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Summary: We consider evaluating the causal effects of dynamic treatments, i.e., of mul-
tiple treatment sequences in various periods, based on double machine learning to control
for observed, time-varying covariates in a data-driven way under a selection-on-observables
assumption. To this end, we make use of so-called Neyman-orthogonal score functions, which
imply the robustness of treatment effect estimation to moderate (local) misspecifications of
the dynamic outcome and treatment models. This robustness property permits approximating
outcome and treatment models by double machine learning even under high-dimensional
covariates. In addition to effect estimation for the total population, we consider weighted
estimation that permits assessing dynamic treatment effects in specific subgroups, e.g., among
those treated in the first treatment period. We demonstrate that the estimators are asymptotically
normal and ./n-consistent under specific regularity conditions and investigate their finite
sample properties in a simulation study. Finally, we apply the methods to the Job Corps study.

Keywords: Dynamic treatment effects, double machine learning, efficient score.

JEL codes: C21.
1. INTRODUCTION

In many empirical problems, policy makers and researchers are interested in the causal effects of
sequences of interventions or treatments, i.e., dynamic treatment effects. Examples include the
impact of sequences of training programmes (for instance, a job application training followed by
a language courses) on the employment probabilities of job seekers or the effect of sequential
medical interventions (for instance, a surgery combined with rehabilitation training) on health.
As treatment assignment is typically nonrandom, causal inference about distinct sequences of
treatments requires controlling for confounders jointly affecting the various treatments and the
outcome of interest. An assumption commonly imposed in the literature is sequential conditional
independence, which implies that the treatment in each period is unconfounded conditional on past
treatment assignments, past outcomes, and the history of observed covariates up to the respective
treatment assignment. Due to increasing data availability, the number of observed covariates
that may potentially serve as control variables to justify the sequential conditional independence
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DML with dynamic treatment effects 629

assumption has been growing in many empirical contexts, which poses the question of how to
optimally control for such a wealth of information in the estimation process.

This paper combines the semiparametrically efficient estimation of dynamic treatment effects
under sequential conditional independence, with the double machine learning (DML) framework
outlined in Chernozhukov et al. (2018) to control for observed covariates in a data-driven way.
More specifically, treatment effect estimation is based on the efficient score function belonging
to the class of doubly robust estimation as discussed in Robins et al. (1994) and Robins and
Rotnitzky (1995), and relies on plug-in estimates of the dynamic treatment propensity scores
(the conditional treatment probabilities given histories of covariates and past treatments) and
conditional mean outcomes (given histories of treatments, covariates, and past outcomes). We
obtain these plug-in estimates by machine learning, which permits algorithmically controlling
for covariates with the highest predictive power for the treatments and outcomes.

To safeguard against overfitting bias due to correlations between the estimation steps, the
plug-in models and the treatment effects are estimated in different parts of the data, whose
role is subsequently swapped to prevent not using parts of the data for effect estimation (and
thereby increasing the variance). We show that our estimator satisfies the so-called Neyman
(1959) orthogonality discussed in Chernozhukov et al. (2018), and is thus asymptotically normal
and \/n-consistent under specific regularity conditions despite the data-driven estimation of the
plug-ins. One restriction is that the convergence of the plug-in estimates to the true models as a
function of the covariates is not too slow, which is satisfied if each of the estimators converges at
a rate faster than n~!/4. When using lasso as machine learner, this implies a form of approximate
sparsity, meaning that the number of important covariates for obtaining a decent approximation of
the plug-ins is small relative to the sample size. However, the set of these important confounders
need not be known a priori, which is particularly useful in high-dimensional data with a vast
number of covariates that could potentially serve as control variables.

As a further contribution, we discuss the DML-based estimation of weighted dynamic treatment
effects where the weight is defined as a function of the baseline covariates. This permits, for
instance, assessing treatment sequences among those treated or not treated in the first period, and
therefore provides a rather general framework for the definition of interesting subpopulations.
Also for this estimator, based on a weighted version of the efficient score function, we show
Neyman (1959) orthogonality and /n-consistency under specific restrictions on the convergence
rates of the plug-in estimators, which now also include the estimated weighting function.

Furthermore, we investigate the method’s finite sample behaviour in a simulation study and
find the point estimators to perform rather decently in the simulation designs considered. As an
empirical contribution, we assess the effects of various treatment sequences in the US Job Corps
study on an educational intervention for disadvantaged youth. We find that attending vocational
training in the two initial years of the programme likely increases the employment probability
four years after the start of Job Corps when compared to no instruction. In contrast, the relative
performance of sequences of vocational vs. academic classroom training is less clear.

The literature on dynamic treatment effects goes back to Robins (1986), who proposes a
dynamic causal framework along with an estimation approach known as g-computation for
recursively modelling outcomes at some point in time, as functions of the (histories of) ob-
served covariates and treatments under the sequential conditional independence assumption. G-
computation was originally implemented by parametric maximum likelihood estimation of nested
structural models for the outcomes in all periods, requiring the (in general tedious) estimation of
the conditional densities of all time-varying covariates. Robins (1998) suggested an alternative,
less complex modelling approach based on so-called marginal structural models representing
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outcomes in specific treatment states as functions of time-constant covariates only. In order to
also control for time-varying confounding, such marginal models need (in the spirit of Horvitz
and Thompson, 1952) to be combined with weighting by the inverse of the dynamic treatment
propensity scores, see for instance Robins et al. (1999) and Robins et al. (2000). The propensity
scores in each period are typically estimated by sequential logit regressions, but see Imai and
Ratkovic (2015) for an alternative, empirically likelihood-based approach that aims at finding
propensity score specifications that maximise covariate balance. Lechner (2009) considers in-
verse probability weighting (IPW) by the dynamic treatment propensity scores alone (i.e., without
the use of marginal outcome models), while Lechner and Miquel (2010) apply propensity score
matching and Blackwell and Strezhnev (2022) direct matching on the covariates.

