ConvTab: A Context-Preserving, Convolutional
Model for Ad-Hoc Table Retrieval

Vibhav Agarwal
International Institute of
Information Technology Bangalore
Bangalore, India
vibhav.agarwal @iiitb.ac.in

Abstract—Ad-hoc table retrieval, also known as table search,
is the problem of finding tables relevant to a search query. This
search query can be a keyword or a table itself, referred to
as keyword-based and table-based search, respectively. With the
vast amounts of tabular data available online, it has become
essential for users to identify relevant tables that meet their
search criteria. In this regard, there has been a wide variety of
research on this problem using pure lexical features, semantic
representation, embeddings, as well as intrinsic and extrinsic
features of the tables. However, one of the significant limitations
of most of the existing methods is that they do not keep the
table’s structure and the globalized context intact when building
semantic representations of tabular data. Deriving motivation
from this fact, we propose an effective approach based on
Convolutional Neural Networks (CNNs) — ConvTab - to train
the embeddings of tabular data. Our approach is divided into
two phases. First, we leverage the discriminating power of CNNs
to train a table classifier. Next, the representations learned from
this model are used to generate semantic features for query-table
similarity. These query-table similarity features are then used
as input to the learning algorithm. We evaluate our approach
on the table retrieval task using standard NDCG, MAP, and
MRR metrics. Experiments reveal that ConvTab significantly
outperforms the state of the art in ad-hoc table retrieval by
16.9% and 8.37% using NDCG at cutoffs 5 and 20, respectively.
For reproducibility purposes, we share our model as well as all
details of our implementation'.

Index Terms—Information systems, Learning to rank, Re-
trieval models, Ranking

I. INTRODUCTION

Tables are a universal method for representing data; they can
be used as a visual communication pattern, data arrangement,
or organization tools. The Web has a collection of over
150 million tables [1], which, as a whole, represents an
invaluable source of semi-structured knowledge. Data from
these tables belong to very different categories, including
finance, medicine, agriculture, or geography. Web tables have
been extensively researched for various tasks like semantic
understanding [2], search [1], [3], [4], table mining [S]-[7],
table augmentation [8]-[12], etc.

The problem of ad-hoc table retrieval, or table search, is a
fundamental discovery task in this context and the focus of our

Uhttps://github.com/vibhavagarwal5/table2vec-vibhav
978-1-6654-3902-2/21/$31.00 ©2021 IEEE

Akansha Bhardwaj
eXascale Infolab
University of Fribourg
Fribourg, Switzerland
akansha.bhardwaj@unifr.ch

Paolo Rosso
eXascale Infolab
University of Fribourg
Fribourg, Switzerland
paolo.rosso @unifr.ch

Philippe Cudré-Mauroux
eXascale Infolab
University of Fribourg
Fribourg, Switzerland
pcm@unifr.ch

Switzerland U Search

Switzerland - Wikipedia, Cantons of Switzerland

https://en.wikipedia.org/wiki/Switzerland

Canton ID | Capital Canton 1D Capital
@ Aargau 19 | Aarau EJ *Nidwalden |7 | Stans
t}. *Appenzell Ausserrhoden | 15 | Herisau ':g *Obwalden 6 | Sarnen
'ﬂ *Appenzell Innerrhoden | 16 | Appenzell | % Schaffhausen | 14 | Schaffhausen
f r*Basel-Landschaft 13 | Liestal U Schwyz 5 | Schwyz
% *Basel-Stadt 12 | Basel B golothurn 11 | Solothurn

Show more (13 rows total)

Switzerland - Wikipedia, Religion in Switzerland

https://en.wikipedia.org/wiki/Switzerland
Affiliation 4+ Percent of Swiss population %

66.5 | I

35.8 |

23.8 |

251

121

Christian faiths
Roman Catholic
Swiss Reformed
Eastern Orthodox
Evangelical Protestant

Show more (16 rows total)

Fig. 1: An example of an ad-hoc table retrieval task for
query ‘Switzerland’ that results in two relevant tables arranged
according to their relevance score.

work. Given a query, the task is to retrieve relevant tables [13]
and rank them in order of their relevance to the query. It
is an essential task on its own and is a core component in
many table mining and extraction tasks, like table integration,
table completion, etc. Commercial products, such as Microsoft
Power Query Table?, also provide search functionalities and
smart assistance features based on table search. Table search
may be classified as either keyword-based search or table-
based search depending on the type of the input query.

Figure 1 shows an example of a table retrieval task where
the query ‘Switzerland’ results in two tables arranged in the
order of their relevance score. The first result is about the
geographic and administrative regions in Switzerland, while
the second one is about its religious demography.

Zhttps://docs.microsoft.com/en-us/powerquery-m/table-functions

Previous works have considered tables as documents such
that traditional document retrieval methods can be directly
applied to table retrieval [1], [9], [10]. Supervised learning,
based on hand-crafted features from tables, queries, and query-
table pairs [13], has resulted in some of the best performing
table retrieval systems. Building on this, Zhang and Balog [14]
introduced semantic features to embed queries and tables
into a semantic space, and then trained a supervised model
using both semantic and traditional features. Ghasemi-Gol and
Szekely [15] developed table embeddings for table classifica-
tion, while Gentile et al. [16] trained table embeddings for
web table entity matching. Shraga et. al [17] also proposed an
approach for table retrieval that uses intrinsic (passage-based)
and extrinsic (manifold-based) similarity that results in a better
retrieval quality than semantically rich baselines. Hybrid-
BERT-Row-Max [18] extends deep contextualised language
models like BERT [19] to generate table representations. Addi-
tionally, recent approaches have focused on preserving schema
information while learning table representations, which has
proved to be beneficial [20], [21]. We discuss the related works
in detail further in Section II.

