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Bounds on direct and indirect effects under treatment/
mediator endogeneity and outcome attrition

Martin Hubera and Luk�a�s Laff�ersb

aDepartment of Economics, University of Fribourg, Fribourg, Switzerland; bDepartment of Mathematics, Matej
Bel University, Bansk�a Bystrica, Slovakia

ABSTRACT
Causal mediation analysis aims at disentangling a treatment effect into an
indirect mechanism operating through an intermediate outcome or medi-
ator, as well as the direct effect of the treatment on the outcome of inter-
est. However, the evaluation of direct and indirect effects is frequently
complicated by non-ignorable selection into the treatment and/or medi-
ator, even after controlling for observables, as well as sample selection/out-
come attrition. We propose a method for bounding direct and indirect
effects in the presence of such complications using a method that is based
on a sequence of linear programming problems. Considering inverse prob-
ability weighting by propensity scores, we compute the weights that
would yield identification in the absence of complications and perturb
them by an entropy parameter reflecting a specific amount of propensity
score misspecification to set-identify the effects of interest. We apply our
method to data from the National Longitudinal Survey of Youth 1979 to
derive bounds on the explained and unexplained components of a gender
wage gap decomposition that is likely prone to non-ignorable mediator
selection and outcome attrition.
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1. Introduction

Mediation analysis aims to decompose a treatment effect into an indirect causal mechanism oper-
ating through one or several intermediate variables, so-called mediators, as well as the direct
effect, including any mechanisms not operating through the mediators of interest. For instance,
early childhood interventions might affect labor market or health outcomes later in life through
different mechanisms like the formation of cognitive or non-cognitive skills, see, for instance,
Heckman et al. (2013) and Keele et al. (2015). Furthermore, job seeker counseling may influence
employment through assignment to training programs or other mechanisms in the counseling
process, see Huber et al. (2017). Even with a randomly assigned treatment, direct and indirect
effects are generally not identified by naively controlling for mediators, as this likely introduces
selection bias, see Robins and Greenland (1992). While much of the earlier work on mediation
analysis assumed linear models and/or neglected selection issues, see Cochran (1957), Judd and
Kenny (1981), and Baron and Kenny (1986), more recent contributions discuss more general
identification approaches and explicitly consider confounding. See, for instance, Robins and
Greenland (1992), Pearl (2001), Robins (2003), Petersen et al. (2006), VanderWeele (2009), Imai
et al. (2010), Hong (2010), Albert and Nelson (2011), Imai and Yamamoto (2013), Tchetgen and
Shpitser (2012), and Vansteelandt et al. (2012).
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In most mediation studies, identification relies on a conditionally exogenous treatment and
mediator given observed covariates and rules out non-ignorable outcome attrition or sample
selection, i.e., that outcomes are only observed for a nonrandom subpopulation. This issue occurs,
for instance, in wage regressions, where wages are only observed for the selective subgroup of
employed individuals, see Heckman (1976) and Heckman (1979). For this reason, Huber and
Solovyeva (2020a) incorporate outcome attrition into mediation models, assuming conditional
treatment and mediator exogeneity and tackling outcome attrition either by observed covariates
(missing at random assumption, see, e.g., Little and Rubin, 1987; Rubin, 1976) or by instruments
(if attrition is selective in unobservables). In many empirical problems, however, observed covari-
ates might not be rich enough to convincingly control for treatment/mediator endogeneity and
attrition bias while instruments that satisfy specific exclusion restrictions w.r.t. attrition (see, for
instance, Das et al., 2003; Huber, 2014) might not be available.

This paper provides a method for deriving bounds on direct and indirect effects when the
treatment, the mediator and outcome attrition are likely selective even after controlling for
observed covariates. Considering identification based on inverse probability weighting based on a
combination of propensity scores, we compute the weights that would yield identification in the
absence of complications (as provided in Huber and Solovyeva, 2020a) and perturb them by an
entropy parameter reflecting misspecification in the various propensity scores. Based on the fram-
ing the identification issue as an optimization problem to be solved by linear programming, we
set-identify the mean potential outcomes and thus, the direct and indirect effects of interest.

Our contribution is related to further studies that used optimization, and in particular linear
programming, to derive bounds on treatment effects under selection problems, see, e.g., Balke
and Pearl (1997), Manski (2007), Honor�e and Tamer (2006), Molinari (2008), Freyberger and
Horowitz (2015), Laff�ers and Nedela (2017), Laff�ers (2019), among many others. Our paper is
also related to the literature on sensitivity analysis in mediation analysis. VanderWeele (2010), for
instance, provides a general formula for the bias of direct and indirect effects in the presence of
an unobserved mediator-outcome confounder. By considering sensible values for differences in
conditional mean outcomes across confounder values and for differences in the conditional mean
of the confounder across treatment states, researches may investigate the sensitivity of the effects.
Imai et al. (2010) propose a sensitivity check for parametric (both linear and nonlinear) medi-
ation models based on specifying the correlation of unobserved terms in the mediation and out-
come equations, assuming that the mediator-outcome confounders are not a function of the
treatment. In contrast, Tchetgen and Shpitser (2012) suggest a semiparametric procedure that
allows for confounders of the mediator-outcome relation which are affected by the treatment
based on specifying and calibrating the so-called selection bias function, which is agnostic about
the dimension of unobserved confounders. See VanderWeele and Chiba (2014) and Vansteelandt
and VanderWeele (2012) for further selection bias functions.

As an alternative strategy, Albert and Nelson (2011) suggest considering the correlation of
counterfactual values of post-treatment variables as sensitivity parameter. Finally, the paper that
is the closest to our approach is Hong et al. (2018), which provides a method tailored to weight-
ing estimators under the omission of both pre- and post-treatment confounders. The idea is that
such confounders create a discrepancy between the correct weight an observation should obtain
and the one actually used. The resulting bias can be represented by the covariance between the
weight discrepancy and the outcome conditional on the treatment, which serves as base for con-
ducting sensitivity analyses. Our approach is different to Hong et al. (2018) in that we represent
the discrepancy between the correct and observed weights using entropy parameters and, instead
of deriving analytical formulas, rely on an optimization routine to obtain bounds on direct and
indirect effects. This allows for a separate relaxation of the three main identification assumptions
and thus may lead to a better understanding of the non-robustness of the results to violations of
the various identification assumptions. We also note that the econometric setup of Huber and
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Solovyeva (2020a) underlying our analysis invokes a different set of assumptions than Hong et al.
(2018) or any of the other previous methods, such that our approach permits investigating sensi-
tivity also w.r.t. outcome attrition.1

We apply our method to data from the National Longitudinal Survey of Youth 1979, a panel
study of young individuals in the U.S. aged 14 to 22 years in 1979. The specific sample considered
has previously been analyzed by Huber and Solovyeva (2020b) to decompose the gender gap in
wages reported in the year 2000 into an indirect (or explained) component due to differences
in mediators like education and occupation, as well as a direct (or unexplained) gender difference
in wages not attributable to the observed mediators. While Huber and Solovyeva (2020b) investi-
gated the sensitivity of point estimation of explained and unexplained component under different
identifying assumptions, our approach permits easing any of the conditional exogeneity assump-
tions on gender, the mediators, and selection into employment (as wages are only observed for
working individuals) to derive bound son the parameters of interest. We find that the omission
of confounders of the treatment and the mediators would potentially have the largest impact on
the significance of the results. More specifically, the omission of a confounder that has the same
predictive power as the first or second most important mediator entering the treatment propen-
sity score would render all the effects insignificant. The results also show that in some specifica-
tions the choice of the link function in the estimation of probabilistic weights matter.