Doubly robust estimators of dynamic treatment effects comprise methods that are consistent
if either the sequential treatment propensity scores or nested outcome models are correctly
specified. This includes estimation based on the sample analogue of the efficient influence
function (underlying the semiparametric efficiency bounds) provided in Robins (2000), which
is a function of both the nested treatment and outcome models.! In contrast, Bang and Robins
(2005) propose a doubly robust estimator that is based on estimating potential outcomes by nested
models of conditional mean outcomes (given the covariate histories as well as past and current
treatment assignments) in all periods, a form of g-computation that does not require tedious
likelihood estimations of conditional densities as initially proposed in Robins (1986). Here,
doubly robustness comes from the fact that a weight based on the nested treatment propensity
scores is included as additional covariate in conditional mean estimation.

van der Laan and Gruber (2012) demonstrate that this approach fits the framework of Targeted
Maximum Likelihood Estimation (TMLE) of van der Laan and Rubin (2006), which obtains
doubly robustness through updating initial conditional outcome estimates by regressing them
on a function of the nested propensity scores in each period, and offers a refined estimator.
Specifically, they suggest estimating nuisance parameters by the super learner of van der Laan
et al. (2007), an ensemble method for machine learning. In contrast, the approach suggested
in this paper does not rely on the likelihood estimation of marginal structural models, nor of
nested structural models requiring the estimation of conditional covariate densities. Similar to
TMLE, our approach is based on combining nested conditional mean outcomes with propensity
score estimation. Different from TMLE, however, we base estimation on the efficient influence
function, which does not iteratively update the nested outcomes. In addition, we also consider
weighted treatment effect estimation as a function of baseline covariates. As we estimate the
plug-in parameters by machine learning as recently also considered in Tran et al. (2019), we
formally show that our approach fits the DML framework of Chernozhukov et al. (2018), and
discuss regularity conditions under which ,/n-consistency is attained. Farbmacher et al. (2022)
used similar techniques to analyse DML in the context of mediation analysis.

Lewis and Syrgkanis (2021) propose an alternative DML estimator of dynamic treatment
effects. It is based on residualising or debiasing the outcome and the treatment by purging the
effects of observed confounders, using machine learning and regressing the debiased outcome
on the debiased treatment in a specific period. This approach may also be applied to continuous
(rather than discrete) treatments, but, in contrast to our method, assumes partial linearity in the
outcome model. Finally, Viviano and Bradic (2021) suggest a further doubly robust method that
can be combined with machine learning, but replaces weighting by the inverse of the propensity

! Yu and van der Laan (2006) discuss an alternative doubly robust approach based on combining propensity scores
with the estimation of marginal structural models.
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scores (as applied in our paper) by a dynamic version of covariate balancing as discussed in
Zubizarreta (2015) and Athey et al. (2018).

This paper proceeds as follows. Section 2 introduces the concepts of dynamic treatment
effects in the potential outcome framework, presents the identifying assumptions, and discusses
identification. Section 3 proposes an estimation procedure based on DML, and shows /n-
consistency and asymptotic normality under specific conditions. Section 4 extends the procedure
to the evaluation of weighted dynamic treatment effects. Section 5 provides a simulation study.
Section 6 presents an empirical application to data from Job Corps, an educational programme
for disadvantaged youth. Section 7 concludes.

2. DEFINITION OF DYNAMIC TREATMENT EFFECTS AND IDENTIFICATION

We are interested in the causal effect of a sequence of discretely distributed treatments and
will for the sake of simplicity focus on the case of two sequential treatments in the subsequent
discussion. To this end, denote by D, and Y, the treatment (e.g., a training programme) and the
outcome (e.g., employment) in period 7 = ¢. Therefore, D, and D, are the treatments in the first
and second periods, respectively, and may take values d;,d> € {0, 1, ..., Q}, with O indicating
nontreatment and 1, ..., Q the different treatment choices (where Q denotes the number of
nonzero treatments). Let Y, denote the outcome of interest measured in the second period after
the realisation of treatment sequence D; and D,.” To define the dynamic treatment effects of
interest, we make use of the potential outcome framework, see for instance Rubin (1974). Denoting
by d, a specific treatment sequence (di, d») with di,d> € {0, 1, ..., Q}, then D, = (D1, D»),
and Y»(d,) denotes the potential outcome hypothetically realised when the treatments are set to
that sequence d,. We also define {0, 1, ..., 0¥ =1{0,1,...,0} x{0,1,..., Q).

We aim at evaluating the average treatment effect (ATE) of two distinct treatment sequences
in the population,

A(d,, d3) = E[Ya(d,) — Ya(d))],

withd, # d5 such that the sequences differ either in d; or in both d,.> Examples are the evaluation
of a sequence of two binary treatments vs. no treatment, e.g., d, = (1, 1) and d5 = (0, 0), or
the effect of the first treatment when holding the second treatment constant, d, = (1, d») and
d; = (0, dy), with d» € {0, 1}. The latter parameter is known as the controlled direct effect in
causal mediation analysis, see for instance Pearl (2001), assessing the net effect of the first
treatment when setting the second treatment to be D, = d, for everyone.* Throughout the paper
we assume that the stable unit treatment value assumption (SUTVA, Rubin, 1980) holds such
that Pr(D, = d, = Y, = Y»(d,)) = 1. This rules out interaction effects and general equilibrium
effects, and implicitly assumes that treatments are uniquely defined.

2 We do not consider the evaluation of treatment effects on outcomes in the first period, as this corresponds to the
conventional static treatment framework as, for instance, considered in Chernozhukov et al. (2018).

3 In the case of do, d5 sharing the same d1, but differing in terms 5, the identification problem collapses to the standard
case with one treatment period (namely 7" = 2) under the condition that D = d;. The case of a single treatment period
also prevails when considering the effects on Y7, i.e., the outcome in period 7' = 1, which only permits assessing the
effect of Dj. In either case, the standard DML framework for single treatment periods can be applied as, e.g., outlined in
Belloni et al. (2017) such that we do not consider these scenarios in this paper.

4 From the perspective of causal mediation analysis, our paper complements the study of Farbmacher et al. (2022),
who apply DML to the estimation of so-called natural direct and indirect effects. In the latter case, D5 is not prescribed to
have the same value d; for everyone, but corresponds to the potential value D»(d}), i.e., the hypothetical treatment state
of D, that would be ‘naturally chosen’ (i.e., without prescription) as a consequence of D; = dj.
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Figure 1. Causal paths under sequential conditional independence.

Identification relies on a sequential conditional independence assumption, requiring that the
treatment in each period is conditionally independent of the potential outcomes, conditional on
previous treatments and (histories of) observed covariates measured prior to treatment, which
might include past outcomes, too. Let, to this end, X, denote the observed characteristics in period
T =t. X, consists of pre-treatment characteristics measured prior to the first treatment D, while
X (which may contain Y) is measured prior to D;, but may be influenced by D as well as Xj.
Covariates in a particular period may therefore be affected by previous covariates and treatments,
implying that confounding may be dynamic in the sense that identification relies on time-varying
observables rather than on baseline covariates alone. Figure 1 provides a graphical illustration
using a directed acyclic graph, with arrows representing causal effects. Each of D;, D,, and
Y, might be causally affected by distinct and statistically independent sets of unobservables not
displayed in Figure 1, but none of these unobservables may jointly affect D, and Y, given X, or
D; and Y, given Dy, Xy, and X;.

