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a b s t r a c t 

Adding to the literature on the data-driven detection of bid-rigging cartels, we propose a

novel approach based on deep learning (a subfield of artificial intelligence) that flags car- 

tel participants based on their pairwise bidding interactions with other firms. More con- 

cisely, we combine a so-called convolutional neural network for image recognition with

graphs that in a pairwise manner plot the normalized bids of some reference firm against

the normalized bids of any other firms participating in the same tenders as the reference

firm. Based on Japanese and Swiss procurement data, we construct such graphs for both

collusive and competitive episodes (i.e when a bid-rigging cartel is or is not active) and

we use a subset of graphs to train the neural network such that it learns distinguishing

collusive from competitive bidding patterns. With the remaining graphs, we test the neu- 

ral network’s out-of-sample performance in correctly classifying collusive and competitive

bidding interactions. We obtain a very decent average accuracy of around 95% or slightly

higher when either applying the method within Japanese, Swiss, or mixed data (in which

Swiss and Japanese graphs are pooled). When using data from one country for training to

test the trained model’s performance in the other country (i.e. transnationally), predictive

performance decreases (likely due to institutional differences in procurement procedures

across countries), but often remains satisfactorily high. All in all, the generally quite high

accuracy of the convolutional neural network despite being trained in a rather small sam- 

ple of a few 100 graphs points to a large potential of deep learning approaches for flagging

and fighting bid-rigging cartels.

© 2023 The Authors. Published by Elsevier B.V.
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1. Introduction

Bid rigging or collusive tendering is a pervasive problem in many markets and countries (see for instance 

Feinstein et al., 1985; Porter and Zona, 1993; Baldwin et al., 1997; Porter and Zona, 1999; Pesendorfer, 20 0 0; Banerji

and Meenakshi, 2004; Abrantes-Metz et al., 2006; Lee and Hahn, 2002; Bajari and Ye, 2003; Asker, 2010; Ishii, 2009; 

Abrantes-Metz et al., 2012; Ishii, 2014; Hueschelrath and Veith, 2014; Conley and Decarolis, 2016; Bergman et al., 2019 ) and

damages the taxpayer through substantially increasing the cost of procurement in public tenders. The OECD estimates that 
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the elimination of bid rigging might reduce procurement prices in tenders by 20% or more 1 and recommends developing 

pro-active tools for detecting bid-rigging cartels to supplement the traditional means as leniency programs (see OECD, 2014 ). 

Indeed, a growing literature proposes statistical tools for unveiling cartels (see Abrantes-Metz et al., 2006; Bolotova et al., 

20 08; Harrington, 20 07; Abrantes-Metz et al., 2012; Imhof et al., 2018; Imhof, 2019; Chassang et al., 2022 , among others

papers). Among them is an increasing number of studies applying machine learning for flagging suspicious tenders (see 

Anysz et al., 2018; Huber and Imhof, 2019; Rabuzin and Modrusan, 2019; Wallimann et al., 2022; Rodriguez et al., 2020;

Silveira et al., 2021 ), which algorithmically learns to optimally predict cartels from historical data. In this paper, we add to

this growing arsenal of artificial intelligence-based methods by proposing a novel approach for detecting bid-rigging cartels 

based on deep learning, which is an extension to machine learning that has revolutionized the quality of image recognition, 

natural language processing, and many other tasks. 

We apply so-called convolutional neural networks (CNNs) - a deep learning method never implemented before in the 

screening literature - to graphical plots of bid interactions of one firm with all other firms across various tenders in order to

learn whether such interactions occur most likely under collusion or competition. Similar to conventional machine learning 

approaches, CNNs aim at developing optimal predictive models by learning from systematic patterns in data. In contrast to 

machine learning, however, they do not require predefining specific variables to be used as predictors in the model, but 

learn autonomously from graphs which features (e.g. specific shapes formed by pixels in images) are the most relevant for 

recognizing an image. Due to their high performance in such context, CNNs appear to be a natural choice for developing

methods for cartel prediction based on graphs of bidding interactions, permitting competition agencies to screen suspicious 

bids for deeper investigation and to disclose illegal collusive activities, with potentially large gains for tax payers. 

We consider procurement data from Switzerland (see Wallimann et al., 2022 ) and Japan (see Huber et al., 2022 ), in

which we can distinguish collusive from competitive tenders, for training (i.e. developing) the CNN models for predicting 

bid-rigging cartels as well as for testing, i.e. assessing model performance in terms of prediction accuracy. As model inputs, 

we use graphs from the bid rotation test suggested by Imhof et al. (2018) and Imhof (2019) , which consists of depicting the

strategic interaction of firms in the bidding process. To this end, the bids (i.e. prices) of one specific firm are plotted against

the bids of several other firms participating in the same tenders within a quadrant that is normalized such that all bids

contain values between zero and one. The prevalence of systematic patterns in such plots of pairwise bids permits detecting 

strategic interactions between bidding firms across tenders. Similar as in the image recognition of photos (e.g. classifying 

animals as cats or dogs), CNNs can learn from such bid plots to classify specific interactions as likely collusive or competitive

even without prior knowledge about the nature of patterns underlying bid rigging. 

When assessing the model performance in the Swiss and Japanese data, we obtain an impressive overall accuracy (or 

correct classification rate) in classifying collusion and competition of roughly 96% and 95%, respectively. The results therefore 

suggest that our detection method based on CNN models correctly classifies 19 firms out of 20 as cartel participants or

competitors. When pooling the graphs from both Switzerland and Japan to generate a transnational dataset of tenders, we 

obtain a similar accuracy of 95%. We also consider training the CNN in data from one country and using the trained model

for predicting collusion in the other country in order to test performance in an institutional context that is different to the

training environment. When training the CNN based on Japanese graphs, we obtain an accuracy of 85–86% when predicting 

collusion in the Swiss data. Training with Swiss bidding plots data and testing in the Japanese data yields to a similar

accuracy amounting to 84%. 

We also observe that when training in one country to test in the other one, there are noticeable imbalances across the

true positive and true negative rates, i.e. the correct classification rates among truly collusive or truly competitive firms. 

While Japanese competitive and Swiss collusive bid interactions are mostly correctly classified with an accuracy above 99%, 

the performance is lower for Japanese collusive and Swiss competitive interactions. This result suggests that the bidding 

patterns in some of the Japanese collusive and Swiss competitive graphs are insufficiently dissimilar for obtaining a high out- 

of-sample accuracy. Such difficulties in directly transferring trained models from one country to another might be related to 

institutional differences in the procurement process (e.g. the number of bids typically submitted), as also acknowledged by 

Huber et al. (2022) when analyzing the Swiss and Japanese data based on a machine learning approach. However, despite 

such imbalance, the overall correct classification rates of 84–86% appear quite decent given that the training and testing data 

come from distinct countries. Moreover, the high accuracy obtained when training and testing within a single country (or 

even a mixed data set of several countries) suggests that the application of CNNs to graphs depicting the bidding interaction

of firms provides national competition agencies with a very powerful tool for screening procurement markets. 

Moreover, we investigate whether the high accuracy of the CNN is rather driven by the representation of normalized bids 

based on two-dimensional plots of bidding interactions or by the fact that CNNs can autonomously learn predictive features 

from such plots in a data-driven way. We find that depicting bidding information in two-dimensional plots considerably 

increases the predictive performance also when applying machine learning or (logit) regression techniques that (in contrast 

to CNNs) rely on predefined predictors, such as the share of bid interactions in different quadrants of the plots. In contrast,

the additional gain in accuracy of learning predictors autonomously by a CNN rather than predefining predictors (based 

on quadrants) and applying machine learning is somewhat limited both in the Swiss and Japanese data. However, this 

finding does not necessarily generalize to other data, in particular if collusive bids show less distinct patterns in terms of
1 See http://www.oecd.org/competition/cartels/fightingbidrigginginpublicprocurement.htm , accessed in March 2021. 
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their location in the plots. Indeed, we find for bidding data from Italy that the CNN strongly outperforms machine learners

relying on the very same bidding plots. 

Our paper is related to an expanding literature using screening methods for detecting cartels (see Abrantes-Metz et al., 

20 06; Harrington, 20 07; Bolotova et al., 20 08; Abrantes-Metz et al., 2012; Jimenez and Perdiguero, 2012; OECD, 2014; Froeb

et al., 2014 ). More specifically, it considers statistical screens for flagging bid-rigging cartels as Imhof et al. (2018) and

Imhof (2019) . Huber and Imhof (2019) use such screens (like the coefficient of variation or the kurtosis of the bids in

a tender) as inputs to machine learning algorithms for building predictive models for collusion based on Swiss data. 

Wallimann et al. (2022) focus on the machine learning-based prediction of incomplete (or partial) bid-rigging cartels by 

calculating a large number of screens based on sub-groups of bids in tenders. Huber et al. (2022) apply machine learning

techniques to a Japanese bid-rigging cartel and also investigate the transnational predictive performance across Swiss and 

Japanese data (as we also do for deep learning in this paper). All these studies focus on a tender-based approach for flagging

bid-rigging cartels, i.e. they analyze the bid distributions within tenders. In this paper, we, however, focus on a firm-based 

approach that analyzes the bid interactions of firms in a specific region and period across tenders to test if their interactions

are of collusive nature. 

Furthermore, Chassang et al. (2022) investigate the occurrence of “gaps” in bid values (i.e. bid values with zero proba- 

bilities) in the distribution of observed bids. Finding such gaps, especially between the first and the second lowest bid in

a tender, might point to collusive behavior as they should not systematically occur in competitive markets. Related to our 

paper, this phenomenon of missing density implies that some areas of our plots remain empty when firms collude, which 

may be recognized as predictive feature when training a CNN for detecting collusion. However, when calculating the nor- 

malized margin suggested by Chassang et al. (2022) , we find no particular gap for the Okinawa bid-rigging cartel, whereas

the normalized distance, a statistical screen used in Huber et al. (2022) clearly shows manipulation in the bidding pattern. 

These results suggest that exclusively relying on a “gap” between the first and the second lowest bids might not be sufficient

for detecting bid rigging. For this reason, one should consider both the differences between the first and second lowest bids

as well as between the losing bids. In fact, the differences between the two lowest bids relative to the differences among

losing bids importantly predict bid-rigging cartels in our Japanese data. 