The remainder of this paper is organized as follows. Section 2 introduces the variables as well
as the direct and indirect effects of interest. Section 3 restates the identifying assumptions of
Huber and Solovyeva (2020a), under which the direct and indirect effects are point identified,
and introduces the sensitivity analysis based on inverse probability weighting when relaxing these
assumptions. Section 4 presents an application to the decomposition of the U.S. gender wage gap
using data from the National Longitudinal Survey of Youth 1979. Section 5 concludes.

2. Variables and parameters of interest

Mediation analysis typically aims to disentangle the average treatment effect (ATE) of a binary
treatment, denoted by D, on an outcome variable, denoted by Y, into a direct effect and an indir-
ect effect operating through one or several mediators. We denote the latter by M, which is
assumed to have bounded support and may be scalar or a vector of variables and contain discrete
and/or continuous elements. For defining natural direct and indirect effects, we make use of the
potential outcome framework, see, for instance, Rubin (1974), which has been applied to causal
mediation analysis, for instance, by Ten Have et al. (2007) and Albert (2008). Let to this end
MðdÞ,Yðd,Mðd0ÞÞ denote the potential mediator state as a function of the treatment and potential
outcome as a function of the treatment and the potential mediator, respectively, under treatments
d, d0 2 {0, 1}. For each subject, only one potential outcome and mediator state, respectively, is
observed, because the realized mediator and outcome values are M ¼ D �Mð1Þ þ ð1� DÞ �Mð0Þ
and Y ¼ D � Yð1,Mð1ÞÞ þ ð1� DÞ � Yð0,Mð0ÞÞ:

The ATE, denoted by D, is given by the total effect of the treatment operating through the dir-
ect or indirect mechanisms:

D ¼ E Yð1,Mð1ÞÞ � Yð0,Mð0ÞÞ½ �: (1)

The (average) direct effect, denoted by hðdÞ, is characterized by the difference in mean poten-
tial outcomes under treatment and non-treatment when fixing the mediator at its potential value
for D¼ d, which shuts down the indirect mechanism via M.

1The studies mentioned and our own investigate the sensitivity of direct and indirect effects to prespecified deviations from
the identifying assumptions. Alternatively, one may derive worst case bounds, which are based on the possibly most extreme
forms of violations of specific assumptions, which typically implies a rather wide range of admissible effect values. See for
instance Kaufman et al. (2005), Cai et al. (2008), Sj€olander (2009), and Flores and Flores-Lagunes (2010).
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hðdÞ ¼ E Yð1,MðdÞÞ � Yð0,MðdÞÞ½ �, d 2 f0, 1g: (2)

The (average) indirect effect, denoted by dðdÞ, is given by the difference in mean potential
outcomes when exogenously varying the mediator to take its potential values under treatment
and non-treatment, but keeping the treatment fixed at D¼ d to shut down the direct effect.

dðdÞ ¼ E Yðd,Mð1ÞÞ � Yðd,Mð0ÞÞ½ �, d 2 f0, 1g: (3)

Robins and Greenland (1992) and Robins (2003) referred to these causal parameters as pure/
total direct and indirect effects, Flores and Flores-Lagunes (2009) as net and mechanism average
treatment effects, and Pearl (2001) as natural direct and indirect effects, which is the denomin-
ation followed in the remained of this study.

The ATE is the sum of the natural direct and indirect effects defined upon opposite treatment
states:

D ¼ E Yð1,Mð1ÞÞ � Yð0,Mð0ÞÞ½ �
¼ E Yð1,Mð1ÞÞ � Yð0,Mð1ÞÞ½ � þ E Yð0,Mð1ÞÞ � Yð0,Mð0ÞÞ½ � ¼ hð1Þ þ dð0Þ
¼ E Yð1,Mð0ÞÞ � Yð0,Mð0ÞÞ½ � þ E Yð1,Mð1ÞÞ � Yð1,Mð0ÞÞ½ � ¼ hð0Þ þ dð1Þ:

(4)

This follows from adding and subtracting either E½Yð0,Mð1ÞÞ� or E½Yð1,Mð0ÞÞ� in (4). The
notation hð1Þ, hð0Þ and dð1Þ, dð0Þ allows for effect heterogeneity as a function of the treatment
state, i.e., the presence of interaction effects between the treatment and the mediator. For
instance, the impact of a training (M) on employment (Y) might depend on whether a job seeker
has received some form of counseling in the job search process (D). A different way to see this is
that the direct effect of counseling (D) may depend on whether the job seeker attends a train-
ing (M).

Obviously, effects are not identified without invoking identifying assumptions. First,
Yð1,Mð1ÞÞ and Yð0,Mð0ÞÞ are not observed for any subject at the same time, which constitutes
the fundamental problem of causal inference. Second, neither Yð1,Mð0ÞÞ, nor Yð0,Mð1ÞÞ is
observed for any subject. Therefore, point identification of direct and indirect effects requires the
treatment and the mediator to be exogenous at least conditional on observables, which appears,
however, implausible in many empirical applications. Our sensitivity analysis outlined in Section
3 relaxes such exogeneity conditions at the cost of giving up on point identification. This
permits incorporating a vector of observed pretreatment covariates, denoted by X, that may con-
found the causal relations between D and M, D and Y, and M and Y. It is thus assumed that X is
insufficient to control for all sources of selection such that unobserved confounders render point
identification of direct and indirect effects impossible, which appears plausible in many empir-
ical contexts.

As a further complication to identification, our framework allows for considering outcome
attrition/sample selection, implying that Y is only observed for a nonrandom subpopulation. For
instance, when investigating wage outcomes, as in Gronau (1974), the subpopulation of employed
individuals for whom wages are observed might be positively selected in terms of unobservables
like ability and motivation. As a further example, consider the effect of educational interventions
on test scores, with scores being only observed for those participating in the test or reporting the
results, see Angrist et al. (2006). We therefore introduce a binary selection indicator S, which
indicates whether Y is observed for a specific subject. S is allowed to be a function of D, M,
and X, i.e., S ¼ SðD,M,XÞ, but is assumed to neither be affected by nor to affect outcome Y. S
is therefore not a mediator, as selection per se does not causally influence the outcome, but
might nevertheless create endogeneity bias when outcomes are only observed conditional on
S¼ 1. While the outcome Y is not observed for subjects with S ¼ 0, we assume D, M, and
X to be observed for everyone. This permits identifying the conditional selection probability
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PrðS ¼ 1jD,M,XÞ, which plays an important role for the sensitivity analysis suggested in the
next section.

3. Sensitivity analysis

The starting point for our sensitivity analysis is a set of assumptions provided in Huber and
Solovyeva (2020a), which identifies direct and indirect effects by invoking conditional treatment
and mediator exogeneity as well outcome attrition related to observed characteristics (known as
missing at random assumption). Formally, the assumptions are as follows:

Assumption A1 (conditional independence of the treatment).
(a) Yðd,mÞ?DjX ¼ x, (b) Mðd0Þ?DjX ¼ x for all d, d0 2 f0, 1g and m, x in the support of

M, X.
Assumption A1 rules out unobservables jointly affecting the treatment on the one hand and

the mediator and/or the outcome on the other hand conditional on X. In contrast, our sensitivity
analysis permits that such unobserved confounders do exist.

Assumption A2 (conditional independence of the mediator).
Yðd,mÞ?MjD ¼ d0,X ¼ x for all d, d0 2 f0, 1g and m, x in the support of M, X.
Assumption A2 rules out unobservables jointly affecting the mediator and the outcome condi-

tional on D and X. This only appears plausible if detailed information on possible confounders of
the mediator-outcome relation is available in the data (even in experiments with random treat-
ment assignment) and if post-treatment confounders of M and Y can be plausibly ruled out when
controlling for D and X. In contrast, our sensitivity analysis allows for unobserved confounders
of the mediator-outcome relation.

