∗ -0.071 -0.379∗ -0.667∗∗∗ -0.042 0.022 -2.417∗∗∗ 1.576∗∗ 2.333∗∗ 0.210 0.587∗∗

(0.411) (0.114) (0.220) (0.164) (0.045) (0.520) (0.809) (0.755) (0.936) (0.141) (0.245)

Part II. Population (employed + non-employed)
Panel A: Whites
US robot exposure 0.089 0.016 0.044 -0.107 0.221∗∗∗ 0.129 -1.864∗∗ -0.001 2.214∗∗ 0.309∗∗ 0.573∗∗∗

(0.111) (0.083) (0.105) (0.201) (0.064) (0.231) (0.697) (0.296) (0.923) (0.142) (0.205)

Panel B: Racial and ethnic minorities
US robot exposure -0.782∗∗ 0.106 -0.192 -0.391∗ -0.028 0.126 -2.514∗∗∗ 1.382 2.858∗∗ -0.267 0.292

(0.294) (0.153) (0.185) (0.223) (0.030) (0.379) (0.842) (0.905) (1.108) (0.169) (0.217)

Observations 1274 1274 1274 1274 1274 1274 1274 1274 1274 1274 1274

Covariates: X X X X X X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on self-reported health, smoking and drinking habits, physical shape and exercises and access to
healthcare services among employed individuals (Part I) and the overall population (Part II). Column 1 reports individuals that report fair or poor health. Columns 2 and 3
report individuals that suffered from physical or mental problems in more than 14 days of the previous 30 days. Columns 4 and 5 report smokers and individuals that consume
alcohol in at least five days per week. Column 6 reports individuals that suffer from obesity, i.e. a BMI of over 30. Column 7 reports individuals that did physical activity
outside of the work environment in at least one day in the previous 30 days. Column 8 reports individuals with healthcare coverage. Column 9 reports individuals that had a
medical checkup in the previous year (12 months). Column 10 reports individuals that could not visit a doctor when needed for cost reasons. Column 11 reports individuals
that had no medical checkup in the previous two years (24 months). All regressions include the full battery of controls from my preferred specification. Coefficients with ∗∗∗,
∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

130



Table B5: Health conditions of non-employed individuals (in per capita terms)

All No good
health

Physical
problems

Mental
problems

[1] [2] [3] [4]

Panel A: Whites
US robot exposure 0.318∗∗ 0.237∗∗∗ 0.247∗∗∗ 0.126∗∗

(0.153) (0.073) (0.047) (0.056)

Observations 1276 1276 1276 1276

Panel B: Racial and ethnic minorities
US robot exposure 0.312 -0.165 0.155 0.112

(0.302) (0.149) (0.126) (0.089)

Observations 1206 1206 1206 1206

Covariates: X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on the change in the share of non-employed individuals
by self-reported health and race/ethnicity. Changes are expressed in percentage points of the working-age population of the
respective race/ethnicity and are multiplied by 100. Column 1 includes all non-employed individuals. Column 2 reports
individuals who report fair or poor health. Columns 3 and 4 report only non-employed individuals who suffered from physical
or mental problems in more than 14 days of the previous 30 days. All regressions include the full battery of controls from my
preferred specification. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table B6: Self-reported physical and mental health of non-employed individuals

Days of health problems in the last 30 days

7 day 8 days 9 days 10 days 11 days 12 days 13 days 14 days 15 days 16 days 17 days 18 days 19 days 20 days 21 days

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Part I. Whites
Panel A: Physical problems
US robot exposure 0.708∗ 0.843∗∗ 0.979∗∗∗ 0.862∗∗∗ 0.900∗∗∗ 0.884∗∗∗ 0.989∗∗∗ 0.977∗∗∗ 0.691∗∗∗ 0.409∗∗ 0.407∗ 0.448∗∗ 0.433∗ 0.450∗∗ 0.509∗

(0.353) (0.316) (0.321) (0.309) (0.202) (0.204) (0.249) (0.244) (0.249) (0.203) (0.207) (0.212) (0.223) (0.222) (0.264)

Panel B: Mental problems
US robot exposure 0.010 -0.017 0.199 0.233 0.383 0.394 0.379 0.357 0.184 0.518∗∗∗ 0.527∗∗∗ 0.533∗∗∗ 0.559∗∗∗ 0.560∗∗∗ 0.629∗∗∗

(0.243) (0.274) (0.320) (0.306) (0.239) (0.243) (0.251) (0.253) (0.236) (0.162) (0.158) (0.152) (0.153) (0.153) (0.155)

Part II. Racial and ethnic minorities
Panel A: Physical problems
US robot exposure 1.072 0.546 0.694 0.617 0.225 0.298 0.409 0.336 0.656 0.829∗ 0.869∗ 0.894∗ 0.876∗ 0.916∗∗ 1.142∗∗∗

(0.641) (0.626) (0.649) (0.620) (0.541) (0.529) (0.502) (0.503) (0.535) (0.450) (0.447) (0.449) (0.441) (0.433) (0.419)

Panel B: Mental problems
US robot exposure -0.088 -0.130 -0.070 -0.147 0.219 0.220 0.066 0.003 0.106 -0.284 -0.343 -0.337 -0.434 -0.434 0.163

(0.517) (0.434) (0.451) (0.447) (0.464) (0.462) (0.461) (0.451) (0.468) (0.457) (0.480) (0.479) (0.478) (0.476) (0.480)

Observations 1238 1238 1238 1238 1238 1238 1238 1238 1238 1238 1238 1238 1238 1238 1238

Covariates: X X X X X X X X X X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure self-reported health problems of non-employed individuals in the last 30 days. Panel A reports
physical health problems and Panel B reports mental health problems. Changes are expressed in percentage points of non-employed working-age population multiplied by 100.
All regressions include the full battery of controls from my preferred specification. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table B7: Hospital admissions with disability-related diagnoses and mental disorders by length of stay

Minimum length of stay

0 days 1 day 2 days 3 days 4 days 5 days 6 days 7 days 8 days 9 days 10 days 11 days 12 days 13 days 14 days

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Panel A: Disability-related diagnosis
US robot exposure 1.684∗∗∗ 0.944∗∗ 1.046∗∗ 1.125∗∗ 1.292∗∗ 1.403∗∗ 1.371∗∗ 1.151∗∗ 1.081∗∗ 1.051∗∗ 1.027∗∗ 1.014∗∗ 0.981∗∗ 0.985∗∗ 0.985∗∗

(0.571) (0.450) (0.423) (0.439) (0.497) (0.579) (0.606) (0.486) (0.459) (0.462) (0.465) (0.463) (0.452) (0.454) (0.457)

Panel B: Mental disorders
US robot exposure 0.601 0.552 0.813 1.105 1.521∗∗ 1.890∗∗∗ 1.972∗∗∗ 1.876∗∗∗ 1.862∗∗∗ 1.937∗∗∗ 2.047∗∗∗ 2.069∗∗ 2.011∗∗ 1.971∗∗ 2.012∗∗

(0.794) (0.841) (0.773) (0.663) (0.625) (0.640) (0.659) (0.626) (0.621) (0.663) (0.737) (0.765) (0.753) (0.750) (0.770)

Observations 469 469 469 469 469 469 469 469 469 469 469 469 469 469 469

Covariates: X X X X X X X X X X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on the share of hospital admissions by minimum length of stay. Panel A reports hospital admissions
with disability-related conditions (arthritis and rheumatism; back and spine problems; circulatory system diseases; respiratory system diseases; mental disorders; and diabetes).
Panel B reports hospital admissions with mental disorders. Changes are expressed in percentage points of CZ hospital admissions multiplied by 100. All variables are standardized
to have mean zero and standard deviation of one. Regressions are weighted by CZ hospital admissions. All regressions include the full battery of controls from my preferred
specification. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table B8: Hospital admissions with disability-related disorders
(include also admissions with a stay of less than seven days)

Arthritis
& rheu-
matology

Back or
spine

problems

Ciculato-
ry system
diseases

Respira-
tory system
diseases

Mental
disorders Diabetes

[1] [2] [3] [4] [5] [6]

US robot exposure 0.518∗∗ 0.064 0.570 0.559∗∗ 0.527 0.431∗∗
(0.253) (0.230) (0.475) (0.210) (0.790) (0.203)

Observations 469 469 469 469 469 469

Covariates: X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on the share of hospital admissions with a diagnosis
related to a cause of disability. Changes are expressed in percentage points of CZ hospital admissions multiplied by 100. All
variables are standardized to have mean zero and standard deviation of one. Columns 1 to 6 report admissions diagnosed with
arthritis or rheumatology, back or spine problems, circulatory system diseases, respiratory system diseases, mental disorders
and diabetes. Regressions are weighted by CZ hospital admissions. All regressions include the full battery of controls from my
preferred specification. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

Table B9: Hospital admissions with disorders not directly related to a disability

Organic & physical diseases

Infectious &
parasitic
diseases

Cancer

Endocr.
nutrition.
metabolic
diseases

Nervous
system
diseases

Digestive
system
diseases

Skin &
subcut.
tissue
diseases

Unclassified
pain

[1] [2] [3] [4] [5] [6] [7]

Panel A: Admissions by diagnosis
US robot exposure -0.079 -1.021 1.177∗∗∗ 0.534 0.366 0.494∗∗ 0.163

(0.170) (1.132) (0.420) (0.337) (0.378) (0.233) (0.361)

Panel B: Admissions by diagnosis a with length of stay of more than seven days
US robot exposure 0.023 -0.359 0.596∗ 0.269 0.364 0.516∗ 0.021

(0.194) (1.189) (0.321) (0.192) (0.310) (0.256) (0.286)

Observations 469 469 469 469 469 469 469

Covariates: X X X X X X X

Substance abuse External causes

Alcohol
abuse

Tobacco
products
abuse

Drug
abuse

Opioid
abuse Injuries Suicide

attempt Accidents

[1] [2] [3] [4] [5] [6] [7]

Panel A: Admissions by diagnosis
US robot exposure 0.297 -0.234 0.935 0.489 -1.449 -0.269 -2.035

(0.324) (0.840) (0.576) (0.468) (1.123) (0.509) (1.279)

Panel B: Admissions by diagnosis with a length of stay of more than seven days
US robot exposure 0.644∗∗ 1.422∗∗ 3.767∗∗ 5.465∗ -0.292 0.179 -1.303

(0.247) (0.541) (1.446) (2.758) (0.470) (0.749) (0.937)

Observations 469 469 469 469 469 469 469

Covariates: X X X X X X X

Notes: This table presents IV estimates of the effect of US robot exposure on the share of hospital admissions with a diagnosis
that is not directly related to a cause of disability. Panel A reports all hospital admissions by diagnosis type. Panel B reports
hospital admissions with a length of stay of more than seven days by diagnosis type. Changes are expressed in percentage
points of CZ hospital admissions multiplied by 100. All variables are standardized to have mean zero and standard deviation of
one. Regressions are weighted by CZ hospital admissions. All regressions include the full battery of controls from my preferred
specification. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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B2 Data sources and cleaning

This section provides details about the cleaning and the construction of labor market and health

outcomes.

B2.1 Industrial robots

Robotics data from the IFR are praised for their reliability, but they include also some limitations.

First, a fraction of the stock of industrial robots is not attributed to any industry and is referred to as

“unclassified”. Following Graetz and Michaels (2018), I attribute unclassified robots proportionally

to each industry’s share of total classified robots for each year. Second, up to 2011, the IFR provides

data on the operational stock of robots only for North America as a whole, which includes the United

States, Canada and Mexico. This aggregation introduces noise, but is not a major concern for the

identification of US robot adoption, since the US account for more than 90 percent of the North

American market and the instrumental variable (IV) strategy presented in Section 2.4 purges this

type of measurement error (Acemoglu and Restrepo, 2020). Third, the stock of robots by industry

going back to the 1990s is only available for a subset of countries: Denmark, Finland, France,

Germany, Italy, Norway, Spain, Sweden, and the United Kingdom. The IFR provides data on the

total stock of robots in North America from 1993, but it does not provide industry breakdowns

until 2004. For these years, I attribute the aggregate number of robots to industries proportionally

to their shares of the total stock in 2004.90

B2.2 Health outcomes

I measure health outcomes using data from the Behavioral Risk Factor Surveillance System (BRFSS)

of the Centers for Disease Control and Prevention (CDC) and the National Inpatient Sample (NIS)

of the Healthcare Cost and Utilization Project (HCUP) for 1993, 2000, 2007 and 2011. After

2011, the BRFSS and NIS datasets do not provide geographic indicators that allow me to identify

observations at the CZ level.

The BRFSS is a health-related telephone survey that collects 400,000 adult interviews each
90 I use the same procedure to impute the stock of robots for Denmark, a country included in the instrument, for

which the industry breakdown starts in 1996.
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year on health-related risk behaviors, chronic health conditions, and the use of preventive services.

For each individual, I have information on basic demographics, employment status, self-reported

health, smoking and drinking habits, body height and weight, physical activity, healthcare coverage

and the use of healthcare services. Interviewees are also asked about their physical and mental

health condition and report whether they suffered from physical illness or injuries, or from stress,

depression or problems with emotions in the 30 days prior to the interview.

Similarly to the IPUMS data, I aggregate BRFSS data at the local labor market level, obtaining

information on 634 CZs. I use the approach explained in footnote 49 to increase the sample size

of each year including data of adjacent years. I construct representative individual weights by

computing CZ gender-race-age shares from the BRFSS (NIS) and Census/ACS. Following Adda

and Fawaz (2020), I divide the shares from the Census/ACS by the corresponding BRFSS (NIS)

shares and multiply this ratio by the CZ share in the population for each sample year. The weights

reflect the proportions of individuals according to the gender-race-age cell in the Census/ACS.

Counties with a low population are anonymized and cannot be identified.

I build measures of health-related issues using these data by dividing the number of working-age

individuals with given health characteristics and employment status in a CZ by all individuals with

the same employment status in that CZ. For example, a CZ’s share of non-employed individuals

who suffer from a fair or bad health is computed as the number of individuals who report to suffer

from fair or bad health and that are not employed, divided by all individuals that are not employed.

These shares are clean from pure mechanical effects on health outcomes related to the increase in

non-employment, but show whether the adoption of robots has changed the average health condition

among non-employed individuals.

The NIS collects information on more than seven million hospital stays each year using a 20-

percent stratified sample of discharges from US community hospitals. For each discharge, among

others, I observe patients’ basic demographics, the length of stay and information on up to 15

diagnoses using classification codes from the International Classification of Diseases, Ninth Revision

(ICD-9). I group ICD-9 codes into six disability-related conditions (arthritis and rheumatism; back

and spine problems; circulatory system diseases; respiratory system diseases; mental disorders; and

diabetes) and 13 conditions that are not directly related to a disability (infectious and parasitic

diseases; cancer, endocrine, nutritional and metabolic diseases; nervous system diseases; digestive
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system diseases; diseases of the skin and subcutaneous tissue; unclassified pain; alcohol abuse;

tobacco abuse; drug abuse; opioid abuse; injuries; suicide attempts; and accidents). These data

include hospital identifiers and county codes which allow me to match hospitals to CZs and to

obtain information on 2,217 hospitals in 322 CZs.

I build measures of the hospitalization rate by diagnosis by dividing the number of admissions

with a certain diagnosis with the total number of admissions over all hospitals in a CZ in a given

year. For example, I compute a CZ’s share of severe admissions with mental disorders as the number

of admissions diagnosed with severe mental disorders divided by all hospital admissions in that CZ.

I cannot compute the hospitalization rate in terms of the local population because the sample of

US community hospitals is changing from year to year, which makes a comparison of CZs across

years infeasible. For instance, in 1993 the NIS may collect information about hospital stays from

two community hospitals in a CZ, and in 2000 may collect information from only one of the two

hospitals, or even from other institutions. To account for this issue, shares are more appropriate,

since they account for mechanical changes due to observation sampling that affect the numerator

by adjusting the denominator.

B2.3 Import exposure

China – Following Autor et al. (2013), I use a shift-share approach to measure a labor market’s

exposure to imports from China. I interact CZs’ industry employment shares in the manufacturing

sector prior to the admission of China to the World Trade Organization in 2001 with the growth in

product trade flows from China to the US:

US import exposurec,(t0,t1) =
∑
j∈J

`1990
c,j ∆IMUS

j,(t0,t1) (79)

where ∆IMUS
j,(t0,t1) is the change in US imports from China in thousand dollars per worker. Analo-

gously to Equation 75, I exploit plausibly exogenous variation in the trade shock by instrumenting

the shift-component of the measure with trade flows from China to other industrialized countries

137



with a similar trade development as the US:

OT8 import exposurec,(t0,t1) =
∑
j∈J

1

8

∑
i∈OT8

`1990
c,j ∆IM i

j,(t0,t1) (80)

where i ∈ OT8 include Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and

Switzerland. I keep the baseline employment shares constant to avoid endogeneity and serial corre-

lation concerns.

I collect product-level data at the six-digit Harmonized System (HS) on Chinese imports from

the UN Comtrade Database which I match with industry employment shares from the 1991 County

Business Pattern (CBP). The CBP classifies industry employment according to the Standard Clas-

sification System (SIC) until 1997 and according to the North American Industry Classification

System (NAICS) afterwards. These systems are more detailed than the industrial classification

system used in the IPUMS. I use crosswalks from Autor et al. (2013) to convert SIC and NAICS

manufacturing industries and six-digit HS product-level trade data to 392 four-digit SIC industries.

I construct the import penetration measure by matching local employment shares with converted

product-level trade data on imports from China. For confidentiality reasons, county-industry ob-

servations with few cases are reported as ranges. In reconstructing these data, I follow Acemoglu

et al. (2016).

Europe – I build a measure of international product market competition from Europe using a

shift-share approach, as outlined previously. The share component is unchanged and corresponds to

`1990
c,j in Equation 79, while the shift-component does not account anymore for imports from China,

but includes the change in average trade flows from Denmark, Finland, France, Italy, Spain, Sweden

and the United Kingdom to the US. Since US imports could be subject to domestic shocks that

affect also the local demand for labor (demand shocks), I instrument imports to the US with trade

flows from Europe to Canada, an industrialized country with a comparable trade engagement with

European countries as the US (see Figure B11), but whose import intensity is less affected by US

domestic shocks than the US itself.
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B2.4 Industry employment and output

I obtain employment and aggregate output data at the industry level for the US and Europe from

the Integrated Industry-Level Production Account (KLEMS) of the Bureau of Economic Affairs

(BEA) and from the EU KLEMS database (Jägger, 2017). I use these data to build measures of

robot density at the industry level in the shift components of Equations 74 and 75.

B2.5 CZ characteristics

I obtain individual-level data on a variety of demographic characteristics and labor market informa-

tion of the US population from the IPUMS. I use these data to build measures of CZs’ demographics

and their industrial and occupational composition of employment. These variables include the share

of white men, women, Blacks, Hispanics, college-educated individuals, individuals born in the same

US state as their current residency, and the log population size and age structure of the population

(25-34, 35-44 and 45-54 years). I also account for the share of employment in construction, edu-

cation and research, manufacturing, mining, services, and utilities industries, as well as the share

of routine task-intensive and offshorable jobs (Autor and Dorn, 2013). I keep CZ characteristics

constant at their 1990 levels to avoid contamination by endogenous adjustments in the structure

of labor markets in response to robot adoption. I provide summary statistics of these covariates in

Table 2.2.

B2.6 Migration

I use Census/ACS data from Di Giacomo and Lerch (2021) on the migration status of individuals

to construct changes in aggregate in- and out-flows of migrants at the CZ level in each subperiod of

my sample (1993-2000, 2000-07, 2007-14), as a percentage of the working-age population. A major

limitation in the data is that information about individuals’ migration status changes over time. In

particular, the Census asks whether a person changed its residence in the previous 5 years, while the

ACS asks whether a person changed its residence in the previous year. An individual who moved

twice in the previous 5 years is considered to be a one-time mover in the Census, but would be

counted twice in the ACS (conditional on the fact that the moves occurred in different years). I

follow Molloy et al. (2011) in building normalized measures of 5-year migration flows from the ACS
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by using four times the annual migration flow of a CZ.

B2.7 Institution controls

To control for the educational supply that could have influenced the demand for schooling of non-

participants, I build measures of the local supply of post-secondary education institutions using

data from the Integrated Postsecondary Education Data System (IPEDS) provided by Di Giacomo

and Lerch (2021). They include the number of public institutions, for-profit institutions, non-profit

institutions, community colleges and the number of top 20 US educational institutions in the 2020

university ranking in each CZ.

B2.8 Technology shocks

I control for technology shocks other than industrial robots using Bartik-style measures of the adop-

tion of personal computers and IT capital intensity. I obtain data about the number of individuals

that are using a computer in each industry from the 1993 Current Population Survey. Following

Acemoglu and Restrepo (2020), I build a measure of exposure to computers by interacting the share

of employees using a computer with CZ baseline employment shares in each industry. Analogously,

I obtain data about the share of IT investments at the industry level from the 1992 American

Survey of Manufacturing and build a measure of IT capital intensity by interacting the share of

IT investments (available at the 4-digit SIC87) with the baseline CZ employment shares in each

industry.

B3 Institutional background

US Social Security is the largest and one of the most successful anti-poverty programs in the United

States. In 2019, the Social Security Administration (SSA) paid benefits for more than 1 trillion

US dollars to more than 64 million American citizens, of which 75.3% received retirement benefits,

15.5% disability benefits and 9.2% survivor benefits (Social Security Beneficiary Statistics, 2019).

Individuals qualify for Social Security disability benefits if they have a physical or mental im-

pairment that prevents them from engaging in any substantial gainful activity. The impairment is

expected to last at least twelve months or result in death. Individuals have to be aged not more than
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64 years and they must have paid enough contributions in form of labor taxes during their work life.

Moreover, together with people who are blind or are older than 64 years, disabled individuals with

limited income and few resources qualify for monthly payments from the Supplemental Security

Income (SSI) program, also provided by the SSA.

Social Security survivors benefits are paid to widows, widowers, and dependents of eligible

workers. Individuals qualify for survivor benefits from 50 years of age if they are disabled and from

60 years if they are not disabled.

Individuals qualify for Social Security retirement benefits after reaching the official retirement

age. The full retirement age varies from 66 to 67 years depending on the year of birth of the

claimant, conditional on having worked and paid Social Security taxes for at least 10 years. The

US Social Security early retirement age starts at 62 years.

Retirees usually have access to other retirement income sources already before the age of 62 years,

for example by withdrawing early their retirement income from pension plans. The most common

pension plans are employed-sponsored plans, i.e. defined benefit (DB) and defined contribution

(DC) plans. DB plans promise specified benefits at retirement that are predetermined according

to an employee’s earning history, tenure of service and age. Individuals with a DB plan become

eligible to receive benefits when they reach 65 years or the retirement age specified in their plan.

Early withdrawals are possible when they turn 62 years or earlier in case of employment termination

for reasons such as disability or early retirement. DC plans, such as 401(k) plans, pay retirement

benefits according to contributions corrected for investment gains or losses. Retirement income

from DC plans can usually be withdrawn from the age of 59 and a half years. Withdrawals before

the official age are subject to an early distribution penalty. However, early withdrawals are often

exempted from the penalty in case of employment termination after the age of 55 years or in case

of a disability. Other employer-provided plans are Individual Retirement Accounts (IRA), which

are similar to 401(k) plans, but have lower contribution limits, and Keogh plans, which are pension

plans for the self-employed.

In the last decades, the US have experienced an increasing popularity of DC plans, in particular

401(k) plans, leading to a shift from DB to DC plans (Poterba, 2014). This shift has a positive

impact on the average retirement age, since workers with a DC plan retire on average 21 months

later than comparable workers with a DB plan (Friedberg and Webb, 2005).
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A shortcoming in the data from the IPUMS is that I cannot distinguish between pension plan

types. In particular, I cannot identify whether workers withdraw retirement income from DB or DC

plans. This shortcoming raises some concerns about a potential channel of correlation between the

introduction of industrial robots and the local share of workers that have a DB or a DC plan. In

this case, omitted variables that account for the type of plan of older workers may bias my estimates

of the effect of robots on early retirement.

Using data from the 2010 Consumer Finance Survey, I find that workers of the manufacturing

sector are more likely to have DC plans than workers from other sectors (see Figure B9). Since

workers with a DC plan retire later (Friedberg and Webb, 2005) and robots are mostly adopted in

manufacturing industries, the potential correlation between robot exposure and the pension plan

type through a sector channel would bias my estimates downwards. This, in turn, would imply that

the true effect of robots on early retirement would be even stronger than what I estimate.

Figure B9: DB and DC plans by sector

Notes: This figure illustrates the shares of workers with a DB or a DC pension plan by industry group. The bars represent
the average share of workers in the manufacturing sector and in industries of other sectors with one particular type of plan.
Columns 1 and 2 and Columns 5 and 6 are statistically different from each other.