Our paper is also related to further studies on detecting bid-rigging cartels which apply econometric tests, as suggested 

in the seminal paper of Bajari and Ye (2003) . A first test consists of verifying if bids are independent conditional on the

costs of each firm by estimating a bidding function and testing if the residuals are correlated between firms, indicating

potential collusive issues. A second test examines if firms react similarly as a function of their respective costs, based on the

estimated cost-related coefficients in a regression model. Divergent coefficients across firms could indicate potential collusive 

issues. Subsequent papers replicate and refine the two econometric tests suggested by Bajari and Ye (2003) (see Jakobsson, 

2007; Aryal and Gabrielli, 2013; Chotibhongs and Arditi, 2012a; 2012b; Conley and Decarolis, 2016; Imhof, 2017; Bergman 

et al., 2019 ). The application of the econometric tests in the Okinawa dataset is difficult, at least for two reasons. We first

do not observe an essential part of the market, which impedes the construction of a meaningful proxy for the capacity of

each firm. Second, many firms bid few times in the data, making it hard if not impossible to estimate panel models with

variable coefficients in order to implement the tests, even for the most frequent bidders. In contrast, the Ticino dataset 

is characterized by few firms that bid many times, which facilitates the application of those econometric tests. However, 

Imhof (2017) finds that the tests fail to detect pairs of firms that actually colluded. Moreover, the tests require firm-specific

covariates which are good proxies for the respective firm’s costs and the measurement or construction of such covariates 

might create additional administrative burden. Finally, our paper is also broadly associated with further studies investigating 

bid-rigging cartels or rings (see Baldwin et al., 1997; Porter and Zona, 1999; Banerji and Meenakshi, 2004; Lee and Hahn,

2002; Asker, 2010; Ishii, 2009; 2014 ). 

The remainder of this study is organized as follows. Section 2 introduces the bid rotation screen that underlies our 

analysis and illustrates how we compute graphs for the bidding interactions of firms. Section 3 introduces the Japanese and

Swiss data considered in the empirical analysis. Section 4 provides a brief introduction to deep learning based on CNNs

and outlines our CNN architecture for detecting cartels. Section 5 presents the empirical results and Section 6 discusses the

application of other detection methods. Section 7 concludes. 

2. The bid rotation screen 

The inputs for predicting bid-rigging cartels in our empirical analysis consist of graphs depicting the bidding interac- 

tion between one firm and a group of other firms in a series of tenders during a specific period. We follow the ideas in

Imhof et al. (2018) and Imhof (2019) and use the so-called bid rotation screen to construct the graphs entering our al-

gorithm. In order to plot the interaction of firms for several tenders of different contract values, we apply the so-called

min-max transformation to some bid i within some tender t as follows: 

ˆ b it = 

b it − b min,t 

b max,t − b min,t 

, (1) 

where b min,t and b max,t are the minimum and maximum bids in tender t , respectively. Therefore, each transformed bid takes 

values between zero and one across all tenders, ˆ b it ∈ [0 , 1] . Such a normalization based on the min-max transformation in

the space [0 , 1] allows us to compare tenders of different contract values, in order to obtain a scale that remains constant
3 
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Fig. 1. Example of non-competitive interactions between two firms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i.e. between zero and one) across tenders and bids when examining the distribution of bids. In a next step, we calculate

the Cartesian coordinates of transformed bids for each possible pair of firms, i.e. of some reference firm and each of the

other firms participating in the same tenders as the reference firm in a specific period, on the space [0 , 1] × [0 , 1] . We then

plot the Cartesian coordinates of these pairs of firms in a graph, thus depicting the interactions of the reference firm (on

the x-axis) with a group of firms (on the y-axis) bidding in the same tenders as the reference firm. 

We construct the graphs separately within collusive periods (with a cartel in place) and competitive periods (after a cartel 

has been dissolved) for each reference firm, in order to depict the firm’s bidding interactions both within cartels and under

(post-cartel) competition. Our suggested method exploits systematic differences in the bidding interaction under collusion 

and competition, but remains agnostic about how these differences look like. It simply relies on the plausible hypothesis 

that the bidding behavior of firms differs between the cartel and post-cartel periods in some way due to strategic behavior

and aims at detecting such differences algorithmically by autonomously learning from data. 

Even if the existence of some (and possibly unknown) kind of difference in distributional patterns of bids across collusive 

and competitive periods is sufficient for applying our method, several studies provide explanations for how bid rigging 

might change interactions, e.g. by inducing gaps or concentrations in the distribution of bids (see Huber and Imhof, 2019;

Imhof, 2019 , for examples in Switzerland) and (see Chassang et al., 2022; Huber et al., 2022 , for examples in Japan). In

Swiss bid-rigging cases, for instance, differences between the two lowest bids in a tender increase whereas the differences 

between losing bids simultaneously decrease. The two effects combined distort the distribution of bids, which might be 

captured by tender-specific statistical screens. Also in the Japanese data, bid rigging creates gaps between the first and 

second lowest bids in the distribution of the bids, whereas losing bids are close to each other, as revealed by screens

considered in Huber et al. (2022) . 

Furthermore, Chassang et al. (2022) formalized a model implying that increasing differences between the first and second 

lowest bids are not in line with competition. Such a zero density in bid values between the first and second lowest bids

creates a gap in the distribution of bids. In the context of our min-max transformation, a gap in the distribution of bids (or

a zero density) implies that collusive bids are absent in specific regions of the two dimensional space [0 , 1] × [0 , 1] , whereas

competitive bids are typically scattered all over the space. Considering the interaction of just two firms across different 

tenders, Fig. 1 , which is taken from Imhof et al. (2018) and Imhof (2019) , highlights regions (non-competitive areas) in

the space in which we would suspect a more concentrated density of bids in the case of bid rigging. This is either due

to one firm submitting a comparably high bid to guarantee that the other, lower-bidding firm wins the contract, or due

to both firms submitting high bids to allocate the contract to another cartel member. Such distributional patterns would 

therefore indicate strategic interactions between firms and therefore point to collusive behavior. Therefore, a concentration 

of bids in specific regions and density gaps in other regions can be learnt by a CNN as a feature for predicting collusion and

competition. 
4 
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3. Data of bid-rigging cartels 

3.1. Japanese data from Okinawa 

Our Japanese data stem from a bid-rigging cartel in Okinawa. We refer to Ishii (2014) and Huber et al. (2022) for further

details concerning the institutional context and data construction and note that we consider all firms that submitted at least 

ten bids in the data window for our deep learning approach. We focus on contracts of the so-called ranks A+ and A in the

Japanese data, with ranks depending on the reserve prices of the contracts as discussed in Huber et al. (2022) . The latter

study found that the impact of the bid-rigging investigation launched by the Japanese Federal Trade Commission (JFTC) in 

June 2005 and the sanctions imposed on cartel participants in March 2006 were strongest for contracts of those ranks, in

which condemned bidders had participated more frequently. This implies that for such contract types, it was particularly 

unlikely that former cartel participants immediately colluded again in post-cartel periods after sanctioning, which thus serve 

as competitive observations in our data. 

As in Huber et al. (2022) , the pre-investigation period from April 2003 to June 2005 presumably comprises the collu-

sive tenders and the post-amendment period from January 2006 to May 2007 (after sanctioning) the competitive cases. 2 

Concerning rank A+ contracts, we consider 48 tenders with 670 bids in the pre-investigation period and 57 tenders with 

1049 bids in the post-amendment period. For contracts of rank A, we consider 108 contracts with 1325 bids in the pre-

investigation period and 86 contracts with 1439 bids in the post-amendment period. All in all, 161 firms bid for A+ contracts,

491 firms for A contracts, see Table 1 . 

Table 1 

Japanese sample. 

Type of contract Period Number of bids Number of firms Number of contracts 

Rank A + Collusive 1049 161 57 

Rank A + Competitive 670 159 48 

Rank A Collusive 1339 491 108 

Rank A Competitive 1439 481 86 

We only calculate interaction graphs for those reference firms submitting at least 10 bids for contracts of rank A+ and

A during the data window, but consider all of the submitted bids in the relevant tenders to compute pairwise bidding in-

teractions. This implies that even a firm who only participated in one tender in which the reference firm was present is

considered in one of the pairwise interactions in the graph of that tender. As an example, Fig. 2 provides the collusive and

competitive graphs for contracts A+ computed for that firm that placed the most bids in our data window. The left graph

depicts the strategic interaction of that firm during the pre-investigation period when the cartel was active. The dotted 

rectangles in Fig. 2 indicate the pairwise interactions located on the axes. On the horizontal (or x-)axis, the pairwise ob-

servations in the dotted rectangle correspond to tenders in which the reference firm submits a relatively high bid where 

another firm is designated to win the contract due to having the lowest bid. On the vertical (or y-)axis, the pairwise obser-

vations in the dotted rectangle depict all interactions in which the reference firm submits the lowest bid to win the contract,

whereas the other bidders submit higher bids. If the reference firm wins several contracts in the period for which the graph

is produced, the vertical axis depicts all pairwise interactions across multiple tenders won by the reference firm. Conversely, 

aligned vertical observations in the interior of the plot (i.e. mostly away from the axes) as those in the dashed rectangle

typically correspond to the pairwise interactions of firms bidding in the same tender. As expected, we find the bottom-left 

area to be empty, while we observe more pairwise interactions in the top-right region (likely supporting a cartel member 

designated to win the contract), in the upper area close to the y-axis, or in the right area close to the x-axis (such that one

firm likely supports the other in that pair). The right graph shows the interactions of the reference firm during the post-

amendment period and in line with competition, pairwise interactions also enter the lower-left area. All in all, we obtain 

143 collusive and 144 competitive graphs from the Japanese data. 

3.2. Swiss data 

Concerning Switzerland, we use data from the canton of Ticino that consist of both collusive and competitive periods 

(see Imhof, 2019 ) and observations from two other regions as competitive periods (see Wallimann et al., 2022 ). Compared

to the Japanese data, the data window is much longer for the Ticino data, ranging from January 1999 to March 2005 for the

cartel period. As reported in Table 2 , we consider 1331 bids in 183 contracts for the collusive period. However, the number

of bidding firms is considerably lower than in the Japanese data, as we only observe 21 cartel participants, see Table 2 .
2 We do not consider contracts of so-called ranks B and C in which condemned cartel members participated less frequently such that the number 

of interactions for constructing the graphs would have been too low. Furthermore, findings in Huber et al. (2022) suggest that there might be collusive 

interaction for these kind of contracts even after the sanctions by the JFTC such that including these post-amendment observations could contaminate our 

sample of competitive interactions and thus, reduce the predictive performance of our method. 

5 
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Fig. 2. Interactions of a Japanese firm with other bidders (left: cartel period; right: competitive period). 

Table 2 

Swiss sample. 

Data Period Number of bids Number of firms Number of contracts 

Ticino Collusive 1331 21 183 

Ticino Competitive 297 21 40 

Other Swiss regions Competitive 3728 188 1018 

 

 

 

 

We compute the graphs on a yearly base for those 16 firms who participate most in the tenders. In the much shorter

competitive period from April 2005 to the end of 2006, we can exploit 297 bids in 40 tenders and compute graphs for the

same 16 firms over that period (i.e. without dividing the competitive tenders into subperiods). 