Assumption A3 (conditional independence of selection).
Y?SjD ¼ d,M ¼ m,X ¼ x for all d 2 f0, 1g and m, x in the support of M, X.
Assumption A3 rules out unobservables jointly affecting selection and the outcome conditional

on D, M, X, such that outcomes are missing at random (MAR) in the denomination of Rubin
(1976), i.e., outcome attrition is selective w.r.t. observed characteristics only. In contrast, our sen-
sitivity analysis permits outcome attrition to be selective w.r.t. unobservables.

Assumption A4 (common support).
(a) PrðD ¼ djM ¼ m,X ¼ xÞ > 0 and (b) PrðS ¼ 1jD ¼ d,M ¼ m,X ¼ xÞ > 0 for all d 2

f0, 1g and m, x in the support of M, X.
Assumption A4 consists of two common support restrictions. The first requires the conditional

probability to receive a specific treatment given M, X, henceforth referred to as propensity score,
to be larger than zero for either treatment state. This also implies that PrðD ¼ djX ¼ xÞ > 0 and
(by Bayes’ theorem) that PrðM ¼ mjD ¼ d,X ¼ xÞ > 0, or in the case of M being continuous,
that the conditional density of M given D, X is larger than zero. Therefore, M must not be deter-
ministic in D given X, as otherwise identification fails due to the lack of comparable units in
terms of the mediator across treatment states. The second common support restriction requires
that for any combination of D, M, X, the probability to be observed is larger than zero.
Otherwise, the outcome is not observed for some specific combinations of these variables. Our
sensitivity relies on the same set of common support assumptions, in order to make treated and
non-treated subjects with observed and non-observed outcomes comparable in terms of observed
characteristics.

As outlined in Theorem 1 of Huber and Solovyeva (2020a), Assumptions A1 to A4 permit
identifying the mean potential outcomes based on inverse probability weighting (IPW) by
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E Yð1,Mð1ÞÞ½ � ¼ E Y � D � S � 1
PrðD ¼ 1jXÞ �

1
PrðS ¼ 1jD,M,XÞ

� �
,

E Yð0,Mð0ÞÞ½ � ¼ E Y � ð1� DÞ � S � 1
1� PrðD ¼ 1jXÞ �

1
PrðS ¼ 1jD,M,XÞ

� �
,

E Yð1,Mð0ÞÞ½ � ¼ E Y � D � S � 1
1� PrðD ¼ 1jXÞ �

1
PrðS ¼ 1jD,M,XÞ �

1
PrðD ¼ 1jM,XÞ � 1
� �� �

,

E Yð0,Mð1ÞÞ½ � ¼ E Y � ð1� DÞ � S � 1
PrðD ¼ 1jXÞ �

1
PrðS ¼ 1jD,M,XÞ �

1
1� PrðD ¼ 1jM,XÞ � 1
� �� �

:

(5)

The direct and indirect effects of interest are obtained as differences between two out of the
four mean potential outcomes. For notational ease, we henceforth denote the various propensity
scores in (5) by

pA1 ¼ PrðD ¼ 1jXÞ, pA2 ¼ PrðD ¼ 1jM,XÞ, pA3 ¼ PrðS ¼ 1jD,M,XÞ: (6)

This denomination is motivated by the fact that, e.g., under A3, there are no confounders that
jointly affect S and D conditional on (M, X), S and M conditional on (D, X) or S and X condi-
tional on ðM,DÞ: So under A3, pA3 is the correct probability to be used for weighting in order to
obtain mean potential outcomes. Conversely, if A3 does not hold, e.g., some important con-
founder is missing, then the correct weight differs from pA3:

Figure 1 illustrates our mediation framework with outcome attrition based on a directed acyc-
lic graph, in which the arrows represent causal effects. It is worth noting that each of D, M, S, X,
and Y might be causally affected by further, unobserved variables not displayed in Fig. 1. As long
as such unobservables do not jointly affect D and Y, D and M, M and Y, or S and Y conditional
on X, Assumptions A1 to A3 hold. In many empirical problems, however, some or all of A1 to
A3 appear difficult defend. While, for instance, A1 holds by design in randomized experiments, it
may appear less plausible in observational studies, in particular if the set of observed control vari-
ables is limited. Assumption A2 might seem unlikely in any identification design, in particular if
there is a substantial time lag between D and M which makes mediator-outcome confounding
more likely even when conditioning on pretreatment covariates X. We therefore consider various
relaxations of Assumptions A1 to A3.

Figure 1. Causal paths under conditional exogeneity and missing at random given pretreatment covariates.
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Our approach modifies the IPW weights of the expressions in (5) to investigate sensitivity and
is thus related to Hong et al. (2018), who were the first to propose robustness checks in the con-
text of IPW. However, our approach uses a different measure of discrepancies between the cor-
rect and observed weights than Hong et al. (2018), whose sensitivity check is based on the
covariance between the weight discrepancy and the outcome conditional on the treatment. Also,
our approach does not entail analytical formulae and thus relies on optimization routines. Even
though this increases the computational burden, an advantage is that we are able to separately
consider relaxations of the various identifying assumptions and thus gain insights on the sources
of the potential non-robustness of the effects.

To see the intuition of our approach, suppose for the moment that there exist a scalar of a
vector of unobserved confounders, denoted by U, that makes Assumption A3 fail. In this case,
pA3 is no longer the appropriate propensity score for identifying the mean potential outcomes.
Our sensitivity analysis is based on specifying the magnitude by which pA3 may deviate from the
appropriate (but unidentified) propensity score that includes U as conditioning variable. More
formally, we consider the following entropy measure defined as the absolute difference between
pA3 and the appropriate propensity score for identification, qA3 ¼ PrðS ¼ 1jD,M,X,UÞ:

jqA3 � pA3j � �A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA3ð1� pA3Þ

p
: (7)

This definition restricts the absolute error in the propensity score pA3 due to omitting confound-
ers U to a multiple �A3 of the standard deviation of a random variable with a binomial distribution
corresponding to that of pA3: This definition also satisfies a symmetry property, so that the relax-
ation of the identifying assumption leads to the same set of values for pA3 and for ð1� pA3Þ: The
crucial task is to sensibly choose the value of �A3, e.g., based on the richness of X, which determines
the likely importance of omitted confounders U. In an analogous way, qA1 ¼ PrðD ¼ 1jX,UÞ, qA2 ¼
PrðD ¼ 1jM,X,UÞ as well as �A1 and �A2 are to be defined. Suppose there were no unobserved con-
founders and that Assumptions A1, A2, A3 were satisfied. That would correspond to the situation
with �A1 ¼ �A3 ¼ �A3 ¼ 0: The greater is the particular entropy parameter, the larger is the permitted
importance of unobserved confounders in the specific assumption.

There are many different ways of modeling the relaxation of identifying assumptions. Our
approach is closely related to the total variation distance metric between two distributions, with
the distinction that we scale differences in our probabilities based on the standard deviation.
More specifically, we bound the maximum error coming from confounding due to erroneously
considering pA3 as the correct propensity rather than the true one qA3: A straightforward bound-
ing measure is a baseline distance parameter (e.g., �A3) that is multiplied with a probability’s
standard deviation, which takes into account differences in the variances across propensity scores
that are closer or less close to zero or one. Our choice is also driven by practical considerations,
as the optimization problem inherent in our sensitivity analysis is computationally attractive and
can be analyzed using readily available software.