Formally, the first assumption invokes conditional independence of the treatment in the first
period D; and the potential outcomes Y»(d,) given X, as commonly invoked in the treatment
evaluation literature, see, e.g., Imbens (2004). It rules out unobserved confounders jointly affecting
D and Y»(d,) conditional on Xj.

ASSUMPTION 2.1 (CONDITIONAL INDEPENDENCE OF THE FIRST TREATMENT):
Y>(d,)LDi| Xy, ford, € {0, 1, ..., Q)?, where ‘L’ denotes statistical independence.

The second assumption invokes conditional independence of the second treatment D, given the
Sfirst treatment Dy, and the (history of) covariates X, and X, which we denote by X | = (X, X1)
to ease notation. It rules out unobserved confounders jointly affecting D, and Y»(d,) conditional
on Dy and X .

ASSUMPTION 2.2 (CONDITIONAL INDEPENDENCE OF THE SECOND TREATMENT):
YZ(iz)J—D2|Dlv XQ, Xl,ford2 (S {0, 1, ey Q}2

The third assumption imposes common support, meaning that the treatment in each period is
not a deterministic function of the respective observables in the conditioning set, which rules out
conditional treatment probabilities (or propensity scores) of 0 or 1. This implies that conditional
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on each value of the observables occurring in the population, subjects with distinct treatment
assignments {0, 1, ..., Q} exist.

ASSUMPTION 2.3 (COMMON SUPPORT): Pr(D; = d;|X¢) > 0, Pr(D, = d»| Dy, X;) > O for
di,dy € {0, 1..., Q}

To ease notation, we henceforth denote the propensity scores by pd1 (Xo) = Pr(D; = d,|Xy) and
pdz(Dl , X,) =Pr(Dy = ds| Dy, X,). Furthermore, we denote the conditional mean outcome in

the second period by u*>(D,, X,) = E[Y2|D,, Xo, X1] and the nested conditional mean outcome
in the first period by

v2(D,, Xo) = /E[Y2|Q2,XO,X1 = x1]dFx,—x,|D\.x,>

where Fx —x,p, x, denotes the conditional distribution function of X, given (Di, Xo) at
value x,. For a fixed vector of treatments D, = d,, the quantity v'*(d,, Xo) is equal to
E[E[Y>2|D, =d,, Xo. X1llD\ = di, Xo], and this suggests that it can be obtained by a
sequential estimation of nested conditional means. This is the approach followed in this paper,
as it avoids the estimation of conditional covariate distributions, which might be cumbersome if
covariates are high dimensional.

As, for instance, discussed in Tran et al. (2019), Assumptions 2.1-2.3 permit identifying the

mean potential outcome E[Y(d,)] based on the following expression:
E[Y(d,)] = E[¥*], where
I{D, =d\}- I{Dy =dy} - [Y, — n"(d,, X))]
ph(Xo) - p©(d1, X))
n (D) =d\} - [1"(dy, X)) — v"(d,, Xo)]
pH(Xo)

This follows from the fact that ¥4 = E[Y (d,)], which corresponds to the efficient score

function of dynamic treatment effects, as discussed in Robins (2000), has a zero mean property:
E[y% — E[Y(d,)]] = 0.

yh =

+v"2(d,, Xo).

3. ESTIMATION OF THE COUNTERFACTUAL WITH K-FOLD CROSS-FITTING

We subsequently propose an estimation strategy for the counterfactual E[Y(d,)] with d, €
{0, 1, ..., Q}? and show its \/n-consistency under specific regularity conditions. Define

I{Dy =d\}- I{D, = dy} - [Y> — n"*(d,, X)]
by, n, why = dy X
yEwm o) p(Xo) - p®(dy, X))
n I{D; =dy} - [u"(d,. X)) — v"(d,. Xo)]
ph(Xo)

+"(dy, Xo) — W,

where W = {W;|1 <i < N} with W; = (Yy, Dy;, D2, Xoi, X1;) for all i denotes the set
of observations and I{-} denotes the indicator function. The true nuisance parameters
are denoted by 1y = (pg1 (Xo), pgz(Dl, X)), /ng(Qz, X)), vgz@z, Xp)), their estimates by
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7 = (p*(Xo). p2(Dy. X)), £"2(Dy. X)), 0"2(Dy. Xo)). Let Wy* = E[Y(dy)] denote the true
counterfactual ®

We suggest estimating the \Ilgz using the following algorithm that combines orthogonal score
estimation and sample splitting. Further below we will outline the conditions under which this
estimation strategy leads to /n-consistent estimates for the counterfactual.

ALGORITHM 3.1: Estimation of E[Y(d,)]

(1) Split W in K subsamples. For each subsample k, let n; denote its size, W, the set of
observations in the sample, and ch the complement set of all observations not in k.

(2) Foreachk,use ch to estimate the model parameters of p%(Xo) and p©(dy, X - Split ch
into two nonoverlapping subsamples and estimate the model parameters of the conditional
mean p ' (d,, X,), and the nested conditional mean e (d,, Xo) in the distinct subsamples.
Predict the models among W, where the predictions are denoted by j),’f‘ (Xo), f),‘fz di, X)),
2 (dy, X)), 0,2(d5, Xo).