Fig. 3 reports bidding interactions of that firm that most frequently bid in the Ticino data. The left graph depicts the first

year of the collusive period in 1999 and the interpretation of the dash and dot rectangles is identical to Fig. 2 . Similar as for
Fig. 3. Interactions of a Swiss firm with other bidders (left: cartel period; right: competitive period). 

6 
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Table 3 

Summary statistics for collusive and competitive normalized bids by country. 

normalized bids mean lower quartile median upper quartile 

Swiss collusive 0.669 0.534 0.680 0.821 

Swiss competitive 0.453 0.236 0.432 0.661 

Okinawa collusive 0.621 0.462 0.667 0.824 

Okinawa competitive 0.324 0.058 0.212 0.563 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the Japanese data, the bottom-left area is empty in contrast to the top-right region. In the right graph, which provides the

interactions in the competitive period, interactions however occur in the bottom-left part, too, such that no apparent gaps 

in the values of pairwise bids of two firms occur. Fig. 3 therefore suggests that the reference firm behaved differently in the

year 1999 when compared to the competitive period. 

Since the number of graphs is unsatisfactory and our Ticino sample is imbalanced with many more collusive than com- 

petitive graphs, we also consider data from competitive periods in other Swiss regions to obtain a more balanced sample 

(see Wallimann et al., 2022 , for details on the cases). We to this end create graphs on a yearly base that depict the interac-

tions of former cartel participants in competitive periods (after the cartel has been dismantled), based on 3728 bids in 1018

tenders. Combining these data with the Ticino case yields all in all 144 graphs for competitive periods and 96 for collusive

periods in various Swiss regions. 

3.3. Summary statistics on normalized bids across countries 

In Table 3 , we provide summary statistics on the distribution of normalized bids of specific firms (rather than pairs

of firms as in our previous plots), separately for Japan and Switzerland as well as competitive and collusive periods. We

observe that in the presence of a cartel, the distribution of normalized bids is quite similar across countries, as indicated

by the comparable values in the mean, median, lower quartile and upper quartile of the respective normalized bids un- 

der collusion. 3 This contrasts with the distribution of normalized bids under competition, for which the summary statis- 

tics are rather different across countries. Yet, we find that within either country, there are important differences in the 

distribution of normalized bids across collusion and competition. For both Japan and Switzerland, bid rigging induces a 

shift in the distribution of normalized bids toward upper segments. For our plots, this implies that collusive observa- 

tions are predominantly concentrated in non-competitive regions, while the region close to the origin is more likely to be 

empty. 

4. A convolutional neural network for detecting collusive firms 

Convolutional neural networks (CNNs), as for instance discussed in LeCun et al. (1998) and Ciresan et al. (2011) are

a powerful and increasingly popular deep learning approach for image (e.g. facial) recognition. By their nature, they can 

learn any kind of patterns in plots of bidding interactions that are predictive for bid rigging from a large enough training

data set with collusive and competitive cases, even if the shape of such patterns is a priori unknown to the researcher.

This distinguishes such a deep learning approach from previously applied machine learning methods that require so-called 

feature engineering, namely pre-specifying the features to be used as predictors, such as specific statistical screens like the 

coefficient of variation or the kurtosis. However, CNNs require choosing a range of model tuning (or hyper-)parameters that 

determine how the model extracts and learns the most predictive patterns and it needs to be pointed out that the choice

of these parameters may crucially affect the performance of the method. 

CNNs can be regarded as an extension of standard feed-forward neural networks (FNN), see e.g. McCulloch and 

Pitts (1943) and Ripley (1996) . In the context of bid rigging, such FNNs aim at fitting a system of nonlinear functions that

flexibly models the statistical association of a range of predictors (like statistical screens) and an outcome of interest (like 

a binary indicator for collusion). Specifically, the predictors serve as inputs for specific nonlinear intermediate regression 

functions (e.g. sigmoid or rectifier functions), also called hidden nodes, which themselves serve as inputs for modeling the 

outcome of interest. The coefficients in the various nonlinear regression functions are estimated such that they minimize a 

specific loss function defined in terms of errors (or residuals) when predicting the outcome of interest in the training data,

like e.g. the sum of squared residuals. As our collusion outcome is binary, we minimize the so-called binary cross-entropy, 

which corresponds to a maximum likelihood-based estimation of the coefficients based on the log-likelihood function for 

binomial outcomes, as e.g. used in logit or probit regression. 

It is worth noting that the hidden nodes in an FNN bear some similarity with the baseline functions in spline or series

regression, with the difference that they are learned from the data rather than predetermined. The hidden nodes are also 

related to principal component analysis (PCA), which aims at generating dimension-reducing linear (rather than nonlinear) 
3 We note that for computing the summary statistics, we delete any zeros and ones and thus focus on the internal distribution of normalized bids 

between the lowest and highest bids submitted in some tender. 

7 
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Table 4 

CNN architecture for predicting collusion. 

1. Convolutional layer (two-dimensional for gray-shaded images) with 8 filters, each with a sliding window size 3 × 3 pixels, using the 

rectifier (or ReLU) function, which is zero for negative values and linear for positive values, as nonlinear function for mapping pixels 

into numeric values. 

2. Max pooling with size 2 × 2: aggregates the previously generated numeric features within sliding matrix windows of size 2 × 2 by 

taking the maximum value within each window. 

3. Convolutional layer with 16 filters, each with kernel size 3 × 3, using the rectifier as nonlinear function for mapping the pooled 

features. 

4. Max pooling with size 2 × 2. 

5. Convolutional layer with 32 filters, each with kernel size 3 × 3, using the rectifier as nonlinear function for mapping the pooled 

features. 

6. Flattening: transforming each of the matrix values in the previous convolutional layer into separate input (or predictor) variables for the 

FNN to follow. 

7. Hidden layer with 128 hidden nodes (i.e. 128 nonlinear regression functions), using the rectifier as nonlinear function for mapping the 

inputs. 

8. Hidden layer with 64 hidden nodes, using the rectifier as nonlinear function for mapping the nodes of the previous hidden layer. 

9. Hidden layer with 32 hidden nodes, using the rectifier as nonlinear function for mapping the nodes of the previous hidden layer. 

10. Output layer for classifying the binary outcome (1 = cartel, 0 = competition), using the sigmoid function as nonlinear function for 

mapping the nodes of the last hidden layer in order to predict the outcome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

functions of the predictors. Indeed, when replacing the nonlinear functions by linear ones, FNNs collapse to a linear regres- 

sion model underlying a PCA. Depending on the model complexity of an FNN, hidden nodes may affect the outcome either

directly or through other hidden nodes, such that several layers of hidden nodes allow modeling interactions between the 

functions. The number of hidden nodes and layers gauges the flexibility of the model, with more parameters reducing the 

bias but increasing the variance. 

In contrast to FNNs, CNNs do not rely on providing a list of predictors but may autonomously learn to derive relevant

features from objects like images that do a priori not have a clear data structure. CNNs make use of the fact that an image

may be considered as a matrix of pixel values which e.g. correspond to specific shades of gray in a grayscale picture. The

convolution step in a CNN consists of sliding over submatrices of pixels in the image with a pre-defined dimension (e.g.

3 × 3 pixels) and multiplying each submatrix element-wise with a so-called filter (or kernel), yet another matrix with 

the same dimension. The aim of such filters, which may e.g. consist of a combination of ones and zeros, is to map the

submatrices of pixels into numeric values. This permits representing specific spatial patterns (such as edges in the original 

picture) by numeric features, depending on the kind of filter that is applied. 

A CNN actually learns the values that the filters shall take to optimize performance in a data-driven way during the

training process. However, the researcher must pre-specify the number and the size of the filters as tuning parameters. 

The generation of numeric features through filtering is typically followed by a so-called pooling step, which aggregates 

the numeric features, e.g. by taking average or maximum values over a pre-specified number of adjacent features. This 

is typically followed by further filtering (of the pooled features) and pooling steps for transforming and aggregating the 

features, which constitute further tuning parameters. Finally, the refined features are used as inputs in a conventional FNN 

for prediction. 

While CNNs do not require direct feature engineering as FNNs or classical machine learning, they obviously rely on 

making a range of design choices concerning how the important features should be learned by (possibly nested) filtering 

and pooling. In addition, one is confronted with the same design choices in FNNs concerning the number of hidden nodes

and layers as well as further tuning parameters. The latter include the share of the training data, i.e. the part of the total

sample used to develop a predictive model, and the validation data for assessing its predictive performance based on the 

accuracy (or correct classification rate) outside the training sample during the process of refining the model. A further 

tuning parameters is the batch size, the number of observations in the training data to work through before updating the

model parameters (in particular the coefficients in the non-linear models) when aiming at minimizing the classification 

error in the training data based on so-called stochastic gradient descent. Finally, one needs to specify the number of epochs,

i.e. of times that the algorithm works through the entire training data for estimating the model parameters. A too small

number of epochs may prevent the algorithm to accurately learn the predictive model in the data, thus entailing biases due

to misspecification. In contrast, a too large number of epochs may overfit the model parameters to the specificities of the

observations in the training data at hand, thus reducing model generality and increasing the variance. 

Due to this large amount of choices to make that may apparently come with little guidance, tuning deep learning models

is frequently regarded to be more an art than a science. Also in our empirical application, we considered several different

specifications in terms of numbers of hidden layers and nodes, filtering and pooling steps, as well as batch size and epochs.

We investigated the accuracy of these alternative specifications in the validation data when drawing a random 75% subset of 

the Japanese sample and using 90% of that subset as training data and 10% as validation data. More concisely, we compared

the accuracy of each network specification in the validation data of the last epoch of the training process, as reported in

Appendix A.3 . In Section 5 , we, however, only present the empirical results for the CNN specification outlined in Table 4 ,

which performed better in the validation data of the last epoch than any of the other network specifications considered. In

this model, we set the share of training and validation data per epoch to 90% and 10%, respectively, the batch size to 16, and
8 
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Table 5 

Summary statistics for accuracy when training and testing in the Japanese sample. 

Minimum 1st quartile Median Mean 3rd quartile Maximum Observations 

All graphs 0.901 0.930 0.958 0.950 0.961 1.000 287 

Collusion 0.900 0.944 0.973 0.966 1.000 1.000 143 

Competition 0.865 0.914 0.932 0.937 1.000 1.000 144 

Note: Mean precision is 0.938 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the number of epochs to 40. 4 Other than this we use the default options of the “keras” package by Falbel et al. (2021) for

the statistical software “R”, an interface to the “Keras” application programming interface (API) for neural networks, which 

itself makes use of the open source software library “TensorFlow” for implementing deep learning architectures. 