Our sensitivity analysis provides bounds on estimates of the mean potential outcomes in (5) for
violations of A1, A2, and A3, subject to the restrictions implied by �A1, �A2, and �A3 in (7) as well as
specific scaling constraints. The bounds on mean potential outcomes then translate into bounds on
natural direct and indirect effects. When considering, for instance, the mean potential outcome
E½Yð1,Mð1ÞÞ�, note that we may express the latter under the Assumptions A1, A3 and A4 as

E Yð1,Mð1ÞÞ½ � ¼ E
Y � D � S

PrðD ¼ 1jXÞ � PrðS ¼ 1jD,M,XÞ
� �

¼ E
Y � D � S
pA1 � pA3
� �

, (8)

see Eq. (6) in Huber and Solovyeva (2020a). However, in the case that Assumptions A1 or A3 are
not satisfied due to confounding by an unobserved variable U, the mean potential outcome corre-
sponds to
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E Yð1,Mð1ÞÞ½ � ¼ E
Y � D � S

PrðD ¼ 1jX,UÞ � PrðS ¼ 1jD,M,X,UÞ
� �

¼ E
Y � D � S
qA1 � qA3
� �

: (9)

Our method aims at determining a range (or set) of possible values of E½Yð1,Mð1ÞÞ� in (9),
given that the discrepancy of the propensities under confounding (qA1, qA3) and no confounding
(pA1, pA3) can be bounded by specific inequality constraints like (7). The population optimization
problem is the following:

min=max
qA1, qA3

E Yð1,Mð1ÞÞ½ � ¼ E
Y � D � S
qA1 � qA3
� �

:

s:t:

jqA1 � pA1j � �A1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA1ð1� pA1Þ

p
,

jqA3 � pA3j � �A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA3ð1� pA3Þ

p
:

In Appendix A, we present the optimization problems for deriving bounds on all four mean
potential outcomes E½Yð1,Mð1ÞÞ�, E½Yð1,Mð0ÞÞ�, E½Yð0,Mð1ÞÞ�, and E½Yð0,Mð0ÞÞ� in the popula-
tion under violations of the identifying assumptions.

We subsequently discuss the estimation procedure. Assume that we have available an i.i.d.
sample of ðYi,Di,Mi,Xi, SiÞ for n subjects, where i 2 f1, 2, ::::, ng indexes a specific observation.
Under Assumptions A1, A3, and A4, this quantity can be estimated by

Ê Yð1,Mð1ÞÞ½ � ¼ 1
c
�
Xn
i¼1

Yi � Di � Si � 1

p̂A1i
� 1

p̂A3i
,

where p̂A1i , p̂A3i denote estimates of pA1, pA3 for observation i, which we obtain in our application

presented below by logit regression, and c denotes a normalizing constant, c ¼Pn
i¼1

Di

p̂A1i
� Si
p̂A3i

:2 In

the presence of confounders U and a failure of assumptions A1 and/or A3, estimating

Ê½Yð1,Mð1ÞÞ� based on p̂A1i , p̂A3i is generally inconsistent. To estimate the bounds on the mean
potential outcome under such violations, the unknown population parameters pA1 and pA3 are

replaced by their estimates p̂A1i and p̂A3i in (7) to estimate the entropy measures jqA1 � pA1j and
jqA3 � pA3j, respectively.

Estimating the bounds on Ê½Yð1,Mð1ÞÞ� corresponds to solving the following optimization
problem in the sample:

min=max
qA1, qA3

Xn
i¼1

Yi � Di � Si � 1
qA1i

� 1
qA3i

=
Xn
i¼1

Di

qA1i

Si
qA3i

s:t:

(10)

8i : jqA1i � p̂A1i j � �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q
, jqA3i � p̂A3i j � �A3, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q
, (11)

qA1i 2 0, 1½ �, qA3i 2 0, 1½ �: (12)

The normalization restriction is now implicit in (10), while the expressions in (11) relax the
identifying assumptions and (12) ensures that qi are proper probabilities. We note that as only
those observations i with Di ¼ 1 and Si ¼ 1 enter the calculations, we added a superscript 1 to
the entropy parameters � (for Di ¼ 1). This implies that one might pick different parameters for
different treatment groups, if, e.g., justified by contextual knowledge.

2Note that Assumption A2 is not required for the identification of E½Yðd,MðdÞÞ� for d 2 f0, 1g, but for E½Yðd,Mð1� dÞÞ�:
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The optimization problem (10) may be transformed into a computationally more convenient
form. Let to this end denote zi ¼ 1

qA1i qA3i
: Then, an alternative representation is

min=max
z

Xn
i¼1

Yi � Di � Si � zi
�Xn

i¼1

Di � Si � zi

s:t:

8i : zi � 1

�
p̂A1i � �A1, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q� �
� p̂A3i � �A3, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q� �� �

zi � 1

�
p̂A1i þ �A1, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q� �
� p̂A3i þ �A3, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q� �� �
zi � 1:

(13)

This simplification is feasible because there is no interplay between the restrictions on qA1 and
qA3, which enter the objective function only as a product. The resulting optimization problem is
a linear-fractional program that can be translated with to the following linear program (Charnes
and Cooper, 1962) by introducing an additional auxiliary variable t:

min=max
x, t

Xn
i¼1

Yi � Di � Si � xi

s:t:

8i : xi � t

�
p̂A1i � �A1, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q� �
� p̂A3i � �A3, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q� �� �

xi � t

�
p̂A1i þ �A1, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q� �
� p̂A3i þ �A3, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q� �� �
Xn
i¼1

Di � Si � xi ¼ 1, xi � 0, t � 0:

An important feature of our approach based on the optimization is that we impose no structure on
the dependence of potentially omitted confounders and our outcome variable and exhaust all possibil-
ities for the weights. This may in general lead to wider bounds and thus more prudent inference.

Bounds on Ê½Yð0,Mð0ÞÞ� (i.e., the estimate of E½Yð0,Mð0ÞÞ�) can be constructed in an analogous
manner by using observations with Si ¼ 1, Di ¼ 0 and searching through ð1� qA1i Þ instead. For

bounds on Ê½Yð1,Mð0ÞÞ� and Ê½Yð0,Mð1ÞÞ�, one has to optimize w.r.t. qA1i , qA2i and qA3i : These opti-
mization problems can again be simplified in a similar manner and all linear programming formula-
tions are stated in Appendix A. After deriving upper and lower bounds on the mean potential
outcomes, we may construct bounds on the effects of interest in the following way:

D̂LB ¼ Ê Yð1,Mð1ÞÞ½ �LB � Ê Yð0,Mð0ÞÞ½ �UB,
D̂UB ¼ Ê Yð1,Mð1ÞÞ½ �UB � Ê Yð0,Mð0ÞÞ½ �LB,

ĥð1ÞLB ¼ Ê Yð1,Mð1ÞÞ½ �LB � Ê Yð0,Mð1ÞÞ½ �UB,
ĥð1ÞUB ¼ Ê Yð1,Mð1ÞÞ½ �UB � Ê Yð0,Mð1ÞÞ½ �LB,
ĥð0ÞLB ¼ Ê Yð1,Mð0ÞÞ½ �LB � Ê Yð0,Mð0ÞÞ½ �UB,
ĥð0ÞUB ¼ Ê Yð1,Mð0ÞÞ½ �UB � Ê Yð0,Mð0ÞÞ½ �LB,
d̂ð1ÞLB ¼ Ê Yð1,Mð1ÞÞ½ �LB � Ê Yð1,Mð0ÞÞ½ �UB,
d̂ð1ÞUB ¼ Ê Yð1,Mð1ÞÞ½ �UB � Ê Yð1,Mð0ÞÞ½ �LB,
d̂ð0ÞLB ¼ Ê Yð0,Mð1ÞÞ½ �LB � Ê Yð0,Mð0ÞÞ½ �UB,
d̂ð0ÞUB ¼ Ê Yð0,Mð1ÞÞ½ �UB � Ê Yð0,Mð0ÞÞ½ �LB,