(3) For each k, obtain an estimate of the moment condition for each observation i in W,
denoted by 1/7?,2( :

17/42 _ H{Dy=di}- Dy = dy} - [Yo; — 12y X101
ik — N A~
P Xon) - P, Xyp)
L HDi=di}- [ (dy X1) — 0,7 (dy, Xoi)]
IAJZIl (Xoi)

+9,7(d,, Xoi)-

(4) Average the estimated scores I/A/léf{ over all observations across all K subsamples to obtain
an estimate of W% in the total sample, denoted by W2 = 1/n 3 7, I/Aflé,i

> We note that the two-periods framework considered in this paper easily extends to more treatment periods; see
the general formula for multiple treatment periods provided in Tran et al. (2019) (equation (9) in their section 4.1).
For instance, in the case of three treatment periods and using analogous notation, the efficient score function takes the
following form:

I{Di =di}- I{Dy = dp} - I{D3 = d3} - [V3 — £"3(d3, X))]
Pdl (Xo) - sz(dl, X]) . pd3(¢2,&)

Y (W, n, W) =
L 1D =di)- Dy = do) - [EY3(dy, X,) — u¥3(ds, X))]
ph(Xo) - p2(dy, X,)

. I{D; = dy} - [u"(d5, X)) — vI3(d3, Xo)]
p4(Xo)

+ (s, Xo) — U,

where

£3(D3, X,) = E[Y3|D3, X,],

w3 (Ds, X)) = /5}]3(23,&1, X2 = x2)d Fxy=x,D, X, »

v3(Dy, Xo) = /MY%Q}, X0, X1 = x1)dFx,=x, 1Dy, Xo-
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As a remark concerning step 2 of the algorithm, it may appear nonstandard to estimate
u(d,, X,) and v"*(d,, Xo) in distinct subsamples. This approach aims at avoiding correlations
between both estimation steps and, thus, overfitting bias, because the estimate of u'2(d,, X) is
used as a plug-in parameter for estimating v*?(d,, Xo).

In order to achieve /n-consistency for counterfactual estimation, we make the following
assumption on the prediction quality of the machine learners when estimating the nuisance
parameters. Closely following Chernozhukov et al. (2018), we introduce some further nota-
tion. Let (8,)72, and (A,)72, denote sequences of positive constants with lim,_, 8, = 0 and

lim,, oo A, = 0, while 8, > n~1/2. Furthermore, let ¢, ¢, C and q be positive constants such
that ¢ > 4, and let K > 2 be a fixed integer. Also, for any random vector Z = (Zy, ..., Z)), let

1
I1Z]l, = max,<,< | Z; ||q , where | Zll, = (E[IZ;|]). In order to ease notation, we assume
that n/K is an integer. For the sake of brevity we omit the dependence of probability Prp,
expectation Ep(-), and norm |[-|| p , on the probability measure P.

ASSUMPTION 3.1 (REGULARITY CONDITIONS AND QUALITY OF PLUG-IN PARAMETER
ESTIMATES): For all probability laws P € P the following conditions hold for the random
vector (Ya, Dy, Dy, Xo, X1) foralld,,d, € {0, 1, ..., Q}:

(@) IV, < C,
|ELYZIDy = di, Dy = b, X,1|| , < C?
(b) Pr(e < pl'(Xp) <1 —e€)=1,
Pr(e < pii(di, X)) < 1—e) =1,

2.1
(© |72 = o x| = E[ (2= nfdr x)) | 2 e
(d) Given a random subset I of [n] of size ny = n/K, the nuisance parameter estimator
0 = 71((W;)erc) satisfies the following conditions. With P-probability no lessthan 1 — A, :

17— ml, = C.
17 = molly = 8n.
[P Xy =172, = 1/2 =€
[p®=(D1. X)) —1/2] < 1/2—e,
Dy, X)) = w0y, X)) x| 5 o) = b (Xo)|| < 8,077,

Dy, X)) = 1Dy, X)) x| (D1 X)) = piE D1, X)) < 8,072

072Dy, Xo) = (D, Xo)| %

P (X0 = i (Xo)|| = 8,772

The only nonprimitive condition is the condition (d). It puts restrictions on the quality of the
nuisance parameter estimators. Condition (a) states that the distribution of the outcome does not
have unbounded moments. (b) refines the common support condition such that the propensity
scores are bounded away from 0 and 1. Finally, (c) states that the covariates X ; do not perfectly
predict the conditional mean outcome.

For demonstrating the +/n-consistency of our estimator of the mean potential outcome, we
show that it satisfies the requirements of the DML framework in Chernozhukov et al. (2018) by
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first verifying linearity and Neyman orthogonality of the score (see Appendix S1.1). Then, as
Yd(W, n, \I/gz) is smooth in (7, \I—'gz), it is sufficient that the plug-in estimators converge with a
rate faster than n~'/* for achieving n~'/2-convergence for the estimation of W% as postulated in
Theorem 3.1. This convergence rate of n~'/4 has been shown to be achieved by many commonly
used machine learners under specific conditions, such as lasso, random forests, boosting and
neural nets, see for instance Belloni et al. (2014), Luo and Spindler (2016), Wager and Athey
(2018), Farrell et al. (2021), Syrgkanis and Zampetakis (2020), and Singh (2021).

THEOREM 3.1. Under Assumptions 2.1-3.1, it holds for estimating E[Y(d,)] based on Algo-
rithm 3.1: ., .
Jn (\ifiz — \Ilaz) — N(0,0ys,), where oya, = E[(Y% — Wi?)]. Moreover, the asymptotic

. . . ~ ~Ad A
variance o4, may be consistently estimated by: 64, = 1/n Z,f:] Yo (W — Wo)2,

The proof of Theorem 3.1 is provided in Appendix S1.1.

From Theorem 3.1, which demonstrates the /n-consistent estimation of the mean potential
outcomes, it follows that the ATE can be «/n-consistently estimated, too, as it is defined as a linear
combination (and more specifically, as the difference) of the potential outcomes: A(g’z, dy) =
W — Y& Accordingly, the estimator of the asymptotic variance of the ATE corresponds to

. 2
N K Ad /\42 a~ N
Gawyay = 1/nY oy 2ok (K[fi,lzc —Vix— (e — \ydz)> .

4. EVALUATION OF WEIGHTED DYNAMIC TREATMENT EFFECTS

Lechner and Miquel (2010) show that, under our assumptions, one may identify treatment effects
for specific subgroups that are defined as a function of the distribution of the baseline covariates
Xp. To this end, let S denote a binary indicator for belonging to the subgroup of interest that
satisfies S_1Y»(d,)| X0, as S may be selective in X, but not with respect to the post-treatment
covariates X after controlling for X. Furthermore, denote by g(Xy) = Pr(S = 1|X) the prob-
ability of being in that group conditional on X. Interesting examples for such subgroup are the
treated or nontreated populations in the first period, obtained by defining S = I{D; = d,} with
d; €{0,1,..., O}, in order to assess whether the treatment effect varies across treatment states.
We note that S might even be a deterministic function of Xy, such that g(Xo) equals one for
specific values of the baseline covariates and zero otherwise. This permits assessing the condi-
tional average treatment effect (CATE) in a subgroup defined upon values of X as well as effect
heterogeneity across subgroups. For instance, we may set S = 1 for females and S = 0 otherwise
in order to evaluate the CATE conditional on gender.