We point out that the resolution of the images fed into the CNN was found to be a further parameter affecting predictive

performance in the validation data. For instance, using an image resolution of just 48 times 48 pixels entails an accuracy

that is generally several percentage points lower than under 96 times 96 pixels, which is the resolution chosen in our

application. Increasing the resolution even more (e.g. to 144 times 144 pixels) does, however, not appear to further improve 

accuracy. The resolution affects the complexity of parameters in (and the accuracy of) a CNN because a higher resolution 

entails a larger matrix of pixels to which the initial filtering steps are to be applied (by sliding over submatrices of pixels).

Higher resolutions may thus reduce the bias by displaying bidding patterns more concisely, but on the other hand increase 

the variance by raising the input space in terms of the number of pixels, which suggests a bias-variance trade-off in a similar

manner as for other tuning parameters. 

As indicated before, we apply our approach of training and validating a CNN model only to a random subset of the

data, while we hold out the remaining observations for testing our model in unseen data (not used for the iterative train-

ing and validation steps) to check out-of-sample predictive performance, using accuracy (or the correct classification rate) 

as performance measure. For instance, when only considering Japanese data, we randomly choose 75% of the images from 

the Okinawa region for the training and validation process and 25% for testing performance. We follow the same approach 

when only investigating Swiss data or when analyzing a mixed (i.e. transnational) sample consisting of both Japanese and 

Swiss images. For each of the approaches considered, we repeat the procedure of randomly splitting the sample into train- 

ing/validation and test data to develop and assess the predictive model 20 times. We report the mean, median, worst, and

best performance across these 20 simulations, as the variance in performance is non-negligible across simulations due to 

the limited number of images available. Finally, we also use images from one country for training and validation to test

performance based on images of the respective other country in order to check the transnational transferability of trained 

CNNs. We consider 20 simulations for this approach, too, even though the training/validation and test data are deterministic 

(in countries), while there is still a stochastic component within training and validation of the model. 

5. Empirical results 

We first apply our CNN architecture outlined in Section 4 to our 287 Japanese interaction graphs constructed from the 

Okinawa data (see Huber et al., 2022 ), running 20 simulations in which we randomly select 75% of images for training

and validation and the remaining 25% for testing performance based on classification accuracy. Our outcome variable is 

a binary indicator taking the value 1 for a cartel period and 0 for competition. Table 5 provides summary statistics for

the accuracy in the total test data and separately for truly collusive or competitive test periods (i.e. the true positive and

true negative rates) across simulations, namely the respective minimum, first quartile, median, mean, third quartile, and 

maximum. Despite the rather limited number of images available for training, the median and mean of accuracy amount 

to 95.8% and 95%, respectively, in the test data. This suggests that the CNN classifies on average roughly 19 out of 20 firms

correctly as cartel members or competitive bidders. 

When investigating the accuracy within actually collusive and competitive cases, we find that the CNN performs some- 

what better for detecting actual cartels, with an average and median of the true positive rate (or recall) of 96.6% and 97.3%,

respectively, than for detecting truly competitive firms, with a median and mean of the true negative rate of 93.2% and

93.7%, respectively. Put differently, we find median and mean classification error rates of 6.8% and 6.3%, respectively, under 

competition and of 2.7% and 3.4%, respectively, under collusion. Despite these slight imbalances across outcome classes, the 

CNN shows a quite decent overall predictive performance for both collusive and competitive cases. We, however, point out 

that the variation is non-negligible across our 20 simulations, as can be seen by the differences in the respective minimum

and maximum accuracy. This suggests that one should ideally use a substantially larger pool of images for training and test- 

ing the model than was available to us. In a note underneath Table 5 , we also provide the mean precision across simulations,

i.e. the average share of truly collusive cases among all cases classified as collusive, which amounts to 93.8%. 

In a second step, apply the same procedure to our 240 Swiss interaction graphs and report the results in Table 6 . Overall

accuracy is again quite high, with its median and mean amounting to 95% and 95.7%, respectively. This is quite similar
4 In Appendix A.3 , we report the accuracy of our model in the validation data of the last epoch when varying the number of epochs between 20, 40, and 

60 while setting the batch size to 16 and when varying the batch size between 4, 16, and 64 while setting the number of epochs to 40. Model performance 

turns out to be very stable across these choices of tuning parameters. 
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Table 6 

Summary statistics for accuracy when training and testing in the Swiss sample. 

Minimum 1st quartile Median Mean 3rd quartile Maximum Observations 

All graphs 0.933 0.933 0.950 0.957 0.971 1.000 240 

Collusion 0.778 0.918 0.957 0.937 0.962 1.000 96 

Competition 0.880 0.946 0.972 0.966 1.000 1.000 144 

Note: Mean precision is 0.948 

Table 7 

Summary statistics for accuracy when training and testing in both countries. 

Minimum 1st quartile Median Mean 3rd quartile Maximum Observations 

All graphs 0.863 0.939 0.950 0.949 0.962 0.977 527 

Collusion 0.710 0.916 0.937 0.934 0.972 1.000 239 

Competition 0.912 0.944 0.969 0.962 0.973 1.000 288 

Note: Mean precision is 0.953 

Table 8 

Summary statistics for accuracy when training in Japan and testing in Switzerland. 

Minimum 1st quartile Median Mean 3rd quartile Maximum Observations 

All graphs 0.729 0.832 0.863 0.849 0.879 0.921 527 

Collusion 0.958 0.979 0.990 0.986 0.990 1.000 239 

Competition 0.563 0.731 0.781 0.758 0.806 0.882 288 

Note: Mean precision is 0.731 

 

 

 

 

 

 

 

 

 

 

 

 

 

as for the Japanese data and suggests that our deep learning approach might work well in different countries. Contrary 

to the Japanese cases, however, the CNN now entails a larger true negative rate (of correctly classifying truly competitive 

firms) with a mean and median of 96.6% and 97.2%, respectively, while the respective numbers are 93.7% and 95.7% for

the true positive rate (of correctly classifying truly competitive firms). If the overall performance appears very satisfactory 

(with roughly 19 out of 20 correct classifications), there is again some variation in the predictive performance across the 20

simulations. 

Next, we pool Japanese and Swiss graphs to obtain a mixed sample of 527 images in total and conduct the same simula-

tion, training, validation, and testing steps as before. As reported in Table 7 , the median and mean accuracy amount to 95%

and 94.9%, respectively, which is rather similar as for the analyses within countries. This finding can be explained by the

similarity of the distribution of the normalized bids across both countries, especially for the collusive bids. Our results there- 

fore suggest that well-performing CNNs might under certain conditions even be trained in mixed data composed of several 

countries or regions, which can be helpful for attaining larger samples. Furthermore, the use of combined data might be ad-

vantageous for reducing the risk of overfitting, i.e. fitting the model too much to the particularities of one specific country, 

in particular when predicting collusion for a region where no training data are available. 

We now turn to the more challenging task of training the predictive model in one country and testing it in the other

country. As discussed in more detail in Huber et al. (2022) for the case of Japan and Switzerland, the transfer of a trained

method across borders may not yield the desired performance due to institutional differences in procurement, which may 

jeopardize the method’s ability to distinguish collusion and competition in a country-specific context it has not been trained 

on. Table 8 reports the summary statistics for accuracy when training the Japanese graphs for testing on the Swiss graphs.

While the Swiss test data are now identical across our 20 simulations, the Japanese images randomly chosen for training 

and validation generally differ. The median and mean accuracy attains 86.3% and 84.9%, respectively, is somewhat lower 

than before but still appears quite satisfactory. However, the imbalances across outcome classes are now more substantial. 

While the median and the mean of the true positive rate (among cartels in the Swiss test data) amount to 99% and 98.6%,

respectively, the corresponding figures for the true negative rate (among competing firms in the Swiss test data) are 78.1% 

and 75.8%, respectively. Apparently, bidding interactions of Swiss firms under competition do not always yield a pattern 

that is close to that of Japanese firms under competition that were used for training the algorithm, while interactions look

substantially more similar across Swiss and Japanese cartels. Yet, for neither outcome class, the predictive performance 

seems unacceptably low and overall accuracy is in fact quite good. 

Finally, we swap the roles of the countries and train the CNN based on the Swiss graphs to test it on the Japanese

graphs. As shown in Table 9 , accuracy in all of the test sample is now lower with a median and mean of 84.2% and 84.3%,

respectively, but nevertheless appears acceptable. However (and even more so than in the previous analysis), there is a 

sizeable imbalance in the performance across classes. While the correct negative rate is very high with its median and 

its mean amounting to 99% and 98.5%, respectively, the correct positive rate is substantially lower, with a median and 

mean of just 69.2% and 69.9%, respectively. This suggests that several Japanese collusive graphs are hard to distinguish 

from Swiss competitive graphs used for training, while Japanese competitive graphs can be very clearly distinguished from 
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Table 9 

Summary statistics for accuracy when training in Switzerland and testing in Japan. 

Minimum 1st quartile Median Mean 3rd quartile Maximum Observations 

All graphs 0.791 0.836 0.842 0.843 0.851 0.902 527 

Collusion 0.587 0.678 0.692 0.699 0.722 0.846 239 

Competition 0.958 0.979 0.990 0.985 0.993 1.000 288 

Note: Mean precision is 0.979 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Swiss collusive graphs. Overall, we conclude that the CNN architecture yields a very promising predictive performance for 

classifying collusive and competitive bidding interactions of firms. Aside from a lower accuracy for specific outcome classes 

when only training in one country to test in the other one, the deep learning approach performs generally very well (with

accuracies typically around 95% or slightly higher) when training and testing within country-specific data or a mixed sample 

consisting of pooled graphs from both Japan and Switzerland. 

6. Discussion of alternative methods for detecting bid rigging 

Our suggested approach based on CNNs reaches a high accuracy of 95% on average for both our Swiss and Japanese bid-

rigging cases. In other words, we are able to correctly classify 19 firms out of 20 as either “cartel participants” or “competi-

tors” based on deep learning. Nevertheless, it appears interesting to discuss alternative screening methods for better under- 

standing the differences to our deep learning architecture. In the following, we describe three different approaches, which 

appear popular for detecting bid-rigging cartels. The first one is the game-theoretical approach of Bajari and Ye (2003) ,

the second the method of Chassang et al. (2022) based on missing densities (or density gaps) in bids. The third approach

combines machine learning with statistical screens for detecting collusion (see Huber and Imhof, 2019; Wallimann et al., 

2022; Imhof and Wallimann, 2021 ). Furthermore, we investigate if the higher accuracy reached by CNNs is due to plotting

information on two dimensions or to the autonomous learning process inherent to deep learning. Finally, we discuss policy 

recommendations and the looked-for features of a detection method. 

