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Summary: This paper combines causal mediation analysis with double machine learning for a
data-driven control of observed confounders in a high-dimensional setting. The average indirect
effect of a binary treatment and the unmediated direct effect are estimated based on efficient
score functions, which are robust with respect to misspecifications of the outcome, mediator,
and treatment models. This property is key for selecting these models by double machine
learning, which is combined with data splitting to prevent overfitting. We demonstrate that
the effect estimators are asymptotically normal and n−1/2-consistent under specific regularity
conditions and investigate the finite sample properties of the suggested methods in a simulation
study when considering lasso as machine learner. We also provide an empirical application to
the US National Longitudinal Survey of Youth, assessing the indirect effect of health insurance
coverage on general health operating via routine checkups as mediator, as well as the direct
effect.

Keywords: Mediation, direct and indirect effects, causal mechanisms, double machine learn-
ing, efficient score.

JEL codes: C21.

1. INTRODUCTION

Causal mediation analysis aims at decomposing the causal effect of a treatment on an outcome
of interest into an indirect effect operating through a mediator (or intermediate outcome) and a
direct effect comprising any causal mechanisms not operating through that mediator. Even if the
treatment is random, direct and indirect effects are generally not identified by naively control-
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ling for the mediator without accounting for its likely endogeneity, see Robins and Greenland
(1992). While much of the earlier literature either neglected endogeneity issues or relied on
restrictive linear models, see for instance Cochran (1957), Judd and Kenny (1981), and Baron
and Kenny (1986), more recent contributions consider more general identification approaches
using the potential outcome framework. Some of the numerous examples are Robins and Green-
land (1992), Pearl (2001), Robins (2003), Petersen et al. (2006), VanderWeele (2009), Hong
(2010), Imai et al. (2010), Albert and Nelson (2011), Tchetgen Tchetgen and Shpitser (2012),
Vansteelandt et al. (2012), Imai and Yamamoto (2013), and Huber (2014). Using the denom-
ination of Pearl (2001), the literature distinguishes between natural direct and indirect effects,
where mediators are set to their potential values ‘naturally’ occurring under a specific treat-
ment assignment, and the controlled direct effect, where the mediator is set to a ‘prescribed’
value.

The vast majority of identification strategies relies on selection-on-observable-type assump-
tions implying that the treatment and the mediator are conditionally exogenous when controlling
for observed covariates. Empirical examples in economics and policy evaluation include Flores
and Flores-Lagunes (2009), Heckman et al. (2013), Huber (2015), Keele et al. (2015), Conti
et al. (2016), Huber et al. (2017), Bellani and Bia (2018), Bijwaard and Jones (2018), and Huber
et al. (2018). Such studies typically rely on the (implicit) assumption that the covariates to be
controlled for can be unambiguously preselected by the researcher, for instance based on institu-
tional knowledge or theoretical considerations. This assumes away uncertainty related to model
selection with reference to (w.r.t.) covariates to be included and entails incorrect inference under
the common practice of choosing and refining the choice of covariates based on their predictive
power.

To improve upon this practice, this paper combines causal mediation analysis based on efficient
score functions, see Tchetgen Tchetgen and Shpitser (2012), with double machine learning as
outlined in Chernozhukov et al. (2018) for a data-driven control of observed confounders to
obtain valid inference under specific regularity conditions. In particular, one important condition
is that the number of important confounders (that make the selection-on-observables assumptions
to hold approximately) is not too large relative to the sample size. However, the set of these
important confounders need not be known a priori and the set of potential confounders can be
even larger than the sample size.1 This is particularly useful in high-dimensional data with a vast
number of covariates that could potentially serve as control variables, which can render researcher-
based covariate selection complicated if not infeasible. We demonstrate n−1/2-consistency and
asymptotic normality of the proposed effect estimators under specific regularity conditions by
verifying that the general framework of Chernozhukov et al. (2018) for well-behaved double
machine learning is satisfied in our context.

Tchetgen Tchetgen and Shpitser (2012) suggest estimating natural direct and indirect effects
based on the efficient score functions of the potential outcomes, which requires plug-in estimates
for the conditional mean outcome, mediator density, and treatment probability. Analogous to
doubly robust estimation of average treatment effects, see Robins et al. (1994) and Robins and
Rotnitzky (1995), the resulting estimators are semiparametrically efficient if all models of the
plug-in estimates are correctly specified and remain consistent even if one model is misspecified.
We show that the efficient score function of Tchetgen Tchetgen and Shpitser (2012) satisfies the
so-called Neyman (1959) orthogonality discussed in Chernozhukov et al. (2018), which makes the

1 Different from conventional semiparametric methods, the double machine learning framework does not require the
set of potential confounders to be restricted by Donsker conditions, but permits the set to be unbounded and to grow with
the sample size.
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estimation of direct and indirect effects rather insensitive to (local) estimation errors in the plug-
in estimates. We transform the score function of Tchetgen Tchetgen and Shpitser (2012) by an
application of Bayes’ Law in a way that avoids the estimation of the conditional mediator density,
as discussed in Zheng and van der Laan (2012) and also adopted by Dı́az and Hejazi (2020), and
show it to be Neyman orthogonal. This appears particularly useful when the mediator is a vector
of variables and/or continuous, making conditional mediator density estimation cumbersome.
Further, we establish the score function required for estimating the controlled direct effect along
with Neyman orthgonality.

Neyman orthgonality is key for the fruitful application of double machine learning, ensuring
robustness in the estimation of the nuisance parameters which is crucial when applying modern
machine learning methods. Random sample splitting—to estimate the parameters of the plug-in
models in one part of the data, while predicting the score function and estimating the direct
and indirect effects in the other part— avoids overfitting the plug-in models (e.g., by controlling
for too many covariates). It increases the variance by only using part of the data for effect
estimation. This is avoided by cross-fitting, which consists of swapping the roles of the data parts
for estimating the plug-in models and the treatment effects to ultimately average over the effect
estimates in either part. When combining efficient score-based effect estimation with sample
splitting, n−1/2-convergence of treatment effect estimation can be obtained under a substantially
slower convergence of n−1/4 for the plug-in estimates, see Chernozhukov et al. (2018). Under
specific regularity conditions, this convergence rate can attained by various machine learning
algorithms including lasso regression, see Tibshirani (1996).