Though a significant amount of work has been done in this
context, we note that most of the previous table embeddings
do not preserve the contextual information present as 2-
D matrices in tabular data. Transforming tables into one
dimensional textual data potentially results in a significant
loss of structural information. We also note that all previous
approaches need metadata information on the tables, which is
not always available in real-world settings. To fill this gap,
we propose a novel convolutional approach for tabular data
where we train table embeddings by preserving their structural
information. Our semantic features are completely based on
the content and do not rely on the metadata of the table.

A. Our approach and contribution

Our proposed approach trains a model on tabular data for the
table classification task by leveraging the discriminating power
of CNNs. Architecturally, our approach draws motivation from
the field of computer vision. Broadly, we approach the problem
of ad-hoc table retrieval in two steps:

o First, we learn an embedding representation for the
entities appearing in the table through an end-to-end
learning method (E3LM) as described in Section III. The
target task is table classification with ‘valid’ and ‘invalid’
categories. ‘Valid’ tables come from the dataset, while
‘invalid’ tables are those that are generated synthetically
by randomly shuffling the cells. This is further described
in Section III-A.

o Next, the features formed by the penultimate layer of
the neural net architecture are used to retrieve and rank
appropriate tables.

Results indicate that our approach considerably outperforms
state-of-the-art (SoTA) approaches for the table retrieval task,
by a margin of 16.9% and 8.37% in terms of NDCG scores
(at cutoff 5, and 20 respectively) on a large, standard dataset.
It is important to mention that our approach can be used

for keyword-based as well as table-based search methods.
However, as the standard dataset for table retrieval comprised
keyword based queries only, we report our results with respect
to those queries.

To summarize, our main contributions are as follows:

1) We propose a novel approach to solve the problem of
ad-hoc table retrieval by training word embeddings using
Convolutional Neural Networks (CNNs) while preserv-
ing the context and structure of the various table entries.
Compared to all pre-existing methods, our approach
does not require the metadata of the tables.

2) For reproducibility purposes, our complete code, run
files, and trained models are freely accessible for further
research.

The rest of this paper is organized as follows. We discuss
related work in Section II. We introduce our approach for
table retrieval in Section III, where we describe our training
method followed by our method for predicting the rankings of
a query-table pair. In Section IV, we introduce our dataset and
experimental setup, followed by our results and evaluations
structured in the form of research questions that we answer.
Finally, we conclude the paper in Section V where we sum-
marize our results, discuss the limitations of our approach as
well as potential future avenues for our work.

II. RELATED WORK
A. Table as a Document

A number of approaches for ad-hoc table retrieval use
standard document retrieval methods for table ranking [1], [9]
by considering tables as documents. The most straightforward
approach in this context is when a table is represented by
a single field containing all the text. The retrieval score is
calculated using existing retrieval methods, such as language
models or BM25 [22].

A late fusion method [23] has also been proposed for multi-
field ranking where, for a given query, a score is calculated
independently for each field, and a linear combination of the
scores is calculated [10]. The final score is given by:

score(Q,T) = sz x score(Q, fi) ()

where Q is a given query, T is a table, f; is the i*" field of
T, and w; is the weight associated with f;.

Some approaches that use supervised ranking methods by
generating multiple query, table, and query-table features were
proposed in the literature for the task of table retrieval [1],
[8], [24]. Zhang and Balog [13] proposed to extend these
features with semantic matching between queries and tables
using various semantic features such as word embeddings,
graph embeddings, bag-of-entities, and bag-of-categories. The
DBpedia knowledge base was then used to construct a multi-
hot vector representation for both bag of entities and bag of
categories. This implies that the dimension of the features is
equivalent to the total number of categories, and a value of 1
indicates the presence of a particular feature.

B. Learning Representations for Tabular Data

Recent work has shown that words can be embedded into
vectors based on the distributional hypothesis [25]. Entity link-
ing tasks [2], [16] have been solved using such embeddings. A
graph generated using the embedding representation of entities
can be used to disambiguate entities for the entity linking task.
Embeddings have also been used to understand the layout of
a table [26].

Deep Neural Networks (DNN)-based architectures have
been proposed for table classification [27] using attention
mechanisms [28]. Nishida et. al [27] proposed a Recurrent
Neural Network (RNN)-based architecture to encode a se-
quence of tokens for each cell. An attention mechanism is
further used to extract the important token from each cell to
form an input volume. This constructed volume is then passed
through a CNN and then a Fully Connected Network (FCN)
to classify tables. After training, each cell token is assigned
an embedding.

Ghasemi-Gol and Szekely [15] introduced an unsupervised
method to generate a vector representation of a table for the
table classification task. Their proposed table embedding is
based on cell tokens embedding using four contexts: text
within each cell, text in adjacent cells, text in the corre-
sponding attribute or header, and text surrounding the table
in the web page. Trabelsi et al. [29] also proposed contextual
embeddings generated from the information present in the
tables. They learn word embeddings for attribute tokens by
enlarging the context to cover the metadata of tables. The
additional learned context is then used while ranking queries
against tables. Though our method also uses the cell context
to learn table embeddings, we use a globalized context. This
means that the entire table’s content is used by our model in
order to generate the embeddings. Also, unlike others, we do
not require any metadata, which are often missing online.

TablESim [17] considers a combination of intrinsic and
extrinsic sources that were previously never used for the table
retrieval task. Intrinsic table similarity is measured using pas-
sage level information, while extrinsic table similarity uses a
regularized manifold-based ranking approach. TabIESim com-
bines both similarities using a simple, re-ranking approach.
The proposed approach results in a significantly better retrieval
quality outperforming semantically rich baselines.

While most works have augmented tables using seman-
tic features like concepts, entities, word and graph embed-
dings [13], [14], [30], TAPAS [20], and Hybrid-BERT-Row-
Max [18] are two approaches that extend deep contextualised
language models like BERT [19] to generate table represen-
tations. These methods extend BERT’s architecture to encode
tables as input.