B4 Robustness checks

This section performs a set of robustness checks in support of my identification strategy.
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B4.1 Competition from Europe

As mentioned in Section 2.4, the adoption of robots in Europe could have affected US labor market

conditions through increased international product market competition. This is an important threat

to identification, since it could violate the exclusion restriction of my IV strategy. Although I cannot

rule out this possibility, I show that it is rather unlikely that my results are driven by this causal

link.

I control for international competition on the product market from European countries to the

US by including a shift-share measure of US imports from Europe. Between the early 1990s and

mid-2010s, trade flows from Europe to the US have increased substantially. This increase is mainly

driven by a rise in US imports of manufacturing goods that is positively related to the introduction of

robots in Europe (see Figure B10). International competition on the product market may therefore

confound the effect of robots on US employment, and influence labor force participation accordingly.

Similarly to robot adoption, US imports are also subject to domestic shocks that might influence

the demand for labor. I account for this concern using a similar approach as Autor et al. (2013) for

the China trade shock, using trade flows from Europe to Canada, a country with a comparable trade

engagement with European countries as the US (see Figure B11). Table B10 illustrates the results.

The estimates of the labor market effect of robots are economically and statistically unaffected by

the inclusion of these measures, suggesting that they have not been driven by an increase in import

competition from Europe.

In an alternative approach, I omit from the instrument European countries with a large trade

engagement with the US, namely France, Italy, and the United Kingdom. The instrument now

includes only the stock of robots in Denmark, Finland, Spain and Sweden (the countries that are

least likely to impact US labor market conditions through their national adoption of robots). The

results are quantitatively almost identical to the results of my preferred specification. These findings

suggest again that my estimates are unlikely to be driven by an increase in international product

market competition through the heavier utilization of robots in Europe.

143



B4.2 Industry trends

Another concern that I need to address is that my estimates could be driven by underlying industry

trends. For instance, the high concentration of robots in the automotive industry might raise the

concern that the results are affected by industry-specific shocks that influence the labor market

conditions in CZs which are highly specialized in this industry.91

To address this concern, I decompose the stock of industrial robots into robots adopted in the

automotive industry and robots adopted in other industries, and construct two separate measures

of robot exposure. I extend this exercise by sequentially excluding each industry at a time from

the shift-share measure to account for other industry-specific shocks that might confound the labor

market effect of robots (Goldsmith-Pinkham et al., 2020). Figure B12 reports 19 point estimates

of the effect of robot adoption on labor force participation including all IFR industries but one.

The point estimates are not statistically different from my preferred specification’s results. They

are most sensitive to the exclusion of robots in the automotive industry, which is not surprising,

considering that most robots are adopted in this industry. These results suggest that the labor

market effect of robots on US labor force participation is not driven by unrelated industry-specific

shocks.

B4.3 The Rust Belt

Figure 2.2 of Section 2.3 illustrates that the robot shock is mostly concentrated in labor markets of

the Rust Belt due to their specialization in the steel and automotive industry. This finding raises

the question of whether the effect of robots on labor force non-participation is specific to these CZs

or whether this is a US wide phenomenon.

Table B12 reports the results when excluding from the sample the CZs with the highest robot

exposure. I start by excluding the local labor market of Detroit, which is the CZs that is mostly

exposed to the shock (between 1993 and 2014 the stock of robots increases by about 11 robots per
91 Table B11 shows the average industry weights of the top eight industries of the shift-share measure (also known as

Rotemberg weights, see Goldsmith-Pinkham et al., 2020) and the relative contribution of industries to the national
change in the stock of robots between 1993 and 2014. The automotive industry has the highest Rotemberg weight
and accounts for more than 50 percent of the change in robot adoption in these years. These results show that the
exposure to the shock strongly depends on the development in robot adoption in this industry, which increases the
sensibility of my estimates to other industry-specific shocks that affect labor markets which are specialized in the
automotive industry.
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thousand workers). I then exclude all CZs around the Great Lakes that are in the states of Michigan,

Indiana and Ohio. The estimates remain economically and statistically significant at conventional

levels, showing that the effect of robots is not limited to CZs in the Rust Belt. Interestingly, outside

of the Great Lakes’ CZs the effect of robots is larger, suggesting that, although they are adopted

less frequently in those areas, the introduction of one additional robot has a stronger effect on labor

force participation than in the Rust Belt.

B4.4 Pre-trends

The secular increase in the non-participation rate of men (see Table 2.2) raises the concern that

labor force participation and the adoption of industrial robots could be driven by some common

factors. For example, changes in non-participation and the adoption of robots could both stem from

a local labor market’s industrial composition. If so, our estimates could be confounding the impact

of robot exposure with pre-existing trends that local labor markets were undergoing.

I account for this concern in my preferred specification by controlling for the change in the local

labor force participation rate and the decline in manufacturing employment between 1970 and 1990.

Table 2.3 shows that inclusion of these controls does not alter my estimates of the effect of robots

(compare Columns 2 and 3). I test for the existence of pre-trends that could bias my results also

from a different perspective. I perform a “placebo test” and estimate a two-period model in which

I regress the change in the local non-participation rate for the 1970-80 and 1980-90 periods on the

exposure to robots during the first two periods of my sample (1990-2000 and 2000-07). Table B13

summarizes the results. I do not find any significant relationship between the introduction of robots

and trends in non-participation before the 1990s when using my preferred specification, neither in

the overall population nor for men.

B4.5 The Great Recession

Another concern that I need to address is whether poor labor market conditions trigger workers’

local labor supply responses against the automation shock differently than during ordinary times.

In fact, labor force non-participation has increased particularly during the period of the Great

Recession.

I account for this potential issue in two ways. First, I estimate Equation 73 by excluding the
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2007-14 period to verify whether the effect of robot adoption on labor force participation is already

visible before the Great Recession. Second, I interact robot exposure with a dummy for the 2007-14

period to test whether the effect of robots is statistically and economically different during the

Great Recession. Results are reported in Table B14. I find that the effect of robots on labor force

non-participation is already visible before the start of the Great Recession, and that in my preferred

specification the impact of robots is not statistically different between the periods before and during

the recession.

B4.6 Robots and imports

Columns 3 and 4 of Table 2.3 show that the inclusion of the China trade shock in the set of covariates

is not affecting neither the size nor the significance of my estimates of the effect of robots on labor

force non-participation. This result suggests that, in spite of both shocks being concentrated in the

manufacturing sector, the labor market impacts of the two shocks are mostly orthogonal.

Table B15 reports the estimates of the effect of robots along with standardized estimates of

US imports from China. Results show that the effect of imports on labor force non-participation is

significantly smaller than the effect of robots. For men, I find that a one standard deviation increase

in robot exposure increases non-participation by 75 percent more than a one standard deviation

increase in import exposure.

In line with this result, Faber et al. (2022) argue that the adoption of robots exerts strong

adverse spillover effects to local industries which are not directly exposed to the shock (e.g. to the

service sector), while import competition does not (or it does to a smaller extent).

B4.7 Robots and other technologies

Table B16 compares the effect of robot exposure to other technologies. Results show that the impact

of robots on non-participation is different from other technologies. In particular, the secular increase

in the adoption of PCs has had the opposite effect, reducing the non-participation rate in exposed

areas. This effect is entirely driven by an increase in the job prospects for women, whose employment

experienced a significant stimulus in the last decades due to the rise of the service economy (Ngai

and Petrongolo, 2017, Petrongolo and Ronchi, 2020). On the other side, non-participation has

increased in areas with a high share of routine task-intensive occupations. Again, Column 2 shows

146



that the effect disappears when focusing on men, suggesting that this result is driven by women,

who are often over-represented in clerical middle-skill jobs (Lerch, 2021).

B4.8 Cross-sectional and temporal variation

The preferred specification of this paper analyzes the labor market effect of robots by exploiting

both cross-sectional variation in robot exposure across CZs and temporal variation in robot exposure

within CZs. I verify the relative importance of these sources of variation using a single long-

difference specification over the 1990-2014 period, and using a stacked first-difference specification

with CZ fixed effects respectively. The latter specification is more demanding and accounts also for

unobserved time-invariant CZ trends which could influence the adoption of robots and labor market

outcomes. The results are summarized in Table B17.

In the first part of the table, I observe that between-CZs variation in robot exposure accounts

for most of the variation, suggesting that the adoption of robots is mainly driven by the secular

industry specialization of local labor markets. The second part reports estimates of the labor

market effect of robots by exploiting each source of variation individually. I find that robots have a

significant impact on labor force participation in both specifications. These results support the use

of the stacked first-difference model using dynamic division effects as in my preferred specification,

since cross-sectional variation is an important source of the overall variation in robot exposure and

unobserved heterogeneity across CZs does not bias my estimates of the labor market effect of robots.

B4.9 Construction of the shift-share measure

Table B18 shows that the exact construction of the shift-share measures in Equations 74 and 75 does

not affect my results. Panels A and B report estimates of two more mixes of European countries

that are used in the construction of the instrument. First, I exclude from my instrument Spain and

the United Kingdom and replicate the measure of Acemoglu and Restrepo (2020). Second, I include

Germany, a country that is ahead of the US in the adoption of robots. Panel C reports estimates

using an instrument with 1990 industry employment shares, `1990
c,j , rather than from 1970. Panel

D reports estimates using a measure of US robot exposure and an instrument without adjusting

for industry output growth, gj,(t0,t1)
Rj,t0
Lj,1990

. The estimates of the labor market effect of robots on

non-participation do not differ economically or statistically from my preferred specification’s results.
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B4.10 Logarithmic outcomes

Table B19 illustrates the estimates of the effect of robots on labor market outcomes in logarithmic

changes rather than in shares of the working-age population. I find robust estimates of the labor

market effects of robots that are in line with my preferred specification’s results. The estimates sug-

gest that a one standard deviation increase in US robot exposure decreases labor force participation

by 0.916 log-points.

B4.11 Robust standard errors

Borusyak et al. (2021) argue that standard errors need to consider also potential correlations across

CZs resulting from common industry-level shocks. Table B20 reports the estimates of the effect of

robots on US employment allowing for clustering at the IFR industry level. I find that employment

decreased relatively more in industries that experienced high robot growth and that this result is

robust to the inclusion of industry fixed effects. Table B21 further reports results on the effect of

robots on non-participation at the CZ level allowing for arbitrary clustering at the division level.

This specification considers also the potential correlation of the residuals between neighboring CZs

that belong to different states. The standard errors are almost identical to my baseline specification

and do not affect the significance of my results.

B4.12 Alternative covariates

Table B22 shows that also the choice of covariates included in the vector of regional characteristics

and economic variables does not alter my results. Panel A reports estimates of the effect of robots

when including a set of state fixed effects to control for state specific labor market conditions and

policies that could affect my outcomes. Panel B includes shift-share measures of technology shocks

(computer adoption and IT capital investments) that may confound the labor market effect of

robots. The results show that the inclusion of these controls does not affect the economic and

statistical significance of my results. Panel C includes time-varying covariates of CZs’ demographics

and their industrial and occupational composition of employment (1990, 2000 and 2007) rather than

fixed at 1990 levels. Panel D reports estimates using a two-step LASSO procedure for the selection

of covariates (Belloni et al., 2014). Again, the estimates of the labor market effect of robots are
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quantitatively and qualitatively similar as in my preferred specification. Table B23 includes also

estimates of the effect of robots using a more demanding specification that includes the beginning-

of-period share of white and non-white men interacted with time dummies. Results are unaffected

by the inclusion of these additional covariates.

B4.13 Stock of robots using the perpetual inventory method

The IFR estimates the operational stock of robots assuming no depreciation of robot capital in the

first 12 years of service and full depreciation in the 13th year. I stress this assumption and, following

Graetz and Michaels (2018), I build measures of the stock of robots based on yearly shipments using

the perpetual inventory method at different depreciation rates. Table B24 illustrates the results of

the effect of robots on non-participation assuming a depreciation rate of robot capital of 5%, 10%

and 15%. The alternative measures provide estimates of the labor market effect of robots that are

quantitatively and qualitatively similar to my preferred specification.

B4.14 Unweighted results

Table B25 reports a set of estimates of the effect of robots on non-participation at the CZ level

without population weights in the regressions. This specification provides less precise estimates, in

particular when considering the total population. The effect is statistically significant at conven-

tional levels for men.

As pointed out in the main text, when analyzing outcomes across labor markets of different sizes,

efficient weights must consider individuals’ sampling weights to account for inherent heteroskedas-

ticity. Cadena and Kovak (2016) show that optimal weights are strongly correlated with initial

population sizes and are well approximated by the initial population of a local labor market. There-

fore, I am confident that the results of my preferred specification are providing better estimates of

the underlying effect of robots on non-participation than the results of Table B25.
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Figure B10: European robot exposure and imports to the US

Notes: This figure illustrates the unweighted correlation between robot exposure in European countries, as presented in Equation
75, and a shift-share measure of imports from these countries to the US. The size of the circles represent a labor market’s size
in terms of population in 1990. The solid line represents a prediction for US import exposure from European countries from a
linear regression on robot exposure in Europe.

Figure B11: Trade flows from Europe to the US and Canada by industry

Notes: This figure illustrates the unweighted correlation between imports from seven European countries (Denmark, Finland,
France, Italy, Spain, Sweden and the United Kingdom) to the US and Canada. Imports are represented by SIC industry of the
manufacturing sector (392) in billions of US dollars in 2017 prices. For visibility reasons, for either country I omitt outlying
industries with imports that exceed six billion US dollars in the US, Canada or both. These industries are yarn spinning
mills (2281), fiber cans, drums and similar products (2655), pharmaceutical preparations (2834), petroleum refining (2911),
gypsum products (3275), minerals, ground or treated (3295), primary nonferrous metals, nec (3339), valves and pip fittings, nec
(3494), machine tool accessories (3545), welding apparatus (3548) food products machinety (3556), noncurrent-carrying wiring
devices (3644), motor vehicles and car bodies (3711), motor vehicle parts and accessories (3714), aircraft (3721). The solid line
represents a prediction for US import exposure from European countries from a linear regression on Canadian import exposure
from European countries based on all 392 SIC industries of the manufacturing sector.
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Figure B12: Sequential exclusion of IFR industries

Notes: This figure illustrates the reduced form point estimates of the effect of robot exposure on non-participation by excluding
each industry from the shift-share measure one at a time. For example, Automotive excludes robots adopted in the automotive
industry. Regressions include the full battery of controls from my preferred specification and are weighted by CZ population in
1990. Confidence intervals are at the 95% level.

Table B10: Product market competition from Europe

Population Men

[1] [2] [3] [4] [5]

Panel A: Import competition in the US
US robot exposure 0.219∗∗ 0.239∗∗ 0.236∗∗∗ 0.203∗∗∗ 0.356∗∗∗

(0.093) (0.095) (0.086) (0.065) (0.072)
US imports from EU7 0.031 0.022 0.010 -0.054 -0.075

(0.045) (0.044) (0.043) (0.050) (0.072)

Panel B: Import competition in Canada
US robot exposure 0.220∗∗ 0.238∗∗ 0.233∗∗∗ 0.193∗∗∗ 0.343∗∗∗

(0.090) (0.092) (0.083) (0.062) (0.070)
CAN imports from EU7 0.205∗ 0.193 0.185 0.119 0.154

(0.113) (0.115) (0.117) (0.105) (0.114)

Panel C: EU4 countries (Denmark, Finland, Spain, Sweden)
US robot exposure 0.226∗ 0.248∗ 0.236∗∗ 0.170∗∗ 0.258∗∗∗

(0.123) (0.125) (0.113) (0.083) (0.091)

Observations 2166 2166 2166 2166 2166

Covariates:
Divisions X X X X X
Years X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X

Notes: This table presents estimates of the effect of US robot exposure on non-participation. Panel A reports IV estimates using
the standard instrument with seven European countries and estimates of the effect of US imports from these countries. Panel
B reports IV estimates using the standard instrument with seven European countries and estimates of the effect of Canadian
imports from these countries. Panel C reports IV estimates using an instrument that includes only the three European countries
with the lowest trade engagement with the US (Denmark, Finland, Spain and Sweden). Coefficients with ∗∗∗, ∗∗ and ∗ are
significant at the 1%, 5% and 10% confidence level.
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Table B11: Rotemberg weights

Rotemberg Share of
weights robot change

[1] [2] [3] [4] [5]

Automotive .557 .578 .583 .619 .563
Plastics and Chemicals .157 .145 .144 .148 .103
Electronics .080 .078 .057 .057 .007
Basic Metals .079 .077 .079 .068 .057
Food and Beverages .076 .077 .084 .082 .068
Industrial Machinery .015 .015 .020 .017 .035
Shipbuilding and Aerospace .015 .011 .013 .008 .022
Mining .003 .004 .007 .006 .004
Covariates:
Divisions X X X X
Pre-trends X X X
Chinese imports X X
Demographics X
Industries X
Occupations X

Notes: This table presents Rotemberg weights for the eight industries with the highest robot adoption between 1993 and 2014
– as explained in Goldsmith-Pinkham et al. (2020) – and the share of the overall change in robot stock between 1993 and 2014
that comes from these industries. Columns 1 to 5 report the average industry Rotemberg weights over the sample period for
different model specifications. Column 6 reports the fraction of robot introduction over the sample period that comes from the
eight industries with the highest average Rotemberg weights.
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Table B12: Exclusion of the CZs with the highest robot exposure

Population Men

[1] [2] [3] [4] [5]

Panel A: Exclusion of Detroit
US robot exposure 0.437∗∗ 0.470∗∗ 0.449∗∗ 0.313 0.441∗∗

(0.197) (0.193) (0.190) (0.204) (0.212)

Observations 2163 2163 2163 2163 2163

Panel B: Exclusion of CZs around Great Lakes
US robot exposure 0.748∗∗∗ 0.783∗∗∗ 0.810∗∗∗ 0.781∗ 0.875∗

(0.245) (0.225) (0.238) (0.425) (0.467)

Observations 2010 2010 2010 2010 2010

Covariates:
Divisions X X X X X
Years X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X

Notes: This table presents IV estimates of the effect of US robot exposure on the non-participation rate, excluding a set of
outlying CZs. Panel A reports estimates excluding Detroit from the sample. Panel B reports estimates excluding CZs in the
most exposed states around the Great Lakes (Indiana, Michigan and Ohio). Coefficients with ∗∗∗, ∗∗ and ∗ are significant at
the 1%, 5% and 10% confidence level.

Table B13: Robots and non-participation between 1970-90: Placebo test

Population Men

[1] [2] [3] [4]

US robot exposure 0.061∗∗ 0.061∗∗ -0.005 0.025
(0.027) (0.026) (0.028) (0.023)

Observations 1444 1444 1444 1444

Covariates:
Divisions X X X X
Years X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X

Notes: This table presents IV estimates of the effect of US robot exposure on the non-participation rate between 1970 and
1990. There are two time periods (1970-80 and 1980-90 for non-participation and 1990-2000 and 2000-07 for robot exposure)
and 722 CZs. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table B14: The Great Recession

Population Men

[1] [2] [3] [4] [5]

Panel A: Exclude 2007-14 period (IV)
US robot exposure 0.206∗∗ 0.221∗∗∗ 0.207∗∗∗ 0.151∗∗ 0.307∗∗∗

(0.084) (0.081) (0.065) (0.063) (0.067)

Observations 1444 1444 1444 1444 1444

Panel B: Effect prior and during 2007-14 period (reduced form)
EU7 robot exposure 0.162∗∗ 0.181∗∗∗ 0.170∗∗∗ 0.139∗∗∗ 0.262∗∗∗

(0.063) (0.066) (0.053) (0.044) (0.049)
EU7 robot exposure × 2007-14 0.564∗ 0.496∗ 0.699∗∗ 0.354 -0.367

(0.294) (0.279) (0.277) (0.243) (0.231)

Observations 2166 2166 2166 2166 2166

Covariates:
Divisions X X X X X
Years X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X

Notes: This table presents estimates of the effect of US robot exposure on the non-participation rate, and examines the role
of the Great Recession. Panel A reports IV estimates and excludes the period of the Great Recession (2007-14) using only the
first two periods in my sample. Panel B reports reduced form estimates and interacts robot exposure with a time dummy for
the period of the Great Recession. This specification includes all three periods. Coefficients with ∗∗∗, ∗∗ and ∗ are significant
at the 1%, 5% and 10% confidence level.
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Table B15: Robots, imports and non-participation

Population Men

[1] [2] [3] [4] [5]

Panel A: IV estimates
US robot exposure 0.224∗∗ 0.242∗∗ 0.237∗∗∗ 0.195∗∗∗ 0.345∗∗∗

(0.093) (0.095) (0.085) (0.063) (0.072)
US import exposure 0.258∗∗ 0.127 0.197∗

(0.122) (0.094) (0.099)

Panel B: First-stage of US robot exposure
EU7 robot exposure 0.773∗∗∗ 0.792∗∗∗ 0.787∗∗∗ 0.743∗∗∗ 0.742∗∗∗

(0.055) (0.044) (0.055) (0.048) (0.049)
OT8 import exposure 0.249∗∗∗ 0.134∗∗∗ 0.135∗∗∗

(0.033) (0.043) (0.042)

Panel C: First-stage of US import exposure
EU7 robot exposure -0.006 -0.004 -0.004

(0.011) (0.011) (0.012)
OT8 import exposure 1.006∗∗∗ 1.007∗∗∗ 1.007∗∗∗

(0.023) (0.023) (0.022)

Observations 2166 2166 2166 2166 2166

Covariates:
Divisions X X X X X
Years X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X

Notes: This table presents IV estimates of the effect of robot exposure and import exposure on the non-participation rate.
Panels B and C report first stage estimates of robot exposure and import exposure. Independent variables are standardized to
have mean zero and standard deviation of one. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence
level.

Table B16: Robots, non-participation and other shocks

Population Men

[1] [2]

US robot exposure 0.202∗∗∗ 0.351∗∗∗
(0.065) (0.073)

PC adoption -0.125∗∗∗ -0.057
(0.044) (0.050)

IT intensity 0.028 0.044
(0.068) (0.095)

Routine occupations 0.122∗ -0.091
(0.069) (0.077)

Offshorable occupations -0.060 -0.081
(0.062) (0.066)

Observations 2166 2166

Covariates: X X

Notes: This table presents IV estimates of the effect of US robot exposure, personal computer adoption, IT capital intensity, the
share of routine task-intensive occupations and the share of offshorable occupations on the non-participation rate. Independent
variables are standardized to have mean zero and standard deviation of one. All regressions include the full battery of controls
from my preferred specification. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table B17: Robot exposure across and within local labor markets

US robot exposure

Mean Std. Dev.

Panel A: Robots per thousand workers
Overall 0.526 0.491
Between 0.452
Within 0.192

Panel B: Standardized
Overall 0.000 1.000
Between 0.921
Within 0.391

Estimates of US robot exposure

Between CZs Within CZs

All Men All Men

[1] [2] [3] [4]

US robot exposure 0.067 0.170∗∗ 0.619∗∗ 1.077∗∗∗
(0.078) (0.084) (0.270) (0.306)

Observations 722 722 2166 2166

Covariates:
Divisions X X X X
Years X X
Pre-trends X X
Chinese imports X X X X
Demographics X X
Industries X X
Occupations X X
CZ fixed effects X X

Notes: The first part of this table presents unweighted averages and the between and within CZ standard deviation of US robot
exposure. Panel A reports the mean and standard deviations in robots per thousand workers. Panel B reports standardized
measures with mean zero and overall standard deviation of one. The second part of the table presents IV estimates of the effect
of US robot exposure on the non-participation rate and exploits between and within CZ variation in robot adoption separately.
Changes are expressed in percentage points of the working-age population and are multiplied by 100. Independent variables
are standardized to have mean zero and standard deviation of one. Columns 1 and 2 use a long-difference specification between
1993 and 2014 and includes the full battery of controls. There is one period and there are 722 CZs. Columns 3 and 4 use a
stacked first-difference specification and includes year dummies, nine census divisions, their interactions and CZ fixed effects.
There are three time periods and 722 CZs. Standard errors are robust against heteroskedasticity and allow for clustering at the
state level. Regressions are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5%
and 10% confidence level.
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Table B18: Alternative construction of measures of robot exposure

Population Men

[1] [2] [3] [4] [5]

Panel A: EU5 countries (Acemoglu and Restrepo, 2020)
US robot exposure 0.263∗∗ 0.283∗∗ 0.277∗∗ 0.230∗∗ 0.379∗∗∗

(0.124) (0.126) (0.116) (0.092) (0.102)

Panel B: EU7 countries and Germany
US robot exposure 0.185∗∗ 0.201∗∗∗ 0.197∗∗∗ 0.157∗∗∗ 0.287∗∗∗

(0.073) (0.073) (0.065) (0.046) (0.054)

Panel C: EU7 countries with `1990c,j

US robot exposure 0.325∗∗ 0.323∗∗ 0.311∗∗∗ 0.238∗∗∗ 0.385∗∗∗
(0.128) (0.126) (0.115) (0.078) (0.086)

Panel D: EU7 countries without gj,(t0,t1)
Rj,t0
Lj,1990

US robot exposure 0.180∗∗ 0.197∗∗∗ 0.189∗∗∗ 0.146∗∗∗ 0.261∗∗∗
(0.068) (0.072) (0.059) (0.038) (0.037)

Observations 2166 2166 2166 2166 2166

Covariates:
Divisions X X X X X
Years X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X

Notes: This table presents IV estimates of the effect of US robot exposure on the non-participation rate using different instrument
measures. Panel A reports estimates using an instrument that includes only five European countries. I exclude Spain and the
United Kingdom as in the measure in Acemoglu and Restrepo (2020). Panel B reports estimates using an instrument which
includes seven European countries and Germany. Panel C reports estimates using an instrument with seven European countries,
but US employment shares of 1990 instead of 1970. Panel D reports estimates using an endogenous variable and an instrument
of robot density without the adjustment term of industry growth. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5%
and 10% confidence level.