6.1. Game-theoretical approach 

In their seminal paper, Bajari and Ye (2003) formalize a procurement auction model with asymmetrical bidders. They 

derive five conditions to be satisfied by the distribution of bids G i (b; z) in a Bayes-Nash equilibrium, where z is a set of

observable covariates and i the index of a firm. One condition, called the conditional independence, implies that firm i ’s

and firm j’s bids are independently distributed, conditional on a set of covariates z. Another condition postulates that the 

distribution of bids is exchangeable across bidders in equilibrium, again conditional on a set of covariates z. It implies that

if we exchange the costs of firm i by those of firm j, then the bids of firm i should match the bids of firm j in the case of

competition. 

The covariates z i are supposedly unique to each firm i . Bajari and Ye (2003) consider the distance of firm i ’s location to

the project site and the firm’s capacity utilization level as such covariates. However, this requires some additional efforts to 

calculate the respective covariates. Even if it is feasible to directly calculate the capacity used by each firm based on the bid

summaries, one must be convinced that these bid summaries reflect an important share of the market. If the bid summaries

used to construct proxies for the firms’ capacities fail to cover an essential part of the market, one faces the risk of mea-

surement error affecting the estimation (and therefore, the tests for collusion). From the bid summaries, we typically see 

the project site and if we also know the location of each bidding firm, we can compute the geographic distance. However,

in some cases, the location of the contract and/or the firms’ addresses might not be fully clear from the bid summaries

and would need to be carefully checked. In this case, the requirement of obtaining well measured firm-specific covariates 

increases the cost of screening, whereas poorly measured covariates might jeopardize the accuracy of the econometric tests 

for collusion. 

If the distribution of bids satisfies the conditions stated by Bajari and Ye (2003) , then it is possible to construct firm-

specific distributions of costs which uniquely rationalize the observed bids in equilibrium, i.e. under competition. When only 

some bidders compete while others collude, the structural model must be adapted to recover the costs of competitors and 

those of the cartel participants. However, the researcher needs to observe some competitive bids in order to reconstruct 

the distribution of the cartel costs. If all bidders in some tender are cartel participants such that no bidder competes, it is

impossible to reconstruct the distribution of costs for such tenders with perfect collusion by this method (which is the case

for most of the Swiss and Japanese collusive tenders). 

As discussed in Bajari and Ye (2003) , we may non-parametrically estimate the distributions of bids in order to test

the conditional independence and the exchangeability of bids, given that we have large amounts of data. With limited 

data, we can estimate the so-called reduced form of the bidding function following Porter and Zona (1993) and Porter and

Zona (1999) , where the bid is the dependent variable and the covariates are the exogenous cost variables. All subsequent

works follow this regression approach (see Jakobsson, 2007; Aryal and Gabrielli, 2013; Chotibhongs and Arditi, 2012a; 2012b; 

Conley and Decarolis, 2016; Imhof, 2017; Bergman et al., 2019 ). In a regression framework, the conditional independence 
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implies that the residuals from the regression are not correlated across firms, since bids should be independent in a com-

petitive situation, conditional on the observable cost proxies, i.e. the covariates. The exchangeability of the bids implies that 

firms react in the same way after controlling for their costs. We verify this by testing whether the estimated coefficients

are comparable or different across firms, with statistically significantly distinct coefficients pointing to potential bid rigging. 

For running such tests, it is necessary to estimate a panel model with heterogeneous coefficients for each firm. This, how-

ever, requires a sufficient number of firm-specific observations, otherwise the method may suffer from a too high variance, 

impeding the practical implementation of testing. 

In our Japanese dataset from Okinawa, a total of 656 bidders are present in the rank A and A+ contracts during the

entire data window period including the pre-inspection, post-inspection and the post-amendment periods. However, only 

407 bidders won at least one contract. Among the 249 bidders who never won a contract, 108 firms submitted 10 or more

bids in the whole data window. This means that 38% of bidders labeled as rank A or A+ never won a contract of any type

(including lower rank contracts) in the entire period, but kept submitting bids. This implies that the data from Okinawa

do likely not cover the entire market or a substantial share thereof, since it is hard to see how firms can keep submit-

ting bids without ever winning contracts. Not observing a large share of the market makes it difficult to build meaningful

proxies for the firms’ capacities. A further issue arises concerning the estimation of a panel model with heterogeneous 

coefficients for each firm as required for implementing the econometric tests. If we only consider the cartel period (the 

pre-inspection period), we find among the 612 firms labeled as rank A or A+ bidders only 6 firms that submitted at least

20 bids, whereas 490 firms bade less than 10 times. For the post-cartel period (the post-amendment period), only 12 firms

submitted at least 20 bids among 580 firms of rank A and A+, while 455 firms bade less than 10 times. For this rea-

son, estimating a panel model with heterogeneous coefficients is practically infeasible for the vast majority of firms in 

the Okinawa dataset due to too few firm-specific bids being submitted, such that we cannot apply the econometric tests 

of Bajari and Ye (2003) . 

Contrary to the Okinawa case, our Swiss dataset from Ticino contains firms which regularly submit bids such that esti- 

mating a panel model with firm-specific coefficients is feasible. Only one firm submits less than 20 bids in the data window

and most of the firms submit between 50 to 206 bids (see Table 9 in Imhof (2017) ). The number of bids per firm and

(cartel and post-cartel) period is therefore appropriate to apply the econometric tests of Bajari and Ye (2003) . However,

Imhof (2017) shows that the reliability of such tests is questionable for the Ticino case. In the cartel period when collusion

is present, only 40% of pairs of firms fail at least one test and only 4% fail the two econometric tests considered in Table 6 of

Imhof (2017) . In other words, at least 60% of the firm pairs are not classified as “cartel participants” during the cartel period.

The error rate of the econometric tests is therefore quite substantial for the Ticino cartel and far larger than that obtained

in our paper. 

6.2. The density gap method 

Chassang et al. (2022) investigate the phenomenon of a missing density or “density gap” in the distribution of bids, due 

to a gap in the values of the first and the second lowest bids in Japanese tenders. To analyze the incidence of a missing

density, they use the normalized margin calculated by means of the following formula: 

�i,a = 

b i,a − ∧ b −i,a 

r 
, (2) 

where b i,a is the bid of some firm i in auction a , r is the reserve price and ∧ b −i,a is the minimum bid among bidders

other than i . If firm i is the winning firm with the lowest bid, then �i,a corresponds to the normalized distance between

the winning bid and the minimum bid among losers, i.e. the second lowest bid in the tender, where the normalization is

with respect to the reserve price. But �i,a is computed for any firm in a tender, in order to investigate the density of this

statistic. In their Japanese data, Chassang et al. (2022) find a small gap in the density of the normalized margin �i,a around

zero, which is incompatible with competition, and also formalize a model to show that bid rigging explains such a missing

density around zero. 

However, it is worth noting that the formula proposed by Chassang et al. (2022) can also mechanically create a gap

around zero, which can be illustrated by a simple numeric example with bids normalized by the reserve price. Consider 

the following vector of normalized bids b = (0 . 95 , 0 . 98 , 0 . 99 , 1) . The strict application of the formula yields the follow-

ing normalized margins �i,a for that tender: {−0 . 03 , 0 . 03 , 0 . 04 , 0 . 05 } . The difference between the first and second lowest

bid, which amounts to an absolute value of 0.3, entails a gap in the density of the normalized margin which is twice as

large in absolute terms, namely 0.6 (from -0.3 to 0.3), with the center of the gap being at zero. We therefore suspect

that this formula might detect too small modifications in the bidding patterns between the first and the second lowest 

bids. 

Bearing this potential caveat in mind, we apply the Chassang et al. (2022) formula to the Okinawa bid-rigging cartels. As

displayed in Fig. 4 , we do not observe any density gap for the normalized margin in the cartel period around zero when

simultaneously considering contracts of ranks A+ and A. Figs. 5 and 6 in Section A.1 of the Appendix depict the density of

the normalized margin separately for contracts A+ and A, and also in these cases, no specific gap can be spotted. Therefore,

it appears that the normalized margin of Chassang et al. (2022) is not capable to detect bid-rigging cartels in the Okinawa

data and we subsequently propose one possible explanation for this failure. 
12 



M. Huber and D. Imhof International Journal of Industrial Organization 89 (2023) 102946 

Fig. 4. Distribution of normalized margins of collusive bids for contracts A and A+. 

 

 

 

 

 

 

 

 

 

 

When looking at the descriptive statistics for the percentage difference between the first and second lowest bids in 

tenders in Okinawa (see the DIFFP in Tables A1 and A2 in Huber et al., 2022 ), we find small discrepancies between the

cartel and the competitive periods. For the cartel period, the lower quartile and the median amount to 0.26 and 0.41, re-

spectively. For the competitive period, the lower quartile and the median amount to 0.17 and 0.52, respectively. About half 

of the tenders exhibit similar and very small values for the percentage difference between the first and second lowest 

bids. However, when investigating the descriptive statistics for yet another statistical screen referred to as relative distance 

(RD, RDNOR or ALTRD in Tables A1 and A2 in Huber et al., 2022 ), there are strong differences between the cartel and

competitive periods, even though differences in the first and second lowest bids are small. This finding suggests that the 

cartel strongly reduced the differences between losing bids, which is captured by the relative distance measures, while the 

differences between the first and second lowest bids were hardly affected by bid rigging. This result illustrates the risk 

of predominantly focusing on the distance between the first and second lowest bids, as it occurs to be the case for the

method based on density gaps, and neglecting changes in the remaining bids, which might be captured by appropriate 

screens. 

Finally, we note that the approach of Chassang et al. (2022) cannot be applied to our Swiss bid-rigging cases for which

no reserve prices are available. At first glance, an apparent alternative could consist of using the minimal bid in a tender

instead of the reserve price for calculating normalized margins. However, this would generally not entail margins which are 

comparable across collusive and competitive tenders, since minimum bids tend to be higher among collusive tenders. For 

this reason, the minimum bid is generally not a “neutral” reference price and this issue might distort the computation of 

the normalized margin. 

6.3. Machine learning with screens 

A further alternative to our deep learning architecture are machine learning methods using pre-defined statistical screens 

(rather than unstructured data like images), which are computed from the distributions of bids in the respective tenders, as 

features for predicting bid rigging. Among such machine learners, we can further distinguish between the so-called tender- 

and coalition-based approach. The former consist of calculating screens in each tender in order to capture the distributional 

disrupt when bid rigging occurs. Such tender-based approaches yielded correct classification rates of about 83% to 84% 

in different data sets from Switzerland (see Huber and Imhof, 2019; Wallimann et al., 2022 ). For the Japanese data from

Okinawa, Huber et al. (2022) obtained correct classification rates ranging from 88.4% to 89.1%. 