We can identify the mean potential outcomes conditional on S = 1 based on reweighting by
g(Xp), see, e.g., Hirano et al. (2003), who use this approach for weighted ATE evaluation based
on IPW. That is,

S-Y>(d X
EIV>(dy)IS = 1] = E[Pr(s—i—ﬁ] - E[% : E[Yz(iz)|xo]:|
S
_ E[m - E[Y2(42)|X0]} (.1

where the first equality follows from basic probability theory, and the remaining ones from the fact
that S_1Y»(d,)| X and the law of iterated expectations. This suggests the following identification
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approach:

E[Y>(d)|S =1] = E[y%5=1, where
g(Xo) I{Di=d\} - I{Dy =do} [Y2 — pn(d,, X))]

wiz»S:l = . —
Pr(S = 1) p(Xo) - p*(d1, X,)
n §(Xo)  I{Dy =di}: 1"y, X)) — v"(d,, Xo)]
Pr(§ =1) pH(Xo)
S Y,
S d,, Xo). 4.2
+ Pr(S = 1) v (_2 0) 4.2)
Note that the term s—=— P(S T (dz, Xp) in (4.2) corresponds to Pr(S 0 - E[Y»(d,)| Xo] in (4.1).

Appendix S1.2 shows that the moment condition E [ypdaS=1 — E[Y>(d,)|S = 1]] = 0 holds, such
that E[y%>5=!] identifies the weighted mean potential outcome, and proves Neyman orthogo-
nality. It demonstrates that DML is /n-consistent and asymptotically normal under Assumption
4.1 below. The latter formalises the rate restrictions on the plug-in estimates, which now also
contain an estimate of g(Xo) denoted by g(Xy). To this end, Algorithm 3.1 outlined in Sec-
tion 3 is applied to estimate E[Y»(d,)|S = 1] by using modified moment conditions in steps 3
and 4.
More specifically, the previously used w computed in some subsample k is replaced by

ndoSml . I{Dy; =d\} - I{Dy = da} - [Yoi — }*(dy, X,))]
I/f:]zg = gk(XOi) : ~d, d ~d> . 2 L
Py (Xoi) - P (dr, X))
. I{Dy; = d}- m“(d, ,)—w(d,xl)] .
+ 2u(Xg)  —— = TR S ST Tk S B0 S 002y, Xon). (43)

pk (X()l)

. 5 d,,S=1 .
In step 4, the estimated scores ¥, ; are averaged over all observations across all K subsamples

and divided by an estimate of Pr(S = 1) to obtain an estimate of \Ild2 =l_ g [Ya(dy)|S = 1]

based on W>5=! = [Zk P ]/[Zk P S,-].

The following assumption reﬁnes the conditions of Assumption 3.1 such that asymptotic
normality holds for the DML estimator based on (4.2).

We redefine the vector of nuisance parameters such that it includes the g function. To this
end, we denote by xo = (go(Xo), no) the true nuisance parameters and by ¥ = (£0(Xo), 77) their
estimates.

ASSUMPTION 4.1 (REGULARITY CONDITIONS AND QUALITY OF PLUG-IN PARAMETER
ESTIMATES): For all probability laws P € P the following conditions hold for the random
vector (Ya, Dy, Dy, Xo, X1, S) foralld,,d, € {0, 1, ..., Q}:

(@) IYl, < C
|EY;|Dy =di, Dy =db, X,|]| , < C?,
(b) Pr(e < py'(Xg) <1 —¢)=1
Pr(e < pyi(di, X)) < 1—€) =1,
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(© |72 = o x| = E[ (2= nidn x0) | 2 e
(d) Given a random subset I of [n] of size n,. = N /K, the nuisance parameter estimator ¥ =
X ((W))ierc) satisfies the following conditions. With P-probability no less than 1 — A

1% = xolly = C,
1% = Xolla < 8,
[p"(Xo) —1/2| < 1/2 -,

|p® (D1 X)) —1/2]

I A

1/2 — e,

™Dy X)) — w0y, X)) x | 9 X0) = b (Xo)| | < 8,077,

IALYZ(QQ, Xl) - H(l)/z(Qz, XI)H

PEDL X)) = piE(D1L X)) < 8,7

072Dy, Xo) = 0} (Dy, Xo)| |

P X0 = Pl (Xo)|| = 8,072

Dy X)) = w (D, X)) % 12(X0) = go(Xol, < 8,172,

D7D, Xo) = Dy, Xo)| X 18(X0) = go(Xo)l = 8,172

Assumption 4.1 can be satisfied if the plug-in estimator g(X) converges to its true value go(Xo)
with rate faster than n~!/# just like the estimators of the other nuisance terms. Then, the ATE in
the subgroup, denoted by

Aldy,d5, S = 1) = E[Y2(d,) — Ya(d))IS = 1],
is i/n-consistently estimated, as postulated in Theorem 4.1.

THEOREM 4.1. Under Assumptions 2.1-2.3 and 4.1, it holds for estimating E[Y>(d,)|S = 1]
based on Algorithm 3.1:

ﬁ(‘i’iﬁs:l — ‘-Ilgz’szl) — N(0, oyar5=1), where o yays=1 = E[(yd25=1 —
over, the asymptotic variance o.ya,.s=1 may be consistently estimated by:

A K dy,S=1 &4 g

Gy = 1/n 35 DL (w A L

d2 5= 1)2] More-

The proof of Theorem 4.1 is provided in Appendix S1.2.

In analogy to the discussion after Theorem 3.1, it follows from Theorem 4.1 that, not
only the mean potential outcomes, but also the ATE (i.e., the difference in mean poten-
tial outcomes) conditional on § = 1 can be estimated ./n-consistently: A(t_lz, d;,.S=1)=
Wdo 5=l _ \p&2.5=1 The corresponding estimator of the asymptotic variance is given by

dy,5=1 d;,5=1

~ — N S= ~ _ PNTE 2
Oawy.d;.5=1) = 1/n Zk D (Wific’ —Vix — (WhS=t — ‘1'42'5_1)) .
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Table 1. Confounding based on By, = Bx, = 0.4/i*.

Number of Sample Pseudo-R? (%) pseudo-R? (%) R? (%)
covariates size PI(Xo) pdy, X)) a2(X)
50 2,500 15 29 38
50 10,000 13 26 36
100 2,500 17 33 41
100 10,000 14 27 37
500 2,500 37 71 62
500 10,000 19 36 42

5. SIMULATION STUDY

This section provides a simulation study to investigate the finite sample behaviour of our DML
method for dynamic treatment effects based on the following data generating process:

Y = D1+ Dy + XoBx, + X1Bx, + U,
Dy = I{X(Bx, +V > 0},
D, = I{0.3D, + X Bx, + X1 Bx, + W > 0},
Xo~ N(@O, Xp), X;~N(@O X)),
U,V,W ~ N(, 1), independently of each other.