where subscripts LB, UB stand for the lower and upper bounds of the respective estimated mean
potential outcome and “̂” implies that any of the causal effects are estimates rather than population
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parameters. The bounds on D, hð1Þ, and hð0Þ are sharp, because the observations that are used for
calculating the two mean potential outcomes upon which the respective effect is defined are distinct.
Consider, for instance, the lower bound on hð1Þ: In order to estimate E½Yð1,Mð1ÞÞ�LB, we use obser-
vations with Di ¼ 1, while for E½Yð0,Mð1ÞÞ�UB we only use observations with Di ¼ 0. In contrast, the
bounds for dð1Þ and dð0Þ are not necessarily sharp. As an example, consider dð1Þ: In order to esti-
mate E½Yð1,Mð1ÞÞ�LB and E½Yð1,Mð0ÞÞ�UB, we use observations with Di ¼ 1 and the weights that
entail E½Yð1,Mð1ÞÞ�LB and E½Yð1,Mð0ÞÞ�UB are not necessary the same.3

An important question yet to be discussed is how to set the entropy parameters, which represent
changes in the propensity scores due to omitting confounders (e.g., �A1, 1 and �A3, 1), in a meaningful way.
Investigating the importance of observed confounders Xmay provide some guidance for finding sensible
values for the entropy parameters. Consider, for instance, a logistic regression for estimating pA3i :

Si � BernðpA3i Þ,

log
pA3i

1� pA3i

 !
¼ a0 þ aDDi þ aTMMi þ aTXXi,

where p̂A3i is obtained by maximum likelihood estimation. Now consider removing the most

important predictor (of S) in X and re-estimating the propensity score, denoted as p̂A3i,X1, where
X1 are the remaining covariates (without the most important predictor).

For each observation, one can then compute the entropy parameter when including and

excluding the most important predictor in X, �A3i,X1 ¼
jp̂A3i,X1�p̂A3i jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1�p̂A3i Þ

p : One may ultimately pick the

entropy parameter as average of �A3i,X1 in the subpopulation with Di ¼ 1 and Si ¼ 1:

�A3, 1X1 ¼
Xn
i¼1

Di � Si � �A3i,X1Pn
i¼1Di � Si :

This corresponds to the average change induced by omitting the most important predictor from
X, which is used as a proxy for the importance of unobserved confounders U. There are different
ways of measuring the importance of a predictor in a regression and natural choice seems to be the
change in the deviance. The latter is the log-likelihood ratio statistic for testing the difference in the
model fit when including and excluding a specific predictor, which is asymptotically chi-squared dis-
tributed. Similarly �A3Xj and �A3Mj would denote the average change in estimated probabilities that

would omitting the j-th most important (measured the by deviance) from X and M, respectively.4

4. Application

We apply our method to data from the National Longitudinal Survey of Youth 1979 (NLSY79), a
panel survey of young individuals who were aged 14 to 22 years in 1979, to decompose the gen-
der wage gap in the year 2000 when respondents were 35 to 43 years old.5 We use exactly the

3It is in principle possible to compute sharp bounds even for dð1Þ and dð0Þ at the cost of solving a more complex
optimization problem. This issue is discussed in a greater detail in Appendix B.
4Another approach for setting the entropy parameter is to consider the change in estimated probabilities induced by a

change of the link function, e.g. by picking the probit instead of logit function. Formally, �A3, 1i, probit ¼
jp̂ A3

i, probit�p̂A3i jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1�p̂ A3

i Þ
p , where p̂A3i, probit

and p̂A3i correspond to the estimated probabilites under a probit and logit model, respectively. One may thus pick the entropy

parameter as average �A3, 1probit ¼
Pn

i¼1
Di �Si ��A3i, probitPn

i¼1
Di �Si

:

5The NLSY79 data consists of three independent samples: a cross-sectional sample (6,111 subjects, or 48%) representing the
non-institutionalized civilian youth; a supplemental sample (42%) oversampling civilian Hispanic, black, and economically
disadvantaged nonblack/non-Hispanic young people; and a military sample (10%) comprised of youth serving in the military
as of September 30, 1978 (Bureau of Labor Statistics, U.S. Department of Labor, 2001).
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same sample definition as in Huber and Solovyeva (2020b), who consider five wage decompos-
ition techniques with distinct identifying assumptions to investigate the sensitivity of point esti-
mators of the indirect effect (or explained component) due to gender differences in mediators
like education or occupation as well as the direct gender effect (or unexplained component).
However, the consistency of these decomposition techniques relies on specific conditional exoge-
neity or instrumental variable assumptions w.r.t. to gender, the mediators, and the observability
of wages, which are likely violated in practice. See also Huber (2015) for a discussion of identifi-
cation issues with in wage decompositions based on the causal mediation framework. In contrast,
the approach suggested in this paper permits investigating the robustness of the direct and indir-
ect effects of gender on wage under violations of conditional exogeneity.

The NLSY79 includes a rich set of individual characteristics, including socio-economic varia-
bles likes education, occupation, work experience, and a range of further labor market-relevant
information. Our evaluation sample consists of 6,658 individuals (3,162 men and 3,496 women),
after excluding 1,351 observations from the total NLSY79 sample in 2000 due to various data
issues outlined in Huber and Solovyeva (2020b).6 Treatment D is a binary indicator for gender,
taking the value zero for females and one for males. Outcome Y corresponds to the log average
hourly wage in the past calendar year reported in 2000. However, the wage outcome under full-
time employment is not observed for everyone, as a non-negligible share (in particular among
females) are in minor employment or not employed at all. This likely introduces sample selection
issues, see Heckman (1979). We therefore define the selection indicator S to be one for individu-
als who indicated to have worked at least 1,000 hours in the past calendar year, as it is the case
for 87% of males and 70% of females.

The vector of mediators M includes individual variables reported in or constructed with refer-
ence to 1998 such that they arguably reflect decisions taken after birth and prior to the measure-
ment of the outcome (i.e., on the causal path between D and Y): marital status, years in marriage,
the region and the number of years residing in that region, a dummy for living in an urban area
(SMSA) and the number of years living in an urban area, education, dummies for the year of first
employment, number of jobs ever had, tenure with the current employer (in weeks), industry and
the number of years working in that industry, occupation and the number of years working in
that occupation, whether employed in 1998 and total years of employment, a dummy for full-
time employment and the share of full-time employment from 1994–98, total weeks of employ-
ment, the number of weeks unemployed and the number of weeks out of the labor force, and
whether health problems prevented employment along with the history of health problems.

In the propensity scores, we control for a set of observed covariates X arguably mostly deter-
mined at or prior to birth, namely race, religion, year of birth, birth order, parental place of birth (in
the U.S. or abroad), and parental education. However, unobserved confounders causing non-ignor-
able selection into the treatment, mediators, and/or employment decision S even after controlling
for X likely exist. For instance, risk preferences, attitudes toward competition and negotiations, and
other socio-psychological factors, see, e.g., Bertrand (2011) and Azmat and Petrongolo (2014), are
not available in our data. Such variables might possibly confound the mediator-outcome relation-
ship. As a second example, selection into employment might be driven by innate ability or motiv-
ation, which likely also affect wages. Due to such endogeneity concerns, one should be cautious
about deriving causal claims (e.g., about the amount of labor market discrimination) and policy rec-
ommendations based on wage gap decompositions, see the discussion in Huber and Solovyeva
(2020b). In this context, our method is useful for assessing the sensitivity of the results to violations
of some or all exogeneity conditions required for a causal interpretation of wage decompositions.