C. Schema Preserving Approaches

The table’s schema typically imposes some structure on the
table’s content. However, the information from the column
names does often not provide enough information as it might
be short, abbreviated, or hard to interpret. Though the initial
motivation behind CNNs [31] was for computer vision related

tasks, there have been insights on the adaptation process of
a non-image data to an image for CNN architectures [32]-
[35]. TAPAS [20], a BERT [19] inspired model encodes the
structural information in the positional embeddings, but is
designed for the task of semantic parsing. Specific to table
retrieval, MTR [21] makes a novel use of Gated Multimodal
Units (GMUs) to learn a joint representation of the query and
different table modalities. In our work, we propose a CNN-
based architecture to train tabular data and preserve the 2D
structure of a table. Unlike other approaches, our method uses
the content of a table only, and not the metadata. This makes
our method more robust and applicable to most real-world
settings.

III. CONVTAB: A CONTEXT-PRESERVING MODEL FOR
AD-HoC TABLE RETRIEVAL

In this section, we present our method called ConvTab, a
CNN-based architecture for ad-hoc table retrieval.

1) Problem Formalization: Given a keyword query ¢, ad-
hoc table retrieval is the task of returning a ranked list of
tables, (171,7,,) from a collection of tables C. Each table
is assigned a relevance score to the query score(q,T). Tables
are then sorted in descending order of their scores.

a) Anatomy of a Web Table: Our primary focus is on
tables which are embedded in webpages, also known as web
tables. Below, we define the basic elements of a web table.
The following information is available for each table in our
corpus:

o Table page title: the title of the webpage that embeds the

table.

o Table caption: a short textual label that summarizes what
the table is about.

o Table headings: a list of labels that define what each table
row/column contains.

o Table cell: a table cell is specified with the row index ¢
and column index j. Table cells are considered as atomic
units in a table. It is possible that some of the tables are
not populated with a value in each of the corresponding
cells.

e Table row: a list of table cells that form a row in the
table.

o Table column: a list of table cells that form a column in
the table.

o Table entities: tables often mention specific entities, such
as persons, organizations, or locations. Table entities are
a set consisting of all the entities that are mentioned in
the table.

Figure 2 shows our proposed approach architecturally. We
perform the task of table retrieval in two phases. First, we
train the model on the TabEL [36] dataset comprising of 1.6M
tables, along with negative sampling for the table classification
task. After completing this training task, the features from the
penultimate fully-connected layer are extracted and used for
generating semantic features for the query and table. These

End-to-end Embeddings Learning Method (E3LM)

» Embedding dimension

g 1]
3 3 - -2,
> s
m 2 2
| # ol +
S, ml . .]
@ Convolve Max Pool
v E 1 13 6
5 3 ! Valid/Invalid
Input % - LU Ll '
table %" % Fully
v E— Connected
1. Use E3LM for learning table embeddings
E3LM %
N o
=X
7
= Cosine Similarity B3
@
Table g %
o
vl]
N a
@ # 8 > Relevance Score > Ranking
=
Q
3
Q
o
3
D:‘:Ij Precomputed Lexical 3
—p| =
features o
a
Query -

2. Using learnt E3LM semantic features and lexical features, train another Point-wise regressor (Random Forest) for ranking and retrieving tables

Fig. 2: Our proposed approach is divided into two phases. First, we train on the TabEL dataset [36] for table classification.
In the second phase, the features from the penultimate layer are extracted and used to generate query, table, and query-table
similarity-based features. These features along with lexical features are used as input to the learning algorithm which predicts

the ranking of a table.

semantic features, along with lexical features, are used as input
to the learning algorithm that ranks the tables for each query.
This is further explained in the following sections.

A. Learning Embeddings

The textual value of a table cell typically does not contain
much information. For example, some text snippet such as
“President” may occur in multiple contexts. The embeddings
based on cell values only are insufficient, and thus we leverage
additional context from the table to generate a more meaning-
ful representation. Our proposed embeddings are contextual
and use co-occurrence information present in tabular data.
In fact, as the data is arranged in 2-D matrices, we apply
a 2-D convolution-based neural network architecture without
changing the structure of the tabular data. We treat the tables
as images where cells represent pixels, while the dimension
of the embeddings represents the channel space of colored
images.

a) Convolutional Architecture: The field of deep learning
for image classification has considered many architectures.
Among them, CNN [31] is most-commonly used to perform
image classification. A typical CNN architecture consists of
convolutional layers and pooling layers that are followed by

fully-connected layers to generate outputs for image classifi-
cation.

We consider a 2-D convolution for an input matrix X of size
IxJ, which is convolved with the kernel matrix K. of size
mxn, resulting in a new matrix Y., representing the output
matrix by the following equation:

Yeli, 51 =D Y Ko, Bl- Xli+ o, j+ 8] ()

a=0 =0

Here, the indices ¢ and j belong to the image matrix X
while « and g belong to the kernel matrix. The kernel matrix
is similar to the filter matrix that is used in computer vision.
The resulting output from this convolution is then passed to a
maxpooling function:

Y,y = max(Y)*7) 3)

which returns the maximum value Y,,,,, from the input patch
Y*7, where Y.Y*7 is a sub-matrix of Y. with dimension yxy.
We apply the previous equation consecutively on all patches

of the original matrix Y. The result is a feature map of lower
dimension.

b) Generating negative samples: Our model training task
is designed as a table classification task, where we predict the
table category to be ‘valid’ or ‘invalid’. As the TabEL [36]
dataset is a collection of valid 1.6M tables, we generate
artificial negative data using a random sampling of entities
that do not occur together in tables. Negative sampling [37]
is a technique used to train machine learning models that
generally have several orders of magnitudes more negative
observations compared to positive ones, but these negative
observations are not explicitly provided and instead must be
generated somehow.