Outcome Y5 is a function of the observed variables Dy, D,, X, X1, and the unobserved scalar U.
The treatment effects of both D; and D, are equal to 1. D is a function of X and the unobserved
scalar V. D, is a function of both pre- and post-treatment covariates X and X, the first treatment
Dy, and the unobservable scalar W. Both X, and X are vectors of covariates of dimension p,
drawn from a multivariate normal distribution with zero mean and covariance matrices X, and
3, respectively. U, V, W are random and standard normally distributed. We consider two sample
sizes of n = 2,500 and 10,000, running 1,000 simulations for the smaller and 250 simulations
for the larger sample sizes.

In our simulations, we set p, the number of covariates in X; and X, respectively, to 50, 100,
or 500. £y and X, are defined based on setting the covariance of the ith and jth covariate in X
or X; to 0.5/, The coefficients Bx, and By, gauge the impacts of the covariates on Y>, D»,
and D, respectively, and thus the magnitude of confounding. The ith element in the coefficient
vectors By, and By, is set to 0.4/i* fori =1, ..., p, implying a quadratic decay of covariate
importance in terms of confounding. As reported in Table 1, this specification implies that the
R? statistic based on linearly predicting ¥, by X, ranges from 36 to 62%, depending on the
number of covariates and the sample size. Furthermore, the Nagelkerke (1991) pseudo-R? when
predicting D by Xy and D, by D;, X, based on probit models ranges from 13 to 37% and
26 to 71%, respectively. These figures point to a substantial level of confounding as it may be
reasonably encountered in empirical applications.

We investigate the performance of ATE estimation when comparing the sequences of obtain-
ing both treatments (d, = (dy = 1, d, = 1)) vs. no treatment (d5 = (d; = 0, d = 0)) in the total
population based on Theorem 3.1 and in the treated in the first period based on Theorem 4.1.
The nuisance parameters, i.e., the linear and probit specifications of the outcome and treatment
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Table 2. Simulation results based on Bx, = Bx, = 0.4/i%.

Covar- Sample True Absolute Standard Average RMSE Coverage
iates size effect bias deviation SE in %

ATE: A(d,, d3) (all)

50 2,500 2 0.027 0.07 0.069 0.075 91.6
50 10,000 2 0.007 0.035 0.034 0.036 94.4
100 2,500 2 0.04 0.072 0.069 0.083 88.7
100 10,000 2 0.011 0.035 0.034 0.037 94.4
500 2,500 2 0.063 0.07 0.068 0.094 83.4
500 10,000 2 0.02 0.035 0.034 0.04 89.6
ATE on selected: A(d,, d}, S = 1)
50 2,500 2 0.027 0.076 0.087 0.081 96.5
50 10,000 2 0.006 0.037 0.043 0.038 95.6
100 2,500 2 0.042 0.079 0.087 0.089 94.0
100 10,000 2 0.011 0.037 0.043 0.039 96.4
500 2,500 2 0.064 0.075 0.088 0.099 91.5
500 10,000 2 0.019 0.038 0.043 0.043 95.2

Notes: SE and RMSE denote the standard error and the root mean squared error, respectively. Coverage is based on 95%
confidence intervals.

equations, are estimated by lasso regressions using the default options of the SuperLearner pack-
age provided by van der Laan et al. (2007) for the statistical software R.Three-fold cross-fitting
is used for the estimation of the treatment effects. We drop observations whose products of
estimated treatment propensity scores in the first and second period, p¥(Xp) - p(Dy, X,),
are close to zero, namely smaller than a trimming threshold of 0.01 (or 1%). This avoids
an explosion of the propensity score-based weights, and thus of the variance when estimat-
ing the mean potential outcomes by the sample analogue of identification result (4.3), where
the product of the propensity scores enters the denominator for reweighing the outcome. Our
estimation procedure is available in the causalweight package for R by Bodory and Huber
(2018).

Table 2 presents the main findings when estimating the ATE in the total population, A(gz, dy),
and among the subgroup of treated in the first period, A(gz, d;, S = 1). Trrespective of the
number of covariates, the absolute biases go to zero as the sample size increases. Further-
more, the standard deviations and root mean squared errors (RMSE) of the ATE estimators are
roughly cut by half when quadrupling the sample size, as implied by /n-consistency. The lev-
els of the standard deviations and RMSEs are somewhat higher for A(gz, d3, S = 1) than for
A(d2, d3), which comes from the additional weighting step due to targeting the treated subpop-
ulation with S = 1. We also observe that the average standard errors (average SE) based on the
asymptotic variance approximations appear to converge at ./n-rate; however, among the sub-
group of treated, they slightly overestimate the true standard deviations. In general, the coverage
rates based on 95% confidence intervals approach the nominal value with increasing sample
size.
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6. EMPIRICAL APPLICATION

We apply our DML approach to evaluate the effects of training sequences provided by the Job
Corps programme on employment. Job Corps is the largest US programme offering vocational
training and academic classroom instruction for disadvantaged individuals aged 16 to 24. It
is financed by the US Department of Labor and currently has about 50,000 participants every
year. Besides vocational credentials, students may obtain a high school diploma or equivalent
qualifications. Individuals meeting specific low-income requirements can participate in Jobs
Corps without any costs.

A range of studies analyses the impact of Job Corps based on an experimental study with
randomised access to the programme between November 1994 and February 1996. In particular,
Schochet et al. (2001) and Schochet et al. (2008) discuss in detail the study design and report the
average effects of random programme assignment on a broad range of outcomes. Their findings
suggest that Job Corps increases educational attainment, reduces criminal activity, and increases
employment and earnings, at least for some years after the programme. Flores et al. (2012) assess
the impact of a continuously defined treatment, namely the length of exposure to academic and
vocational instruction on earnings, and find positive effects. As the length of the treatment is
(in contrast to programme assignment) not random, they impose a conditional independence
assumption and control for baseline characteristics at Job Corps assignment. Colangelo and Lee
(2021) suggest DML-based estimation of continuous treatment effects and apply it to assess
the employment effects of Job Corps. In contrast to these contributions on continuous treatment
doses of Job Corps, we consider discrete sequences of multiple treatments and also control for
post-treatment confounders rather than baseline covariates only.