We investigate the estimators’ finite sample behaviour based on the score function of Tchetgen
Tchetgen and Shpitser (2012) and the alternative score suggested in this paper when using post-
lasso regression as machine learner for the plug-in estimates. Furthermore, we apply our method
to data from the National Longitudinal Survey of Youth 1997 (NLSY97) conducted by the Bureau
of Labor Statistics at the US Department of Labor (2019), where a large set of potential control
variables is available. We disentangle the short-term effect of health insurance coverage on general
health into an indirect effect which operates via the incidence of a routine checkup in the last
year and a direct effect covering any other causal mechanisms. While we find a moderate, though
statistically insignificant, health-improving direct effect, the indirect effect is very close to zero.
We therefore do not find evidence that health insurance coverage affects general health through
routine checkups in the short run.

We note that basing estimation on efficient score functions is not the only framework satisfying
the previously mentioned robustness w.r.t. estimation errors in plug-in parameters. This property
is also satisfied by the targeted maximum likelihood estimation (TMLE) framework by van der
Laan and Rubin (2006), see the discussion in Dı́az (2020). TMLE relies on iteratively updating (or
robustifying) an initial estimate of the parameter of interest based on regression steps that involve
models for the plug-in parameters. Zheng and van der Laan (2012) have developed an estimation
approach for natural direct and indirect effects using TMLE, where the plug-in parameters might
by estimated by machine learners, e.g., the super learner, an ensemble method suggested by
van der Laan et al. (2007). This iterative estimation approach is therefore an alternative to the
double machine learning based approach suggested in this paper, for which we demonstrate
n−1/2-consistency under specific conditions.

This paper proceeds as follows. Section 2 introduces the concepts of direct and indirect effect
identification in the potential outcome framework. In Section 3, we present the identifying
assumptions and discuss identification based on efficient score functions. Section 4 proposes
an estimation procedure based on double machine learning and shows n−1/2-consistency and
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asymptotic normality under specific conditions. Section 5 provides a simulation study. Section 6
presents an empirical application to data from the NLSY97. Section 7 concludes.

2. DEFINITION OF DIRECT AND INDIRECT EFFECTS

We aim at decomposing the average treatment effect (ATE) of a binary treatment, denoted by
D, on an outcome of interest, Y , into an indirect effect operating through a discrete mediator,
M , and a direct effect that comprises any causal mechanisms other than through M . We use the
potential outcome framework, see for instance Rubin (1974), to define the direct and indirect
effects of interest, see also Ten Have et al. (2007) and Albert (2008) for further examples in the
context of mediation. M(d) denotes the potential mediator under treatment value d ∈ {0, 1}, while
Y (d,m) denotes the potential outcome as a function of both the treatment and some value m of the
mediator M .2 The observed outcome and mediator correspond to the respective potential variables
associated with the actual treatment assignment, i.e., Y = D · Y (1,M(1)) + (1 − D) · Y (0,M(0))
and M = D · M(1) + (1 − D) · M(0), implying that any other potential outcomes or mediators
are a priori (i.e., without further statistical assumptions) unknown.

We denote the ATE by � = E[Y (1,M(1)) − Y (0,M(0))], which comprises both direct and
indirect effects. To decompose the latter, note that the average direct effect, denoted by θ (d),
equals the difference in mean potential outcomes when switching the treatment while keeping
the potential mediator fixed, which blocks the causal mechanism via M:

θ (d) = E[Y (1,M(d)) − Y (0,M(d))], d ∈ {0, 1}. (2.1)

The (average) indirect effect, δ(d), equals the difference in mean potential outcomes when
switching the potential mediator values while keeping the treatment fixed to block the direct
effect.

δ(d) = E[Y (d,M(1)) − Y (d,M(0))], d ∈ {0, 1}. (2.2)

Robins and Greenland (1992) and Robins (2003) referred to these parameters as pure/total direct
and indirect effects, Flores and Flores-Lagunes (2009) as net and mechanism average treatment
effects, and Pearl (2001) as natural direct and indirect effects, which is the denomination used in
the remainder of this paper.

The ATE is the sum of the natural direct and indirect effects defined upon opposite treatment
states d, which can be easily seen from adding and subtracting the counterfactual outcomes
E[Y (0,M(1))] and E[Y (1,M(0))]:

� = E[Y (1,M(1)) − Y (0,M(0))]

= E[Y (1,M(1)) − Y (0,M(1))] + E[Y (0,M(1)) − Y (0,M(0))] = θ (1) + δ(0)

= E[Y (1,M(0)) − Y (0,M(0))] + E[Y (1,M(1)) − Y (1,M(0))] = θ (0) + δ(1). (2.3)

The distinction between θ (1) and θ (0) as well as δ(1) and δ(0) hints to the possibility of heteroge-
neous effects across treatment states d due to interaction effects between D and M . For instance,
the direct effect of health insurance coverage (D) on general health (Y ) might depend on whether
or not a person underwent routine checkups (M). We note that a different approach to dealing
with the interaction effects between D and M is a three-way decomposition of the ATE into the

2 Throughout this paper, capital letters denote random variables and small letters specific values of random variables.
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Figure 1. Causal paths under conditional exogeneity given pre-treatment covariates.

pure direct effect (θ (0)), the pure indirect effect (δ(0)) and the mediated interaction effect, see
VanderWeele (2013).