Table B19: Logarithmic changes

Population Men

[1] [2] [3] [4] [5]

US robot exposure 1.027∗∗ 1.099∗∗∗ 1.080∗∗∗ 0.916∗∗∗ 2.056∗∗∗
(0.385) (0.385) (0.347) (0.260) (0.471)

Observations 2166 2166 2166 2166 2166

Covariates:
Divisions X X X X X
Log-population X X X X X
Years X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X

Notes: This table presents IV estimates of the effect of US robot exposure on the non-participation rate. Changes are expressed
in logarithms and are multiplied by 100. All columns control for changes in the logarithmic working-age population. Coefficients
with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

157



Table B20: The effect of robots on employment with standard errors
clustered at the IFR industry level

[1] [2] [3] [4]

US robot density -3.459 -2.887 -4.768∗∗ -8.400∗∗∗
(1.996) (2.364) (2.074) (2.606)

Observations 57 57 57 57

Covariates:
Years X X X X
Pre-trends X
Demographics X
Occupations X
Industry FE X X

Notes: This table presents IV estimates of the effect of US robot density on the change in employment at the industry level.
Changes are expressed in logarithmic changes and are multiplied by 100. Robot density is equal to the shift component of
Equations 74 and 75 and is standardized to have mean zero and standard deviation of one. There are three time periods and 19
IFR industries. Column 1 includes year dummies. Column 2 includes also changes in IFR log-employment between 1970 and
1990, as well as demographic (share of individuals aged between 25 and 34 years, 35 and 44 years, 45 and 54 years, the share of
white men, Blacks, Hispanics, women and individuals with less than a college degree) and occupational (share of offshorable and
routine task-intensive occupations) controls at the industry level in 1990. Columns 3 and 4 include IFR industry FE. Standard
errors are robust against heteroskedasticity and allow for clustering at the industry level. Regressions are weighted by industry
employment in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

Table B21: Clustering at the division level

Population Men

[1] [2] [3] [4] [5]

US robot exposure 0.224∗ 0.242∗ 0.237∗ 0.195∗∗ 0.345∗∗∗
(0.115) (0.120) (0.108) (0.080) (0.079)

Observations 2166 2166 2166 2166 2166

Covariates:
Divisions X X X X X
Years X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X

Notes: This table presents IV estimates of the effect of US robot exposure on the non-participation rate. Standard errors are
robust against heteroskedasticity and allow for clustering at the division level. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at
the 1%, 5% and 10% confidence level.

158



Table B22: Alternative covariates

Population Men

[1] [2] [3] [4] [5] [6]

Panel A: Inclusion of state fixed effects
US robot exposure 0.289∗ 0.319∗ 0.306∗ 0.283∗∗ 0.536∗∗∗

(0.162) (0.160) (0.152) (0.135) (0.168)

Panel B: Inclusion of non-robot automation technologies
US robot exposure 0.216∗∗ 0.224∗∗ 0.223∗∗ 0.202∗∗∗ 0.351∗∗∗

(0.087) (0.085) (0.084) (0.065) (0.073)

Panel C: Period covariates
US robot exposure 0.224∗∗ 0.242∗∗ 0.237∗∗∗ 0.152∗∗∗ 0.310∗∗∗

(0.093) (0.095) (0.085) (0.051) (0.060)

Panel D: Selection of covariates using a two-step lasso
US robot exposure 0.806∗∗∗

(0.140)

Observations 2166 2166 2166 2166 2166 2166

Covariates:
Divisions X X X X X
Years X X X X X
State X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X
LASSO covariates X

Notes: This table presents IV estimates of the effect of US robot exposure on the non-participation rate, including state fixed
effects and a selection of covariates using a two-step LASSO. Panel A reports estimates including state FE, Panel B includes
beginning of subperiod (1990, 2000 and 2007) covariates and Panel C reports estimates selecting a set of covariates using
a LASSO approach. Column 1 includes year dummies, nine census divisions and their interactions. Column 2 includes also
changes in the non-participation rate and in the manufacturing employment rate between 1970 and 1990. Column 3 includes also
exposure to Chinese imports. Columns 4 and 5 control also for demographic (share of individuals aged between 25 and 34 years,
35 and 44 years, 45 and 54 years, the share of white men, Blacks, Hispanics, women and individuals with less than a college
degree and logarithmic population), industry (shares of employment in the construction, manufacturing, mining, research,
service and utilities sector) and occupation (share of offshorable and routine task-intensive occupations) characteristics of CZ
in 1990 in Panel A and in 1990, 2000 and 2007 in Panel B. Column 6 includes the nine census divisions, the share of individuals
with less than a college degree, the logarithmic population, the share of employment in the above mentioned sectors, and the
share of routine task-intensive occupations in 1990, all interacted with time dummies. In addition, it includes the employment
share in the automotive industry, male manufacturing and heavy manufacturing in 1990 and exposure to US imports from
China. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

Table B23: Control for the share of whites and racial and ethnic minority men
interacted with time dummies

Population Men

[1] [2]

US robot exposure 0.175∗∗∗ 0.326∗∗∗
(0.042) (0.040)

Observations 2166 2166

Covariates: X X

Notes: This table presents IV estimates of the effect of US robot exposure on the non-participation rate. Both columns include
the full battery of controls from my preferred specification and the share of white and non-white men in the population interacted
with year dummies. All regressions include the full battery of controls from my preferred specification. Coefficients with ∗∗∗,
∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Table B24: Perpetual inventory method

Population Men

[1] [2] [3] [4] [5]

Panel A: 5% depreciation rate
US robot exposure 0.210∗ 0.228∗∗ 0.217∗∗ 0.177∗∗ 0.276∗∗∗

(0.111) (0.111) (0.099) (0.079) (0.082)

Observations 2166 2166 2166 2166 2166

Panel B: 10% depreciation rate
US robot exposure 0.268∗ 0.283∗ 0.279∗∗ 0.242∗ 0.378∗∗∗

(0.144) (0.144) (0.137) (0.123) (0.130)

Observations 2166 2166 2166 2166 2166

Panel C: 15% depreciation rate
US robot exposure 0.322 0.328 0.337∗ 0.299 0.459∗∗

(0.202) (0.202) (0.200) (0.192) (0.201)

Observations 2166 2166 2166 2166 2166

Covariates:
Divisions X X X X X
Years X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X

Notes: This table presents IV estimates of the effect of US robot exposure on the non-participation rate. The operational stock
of robots is constructed based on yearly shipments using the perpetual inventory method, assuming a depreciation rate of 5%,
10% and 15%. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

Table B25: Unweighted regressions

Population Men Women

[1] [2] [3] [4] [5] [6]

US robot exposure 0.236∗∗ 0.276∗∗ 0.238∗∗ 0.123 0.352∗∗ -0.091
(0.102) (0.106) (0.089) (0.087) (0.138) (0.135)

Observations 2166 2166 2166 2166 2166 2166

Covariates:
Divisions X X X X X X
Years X X X X X X
Pre-trends X X X X X
Chinese imports X X X X
Demographics X X X
Industries X X X
Occupations X X X

Notes: This table presents IV estimates of the effect of US robot exposure on the non-participation rate. Regressions are
unweighted. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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B5 General equilibrium and adjustment effects

General equilibrium effects – According to the results illustrated in Table 2.3, each additional

robot decreases the local labor force by about four workers. This result includes only local effects

of robot adoption and does not account for aggregate effects resulting from cross-CZ spillovers that

could influence labor market conditions in other areas.

Acemoglu and Restrepo (2020) argue that, when considering general equilibrium effects, the

labor market impact of robots on employment halves in size, likely because of productivity gains

and reduced prices of tradable goods that are shared with the rest of the US economy (Bloom et

al., 2019). The authors present a parametric model to quantify the aggregate employment effects

of robots in the US and estimate that the local labor market impact of robots decreases from an

employment reduction of 6 workers to about 3.3 workers. A full blown model that accounts for

the general equilibrium effects of robots on labor force non-participation and displaced individuals’

margins of adjustment is outside of the scope of this paper. The focus is primarily on the margins

of adjustment of workers who drop out of the labor force because of a displacement through the

introduction of robots in their local labor market.

Adjustment mechanism – A second point that is worth mentioning is that local shocks may

trigger general equilibrium adjustments that gradually offset their local impact, with a period of

positive labor market conditions following the negative initial effect. This is an identification issue

that has been recently addressed by Jaeger et al. (2019) with focus on the immigration literature.

Analogously to this paper, this literature commonly uses a shift-share approach to identify the

supply channel of migration flows. This measure usually combines past settlement patterns of

migrants in local labor market areas (baseline industry shares of employment in this paper) with

current aggregate inflows of migrants from a variety of countries of origin (robot adoption at the

country-industry level in this paper) (e.g. Card, 2001).

In this setting, Jaeger et al. (2019) raise the concern that the country of origin composition and

settlement patterns of immigrants are often persistent, with the same cities repeatedly receiving

large inflows (which is the underlying relevance assumption for this instrument). They argue,

however, that such a spatial correlation approach may conflate the (presumably negative) partial
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equilibrium wage impact of recent immigrant inflows with the (presumably positive) local labor

market adjustment to previous immigrant supply shocks.

To address this issue, they show that the labor market adjustment process can be considered to

be a function of lagged immigration inflows, leading to an omitted variable bias in the conventional

IV estimator. The inclusion of a lagged variable of the shock in the estimating equation would allow

to isolate the variation in inflows that is uncorrelated with current local demand shocks as well as

the adjustment to past supply shocks. Their results suggest that a “dynamic shift-share” procedure

provides estimates of the initial impact of immigration on natives’ wages that are more negative

than estimates based on the conventional shift-share instrument alone.92

Although I find that the automation shock has a negative effect on labor force participation, it

may still be that local labor markets are undergoing an adjustment dynamic in response to previous

shocks that are confounding the partial equilibrium effect, which is stronger than the effect that the

estimates in Table 2.3 are suggesting.

I address this issue by including a lagged measure of US robot exposure in my main specification.

The results are provided in Table B26. Since the IFR provides no data on robot adoption before

the early 1990s, I need to exclude my first sample period from this part of the analysis (1993-2000)

in order to work with lagged variables. Panels A and B illustrate reduced form and IV estimates of

the effect of robots on labor force participation using my preferred specification for the 2000-07 and

2007-14 periods. The results are not significantly different from those in Table 2.3. As argued in

Jaeger et al. (2019), when there is little change in the flow variables across periods, the instruments

are likely to be highly correlated with one another.

To gauge the degree of independent information in the two variables, Panel C presents results

from reduced form regressions of changes in labor force participation on the instruments of robot

exposure in the same period and robot exposure in the previous period. Panel D reports the

IV results together with the Kleibergen-Paap rk LM statistic for underidentification, whose null-

hypothesis can be rejected only at the 10 percent level in my main specification (5 percent for men),

suggesting that there may be some degree of linear dependence between the estimated coefficients,

which may lead to problems of identification in the second stage. Panel C shows that the inclusion of
92 The dynamic shift-share procedure addresses the adjustment bias by controlling for its source, lagged shocks,

rather than directly controlling for the individual adjustment channels that contribute to this bias, such as internal
migration, inter-city trade, or internal capital flows, for which little data is usually available.
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the lagged shock does not economically nor significantly affect the impact of current robot exposure

on labor force participation. The coefficient of the lagged variable is slightly negative, but not

significantly different from zero (at the 10 percent level for men). When considering the IV results

in Panel D, instead, the estimated effect of current robot exposure increases to 0.317 (compared to

0.227 in Panel B), while the estimated effect of the lagged shock becomes significantly negative (-

0.192), suggesting that my estimates from Table 2.3 could be biased towards zero, since the negative

partial equilibrium effect is conflated by the (positive) adjustment process that local labor markets

are undergoing in response to the past shock.

As has been also acknowledged in Jaeger et al. (2019), the dynamic shift-share procedure is quite

demanding on the data. Because the instruments are potentially highly collinear, the mechanical

relationship between the current instrument and past shocks is interfering a clean identification of the

separate shocks, resulting in a (joint) weak instrument problem in finite samples.93 In these cases,

the focus should be directed towards reduced form results, which suggest no significant difference

with respect to my main specification’s results, when including a measure of the lagged shock.

93 I find that there may indeed be underidentification, since the (unreported) first-stage results show a significant
correlation of lagged US robot exposure with the lagged instrument and with the current instrument.
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Table B26: Dynamic shift-share estimation

Population Men

[1] [2] [3] [4] [5]

Panel A: Conventional shift-share (reduced form)
EU7 robot exposure 0.225∗∗ 0.250∗∗ 0.244∗∗ 0.159∗∗∗ 0.275∗∗∗

(0.105) (0.107) (0.097) (0.041) (0.053)

Panel B: Conventional shift-share (IV)
US robot exposure 0.302∗∗ 0.330∗∗ 0.326∗∗ 0.227∗∗∗ 0.392∗∗∗

(0.147) (0.147) (0.140) (0.058) (0.072)

Panel C: Dynamic shift-share (reduced form)
EU7 robot exposure 0.219∗∗ 0.232∗∗ 0.231∗∗∗ 0.162∗∗∗ 0.289∗∗∗

(0.090) (0.092) (0.084) (0.046) (0.058)
EU7 robot exposure lagged 0.020 0.059 0.046 -0.011 -0.062∗

(0.063) (0.067) (0.062) (0.036) (0.037)

Panel D: Dynamic shift-share (IV)
US robot exposure 0.411∗∗ 0.417∗∗ 0.425∗∗ 0.317∗∗∗ 0.584∗∗∗

(0.166) (0.167) (0.166) (0.101) (0.119)
US robot exposure lagged -0.200∗∗ -0.163∗ -0.184∗ -0.192∗ -0.407∗∗∗

(0.089) (0.082) (0.094) (0.103) (0.114)

Kleibergen-Paap rk LM stat 2.256 2.251 2.269 2.954 3.969
P-value 0.133 0.133 0.132 0.086 0.046

Observations 1444 1444 1444 1444 1444

Covariates:
Divisions X X X X X
Years X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X

Notes: This table presents reduced form and IV estimates of the effect of robot exposure on the non-participation rate using a
conventional and dynamic shift-share estimates, as proposed by Jaeger et al. (2019). There are two time periods (2000-07 and
2007-14) and 722 CZs. Panel A reports reduced form estimates using robot exposure in the current period. Panel B reports
IV estimates using robot exposure in the current period. Panel C reports reduced form estimates using robot exposure in the
current and in the previous period. Panel D reports IV estimates using robot exposure in the current and in the previous
period. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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B6 Contribution of margins of adjustment

This section helps the reader follow the estimation of the relative contribution of each margin of

adjustment from Table 2.1, based on the results from Figures 2.4 to 2.9 in Section 2.6. Table B27

reports estimates of the margins of adjustment of non-participants expressed in percentage of the

population of the respective subgroup (Panel A), like the above mentioned figures (NPm,ġc,t ), and

in terms of the overall population of men (Panel B), in the style of Table 2.5 (NPm,gc,t ). Note that

the latter is also affected by the relative population size of subgroups (Ng
c,t/Nc,t). The relative

contribution measures of each margin are computed by summing the estimated effect of robots on

all subgroups within a particular margin of adjustment (NPmc,t =
∑

g NP
m,g
c,t ), and by dividing it by

the estimated effect on aggregate non-participation (NPc,t).

Let’s take, for example, school enrollment. From Figure 2.4, we know that robot exposure

increases the non-participation rate among white individuals between 25 and 34 years with at least

a college degree by 0.3 percentage points. This increase comes along with an increase in schooling

of these individuals of about 0.2 percentage points. This result can be found also in Column 1 of

Panel A of Part I (0.199). Panel B further shows that this increase accounts for 0.008 percentage

points of the increase of the overall male non-participation. By summing all estimates (Columns 1

to 16) of Panel B in Part I, we obtain 0.025 percentage points, which corresponds to the increase in

schooling of non-participants for the entire working-age population of males. If we now divide this

value by the estimated effect of robots on non-participation from Column 5 of Panel B of Table 2.3,

we obtain the relative contribution of schooling as a margin of adjustment of non-participants, i.e.

7.2 percent. Note that small differences may occur due to rounding errors. Without rounding at

three decimal digits, this value corresponds to 7.7 percent, as reported in Table 2.1.

Table B27 can be used further to compute other combinations of non-participation increases

that are not reported in Table 2.1. For instance, Figure 2.6 shows that a one standard deviation

increase in robot exposure increases the non-participation rate among white individuals between 55

and 64 years without a college degree who receive Social Security income (disability benefits or early

retirement benefits) and/or withdraw pension plan income by 0.355 percentage points. This result

can be computed by summing over Panel A and Column 12 of Part II and III: 0.075 (disability take-

up) + 0.277 (early retirement). Panels B tell us that these individuals make up 0.079 percentage
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points (0.014 + 0.066) of the overall increase in labor force non-participation, and therefore account

for almost 23 percent of its increase (0.079/0.346 from Table 2.3).
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Table B27: Robots and margins of adjustment of non-participants

College degree or more Less than a college degree

Whites Racial and ethnic minorities Whites Racial and ethnic minorities

25-34 35-44 45-54 55-64 25-34 35-44 45-54 55-64 25-34 35-44 45-54 55-64 25-34 35-44 45-54 55-64

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

Part I. School enrollment
Panel A: NPm,ġc,t

US robot exposure 0.199∗∗∗ 0.016 0.021∗ -0.016 0.241 -0.107 -0.038 0.111 0.033∗ 0.015 0.024∗∗∗ 0.008 0.077∗∗ 0.041 -0.052 0.100∗∗∗
(0.033) (0.014) (0.011) (0.015) (0.168) (0.070) (0.108) (0.083) (0.017) (0.011) (0.009) (0.007) (0.033) (0.029) (0.035) (0.028)

Panel B: NPm,gc,t

US robot exposure 0.008∗∗∗ 0.001 0.001∗∗ -0.001 0.001 -0.002∗∗∗ -0.000 0.001 0.003 0.001 0.003∗∗ 0.001 0.002 0.003 0.000 0.003∗∗∗
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.002) (0.001) (0.002) (0.001) (0.003) (0.002) (0.002) (0.001)

Part II. Disability take-up
Panel A: NPm,ġc,t

US robot exposure 0.009 0.044∗∗∗ 0.007 -0.042∗ 0.005 -0.155 -0.165∗ 0.237∗∗ -0.032∗∗ 0.052∗∗ 0.046 0.075∗∗∗ 0.024 0.039 0.232∗∗∗ -0.073
(0.008) (0.012) (0.024) (0.022) (0.025) (0.113) (0.089) (0.103) (0.016) (0.021) (0.033) (0.027) (0.050) (0.066) (0.070) (0.127)

Panel B: NPm,gc,t

US robot exposure 0.000 0.003∗∗∗ 0.000 -0.003∗ 0.000 -0.001 -0.002∗∗ 0.002∗∗∗ -0.003 0.006∗∗ 0.011∗∗ 0.014∗∗∗ -0.000 0.002 0.006∗ 0.000
(0.000) (0.001) (0.001) (0.002) (0.000) (0.001) (0.001) (0.001) (0.002) (0.003) (0.005) (0.003) (0.002) (0.002) (0.003) (0.003)

Part III. Early retirement
Panel A: NPm,ġc,t

US robot exposure 0.006 0.008 0.022 0.246∗∗ -0.009 0.043 -0.007 0.555∗∗ 0.008 0.001 0.043 0.277∗∗∗ 0.050∗∗∗ 0.049∗ 0.222∗∗∗ 0.584∗∗∗
(0.008) (0.010) (0.013) (0.113) (0.012) (0.026) (0.040) (0.248) (0.011) (0.015) (0.026) (0.060) (0.012) (0.025) (0.060) (0.186)

Panel B: NPm,gc,t

US robot exposure 0.000 0.000 0.002∗∗ 0.017∗∗ -0.000 0.001∗∗ -0.000 0.004∗∗∗ 0.001 0.000 0.013∗∗∗ 0.065∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.008∗∗∗ 0.020∗∗∗
(0.000) (0.001) (0.001) (0.008) (0.000) (0.000) (0.000) (0.001) (0.001) (0.002) (0.003) (0.006) (0.001) (0.001) (0.002) (0.006)

Part IV. Reliance on household
Panel A: NPm,ġc,t

US robot exposure 0.220∗∗∗ 0.024 -0.012 0.082 0.143 -0.038 -0.338 -0.270 0.089∗ 0.115∗∗∗ 0.111∗∗ 0.244∗∗∗ 0.256∗∗∗ 0.563∗∗∗ 0.439∗∗∗ 0.414∗∗
(0.039) (0.037) (0.024) (0.069) (0.106) (0.116) (0.228) (0.198) (0.050) (0.036) (0.046) (0.034) (0.093) (0.153) (0.095) (0.196)

Panel B: NPm,gc,t

US robot exposure 0.007∗∗∗ 0.002 -0.000 0.002 0.000 -0.001 -0.002 -0.000 0.005 0.015∗∗ 0.023∗∗∗ 0.044∗∗∗ 0.012 0.032∗∗∗ 0.017∗∗∗ 0.018∗∗∗
(0.002) (0.002) (0.002) (0.004) (0.002) (0.002) (0.002) (0.001) (0.007) (0.007) (0.008) (0.005) (0.014) (0.010) (0.006) (0.006)

Part V. Personal income
Panel A: NPm,ġc,t

US robot exposure 0.155∗∗ 0.069 -0.081∗ 0.089 0.097 -0.129 -0.175 0.618∗∗ 0.160∗∗ 0.052 0.014 0.121 0.376∗∗ 0.432∗∗∗ 0.533∗∗∗ -0.583
(0.058) (0.055) (0.044) (0.122) (0.190) (0.153) (0.307) (0.246) (0.073) (0.053) (0.061) (0.086) (0.149) (0.134) (0.184) (0.438)

Panel B: NPm,gc,t

US robot exposure 0.004 0.005 -0.004 0.009 -0.001 0.000 -0.003 0.008∗∗∗ 0.008∗ 0.002 0.008 0.066∗∗∗ 0.031 0.033 0.023∗ 0.004
(0.004) (0.003) (0.002) (0.008) (0.003) (0.003) (0.003) (0.002) (0.005) (0.006) (0.007) (0.009) (0.026) (0.021) (0.012) (0.006)

Observations 2166 2166 2166 2166 2166 2166 2166 2166 2166 2166 2166 2166 2166 2166 2166 2166

Covariates: X X X X X X X X X X X X X X X X

Notes: This table presents IV estimates of the effect of robot exposure on the male non-participation rate by education, age, and race/ethnicity and margin of adjustment.
Panels A report estimates of the effect of robot exposure on non-participation as a share of the population subgroups, while Panel B reports estimates as a share of the total
population of men in a CZ. Regressions include the full battery of controls from my preferred specification and are weighted by CZ population in 1990. Coefficients with ∗∗∗,
∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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Chapter 3

Automation and Human Capital Adjustment:

The Effect of Robots on College Enrollment

3 Automation and Human Capital Adjustment: The Effect of

Robots on College Enrollment
with Giuseppe Di Giacomo, Università della Svizzera italiana

3.1 Introduction

Technological progress has spurred stunning growth in educational attainment across the twentieth

century, leading to what is often defined to as a race between education and technology (Goldin

and Katz, 2010, Tinbergen, 1974). For years, skill-biased technological change (SBTC) fueled the

demand for high-skilled labor, generating educational wage gains that raised the supply of more

educated workers (Katz and Murphy, 1992, Krusell et al., 2000). Although this link appears to

have weakened in the last decades (Acemoglu and Autor, 2012, Goldin et al., 2020), rapid progress

in automation, including robotics and artificial intelligence, has revitalized the debate about the

role of technological advances for human capital accumulation (Aoun, 2017).

This paper investigates the effect of the introduction of industrial robots – one of the leading

automation technologies of the last decades – on human capital adjustments in the US labor market.