The TabEL corpus is preprocessed as explained in Sec-
tion IV-Al. This preprocessing results in a corpus of 2.2
million tables, which serves as the ‘valid’ category dataset
for our training part. For the ‘invalid’ category, we create
synthetic tables by shuffling cells from the entire table corpus
and constructing tables such that cells that occur in the same
table are not present together in any ‘valid’ table. For the
‘invalid’ category, we create synthetic tables by first creating
empty tables and then filling them up randomly with cells
from the other tables in the corpus. We ensure that no two
cells in this ‘invalid’ table come from the same ‘valid’ table.
The intuition behind this step is that entities in the same table
are semantically closer and by this random shuffling, we create
tables with semantically distant entities. For example, let us
assume we have two tables in our dataset; Table A contains
countries and its currencies, and Table B contains medicines
and diseases. A potential ‘invalid’ table in this scenario could
be the one where we shuffle the cells across these tables
and it contains ‘Dollar, Insulin and Common Cold, Russia’.
Intuitively, we train the model to distinguish between tables
that have similar data and those that do not. We create an
equal number of negative tables to maintain class balance. This
results in a total corpus of 4.4 million tables, which are fed
as input to the end-to-end table (E3LM) classification model.

1) Training Network Parameters: Figure 2, top, shows the
first phase of our approach: the end-to-end learning method,
E3LM. First, we initialize the embeddings of all entities
present in our model from a Gaussian sphere A(0,1). The
dimension of each embedding vector is set to 100. These
embedding dimensions correspond to the image channel space
for our input data.

We use Ix]J tables as an input to our CNN-based model.
We use a CNN with a fully connected layer architecture for
our E3LM phase. The motivation here is to generate high-
level features for the tables, which can be used to compute
the semantic similarity. We picked rectangular kernels of shape
a x (3 for our convolution layer, and then do a maxpool with
a kernel of size v x . The intermediate output is flattened
and passed through a Fully Connected layer, and a sigmoid
activation is used to get an output of size 1. This output is
further rounded off in order to get 1 or O for our ‘valid’ or
‘invalid’ classification, respectively.

We calculate the loss using Binary Cross Entropy [38].

D
L==Y yn-log(p(yn)) + (1 —yn) -log(1 = p(ya)) ()
n=1

where D is the total number of data points, y,, is the original
label and p(y,,) is the predicted label of the instance n.

B. Applying Embeddings to Table Retrieval

After this pretraining step, we use the model for our
downstream task of table retrieval to generate table-query
semantic features. We input the tables and keyword queries to
the trained model and extract the penultimate layer features.

We presume that the feature vectors present in the penulti-
mate layer are rich enough for our table-query matching. We
extract these features for both the query and table using a
forward pass through the network. We treat keyword queries
in tabular form in order to pass it through the CNN model to
extract the features. Once we have gathered the features for
the table and query, we calculate the cosine similarity score
between the two as follows:

n

sz’milarity(f, Q) = T-Q = nngl TZQ; 5

el ~ VEL T VEL @,
where T is a table feature vector, @ is a query feature vector,
and n is the dimension of the feature vector (1536 in our case).
This score serves as the semantic feature for our table query
ranking task.

The cosine similarity semantic feature and the precomputed
lexical features are used together to train another Random
Forest model for ranking our tables for a given input query
g. The objective is to classify a given query table pair and
predict its relevance score. Subsequently, a score is computed
as the weighted sum of the confidence score from the model
as follows and is used to rank the tables:

2
score = Z ¢ X p(e) (6)
c=0

where c is the relevance score class (from 0-2) and p(c) is the
probability of that class obtained from Random Forest. This
scoring function is the same as that used by [13].

For training the Random Forest, we use five-fold cross-
validation. For each fold, score is computed as described in
the above equation. Then, all these folds are merged together
which is then used to compute NDCG scores.

IV. EXPERIMENTS & RESULTS

This section first presents our experimental setup, the
datasets we used in our empirical evaluation, as well as our
baselines. Subsequently, we give a full description of the
results we obtain.

A. Setup

In this section, we present the setup of our experiments and
comment on the hyperparameters for our models.

Method NDCG@5 NDCG@10 NDCG@15 NDCG@20 MAP MRR

LTR [13] 0.5223 0.5422 0.5711 0.5915 0.4112 0.7244
STR [13] 0.5951 0.6293 0.659 0.6825 0.5141 0.7579
T2vW [14] 0.5974 0.6096 0.6312 0.6505 0.4675 0.7806
T2vE [14] 0.5602 0.5569 0.5760 0.6161 0.4176 0.7344
TabIESim [17] 0.6498 0.6479 - 0.6935 0.5124 -
Hybrid-BERT-Row-Max [18] 0.6361 0.6519 0.6558 0.6564 0.6311 0.6673
MTR [21] 0.6631 0.6813 - 0.7370 0.6058 -
ConvTab 0.7698* 0.7646* 0.7768* 0.7987* 0.6540* 0.8347*
ConvTab (with 1-D Conv) 0.4240* 0.4736* 0.5447* 0.6199* 0.4022* 0.5727*
ConvTab (with MLP) 0.2826* 0.3393* 0.3842* 0.4374* 0.2488* 0.4343*

TABLE I: Table retrieval evaluation results using NDCG scores, MAP, and MRR for the proposed approach against SoTA
table retrieval methods. The missing entries indicate metrics that were inaccessible due to missing run files.

1) Dataset and Preprocessing: Our training set is the
TabEL dataset [36] that contains the full-set of 1,652,771
high-quality Wikipedia tables. Each table has five indexable
fields: table caption, attributes (column headings), rows, the
title of the page, and section. In addition, each table contains
statistics on the number of columns, number of rows, and set
of numerical columns of the table.