The so-called controlled direct effect, denoted by γ (m), is a further parameter that received
much attention in the mediation literature. It corresponds to the difference in mean potential
outcomes when switching the treatment and fixing the mediator at some value m:

γ (m) = E[Y (1,m) − Y (0,m)], for m in the support of M. (2.4)

In contrast to θ (d), which is conditional on the potential mediator value ‘naturally’ realized
for treatment d which may differ across subjects, γ (m) is conditional on enforcing the same
mediator state in the entire population. The two parameters are only equivalent in the absence of
an interaction between D and M . Whether the natural or controlled direct effect is more relevant
depends on the feasibility and desirability to intervene on or prescribe the mediator, see Pearl
(2001) for a discussion of the ‘descriptive’ and ‘prescriptive’ natures of natural and controlled
effects. There is no indirect effect parameter matching the controlled direct effect, implying
that the difference between the total effect and the controlled direct effect does in general not
correspond to the indirect effect, unless there is no interaction between D and M , see e.g.,
Kaufman et al. (2004).

3. ASSUMPTIONS AND IDENTIFICATION

Our identification strategy is based on the assumption that confounding of the treatment–outcome,
treatment–mediator, and mediator–outcome relations can be controlled for by conditioning on
observed covariates, denoted by X. The latter must not contain variables that are influenced by
the treatment, such that X is typically evaluated prior to treatment assignment. Figure 1 provides
a graphical illustration using a directed acyclic graph, with arrows representing causal effects.
Each of D, M , and Y might be causally affected by distinct and statistically independent sets of
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unobservables not displayed in Figure 1, but none of these unobservables may jointly affect two
or all three elements (D,M, Y ) conditional on X.

Formally, the first assumption invokes conditional independence of the treatment and potential
mediators or outcomes given X. This restriction has been referred to as conditional independence,
selection on observables, or exogeneity in the treatment evaluation literature, see e.g., Imbens
(2004). This rules out confounders jointly affecting the treatment on the one hand and the mediator
and/or the outcome on the other hand conditional on X. In nonexperimental data, the plausibility
of this assumption critically hinges on the richness of X.

ASSUMPTION 3.1. (CONDITIONAL INDEPENDENCE OF THE TREATMENT)
{Y (d ′,m),M(d)}⊥D|X = x for all d ′, d ∈ {0, 1} and m, x in the support of M,X, where ‘⊥’
denotes statistical independence.

The second assumption requires the mediator to be conditionally independent of the potential
outcomes given the treatment and the covariates.

ASSUMPTION 3.2. (CONDITIONAL INDEPENDENCE OF THE MEDIATOR) Y (d ′,m)⊥M|D =
d,X = x for all d ′, d ∈ {0, 1} and m, x in the support of M,X.

Assumption 3.2 rules out confounders jointly affecting the mediator and the outcome con-
ditional on D and X. If X is pre-treatment (as is common to avoid controlling for variables
potentially affected by the treatment), this implies the absence of post-treatment confounders of
the mediator-outcome relation. Such a restriction needs to be rigorously scrutinized and appears
for instance less plausible if the time window between the measurement of the treatment and the
mediator is large in a world of time-varying variables.

The third assumption imposes common support on the conditional treatment probability across
treatment states.

ASSUMPTION 3.3. (COMMON SUPPORT) Pr(D = d|M = m,X = x) > 0 for all d ∈ {0, 1}
and m, x in the support of M,X.

The common support assumption, also known as positivity or covariate overlap assumption,
restricts the conditional probability to be or not be treated given M,X, henceforth referred to as
propensity score, to be larger than zero. It implies the weaker condition that Pr(D = d|X = x) > 0
such that the treatment must not be deterministic in X, otherwise no comparable units in terms
of X are available across treatment states. By Bayes’ Law, Assumption 3.3 also implies that
Pr(M = m|D = d,X = x) > 0 if M is discrete or that the conditional density of M given D,X is
larger than zero if M is continuous. Conditional on X, the mediator state must not be deterministic
in the treatment, otherwise no comparable units in terms of the treatment are available across
mediator states. Assumptions 3.1 to 3.3 are standard in the causal mediation literature, see for
instance Imai et al. (2010), Tchetgen Tchetgen and Shpitser (2012), Vansteelandt et al. (2012),
and Huber (2014), or also Pearl (2001), Petersen et al. (2006), and Hong (2010), for closely
related restrictions.

We identify the counterfactual E[Y (d,M(1 − d))] based on the following lemma proven by
Tchetgen Tchetgen and Shpitser (2012).
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LEMMA 3.1. Under Assumptions 3.1, 3.2, and 3.3, the counterfactual E[Y (d,M(1 − d))] is
identified by the following efficient score function:

E[Y (d,M(1 − d))] = E[ψd ],

with ψd = I {D = d} · f (M|1 − d,X)

pd (X) · f (M|d,X)
· [Y − μ(d,M,X)]

+ I {D = 1 − d}
1 − pd (X)

·
[
μ(d,M,X)

−
∫

m∈M
μ(d,m,X) · f (m|1 − d,X) dm

]

+
∫

m∈M
μ(d,m,X) · f (m|1 − d,X) dm (3.1)

where f (M|D,X) denotes the conditional density of M given D and X (if M is discrete, this
is a conditional probability and integrals need to be replaced by sums), pd (X) = Pr(D = d|X)
the probability of treatment D = d given X, and μ(D,M,X) = E(Y |D,M,X) the conditional
expectation of outcome Y given D, M , and X.

(3.1) satisfies a multiple robustness property in the sense that estimation remains consistent even
if one out of the three models for the plug-in parameters f (M|D,X), pd (X), and μ(D,M,X) is
misspecified.

To derive an alternative expression for identification, note that by Bayes’ Law,

f (M|1 − d,X)

pd (X) · f (M|d,X)
=

(
1 − pd (M,X)

) · f (M|X)

1 − pd (X)
· pd (X)

pd (M,X) · f (M|X) · pd (X)

= 1 − pd (M,X)

pd (M,X) · (
1 − pd (X)

)

where f (M|X) is the conditional distribution of M given X and pd (X,M) = Pr(D = d|X,M).
Furthermore,

∫
μ(d,m,X) · f (m|1 − d,X)dm = E

[
μ(d,M,X)

∣∣∣D = 1 − d,X
]
.