We apply a so-called ensemble method, a weighted average of five machine learning algorithms, which uses the tender- 

based screens considered in Huber et al. (2022) as predictors for classifying collusion in the Swiss and Japanese data and

compare the performance to our CNN-based approach. We provide further details on the ensemble method along with 

references to other studies applying the same algorithm in Section A.5 of the Appendix. To facilitate comparability, we 

repeat the procedure of randomly splitting the sample into training/validation and test data to develop and assess the 

ensemble-based model 20 times, just as we did it for our CNN. Table 10 provides summary statistics of the accuracy in the

test samples, which shows that the ensemble method using tender-based screens performs very well, but yet considerably 

worse than the deep learning approach. Using our CNN architecture increases average accuracy by at least ten percentage 

points in the Swiss data and five to six percentage points in the Japanese data when compared to machine learning with
13 
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Table 10 

Summary statistics for the ensemble method using tender-based screens. 

Country Tenders Minimum 1st quartile Median Mean 3rd quartile Maximum 

Japan All tenders 0.836 0.864 0.882 0.888 0.918 0.927 

Cartel 0.810 0.861 0.893 0.886 0.909 0.953 

Competition 0.804 0.853 0.909 0.892 0.918 0.943 

Switzerland All tenders 0.760 0.827 0.846 0.841 0.856 0.884 

Cartel 0.711 0.841 0.859 0.853 0.876 0.923 

Competition 0.773 0.813 0.827 0.828 0.841 0.873 

Table 11 

Summary statistics for logit models using tender-based screens. 

Country Tenders Minimum 1st quartile Median Mean 3rd quartile Maximum 

Japan All tenders 0.809 0.836 0.855 0.861 0.893 0.927 

Cartel 0.717 0.781 0.810 0.816 0.839 0.933 

Comp. 0.857 0.895 0.920 0.920 0.941 1.000 

Switzerland All tenders 0.781 0.800 0.829 0.825 0.844 0.877 

Cartel 0.708 0.761 0.786 0.784 0.806 0.859 

Comp. 0.797 0.840 0.872 0.869 0.900 0.928 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tender-based screens. Such a five percentage points increase implies a reduction of the misclassification rate by half for the 

Japanese sample, while for the Swiss sample, the relative reduction of incorrect classifications is even higher, amounting to 

roughly 63%. 

In a next step, we also estimate logit models for classifying collusion in order to compare this more classical statistical

tool to our machine and deep learning approaches. As conventional logit regression does not permit selecting predictors in a 

data-driven way, we base it on the three most predictive screens in Huber et al. (2022) , namely, the coefficient of variation,

the Kolmogorov-Smirnov statistic, and the normalized distance. Like for the other methods, we repeat the procedure of 

splitting the sample to estimate the logit coefficients (using the three screens) in the training data and assess the model’s

accuracy in the test data 20 times. The results reported in Table 11 suggest that the logit approach performs somewhat

worse then the ensemble method, as the accuracy of the former is on average roughly 2 percentage points higher than that

of the former. 

Contrary to the tender-based methods discussed so far, the coalition-based approach of Imhof and Wallimann (2021) con- 

sists of focusing on fixed sets or “coalitions” of firms and calculating the screens within the respective coalition for each 

tender in which these firms participate. Once the tender- and coalition-specific screens are calculated for each possible 

coalition in the data, the screens are aggregated to summary statistics within each coalition, e.g. by computing the median, 

minimum or maximum of the respective screen. Finally, the coalition-based summary statistics serve as predictors for train- 

ing the machine learners. Imhof and Wallimann (2021) find the accuracy ranging from 91.9% to 94.9% for the Japanese data

from Okinawa and from 86.9% to 90.5% for various Swiss data sets (including the Ticino case), and from 84.8% to 90.1% for

an Italian data set, which is introduced in Section A.4 in the Appendix. This implies that the CNN also outperforms the

coalition-based approach. On average, the accuracy of the CNN is five percentage points higher in the Swiss data and even

seven percentage points higher in the Italian data, see the results in Section A.4 in the Appendix. The CNN’s accuracy is also

higher for the Okinawa case, even if less substantially so. 

6.4. Performance gains related to bidding interactions and autonomous feature learning 

The CNN-based approach seems to exhibit a higher predictive performance than the tender- or the coalition-based ap- 

proach with machine learning and pre-defined screens. This might be explained by the autonomous learning process of 

CNNs, which aim at constructing and applying the most appropriate features for distinguishing collusion and competition in 

a data-driven way from the plots. On the other hand, the information contained in the plots of bidding interactions might

also play a crucial role for the performance of a CNN. The fact that plots are two-dimensional could be an advantage over

the machine learning use of screens, which are one-dimensional summary statistics and might for this reason not capture 

important distributional changes across collusive and competitive bids that well. We investigate now which role the au- 

tonomous learning process of CNNs and the two-dimensional plots play in explaining the higher predictive performance of 

the CNNs. 

In order to assess the merits in terms of predictive performance of depicting bid interactions of a reference firm against

all other firms by means of plots, we first use a base model that exclusively exploits distributional statistics coming from

the normalized bids of the reference firm, but not the interactions. More concisely, we calculate the 10th percentile, the 

first quartile, the median, the third quartile and the 90th percentile of the normalized bid for each of the reference firms

considered in the plots, in order to use these statistics as predictors for collusion. This approach is one-dimensional in the

sense that these statistics come from the reference firm alone, but the statistics are yet different from the screens considered
14 
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Table 12 

Ensemble method using distributional statistics of normalized bids. 

Country Firms Minimum 1st quartile Median Mean 3rd quartile Maximum 

Japan All firms 0.792 0.833 0.854 0.867 0.917 0.944 

Cartel participants 0.816 0.86 0.895 0.891 0.915 0.972 

Competitors 0.757 0.805 0.831 0.844 0.882 0.944 

Switzerland All firms 0.661 0.692 0.732 0.728 0.750 0.875 

Cartel participants 0.543 0.612 0.689 0.683 0.760 0.842 

Competitors 0.629 0.736 0.761 0.764 0.791 0.892 

Italy All firms 0.642 0.709 0.746 0.731 0.765 0.806 

Cartel participants 0.000 0.151 0.205 0.188 0.236 0.357 

Competitors 0.868 0.918 0.960 0.949 0.978 1.000 

Table 13 

Ensemble method using quadrant-based statistics of the plots. 

Country Firms Minimum 1st quartile Median Mean 3rd quartile Maximum 

Japan All graphs 0.889 0.917 0.944 0.938 0.958 0.972 

Cartel 0.875 0.902 0.930 0.932 0.952 1.000 

Competition 0.872 0.922 0.944 0.944 0.974 1.000 

Switzerland All graphs 0.883 0.933 0.950 0.949 0.971 0.983 

Cartel 0.857 0.882 0.939 0.928 0.962 1.000 

Competition 0.892 0.949 0.971 0.966 0.981 1.000 

Italy All graphs 0.776 0.821 0.836 0.838 0.854 0.881 

Cartel 0.500 0.586 0.659 0.660 0.753 0.800 

Competition 0.833 0.886 0.908 0.905 0.920 0.958 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Section 6.3 . Table 12 provides the predictive performance when applying an ensemble method as machine learner. 5 We

see that the accuracy of this approach is considerably lower than that of machine learning with screens or our CNN. Table 14

in the Appendix also reports the results when using logit regression rather than the ensemble method, and performs even 

worse (by on average five to ten percentage points when compared to the ensemble learner). 

In a second step, we investigate the value added of two-dimensional statistics coming from the plots. To this end, we

divide each plot into quadrants by cutting both the x- and y-axes at a threshold value of 0.5. This provides us with four

quadrants of the same dimension, since the normalized bids of reference and co-bidding firms are between 0 and 1. We

then compute the percentage of dots (or bid interactions) in each quadrant relative to the total number of dots in a plot.

Finally, we use the percentages in the various quadrants as predictors (the logit estimation uses only three out of four vari-

ables as including all four would entail perfect multicollinearity). Table 13 reports the predictive performance based on the 

ensemble method when considering the bid-rigging data from Japan, Switzerland, and Italy, respectively, while Table 15 in 

the Appendix provides the results for logit regression. 

Exploiting two-dimensional information on both reference and co-bidding firms increases the average accuracy by 10 to 

20 percentage points for predicting if a firm is a cartel participant or a competitor relative to the one-dimensional approach.

This points to a substantial value added of considering the normalized bids in a two-dimensional plot, not only for our CNN

approach, which learns predictive features from the plots autonomously, but also for the ensemble and logit models, that 

rely on the quadrant-specific percentages as pre-defined predictors. The relative advantage of the CNN over the ensemble 

method appears to differ from case to case. When considering the data from Switzerland and Japan, for which the use of

two-dimensional information entails an important boost in predictive performance, the accuracy of the CNN is on average 

just about one percentage point higher than that of the ensemble method. Both approaches excel with an average accuracy 

well beyond 90%. In the Italian data, however, the CNN clearly outperforms the ensemble method by 13 percentage points 

in terms of average accuracy, such that autonomously learning predictive features importantly improves upon the quadrant- 

based approach. 

In conclusion, our results indicate that dividing the bidding plots into four quadrants can be very effective for capturing 

fundamental interaction patterns among collusive bidders. As discussed in Section 2 , most collusive bidders in Japan and in

Switzerland submitted high cover bids to make sure that another firm wins the contract (namely, the designated winner by 

the cartel). For this reason, many collusive dots (or interactions) are located in the top right quadrant (see Fig. 1 ), but only

few (if any) in the bottom left quadrant. In other words, the collusive interactions, once plotted on two dimensions, are so

different to competitive interactions in Switzerland and in Japan that any of the investigated methods has a high accuracy 

in classifying collusion and competition. This might, however, not be a general pattern in all data sets. Indeed, in the Italian

data, the autonomous learning approach of CNNs clearly outperforms methods relying on the ad hoc approach of defining 

predictors based on the quadrants of the plot. 
5 See Section A.5 in the Appendix for further details on the ensemble method along with references to other studies applying this algorithm. 
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6.5. A practical assessment of alternative detection methods 

Even though accuracy is certainly one of the most relevant criteria for assessing a collusion detection method, a law 

enforcer also considers the data requirements and the general applicability of a method as important factors. The method 

proposed by Chassang et al. (2022) has comparably modest data requirements, since it only relies on the bids in each tender

and the reserve price. However, even with such apparently low data requirements, we cannot apply the methods to the 

Swiss data since the reserve price – if it exists at all – is not recorded in the bid summaries. Furthermore, the application

of their method does not seem to work satisfactorily in the Japanese data from Okinawa, mostly because it focusses on the

differences between the lowest bid and the other bids and not on the reduced variance between losing bids, which seems

to play a crucial role in those data (as in the Swiss data, too). 