Our benchmark set of queries and tables are the same as
used by Zhang and Balog [13]. This is a collection of 60 test
queries from two independent sources manually ranked against
3120 tables. These 3120 manually annotated table query pairs
consist of 18 lexical features like query features (number of
query terms, etc.), table features (number of rows, columns,
empty cells etc.), and table-query features (query term fre-
quency, language modeling score, etc.). This dataset also
contains relevance scores for each table query pair annotated
on a scale of 0-2, 0 being non-relevant (i.e., when it is unclear
what it is about or when it is about a different topic), 1 being
somewhat relevant if some cells or values could be used from
this table, and 2 being highly relevant if large blocks or several
values could be used from it when creating a new table on the
query topic.

We preprocess the tables to remove special symbols, num-
bers, duplicate/empty rows and columns from the entire TabEL
corpus. This is a standard preprocessing step in order to
remove noise from the data. In addition, we remove tables
of shape 1 x 1 since they do not have any context. Each
cell in a table is considered as a single entity, which is used
to construct the vocabulary for the model. We consider all
tokens with a frequency of two or more, the rest of the tokens
are replaced with an “unknown” jUNK; token. The CNN
architecture requires fixed size input. So, we convert our tables
into 15 x 5 size, which is the mean row and column size of
the tables in the corpus. We pad smaller tables with jUNK;
tokens across the rows and columns, and split larger tables into
smaller chunks of 15 x 5. This split increases the total number
of tables to 2.2 million in the training corpus. We preprocess
the queries in a similar manner as the tables. Further, we study
the effect of fixing the table dimensions on ranking results in
Section IV-E.

2) Hyperparameter Settings: We set the dimension of word
embeddings k, to 100. Our penultimate layer has 1536 rich

features, which are used for the final binary classification result
of the table being valid or invalid. Our model is trained for
40 epochs with a batch size of 128. We use Binary Cross
Entropy [38] for minimizing the loss function and updating
the model weights. The Learning Rate (LR) is set at 6 x 1076
with a decay set to 0.5 x LR after each epoch. We set our
Random Forest to 800 trees, the maximum features for each
tree being 4. Our model is implemented using PyTorch® and
trained on four 12GB Titan X GPUs on a machine with a
64GB RAM and 16 CPU cores.

3) Evaluation metrics: We evaluate the performance of our
proposed methods and baselines on the table retrieval task
using Normalized Discounted Cumulative Gain (NDCG) [39]
at cut-off thresholds 5, 10, 15, and 20. All NDCG results
are reported using the TREC evaluation script, trec_eval*. We
also report Mean Average Precision (MAP) [40], and Mean
Reciprocal Rank (MRR) [41] as the evaluation metrics for
our retrieval task. We use a paired Student’s t-test at the 0.05
level to test significance and denote it using *.

B. Baselines

We consider the following baselines from the literature:

Lexical Table Retreival(LTR) [13] method uses standard
statistical approaches for generating lexical features from
the query, table, and table-query for the table retrieval task.
Query features include the number of query terms [42] and
the sum of query IDF scores [43]. Table features include the
number of rows, columns, NULLSs, inlinks, table importance,
and pageViews [1], [8]. Query-table features consists of
combined features [1], [8], [44] (for instance, the total query
term frequency in the table body). All features used by the
LTR baseline are described in [13]. The baseline uses a
point-wise regression-based ranking method like Random
Forest with 1000 trees and maximum 3 features in each tree.

Semantic Table Retrieval(STR) [13] represents queries
and tables in the same semantic space and measures the
similarity of those semantic representations. STR introduces
various semantic features such as word embeddings, graph

3https://pytorch.org/
“https://github.com/usnistgov/trec_eval

Query Rel LTR STR HBRM CONVTAB
Query: stocks

Stocks for the Long Run / Key Data Findings: annual real returns 2 - 6 4 4
TOPIX / TOPIX New Index Series 1 9 - 2 7
Hang Seng Index / Selection criteria for the HSI constituent stocks 1 - - 3 5
Query: ibanez guitars

Ibanez / Serial numbers 1 2 4 2
Corey Taylor / Equipment 1 2 3 2 5
Fingerboard / Examples 1 4 5 5 3
Query: board games number of players

List of Japanese board games 1 13 1 1 1
List of licensed Risk game boards / Risk Legacy 1 - 19 4
Query: cereals nutritional value

Sesame / Sesame seed kernels, toasted 2 1 8 2 1
Query: irish counties area

Counties of Ireland / List of counties 2 2 1 - 1
List of Irish counties by area / See also 2 1 2 1 2
List of flags of Ireland / Counties of Ireland Flags 2 - 3 10 3
Provinces of Ireland / Demographics and politics 1 4 4 3 4
Toponymical list of counties of the United Kingdom / Northern . .. 1 - 7 2 5
MAZscraige / Notes 1 - 6 6 6
Query: external drives capacity

Comparison of encrypted external drives / Features 3 2 - 1
Xerox 820 / Disk storage 1 - 8 4 3
Comparison of encrypted external drives / Background information 1 1 3 9 2

TABLE II: Example queries from the query set. ‘Rel’ denotes the true relevance score of a table. The other columns indicate
the rank at which each model retrieves the corresponding table. A lower rank for a table with a true relevance score of 2 is a
positive indicator of the retrieval method. For brevity, ‘HBRM’ denotes the Hybrid-BERT-Row-Max [18] model.

embeddings, bag-of-entities, and bag-of-categories. It also
uses pretrained Google News word embeddings’. These
semantic features, along with lexical features, are used to
learn the ranking of the tables. This baseline also uses a
random forest as the learning algorithm.

T2vyW and T2vE baselines were introduced in Zhang et.
al [14] and are table-centric. T2vW and T2vE embeddings
are learned using words and entities that appear in the
table, respectively, rather than using pretrained Google News
word embeddings in STR. These embeddings also provide
additional semantic features similar to those introduced in
STR.