As also noticed in Zheng and van der Laan (2012), the counterfactual can as well be identified
based on an alternative multiply robust representation of (3.1), as provided in the following
lemma.
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LEMMA 3.2. Under Assumptions 3.1, 3.2, and 3.3, the counterfactual E[Y (d,M(1 − d))] is
identified by the following alternative efficient score function:

E[Y (d,M(1 − d))] = E[ψ∗
d ],

with ψ∗
d = I {D = d} · (1 − pd (M,X))

pd (M,X) · (1 − pd (X))
· [Y − μ(d,M,X)]

+ I {D = 1 − d}
1 − pd (X)

·
[
μ(d,M,X) − E

[
μ(d,M,X)

∣∣∣D = 1 − d,X
]]

+ E
[
μ(d,M,X)

∣∣∣D = 1 − d,X
]
. (3.2)

Similarly, as the approaches based on inverse probability weighting (rather than efficient scores)
in Huber (2014) and Tchetgen Tchetgen (2013), (3.2) avoids conditional mediator densities, which
appears attractive if M is continuous and/or multidimensional. On the other hand, it requires the
estimation of an additional parameter, namely the nested conditional mean E[μ(d,M,X)|D =
1 − d,X], as similarly found in Miles et al. (2020), who suggest a multiply robust score function
for assessing path-specific effects. Alternatively to rearranging the score function by Tchetgen
Tchetgen and Shpitser (2012) as outlined above, ratios of conditional densities, as for instance
appearing in the first component of (3.1), might be treated as additional nuisance parameters and
estimated directly via density-ratio estimation, see e.g., Sugiyama et al. (2010) for density-ratio
estimation in high-dimensional settings. Such methods based on directly estimating the density
ratio without going through estimating the densities in numerator and denominator separately are
shown in several studies to compare favourably with estimating the densities separately, see e.g.,
Kanamori et al. (2012).

Efficient score-based identification of E[Y (d,M(d))] under Y (d,m)⊥{D,M}|X = x (see
Assumptions 3.1 and 3.2) has been established in the literature on doubly robust ATE estimation,
see for instance Robins et al. (1994) and Hahn (1998):

LEMMA 3.3. Under Assumptions 3.1, 3.2 and 3.3, the potential outcome E[Y (d,M(d))] is
identified by the following efficient score function:

E[Y (d,M(d))] = E[αd ] with αd = I {D = d} · [Y − μ(d,X)]

pd (X)
+ μ(d,X), (3.3)

where μ(D,X) = E(Y |D,M(D), X) = E(Y |D,X) is the conditional expectation of outcome Y

given D and X.

For identifying the controlled direct effect, we now assume that M is discrete (while this need
not be the case in the context of natural direct and indirect effects) such that for all m in the support
of M , it must hold that Pr(M = m) > 0. As Assumptions 3.1 and 3.2 imply Y (d,m)⊥{D,M}|X =
x, doubly robust identification of the potential outcome E[Y (d,m)], which is required for the
controlled direct effect, follows from replacing I {D = d} and pd (X) in (3.3) by I {D = d,M =
m} = I {M = m} · I {D = d} and Pr(D = d,M = m|X) = f (m|d,X) · pd (X):
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LEMMA 3.4. Under Assumptions 3.1, 3.2, and 3.3, the potential outcome E[Y (d,m)] is identified
by the following efficient score function:

E[Y (d,m)] = E[ψdm]

with ψdm = I {D = d} · I {M = m} · [Y − μ(d,m,X)]

f (m|d,X) · pd (X)
+ μ(d,m,X). (3.4)

4. ESTIMATION OF THE COUNTERFACTUAL WITH K-FOLD CROSS-FITTING

We subsequently propose an estimation strategy for the counterfactual E[Y (d,M(1 − d))] with
d ∈ {0, 1} based on the efficient score function by Tchetgen Tchetgen and Shpitser (2012)
provided in (3.1) and show its n−1/2-consistency under specific regularity conditions. To this
end, let W = {Wi |1 ≤ i ≤ N} with Wi = (Yi,Mi,Di,Xi) for i = 1, . . . , n denote the set of
observations in an i.i.d. sample of size n. η denotes the plug-in (or nuisance) parameters, i.e., the
conditional mean outcome, mediator density and treatment probability. Their respective estimates
are referred to by η̂ = {μ̂(D,M,X), f̂ (M|D,X), p̂d (X)} and the true nuisance parameters by
η0 = {μ0(D,M,X), f0(M|D,X), pd0(X)}. Finally, ψd0 = E[Y (d,M(1 − d))] denotes the true
counterfactual.

We suggest estimating ψd0 using the following algorithm that combines orthogonal score
estimation with sample splitting and is n−1/2-consistent under conditions outlined further below.

ALGORITHM 1: Estimation of E[Y (d,M(1 − d))] based on equation (3.1)

(1) Split W in K subsamples. For each subsample k, let nk denote its size, Wk the set of
observations in the sample and WC

k the complement set of all observations not in Wk .
(2) For each k, use WC

k to estimate the model parameters of pd (X), f (M|D,X), and
μ(D,M,X) in order to predict these models in Wk , where the predictions are denoted by
p̂d

k(X), f̂ k(M|D,X), and μ̂k(D,M,X).
(3) For each k, obtain an estimate of the efficient score function (see ψd in (3.1)) for each

observation i in Wk , denoted by ψ̂k
d,i :

ψ̂k
d,i = I {Di = d} · f̂ k(Mi |1 − d,Xi)

p̂k
d (Xi) · f̂ k(Mi |d,Xi)

· [Yi − μ̂k(d,Mi,Xi)]

+ I {Di = 1 − d}
1 − p̂k

d (Xi)
·
[
μ̂k(d,Mi,Xi)

−
∫

m∈M
μ̂k(d,m,Xi) · f̂ k(m|1 − d,Xi)dm

]

+
∫

m∈M
μ̂k(d,m,Xi) · f̂ k(m|1 − d,Xi)dm. (4.1)

(4) Average the estimated scores ψ̂k
d,i over all observations across all K subsamples to

obtain an estimate of ψd0 = E[Y (d,M(1 − d))] in the total sample, denoted by ψ̂d =
1/n

∑K
k=1

∑nk

i=1 ψ̂k
d,i .
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Algorithm 1 can be adapted to estimate the counterfactuals required for the controlled direct
effect, see (3.4). To this end, denote by ψdm0 = E[Y (d,m)] the true counterfactual of interest,
which is estimated by replacing ψd and ψd0 by ψdm and ψdm0, respectively, everywhere in
Algorithm 1.