Industrial robots are machines that can be programmed to perform autonomously a variety of

manual tasks in the manufacturing sector. Between 1993 and 2007, more than 120,000 robots

have been installed in the US, displacing thousands of workers from the labor market (Acemoglu

and Restrepo, 2020). These technologies differ fundamentally from SBTC, as they mainly displace

workers from low-skill jobs, but they do not directly complement workers employed in high-skill jobs

(Acemoglu and Restrepo, 2021). As a response, exposed workers may invest in additional human

capital as a form of self-insurance against the employment risks associated with these adverse shocks,

rather than increases in the college wage premium (Atkin, 2016, Beaudry et al., 2016, Betts and

McFarland, 1995, Cameron and Taber, 2004).
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We analyze the impact of robot adoption on human capital adjustments using a local labor

market analysis, and proxy local labor markets using US Commuting Zones (CZs). To exploit

plausibly exogenous variation in robot exposure across CZs, we match industry-level data from

the International Federation of Robotics (IFR) with individual-level data from the Census. We

follow Acemoglu and Restrepo (2020) in using a shift-share design that interacts baseline industry

employment shares within local labor markets with the adoption of robots in the US. Identification

builds on the assumption that advances in robotics vary by industry and expose local labor markets

differently depending on their industrial composition of employment.

To identify individuals’ human capital adjustments, we obtain information on the schooling sta-

tus and detailed socio-demographic characteristics from the Census and the American Community

Survey (ACS). We use these data to build measures of college enrollment at the CZ level. We com-

plement these information using administrative data from the Integrated Postsecondary Education

Data System (IPEDS) that provide data on human capital adjustments from the intensive margin,

including the characteristics of the institutions in which students enroll, graduation rates, and their

field of study.

Our results show that each additional robot increases local college enrollment by about four

students, suggesting that the introduction of industrial robots between 1993 and 2007 has increased

college enrollment rates by roughly three percent. This result is driven by young individuals who de-

lay their full-time labor market entry to acquire college education, highlighting that the educational

response to robot exposure is different from that of other (non-technology) shocks, such as trade

and immigration, which have been shown to mainly increase college enrollment among displaced

middle-aged workers (Hickman and Olney, 2011).

We further show that these results are driven by students who enroll in local public community

colleges. These institutions are often less expensive, and they are praised for their quick response

to labor market demand shifts (Betts and McFarland, 1995), making them a valuable option for

low-skilled prime-age workers and for non-traditional students to rapidly re-train and increase their

competitiveness on the labor market. We do not find evidence of students migrating away from

exposed areas to enroll in college, but we observe a decrease in incoming students. This result

follows from the fact that also workers with a post-secondary education are exposed to the adverse

effects of robots to some extent (Acemoglu and Restrepo, 2020), inducing prospective migrants to
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avoid these local labor markets (Faber et al., 2022).

Turning to the intensive margin of the human capital adjustment, we observe a shift in the

distribution of graduations towards more applied fields. In particular, we find that students are

graduating more often in fields related to Computer Science and Engineering, which are likely to

offer better job prospects in the years to come due to their complementary role to new technologies.

Robots also increase the share of students who graduate in subjects requiring interpersonal skills

that are more difficult to automate, such as Business and Economics, and other Social Sciences.94

To pin down the mechanism through which the adoption of robots increases the share of the

population that attends college, we build a task-based model with heterogeneous workers and en-

dogenous college enrollment. The model predicts that the adoption of robots may affect college

enrollment through two distinct channels. First, they reduce the opportunity cost of college enroll-

ment, as robots take over low-skill tasks. Second, they increase the college wage premium, as they

potentially complement high-skill tasks.95 We test these predictions in the data, and find that our

results are likely to be driven by the opportunity cost channel. We find that workers without any

college education experience the largest risk of displacement through robots along with a reduction

in wages, which induces marginal individuals to enroll in college to increase their competitiveness

on the labor market. However, also workers with an Associate degree experience a wage loss that is

not significantly different from less educated workers. Therefore, we can rule out the college wage

premium channel.96,97

This paper relates to several streams of literature. In particular, our work builds on but fun-

damentally departs from the traditional literature on SBTC and education (Acemoglu and Autor,

2012, Goldin and Katz, 2010, Goldin et al., 2020, Tinbergen, 1974). While SBTC corresponds

to technology becoming more favorable to high-skilled workers (Card and DiNardo, 2002, Juhn et

al., 1993, Katz and Murphy, 1992), we focus on automation technologies that displace low-skilled
94 These results are in line with the literature, which argues that individuals respond to labor market shocks by

selecting fields of study with larger earnings returns (Blom et al., 2021, Foote and Grosz, 2020).
95 This assumption is drawn from Prettner and Strulik (2020), who use an R&D-driven growth model to show how

automation technologies increase income and wealth inequality in the labor market, and decrease the labor share,
encouraging a larger share of the population to graduate from college.

96 Although also wages of workers with a Bachelor’s degree decrease in exposed CZs, they decrease to a smaller extent,
suggesting that robots increase the four-year university wage premium, both compared to community colleges and
to no college education. These relative changes, however, do not trigger a visible increase in enrollment rates in
these institutions at the local labor market level.

97 Note that due to the weaker displacement effect of robots on workers with an Associate degree, relative to workers
without any college education, they increase the expected wage income of these workers in the long run.
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workers, but do not necessarily complement high-skill labor (Acemoglu and Restrepo, 2021). We

provide novel evidence about the effects of the introduction of industrial robots on post-secondary

education enrollment in the US.

Our work also relates to the literature that analyzes the margins of adjustment of workers

exposed to automation. Acemoglu and Restrepo (2020) show that the adoption of industrial robots

contributed to significant employment and wage losses in the US between the early 1990s and 2007.

Faber et al. (2022) show that the adverse effects of robots on the labor market are visible also

among the internal migration flows of workers. In particular, they show that the introduction of

robots has decreased the share of incoming migrants in exposed areas, but that it has not affected

outflows; a result that, according to our findings, can be applied also to college students. Lerch

(2020) further shows that robots have also an adverse effect on labor force participation, increasing

disability take-up, early retirement and college enrollment of non-participants. Our work adds to this

literature by analyzing the impact of robots on human capital adjustments both from the extensive

and the intensive margin, and focuses on the working-age population, providing evidence that the

rise in college enrollment goes significantly beyond its impact on non-participation. Also, Dauth

et al. (2021) show that robots have increased within-firm upgrading, raising the share of college-

educated workers employed in Germany at the expense of the share of employees who completed an

apprenticeship. This result might be driven by workers adjusting their human capital, but also by

employers altering their hiring decisions. We complement these findings by focusing on the impact of

robots on the educational decision of individuals, again from the extensive and the intensive margin.

Moreover, we provide evidence on the US, a country that has experienced significant employment

losses due to the introduction of robots compared to Germany, and where education is much more

expensive.

Most closely related to our work, a contemporaneous and independent manuscript by Branco

et al. (2022) investigates the impact of robots on college attainment in the US. They show that

people who were born in states which are more exposed to robot adoption are more likely to earn a

Bachelor’s degree. We complement this finding in two ways. First, we focus on the impact of robots

on actual college enrollment at the time of exposure rather than focusing on college attainment of

exposed cohorts later in life. A higher share of the college-educated population might be the effect

of higher college enrollment rates or higher graduation rates. Using our approach we can distinguish
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between these two channels. We show that human capital accumulation as an adjustment margin

against robot exposure is primarily driven by higher enrollment rates.

Second, using CZ-level variation in robot exposure we show that individuals enroll in local

community colleges to attain an Associate degree, while Branco et al. (2022) exploit state-level

variation and find an increase in Bachelor’s degree attainments from four-year institutions. We

replicate their finding and perform a state-level analysis using our empirical approach. We show

that extending the shock beyond the local labor market of residence of individuals also increases

enrollment in four-year institutions.98 This result holds to the exclusion of the shock in students’ CZ

of residence, suggesting that individuals who base their college enrollment decision on the exposure

to robots outside of their local labor market are more likely to pursue a Bachelor’s degree than

individuals who focus on the exposure in their local labor market of residence.

These results are in line with other studies which show that individuals who adjust their human

capital as a response against adverse shocks in their local labor market enroll in community colleges

rather than in four-year universities (Foote and Grosz, 2020, Weinstein, 2020). These individuals

might lack the necessary skills to complete a Bachelor’s degree and might have different socio-

economic characteristics than individuals who account also for shocks outside of their local labor

market in their decision on whether to enroll in college (Manski and Wise, 2013).

We also contribute to the growing literature that studies the impact of local labor market shocks

on human capital adjustments, including business cycles (Betts and McFarland, 1995, Blom et al.,

2021, Liu et al., 2019), industry and firm-specific shocks (Cascio and Narayan, 2022, Foote and

Grosz, 2020, Weinstein, 2020). While these studies focus on temporary shocks whose effects are

likely to vanish in the long run, we investigate the impact of automation technologies that are

disrupting labor markets at an unprecedented speed, and that are likely to heavily affect the skill

requirements of future jobs, as well as the composition of labor markets.

Our results are in line with the literature that analyzes the educational response of structural

shocks on the manufacturing sector. Greenland and Lopresti (2016) show that rising US imports

from China increase the share of high school graduations in the country. Hickman and Olney (2011)

show that offshoring and immigration have increased enrollment rates of community colleges in the
98 Note that on average each state includes 15 CZs, i.e. states consist of multiple local labor markets. The number

of CZs on the US mainland is 722, ranging from one CZ in the states of Rhode Island and Connecticut to 64 in
Texas.
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US, but not of other types of institutions, in particularly for older, non-traditional students. Atkin

(2016) shows that rising exports in the manufacturing industry in Mexico have increased high school

dropouts, while Tuhkuri (2021) shows that the decline in manufacturing production in the US had

a negative effect on local high school dropout rates. We complement this stream of the literature

by focusing on post-secondary education outcomes. This is an important topic, since it is not a

priori clear whether rising high school graduation rates have a positive impact on college enrollment

rates. For instance, liquidity and credit constraints (Lovenheim, 2011, Manoli and Turner, 2018),

imperfect information on the returns to education (Jensen, 2010), or the lack of the necessary skills

to attend college (Athreya and Eberly, 2021) may prevent individuals from acquiring additional

human capital as a response to adverse labor market shocks.

The remainder of the paper is organized as follows. Section 3.2 describes the data. Section 3.3

presents the empirical strategy. Section 3.4 reports the results of the empirical analysis. Section

3.5 introduces a theoretical framework to illustrate the mechanism through which robot adoption

affects college enrollment, and Section 3.6 concludes.

3.2 Data and summary statistics

This section describes the main data used in the empirical analysis along with a set of summary

statistics.

3.2.1 Industrial robots

We obtain data on the adoption of industrial robots from the International Federation of Robotics

(IFR). Industrial robots are machines that can be programmed to autonomously perform several

manual tasks without further intervention of a human worker. The IFR defines an industrial robot as

an “automatically controlled, re-programmable, multipurpose manipulator, programmable in three

or more axes, which can be either fixed in place or mobile for use in industrial automation applica-

tions” (IFR, 2018). Assembly lines, elevators or industrial looms are excluded from this category,

since they do not meet these requirements.

The IFR collects data about the shipment and operational stock of industrial robots using yearly

surveys of robot suppliers that capture around 90 percent of the world market. It estimates that
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the stock of industrial robots in the US has increased by about one robot per thousand workers

between 1993 and 2007, or roughly 120,000 units. The IFR provides an industry breakdown of

robot adoption following the International Standard Industrial Classification (ISIC, 4th review) for

about 50 countries since the 1990s. Industry classifications consist of seven broad sectors (Agri-

culture, Construction, Manufacturing, Mining, Education and Research, Services, and Utilities)

and more granular industries within the manufacturing sector (including Automotive, Basic Met-

als, Electronics, Food and Beverages, Industrial Machinery, Metal Products, Minerals, Paper and

Printing, Plastics and Chemicals, Shipbuilding and Aerospace, Textiles, Wood and Furniture, and

miscellaneous manufacturing). For details, see Table C2.

IFR data are praised for their reliability, but they include also some limitations that we address

in Appendix C1.

3.2.2 Post-secondary education

We match robotics data with information on college enrollment and educational attainment at the

local labor market level using data from two sources, the US Census/ACS and IPEDS.

Census and ACS – We obtain demographic data of the US population from the Integrated

Public Use Microdata Series (IPUMS) of the decennial Census samples for 1970, 1980, 1990 and

2000, and the American Community Survey (ACS) for 2007 (Ruggles et al., 2019).99 These datasets

are repeated cross-sectional surveys that include between 1 and 5 percent of the US population and

provide a comprehensive set of information at the individual level. We restrict our sample to the non-

institutionalized civilian population and focus on individuals aged between 19 and 64 years, since

they are above the usual high school age and below the retirement age. We consider as students

those individuals who report to be enrolled in school with the pursuit of a degree.100 Schooling does

not include enrollment in a trade or business school, company training, or tutoring unless the course

would be accepted for credit at a regular college. We also use information about students’ current
99 Following the literature, we increase the sample size of the ACS using data from the 3-year sample of 2006-2008.

100 Note that questions regarding school enrollment changed somewhat between the Census and the ACS. In the
Census, individuals are asked if they attended school since February 1st of the respective year, while in the ACS
they are asked if they attended school in the three months prior to the interview. Although we cannot directly test
for it, we show that our results are not affected by this change in the questionnaire text. To do this, in Section 3.4
we compare our findings from the Census/ACS samples and the IPEDS (see following section for a description of
the latter), and find very similar results.
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and previous place of residence to track their internal migration flows across local labor markets.101

We follow the literature and proxy US local labor markets using 722 Commuting Zones (CZs,

Tolbert and Sizer, 1996). These areas cover the entire US mainland and are formed by clusters of

counties with strong commuting ties within CZs and weak commuting ties across CZs, representing

economically relevant regions for labor markets (Autor and Dorn, 2013).102 This aggregation allows

us to build measures of college enrollment at the local labor market level:

scz,t =
Scz,t
Ncz,t

(81)

where Scz,t and Ncz,t represent the number of students and the working-age population in CZ cz

in year t. This measure includes students who have migrated across CZs to enroll in college and

students who were already living in the area in which the college is located. We come back to this

point when discussing student migration flows in Section 3.4.

IPEDS – We complement Census/ACS data with institutional data from the Integrated Post-

secondary Education Data System (IPEDS), a publicly available database provided by the National

Center for Education Statistics (NCES). These data report annual information about the universe

of title IV higher education institutions, including college enrollment, admission rules, tuition fees,

student grants, graduation rates, and fields of graduation. Title IV institutions are entities that

process US federal student aid and include public and private (for profit and non-profit) institutions.

Additionally, the IPEDS includes sporadic data on non-Title IV colleges that submit information

on a voluntary basis. We exclude these institutions from our analysis due to inconsistencies in the

data and due to selection issues. Following previous studies, we exclude also for-profit institutions,

institutions that enroll on average less than 50 first-year students, and those that provide data for

less than three years of our sample period (Ebrahimian, 2022, Foote and Grosz, 2020).103 Using
101 A limitation in the Census and ACS data is that the questions about the migration status of individuals change

over time. In particular, the Census asks whether a person changed residence in the previous 5 years, while the
ACS asks whether a person changed its residence in the previous year. Appendix C1 provides detailed information
about how we deal with this issue.

102 The IPUMS provide county groups or Public Use Microdata Areas as smallest geographic units. Following Autor
and Dorn (2013), we aggregate data at the CZ level using a crosswalk that provides a probabilistic matching of
sub-state geographic units in US Census Public Use Files to CZs.

103 The IPEDS often undercounts the number of for-profit institutions and is not accurate in identifying their location
(Foote and Grosz, 2020), which, in our analysis, is particularly important for the determination of the local labor
market in which institutions are located. For additional information on shortcomings in the data about for-profit
institutions, see Cellini (2005, 2010) and Cellini and Goldin (2014).
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ZIP codes from institutions’ campuses, we aggregate these data at the local labor market level and

obtain information on 603 CZs.104

3.2.3 Summary statistics

College education is likely to be a good investment when facing the risks of automation on the labor

market. Table 3.1 shows that only 1 percent of the workers with a Bachelor’s degree are employed in

jobs that are replaceable by robots. This share increases to 3.69 for workers with an Associate degree

from community colleges, and to more than 10 percent for workers without a college degree.105 This

result follows from the fact that robots are mainly adopted to perform low-skill and middle-skill job

tasks (as illustrated in Figure C1). These jobs often have a high physical workload which requires

manual dexterity and are performed by blue-collar workers of the manufacturing sector (Ge and

Zhou, 2020, Lerch, 2021). College-educated workers are less likely to work in these jobs and are

usually employed in occupations which require the use of communication and interpersonal skills

that are more difficult to automate (Acemoglu and Autor, 2011). Hence, individuals may invest in

additional human capital as a form of self-insurance against the employment risks of automation. In

line with this hypothesis, Table 3.1 shows that between 1990 and 2007, the share of the population

aged between 19 and 34 years that is enrolled in college increased by one fourth, from 20.5 to almost

25 percent.

The table further illustrates descriptive statistics on post-secondary education institutions’ char-

acteristics and students’ fields of study. The average CZ hosts 3.13 public institutions and 2.44 pri-

vate institutions. About 60 percent of the institutions are universities that offer four-year programs,

while the remaining 40 percent are community colleges which usually offer programs that do not ex-

ceed two years of length. Public institutions are three times as large as private institutions, with an

average enrollment of 6,200 students, while both, universities and community colleges, count about

4,500 students. In the 1990s, most students graduated in fields related to Arts and Humanities

(27.3 percent), Health sciences (23.7 percent), and Business and Economics (18.8 percent). Only

7.02 percent of the students graduated in Computer Science or Engineering, a share that, however,
104 We do not observe the full universe of CZs since not all of them have a college based in the area, and, as described

above, we exclude some colleges due to inconsistencies in the data.
105 We follow Graetz and Michaels (2018) and classify 1980 US Census occupations according to their replaceability by

robots. Occupations are considered to be replaceable if, by 2012, their work could have been performed, completely
or in part, by robots.
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Table 3.1: Descriptive statistics

1990 ∆07−90

Mean Std Min Max Mean

[1] [2] [3] [4] [5]

Panel A: Population

Employment in jobs that are replaceable by robots
All individuals 7.73 3.04 2.27 20.6 -1.00

Bachelor’s degree 1.08 0.38 0.00 3.34 -0.03
Associate’s degree 3.69 1.48 0.38 11.7 -0.18
No college degree 10.1 3.48 3.63 24.3 -0.61

Share of college-educated population
Bachelor’s degree 20.7 5.93 6.32 36.9 6.37
Associate’s degree 6.89 1.58 2.15 13.8 1.13

Share of students
Total 11.8 2.88 4.67 37.0 -0.84

19-34 years 20.5 4.74 8.21 56.5 4.41
35-64 years 4.96 1.31 1.76 8.30 -1.40

Panel B: Institutions

Number of institutions in CZ
Public institutions 3.13 4.36 0.00 60.0 0.14
Private institutions 2.44 6.71 0.00 78.0 0.05
Community colleges 2.13 3.31 0.00 47.0 0.06
Universities 3.10 7.11 0.00 88.0 0.03

Number of students enrolled (in thousands)
Public institutions 6.24 7.35 0.04 52.6 1.20
Private institutions 1.98 3.16 0.02 34.1 0.54
Community colleges 4.41 5.42 0.06 49.0 1.08
Universities 4.70 6.94 0.02 52.6 0.93

Panel C: Fields of study

Business and Economics 18.8 8.59 0.00 49.0 -7.40
Computer Science and Engineering 7.02 6.01 0.00 40.8 0.66
Health Science 23.7 12.5 0.00 91.0 3.54
Arts and Humanities 27.3 19.5 0.00 100 5.45
Manufacturing 12.6 13.2 0.00 80.9 -3.00
Natural Science 2.71 5.61 0.00 63.0 -0.58
Public and Military 3.12 3.38 0.00 17.6 0.78
Social Science 4.60 6.20 0.00 61.8 0.60

Notes: This table illustrates descriptive statistics of the main variables used in the empirical analysis at the CZ level. Columns
1 to 4 include average values, standard deviations, minimum and maximum values in 1990. Column 5 includes average changes
between 1990 and 2007. Shares are multiplied by 100. Panel A presents populations shares of the respective population group.
For instance, the share of students between 19 and 34 years is computed as a CZ’s number of students in this age range divided
by the population of 19 to 34 year old individuals in that CZ. All means are weighted by the respective CZ population group
in 1990. Panel B presents statistics about the number of institutions in a CZ and the average number of individuals within
institutions expressed in thousands of students. Note that the latter is not expressed at the CZ level, but at the institution
level. Panel C presents the distribution in the fields of study among eight broad categories. By construction, the sum of the
shares is equal to 100.

has increased by about 10 percent until 2007 and, as we will show later, goes hand-in-hand with

the introduction of industrial robots.
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3.3 Empirical strategy

The aim of this paper is to estimate the effect of robot adoption on human capital adjustments at

the CZ level. There are two challenges that we need to overcome to perform this type of analysis.

First, the IFR provides data only at the country-industry level. Second, robot exposure and human

capital adjustments may be jointly determined by unobserved labor market factors.

To address the limitation in the data, we follow Acemoglu and Restrepo (2020) in using a

shift-share design which allows us to apportion robot adoption at the industry level across regions

according to their shares of the industry’s total employment:106

US robot exposurecz,t =
∑
j∈J

` 90cz,j

[
RUSj,t −RUSj,t−1

LUSj,90

− gUSj,t
RUSj,t−1

LUSj,90

]
(82)

This approach is common practice in studies where an industry-level shock has differential effects

on regions due to differences in the local industry structure (Dauth et al., 2021).107

The share component, ` 90cz,j =
L90
cz,j

L90
cz

, is defined as industry j’s employment share in CZ cz in

1990. We keep the baseline employment shares constant to avoid endogeneity and serial correlation

concerns across our sample periods. The shift component measures the national adoption of robots

in industry j, ∆RUSj,t , relative to its workforce in 1990, LUSj,90, adjusted for the adoption of robots

that is driven by overall industry output growth, gUSj,t = ∆ ln(Y US
j,t ).

Identification builds on the assumption that advances in robotics vary by industry and expose

local labor markets differently depending on the industrial composition of employment. However,

robot adoption may also be the fueled by domestic industry-specific demand shocks (Bonfiglioli et

al., 2020). For instance, a positive shock may induce US firms to raise both capital and employment,

increasing the opportunity cost of attending college (Atkin, 2016). This condition would bias our

estimates of the effect of robots on human capital adjustment towards downwards.

We address endogeneity concerns by instrumenting the shift-component of Equation 82 with

contemporaneous changes in the stock of robots in seven European countries that have a comparable
106 Note that the shift-share approach is also addressing part of the endogeneity concerns that would emerge if we

could observe the actual adoption of robots at the regional level.
107 We are implicitly assuming that changes in the industry’s stock of robots are homogeneous across regions, condi-

tional on the industry structure of employment.
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adoption of robots as the US:

EU7 robot exposurecz,t =
∑
j∈J

` 70cz,j
1

7

∑
i∈EU7

[
Rij,t −Rij,t−1

Lij,90

− gij,t
Rij,t−1

Lij,90

]
(83)

where Rij,t is the stock of robots in country i ∈ EU7 at time t in industry j. EU7 countries

include Denmark, Finland, France, Italy, Spain, Sweden and the United Kingdom. On average,

these countries had a similar development in the adoption of robots as the US.108

The IV strategy aims at identifying the labor market effects of exogenous improvements in

robotics available to US firms. It relies on the assumptions that the adoption of robots in European

countries is positively related to the adoption of robots in the US (relevance assumption), but that

it is unrelated to domestic labor market conditions (exclusion restriction). Table 3.2 shows that

the instrument clearly satisfies the relevance assumption. Although we cannot test formally for the

validity of the exclusion restriction, we discuss potential threats to identification in Appendix C4,

including international product market competition, pre-trends in college enrollment, and industry

trends (using a leave-one-out strategy), showing that our estimates are robust and unlikely to be

driven by these channels.

Figure 3.1: Robot adoption at the CZ level, 1993-2007

Notes: This figure illustrates the distribution of robot exposure, in robots per thousand workers, across US labor markets
between 1993 and 2007, as well as the US mean and its standard deviation.

Figure 3.1 illustrates the distribution of the shock across US CZs. Robot exposure is clearly
108 Note that the instrument uses also industry employment shares from 1970 to focus on the industrial composition

of employment that precedes the introduction of industrial robots, as suggested by Acemoglu and Restrepo (2020)
and Goldsmith-Pinkham et al. (2020).
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concentrated in the Northeast and Midwest of the US, including the states of Indiana, Michigan

and Ohio. These regions – often referred to as the Rust Belt – host a significant fraction of firms

that are specialized in the steeling and automotive industry, and hence are likely to adopt industrial

robots in their production processes.