Several contributions assess specific causal mechanisms of the programme. Flores and Flores-
Lagunes (2009) find a positive direct effect of programme assignment on earnings when con-
trolling for work experience, which they assume to be conditionally independent given observed
covariates. Also Huber (2014) imposes a conditional independence assumption and estimates a
positive direct health effect when controlling for the mediator employment. Using a partial iden-
tification approach permitting mediator endogeneity, Flores and Flores-Lagunes (2010) compute
bounds on the direct and indirect effects of Job Corps assignment on employment and earnings
mediated by obtaining General Educational Development (GED) certificate, high school degree,
or vocational degree. Under their strongest set of assumptions, the results point to a positive direct
effect net of obtaining a degree. Frolich and Huber (2017) use an instrumental variable strategy
based on two instruments to disentangle the earnings effect of being enrolled in Job Corps into an
indirect effect, via hours worked, and a direct effect, likely related to a change in human capital.
Their results point to the existence of an indirect rather than a direct mechanism. Even though
our framework of analysing sequences of treatments is in terms of statistical issues somewhat
related to the evaluation of causal mechanisms, it relies on distinct identifying assumptions more
than the previously mentioned studies, which, e.g., do not consider controlling for post-treatment
confounders.

For the empirical analysis, we use a sample based on the data source of Schochet et al. (2019).
The newly constructed dataset is provided by Huber (2022). Our sample consists of 11,313
individuals with completed follow-up interviews four years after randomisation, out of which
6,828 and 4,485 were randomised in and out of Job Corps, respectively. We exploit the sequential
structure of academic education and vocational training in the programme to define dynamic
treatment states. Since most of the education and training activities were taken in the first two
years, we focus on the latter when generating a sequence of binary treatments for each observation.
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Table 3. Sequences of treatments.

Dynamic treatments in Job Corps Observations
Code Year 1 Year 2

00 no educ/train no educ/train No 4,485
11 no educ/train no educ/train Yes 320
12 no educ/train acad educ Yes 43
13 no educ/train vocC train Yes 42
21 acad educ no educ/train Yes 1,328
22 acad educ acad educ Yes 341
23 acad educ voc train Yes 183
31 vocC train no educ/train Yes 1,279
32 voc train acad educ Yes 109
33 voc train voc train Yes 573
Missings 2,610

Notes: no educ/train means not participating in any Job Corps programme related to education or training measures. acad
educ and voc train stand for academic education and vocational training, respectively, offered by Job Corps.

The treatment states in our application can take four different values: dy, 4>, df, dj € {0, 1, 2, 3}.
State O refers to no instruction offered due to being randomised out of Job Corps (control
group), state 1 to no instruction despite being randomised in (never takers in the denomination of
Angrist et al., 1996), 2 to academic education among programme participants, and 3 to vocational
training among programme participants. If individuals participate in both academic education
and vocational training in a specific year, we assign the code of the treatment that was attended
to a larger extent in terms of completed hours.

Table 3 reports various sequences of treatments in the data along with the corresponding number
of observations. For instance, the treatment sequence 00 refers to those 4,485 control group
members that were randomised out, and did not participate in any education activities offered by
Job Corps. Furthermore, 320 individuals assigned to Job Corps do not participate in any form of
education either, as indicated by the sequence 11. We also note that for 2,610 out of the 11,313
individuals, information on the treatment sequences is missing. The literature explains the missing
values by a random skip logic error, due to which asking questions about treatment participation
was randomly omitted for a subset of survey participants, see page J.5 in Schochet et al. (2003).
In our analysis we drop the control group with treatment sequence 00, but make use of it in a
placebo test outlined further below. Furthermore, for several potential comparisons of treatment
sequences, small sample issues and/or problems of a lack of common support in propensity scores
(and thus, covariates) arise. For this reason, we confine our evaluation to comparing treatment
sequence 33 (vocational training in both years) to either 22 (academic education in both years),
21 (academic education in the first year), or 11 (no participation in either year).

Our outcome variable is a binary employment indicator measured four years after randomisa-
tion. Table 4 reports the mean outcome across various treatment sequences, which ranges from 77
to 89%. It also provides the sequence-specific numbers of cases with missing outcomes that are
dropped from the analysis, which appear quite low. We aim at estimating the ATE of treatment
sequences d, vs. d5 among individuals whose treatment in the first year corresponds to the first-
year-treatment of either d, or d;. An alternative would be to assess the ATE in the total sample
randomised into Job Corps (which would thus also include individuals with different first-year
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Table 4. Mean outcome conditional on treatment sequence.

Treatment code Employment
Mean Missings

00 0.78 46

11 0.78 7

21 0.78 17

22 0.82 1

33 0.89 3
Missings 0.77 37

Notes: The first column provides the codes of the treatment sequences, see Table 3; the
second column gives the average employment per sequence; the third one gives the number
of missing observations.

Table 5. Number of covariates.

Raw variables Xy X
Dummy 295 575
Categorical 53 13
Numeric 26 226
Total 374 814
Processed variables Xo X
Dummy 883 1,201
Numeric 26 226
Total 909 1,427

Notes: Xo and X; denote regressors measured prior to the first and second periods,
respectively.

treatments from the ones evaluated), but this proved to be problematic due to lacking common
support in terms of treatment propensity scores.

‘We make use of a large set of potential control variables that also include covariates, which have
been identified as important confounders in several articles assessing the sensitivity of programme
evaluations to the inclusion and omission of such confounders in observational labour market
studies. Biewen et al. (2014), for instance, conclude that imposing conditional independence
assumptions requires the availability of rich data on employment and benefit histories, and
socioeconomic characteristics. Lechner and Wunsch (2013) point to the importance of factors such
as health, caseworker assessments, regional information, timing of unemployment and programme
start, pre-treatment outcomes, job search behaviour, and labour market histories. In line with these
findings, our covariates comprise information about socioeconomic characteristics, pre-treatment
labour market histories, education and training, job search activities, welfare receipt, health, crime,
and how one learnt about the existence of Job Corps. Table S1 in Appendix S2 reports more details
on these features, including variable descriptions and distributions across treatment sequences.

We condition on observed characteristics X, in periods ¢ € {0, 1}. X denotes control variables
measured at baseline prior to the first treatment D;, whereas X; is observed one year after
randomisation, but prior to the second treatment D,. Table 5 provides the number and types of
variables assigned to X, and X;. Our raw data include 1,188 characteristics. After some data ma-
nipulations based on generating dummies for values of categorical variables and missing items in

© The Author(s) 2022.