In order to achieve n−1/2-consistency for counterfactual estimation, we make specific assump-
tions about the prediction qualities of the machine learners for our plug-in estimates of the
nuisance parameters. Closely following Chernozhukov et al. (2018), to this end we introduce
some further notation. Let (δn)∞n=1 and (�n)∞n=1 denote sequences of positive constants with
limn→∞ δn = 0 and limn→∞ �n = 0. Also, let c, ε, C, f , f and q be positive constants such that
q > 2, and let K ≥ 2 be a fixed integer. Furthermore, for any random vector Z = (Z1, . . . , Zl),
let ‖Z‖q = max1≤j≤l ‖Zl‖q , where ‖Zl‖q = (

E
[|Zl|q

])1/q
. For the sake of easing notation,

we assume that n/K is an integer. For brevity, we omit the dependence of probability PrP (·),
expectation EP (·), and norm ‖·‖P,q on the probability measure P .

ASSUMPTION 4.1. (REGULARITY CONDITIONS AND QUALITY OF PLUG-IN PARAMETER

ESTIMATES) For all probability laws P ∈ P , where P is the set of all possible probability laws,
the following conditions hold for the random vector (Y,D,M,X) for d ∈ {0, 1}:

(a) ‖Y‖q ≤ C and
∥∥E[Y 2|d,M,X]

∥∥
∞ ≤ C2,

(b) Pr(ε ≤ pd0(X) ≤ 1 − ε) = 1,

(c) Pr(f ≤ f (M|D,X) ≤ f ) = 1,

(d) ‖Y − μ0(d,M,X)‖2 = E
[

(Y − μ0(d,M,X)))2
]1/2

≥ c

(e) Given a random subset Wk of size n/K , the nuisance parameter estimator η̂0 = η̂0(WC
k )

satisfies the following conditions. With P -probability no less than 1 − �n :

‖η̂0 − η0‖q ≤ C,

‖η̂0 − η0‖2 ≤ δn,

‖p̂d0(X) − 1/2‖∞ ≤ 1/2 − ε,∥∥∥f̂0(M|D, X) − (f + f )/2
∥∥∥∞

≤ (f − f )/2,

‖μ̂0(D, M, X) − μ0(D, M, X)‖2 × ‖p̂d0(X) − pd0(X)‖2 ≤ δnn
−1/2,

‖μ̂0(D, M, X) − μ0(D, M, X)‖2 × ∥∥f̂0(M|1 − D, X) − f0(M|1 − D, X)
∥∥

2 ≤ δnn
−1/2.

For demonstrating n−1/2-consistency of the proposed estimation strategy for the counterfactual,
we heavily draw from Chernozhukov et al. (2018) by showing that our estimation strategy satisfies
the requirements for their double machine learning framework.

LEMMA 4.1. (NEYMAN ORTHOGONALITY AND LINEARITY) The following conditions are
satisfied: (a) the moment condition E[ψd (W,η0, ψd0)] = 0 holds, (b) the score ψd (W,η0, ψd0)

is linear in ψd0, (c) the second Gateaux derivative of η �→ E
[
ψd (W, η̂, ψd0)

]
is continuous, (d)

the score function is Neyman orthogonal and (e) singular values of E[ψa
d (W ; η0)] are bounded.

The proof is provided in Online Appendix S2.1.1.

Then, as, e.g., ψd (W,η,ψd0) is smooth in (η,ψd0), the plug-in estimators must converge with
rate n−1/4 in order to achieve n−1/2-convergence for the estimation of ψ̂d . This convergence
rate of n−1/4 is achievable for many commonly used machine learners such as lasso, random
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forest, boosting, and neural nets. The rates for L2-boosting were, for instance, derived in Luo and
Spindler (2016).

THEOREM 4.1. Under Assumptions 3.1–3.3 and 4.1, it holds for estimating E[Y (d,M(1 − d))],
E[Y (d,m)] based on Algorithm 1:√

n(ψ̂d − ψd0) → N (0, σ 2
ψd

), where σ 2
ψd

= E[(ψd − ψd0)2].√
n(ψ̂dm − ψdm0) → N (0, σ 2

ψdm
), where σ 2

ψd
= E[(ψd − ψdm0)2].

The proof is provided in Online Appendix S2.1.

Analogous results follow for the estimation of � = E[Y (d,M(d))] when replacing ψ̂d in the
algorithm above by an estimate of score function αd from (3.3),

α̂d = I {D=d}·(Yi−μ̂k(d,Xi ))
p̂d

k(Xi )
+ μ̂k(d,Xi), (4.2)

where μ̂k(d, x) is an estimate of μ(d, x). This approach has been discussed in literature on
ATE estimation based on double machine learning, see for instance Belloni et al. (2017) and
Chernozhukov et al. (2018). Denoting by �̂ the estimate of �, it follows under Assumptions 3.1–

3.3 and 4.1 that
√

n
(
�̂d − �d

)
→ N (0, σ 2

αd
), where σ 2

αd
= E[(αd − �d )2]. Therefore, n−1/2-

consistent estimates of the total as well as the direct and indirect effects are obtained as difference
of the estimated potential outcomes, which we denote by �̂, θ̂ (d), and δ̂(d). That is, �̂ = �̂1 − �̂0,
θ̂ (1) = �̂1 − ψ̂0, θ̂ (0) = ψ̂1 − �̂0, δ̂(1) = �̂1 − ψ̂1, and δ̂(0) = ψ̂0 − �̂0.