We exploit variation in the exposure to industrial robots across local labor markets over time

using a stacked first-difference specification with two time periods (1993-2000 and 2000-07).109 Our

sample period ends in 2007 to avoid the potentially confounding effects of the Great Recession and

the increase in online learning in the 2010s.110 The estimating equation is given by:

∆scz,t = β ·US robot exposurecz,t + X′cz,90Γ + εcz,t (84)

where ∆scz,t is the change in our educational outcome of interest in cz between t and t−1 (e.g. the

share of students). US robot exposure measures a CZ’s exposure to industrial robots, as defined in

Equations 82. We also include a set of covariates that account for factors that could confound our

estimates of the effect of robots on human capital adjustments, including the China trade shock

(Autor et al., 2013), non-robot technology shocks, pre-trends, the supply of education institutions,

demographic characteristics, and the employment composition of CZs. We provide detailed informa-

tion about these controls in Table 3.2 and in Appendix C1. We keep CZ characteristics constant at

their 1990 levels to avoid contamination by endogenous labor market adjustments to robot adoption

during our sample period.

3.4 Robots and human capital adjustments

This section presents the results of the empirical analysis.
109 Note that in the 1990s the IPUMS includes only data from the 1990 Census. For comparability across periods, we

rescale the 1990-2000 period to a 7-year equivalent change.
110 According to NCES, in 2003 less than 5 percent of the students were enrolled in complete distance learning programs

(NCES, Students Enrolled in Distance Education, accessed in June 2021). This number has more than doubled
until 2015 (11 percent). The change is even higher when looking at students who had at least some distance
education, increasing from 16 to 43 percent. We exclude from our sample the 2010s, since the rapid rise in online
learning increases the share of students of whom we cannot observe the local labor market of reference in the IPEDS
data. For completeness, we illustrate a set of results including a third period from 2007 to 2014 in Table C3 in
Appendix. Census estimates are more noisy, but they are not significantly different from our main specification’s
results.
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3.4.1 College enrollment

We start by analyzing the impact of automation on human capital adjustments from the extensive

margin, focusing on college enrollment rates. Table 3.2 reports the results from Equation 84.

Regressions are weighted by the CZ population in 1990 and standard errors are clustered at the

state level.

Table 3.2: Robots and college enrollment

Census/ACS IPEDS

All students All students Undergrad. Graduate

[1] [2] [3] [4] [5]

Panel A: OLS results
US robot exposure 0.232∗ 0.215∗∗∗ 0.257∗∗ 0.249∗∗∗ 0.008

(0.130) (0.066) (0.104) (0.088) (0.033)

Panel B: IV results
US robot exposure 0.277∗ 0.349∗∗∗ 0.309∗∗ 0.314∗∗ -0.005

(0.163) (0.100) (0.141) (0.131) (0.031)

Panel C: First-stage
EU7 robot exposure 0.558∗∗∗ 0.526∗∗∗ 0.521∗∗∗ 0.521∗∗∗ 0.521∗∗∗

(0.032) (0.017) (0.016) (0.016) (0.016)

Kleibergen-Paap F stat 301.2 30.7 28.2 28.2 28.2

Observations 1444 1444 1161 1161 1161

Covariates:
State FE X X X X X
Year FE X X X X X
Pre-trends X X X X
Chinese imports X X X X
Demographics X X X X
Industries X X X X
Occupations X X X X
Institutions X X X X

Notes: This table illustrates OLS and IV estimates of the effect of robot exposure on changes in the share of students at
the CZ level. Changes are expressed in percentage points of the working-age population and are multiplied by 100. Panel
C also reports first-stage results. Column 1 controls only for state fixed effects, division fixed effects, year dummies and the
interactions of the latter two. All remaining columns include also changes in the college enrollment rate between 1970 and 1990,
a measure of the China trade shock, CZ demographic (share of females, Blacks, Hispanics, 25-34 year, 35-44 year, and 45-54 year
old individuals, individuals without a college degree, and the logarithmic population), industries (share of employment in the
construction, manufacturing, mining, research, service and utilities industry), occupations (share of routine task-intensive and
offshorable occupations), and institution (public, private, count of universities ranked among the top 30 US university ranking
of 2020, institutions with an average number of students above 20 thousand, and the share of students that receive financial
aid) characteristics of CZs in 1990. Columns 1 and 2 use data on outcomes from the Census/ACS and Columns 3 to 5 use data
from the IPEDS. Standard errors are robust against heteroskedasticity and allow for clustering at the state level. Regressions
are weighted by CZ population in 1990. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

Column 1 presents baseline estimates of the effect of robots on the share of students controlling

only for state fixed effects and division-specific business cycles. The estimates show that the intro-

duction of robots has a positive effect on the share of individuals who enroll in college. Columns 2 to
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5 further include additional covariates to minimize the exposure of the estimates to confounding ef-

fects of omitted variables. The inclusion of these controls improves the precision of our estimates.111

In line with the endogeneity concerns, OLS estimates are smaller than IV estimates, since they are

likely to be biased towards zero. In the remainder of the analysis, we focus on the IV results.

In our preferred specification (Column 2 using the Census/ACS and Column 3 using the IPEDS),

estimates show that one additional robot per thousand workers increases the share of students

between 0.30 and 0.35 percentage points. In other words, each additional robot has increased college

enrollment by about four students, a result which suggests that the introduction of industrial robots

has contributed to an increase in the share of students that is equivalent to almost three percent of

its 1990 level.112 Columns 4 and 5 use IPEDS data to split the estimates between students who are

pursuing an undergraduate or a graduate degree. We show that our results are driven by students

who enroll in undergraduate programs.

Table 3.3: Robots and college enrollment: Institution characteristics

Ownership Program length

Public Private Four-year Two-year < Two-year

[1] [2] [3] [4] [5]

US robot exposure 0.279∗∗ 0.036 0.070 0.284∗∗∗ -0.039
(0.109) (0.044) (0.072) (0.083) (0.028)

Observations 1161 1161 1161 1161 1161

Covariates: X X X X X

Notes: This table illustrates IV estimates of the effect of robot exposure on the share of undergraduate students and decomposes
the effect by institution characteristics using data from the IPEDS. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%,
5% and 10% confidence level.

Table 3.3 decomposes the estimate of the effect of robots on undergraduate students (Column

4 of Table 3.2) by institution characteristics. We find that students respond to robot exposure by
111 In Table C4 of the Appendix, we provide estimates also for the impact of import competition from China. The

inclusion of this variable does not affect the estimates of the effect of robots, i.e. the impacts of the two shocks are
mostly unrelated to each other. When standardized, the size of the estimates is almost the same (0.185 and 0.170),
suggesting that both the robot shock and the trade shock have a similar impact on college enrollment in the US.

112 These estimates are computed as follows. (i) We compute the effect of the introduction of one additional industrial
robot on the increase of students using the estimated effect of one robot per thousand workers on the share of
students (0.30 − 0.35) and multiply it with the US sample population in 1990 (147,437,773) and the increase in the
number of robots per thousand workers between 1993 and 2007 (1). We then divide this product by the increase
in the number of robots between 1993 and 2007 (120,000) to obtain the change in the number of students for each
additional robot. (ii) We compute the percent change in the share of students by dividing the estimated effect of
one robot per thousand workers on the share of students (0.30 − 0.35) with the share of students in 1990 from
Table 3.1 (11.8).
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enrolling in public institutions, in particular in two-year institutions, such as community colleges.

This result is consistent with the literature which shows that enrollment rates in community colleges

are more sensitive to local labor market conditions than enrollment rates in four-year universities

(Betts and McFarland, 1995, Hickman and Olney, 2011, Manski and Wise, 2013).113 The short

time frame required to attain a degree, the focus on technical skills, and the relatively low cost

of tuition make community colleges a valuable option for low-skilled prime-age workers and for

non-traditional students to rapidly re-train and increase their competitiveness on the labor market

(Foote and Grosz, 2020, Hickman and Olney, 2011).114

Figure 3.2 further provides details about the age composition of students, breaking down the

effect of robots on college enrollment into 5-year age groups. Results show that the effect is strongest

among students between 19 and 34 years of age. These individuals account for 70 percent of the total

effect, with most of them being unlikely to have much experience on the labor market. They may

therefore be delaying their full labor force entry to acquire additional skills, since the opportunity

cost of enrolling in school are lower during poor labor market conditions (Altonji et al., 2016),

and they have the most to gain from additional human capital given their longer working-life

horizon. Although the effect decreases in size after the age of 35, it remains statistically significant

at conventional levels for most age groups. These individuals are instead likely to enroll in college

after a job loss.115

113 In Appendix C5, we perform a state-level analysis which shows that the extension of the exposure to robots outside
of the local labor market of residence of individuals increases enrollment also in four-year institutions. This result
holds to the exclusion of the shock in students’ CZ of residence, suggesting that individuals who base their college
enrollment decision on the exposure to robots outside of their local labor market are more likely to pursue a
Bachelor’s degree than individuals who focus on the exposure in their local labor market of residence.

114 According to the NCES, in 2007-08 the average tuition fees at four-year (two-year) public institution were around
7,000 (2,500) dollars, while they were almost 25,500 (15,500) dollars at private institutions. Tuition fees are
expressed in 2018-19 dollars and do not include room and board cost. For public institutions, in-state tuition fees
are used (NCES, Tuition Fees, 2020, accessed in June 2021). Tuition fees for out-state students are usually higher.
As a comparison, Ehrenberg (2020) estimates that in 2007-08 the average tuition fees at four-year public institution
were around 6,000 dollars for in-state students and 16,500 dollars for out-state students.

115 Table C6 explores the employment status of students. We find that 62 percent of the younger students and 85
percent of the older students are not employed while being enrolled in college, with the remaining ones being
employed part-time. This result confirms our hypothesis that students are either delaying their full labor market
entry in their young ages, or that they enroll in college after a job loss. Only a minority of students is employed
while enrolled in college.
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Figure 3.2: Robots and schooling by age

Notes: This figure illustrates IV point estimates of the effect of robot exposure on the share of students by age groups using
Census/ACS data. Confidence intervals are at the 95% level.

3.4.2 Student migration

Figure 3.3 shows that college students are substantially more mobile than the rest of the population:

26 percent of them have migrated across CZs in the previous five years, while this number is about

10 percentage points lower for non-students. For migrating students, the decision to accumulate

additional human capital is unlikely to be driven by the shock in the CZ in which the college is

located, as assumed using Equation 84, but by the shock in the CZ they are coming from. If

these individuals account for a large share of students who enroll in college because of robots, our

estimates may be biased (since we are not identifying whether these students were exposed in the

CZ in which they grew up).

Figure 3.3: Share of migrating population, 1990

Panel A: Non-students Panel B: Students

Notes: This figure illustrates the share of the population that migrated across CZs in the previous five years in 1990 using
Census data. Shares are multiplied by 100. For instance, a value of 20 percent implies that one fifth of the CZ’s current
population was living in another CZ in the previous 5 years. Panel A shows the share of migrants among individuals that are
not enrolled in school. Panel B shows the share of migrants among students.
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To address this concern, we use Census and ACS data to compute all possible cross-CZ migration

flow combinations of students (movers, 722 × 721), as well as counts of the residual group of non-

migrating students (stayers, 722 × 1). We use these data to study the migration decisions of

prospective students from two perspectives, (i) the perspective of the college’s CZ (in-migrants

and stayers) and (ii) the perspective of their CZ of origin (out-migrants and stayers). Table 3.4

illustrates the results.116

Table 3.4: Robots and student migration

All students Stayers Movers

[1] [2] [3]

Panel A: Perspective from college CZ
US robot exposure 0.325∗∗∗ 0.379∗∗∗ -0.053∗∗∗

(0.081) (0.074) (0.016)

Panel B: Perspective from origin CZ
US robot exposure 0.262∗ 0.267∗ -0.004

(0.151) (0.138) (0.018)

Observations 1444 1444 1444

Covariates: X X X

Notes: This table illustrates IV estimates of the effect of robot exposure on the share of students and decomposes the effect by
stayers and movers using Census/ACS data. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence
level.

Panel A analyzes enrollment and migration flows of students from the perspective of the CZ

in which the college is located. For this purpose, we decompose the share of students who are

enrolled in college in cz from Equation 81 between students who were already living in this CZ in

the previous five years (stayers), Sd, and those who have moved there from one of the other 721

CZs (incoming movers), So:

scz =
Scz
Ncz

=
Sd
Ncz

+
1

Ncz

722∑
o=1
o 6=d

So (85)

We find that robots significantly increase the share of students among the stayers, i.e. these

individuals enroll in colleges located in their CZ of origin. When considering movers, we find that

robot exposure in the college’s CZ has a deterrent effect on incoming students. In other words,
116 Note that these estimates are subject to some measurement error, since the Census/ACS provide less granular

information on the CZ of origin of students (3-digit PUMA rather than 5-digit PUMA). This affects only a relatively
small fraction of PUMAs which cannot be assigned unambiguously to a CZ using the crosswalk provided by Autor
and Dorn (2013). We overcome this issue by adding two zero digits at the end of the 3-digit code. The measurement
error is modest in size since “00” accounts for almost two thirds of the 5-digit PUMA final digits, and these PUMAs
are very likely to be in the same CZ as PUMAs which end by “01”, “02”, “03”, and so on.
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movers avoid colleges located in highly exposed CZs. This result holds for students who are both

migrating from within and outside the college’s state (see Table C5), and may follow from the fact

that, as we will show in Section 3.5, robot exposure has an adverse impact also on the labor market

outcomes of college-educated workers.

Panel B analyzes whether students migrate away from their CZ of origin to enroll in college

when exposed to robots. To do so, we build aggregate counts of students at the level of their CZ

of origin. For movers, this CZ is different from their college’s CZ, while for stayers they are the

same. With reference to the decomposition exercise in Equation 85, cz is now defined as their CZ

of origin, not the CZ of the college (So are now students from cz who migrated to some other CZ

to enroll in college).

Results show that robot exposure does not affect the share of students who move away from

their CZ of origin to enroll in college. Together with the finding from Panel A, these results suggest

that the effect of robots on college enrollment is driven by students who enroll in a local college

(stayers).117 This finding also matches with the result that increasing enrollment rates are driven

by community colleges. It is rather unlikely that individuals migrate across CZs to enroll in a two-

year program, as the (perceived) quality of these institution is less heterogeneous than for four-year

universities.118

Finally, note that the sum of the estimates from Columns 2 and 3 of Panel A (as illustrated in

the decomposition exercise of Equation 85) provides the total share of students in the CZ of the

college (see Column 2 of Table 3.2). On the other hand, the sum over Columns 2 and 3 of Panel

B provides the share of students from the perspective of their CZ of origin (rather than from the

college’s CZ).119

117 This result is in line with the findings of the literature at the population level showing tha robot exposure does not
increase out-migration but reduces in-migration (Faber et al., 2019, Lerch, 2020).

118 In Table C11 of Appendix C4, we show disaggregated results in which we analyze the impact of robot exposure
both in the CZ of origin and the CZ of the college on individual migration flows of students. The findings are
analogous to the results from our simple aggregation exercise.

119 Note that the estimate of Column 1 of Panel A of Table 3.4 is slightly different from the estimate in Table 3.2
because some individual observations are dropping out from the sample due to missing information about their
migration status. Moreover, Column 1 of Panels A and B is different because the estimates have been computed
using different populations of reference (denominator of Equation 85), correcting for the respective inflow (A) and
outflow (B) of students. When comparing these findings with the results from Census/ACS and IPEDS data (Table
3.2), one should use Panel A, since it uses student counts from the perspective of the college’s location (and it has
the same denominator).
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3.4.3 Educational attainment

We now turn to human capital adjustments from the intensive margin, as an increase in college

enrollment does not necessary imply that more students actually graduate and acquire the necessary

skills to be more competitive on the labor market (Burga and Turner, 2022). We therefore investigate

the impact of robots on students’ commitment to complete their studies, based on average graduation

rates, and their field of study choice.

Graduation rates – We compute average graduation rates using data from the IPEDS Grad-

uation Rate Survey (GRS) focusing on community colleges, since they are driving our results on

enrollment. These data include the share of individuals who graduate within one-and-a-half times

of the program length.120

Table 3.5: Robots and graduation rates

College-educated individuals

Graduation
rates Bachelor’s degree Associate degree

[1] [2] [3]

US robot exposure 0.974 -0.066 0.173∗∗∗
(0.921) (0.079) (0.064)

Observations 870 1444 1444

Covariates: X X X

Notes: This table illustrates IV estimates of the effect of robot exposure on graduation rates in two-year institutions. Column
1 includes graduation rates computed as the share of students belonging to a specific cohort that completes college within
three years after enrollment. Columns 2 and 3 include the share of individuals with a Bachelor’s and an Associate degree using
Census/ACS data. The latter two estimates are computed from a regression of the outcomes in period t+ 1 on robot exposure
in t. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

Column 1 of Table 3.5 shows the estimated impact of robots on graduation rates. We find that

one additional robot per thousand workers increases graduation rates in community colleges by

about one percentage point (from a base of about 23 percent), suggesting that on average enrolled

students might be more committed to complete their studies. Although this is an economically

sizeable effect, the small sample size on graduation rates from the IPEDS and the large standard

errors that come with it do not allow us to claim that it is statistically different from zero. Therefore,
120 Specifically, the GRS computes graduation rates as the share of graduates in the adjusted number of students of

the corresponding cohort. For example, the share of 1993 graduates from a two-year institution is computed as
the number of students who started college in 1993 and graduated between 1993 and 1996 divided by the cohort
of students who started college in 1993. The adjustment accounts for student transfers.
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we cannot exclude that college graduations are moving proportionally with enrollment.

Based on this result, we should expect that robot exposure is raising the share of the college-

educated population. To test this, we regress the share of individuals with a college degree from

the Census/ACS samples in period t + 1 (2000-07, 2007-14) on robot exposure in period t (1990-

2000, 2000-07).121 We use the lagged shock since college takes some time to complete (while in the

previous analysis enrollment rates may react immediately).

In line with the previous results, we find that the introduction of robots increases the share of

the population with an Associate degree from two-year institutions, but that it does not affect the

share of the population with a Bachelor’s degree (which is awarded by four-year institutions).122

Field of study – Another interesting question is whether robot exposure has affected students’

field of study choice (in the perspective of future job prospects). We use IPEDS data on college

completions and decompose students according to eight broad field of study groups, expressed as

a share of total students in the CZ. These groups are Business and Economics, Computer Science

and Engineering, Health Sciences, Arts and Humanities, Manufacturing, Natural Sciences, Public

and Military, and Social Sciences.123 We then regress the share of students in each field of study

on robot exposure. Figure 3.4 illustrates the estimates.

Our findings show that the adoption of robots has increased significantly the share of students

who graduate in applied fields, such as Computer Science and Engineering. These fields are likely to

be the main source of job creation in the years to come due to their complementary to automation

technologies. We also find that robots increase the share of students who graduate in fields related to

Business and Economics, and other Social Sciences (e.g. communication and journalism, education

and psychology, see Table C1). Jobs in these fields are likely to be impacted only marginally by the

adoption of robots, which makes them also particularly attractive. We do not find evidence, however,

of an increase in the share of completions in Natural Science related fields, such as mathematics and

physics. This result might follow in part from the fact that the increase in enrollment is concentrated
121 To keep two sample subperiods and to account for the graduation of students who enrolled in college between 1993

and 2007, we shift our sample period to 2000-2014. This specification is dictated by data availability, as we do not
observe robot adoption before 1993.

122 In this setting, one may again worry that robots are influencing the share of college-educated individuals in the
area through migratory adjustments. However, as we point out in Section 3.4.2, the impact of robot exposure on
internal migration flows is modest.

123 Appendix C1 provides further details on the aggregation of the fields of study together with a list of the Classification
of Instructional Programs (CIP) 2-digit codes included in each category.
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Figure 3.4: Robots and field of study

Notes: This figure illustrates IV point estimates of the effect of robot exposure on the share of students by field of study
using IPEDS data. Changes are expressed in percentage points of the total number of students and are multiplied by 100. For
example, the share of students that graduate in Computer Science and Engineering is computer as a CZ’s number of students
that graduate in this field of study divided by the total number of students that graduate in the CZ. By construction, the sum
of shares equals 100 and the sum of changes equals zero. Confidence intervals are at the 95% level.

among community colleges, which are more likely to offer applied programs.

3.5 Mechanism

This section introduces a model to illustrate the mechanism through which the adoption of robots

affects the demand of human skills and the subsequent human capital adjustment.

3.5.1 Conceptual framework

We use a simple Roy model with heterogeneous workers and endogenous college enrollment (Roy,

1951). The model builds on a task-based framework in which robots compete with human labor

in the execution of various tasks (Autor et al., 2003). We group tasks that can be performed only

by college-educated workers (e.g. tasks that involve cognitive and problem solving skills) and those

which can be performed by everybody (e.g. routine manual tasks). The latter tasks are exposed to

the risks of automation (Acemoglu and Autor, 2011).124

124 It is worth mentioning that the recent literature on task-based technological change observes an increasing polar-
ization of the labor market as new technologies (such as personal computers) are taking over routine task-intensive
jobs in the middle of the wage distribution (Autor and Dorn, 2013, Goos et al., 2009).
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We consider a production model with two task inputs, automatable and non-automatable tasks,

that are used to produce an output good Y in a competitive labor supply-demand environment in a

closed economy. Automatable tasks (`) can be carried out by workers, regardless of their education

level, L`, or they can be automated through the adoption of robot capital, R. Non-automatable

tasks (h) can be performed only by workers with a college degree, Lh, and cannot be automated.

The production of Y combines both types of labor and robots, measured in efficiency units, using

the following technology:

Yt = L1−β
h,t

(
Lρ`,t +Rρt )

β
ρ (86)

with β, ρ ∈ (0, 1). The elasticity of substitution between L` and Lh is 1, while the elasticity of

substitution between robot capital and L` is 1/(1 − ρ) and, by assumption, it is greater than 1.

Hence, robot capital is a relative substitute of L`.

Perfect competition implies that in equilibrium labor is paid its marginal productivity. The

first order conditions of the production function with respect to labor inputs provide the following

endogenous labor demand functions:

ωh,t = (1− β)L−βh,t
(
Lρ`,t +Rρt

)β
ρ (87)

ω`,t = βL1−β
h,t

(
Lρ`,t +Rρt

)β
ρ
−1
Lρ−1
`,t (88)

where ωh and ω` are the respective labor wages per efficiency unit. Given these equations, we can

compute an expression of the wage premium:

ωt ≡
ωh,t
ω`,t

=
1− β
β

[
1 +

(
Rt
L`,t

)ρ]L`,t
Lh,t

(89)

Robots are produced and competitively supplied each period using the following technology

Rt = YR,t
eδt

θ , where YR,t is the amount of the final good allocated to produce robots and θ = eδ is

an efficiency parameter, with productivity rising at rate δ > 0 due to technological progress (Autor

and Dorn, 2013).125 In the first period (t = 1), one unit of YR,t can be used to produce one efficiency

unit of R (1 = eδ

θ ). Competition guarantees that the real price of robot capital (per efficiency unit)
125 This assumption implies that robot capital fully depreciates in each period or, in other words, that the flow of

services provided by robots is continuously paid its rental price as these services are consumed (Autor and Dorn,
2013).
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is equal to marginal (and average) cost: pt = θe−δt. The price is falling exogenously over time due

to technical advances and is the causal force of the model. From here on, we omit time subscripts.

A continuum of individuals i ∈ [0, 1] who live one period are endowed with one unit of labor that

they supply on the labor market. At the beginning of each period, individuals graduate from high

school and are equipped with the necessary knowledge to carry out `-tasks. These individuals can

join the labor force right away, earning wage ω`. Alternatively, they can delay their labor market

entry to enroll in college, pursuing a Bachelor’s or an Associate degree to acquire additional human

capital. College education provides the necessary know-how to perform h-tasks and earn a fraction

of ωh that is proportional to their time spent on the labor market. For simplicity, we assume that

individuals do not discount future earnings and, in case they enroll in college, they do not drop out

of school.126

Individuals are heterogeneous with respect to the cost of attending college, measured as a func-

tion of time they spend in college, ηi. In particular, individual i may spend ηi of his or her time to

graduate from a four-year university with a Bachelor’s degree. This assumption follows from the fact

that some individuals have a better predisposition to learn and therefore spend less time in school

(low ηi), paying less tuition fees and experiencing lower foregone earnings compared to individuals

who are less suited for college (high ηi).127 Costs are distributed independently and identically

across all individuals according to a density function f(ηi) with support over ηi ∈ (0, 1).128

Individuals may spend only ηi
x of their time in college if they choose a community college over

a university to attain an Associate degree, where x ≥ 2. An Associate degree, however, does not

guarantee that individuals will find employment in Lh. The probability of ending up working in L`

(earning ω` like less educated workers) is λ ∈ (0, 1). This probability is equal to zero for individuals

with a Bachelor’s degree.
126 This assumption implies that individuals are perfectly patient over their lifetime and have perfect information

about their college ability and future earnings outcomes.
127 This parameter can be interpreted as the fraction of endowment that individuals allocate to invest in their education

to improve their labor market skills, which varies with their ability in college. In this context, ηi may be influenced
by a set of elements, including tuition fees, credit constrains, family background, and the time spent on the labor
market.