TabIESim [17] utilizes both intrinsic and extrinsic table
similarities for enhanced ad-hoc table retrieval. The intrinsic
similarity features are passage-based while the extrinsic
similarity features are manifold-based. Both similarities
are combined via a cascade re-ranking approach. This
approach results in a significantly better table retrieval quality
outperforming strong semantic baselines.

Hybrid-BERT-Row-Max [18] uses the BERT language model
for the task of ad hoc table retrieval. BERT is used to
extract features from the query, the corresponding table
context fields, and additional pieces of information from the
table (row, column or cells). These features are concatenated

Shttps://code.google.com/archive/p/word2vec/

into a single feature vector, which is fed into a regression
layer to predict the relevance score.

MTR [21] follows a two-step ranking process. In the first step,
an initial pool of candidate tables is retrieved in response to a
query by some underlying (basic) retrieval method. In the sec-
ond step, MTR re-ranks the tables according to their estimated
relevance based on several multimodal table properties. MTR
uses Recurrent Convolutional Neural Networks (RCNNs) to
process both textual (natural language) input and the query.

C. Research Question

We aim at answering the following research questions

through our empirical evaluation:

e Q1: How effective is our convolution-based architecture
at enhancing state-of-the-art models for ad-hoc table
retrieval?

e Q2: Does fixing the tables in the test data corpus to a
specific dimension affect the ranking?

e Q3: How effective is it to use a 2-D convolution archi-
tecture compared to a 1-D convolution architecture for
training the embeddings of the tables?

e Q4: What is the ideal model configuration for our
convolution-based architecture balancing both effective-
ness and simplicity for our task?

D. Results - Q1

Table I shows the results of our model (ConvTab) and the
baselines. We observe that our proposed architecture results

Variations of our Model NDCG@5 NDCG@10 NDCG@15 NDCG@20
1x2-DConv + 2xFC 0.7652 0.7633 0.7753 0.7972
1x2-DConv + 3xFC 0.7665 0.7659 0.7805 0.7993
2x2-DConv + 3xFC 0.7670 0.7620 0.7785 0.7985
3x2-DConv + 2xFC 0.7650 0.7630 0.7790 0.7979
1x2-DConv + 1xFC 0.7698 0.7646 0.7768 0.7987

TABLE III: Table retrieval evaluation results using NDCG scores at cutoff of 5,10,15,20 for the proposed approach with different
model configurations. We choose the simplest of these configurations for our target task, considering a tradeoff between model

complexity and resulting NDCG scores.

train

—val /

/

train
—val

() (b)

train
= val

\

(d

train

i

(©

Fig. 3: Accuracy and loss curves obtained during model training for the table classification task (on training and validation
data). (a) Accuracy of the model with 2-D convolution. (b) Accuracy of the model with 1-D convolution. (c¢) Loss of the model
with 2-D convolution. (d) Loss of the model with 1-D convolution.

in the best query-table semantic features, outperforming the
previous SoTA, MTR, by a margin of 16.9% - 8.37% on
NDCG scores at a cutoff range of 5 - 20, respectively. It is
interesting to note that the top-two approaches on this task both
use a CNN-based model — which indicates that preserving the
structure of the table is likely advantageous for learning tabular
representations. In contrast to MTR, our method does not
need contextual information or metadata from the tables. This
makes our method more robust as it can be used in settings
where this information is not available. Interestingly, Hybrid-
BERT-Row-Max uses BERT model to generate embedding
representation of data but yet performs worse than MTR and
ConvTab. We believe this is due to the loss of the structural
information in tables while feeding flattened tables to the
BERT model.

With respect to MAP and MRR, Table I indicates that
our approach outperforms Hybrid-BERT-Row-Max in terms
of MAP by a margin of 3.62% and T2vW [14] in terms of
MRR by a margin of 6.9%. We note that though Hybrid-BERT-
Row-Max is a strong baseline, positional embeddings are not
robust enough to represent structural information as compared
to CNN-based approaches.

To illustrate our results, we report in Table II qualitative
results for some of the queries from our test set compared to
other baselines whose run files were publicly available.

E. Results - Q2

One of the requirements of the proposed architecture is
to fix the dimension of the tables, because of CNN based
architecture. In this subsection, we study the effect of fixing
the input dimension on the ranking results.

In our case, we have chosen the mean value of the table
dimensions in our dataset as the input dimension (15 X 5), so

that most of the tables can be represented effectively. As the
size of the tables in the test data can vary, this can potentially
mean that larger tables might suffer from significant data loss.
To study the impact of this potential data loss, we perform
an experiment where we randomly sample multiple 15 x 5
dimension inputs from each table in the test set.

It is interesting to note that even after this window sam-
pling, the resulting NDCG ranking score remained the same.
After careful examination, we found that though the feature
representation of the table were different from the ones in
the original setting, the similarity score between a table and
the corresponding query remained the same as before. As
the random forest learning algorithm uses cosine similarity
as its semantic feature, the results produced were practically
the same.

With this experiment, we observe that fixing the dimension
of the table resulted in no data loss, which in turn does not
affect the NDCG ranking of the results. This implies, that
our proposed method can be used to learn effective table
representations for tables of varied dimensions in a real-world
setting.

F. Results - Q3

One of the important claims that we make in this paper
is the importance of preserving the structure of a table when
learning the cell embeddings. To study this point further, we
report the difference in training results when using a model
for table classification with our best parameter configuration,
but with 1-D convolutions.

Table I shows the NDCG results, which clearly indicate that
the results with 2-D convolution outperform 1-D convolution
by a significant margin. This could be due to the fact that 1-
D convolution does not fully capture the table structure and

therefore is not able to encode the relationship between column
and row entities. Furthermore, Figure 3 shows a comparison of
our training accuracy and loss in 1-D convolution compared
to the 2-D convolution scenario. We note that while the 2-
D convolution-based architecture achieves approximately 88%
accuracy, the 1-D convolution-based architecture achieves a
training accuracy of about 82% for our classification task.