Naturally, the asymptotic variance of any effect is obtained based on the variance of the
difference in the score functions of the potential outcomes required for the respective effect.
For instance, the asymptotic variance of θ̂ (1) is given by Var(θ̂(1)) = V ar(α1 − ψ0)/n = (σ 2

α1
+

σ 2
ψ0

− 2Cov(α1, ψ0))/n.
Chernozhukov et al. (2018) show that under Assumptions 3.1–3.3 and 4.1, σ̂ 2

ψd
can be estimated

as:

σ̂ 2
ψd

= 1
K

∑K
k=1

[
1/nk

∑nk

i=1 ψd (Wi, η̂
k
0, ψ̂d )2

]
. (4.3)

The asymptotic variance of αd can be estimated accordingly, with ψd and ψ̂d0 substituted by αd

and �̂d0.
We subsequently discuss estimation based on the score function ψ∗

d in expression (3.2). We

note that, in this case, we have to estimate the nested nuisance parameter E
[
μ(d,M,X)

∣∣∣D =
1 − d,X

]
, which we henceforth denote by ω(1 − d,X). To avoid overfitting, the models for

μ(d,M,X) and ω(1 − d,X) are estimated in different subsamples. The plug-in estimates for
the conditional mean outcome, the nested conditional mean outcome, mediator density, and
treatment probability are referred to by η̂∗ = {μ̂(D,M,X), ω̂(D,X), p̂d (M,X), p̂d (X)} and the
true nuisance parameters by η∗

0 = {μ0(D,M,X), ω0(D,X), pd0(M,X), pd0(X)}.
ALGORITHM 2: Estimation of E[Y (d,M(1 − d))] based on equation (3.2)

(1) Split W in K subsamples. For each subsample k, let nk denote its size, Wk the set of
observations in the sample and WC

k the complement set of all observations not in Wk .
(2) For each k, use WC

k to estimate the model parameters of pd (X) and pd (M,X). Split
WC

k into 2 nonoverlapping subsamples, estimate the model parameters of the condi-
tional mean μ(d,M,X) in one subsample and use it for estimating the nested conditional
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mean ω(1 − d,X) = E
[
μ(d,M,X)

∣∣∣D = 1 − d,X
]

in the other subsample. Predict the

nuisance parameters in Wk , where the predictions are denoted by p̂d
k(X), p̂k

d (M,X),
μ̂k(D,M,X) and ω̂(D,X)k .

(3) For each k, obtain an estimate of the efficient score function (see ψ∗
d in (3.2)) for each

observation i in Wk , denoted by ψ̂∗k
d,i :

ψ̂∗k
d,i = I {Di = d}(1 − p̂k

d (Mi,Xi)
)

p̂k
d (Mi,Xi)

(
1 − p̂k

d (Xi)
) · [Y − μ̂k(d,Mi,Xi)]

+ I {Di = 1 − d}
1 − p̂k

d (Xi)
·
[
μ̂k(d,Mi,Xi)

− ω̂(1 − d,Xi)
k
]

+ ω̂(1 − d,Xi)
k. (4.4)

(4) Average the estimated scores ψ̂∗k
d,i over all observations across all K subsamples to

obtain an estimate of ψd0 = E[Y (d,M(1 − d))] in the total sample, denoted by ψ̂∗
d =

1
n

∑K
k=1

∑nk

i=1 ψ̂∗k
d,i .

Also this approach can be shown to be n−1/2-consistent under specific regularity conditions
outlined below.

ASSUMPTION 4.2. (REGULARITY CONDITIONS AND QUALITY OF PLUG-IN PARAMETER

ESTIMATES) For all probability laws P ∈ P the following conditions hold for the random
vector (Y,D,M,X) for all d ∈ {0, 1}:

(a) ‖Y‖q ≤ C and
∥∥E[Y 2|d,M,X]

∥∥
∞ ≤ C2,

(b) Pr(ε ≤ pd0(X) ≤ 1 − ε) = 1,

(c) Pr(ε ≤ pd0(M,X) ≤ 1 − ε) = 1,

(d) ‖Y − μ0(d,M,X)‖2 = E
[

(Y − μ0(d,M,X)))2
]1/2

≥ c

(e) Given a random subset Wk of size n/K , the nuisance parameter estimator η̂∗
0 = η̂∗

0(WC
k )

satisfies the following conditions. With P -probability no less than 1 − �n :

∥∥η̂∗
0 − η∗

0

∥∥
q

≤ C,

∥∥η̂∗
0 − η∗

0

∥∥
2 ≤ δn,

‖p̂d0(X) − 1/2‖∞ ≤ 1/2 − ε,

‖p̂d0(M,X) − 1/2‖∞ ≤ 1/2 − ε,

‖μ̂0(D,M,X) − μ0(D,M,X)‖2 × ‖p̂d0(X) − pd0(X)‖2 ≤ δnn
−1/2,

‖μ̂0(D,M,X) − μ0(D,M,X)‖2 × ‖p̂d0(M,X) − pd0(M,X)‖2 ≤ δnn
−1/2,

‖ω̂0(D,X) − ω0(D,X)‖2 × ‖p̂d0(X) − pd0(X)‖2 ≤ δnn
−1/2.

THEOREM 4.2. Under Assumptions 3.1–3.3 and 4.2, it holds for estimating E[Y (d,M(1 − d))]
based on Algorithm 2:
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√
n
(
ψ̂∗

d − ψ∗
d0

)
→ N (0, σ 2

ψ∗
d
), where σ 2

ψ∗
d

= E[(ψ∗
d − ψ∗

d0)2].

The proof is provided in Online Appendix S2.2.

5. SIMULATION STUDY

This section provides a simulation study to investigate the finite sample behaviour of the proposed
methods based on the following data generating process:

Y = 0.5D + 0.5M + 0.5DM + X′β + U,

M = I {0.5D + X′β + V > 0}, D = I {X′β + W > 0},
X ∼ N (0, �), U, V,W ∼ N (0, 1) independently of each other and X.