128 In our simple framework, this parameter captures the idiosyncratic characteristics that affect individuals’ earnings,
but it does not influence their productivity, which is homogeneous within task groups. For instance, the productivity
of workers in automatable jobs is equal to the right-hand side of Equation 88, such that they all earn exactly ω`,
independently from their ηi or their education.
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Individuals choose the college allocation that maximizes their expected income:

Ui(ω, η) = max
{(

1− ηi
)
ω︸ ︷︷ ︸

Bachelor

,

(
1− ηi

x

)[(
1− λ

)
ω + λ

]
︸ ︷︷ ︸

Associate

,

[
1

]
︸︷︷︸

No college

}
(90)

Without a college degree, workers can only supply L`, while after graduating, they may supply Lh,

L` or any convex combination of the two. Note that in equilibrium all workers with a Bachelor’s

degree will choose Lh. The same holds among workers with an Associate degree, although only a

fraction 1−λ of them will be able to find employment in Lh, with the remaining fraction λ supplying

L`.

Next, we compute two thresholds that determine which college allocation individuals choose in

accordance with their endowment of ηi:

ηBA =
ω − θ(ω)

ω − θ(ω)
x

and ηAN =
ω − 1
θ(ω)
x

(91)

with θ(ω) = (1−λ)ω+λ. ηBA is the threshold at which individuals are indifferent between enrolling

in a university or a community college, while at ηAN they are indifferent between a community college

and no college. If λ is smaller than some value λ, individuals are either enrolling in a community

college or they do not go to college at all. No individual will enroll in a four-year university, since the

expected income is always lower than from a community college due to the long time they would

spend in school. If λ is larger than some value λ, individuals are either enrolling in a four-year

university or they do not go to college at all. No individual will enroll in a community college,

since the expected income is always lower than that of a four-year university. In other words, the

lower time in college cannot compensate for the high probability of ending up in L`. If λ ∈ (λ, λ),

there is a fraction of individuals in all three possible states (Bachelor, Associate, no college), i.e.

0 < ηBA < ηAN < 1.129 As illustrated in Figure 3.5, individuals with a very low ηi enroll in

university, those with a middle-level ηi enroll in a community college, and those with a high ηi do

not enroll in college and join the labor force right away.

To obtain a well-defined solution, we continue with the case in which λ ∈ (λ, λ). Aggregate
129 Note that (1− ηi)ω = (1− ηi

x
)[(1− λ)ω + λ] and (1− ηi

x
)[(1− λ)ω + λ] = 1. Solving for these equations provides

the values of λ and λ.
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Figure 3.5: College education choice

Notes: This figure uses a normal distribution of η to illustrate the share of the population that enrolls in a four-year university,
in a community college, or in no college.

labor supplies are computed as the sum over the labor units that individuals supply on the market:

Lh =

∫ ηBA

0
(1− ηi)f(ηi)dηi +

∫ ηAN

ηBA

(1− λ)

(
1− ηi

x

)
f(ηi)dηi (92)

L` =

∫ ηAN

ηBA

λ

(
1− ηi

x

)
f(ηi)dηi +

∫ 1

ηAN

f(ηi)dηi (93)

In equilibrium, wages adjust such that labor supply equals labor demand. Average wages of Bach-

elor graduates, Associate graduates, and less educated workers are ωh, (1 − λ)ωh + λω` and ω`,

respectively. The model abstracts from unemployment such that labor markets clear.

Now that the equilibrium conditions are set, we analyze how firms’ adoption of robots affects

the college enrollment rate, and how it is doing so.

As the price of robots decreases over time, firms are going to increase their demand for capital,

raising the intensity of task input ` in firms’ production, and boosting the productivity of h-type

workers. As a consequence, firms demand relatively more Lh, which is reflected in an increase of

the wage premium from Equation 89. This increase is driven by an increase of ωh. The size of the

effect, however, depends also on the impact of robots on the demand for `-type labor and, therefore

on ω`. Changes in the demand of less educated workers depend on the degree of substitutability
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between L` and robots. If they are strong substitutes (ρ is high), firms demand less labor and ω`

decreases. In this case, the opportunity costs of enrolling in college decrease. On the contrary, if L`

and R are weak substitutes (ρ is low), firms may increase their demand of labor and ω` increases.

As workers with a Bachelor’s degree and those with only a high school diploma unambiguously

work in Lh and L` respectively, the college wage premium between these groups is equal to ωBN = ω.

The college wage premium of Associate graduates equals ωAN = θ(ω), while the wage premium

between graduates with a Bachelor’s and an Associate degree is equal to ωBA = [(1−λ) +λω−1]−1.

These results imply that all wage premia should increase monotonically as the price of robot capital

decreases, due to the complementarity of high-skill labor and robot capital (proofs are illustrated

in Appendix C3). Therefore, the adoption of robots induces marginal workers who would otherwise

have worked in L` to enroll in community colleges due to lower opportunity costs and/or rising

wage premia. Moreover, it may induce also some workers who have a low enough ηi to choose a

four-year university over a community college, if the increase in the wage premium compensates for

the additional time they have to spend in school. In other words, an exogenous reduction in the

price of robot capital shifts the thresholds ηBA and ηAN from Figure 3.5 to the right, such that also

individuals with a higher cost of attending college, ηi, enroll in a community college or switch to a

four-year university.

From the empirical analysis, we know that the effect of robots on college enrollment is driven by

individuals who enroll in community colleges. This finding suggests that our results are driven by

the shift of threshold ηAN , inducing marginal individuals to enroll in college, when they are exposed

to robots.

3.5.2 Opportunity cost or college wage premium?

We now discuss the potential channels that drive the impact of robots on college enrollment using

an empirical approach. To do so, we refer to the influential work of Acemoglu and Restrepo (2020),

which shows that the introduction of robots has decreased aggregate employment and wages, in

particular among workers without a college degree (although also somewhat among workers with

a college degree), suggesting that the degree of substitutability between labor and robot capital
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is high (in our model, ρ > β).130 In Table 3.6, we replicate their results and differentiate further

between college-educated workers with a Bachelor’s degree and workers with an Associate degree.

Table 3.6: Robots and income

Wage
income

Premium
(·/ Less)

Premium
(·/ Ass.)

[1] [2] [3]

Panel A: Bachelor’s degree
US robot exposure -1.598∗∗∗ 2.524∗∗∗ 1.700∗∗

(0.384) (0.775) (0.838)

Panel B: Associate degree
US robot exposure -2.960∗∗∗ 0.267

(0.356) (0.387)

Panel C: Less than college
US robot exposure -2.778∗∗∗

(0.423)

Observations 1444 1444 1444

Covariates: X X X

Notes: This table illustrates IV estimates of the effect of robot exposure on yearly wage income and the college premium using
data from the Census/ACS. Income is expressed in log differences. The college premium is computed as the ratio between
average income across different education groups and is multiplied by 100. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the
1%, 5% and 10% confidence level.

Table C7 shows that robots decrease employment among workers from all education levels. The

effect is strongest for less educated workers, followed by workers with an Associate degree. The

impacts on income are relatively similar across workers with an Associate degree and those without

a college degree. Workers with a Bachelor’s degree experience a smaller loss. This result leads to an

increase in the wage premium of these workers, while we find only a small and insignificant effect

of robots on the college premium of workers with an Associate degree. This finding suggests that

the enrollment in community colleges is unlikely to be driven by the college wage premium channel,

but rather by the decrease in opportunity costs.131

To conclude, we compare the results on the impact of robots on employment and college enroll-
130 Even though robots are often assumed to be relative substitutes of low-skill labor and relative complements of

high-skill labor, Acemoglu and Restrepo (2020) argue that the reduction of blue-collar work in exposed CZs may
contract aggregate demand in the local economy, decreasing also the demand for labor in occupations that are
not directly affected by the shock (such as high-skilled workers). This, in turn, may explain why college-educated
workers avoid to migrate in highly exposed areas.

131 Even if they do not benefit from higher wages, workers with an Associate degree are likely to experience more
stable income in the future relative to less educated individuals, due to the lower displacement risk through robots.
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ment. According to our estimates, for every four workers who have been displaced by automation,

one individual enrolls in college (0.35/-1.21).132 This finding does not imply that one fourth of the

displaced workers are enrolling in college after losing their job (this would be an implausibly high

result), but that individuals are adjusting their human capital based on the shock’s intensity in the

CZ. This supposition is in line with Figure 3.2 which shows that the increase in college enrollment

is driven by young individuals who delay their labor market entry to adjust their human capital to

become more competitive on the labor market.

3.6 Conclusions

Technological progress is poised to shape the future of labor markets, changing the skill requirements

of jobs and exposing millions of workers to the risk of becoming obsolete, unless they are endowed

with easily redeployable human capital.

This paper analyzes the effect of the introduction of industrial robots at the local labor market

level on individuals’ decision to enroll in college. Results show that individuals who are exposed to

robots enroll more often in local community colleges to attain an Associate degree, and that they

choose fields of study which are complementary to the new technologies. According to our estimates,

every additional robot increases college enrollment by about four students. These individuals are

usually aged between 19 and 34 years, they are not employed while being enrolled in school, and

they opt for colleges located in their local labor market of origin.

We further investigate the underlying mechanism that drives more individuals in college when

exposed to robots, and show that this result may be fueled by an increase in the college wage

premium and a drop in the opportunity costs of schooling. We test these predictions empirically

and find that robots decrease aggregate wages, but they do not increase the college wage premium

for workers with an Associate degree, suggesting that our results are driven by the opportunity cost

channel.

These findings suggest that the race between education and technology is still ongoing, as the

advent of automation technologies, such as industrial robots, induces individuals to acquire human

capital as a mechanism of self-insurance against the adverse risks of technological progress.

132 We compute this estimation based on the IV results in Column 2 of Table 3.2 and the estimate of the effect of
robots on employment in Column 1 of Table C7.
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Appendix C

C1 Data and cleaning

This section provides further details about the data cleaning process.

IFR data – IFR data on the adoption of industrial robots are praised for their reliability, but

they include also some limitations that we briefly address in the following. First, a fraction of the

stock of industrial robots is not assigned to any industry. Following Graetz and Michaels (2018), we

attribute these robots to each industry proportionally to its share of total classified robots for each

year. Second, the stock of robots by industry going back to the 1990s is available only for a subset

of European countries: Denmark, Finland, France, Germany, Italy, Norway, Spain, Sweden, and the

United Kingdom. Industry-level data for countries in North America are only available from 2004.

We address this limitation by apportioning the total stock of robots across industries proportionally

to their shares in 2004.133 Third, before 2012 the IFR aggregates robotics data for North America

as a whole, including robots in the United States, Canada and Mexico. Although this aggregation

introduces noise in the data, it is not a major concern for the identification of US robot adoption,

since the Unites States account for more than 90 percent of the North American market, and the

instrumental variable (IV) strategy presented in Section 3.3 purges this type of measurement error

(Acemoglu and Restrepo, 2020).

IPEDS data – The Integrated Postsecondary Education Data System (IPEDS) is a publicly avail-

able database provided by the National Center for Education Statistics (NCES). These data are

available on the IPEDS Data System site and provide annual information about the universe of title

IV institutions, which include all entities that process US federal student aid in the private and

public sector (for profit and non-profit institutions).134 We merge four distinct surveys that include

the variables used in the empirical analysis for all years between 1992 and 2008, namely institu-

tional characteristics, fall enrollment, graduation rates and completions by field of study. Following
133 We follow the same procedure to impute the stock of robots for Denmark, for which the industry breakdown started

in 1996.
134 Additionally, the IPEDS includes sporadic data on non-Title IV colleges that submit information on a voluntary

basis.
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the literature, we increase the sample size (and decrease measurement error) by computing average

values of our sample years (1993, 2000 and 2007) with adjacent years.

We merge these datasets using institutional information and match them to local labor markets

using zip codes. The latter, however, are often inconsistent or imprecise since institutions use postal

boxes that do not represent their true location, or because of typos in survey. We deal with these

issues by searching for the correct address of universities and colleges on the internet, correcting

about 250 codes manually.

We then use a zip-to-county crosswalk from The Office of Policy Development and Research

combined with a county-to-CZ crosswalk from Autor and Dorn (2013) in order to assign each

institution to a specific CZ. The match is not always perfect, since zip codes may be located in more

than one county. To address this hurdle, we attribute institutional counts to counties proportionally

to the relative size of the land overlap within zip codes. We use a similar approach in the county-

to-CZ crosswalk from Autor and Dorn (2013) and obtain information on post-secondary education

institutions in 603 CZs.

In a next step, we exclude from our dataset the set of institutions that provide highly noisy and

inconsistent data. These include non-Title-IV and for-profit institutions, institutions that provide

data for less than three years of our sample period, and institutions that enroll an average of less

than 50 first-year students during our sample years.

The analysis of enrollment performed on the IPEDS data draws from the fall enrollment survey.

These data provide information on the number of students enrolled part-time and full-time, as well

as the type of program in which they are enrolled (1-year program, two-year program, and four-year

program to obtain a Bachelor’s degree.)

From the completions survey, we draw information on the number of students who complete

their studies in a given year, as well as the program type and field of study. To perform our analysis

on the field of study choice, we group the list of 2-digit CIP codes provided by the IPEDS into eight

broad groups, according to common subject characteristics that we collected from various websites

of higher education institutions in the US.135 Table C1 reports the fields of study that are included

in each of our broad groups at the 2-digit CIP code level.

135 The Classification of Instructional Programs (CIP) provides a taxonomic scheme that supports the accurate tracking
and reporting of fields of study and program completions activity.
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Table C1: Aggregation of CIP codes.

Category Course (2 digits CIP code)

Natural Science Agriculture and Relates Sciences
Natural Resources and Conservation
Biological Sciences
Mathematics and Statistics
Physical Sciences

Social Science Ethnic, Cultural and Group studies
Communication and Journalism
Education
Consumer and Human Sciences
Psychology
Social Sciences

Engineering and Computer Science Architecture
Communication Technologies
Technicians and Support Services
Computer and Information Sciences
Engineering
Engineering Technologies
Science Technologies

Business and Economics Business
Management
Marketing
Economics

Arts and Humanities Personal and Culinary Services
English and Foreign Languages and Literature
Legal Profession and studies
Library Science
Multy-disciplinary studies
Recreation and Leisure studies
Citizenship activities
Interpersonal and Social skills
Personal Awareness and Self-Improvement
Philosophy and Religious Studies
Theology and Religious vocation

Manufacturing Industrial Arts Constructions Trades
Mechanic and Repair technologies
Precision Production
Transportation and Materials Moving

Health Science Health related knowledge and skills
Health professional and related programs

Public and Military Military Science
Military Technologies
Homeland Security and Law Enforcement
Public Administration and Social Service professions

Notes: This table reports the aggregation of college fields of study at the 2-digit CIP code level into eight broad groups. These
groups were constructed using the Completions survey from IPEDS data.
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Internal migration flows – We build measures of the aggregate in- and outflows of migrants

across CZs using individual-level data from the Census and ACS. A major limitation in these data

is that information about individuals’ migration status changes over time. In particular, the Census

asks whether a person changed its residence in the previous 5 years, while the ACS asks whether

a person changed its residence in the previous year. When building aggregate migration measures,

we follow Molloy et al. (2011) and construct measures of 5-year migration flows from the ACS by

using four times the annual migration flow of a CZ.

Individuals are asked whether they have been living in the same house, moved within or between

states, and whether they lived abroad in the period of reference. College students who moved out

from their parents’ house have to indicate the place where they live and sleep most of the time,

which usually means their college town. If an individual has not been living in the same house, the

Census and ACS provide geographic information about its previous residence at the 3-digit PUMA

level. Information about the previous residence is less precise than information about the current

residence, which is expressed at the 5-digit PUMA level. This is not a major concern, since in the

aggregation of geographic units from PUMAs to CZs, the last two digits are usually not influencing

the CZs to which the location is assigned to.

We aggregate the data using the procedure described in footnote 102 and build a novel database

with 521,284 observations (722 × 722) that include all cross-CZ migration flows. Note that stayers

have the same CZ of origin and destination (where the college is located). These data are used to

build aggregate measures of the share of movers and stayers within the population of the CZ in

which the college is located.

Table C12 in the robustness checks provides a set of results in which we deviate from the

construction of migration variables suggested by Molloy et al. (2011), but measure 5-year migration

flows from the ACS using five times the annual migration flow of a CZ. The estimates are almost

identical to our main specification’s results.

Imports from China – Following Autor et al. (2013), we use a shift-share approach to measure

a labor market’s exposure to imports from China. We interact CZs’ industry employment shares in
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the manufacturing sector prior to the admission of China to the World Trade Organization in 2001

with the growth in product trade flows from China to the US:

Import exposureUSc,t =
∑
j∈J

`90
c,j∆IM

US
j,t (94)

where ∆IMUS
j,t is the change in US imports from China in thousand dollars per worker. Similarly

to Equation 83, we exploit plausibly exogenous variation in the trade shock by instrumenting the

shift-component of the measure with trade flows from China to other industrialized countries with

a similar trade development as the US:

Import exposureOT8
c,t =

∑
j∈J

1

8

∑
i∈OT8

`90
c,j∆IM

i
j,t (95)

where i ∈ OT8 include Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and

Switzerland. We keep the baseline employment shares constant to avoid endogeneity and serial

correlation concerns.

We collect product-level data at the six-digit Harmonized System (HS) on Chinese imports

from the UN Comtrade Database which we match with industry employment shares from the 1991

County Business Pattern (CBP). The CBP classifies industry employment according to the Standard

Classification System (SIC) until 1997 and according to the North American Industry Classification

System (NAICS) afterwards. These systems are more detailed than the industrial classification

system used in the IPUMS. We use a crosswalk from Autor et al. (2013) to convert SIC and

NAICS manufacturing industries, as well as six-digit HS product-level trade data, to 392 four-digit

SIC industries. We construct the import penetration measure by matching local employment shares

with converted product-level trade data on imports from China. For confidentiality reasons, county-

industry observations with few cases are reported as ranges. In reconstructing these data, we follow

Acemoglu et al. (2016). Table C4 reports the results.

Labor market characteristics – We obtain individual-level data on a variety of demographic

and economic characteristics of the US population from the IPUMS. We use these data to build

measures of CZs’ demographics and their industrial and occupational composition of employment.

These variables include the share of female, Black, and Hispanic individuals, the share of college-
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educated individuals, the log population size, and age structure of the population (25-34, 35-44 and

45-54 years). Moreover, we account for the share of employment in construction, education and

research, manufacturing, mining, services, and utilities industries, as well as the share of routine

task-intensive and offshorable jobs (Autor and Dorn, 2013).

C2 Figures and tables

Figure C1: Robots along the skill distribution

Notes: This figure illustrates the share of occupations that are replaceable by robots, as defined in Graetz and Michaels (2018),
by occupational skill percentile. This is a modified version of Figure 4 in Autor and Dorn (2013).
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Table C2: Descriptive statistics: Industrial robots

Robots in the US Robots in EU7 Employment
per thousand countries per in

workers thousand workers thousands

1993 ∆07−93 1993 ∆07−93 1993

[1] [2] [3] [4] [5]

Panel A: Manufacturing sector
Automotive 24.25 61.47 18.2 53.72 1111
Basic Metals 1.39 3.63 0.84 4.61 712
Electronics 2.01 6.65 2.34 5.21 2868
Food and Beverages 1.02 2.90 0.38 4.45 1862
Industrial Machinery 0.39 1.03 3.01 3.20 1541
Metal Products 1.69 4.40 6.91 10.47 1689
Minerals 0.04 0.19 0.60 2.71 558
Miscellaneous 0.49 1.47 2.56 0.93 690
Paper and Printing 0.00 0.00 0.19 0.53 2467
Plastics and Chemicals 1.80 5.15 2.85 18.31 2205
Shipbuilding and Aerospace 0.02 0.10 0.73 2.80 1111
Textiles 0.00 0.01 0.24 0.72 1848
Wood and Furniture 0.00 0.01 1.14 2.62 1048

Panel B: Other sectors
Agriculture 0.00 0.00 0.00 0.12 2552
Construction 0.00 0.01 0.00 0.07 7108
Education and Research 0.00 0.01 0.03 0.32 12636
Mining 0.00 0.01 0.23 2.07 763
Services 0.00 0.00 0.00 0.00 84776
Utilities 0.00 0.00 0.00 0.11 745

Notes: This table illustrates the number of robots adopted in the United States and seven European countries (Denmark,
Finland, France, Italy, Spain, Sweden and the United Kingdom) by year and industry. Panel A reports the number of robots
for 13 manufacturing industries. Panel B reports the number of robots for six sectors outside of manufacturing. Columns 1 and
3 report the stock robots per thousand workers in 1993. Columns 2 and 4 report the change in the stock of robots between
1993 and 2014 per thousand workers in 1993. Column 5 reports the number of workers by industry in 1993.
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Table C3: Robots and college enrollment until 2014

Census/ACS IPEDS

All students All students Undergrad. Graduate

[1] [2] [3] [4] [5]

US robot exposure 0.213 0.256∗ 0.311∗∗∗ 0.302∗∗∗ 0.009
(0.154) (0.149) (0.099) (0.099) (0.027)

Observations 2166 2166 1738 1738 1738

Covariates:
State FE X X X X X
Year FE X X X X X
Pre-trends X X X X
Chinese imports X X X X
Demographics X X X X
Industries X X X X
Occupations X X X X
Institutions X X X X

Notes: This table illustrates IV estimates of the effect of robot exposure on the share of students. Every regression includes
three periods (1993-2000, 2000-07, 2007-14) with 722 observations (CZs). Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the
1%, 5% and 10% confidence level.

Table C4: Robots, imports and college enrollment

Not standardized Standard.

[1] [2] [3] [4] [5]

US robot exposure 0.279∗ 0.277∗ 0.306∗∗ 0.349∗∗∗ 0.185∗∗∗
(0.154) (0.144) (0.124) (0.100) (0.053)

US import exposure 0.074 0.098∗∗ 0.097∗∗ 0.170∗∗
(0.050) (0.040) (0.038) (0.067)

Observations 1444 1444 1444 1444 1444

Covariates:
State FE X X X X X
Year FE X X X X X
Pre-trends X X X X X
Chinese imports X X X X
Demographics X X X
Industries X X X
Occupations X X X
Institutions X X

Notes: This table illustrates IV estimates of the effect of robot and import exposure on the share of students using Census/ACS
data. Column 5 standardizes the variables to have mean 0 and standard deviation of 1. Coefficients with ∗∗∗, ∗∗ and ∗ are
significant at the 1%, 5% and 10% confidence level.
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Table C5: Robots and incoming students:
In-state and out-state students

In-state Out-state

[1] [2]

US robot exposure -0.034∗∗ -0.019∗
(0.013) (0.011)

Observations 1444 1444

Covariates: X X

Notes: This table illustrates IV estimates of the effect of robot exposure on the share of students by migration status using
Census/ACS data. Column 1 reports students migrating within the same state and Column 2 includes students migrating from
another state. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

Table C6: Robots and college enrollment by employment status

Employment Non-employment

Full-time:
>30 hours

Part-time:
20-30 hours

Part-time:
<20 hours

Unemploy-
ment

Non-
participation

[1] [2] [3] [4] [5]

Panel A: Individuals between 19 and 34 years
US robot exposure -0.074 0.136∗∗∗ 0.324∗∗∗ 0.265∗∗∗ 0.386∗∗∗

(0.054) (0.027) (0.092) (0.075) (0.087)

Panel B: Individuals between 35 and 64 years
US robot exposure -0.056∗ 0.028∗∗∗ 0.047∗∗∗ 0.031∗∗∗ 0.080∗∗

(0.028) (0.008) (0.010) (0.006) (0.039)

Observations 1444 1444 1444 1444 1444

Covariates: X X X X X

Notes: This table illustrates IV estimates of the effect of robot exposure on the share of students by employment status using
Census/ACS data. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

Table C7: Robots and employment by education level

All Bachelor’s Associate No college

[1] [2] [3] [4]

US robot exposure -1.215∗∗∗ -0.522∗∗∗ -0.928∗∗ -1.522∗∗
(0.450) (0.191) (0.356) (0.580)

Observations 1444 1444 1444 1444

Covariates: X X X X

Notes: This table illustrates IV estimates of the effect of robot exposure on the employment rate using Census/ACS data.
Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.
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C3 Conceptual framework: Proofs

This section provides proofs of the claims made in the model and discusses further details about

the equilibrium impact of robots on college enrollment. As stated in the main text, the model

assumes a basic production function which combines L`, Lh and R, to produce an output good

Y (Equation 86). The perfectly competitive environment implies that input factors are paid their

marginal productivity (Equations 87 and 88). Robot capital is produced and competitively supplied

each period through the following technology Rt = YR,t
eδt

θ (Autor and Dorn, 2013), where YR,t is

the amount of the final good allocated to produce robots and eδ(t−1) is the total factor productivity.