Bajari and Ye (2003) also suggest a formal model to test collusion, however, with higher data requirements than any 

other method considered in this paper. More specifically the method relies on proxies for the cost variables of each firm

of sufficiently high quality to be used for regression and statistical inference. In the case of Okinawa, collecting such data

for each firm would have been infeasible, as well as estimating a panel model with heterogeneous coefficients across firms 

(which is difficult if the number of observations per firm is low) as required for applying the econometric tests of Bajari and

Ye (2003) . However, in the Swiss data from the Ticino cartel, in which the data requirements are met, the majority of the

econometric tests fail to detect collusive episodes and are strongly outperformed by a simple screen-based benchmarking 

approach without machine learning (see Imhof, 2019 ). For this reason, this method does not seem to be an appropriate

general screening tool. However, it might be interesting to apply such econometric tests to cases already flagged as potential 

cartels by other methods, in order to support the first diagnostic (given that the availability of cost proxies and other data

requirements are satisfied). 

Both the tender- and the coalition-based approach use screens for detecting cartels based on machine learning and only 

rely on bid summaries that permit identifying the bidders and the bids. Data requirements are, thus, low, while the average

accuracy is very decent by varying between 85% and 95%. Moreover, the coalition-based approach might also be applied to 

other auction formats as the mean-price sealed-bid auction in Italy. All in all, these methods appear adequate as general 

tools for screening procurement markets since their cost of implementation is low and the results are sufficiently reliable 

for flagging markets in which competition might be endangered. 

The CNN-based detection method differs from the previously mentioned machine learning methods as it focuses on 

pairwise firm interactions rather than tenders or coalitions. The data requirements are equally low as for detection meth- 

ods based on machine learning. Its high accuracy seems to be due to two characteristics: (a) the representation of the

interactions between a reference firm and co-bidders in a two-dimensional plot and (b) the autonomous learning process 

of CNNs. In cases where the interaction pattern of collusive firms is very distinct from that of competitive bidders and,

thus, concentrated in specific parts of the plot, using predefined and rather basic statistics of the plots (like the share of

dots in some quadrant) as predictors in machine learners might perform almost as well as a CNN. This is what we ob-

serve in the Swiss and Japanese data. However, predefining plot-related statistics to be used as predictors (a process known 

as feature-engineering) generally requires extensive domain knowledge to create predictors that are (close to) optimal in 

terms of performance. Deep learning has the advantage of learning predictive features autonomously from the plots and 

might therefore outperform machine learning in terms of accuracy when the complexity of interaction patterns (in terms 

of locations in the plots) increases, as we observe it in the Italian cartel data. This, however, comes with the caveat that

CNNs require us to set up a network architecture, for which we face an infinite number of potential choices concerning

properties and tuning parameters like the number of filers, nodes, layers, epochs, observations in a batch, etc. On the pos-

itive side, we may use the previously described validation approach to optimize such choices with regard to predictive 

performance. 

From the perspective of a competition agency engaged in screening procurement markets, the high accuracy of the CNN 

approach (as to a lesser extent the machine learning approach) is an attractive and practically relevant characteristic. In 

order to open an investigation, a competition agency must have reasonable grounds for a possible law infringement, which 

means that it must have formed an initial suspicion against specific firms for having fomented a bid-rigging conspiracy. Such 

a suspicion implies that the likelihood of the presence of a cartel must be significantly higher than that of the absence of a

cartel. Being able to correctly classify a firm as a cartel participant or competitor in the vast majority of cases (in our data

19 out of 20 times) might well satisfy the required standards of empirical evidence for deciding whether an investigation 

should or should not be launched. 

Moreover, the CNN-based approach has an advantage over the tender-based and the coalition-based approach because 

it can deliver a direct probability for each reference firm to be a cartel participant. This allows a competition agency or

procurement agency to focus only on the most likely cartel candidates for further observations or tests. With this respect, 

both techniques could be combined in order to further reduce the risk of false positives (i.e classifying competitive firms as

cartel members). A public enforcer might for example use the tender-based screening approach with machine learning to 

detect a set of potentially collusive tenders and simultaneously apply the CNN approach in order to detect potentially col- 

lusive firms. Comparing the findings of both methods might e.g. reveal that the potentially collusive firms are mostly active 

in potentially collusive tenders. Thus, a large intersection of the results coming from both methods can further increase the 

confidence in flagging suspicious cases. This can then serve as a base for an investigator’s decision to perform additional

tests, analyses or research to validate the initial suspicions. After all, it is up to a human (e.g. a judge) to decide whether
16 
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a legal investigation should be opened based on the data-driven indications provided by algorithms or other empirical 

methods. 

7. Conclusion 

This paper contributes to the literature on the data-driven detection of bid-rigging cartels by proposing a novel method 

based on a deep learning architecture involving a convolutional neural network (CNN) for image recognition. We to this 

end construct graphs on pairwise bidding interactions of firms across various tenders, as also considered in the bid rotation 

test suggested in Imhof et al. (2018) and Imhof (2019) , and use them as inputs for the CNN. We obtain an average out-of-

sample accuracy of roughly 95% or higher in classifying graphs with collusive and competitive interactions when applying 

the method separately to Japanese and Swiss data on bid-rigging cartels. Pooling the graphs from both countries also yields 

a similarly high accuracy. Only when training (or developing) CNN models based on the graphs of one country in order

to test the predictive performance in the respective other country, accuracy generally decreases. Yet, we still obtain an 

average accuracy of 85% when training in the Japanese and testing in the Swiss data and of 84% when training in the

Swiss and testing in the Japanese data. However, imbalances in accuracy across collusive and competitive cases increase 

importantly when transferring trained models to another country, implying that the method no longer works similarly well 

for correctly predicting either outcome class. Nevertheless, the fact that we attain a high predictive performance in most 

scenarios considered despite our limited sample of just a few 100 graphs suggests that our CNN approach for bidding 

interaction classification is a very promising tool for screening procurement markets by inferring if some firm is likely a 

cartel member or not. 

In line with the impressive successes of deep learning in many domains like natural language processing and pattern 

recognition, our approach has the potential to outperform other quantitative approaches for flagging bid rigging and is one 

of the rare applications of CNNs in economics to date. Since our method focuses on the bidding interactions of a reference

firm with other firms participating in the same tender, it (in contrast to most other approaches) permits identifying poten- 

tial cartel members directly for further scrutiny. Indeed, a similarly high accuracy as in our analysis, implying that the CNN

correctly classifies 19 out of 20 firms as cartel members or competing bidders, provides a solid base for competition agen-

cies concerning the decision to open an investigation against a suspicious firm. Moreover, our method is also well suited for

combining different screens and approaches. The accuracy of our CNN-based approach relies on the two-dimensional rep- 

resentation of interactions between a reference firm and co-bidders as well on the autonomous learning process of CNNs. 

When collusive interactions are very distinct from competitive interactions, using descriptive statistics of the plots as pre- 

dictors in machine learning might reach the performance of CNNs, as in the Swiss and Japanese cases. However, as soon as

interactions become less obvious and more complex, CNNs might outperform predefined predictors with machine learning, 

as in the Italian cartel data. 

Even though the scope for applications of CNNs appears ample for fighting collusion and fraud more generally, a practical 

issue is that there is an infinite number of ways a CNN could be constructed in terms of tuning parameters like the num-

ber/size of filters (for extracting patterns), hidden layers (determining model complexity), nodes (nonlinear functions per 

layer), and many others. The best performing CNN architecture is a priori not obvious and needs to be iteratively explored,

making deep learning seemingly more an art than a science. While the model analyzed in this paper yielded a very decent

accuracy considering our comparably small data, it is possible that different specifications may result in higher performance 

in other contexts and with a larger amount of graphs on bidding interactions. 

Disclaimer: All views contained in this paper are solely those of the authors and cannot be attributed to the Swiss

Competition Commission, its Secretariat, the University of Fribourg, Unidistance (Switzerland). 
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Appendix A 

A1. Figures 

Fig. 5. Distribution of normalized margins of collusive bids for contracts A+. 

Fig. 6. Distribution of normalized margins of collusive bids for contracts A. 

A2. Tables 

Table 14 

Logit model using distributional statistics of normalized bids. 

Country Firms Minimum 1st quartile Median Mean 3rd quartile Maximum 

Japan All firms 0.736 0.764 0.785 0.793 0.819 0.861 

Cartel participants 0.579 0.676 0.719 0.714 0.750 0.865 

Competitors 0.757 0.845 0.864 0.867 0.890 0.949 

Swiss All firms 0.583 0.617 0.633 0.648 0.667 0.750 

Cartel participants 0.143 0.181 0.236 0.251 0.333 0.368 

Competitors 0.833 0.886 0.939 0.925 0.946 1.000 

Italy All firms 0.597 0.672 0.694 0.702 0.724 0.821 

Cartel participants 0.000 0.000 0.000 0.000 0.000 0.000 

Competitors 0.978 0.995 1.000 0.995 1.000 1.000 
18



M. Huber and D. Imhof International Journal of Industrial Organization 89 (2023) 102946 

 

 

 

 

 

 

 

 

 

Table 15 

Logit model using quadrant-based statistics of the plots. 

Country Firms Minimum 1st quartile Median Mean 3rd quartile Maximum 

Japan All graphs 0.875 0.913 0.938 0.931 0.948 0.972 

Cartel 0.825 0.899 0.920 0.922 0.957 1.000 

Competition 0.857 0.915 0.939 0.939 0.97 1.000 

Swiss All graphs 0.900 0.933 0.950 0.953 0.967 1.000 

Cartel 0.700 0.908 0.932 0.928 0.959 1.000 

Competition 0.905 0.947 0.971 0.969 1.000 1.000 

Italy All graphs 0.687 0.784 0.806 0.802 0.851 0.881 

Cartel 0.292 0.373 0.477 0.494 0.634 0.800 

Competition 0.852 0.902 0.918 0.92 0.946 0.961 

A3. Model validation 

The empirical results reported in Section 5 are based on a network architecture with 3 convolutional and 3 hidden layers

as outlined in Table 4 , which is our benchmark model. We also considered alternative networks in terms of the complexity

of convolutional and hidden layers and investigated their predictive accuracy. To this end, we drew a 75% random subset 

of the Japanese sample (while 25% were held out as test data), used 90% as training data and 10% as validation data per

epoch when estimating the model parameters of the various networks, and estimated the accuracy of each network in the 

validation data of the last epoch of the training process. More specifically, we analysed a more parsimonious network with 

just 1 convolutional and 1 hidden layer as reported in Table 16 , as well as a more complex network with 4 convolutional

and 5 hidden layers as reported in Table 17 . Furthermore, we considered all possible combinations of the numbers of con-

volutional and hidden layers as outlined in Tables 4, 16 , and 17 . That is, we combined 1, 3, or 4 convolutional layers with

1, 3, or 5 hidden layers, yielding 9 alternative network architectures. We repeated this validation procedure (of randomly 

splitting observations into training and validation data in a sequence of epochs and assessing the accuracy of the neural 

networks in the last epoch) 20 times. Table 18 reports the mean, median, worst, and best performance across these 20 sim-

ulations for each network when setting the batch size to 16 and the number of epochs to 40. Our benchmark model with 3

convolutional and 3 hidden layers (at least slightly) dominates any other neural network in terms of the median and mean

accuracy or other summary statistics. 