Outcome Y is a function of the observed variables D,M,X, including an interaction between
the mediator and the treatment, and an unobserved term U . The binary mediator M is a function
of D,X, and the unobservable V , while the binary treatment D is determined by X and the
unobservable W . X is a vector of covariates of dimension p, which is drawn from a multivariate
normal distribution with zero mean and covariance matrix �. The latter is defined based on
setting the covariance of the ith and j th covariate in X to �ij = 0.5|i−j |.3 Coefficients β gauge
the impact of X on Y , M , and D, respectively, and thus the strength of confounding. U,V,W are
random and standard normally distributed scalar unobservables. We consider two sample sizes
of n = 1000, 4000 and run 1000 simulations per data generating process.

We investigate the performance of effect estimation based on: (i) Theorem 4.1 using the
identification result in expression (3.1) derived by Tchetgen Tchetgen and Shpitser (2012) and
(ii) Theorem 4.2 using the modified score function in expression (3.2), which avoids conditional
mediator densities. The nuisance parameters are estimated by post-lasso regression based on the
‘causalweight’ package by Bodory and Huber (2018) for the statistical software ‘R’ (R Core
Team, 2020), in which our estimation procedure is made available, using logit specifications for
pd (X), pd (M,X), and f (M|D,X) and linear specifications for μ(D,M,X) and ω(1 − d,X).
The estimation of direct and indirect effects is based on four-fold cross-fitting. For all methods
investigated, we drop observations whose (products of) estimated conditional probabilities in
the denominator of any potential outcome expression are close to zero, namely smaller than a
trimming threshold of 0.05 (or 5%). Furthermore, we normalize the weights related to the inverse
propensity scores in our estimators such that they sum up to one within treatment groups, as for
instance advocated in Busso et al. (2009).

In our first simulation design, we set p = 200 and the ith element in the coefficient vector
β to 0.3/i2 for i = 1, . . . , p, meaning a quadratic decay of covariate importance in terms of
confounding. This specification implies that the R2 of X when predicting Y amounts to 0.22 in
large samples, while the Nagelkerke (1991) pseudo-R2 of X when predicting D and M by probit
models amounts to 0.10 and 0.13, respectively. The left panel of Table 1 reports the results for
either sample size. For n = 1000, double machine learning based on Theorem 4.2 on average
exhibits a slightly lower absolute bias (‘abias’) and standard deviation (‘sd’) than estimation
based on Theorem 4.1 The behaviour of both approaches improves when increasing sample
size to n = 4000, as the absolute bias is very close to zero for any effect estimate and standard
deviation is roughly cut by half. Under the larger sample size, differences in terms of root mean

3 The results presented below are hardly affected when setting � to the identity matrix (zero correlation across X).
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squared error (‘rmse’) between estimation based on Theorems 4.1 and 4.2 are very close to zero.
By and large, the results suggest that the estimators converge to the true effects at rate n−1/2.

In our second simulation, confounding is increased by setting β to 0.5/i2 for i = 1, . . . , p. This
specification implies that the R2 of X when predicting Y amounts to 0.42, while the Nagelkerke
(1991) pseudo-R2 of X when predicting D and M amounts to 0.23 and 0.28, respectively. The
results are displayed in the right panel of Table 1. Again, estimation based on Theorem 4.2
slightly dominates in terms of having a smaller absolute bias and standard deviation, in particular
for n = 1000. However, in other settings, the two methods might compare differently in terms of
finite sample performance. Both methods based on Theorems 4.1 and 4.2, respectively, appear to
converge to the true effects at rate n−1/2, and differences in terms of root mean squared errors are
minor for n = 4000.

Online Appendix S1 reports the simulation results (namely the absolute bias, standard deviation,
and root mean squared error) for the standard errors obtained by an asymptotic approximation
based on the estimated variance of the score functions. The results suggest that the asymptotic
standard errors decently estimate the actual standard deviation of the point estimators.

6. APPLICATION

In this section, we apply our method to data from the National Longitudinal Survey of Youth 1997
(NLSY97), a survey conducted by the Bureau of Labor Statistics at the US Department of Labor
(2019) following a US nationally representative sample of 8,984 individuals born in the years
1980–84. Since 1997, the participants have been interviewed on a wide range of demographic,
socioeconomic, and health-related topics in a one- to two-year cycle. We investigate the causal
effect of health insurance coverage (D) on general health (Y ) and decompose it into an indirect
pathway via the incidence of a regular medical checkup (M) and a direct effect entailing any
other causal mechanisms. Whether or not an individual undergoes routine checkups appears to
be an interesting mediator, as it is likely to be affected by health insurance coverage and may
itself have an impact on the individual’s health, because checkups can help to identify medical
conditions before they get serious to prevent them from affecting a person’s general health
state.

The effect of health insurance coverage on self-reported health has been investigated in different
countries with no compulsory medical insurance and no publicly provided universal health
coverage, see for example Baicker et al. (2013), Cardella and Depew (2014), Yörük (2016), Simon
et al. (2017), and Sommers et al. (2017) for the US and King et al. (2009) for Mexico. Most of
these studies find a significant positive effect of insurance coverage on self-reported health. The
impact of insurance coverage on the utilization of preventive care measures, particularly routine
checkups like cancer, diabetes, and cardiovascular screenings, is also extensively covered in public
health literature. Most studies find that health insurance coverage increases the odds of attending
routine checkups. While some contributions include selected demographic, socioeconomic and
health-related control variables to account for the endogeneity of health insurance status (see, e.g.,
Faulkner and Schauffler (1997), Burstin et al. (1998), Fowler-Brown et al. (2007), Press (2014)),
others exploit natural experiments: Simon et al. (2017) estimate a difference-in-differences model
comparing states that did and did not expand Medicaid to low-income adults in 2005, while
Baicker et al. (2013) exploit that the state of Oregon expanded Medicaid based on lottery drawings
from a waiting list. The results of both studies suggest that the Medicaid expansions increased
use of certain forms of preventive care. In a study on Mexican adults, Pagán et al. (2007)
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use self-employment and commission pay as instruments for insurance coverage and also find
a more frequent use of some types of preventive care by individuals with health insurance
coverage.