Firms can sell their output good at a normalized price of 1 or they can invest a share YR,t, in the

production of robot capital at price pt:

πt = YR,t − ptRt (96)

Taking the first order condition of Equation 96 with respect to YR,t gives:

∂πt
∂YR,t

= 1− pt
eδt

θ
= 0 (97)

which solves to pt = θe−δt.

Labor is supplied by a continuum of individuals i ∈ [0, 1] who live one period and are endowed

with one unit of labor that they supply on the labor market. At the beginning of the period, workers

can either work in `-type jobs and earn ω`, or they may enroll in college to acquire the necessary

skills to perform tasks h. Individuals who enroll in a four-year university incur cost ηiωh to pursue

a Bachelor’s degree and will earn income (1− ηi)ωh on the labor market. Individuals who enroll in

a two-year community college incur cost ηi
x ωh to pursue an Associate degree (where x ≥ 2) and will

earn (1− ηi
x )ωh with probability 1− λ and (1− ηi

x )ω` with probability λ on the labor market.

Individuals choose the college allocation that maximizes their income. They choose to pursue a

Bachelor’s degree if ηi ≤ ηBA, an Associate degree if ηBA < ηi ≤ ηAN , and no college if ηAN < ηi,

where the thresholds are defined in Equation 91 in the main text. Labor supplies are computed

accordingly, as illustrated in Equations 92 and 93.
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From Equation 97, we know that the price of robots decreases exogenously over time, ∂pt∂t < 0,

such that ∂Rt
∂t > 0. Taking the total differential from Equation 89 and solving for ∂ωt

∂pt
it follows

that:

∂ω

∂p
=

p
(
R
L`

)ρ−1
∂R
∂p[

1 +
(
R
L`

)ρ](
L`
Lh

∂Lh
∂ω + L`

ω

)
−
[
1 + (1− ρ)

(
R
L`

)ρ]
∂L`
∂ω

< 0 (98)

since ∂Rt
∂pt
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x

)
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−
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with:
∂ηAN
∂ω

= x

[
1− λ

[(1− λ)ω + λ]2

]
> 0 (101)

∂ηBA
∂ω

= x

[
λ(x− 1)

[xω − (1− λ)ω − λ]2

]
> 0 (102)

where Equation 99 holds for well defined parameters, λ and x. In words, an exogenous decrease in

the price of robot capital increases the wage premium between non-automatable and automatable

labor, ω = ωh
ω`
. As a consequence, college enrollment rates of workers who want to perform tasks

h increase due to an increase in the relative wage of non-automatable jobs, ηAN increases. At the

same time, individuals who would have enrolled in a community college have an incentive to enroll

in four-year colleges, since the increase in the wage premium compensates for the additional time

spend in school, ηBA increases. �

Note that robot capital unambiguously increases ωh, ∂ωh∂p < 0, but may increase or decrease ω`

depending on the substitutability between R and L`, ρ. If L` and R are strong substitutes (ρ is

high), firms demand less labor and ω` decreases, ∂ω`
∂p > 0. If L` and R are weak substitutes (ρ
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is low), firms demand more labor and ω` increases, ∂ω`
∂p < 0. As shown in Equation 98, the wage

premium ω increases in either case.

C4 Robustness checks

This section presents a set of robustness checks and additional results in support of our preferred

specification.

Identification – A concern that we need to address is that the adoption of robots in Europe

is influencing US labor market conditions through increased product market competition, or that

transnational industry trends have affected the adoption of robots both in Europe and in the US,

violating the exclusion restriction of our IV strategy. Although we cannot fully rule out this possi-

bility, we address these potential threats to identification through the construction of the instrument

and a set of robustness checks.

Table C8: Robots and college enrollment: Product market competition from Europe

[1] [2] [3] [4] [5]

US robot exposure 0.320 0.320 0.299 0.327∗∗ 0.364∗∗∗
(0.206) (0.195) (0.180) (0.156) (0.125)

Observations 1444 1444 1444 1444 1444

Covariates:
State FE X X X X X
Year FE X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X
Institutions X

Notes: This table illustrates IV estimates of the effect of robot exposure on the share of students using Census/ACS data.
The instrument uses only the adoption of robots in Denmark, Finland, Spain and Sweden. Coefficients with ∗∗∗, ∗∗ and ∗ are
significant at the 1%, 5% and 10% confidence level.

The instrument purposely does not include the countries with the world’s heaviest adoption

of industrial robots, namely South Korea, Germany, and Japan. These countries are also among

the main trading partners of the US and could directly affect US labor market conditions through

their national adoption of robots. Furthermore, we build an alternative measure of the instrument

that includes only countries which are least engaged in trade with the US (Denmark, Finland and
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Sweden), whose adoption of robots is unlikely to affect US labor market conditions. Table C8 shows

that the estimated effect of robots on college enrollment remains positive and is not economically

nor statistically different from the estimates of our main specification. This finding suggests that

our estimates are unlikely to be driven by an increase in product market competition through the

heavier utilization of robots in Europe.

To control for industry-specific shocks that might confound the labor market effect of robots, we

sequentially exclude each industry at a time from the shift-share measure, as suggested in Goldsmith-

Pinkham et al. (2020). Figure C2 reports 19 point estimates of the effect of robot adoption on college

enrollment including all IFR industries but one. The point estimates are not significantly different

from our preferred specification’s estimates and are most sensitive to the exclusion of robots in the

automotive industry. This finding is not surprising, considering that most robots are adopted in

this industry (see Table C2). Overall, these results suggest that the labor market effect of robots is

not driven by unrelated industry-specific shocks.

Figure C2: Robot exposure by industry exclusion

Notes: This figure illustrates the reduced form point estimates of the effect of robot exposure on the share of students, when
excluding each industry from the shift-share measure one at a time, using Census/ACS data. For example, Automotive excludes
robots adopted in the automotive industry. Confidence intervals are at the 95% level.

Pre-trends – The secular increase in the share of the population with a college degree raises the

concern that college enrollment rates and the adoption of industrial robots could be driven by some

common factors. For example, changes in schooling and the adoption of robots could both stem

from a local labor market’s industrial composition. If so, our estimates could be confounding the

impact of robot exposure with pre-existing trends that local labor markets were undergoing. We
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account for this concern in our preferred specification by controlling for past changes in college

enrollment between 1970 and 1990.

We further perform a ‘placebo test’ in which we analyze the relationship between past schooling

and the subsequent adoption of robots to verify that our results are capturing the period-specific

effects of robots on college enrollment. The results are reported in Tables C9 and C10. We find that

changes in college enrollment in the 1970s and 1980s are related negatively to college enrollment

between the 1990s and 2007, but, reassuringly, we do not find evidence that this trend is influencing

the impact of robots on college enrollment, and no economically or statistically significant association

between past schooling trends and the subsequent adoption of robots.

Table C9: Robots and college enrollment pre-trends

[1] [2] [3] [4] [5]

US robot exposure 0.277∗ 0.279∗ 0.277∗ 0.306∗∗ 0.349∗∗∗
(0.163) (0.154) (0.144) (0.124) (0.100)

College enrollment1970−1990 -0.058∗∗∗ -0.057∗∗∗ -0.029∗ -0.037∗∗∗
(0.013) (0.013) (0.014) (0.011)

Observations 1444 1444 1444 1444 1444

Covariates:
State FE X X X X X
Year FE X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X
Institutions X

Notes: This table illustrates IV estimates of the effect of robot exposure on the share of students, and includes the estimates
of pre-trends, using Census/ACS data. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

CZ-specific migration flows – In Table 3.4, we show that robot exposure decreases the share

of incoming students, but does not affect the share of outgoing students. We explore this result

further by breaking down the share of movers in 520,562 individual CZ migration flows (722 × 721).

This procedure allows us to estimate the effect of robots in the CZ of origin and the CZ of

the college on each individual CZ-to-CZ flow of students. For instance, we estimate how the shock

in Detroit and in San Diego affect the share of students who moved from Detroit to San Diego

(before we were only analyzing the total flow of incoming students to San Diego and the total flow

of outgoing students from Detroit). Table C11 illustrates the results.
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Table C10: Robots and college enrollment: Placebo test

[1] [2] [3]

US robot exposure -0.013 -0.013 -0.117
(0.095) (0.096) (0.117)

Observations 1444 1444 1444

Covariates:
State FE X X X
Year FE X X X
Chinese imports X X
Demographics X
Industries X
Occupations X

Notes: This table illustrates IV estimates of the effect of robot exposure during our sample period on the share of students
between the 1970s and 1990s using Census/ACS data. Regressions are weighted by CZ population in 1970. Coefficients with
∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

In line with our main results, we find that the adoption of robots in czo has no statistically

significant effect on the flow of students who move from czo to cz (outflow), while the inflow of

students decreases if robot exposure in cz is large. Although the result on outflows is not statistically

significant, its (absolute) economic size is similar to the result on inflows.

Table C11: Robots and students’ CZ-specific migration flows

[1] [2] [3]

US robot exposurecz -0.068∗∗∗ -0.067∗∗∗
(0.015) (0.015)

US robot exposureczo 0.073 0.072
(0.145) (0.145)

Observations 1041124 1041124 1041124

Covariates: X X X

Notes: This table illustrates IV estimates of the effect of robot exposure in the CZ in which the college is located and in students’
CZ of origin on the share of students by migration status, using Census/ACS data. Changes are expressed in percentage points of
the working-age population and are multiplied by 1000. Every regression includes two time periods with 722×721 observations
(CZs). For comparability, independent variables have been standardized to have mean zero and standard deviation of one.
Robot exposure in the CZ of origin includes only the CZ-specific shock from which a group of students is migrating from.
Covariates are included for the CZ in which the college is located and the CZ of origin. The 5-year migration flows for the ACS
data are built using four times the annual migration flow of a CZ. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5%
and 10% confidence level.

Adjusted migration flows – As we show in Appendix C1, a major limitation of migration data

from the Census and the ACS is that the period of relevance for the question about past migration

changes from five years to one year. When building aggregate migration measures, we follow Molloy

211



et al. (2011) and construct measures of 5-year migration flows from the ACS by using four times

the annual migration flow of a CZ. The results are reported in Table 3.4. To show that these results

are not driven by the choice of the normalization parameter across periods, Table C12 provides the

same results, but using a normalization parameter equal to five, rather than four. The results are

almost identical to our preferred specification. Stayers are affected only by the shock in the CZ in

which the college is located, which is also their CZ of origin, while the share of movers is not affected

by robot exposure in their place of origin, czo (Panel B), but decreases with the shock’s intensity

in the CZ in which the college is located, cz (Panel A).

Table C12: Robots and student migration using a 5-year normalization

All students Stayers Movers

[1] [2] [3]

Panel A: Perspective from CZ of college (incoming movers)
US robot exposure 0.325∗∗∗ 0.393∗∗∗ -0.068∗∗∗

(0.081) (0.076) (0.018)

Panel B: Perspective from CZ of origin (outgoing movers)
US robot exposure 0.256∗ 0.267∗ -0.011

(0.149) (0.138) (0.017)

Observations 1444 1444 1444

Covariates: X X X

Notes: This table illustrates IV estimates of the effect of robot exposure on the share of students and decomposes the effect
by stayers and movers using Census/ACS data. Here, we multiply the annual ACS flows by five (rather than four) to obtain
5-year migration flows. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

Alternative construction of shift-share measure – Table C13 shows that the exact construc-

tion of the shift-share measures does not affect our results. Columns 1 and 2 report estimates of

two more mixes of European countries that are used in the construction of the instrument. First,

we include Germany as an additional European country in the instrument, a country that is ahead

of the US in the adoption of robots. Second, we exclude Spain and the United Kingdom, replicating

the measure of Acemoglu and Restrepo (2020). Column 3 reports estimates using a measure of robot

exposure in the US and an instrument without adjusting for industry output growth, gj,(t0,t1)
Rj,t0
Lj,90

.

Column 4 reports estimates using an instrument with 1990 industry employment shares, `90
c,j , rather

than from 1970. Using these alternative measures, the estimates of the labor market effect of robots

on college enrollment do not differ economically or statistically from our preferred specification’s

results.
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Table C13: Robots and college enrollment: Alternative construction of
robot exposure measures

EU8 countries
(incl. Germany)

EU5 countries
(Acemoglu and Restrepo, 2020)

No adjustment
gj,(t0,t1)

Rj,t0
Lj,1990

EU7 countries with
shares of 1990, `1990c,j

[1] [2] [3] [4]

US robot exposure 0.309∗∗∗ 0.429∗∗∗ 0.195∗∗ 0.354∗∗∗
(0.089) (0.112) (0.080) (0.088)

Observations 1444 1444 1444 1444

Covariates: X X X X

Notes: This table illustrates IV estimates of the effect of robot exposure on the share of students using different shift-share
measures and Census/ACS data. Column 1 reports estimates using an instrument which includes seven European countries
and Germany. Column 2 reports estimates using an instrument that includes only five European countries. We exclude Spain
and the United Kingdom as in the measure of Acemoglu and Restrepo (2020). Column 3 reports estimates using an endogenous
variable and an instrument of robot density without the adjustment term of industry growth. Column 4 reports estimates using
an instrument with seven European countries, but US employment shares of 1990 instead of 1970. Coefficients with ∗∗∗, ∗∗ and
∗ are significant at the 1%, 5% and 10% confidence level.

Exclusion of most exposed CZs – Figure 3.1 of Section 3.2 illustrates that the shock is mainly

concentrated in labor markets of the Rust Belt due to their specialization in the steel and automotive

industry. This finding raises the question of whether the effect of robots on college enrollment is

specific to these CZs or whether this is a US wide phenomenon. Table C14 reports the results when

excluding from the sample the CZs with the highest robot exposure. First, we exclude the CZ of

Detroit, which is the labor market that is mostly exposed to the shock. Second, we exclude the CZs

in the top 1 percentile of the distribution of robot exposure. Besides Detroit, these CZs include

the labor markets of Jackson, Lansing, Saginaw (Michigan), Richmond, Kokomo, Muncie (Indiana)

and Defiance (Ohio). Third, we exclude all CZs around the Great Lakes that are in the states

of Michigan, Indiana and Ohio. The estimates remain economically and statistically significant at

conventional levels in all specifications, showing that the effect of robots is not limited to CZs in the

Rust Belt. Interestingly, outside of the Great Lakes’ CZs the effect of robots is larger, suggesting

that, although they are adopted less frequently in those areas, the introduction of one additional

robot has a stronger effect on college enrollment than in the Rust Belt.

Unweighted results – Table C15 presents a set of estimates of the effect of robots on college

enrollment without regression weights. This specification provides smaller, but less precisely esti-

mated, effects. When analyzing outcomes across labor markets of different sizes, efficient weights

must consider individuals’ sampling weights to account for inherent heteroskedasticity. Cadena and

Kovak (2016) show that optimal weights are strongly correlated with initial population sizes and
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Table C14: Robots and college enrollment: Exclusion of CZs with highest robot exposure

Detroit Top 1% Great Lakes

[1] [2] [3]

US robot exposure 0.466∗∗∗ 0.662∗∗∗ 0.771∗
(0.159) (0.239) (0.405)

Observations 1442 1429 1340

Covariates: X X X

Notes: This table illustrates IV estimates of the effect of robot exposure on the share of students, excluding from the sample
the CZs with the highest robot exposure, using Census/ACS data. Column 1 excludes the CZ of Detroit. Column 2 excludes
the CZs in the top 1 percentile. Column 3 excludes the CZs in the most exposed states around the Great Lakes (Indiana,
Michigan and Ohio). Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

are well approximated by the initial population of a local labor market. Therefore, we are confident

that the results of our preferred specification are providing better estimates of the underlying effect

of robots on college enrollment than the results of Table C15.

Table C15: Robots and college enrollment: Unweighted results

[1] [2] [3] [4] [5]

US robot exposure 0.127 0.133 0.133 0.154 0.174∗
(0.089) (0.079) (0.081) (0.093) (0.091)

Observations 1444 1444 1444 1444 1444

Covariates:
State FE X X X X X
Year FE X X X X X
Pre-trends X X X X
Chinese imports X X X
Demographics X X
Industries X X
Occupations X X
Institutions X

Notes: This table illustrates IV estimates of the effect of robot exposure on the share of students using Census/ACS data.
Regressions are unweighted. Coefficients with ∗∗∗, ∗∗ and ∗ are significant at the 1%, 5% and 10% confidence level.

C5 Robots and college enrollment at state level

From Table 3.3, we know that robot exposure at the local labor market level increases enrollment

rates in community colleges, but not in four-year universities. However, as anticipated in Section

3.1, Branco et al. (2022) show that individuals who were born in states that are more exposed to
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the adoption of robots are more likely to attain a Bachelor’s degree from a four-year institution.

This divergence in the results might follow from changes in the geographical unit of reference, which

identify a different subset of individuals who adjust their human capital in response to the shock. We

document these differences in Table C16. To compare robot exposure across different geographical

units, we standardize the estimates to have mean zero and standard deviation of one.

Column 1 reports estimates of the effect of robot exposure at the local labor market level on

college enrollment in two-year and four-year institutions at the local labor market level, as in our

preferred specification of Table 3.3 (but now standardized). Column 2 reports estimates of the effect

of robot exposure at the state level on enrollment rates at the local labor market level. Using this

approach, we identify individuals who react to robot exposure within their state of residence on

college enrollment at the CZ level. Column 3 reports estimates of the effect of robot exposure at the

state level, but excluding the CZ of reference, on enrollment rates at the local labor market level

(in the CZ of reference). This approach is similar to a leave-one-out strategy and helps understand

how individuals respond to the exposure to robots within their state of residence, but outside of

their local labor market. Finally, Column 4 reports estimates of the effect of robot exposure at the

state level on college enrollment in the state.

Table C16: Robots and college enrollment at state level

Enrollment: Enrollment:
Local labor market State

Exposure
CZ

Exposure
state

Exposure
state

(excl. CZ)

Exposure
state

[1] [2] [3] [4]

Panel A: Four-year university

US robot exposure 0.037 0.114∗∗∗ 0.099∗∗ 0.178∗∗∗
(0.038) (0.040) (0.049) (0.038)

Panel B: Two-year community college

US robot exposure 0.150∗∗∗ 0.389∗∗∗ 0.177∗ 0.335∗∗
(0.044) (0.097) (0.103) (0.139)

Observations 1161 1161 1161 96

Covariates: X X X X

Notes: This table illustrates standardized IV estimates of the effect of robot exposure on the share of undergraduate students
and decomposes the effect by institution characteristics using data from the IPEDS. Coefficients with ∗∗∗, ∗∗ and ∗ are significant
at the 1%, 5% and 10% confidence level.
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Results in Columns 2, 3 and 4 show that when we include measures of robot exposure outside

of the local labor market of residence of individuals, but within state boundaries, also enrollment

in four-year universities increases significantly. On the other hand, Column 1 shows that (myopic)

individuals who account only for robot exposure in their CZ of residence enroll more often in

community colleges. These individuals might lack the necessary skill to complete a Bachelor’s

degree and might have different socio-economic characteristics than individuals who account also

for shocks outside of their local labor market in their decision on whether to enroll in college (Manski

and Wise, 2013).

216



References

References

Abraham, Katharine G and Melissa S Kearney, “Explaining the decline in the US

employment-to-population ratio: A review of the evidence,” Journal of Economic Literature,

2020, 58 (3), 585–643.

Acemoglu, Daron, “Changes in unemployment and wage inequality: An alternative theory and

some evidence,” American economic review, 1999, 89 (5), 1259–1278.

and David Autor, “Skills, tasks and technologies: Implications for employment and earnings,”

in “Handbook of labor economics,” Vol. 4, Elsevier, 2011, pp. 1043–1171.

and , “What Does Human Capital Do? A Review of Goldin and Katz’s The Race between

Education and Technology,” Journal of Economic Literature, June 2012, 50 (2), 426–63.

and Pascual Restrepo, “The race between man and machine: Implications of technology for

growth, factor shares, and employment,” American Economic Review, 2018, 108 (6), 1488–1542.

and , “Robots and jobs: Evidence from US labor markets,” Journal of political economy, 2020,

128 (6), 2188–2244.

and , “Tasks, automation, and the rise in US wage inequality,” Technical Report, National

Bureau of Economic Research 2021.

, Claire LeLarge, and Pascual Restrepo, “Competing with Robots: Firm-Level Evidence

from France,” Technical Report, National Bureau of Economic Research 2020.

, David Autor, David Dorn, Gordon H Hanson, and Brendan Price, “Import competition

and the great US employment sag of the 2000s,” Journal of Labor Economics, 2016, 34 (1), 141–

198.

Adda, Jérôme and Yarine Fawaz, “The health toll of import competition,” The Economic

Journal, 2020, 130 (630), 1501–1540.

Ahituv, Avner and Joseph Zeira, “Technical progress and early retirement,” The Economic

Journal, 2011, 121 (551), 171–193.

Aksoy, Cevat Giray, Berkay Özcan, and Julia Philipp, “Robots and the gender pay gap in

217



Europe,” European Economic Review, 2021, p. 103693.

Alesina, Alberto F, Edward L Glaeser, and Bruce Sacerdote, “Why doesn’t the US have a

European-style welfare system?,” 2001.

Altonji, Joseph G and Rebecca M Blank, “Race and gender in the labor market,” Handbook

of labor economics, 1999, 3, 3143–3259.

, Lisa B Kahn, and Jamin D Speer, “Cashier or consultant? Entry labor market conditions,

field of study, and career success,” Journal of Labor Economics, 2016, 34 (1), 361–401.

Anelli, Massimo, Osea Giuntella, and Luca Stella, “Robots, Labor Markets, and Family

Behavior,” 2019.

, , and , “Robots, Marriageable Men, Family, and Fertility,” Journal of Human Resources,

2021, pp. 1020–11223R1.

Aoun, Joseph E, Robot-proof: higher education in the age of artificial intelligence, MIT press,

2017.

ASM, “Annual Survey of Manufactures,” Technical Report, U.S. Census Bureau 2020. https:

//www.census.gov/programs-surveys/asm.html.

Athreya, Kartik and Janice Eberly, “Risk, the college premium, and aggregate human capital

investment,” American Economic Journal: Macroeconomics, 2021, 13 (2), 168–213.

Atkin, David, “Endogenous skill acquisition and export manufacturing in Mexico,” American

Economic Review, 2016, 106 (8), 2046–85.

Autor, David, “The" task approach" to labor markets: an overview,” Technical Report, National

Bureau of Economic Research 2013.

and David Dorn, “The growth of low-skill service jobs and the polarization of the US labor

market,” American Economic Review, 2013, 103 (5), 1553–97.

, Anna Salomons, and Bryan Seegmiller, “Robot imports and firm-level outcomes,” 2021.

, David Dorn, and Gordon Hanson, “The China syndrome: Local labor market effects of

import competition in the United States,” American Economic Review, 2013, 103 (6), 2121–68.

, Frank Levy, and Richard J Murnane, “The skill content of recent technological change:

An empirical exploration,” The Quarterly journal of economics, 2003, 118 (4), 1279–1333.

Autor, David H and Mark G Duggan, “The rise in the disability rolls and the decline in

218

https://www.census.gov/programs-surveys/asm.html
https://www.census.gov/programs-surveys/asm.html


unemployment,” The Quarterly Journal of Economics, 2003, 118 (1), 157–206.

Bacolod, Marigee P and Bernardo S Blum, “Two sides of the same coin us ?residual? inequality

and the gender gap,” Journal of Human resources, 2010, 45 (1), 197–242.

Bartel, Ann P and Nachum Sicherman, “Technological change and retirement decisions of

older workers,” Journal of Labor Economics, 1993, 11 (1), 162–183.

and , “Technological change and the skill acquisition of young workers,” Journal of Labor

Economics, 1998, 16 (4), 718–755.

BEA, “Integrated Industry-Level Production Account (KLEMS),” Technical Report,

Bureau of Economic Affairs 2021. https://www.bea.gov/data/special-topics/

integrated-industry-level-production-account-klems.

Beaudry, Paul and Ethan Lewis, “Do male-female wage differentials reflect differences in the

return to skill? Cross-city evidence from 1980-2000,” American Economic Journal: Applied Eco-

nomics, 2014, 6 (2), 178–94.

, David A Green, and Benjamin M Sand, “The great reversal in the demand for skill and

cognitive tasks,” Journal of Labor Economics, 2016, 34 (S1), S199–S247.

Belloni, Alexandre, Victor Chernozhukov, Lie Wang et al., “Pivotal estimation via square-

root lasso in nonparametric regression,” The Annals of Statistics, 2014, 42 (2), 757–788.

Bertrand, Marianne and Sendhil Mullainathan, “Are Emily and Greg more employable than

Lakisha and Jamal? A field experiment on labor market discrimination,” American economic

review, 2004, 94 (4), 991–1013.