G. Results - Q4

With the experiments in the previous subsection, we con-
clude that the features generated through a 2-D convolution
architecture are significantly better for our task than those
generated through 1-D convolutions. In search of an ideal
model, we experimented with several configurations of the 2-D
convolution-based model.

Table III shows the different model configurations with 2-
D convolutions and the corresponding NDCG scores on our
target dataset. We achieved the optimum configuration with a
simple 1x 2-D convolution followed by one fully connected
layer, considering the trade-off between architectural complex-
ity and resulting performance. We note that more complex
models resulted in a very similar accuracy while training the
end-to-end embedding learning model, which was followed
by similar NDCG scores. We believe that this is probably
due to the relative simplicity of the target task. The additional
layers usually translate to additional dimensionality, which is
not required by the task at hand.

For all the reported experiments so far, we used a random
forest classifier for a fair comparison with previous work. As
an additional experiment, we replaced the Random Forest for
computing the ranking with a Multilayer Perceptron classi-
fier (MLP) [45]. This MLP consisted of three Linear layers
with a Tanh activation and a Dropout layer. The final layer
output was captured using softmax activation. Table I shows
the results with MLP, which were subpar. We believe that due
to the lack of complexity in the test data and their small size,
MLPs are not a good fit for this particular ranking task. Our
benchmark set of 60 queries and 3120 tables also restricted
us to only use point-wise ranking methods. In order to use
some other ranking method like pair-wise [46], [47] or list-
wise [46], [47], the data ideally should have been of the form
where two tables are compared, and similarly in case of list-
wise, the ideal dataset should have been of the form where a
list of tables is ranked for a given query. In our case, since
a single best table is given for a particular query, point-wise
ranking methods are more appropriate and therefore we used
standard classification and regression algorithms.

V. CONCLUSION & FUTURE WORK

In this paper, we proposed a novel approach to solve the task
of ad-hoc table retrieval. We generate semantic features for
query-table matching in two phases. First, we train an end-to-
end machine learning model for the task of table classification
on the TabEL corpus. The features from the trained model are
subsequently used for generating semantic features for both
the query and tables. We performed a number of experiments

to validate our approach. In the end, we show that our
approach outperforms the state of the art by a significant
margin. Moreover, we performed experiments to study the
effects of 1-D convolutions compared to 2-D convolutions on
our target task, and showed that 2-D convolution architectures
performed significantly better in our context. Furthermore,
we tried several model configurations with 2-D convolutional
architectures and picked a balanced configuration in terms of
time, complexity, and resulting ranking.

One frequent critique of CNNs and deep learning architec-
tures is that they lack of interpretation, making it difficult to
know what exact features were used for the classification. In
future work, we would like to tackle this issue by revisiting
the target task as well as our approach from an explainability
perspective. We will also extend our current keyword-based
search retrieval with a table-based retrieval scenario.

VI. ACKNOWLEDGEMENTS

This work was supported by the Swiss National Science
Foundation under grant number 407540 167320, and by a
ThinkSwiss Research Scholarship.

REFERENCES

[1] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang,
“Webtables: exploring the power of tables on the web,” Proceedings
of the VLDB Endowment, vol. 1, no. 1, pp. 538-549, 2008.

[2] Y. Eslahi, A. Bhardwaj, P. Rosso, K. Stockinger, and P. Cudré-Mauroux,
“Annotating web tables through knowledge bases: A context-based
approach,” in 2020 7th Swiss Conference on Data Science (SDS). 1EEE,
2020, pp. 29-34.

[3] G. Limaye, S. Sarawagi, and S. Chakrabarti, “Annotating and searching
web tables using entities, types and relationships,” Proceedings of the
VLDB Endowment, vol. 3, no. 1-2, pp. 1338-1347, 2010.

[4] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Shen, F. Wu, and
G. Miao, “Recovering semantics of tables on the web,” 2011.

[5] J. Madhavan, L. Afanasiev, L. Antova, and A. Halevy, “Harnessing the
deep web: Present and future,” arXiv preprint arXiv:0909.1785, 2009.

[6] S. Sarawagi and S. Chakrabarti, “Open-domain quantity queries on web
tables: annotation, response, and consensus models,” in Proceedings
of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2014, pp. 711-720.

[71 M. Zhang and K. Chakrabarti, “Infogather+ semantic matching and
annotation of numeric and time-varying attributes in web tables,” in
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, 2013, pp. 145-156.

[8] C. S. Bhagavatula, T. Noraset, and D. Downey, “Methods for exploring
and mining tables on wikipedia,” in Proceedings of the ACM SIGKDD
Workshop on Interactive Data Exploration and Analytics, 2013, pp. 18—
26.

[91 M. J. Cafarella, A. Halevy, and N. Khoussainova, “Data integration for

the relational web,” Proceedings of the VLDB Endowment, vol. 2, no. 1,

pp. 1090-1101, 2009.

R. Pimplikar and S. Sarawagi, “Answering table queries on the web

using column keywords,” arXiv preprint arXiv:1207.0132, 2012.

O. Lehmberg, D. Ritze, P. Ristoski, R. Meusel, H. Paulheim, and

C. Bizer, “The mannheim search join engine,” Journal of Web Semantics,

vol. 35, pp. 159-166, 2015.

M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri, “Infogather:

entity augmentation and attribute discovery by holistic matching with

web tables,” in Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, 2012, pp. 97-108.

S. Zhang and K. Balog, “Ad hoc table retrieval using semantic similar-

ity,” in Proceedings of the 2018 World Wide Web Conference, 2018, pp.

1553-1562.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[34]

L. Zhang, S. Zhang, and K. Balog, “Table2vec: neural word and
entity embeddings for table population and retrieval,” in Proceedings
of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2019, pp. 1029-1032.