Table 16 

Architecture of model 2 (parsimonious model). 

1. Convolutional layer (two-dimensional for gray-shaded images) with 8 filters, each with a sliding window size 3 × 3 pixels, using the 

rectifier (or ReLU) function, which is zero for negative values and linear for positive values, as nonlinear function for mapping pixels into 

numeric values. 

2. Max pooling with size 2 × 2: aggregates the previously generated numeric features within sliding matrix windows of size 2 × 2 by taking 

the maximum value within each window. 

3. Flattening: transforming each of the matrix values in the previous convolutional layer into separate input (or predictor) variables for the 

FNN to follow. 

4. Hidden layer with 32 hidden nodes, using the rectifier as nonlinear function for mapping the nodes of the previous hidden layer. 

5. Output layer for classifying the binary outcome (1 = cartel, 0 = competition), using the sigmoid function as nonlinear function for mapping 

the nodes of the last hidden layer in order to predict the outcome. 

Table 17 

CNN architecture for predicting collusion. 

1. Convolutional layer (two-dimensional for gray-shaded images) with 64 filters, each with a sliding window size 5 × 5 pixels, using the 

rectifier (or ReLU) function, which is zero for negative values and linear for positive values, as nonlinear function for mapping pixels into 

numeric values. 

2. Max pooling with size 3 × 3: aggregates the previously generated numeric features within sliding matrix windows of size 2 × 2 by taking 

the maximum value within each window. 

3. Convolutional layer with 32 filters, each with kernel size 3 × 3, using the rectifier as nonlinear function for mapping the pooled features. 

4. Max pooling with size 2 × 2. 

5. Convolutional layer with 16 filters, each with kernel size 3 × 3, using the rectifier as nonlinear function for mapping the pooled features. 

6. Max pooling with size 2 × 2. 

7. Convolutional layer with 8 filters, each with kernel size 3 × 3, using the rectifier as nonlinear function for mapping the pooled features. 

8. Flattening: transforming each of the matrix values in the previous convolutional layer into separate input (or predictor) variables for the 

FNN to follow. 

9. Hidden layer with 128 hidden nodes (i.e. 128 nonlinear regression functions), using the rectifier as nonlinear function for mapping the 

inputs. 

10. Hidden layer with 64 hidden nodes, using the rectifier as nonlinear function for mapping the nodes of the previous hidden layer. 

11. Hidden layer with 32 hidden nodes, using the rectifier as nonlinear function for mapping the nodes of the previous hidden layer. 

12. Output layer for classifying the binary outcome (1 = cartel, 0 = competition), using the sigmoid function as nonlinear function for mapping 

the nodes of the last hidden layer in order to predict the outcome. 
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Table 18 

Accuracy in validation data (last epoch) across networks, 75% of Japanese sample. 

Number of layers Minimum 1st quartile Median Mean 3rd quartile Maximum 

3 convolutional, 3 hidden 0.864 0.955 1.000 0.971 1.000 1.000 

1 convolutional, 1 hidden 0.182 0.625 0.886 0.782 0.955 1.000 

4 convolutional, 5 hidden 0.864 0.955 0.955 0.952 0.966 1.000 

3 convolutional, 5 hidden 0.864 0.955 0.955 0.964 1.000 1.000 

3 convolutional, 1 hidden 0.545 0.955 0.977 0.950 1.000 1.000 

1 convolutional, 3 hidden 0.864 0.943 0.955 0.950 0.966 1.000 

1 convolutional, 5 hidden 0.864 0.909 0.955 0.941 0.955 1.000 

4 convolutional, 1 hidden 0.864 0.955 0.955 0.952 0.966 1.000 

4 convolutional, 3 hidden 0.455 0.943 0.955 0.932 1.000 1.000 

Note: 40 epochs, batch size is 16. The network with 3 convolutional and 3 hidden is the benchmark network. 

For our benchmark model only with the batch size set to 16, the upper panel of Table 19 reports the accuracy in the

validation data of the last epoch when setting the number of epochs to 20, 40, or 60. The results suggest that varying the

number of epochs within barely affects accuracy. The empirical results presented in Section 5 are based on 40 epochs, as this

choice seems to perform at least as good as any other numbers of epochs investigated. The lower panel of Table 19 provides

the results when setting the number of epochs to 40, but varying the batch size between 4, 16, and 64. The predictive

performance is very stable across these values of the batch size. Section 5 reports the empirical results for a batch size of

16, which is not dominated by the other choices of 4 or 64 in terms of accuracy. 

Table 19 

Summary statistics for accuracy across number of epochs and batch size. 

3 convolutional, 3 hidden Minimum 1st quartile Median Mean 3rd quartile Maximum 

varying the number of epochs (batch size is 16) 

40 epochs 0.864 0.955 1.000 0.971 1.000 1.000 

20 epochs 0.864 0.955 1.000 0.968 1.000 1.000 

60 epochs 0.864 0.955 0.977 0.968 1.000 1.000 

varying the batch size (40 epochs) 

batch size is 16 0.864 0.955 1.000 0.971 1.000 1.000 

batch size is 4 0.864 0.955 0.977 0.966 1.000 1.000 

batch size is 64 0.864 0.955 0.977 0.964 1.000 1.000 

Note: The benchmark model uses 40 epochs and batch size of 16. 

A4. Applying deep learning to Italian cartel data 

In this section we apply our CNN approach to a further data set, which comes from the municipality of Turino in Italy and

contains information on roadwork contracts from 20 0 0 to 20 03 ( Conley and Decarolis, 2016; Imhof and Wallimann, 2021 ,

see for details). Investigations revealed the existence of eight cartels consisting of 95 firms suspected to participate in bid- 

rigging conspiracies. In 2008, a court sentenced 27 firms for bid rigging. The Italian data differ from the Swiss and Japanese

data in two dimensions. First, Swiss and Japanese procurement agencies use first-price sealed-bid auctions to procure a 

contract, whereas the Italian procurement agencies use mean-price sealed-bid auctions. In the former case, the bidder who 

submits the lowest bid wins the contract, while the latter mechanism awards the contract to the bidder, the closest to the

mean. This difference in the awarding rules implies that interactions and agreements among collusive firms to generate 

collusive bids differ between first-price and mean-price sealed-bid auctions. 

Second, the Italian data consist of incomplete cartel cases, i.e. not all the firms present in the data participated in the

cartel, which entails a different data structure than for the Swiss and Japanese samples. As reported in Table 20 , out of the

276 contracts in the Italian data, all in all 106 cartel participants (who have submitted at least 20 bids in our data window)

were active in 273 actions, submitting a total of 8013 bids. Furthermore, all in all 522 competitive bidders (submitting at

least 20 bids) participated in the 276 contracts, submitting a total of 12,202 bids. Given this overlapping data structure of

collusive and competitive bids, we cannot construct plots based on distinct collusive and competitive periods as described in 

Section 2 for the Swiss and Japanese cartels. However, we may adapt the method and generate the plots by type of bidders,

i.e. separately for collusive and competitive bidders (who submitted at least 20 bids) in the 276 contracts considered. So for

collusive reference bidders, only collusive bids are considered in the plots, and for competitive reference bidders only com- 

petitive bids. This allows us to investigate if the behavior of collusive and competitive bidders is different even when they
20 
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participate in the same tenders. Indeed, suspected cartel participants won 80% of the contracts while they only represent 

10% of the bidders. This suggests that they were successful in implementing their collusive strategies. 

Table 20 

Italian sample. 

Firm Number of bids Number of firms Number of contracts 

Collusive 8013 106 273 

Competitive 12202 522 276 

Fig. 7 depicts the interaction of a typical cartel participant (left plot) and of a competitive firm (right plot). For the

competitive bidder, we see that the pairwise observations are scattered across the entire plot whereas for the collusive 

bidder, there is concentration of pairwise observations in the upper right part of the plot. 

Fig. 7. Interactions of Italian firms with other bidders (left: cartel firm; right: competitive firm). 

Table 21 reports the predictive performance of our CNN approach when applied to 266 plots constructed from the Ital- 

ian data. The median and mean accuracy amount to 97% and 96.7%, respectively, which suggests that our deep learning

approach performs decently across different types of auctions (and different countries). However, we observe an imbalance 

in the accuracy across collusive and competitive classes, which might be due to the limited sample and to the fact that we

have more competitive plots than collusive plots. This puts a larger weight on and, thus, favors the correct prediction of

competition in the training process, such that the true negative rate (of correctly classifying truly competitive firms) is very 

high with a median and mean of 100% and 99.9%, respectively. In contrast, the respective numbers amount to 89% for the

true positive rate (of correctly classifying truly collusive firms). Overall, the performance appears very satisfactory also in 

the Italian data (with on average more than 19 correct classifications out of 20). 
Table 21 

Summary statistics for accuracy when training and testing in Italy. 

Minimum 1st quartile Median Mean 3rd quartile Maximum Observations 

All graphs 0.909 0.951 0.970 0.967 0.989 1.000 266 

Collusion 0.667 0.846 0.890 0.890 0.969 1.000 77 

Competition 0.979 1.000 1.000 0.999 1.000 1.000 189 

Note: Mean precision is 0.997 
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A5. Ensemble method 

As in Huber and Imhof (2019) and in Huber et al. (2022) , we apply an ensemble method as machine learner for sev-

eral approaches presented in Sections 6.3 and 6.4 . This ensemble method is a weighted average of five algorithms: bagged

decision trees, random forest, lasso regression, support vector machines and shallow neural nets. For either method, we 

randomly split the data into training and test samples, which contain 75% and 25% of the observations, respectively. Cross- 

validation in the training sample determines the optimal weight each of the five machine-learning algorithms obtains in 

the ensemble method. To this end we apply the “SuperLearner” package for “R” by van der Laan et al. (2008) with default

values for bagged tree, random forest, Bayesian additive regression tree, lasso regression, support vector machine and neu- 

ral net algorithms in the “ipred”, “partykit”, “glmnet”, “kernlab” and “net” packages, respectively, see Peters et al. (2002) , 

Hothorn and Zeileis (2015) , Friedman et al. (2010) , Karatzoglou et al. (2004) and Venables and Ripley (2002) . For further

details about the various machine learning algorithms, we refer to Huber and Imhof (2019) and Huber et al. (2022) . 
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