Betts, Julian R and Laurel L McFarland, “Safe port in a storm: The impact of labor market

conditions on community college enrollments,” Journal of Human resources, 1995, pp. 741–765.

Black, Dan, Kermit Daniel, and Seth Sanders, “The impact of economic conditions on par-

ticipation in disability programs: Evidence from the coal boom and bust,” American Economic

Review, 2002, 92 (1), 27–50.

Black, Sandra E and Alexandra Spitz-Oener, “Explaining women’s success: technological

change and the skill content of women’s work,” The Review of Economics and Statistics, 2010, 92

(1), 187–194.

Blanchard, Olivier and Lawrence F Katz, “Regional evolutions,” Brookings Papers on Eco-

219

https://www.bea.gov/data/special-topics/integrated-industry-level-production-account-klems
https://www.bea.gov/data/special-topics/integrated-industry-level-production-account-klems


nomic Activity, Economic Studies Program, The Brookings Institution, 1992, 23 (1).

Blau, David M, “Labor force dynamics of older married couples,” Journal of Labor Economics,

1998, 16 (3), 595–629.

Blau, Francine D and Lawrence M Kahn, “The gender wage gap: Extent, trends, and expla-

nations,” Journal of Economic Literature, 2017, 55 (3), 789–865.

Blom, Erica, Brian C Cadena, and Benjamin J Keys, “Investment over the business cycle:

Insights from college major choice,” Journal of Labor Economics, 2021, 39 (4), 1043–1082.

Bloom, Nicholas, Kyle Handley, Andre Kurman, and Phillip Luck, “The impact of chinese

trade on us employment: The good, the bad, and the debatable,” Unpublished draft, 2019.

Bonfiglioli, Alessandra, Rosario Crinò, Harald Fadinger, and Gino Gancia, “Robot im-

ports and firm-level outcomes,” 2020.

Borusyak, Kirill, Peter Hull, and Xavier Jaravel, “Quasi-Experimental Shift-Share Research

Designs,” The Review of Economic Studies, 2021, forthcoming.

Branco, Danyelle, Bladimir Carrillo, and Wilman Iglesias, “Routine-Biased Technological

Change and Endogenous Skill Investments,” Working Paper, 2022.

Browning, Martin and Eskil Heinesen, “Effect of job loss due to plant closure on mortality

and hospitalization,” Journal of health economics, 2012, 31 (4), 599–616.

Brussevich, Mariya, Ms Era Dabla-Norris, and Salma Khalid, Is Technology Widening the

Gender Gap? Automation and the Future of Female Employment, International Monetary Fund,

2019.

Brynjolfsson, Erik and Andrew McAfee, The second machine age: Work, progress, and pros-

perity in a time of brilliant technologies, WW Norton & Company, 2014.

Burga, Ramiro and Sarah Turner, “Does Enrollment Lead to Completion? Measuring Ad-

justments in Education to Local Labor Market Shocks,” Journal of Human Resources, 2022,

pp. 0121–11408.

Burlon, Lorenzo and Montserrat Vilalta-Bufí, “A new look at technical progress and early

retirement,” IZA Journal of Labor Policy, 2016, 5 (1), 5.

Cadena, Brian C and Brian K Kovak, “Immigrants equilibrate local labor markets: Evidence

from the Great Recession,” American Economic Journal: Applied Economics, 2016, 8 (1), 257–90.

220



Cameron, Stephen V and Christopher Taber, “Estimation of educational borrowing con-

straints using returns to schooling,” Journal of political Economy, 2004, 112 (1), 132–182.

Card, David, “Immigrant inflows, native outflows, and the local labor market impacts of higher

immigration,” Journal of Labor Economics, 2001, 19 (1), 22–64.

and John E DiNardo, “Skill-biased technological change and rising wage inequality: Some

problems and puzzles,” Journal of labor economics, 2002, 20 (4), 733–783.

Cascio, Elizabeth U and Ayushi Narayan, “Who needs a fracking education? The educational

response to low-skill-biased technological change,” ILR Review, 2022, 75 (1), 56–89.

Case, Anne and Angus Deaton, “Rising morbidity and mortality in midlife among white non-

Hispanic Americans in the 21st century,” Proceedings of the National Academy of Sciences, 2015,

112 (49), 15078–15083.

and , “Mortality and morbidity in the 21st century,” Brookings papers on economic activity,

2017, 2017 (1), 397–476.

CBP, “County Business Patterns,” Technical Report, U.S. Census Bureau 2019. https://www.

census.gov/programs-surveys/cbp.html.

Cellini, Stephanie Riegg, “Community colleges and proprietary schools: A comparison of sub-

baccalaureate postsecondary institutions,” California Center for Population Research (CCPR)

Working Paper, 2005, (012-05).

, “Financial aid and for-profit colleges: Does aid encourage entry?,” Journal of Policy Analysis

and Management, 2010, 29 (3), 526–552.

and Claudia Goldin, “Does federal student aid raise tuition? New evidence on for-profit

colleges,” American Economic Journal: Economic Policy, 2014, 6 (4), 174–206.

Centers for Disease Control and Prevention, “Prevalence and most common causes of disabil-

ity among adults–United States, 2005,” MMWR: Morbidity and Mortality weekly report, 2009, 58

(16), 421–426.

Chuan, Amanda and Weilong Zhang, “Workplace Automation and the Gender Gap in College

Enrollment,” 2021.

Cook, Kelemwork, Duwain Pinder, Shelley Stewart III, Amaka Uchegbu, and Jason

Wright, “The future of work in black America,” McKinsey & Company, October, 2019.

221

https://www.census.gov/programs-surveys/cbp.html
https://www.census.gov/programs-surveys/cbp.html


Cook, Lisa D, “Violence and economic activity: evidence from African American patents, 1870–

1940,” Journal of Economic Growth, 2014, 19 (2), 221–257.

Cortes, Guido Matias, Ana Oliveira, and Anna Salomons, “Do technological advances reduce

the gender wage gap?,” Oxford Review of Economic Policy, 2020, 36 (4), 903–924.

Couch, Kenneth and Mary C Daly, “Black-white wage inequality in the 1990s: A decade of

progress,” Economic Inquiry, 2002, 40 (1), 31–41.

Dauth, Wolfgang, Sebastian Findeisen, Jens Suedekum, and Nicole Woessner, “The

Adjustment of Labor Markets to Robots,” Journal of the European Economic Association, forth-

coming 2021.

Derenoncourt, Ellora, “Can you move to opportunity? Evidence from the Great Migration,”

American Economic Review, 2022, 112 (2), 369–408.

, Chi Hyun Kim, Moritz Kuhn, and Moritz Schularick, “Wealth of two nations: The US

racial wealth gap, 1860-2020,” Technical Report, National Bureau of Economic Research 2022.

Deshpande, Manasi and Lee Lockwood, “Beyond Health: Non-Health Risk and the Value of

Disability Insurance,” Technical Report, National Bureau of Economic Research 2021.

Di Giacomo, Giuseppe and Benjamin Lerch, “Automation and Human Capital Adjustment:

The Effect of Robots on College Enrollment,” Available at SSRN 3920935, 2021.

DOT, “Dictionary Of Occupational Titles,” Technical Report, U.S. Department of Labor 1977.

https://occupationalinfo.org.

Dottori, Davide, “Robots and employment: evidence from Italy,” Bank of Italy Occasional Paper,

2020, (572).

Ebrahimian, Mehran, “Student loans and social mobility,” Jacobs Levy Equity Management Cen-

ter for Quantitative Financial Research Paper, 2022.

Ehrenberg, Ronald G, “The economics of tuition and fees in American higher education,” in “The

Economics of Education,” Elsevier, 2020, pp. 345–352.

Eliason, Marcus and Donald Storrie, “Does job loss shorten life?,” Journal of Human Resources,

2009, 44 (2), 277–302.

Faber, Marius, “Robots and reshoring: Evidence from Mexican labor markets,” Journal of Inter-

national Economics, 2020, 127, 103384.

222

https://occupationalinfo.org


, Andrés P Sarto, and Marco Tabellini, “Local Shocks and Internal Migration: The Disparate

Effects of Robots and Chinese Imports in the US,” Technical Report, National Bureau of Economic

Research 2022.

, Andres Sarto, and Marco Tabellini, “The Impact of Technology and Trade on Migration:

Evidence from the US,” Harvard Business School BGIE Unit Working Paper, 2019, (20-071).

Flood, Sarah, Miriam King, Renae Rodgers, Steven Ruggles, and J. Robert Warren,

“IPUMS CPS: Version 7.0 [dataset]. Minneapolis, MN, https://doi.org/10.18128/D030.V7.0,”

Technical Report 2020.

Foote, Andrew and Michel Grosz, “The effect of local labor market downturns on postsecondary

enrollment and program choice,” Education Finance and Policy, 2020, 15 (4), 593–622.

, , and Ann Stevens, “Locate your nearest exit: Mass layoffs and local labor market response,”

ILR Review, 2019, 72 (1), 101–126.

Ford, Martin, Rise of the Robots: Technology and the Threat of a Jobless Future, Basic Books,

2015.

Frank, Richard G, Sherry A Glied, Keith Marple, and Morgan Shields, “Changing Labor

Markets and Mental Illness: Impacts on Work and Disability,” 2019.

Frey, Carl Benedikt and Michael A Osborne, “The future of employment: How susceptible

are jobs to computerisation?,” Technological forecasting and social change, 2017, 114, 254–280.

Friedberg, Leora and Anthony Webb, “Retirement and the evolution of pension structure,”

Journal of Human Resources, 2005, 40 (2), 281–308.

Ge, Suqin and Yu Zhou, “Robots, computers, and the gender wage gap,” Journal of Economic

Behavior & Organization, 2020, 178, 194–222.

Gihleb, Rania, Osea Giuntella, Luca Stella, and Tianyi Wang, “Industrial Robots, Workers’

Safety, and Health,” 2020.

, , , and , “Industrial robots, workers? safety, and health,” Labour Economics, 2022, 78,

102205.

Goldin, Claudia, “The quiet revolution that transformed women’s employment, education, and

family,” American economic review, 2006, 96 (2), 1–21.

and Lawrence F Katz, The race between education and technology, Harvard University Press,

223



2010.

Goldin, Claudia Dale and Lawrence F Katz, The race between education and technology,

Harvard University Press, 2009.

Goldin, Claudia, Lawrence F Katz et al., “Extending the race between education and technol-

ogy,” in “AEA Papers and Proceedings,” Vol. 110 2020, pp. 347–51.

Goldsmith-Pinkham, Paul, Isaac Sorkin, and Henry Swift, “Bartik instruments: What,

when, why, and how,” American Economic Review, 2020, 110 (8), 2586–2624.

Goos, Maarten, Alan Manning, and Anna Salomons, “Job polarization in Europe,” American

economic review, 2009, 99 (2), 58–63.

and , “Lousy and lovely jobs: The rising polarization of work in Britain,” The review of

economics and statistics, 2007, 89 (1), 118–133.

Graetz, Georg and Guy Michaels, “Robots at work,” Review of Economics and Statistics, 2018,

100 (5), 753–768.

Greenland, Andrew and John Lopresti, “Import exposure and human capital adjustment:

Evidence from the US,” Journal of International economics, 2016, 100, 50–60.

Grigoli, Francesco, Zsoka Koczan, and Petia Topalova, “Automation and labor force partic-

ipation in advanced economies: Macro and micro evidence,” European Economic Review, 2020,

126, 103443.

Guryan, Jonathan and Kerwin Kofi Charles, “Taste-based or statistical discrimination: the

economics of discrimination returns to its roots,” The Economic Journal, 2013, 123 (572), F417–

F432.

Harris, E Clare and Brian Barraclough, “Suicide as an outcome for mental disorders. A meta-

analysis,” British journal of psychiatry, 1997, 170 (3), 205–228.

Helm, Ines, “National Industry Trade Shocks, Local Labour Markets, and Agglomeration

Spillovers,” The Review of Economic Studies, 2020, 87 (3), 1399–1431.

Hickman, Daniel C and William W Olney, “Globalization and investment in human capital,”

ILR Review, 2011, 64 (4), 654–672.

Hollingsworth, Alex, Christopher J Ruhm, and Kosali Simon, “Macroeconomic conditions

and opioid abuse,” Journal of health economics, 2017, 56, 222–233.

224



Howard, Greg, “The migration accelerator: Labor mobility, housing, and demand,” American

Economic Journal: Macroeconomics, 2020, 12 (4), 147–79.

Hunt, Jennifer, “The impact of immigration on the educational attainment of natives,” Journal

of Human Resources, 2017, 52 (4), 1060–1118.

IFR, “World Robotics 2018,” Technical Report, International Federation of Robotics, Frankfurt

2018.

Jaeger, David A, Joakim Ruist, and Jan Stuhler, “Shift-share instruments and dynamic

adjustments: The case of immigration,” in “NBER Working Paper No. 24285” 2019.

Jägger, Kirsten, “EU KLEMS Growth and Productivity Accounts 2017 release,” Description of

Methodology and General Notes 2017.

Jaimovich, Nir, Itay Saporta-Eksten, Henry E Siu, and Yaniv Yedid-Levi, “The macroe-

conomics of automation: Data, theory, and policy analysis,” Technical Report, National Bureau

of Economic Research 2020.

Jensen, Robert, “The (perceived) returns to education and the demand for schooling,” The Quar-

terly Journal of Economics, 2010, 125 (2), 515–548.

Jones, Stephen RG, William Craig Riddell et al., Unemployment and Non-employment Het-

erogeneities in Labour Market States, Department of Economics, University of British Columbia,

2002.

Juhn, Chinhui, Kevin M Murphy, and Brooks Pierce, “Wage inequality and the rise in

returns to skill,” Journal of political Economy, 1993, 101 (3), 410–442.

Katz, Lawrence F and Kevin M Murphy, “Changes in relative wages, 1963–1987: supply and

demand factors,” The quarterly journal of economics, 1992, 107 (1), 35–78.

King, Mary C, “Occupational segregation by race and sex, 1940-88,” Monthly Labor Review, 1992,

115 (4), 30–37.

Kletzer, Lori G, “Job displacement, 1979-86: how blacks fared relative to whites,” Monthly Lab.

Rev., 1991, 114, 17.

Krueger, Alan B, “How computers have changed the wage structure: evidence from microdata,

1984–1989,” The Quarterly Journal of Economics, 1993, 108 (1), 33–60.

, “Where have all the workers gone? An inquiry into the decline of the US labor force participation

225



rate,” Brookings papers on economic activity, 2017, 2017 (2), 1.

Krusell, Per, Lee E Ohanian, José-Víctor Ríos-Rull, and Giovanni L Violante, “Capital-

skill complementarity and inequality: A macroeconomic analysis,” Econometrica, 2000, 68 (5),

1029–1053.

Lang, Matthew, T Clay McManus, and Georg Schaur, “The effects of import competition

on health in the local economy,” Health economics, 2019, 28 (1), 44–56.

Lerch, Benjamin, “Robots and Nonparticipation in the US: Where Have All the Workers Gone?,”

Available at SSRN 3650905, 2020.

, “From Blue to Steel-Collar Jobs: The Decline in Employment Gaps?,” Available at SSRN

3882589, 2021.

Liebman, Jeffrey B, “Understanding the increase in disability insurance benefit receipt in the

United States,” Journal of Economic Perspectives, 2015, 29 (2), 123–50.

Liu, Shimeng, Weizeng Sun, and John V Winters, “Up in STEM, down in business: changing

college major decisions with the great recession,” Contemporary Economic Policy, 2019, 37 (3),

476–491.

Lovenheim, Michael F, “The effect of liquid housing wealth on college enrollment,” Journal of

Labor Economics, 2011, 29 (4), 741–771.

Lundberg, Shelly, “The added worker effect,” Journal of Labor Economics, 1985, 3 (1, Part 1),

11–37.

Maestas, Nicole, Kathleen J Mullen, and Alexander Strand, “Disability insurance and the

great recession,” American Economic Review, 2015, 105 (5), 177–82.

Manoli, Day and Nicholas Turner, “Cash-on-hand and college enrollment: Evidence from pop-

ulation tax data and the earned income tax credit,” American Economic Journal: Economic

Policy, 2018, 10 (2), 242–71.

Manski, Charles F and David A Wise, College choice in America, Harvard University Press,

2013.

Marianne, Bertrand, “New perspectives on gender,” in “Handbook of labor economics,” Vol. 4,

Elsevier, 2011, pp. 1543–1590.

Mazzonna, Fabrizio and Franco Peracchi, “Ageing, cognitive abilities and retirement,” Euro-

226



pean Economic Review, 2012, 56 (4), 691–710.

Miller, Douglas L, Marianne E Page, Ann Huff Stevens, and Mateusz Filipski, “Why are

recessions good for your health?,” American Economic Review, 2009, 99 (2), 122–27.

Molloy, Raven, Christopher L Smith, and Abigail Wozniak, “Internal migration in the

United States,” Journal of Economic perspectives, 2011, 25 (3), 173–96.

Monras, Joan, “Economic shocks and internal migration,” 2018.

Mueller, Andreas I, Jesse Rothstein, and Till M Von Wachter, “Unemployment insurance

and disability insurance in the Great Recession,” Journal of Labor Economics, 2016, 34 (S1),

S445–S475.

Muro, Mark, Robert Maxim, and Jacob Whiton, “Automation and artificial intelligence:

How machines are affecting people and places,” 2019.

Ngai, L Rachel and Barbara Petrongolo, “Gender gaps and the rise of the service economy,”

American Economic Journal: Macroeconomics, 2017, 9 (4), 1–44.

Notowidigdo, Matthew J, “The incidence of local labor demand shocks,” Journal of Labor Eco-

nomics, 2020, 38 (3), 687–725.

Olivetti, Claudia and Barbara Petrongolo, “The evolution of gender gaps in industrialized

countries,” Annual review of Economics, 2016, 8, 405–434.

Ortigueira, Salvador and Nawid Siassi, “How important is intra-household risk sharing for

savings and labor supply?,” Journal of Monetary Economics, 2013, 60 (6), 650–666.

Parsons, Donald O, “The decline in male labor force participation,” Journal of political Economy,

1980, 88 (1), 117–134.

, “Racial trends in male labor force participation,” The American Economic Review, 1980, 70 (5),

911–920.

Pavlenkova, Ilona, Luca Alfieri, and Jaan Masso, “Effects of automation on the gender pay

gap: the case of Estonia,” Available at SSRN 3874562, 2021.

Peracchi, Franco and Finis Welch, “Trends in labor force transitions of older men and women,”

Journal of Labor Economics, 1994, 12 (2), 210–242.

Petrongolo, Barbara and Maddalena Ronchi, “Gender gaps and the structure of local labor

markets,” Labour Economics, 2020, 64, 101819.

227



Pierce, Justin and Peter Schott, “Trade Liberalization and Mortality: Evidence from U.S.

Counties,” American Economic Review: Insights, forthcoming, 2018.

Pitt, Mark M, Mark R Rosenzweig, and Mohammad Nazmul Hassan, “Human capital

investment and the gender division of labor in a brawn-based economy,” American Economic

Review, 2012, 102 (7), 3531–60.

Poterba, James M, “Retirement security in an aging population,” American Economic Review,

2014, 104 (5), 1–30.

Prettner, Klaus and Holger Strulik, “Innovation, automation, and inequality: Policy challenges

in the race against the machine,” Journal of Monetary Economics, 2020, 116, 249–265.

Raut, Lakshmi K, “Exits from the Disability Insurance Rolls: Estimates from a Competing-Risks

Model,” Soc. Sec. Bull., 2017, 77, 15.

Rege, Mari, Kjetil Telle, and Mark Votruba, “The effect of plant downsizing on disability

pension utilization,” Journal of the European Economic Association, 2009, 7 (4), 754–785.

Rendall, Michelle, “Brain versus brawn: the realization of women’s comparative advantage,”

University of Zurich, Institute for Empirical Research in Economics, Working Paper, 2017, (491).

Restrepo, Pascual, “Skill mismatch and structural unemployment,” Massachusetts Institute of

Technology Job Market Paper, 2015, pp. 1–94.

Roy, Andrew Donald, “Some thoughts on the distribution of earnings,” Oxford economic papers,

1951, 3 (2), 135–146.

Ruggles, Steven, Sarah Flood, Ronald Goeken, Josiah Grover, Erin Meyer, Jose

Pacas, and Matthew Sobek, “IPUMS USA: Version 9.0 [dataset]. Minneapolis, MN,

https://doi.org/10.18128/D010.V9.0,” Technical Report 2019.

Ruhm, Christopher J, “Are recessions good for your health?,” The Quarterly journal of eco-

nomics, 2000, 115 (2), 617–650.

, “Good times make you sick,” Journal of health economics, 2003, 22 (4), 637–658.

Schaller, Jessamyn and Ann Huff Stevens, “Short-run effects of job loss on health conditions,

health insurance, and health care utilization,” Journal of health economics, 2015, 43, 190–203.

Sullivan, Daniel and Till Von Wachter, “Job displacement and mortality: An analysis using

administrative data,” The Quarterly Journal of Economics, 2009, 124 (3), 1265–1306.

228



Susskind, Daniel, A world without work: Technology, automation and how we should respond,

Penguin UK, 2020.

Tinbergen, Jan, “Substitution of graduate by other labour,” Kyklos: international review for social

sciences, 1974.

Tolbert, Charles M and Molly Sizer, “US commuting zones and labor market areas: A 1990

update,” Technical Report 1996.

Tuhkuri, Joonas, “The surprising intergenerational effects of manufacturing decline,” Technical

Report, Technical report, MIT 2021.

UN Comtrade, “United Nations Comtrade Database,” Technical Report, United Nations Statistics

Division, New York: United Nations 2019. http://comtrade.un.org/.

Vries, Gaaitzen J De, Elisabetta Gentile, Sébastien Miroudot, and Konstantin M

Wacker, “The rise of robots and the fall of routine jobs,” Labour Economics, 2020, 66, 101885.

Weinberg, Bruce A, “Computer use and the demand for female workers,” ILR Review, 2000, 53

(2), 290–308.

Weinstein, Russell, “Local labor markets and human capital investments,” Journal of Human

Resources, 2020, pp. 1119–10566R2.

Yagan, Danny, “Employment hysteresis from the great recession,” Journal of Political Economy,

2019, 127 (5), 2505–2558.

Yamaguchi, Shintaro, “Changes in returns to task-specific skills and gender wage gap,” Journal

of Human Resources, 2018, 53 (1), 32–70.

229

http://comtrade.un.org/

	Introduction
	Chapter 1
	From Blue to Steel-Collar Jobs: The Decline in Employment Gaps?
	Introduction
	Literature
	Data
	Industrial robots
	Employment
	Occupational and industrial segregation

	Identification strategy
	Results
	Robots and employment
	Socio-demographic characteristics
	Occupations and industries
	Robots and wages

	Conceptual framework
	Conclusion
	Appendix A
	Data
	Current Population Survey
	Industrial robots
	Import exposure
	Technology shocks
	CZ characteristics

	Comparison with acemoglu2020robots
	Robustness checks
	Product market competition
	Pre-trends
	Weights
	Shift-share measure
	Exclusion of CZs
	Covariates and CZ trends
	Conceptual framework: Proofs
	Additional figures and tables
	Chapter 2
	Robots and Non-participation in the US: Where Have All the Workers Gone?
	Introduction
	Related literature
	Data
	Industrial robots
	Margins of adjustment
	Health
	Empirical strategy
	Robots and non-participation
	Where have all the workers gone?
	College enrollment
	Disability take-up
	Early retirement
	Alternative sources of income
	Relative contribution of adjustment margins

	Conclusion

	Appendix B
	Figures and tables
	Data sources and cleaning
	Industrial robots
	Health outcomes
	Import exposure
	Industry employment and output
	CZ characteristics
	Migration
	Institution controls
	Technology shocks
	Institutional background
	Robustness checks
	Competition from Europe
	Industry trends
	The Rust Belt
	Pre-trends
	The Great Recession
	Robots and imports
	Robots and other technologies
	Cross-sectional and temporal variation
	Construction of the shift-share measure
	Logarithmic outcomes
	Robust standard errors
	Alternative covariates
	Stock of robots using the perpetual inventory method
	Unweighted results
	General equilibrium and adjustment effects
	Contribution of margins of adjustment
	Chapter 3
	Automation and Human Capital Adjustment: The Effect of Robots on College Enrollment
	Introduction
	Data and summary statistics
	Industrial robots
	Post-secondary education
	Summary statistics
	Empirical strategy
	Robots and human capital adjustments
	College enrollment
	Student migration
	Educational attainment
	Mechanism
	Conceptual framework
	Opportunity cost or college wage premium?

	Conclusions
	Appendix C
	Data and cleaning
	Figures and tables
	Conceptual framework: Proofs
	Robustness checks
	Robots and college enrollment at state level
	References




