€20z Aepy /1 uo Jasn alle)isisAluN 18 ajeuojued snbaylolqig - Binoqu4 10 AlsieAiun Aq 6/2£7099/829/€/Sz/e1on4e/los/wod dno olwspese//:sdyy Wolj papeojumod



644 H. Bodory et al.

Table 6. Effect estimates with a trimming threshold of 0.01.

d, & E@)S=1] AW, d;,S=1) SE p-value  Observations  Trimmed
33 22 0.76 0.1 0.06 0.11 3,783 507
33 21 0.82 0.05 0.03 0.07 3,783 43
33 11 0.81 0.08 0.03 0.02 2,346 22

Notes: dp and dj indicate the treatment sequences under treatment and nontreatment, respectively. E [Y2(d5)IS =1]
denotes the mean potential outcome under nontreatment conditional on § = 1, where S is an indicator for the first treatment
corresponding to either the first treatment in d» or 4;. A(Qz, 4;, S = 1) provides the ATE estimate, SE the standard error.
The last column gives the number of observations dropped according to the trimming rule p91(X¢) - p®(Dy,X1) < 0.01.

dummy or categorical variables, we end up with, all in all, 2,336 regressors. Missing observations
in numerical variables were replaced by the mean values of the nonmissing items. Furthermore,
we standardised numerical covariates to have a zero mean and a standard deviation of 0.5.

We estimate A(d,, d5, S = 1), with § = 1 if the first treatment corresponds to either the first
treatment in d, or d3, based on 3-fold cross-fitting, and the random forest (see Breiman, 2001) as
machine learner of the nuisance parameters. To this end, we use the SuperLearner package with
default options provided by van der Laan et al. (2007) for the statistical software R. Our motivation
for choosing the random forest is that it is (in the spirit of kernel regression) a nonparametric
estimator that does not impose functional form assumptions (like linearity) on the conditional
outcome or treatment models. As in our simulation study, we drop observations whose products
of propensity scores in the first and second period are smaller than 0.01 to impose common
support in our sample, and avoid an explosion in the propensity score-based weights. For a
visual assessment of the common support, Appendix S3 provides plots with the propensity score
distributions across all treatment sequences considered in this application. In general, common
support is rather decent for the first period propensity scores p¥ (X), while the overlap is weaker
for the scores in the second period p2(Dy, X ), especially at the boundaries of the distributions.

Table 6 presents the results for our three different comparisons of treatment sequences. As
displayed in the first row, we find no statistically significant increase in employment when
attending two years of vocational training, rather than two years of academic classroom training.
Even though the point estimate A(dz, d3, S = 1) suggests an increase of 10 percentage points in
the employment probability (starting from a counterfactual probability of 76%), the p-value is
beyond any conventional level of statistical significance. For the comparison of vocational training
to academic education in the first year or no training in either year presented in the second and
third rows, however, the effects of 5 and 8 percentage points are statistically significant at the
10% and 5% levels, respectively. We therefore conclude that vocational training appears to
increase the employment probability four years after randomisation into Job Corps, while it is
less clear whether it performs relatively better than academic classroom training. The results are
qualitatively similar when increasing the trimming threshold for the products of the propensity
scores to 0.03, see Table 7. However, the p-value of the effect of vocational vs. no training is now
somewhat higher (4%).

To partially assess the validity of the conditional independence assumptions imposed in this
application, we conduct a placebo test based on comparing the outcomes of two control groups,
as for instance discussed in Athey and Imbens (2017). The first control group are the never takers,
i.e., those randomised into Job Corps who never attended any form of instruction with treatment
sequence 11. The second control group are those randomised out, and thus without access to
Job Corps instruction with treatment sequence 00. We estimate the pseudo-treatment effect of
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Table 7. Effect estimates with a trimming threshold of 0.03.

d, & Ed)IS=11 A, d;,S=1) SE  p-value Observations Trimmed
33 22 0.78 0.07 005 023 3,783 1,940
33 21 0.82 0.05 0.03 0.5 3,783 587
33 11 0.81 0.07 003  0.04 2,346 170

Notes: dp and dj indicate the treatment sequences under treatment and nontreatment, respectively. E [Y2(d5)|S = 1]
denotes the mean potential outcome under nontreatment conditional on § = 1, where S is an indicator for the first treatment
corresponding to either the first treatment in d or 4;. A(gz, 513, S = 1) provides the ATE estimate, SE the standard error.
The last column gives the number of observations dropped according to the trimming rule p91(X¢) - p®(Dy,X;) < 0.03.

Table 8. Placebo test with a trimming threshold of 0.01.

ATE estimate SE p-value Observations Trimmed

0 0.02 0.92 4,752 196

Notes: The ATE estimate provides the pseudo-treatment effect when comparing the em-
ployment outcomes of never takers (treatment sequence 11) and those randomised out
(treatment sequence 00) conditional on baseline covariates Xg. The last column states the
number of observations dropped according to the trimming rule: p(Xo) < 0.01.

Job Corps on the employment outcome using the DML approach for assessing static (rather than
dynamic) treatments, as for instance discussed in Chernozhukov et al. (2018). To this end, we
consider sequence 11 as pseudo-treatment and sequence 00 as nontreatment and control for the
baseline covariates X based on the random forest as machine learner of the nuisance parameters.
As neither group attended any training, the true ATE is equal to zero. As shown in Table 8, the
estimated ATE is indeed approximately zero with a p-value of 92%. This provides some statistical
support for the satisfaction of the conditional independence assumption, at least with respect to
the baseline covariates X|.

7. CONCLUSION

In this paper, we combined dynamic treatment evaluation with DML under sequential selection-
on-observables assumptions, which avoids ad hoc pre-selection of control variables. This approach
appears particularly fruitful in high-dimensional data with many potential control variables. We
suggested estimators for the (weighted) average effects of sequences of treatments (with the so-
called controlled direct effect being a special case) based on Neyman-orthogonal score functions,
sample splitting, and machine learning-based plug-in estimates of conditional mean outcomes
and treatment propensity scores. We demonstrated the /n-consistency and asymptotic normality
of the treatment effect estimators under specific regularity conditions, and analysed their finite
sample behaviour in a Monte Carlo simulation. Finally, we applied our method to the Job Corps
data to analyse the effects of distinct sequences of educational programmes, and found positive
employment effects for vocational training when compared to no programme participation.
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