6For instance, we excluded 502 persons reporting to work 1,000 hours or more in the past calendar year, but whose average
hourly wages in the past calendar year were either missing or equal to zero. Furthermore, we dropped 54 working individuals
with average hourly wages of less than $1 in the past calendar year. We also excluded 608 observations with missing values
in the mediators.
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Table D1 in Appendix D provides descriptive statistics for the key variables of our analysis,
namely means, mean differences across gender, and the respective p-values based on two-sample
t-tests. The p-values suggest that females an males differ importantly in a range of variables like
labor market experience, education, industry, and occupation. Our sensitivity analysis is based on
assuming that omitted confounders in the various propensity score specifications behave similar
to the first, second, or third important predictors among the pretreatment covariates or mediators
that enter the respective specification. For this reason, Table 1 shows the three most important
covariates and mediators in the different propensity score models presumably prone to confound-
ing, where importance refers to the change in deviance as discussed at the end of Section 3.

Tables 2–5 present the estimated effect bounds on hð1Þ, hð0Þ, dð1Þ, and dð0Þ, respectively, in
squared brackets, when basing the entropy parameter on the respective first, second, or third
most important predictors.7 95% confidence intervals are also reported in parentheses, based on
subsampling bootstrap without replacement with 1000 replications and a subsample size of
bn0:7c:8 We observe that the direct effects remain statistically significant at the 5% level under
most relaxations and that potentially missing confounders would have the biggest impact via
Assumption A2. Previous employment has considerable explanatory power for later labor market
performance, as reflected in the relatively wide bounds in the column for the 2nd most important
missing M (the variable Industry: professional services) in Table 2, where the lower 95% confi-
dence bound goes below zero. Table 3 displays the estimated bounds for the natural direct effect
under d¼ 0, when mediators are set to their potential values for females and the indirect mecha-
nisms are shut down. These are generally larger than the direct effects under d¼ 1 (males), but
have qualitatively similar patterns.

Concerning the natural indirect effects reported in Tables 4 and 5, the confidence interval on
the effect estimate of 0.053 includes the zero under most relaxations for males (d¼ 1), while the
lower confidence bound remains above zero under most relaxations for females (d¼ 0). We also
observe that confidence intervals are not necessarily symmetric around the estimated bounds and

Table 1. Covariates and mediators with the highest predictive power.

Assumption A1 PðD ¼ 1jXÞ
Most important X 1st Mothers educ. missing

2nd Mothers educ. high school graduate
3rd Religion missing

Assumption A2 PðD ¼ 1jM, XÞ
Most important M 1st Farmer or laborer

2nd Industry: Professional services
3rd Clerical occupation

Most important X 1st White
2nd Fathers educ. college/more
3rd Mothers educ. missing

Assumption A3 PðS ¼ 1jD,M, XÞ
Most important M 1st Employed full time

2nd Employment status: employed
3rd Operator (machines, transport)

Most important X 1st Fathers educ. college/more
2nd Mothers educ. some college
3rd Protestant

Note: Most important predictors in different propensity score estimations measured by the change in deviance.

7We note that in the decomposition literature, it is frequently the male wages that are considered as reference (or ‘fair’)
wages. This suggests considering hð0Þ and dð1Þ as unexplained and explained components, respectively. See Sloczynski (2013)
for an in-depth discussion of reference group choice in the potential outcome framework.
8We applied subsampling to the upper and lower bounds separately similar to Laff�ers and Nedela (2017) or Demuynck (2015).
A computationally more expensive stepdown procedure of Romano and Shaikh (2010) may be used to control for the
asymptotic coverage of the whole identified set. Neither the subsample size nor the number of subsamples affected our
results in an important way. For completeness, we describe the procedure in detail in Appendix C.
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Table 2. Bounds on Natural direct effect for d¼ 1 using relaxation parameters that correspond to average deviation that miss-
ing the 1st, 2nd and the 3rd most important regressor from X or M would induce.

Missing X

Importance 1st 2nd 3rd Probit

A1 [0.182 0.219] [0.167 0.235] [0.194 0.208] [0.200 0.201)
(0.096 0.314) (0.082 0.328) (0.108 0.303) (0.115 0.296)

A2 [0.162 0.240] [0.164 0.238] [0.179 0.222] [0.175 0.227]
(0.080 0.331) (0.082 0.329) (0.096 0.314) (0.092 0.319)

A3 [0.189 0.212] [0.191 0.210] [0.192 0.210] [0.190 0.212]
(0.104 0.308) (0.106 0.306) (0.107 0.306) (0.104 0.308)

A1þA2 [0.143 0.258] [0.130 0.272] [0.172 0.229] [0.175 0.227]
(0.063 0.349) (0.050 0.362) (0.090 0.321) (0.092 0.319)

A2þA3 [0.150 0.251] [0.154 0.248] [0.170 0.231] [0.164 0.238]
(0.071 0.339) (0.074 0.336) (0.089 0.321) (0.083 0.327)

A1þA3 [0.170 0.231] [0.157 0.244] [0.184 0.217] [0.189 0.212]
(0.086 0.327) (0.073 0.339) (0.100 0.313) (0.104 0.308)

A1þA2þA3 [0.131 0.270] [0.120 0.281] [0.163 0.238] [0.164 0.238]
(0.053 0.358) (0.042 0.370) (0.082 0.328) (0.082 0.327)

Missing M

Importance 1st 2nd 3rd

A2 [0.106 0.240] [0.056 0.238] [0.072 0.222]
(0.030 0.331) (�0.018 0.329) (�0.002 0.314)

A3 [0.159 0.212] [0.170 0.210] [0.179 0.210]
(0.077 0.308) (0.086 0.306) (0.095 0.306)

A2þA3 [0.066 0.251] [0.026 0.248] [0.051 0.231]
(�0.008 0.339) (�0.046 0.336) (�0.022 0.321)

Bounds on the natural direct effect under d¼ 1 (point estimator is 0.201 with 95% CI ¼ (0.115,0.296)).
Last column corresponds to change due to different choice of the link function—probit instead of logit. Different lines stand
for relaxations of different identifying assumptions: “A1,” “A2,” “A3”: denote Assumption 1, 2, 3, respectively, and “A1þA2”
denotes simultaneous relaxation of both Assumptions 1 and 2, and similarly for other lines.

Table 3. Bounds on Natural direct effect for d¼ 0 using relaxation parameters that correspond to average deviation that miss-
ing the 1st, 2nd and the 3rd most important regressor from X or M would induce.

Missing X

Importance 1st 2nd 3rd Probit

A1 [0.307 0.344] [0.293 0.358] [0.319 0.332] [0.325 0.326)
(0.188 0.461) (0.174 0.476) (0.199 0.450) (0.205 0.444)

A2 [0.282 0.367] [0.285 0.364] [0.303 0.347] [0.299 0.351]
(0.162 0.476) (0.165 0.473) (0.183 0.459) (0.180 0.462)

A3 [0.305 0.347] [0.308 0.343] [0.309 0.342] [0.306 0.345]
(0.190 0.467) (0.193 0.463) (0.194 0.462) (0.191 0.465)

A1þA2 [0.264 0.385] [0.252 0.397] [0.296 0.354] [0.299 0.351]
(0.144 0.494) (0.133 0.506) (0.177 0.465) (0.180 0.462)

A2þA3 [0.262 0.389] [0.268 0.382] [0.287 0.364] [0.280 0.371]
(0.148 0.500) (0.154 0.493) (0.173 0.479) (0.167 0.484)

A1þA3 [0.287 0.366] [0.276 0.376] [0.302 0.349] [0.306 0.346]
(0.173 0.485) (0.161 0.495) (0.187 0.469) (0.191 0.466)