M. Ghasemi-Gol and P. Szekely, “Tabvec: Table vectors for classification
of web tables,” arXiv preprint arXiv:1802.06290, 2018.

A. L. Gentile, P. Ristoski, S. Eckel, D. Ritze, and H. Paulheim, “Entity
matching on web tables: a table embeddings approach for blocking.” in
EDBT, 2017, pp. 510-513.

R. Shraga, H. Roitman, G. Feigenblat, and M. Canim, “Ad hoc table
retrieval using intrinsic and extrinsic similarities,” in Proceedings of The
Web Conference 2020, 2020, pp. 2479-2485.

Z. Chen, M. Trabelsi, J. Heflin, Y. Xu, and B. D. Davison, “Table
search using a deep contextualized language model,” Proceedings
of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 589-598, Jul. 2020, arXiv:
2005.09207. [Online]. Available: http://arxiv.org/abs/2005.09207

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

J. Herzig, P. K. Nowak, T. Miiller, F. Piccinno, and J. M. Eisenschlos,
“Tapas: Weakly supervised table parsing via pre-training,” arXiv preprint
arXiv:2004.02349, 2020.

R. Shraga, H. Roitman, G. Feigenblat, and M. Cannim, “Web table
retrieval using multimodal deep learning,” in Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development
in Information Retrieval. Virtual Event China: ACM, Jul. 2020,
pp. 1399-1408. [Online]. Available: https://dl.acm.org/doi/10.1145/
3397271.3401120

S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gat-
ford et al., “Okapi at trec-3,” Nist Special Publication Sp, vol. 109, p.
109, 1995.

S. Zhang and K. Balog, “Design patterns for fusion-based object
retrieval,” in European Conference on Information Retrieval. Springer,
2017, pp. 684-690.

H. Zamani, B. Mitra, X. Song, N. Craswell, and S. Tiwary, “Neural
ranking models with multiple document fields,” in Proceedings of the
eleventh ACM international conference on web search and data mining,
2018, pp. 700-708.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

M. Ghasemi-Gol, J. Pujara, and P. Szekely, “Learning cell embeddings
for understanding table layouts,” Knowledge and Information Systems,
pp. 1-26, 2020.

K. Nishida, K. Sadamitsu, R. Higashinaka, and Y. Matsuo, “Understand-
ing the semantic structures of tables with a hybrid deep neural network
architecture,” in Thirty-First AAAI Conference on Artificial Intelligence,
2017.

Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” in Proceedings of the
2016 conference of the North American chapter of the association
for computational linguistics: human language technologies, 2016, pp.
1480-1489.

M. Trabelsi, B. D. Davison, and J. Heflin, “Improved table retrieval using
multiple context embeddings for attributes,” in 2019 IEEE International
Conference on Big Data (Big Data). 1EEE, 2019, pp. 1238-1244.

R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-

[32]

[33]

[35]

[36]

(371

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

K. Y. Gao and J. Callan, “Scientific table search using keyword queries,”
arXiv preprint arXiv:1707.03423, 2017.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541-551,
1989.

A. Sharma, E. Vans, D. Shigemizu, K. A. Boroevich, and T. Tsunoda,
“Deepinsight: A methodology to transform a non-image data to an image
for convolution neural network architecture,” Scientific reports, vol. 9,
no. 1, pp. 1-7, 2019.

P. Rosso, D. Yang, and P. Cudré-Mauroux, “Beyond triplets:
Hyper-relational knowledge graph embedding for link prediction,” in
Proceedings of The Web Conference (WWW 2020), Taipei, Taiwan, 2020.
[Online]. Available: https://exascale.info/assets/pdf/ross02020www.pdf

ings of the 25th international conference on Machine learning, 2008,
pp. 160-167.

M. S. Singh, V. Pondenkandath, B. Zhou, P. Lukowicz, and M. Liwickit,
“Transforming sensor data to the image domain for deep learning — an
application to footstep detection,” in 2017 International Joint Conference
on Neural Networks (IJCNN), 2017, pp. 2665-2672.

C. S. Bhagavatula, T. Noraset, and D. Downey, “Tabel: entity linking
in web tables,” in International Semantic Web Conference. Springer,
2015, pp. 425-441.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111-3119.

R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo simulation and
machine learning. Springer Science & Business Media, 2013.

K. Jarvelin and J. Kekildinen, “Cumulated gain-based evaluation of ir
techniques,” ACM Transactions on Information Systems (TOIS), vol. 20,
no. 4, pp. 422446, 2002.

R. Baeza-Yates, B. Ribeiro-Neto et al., Modern information retrieval.
ACM press New York, 1999, vol. 463.

S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya, “Struc-
tured learning for non-smooth ranking losses,” in Proceedings of the
14th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2008, pp. 88-96.

S. Tyree, K. Q. Weinberger, K. Agrawal, and J. Paykin, “Parallel boosted
regression trees for web search ranking,” in Proceedings of the 20th
international conference on World wide web, 2011, pp. 387-396.

T. Qin, T.-Y. Liu, J. Xu, and H. Li, “Letor: A benchmark collection
for research on learning to rank for information retrieval,” Information
Retrieval, vol. 13, no. 4, pp. 346-374, 2010.

J. Chen, C. Xiong, and J. Callan, “An empirical study of learning to rank
for entity search proceedings of the 39th annual international acm sigir
conference on research and development in information retrieval,(sigir
2016),” 2016.

S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, classifiaction,”
1992.

T.-Y. Liu, “Learning to rank for information retrieval,” Foundations and
Trends® in Information Retrieval, vol. 3, no. 3, pp. 225-331, 2009.
[Online]. Available: http://dx.doi.org/10.1561/1500000016

Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, “Learning to rank:
From pairwise approach to listwise approach,” vol. 227, 01 2007, pp.
129-136.