While the bulk of studies investigating checkups focus on one particular type of screening
(rather than general health checkups), see Maciosek et al. (2010) for a literature review, several
experimental contributions also assess general health checkups. For instance, Rasmussen et al.
(2007) conducted an experiment with individuals aged 30–49 in Denmark by randomly offering
a set of health screenings, including advice on healthy living, and found a significant positive
effect on life expectation. In a study on Japan’s elderly population, Nakanishi et al. (1996) found
a significantly negative correlation between the rate of attendance at health checkups and hospital
admission rates. Despite the effects of health insurance coverage and routine checkups being
extensively covered in the public health literature, the indirect effect of insurance on general
health operating via routine checkups as mediator has, to the best of our knowledge, not yet
been investigated. A further distinction to most previous studies is that we consider comparably
young individuals with an average age below thirty. For this population, the relative importance
of different health screenings might differ from that for other age groups. We also point out that
our application focuses on short-term health effects.

We consider a binary indicator for health insurance coverage, equal to one if an individual
reports to have any kind of health insurance when interviewed in 2006 and zero otherwise. The
outcome, self-reported general health, is obtained from the 2008 interview and measured with
an ordinal variable, taking on the values ‘excellent’, ‘very good’, ‘good’, ‘fair’, and ‘poor’. In
the 2007 interview, participants were asked whether they had gone for routine checkups since
the 2006 interview. This information serves as binary mediator, measured post-treatment but
pre-outcome.

To ensure that the control variables (X) are not influenced by the treatment, they come from the
pre-treatment 2005 and earlier interview rounds. They cover demographic characteristics, family
background and quality of the home environment during youth, education and training, labour
market status, income and work experience, marital status and fertility, household characteristics,
received monetary transfers, attitudes and expectations, state of physical and mental health as well
as health-related behaviour regarding, e.g., nutrition and physical activity. For some variables, we
only consider measurements from 2005 or from the initial interview round covering demographics
and family related topics. For other variables we include measurements from both the individuals’
youth and 2005 in order to capture their social, emotional, and physical development. Treatment
and mediator state in the pre-treatment period (2005) are also considered as potential control
variables. Item nonresponse in control variables is dealt with by including missing dummies for
each control variable and setting the respective missing values to zero. In total, we end up with a
set of 755 control variables, 593 of which are dummy variables (incl. 251 dummies for missing
values).

After excluding 1,498 observations with either mediator or treatment status missing, we remain
with 7,486 observations. Table 2 presents some descriptive statistics for a selection of control
variables. It shows that the group of individuals with and without health insurance coverage
differ substantially. There are significant differences with respect to most of the control variables
listed in the table. Females are significantly more likely to have health insurance coverage. Ed-
ucation and household income also show a significant positive correlation with health insurance
coverage, while the number of household members, for example, is negatively correlated with
insurance coverage. Regarding the mediator, we find a similar pattern as for the treatment. With
respect to many of the considered variables, the group of individuals who went for medical
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checkup differs substantially from those who did not. Further, we see that the correlation be-
tween many control variables and the treatment appear to have the same sign as that with the
mediator.

In order to assess the direct and indirect effect of health insurance coverage on general
health, we consider estimation based on Theorem 4.1 and expression (3.1) derived by Tchet-
gen Tchetgen and Shpitser (2012) as well as Theorem 4.2 and expression (3.2). We estimate
the nuisance parameters and treatment effects in the same way as outlined in Section 5 (i.e.,
post-lasso regression for modelling the nuisance parameters and three-fold cross-fitting for effect
estimation) after augmenting the set of covariates with 380 selected interaction and higher or-
der terms of covariates measuring demographic characteristics, health status, and health-related
behaviour. The trimming threshold for discarding observations with too extreme propensity
scores is set to 0.02 (2%), such that 777 and 54 observations are dropped when basing esti-
mation on Theorems 4.1 and 4.2, respectively. As for the simulations, the propensity score-
based weights in our estimators are normalized such that they sum up to one within treatment
groups.

Table 3 provides the estimated effects along with the standard error (‘se’) and p-value (‘p-val’)
and also provides the estimated mean potential outcome under nontreatment for comparison
(‘Ê[Y (0,M(0))]’). The ATEs of health insurance coverage on general health in the year 2008
(columns 2 and 8), estimated based on Theorems 4.1 or 4.2, are statistically significant at the
10% and 5% levels, respectively. As the outcome is measured on an ordinal scale ranging from
‘excellent’ to ‘poor’, the negative ATEs suggest a short-term health-improving effect of health
coverage. The direct effects under treatment (columns 3 and 9) and under nontreatment (columns
4 and 10) mostly have a similar magnitude as the ATEs, even though they are not statistically
significant in 3 out of 4 cases. The indirect effects under treatment (columns 5 and 11) and
nontreatment (columns 6 and 12) are generally close to zero and not statistically significant in
three out of four cases either. We therefore conclude that, in the short run, health insurance
coverage does not seem to importantly affect general health of young adults in the US through
routine checkups.

7. CONCLUSION

In this paper, we combined causal mediation analysis with double machine learning under
selection-on-observables assumptions, which avoids ad hoc pre-selection of control variables.
Thus, this approach appears particularly fruitful in high-dimensional data with many potential
control variables. We proposed estimators for natural direct and indirect effects as well as the
controlled direct effect exploiting efficient score functions, sample splitting, and machine learn-
ing based plug-in estimates for conditional outcome means, mediator densities, and/or treatment
propensity scores. We demonstrated the n−1/2-consistency and asymptotic normality of the effect
estimators under specific regularity conditions. Furthermore, we investigated the finite sample
behaviour of the proposed estimators in a simulation study and found the performance to be
decent in samples with several thousand observations. Finally, we applied our method to data
from the US National Longitudinal Survey of Youth 1997 and found a moderate short-term effect
of health insurance coverage on general health, which was, however, not importantly mediated
by routine checkups. The estimators considered in the simulation study and the application are
available in the ‘causalweight’ package for the statistical software ‘R’.
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