A1þA2þA3 [0.244 0.407] [0.235 0.415] [0.280 0.371] [0.280 0.371]
(0.131 0.518) (0.122 0.526) (0.167 0.485) (0.167 0.485)

Missing M

Importance 1st 2nd 3rd

A2 [0.118 0.367] [0.139 0.364] [0.202 0.347]
(�0.012 0.476) (0.013 0.473) (0.080 0.459)

A3 [0.253 0.347] [0.271 0.343] [0.289 0.342]
(0.152 0.467) (0.169 0.463) (0.180 0.462)

A2þA3 [0.044 0.389] [0.085 0.382] [0.165 0.364]
(�0.069 0.500) (�0.028 0.493) (0.052 0.479)

Bounds on the natural direct effect under d¼ 0 (point estimator is 0.325 with 95% CI ¼ (0.205,0.444)).
Last column corresponds to change due to different choice of the link function—probit instead of logit. Different lines stand
for relaxations of different identifying assumptions: “A1,” “A2,” “A3”: denote Assumption 1, 2, 3, respectively, and “A1þA2”
denotes simultaneous relaxation of both Assumptions 1 and 2, and similarly for other lines.
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Table 4. Bounds on Natural indirect effect for d¼ 1 using relaxation parameters that correspond to average deviation that
missing the 1st, 2nd and the 3rd most important regressor from X or M would induce.

Missing X

Importance 1st 2nd 3rd Probit

A1 [0.034 0.071] [0.020 0.085] [0.045 0.061] [0.053 0.053)
(�0.069 0.154) (�0.082 0.168) (�0.059 0.144) (�0.052 0.136)

A2 [0.011 0.096] [0.014 0.093] [0.031 0.075] [0.027 0.079]
(�0.080 0.178) (�0.078 0.176) (�0.066 0.158) (�0.069 0.162)

A3 [0.043 0.062] [0.045 0.061] [0.045 0.060] [0.042 0.063]
(�0.060 0.141) (�0.058 0.139) (�0.058 0.139) (�0.061 0.142)

A1þA2 [�0.007 0.114] [�0.019 0.126] [0.023 0.083] [0.027 0.079]
(�0.097 0.196) (�0.109 0.207) (�0.074 0.166) (�0.069 0.162)

A2þA3 [0.002 0.106] [0.006 0.101] [0.023 0.083] [0.017 0.090]
(�0.089 0.182) (�0.086 0.179) (�0.072 0.161) (�0.078 0.167)

A1þA3 [0.025 0.080] [0.012 0.093] [0.037 0.068] [0.042 0.064]
(�0.077 0.159) (�0.089 0.171) (�0.065 0.147) (�0.061 0.142)

A1þA2þA3 [�0.016 0.124] [�0.027 0.134] [0.015 0.091] [0.016 0.090]
(�0.106 0.199) (�0.116 0.209) (�0.080 0.169) (�0.078 0.168)

Missing M

Importance 1st 2nd 3rd

A2 [�0.101 0.096] [�0.090 0.093] [�0.053 0.075]
(�0.172 0.178) (�0.163 0.176) (�0.129 0.158)

A3 [0.027 0.062] [0.030 0.061] [0.031 0.060]
(�0.076 0.141) (�0.074 0.139) (�0.073 0.139)

A2þA3 [�0.126 0.106] [�0.113 0.101] [�0.075 0.083]
(�0.199 0.182) (�0.186 0.179) (�0.150 0.161)

Bounds on the natural indirect effect under d¼ 1 (point estimator is 0.053 with 95% CI ¼ (�0.052,0.136)).
Last column corresponds to change due to different choice of the link function—probit instead of logit. Different lines stand
for relaxations of different identifying assumptions: “A1,” “A2,” “A3”: denote Assumption 1, 2, 3, respectively, and “A1þA2”
denotes simultaneous relaxation of both Assumptions 1 and 2, and similarly for other lines.

Table 5. Bounds on Natural indirect effect for d¼ 0 using relaxation parameters that correspond to average deviation that
missing the 1st, 2nd and the 3rd most important regressor from X or M would induce.

Missing X

Importance 1st 2nd 3rd Probit

A1 [0.159 0.196] [0.143 0.212] [0.172 0.183] [0.177 0.178)
(0.069 0.283) (0.054 0.299) (0.082 0.270) (0.087 0.264)

A2 [0.138 0.216] [0.140 0.214] [0.156 0.199] [0.152 0.203]
(0.056 0.296) (0.058 0.295) (0.072 0.282) (0.068 0.284)

A3 [0.155 0.201] [0.159 0.197] [0.160 0.196] [0.158 0.198]
(0.069 0.289) (0.073 0.284) (0.074 0.283) (0.072 0.285)

A1þA2 [0.120 0.235] [0.106 0.249] [0.150 0.205] [0.151 0.204]
(0.038 0.315) (0.024 0.329) (0.066 0.288) (0.068 0.285)

A2þA3 [0.116 0.240] [0.122 0.234] [0.138 0.217] [0.132 0.224]
(0.035 0.324) (0.040 0.317) (0.054 0.301) (0.050 0.308)

A1þA3 [0.136 0.220] [0.125 0.231] [0.154 0.202] [0.158 0.198]
(0.051 0.307) (0.037 0.318) (0.068 0.288) (0.072 0.285)

A1þA2þA3 [0.097 0.259] [0.087 0.268] [0.133 0.223] [0.132 0.224]
(0.016 0.343) (0.006 0.352) (0.049 0.307) (0.049 0.308)

Missing M

Importance 1st 2nd 3rd

A2 [0.082 0.216] [0.027 0.214] [0.045 0.199]
(0.003 0.296) (�0.054 0.295) (�0.035 0.282)

A3 [0.077 0.201] [0.111 0.197] [0.141 0.196]
(0.002 0.289) (0.032 0.284) (0.057 0.283)

A2þA3 [�0.021 0.240] [�0.040 0.234] [0.007 0.217]
(�0.090 0.324) (�0.113 0.317) (�0.066 0.301)

Bounds on the natural indirect effect under d¼ 0 (point estimator is 0.177 with 95% CI ¼ (0.088,0.264)).
Last column corresponds to change due to different choice of the link function—probit instead of logit. Different lines stand
for relaxations of different identifying assumptions: “A1,” “A2,” “A3”: denote Assumption 1, 2, 3, respectively, and “A1þA2”
denotes simultaneous relaxation of both Assumptions 1 and 2, and similarly for other lines.
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that the omission of the variable with the most predictive power (measured by the change in
deviance) does not necessarily lead to the widest bounds. The latter is due to the fact that, e.g.,
the strongest predictor of the treatment is not necessarily the strongest confounder, i.e., the pre-
dictor’s association with the outcome is sufficiently weaker than that of other treatment predic-
tors. The choice of the link function does not seem overwhelmingly crucial for the bounds. In
fact, if we permit the difference between the correct and estimated weights to be of a similar
magnitude as the difference due to using a probit instead of a logit specification, then the bounds
are similar to those obtained under a confounder with similar predictive power as the third most
important covariate in X. We also observe that concerning Assumption A1, the choice of the link
function is close to irrelevant.

5. Conclusion

This paper proposed a sensitivity check for estimating natural direct and indirect effects in the
presence of treatment and mediator endogeneity as well as selective attrition or missingness in
outcomes. To this end, we considered identification based on inverse probability weighting using
treatment and selection propensity scores and perturbed the respective propensity scores by an
entropy parameter reflecting a specific amount of misspecification to set-identify the effects of
interest. We demonstrated that this approach can be framed as a linear programming problem
and discussed sensible choices of the entropy parameters based on the predictive power of the
most important predictors in the propensity scores. Finally, we applied our method to data from
the National Longitudinal Survey of Youth 1979 to derive bounds on the explained and unex-
plained components of a gender wage gap decomposition that is likely prone to non-ignorable
mediator selection and sample selection in terms of the observability of the wage outcomes.

Appendices

Appendix A. Deriving bounds based on linear programming

A.1. Optimization problems for bounds on mean potential outcomes

For i ¼ 1, :::, n, K 2 f1, 2, 3g and for a particular relaxation type R 2 fX1,X2,X3,M1,M2,M3, probitg we denote

� xAK
i ¼ 1=qAKi

� �xAK
i ¼ 1=ð1� qAKi Þ,

� �AKi,R ¼ jp̂AK
i,R�p̂AK

i jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂AK
i ð1�p̂AK

i Þ
p

� �AK, 1R ¼Pn
i¼1

Di �Si ��AKi,RPn

i¼1
Di �Si

� �AK, 0R ¼Pn
i¼1

ð1�DiÞ�Si ��AKi,RPn

i¼1
ð1�DiÞ�Si

A.2. Bounds on Ê½Yð1,Mð1ÞÞ�
A.2.1. Population optimization problem

min=max
qA1, qA3

E Yð1,Mð1ÞÞ½ � ¼ E
Y � D � S

PrðD ¼ 1jX,UÞ � PrðS ¼ 1jD,M,X,UÞ
� �

¼ E
Y � D � S
qA1 � qA3
� �

:

s:t:

jqA1 � pA1j � �A1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA1ð1� pA1Þ

p
,

jqA3 � pA3j � �A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA3ð1� pA3Þ

p
:
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A.2.2. Optimization problem in the sample

min=max
x, t

Xn
i¼1

Yi � Di � Si � xi

s:t:

8i : xi � t= p̂A1i � �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q� �
� p̂A3i � �A3, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q� �� �
,

xi � t= p̂A1i þ �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q� �
� p̂A3i þ �A3, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q� �� �
,

Xn
i¼1

Di � Si � xi ¼ 1, xi � 0, t � 0,

where xi ¼ 1
qA1i �qA3i

:

A.3. Bounds on Ê½Yð0,Mð0ÞÞ�
A.3.1. Population optimization problem

min=max
qA1, qA3

E Yð0,Mð0ÞÞ½ � ¼ E Y � ð1� DÞ � S � 1
1� PrðD ¼ 1jX,UÞ �

1
PrðS ¼ 1jD,M,X,UÞ

� �
¼ E

Y � ð1� DÞ � S
ð1� qA1Þ � qA3
� �

:

s:t:

jqA1 � pA1j � �A1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA1ð1� pA1Þ

p
,

jqA3 � pA3j � �A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA3ð1� pA3Þ

p
:

A.3.2. Optimization problem in the sample

min=max
x, t

Xn
i¼1

Yi � ð1� DiÞ � Si � xi

s:t:

8i : xi � t= 1� p̂A1i � �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q� �
� p̂A3i � �A3, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q� �� �
,

xi � t= 1� p̂A1i þ �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q� �
� p̂A3i þ �A3, 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q� �� �
,

Xn
i¼1

ð1� DiÞ � Si � xi ¼ 1, xi � 0, t � 0,

where xi ¼ 1
ð1�qA1i Þ�qA3i

:

A.4. Bounds on Ê½Yð1,Mð0ÞÞ�
A.4.1. Population optimization problem

E Yð1,Mð0ÞÞ½ � ¼ E Y � D � S � 1
1� PrðD ¼ 1jXÞ �

1
PrðD ¼ 1jM,XÞ � 1
� �

� 1
PrðS ¼ 1jD,M,XÞ

� �
:

¼ E Y � D � S � 1
1� qA1

� 1
qA2

� 1
� �

� 1
qA3

� �
s:t:

jqA1 � pA1j � �A1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA1ð1� pA1Þ

p
,

jqA2 � pA2j � �A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA2ð1� pA2Þ

p
,

jqA3 � pA3j � �A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA3ð1� pA3Þ

p
:
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A.4.2. Optimization problem in the sample

min=max
x, t

Xn
i¼1

Yi � Di � Si � xi

s:t:

8i : xi � t � 1

1� p̂A1i � �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q � 1

p̂A2i � �A2, 1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A2i ð1� p̂A2i Þ

q � 1

0
@

1
A � 1

p̂A3i � �A3, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q ,

xi � t � 1

1� p̂A1i þ �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q � 1

p̂A2i þ �A2, 1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A2i ð1� p̂A2i Þ

q � 1

0
@

1
A � 1

p̂A3i þ �A3, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q ,

Xn
i¼1

Di � Si � xi ¼ 1, xi � 0, t � 0,

where xi ¼ 1
1�qA1i

� 1
qA2i

� 1
� 	

� 1
qA3i

:

A.5. Bounds on Ê½Yð0,Mð1ÞÞ�
A.5.1. Population optimization problem

E Yð0,Mð1ÞÞ½ � ¼ E Y � ð1� DÞ � S � 1
PrðD ¼ 1jXÞ �

1
1� PrðD ¼ 1jM,XÞ � 1
� �

� 1
PrðS ¼ 1jD,M,XÞ

� �
:

¼ E Y � ð1� DÞ � S � 1
qA1

� 1
1� qA2

� 1
� �

� 1
qA3

� �
s:t:

jqA1 � pA1j � �A1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA1ð1� pA1Þ

p
,

jqA2 � pA2j � �A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA2ð1� pA2Þ

p
,

jqA3 � pA3j � �A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA3ð1� pA3Þ

p
:

A.5.2. Optimization problem in the sample
min=max

x, t

Xn
i¼1

Yi � ð1� DiÞ � Si � xi

s:t:

8i : xi � t � 1

p̂A1i � �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q � 1

1� p̂A2i � �A2, 1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A2i ð1� p̂A2i Þ

q � 1

0
@

1
A � 1

p̂A3i � �A3, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q
xi � t � 1

p̂A1i þ �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q � 1

1� p̂A2i þ �A2, 1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A2i ð1� p̂A2i Þ

q � 1

0
@

1
A � 1

p̂A3i þ �A3, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q
Xn
i¼1

Di � Si � xi ¼ 1, xi � 0, t � 0:

where xi ¼ 1
qA1i

� 1
1�qA2i

� 1
� 	

� 1
qA3i

:

Appendix B. Discussion on the sharpness of the bounds

This section discusses in greater detail why our bounds on direct effects are sharp, while the bounds on the indir-
ect effects are not necessarily sharp. Concerning the direct effect, we consider the bounds on hð1Þ, i.e., the natural
direct effect under treatment, and note that analogous arguments hold for hð0Þ: The optimization problem for
obtaining the bounds in the population is given below.
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B.1. Population optimization problem

min=max
qA1, qA2, qA3

hð1Þ ¼ E½Yð1,Mð1ÞÞ� � E½Yð0,Mð1ÞÞ� ¼

E Y � D � S � 1
qA1

� 1
qA3|fflfflfflfflffl{zfflfflfflfflffl}

x11

2
6664

3
7775� E Y � ð1� DÞ � S � 1

qA1
� 1

1� qA2
� 1

� �
� 1
qA3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

x01

2
6664

3
7775:

s:t:

jqA1 � pA1j � �A1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA1ð1� pA1Þ

p
,

jqA2 � pA2j � �A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA2ð1� pA2Þ

p
,

jqA3 � pA3j � �A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA3ð1� pA3Þ

p
:

We note that x11 and x01 are associated via qA1 and qA3: However, x11 is used in the optimization only if
D¼ 1, while x01 is exclusively considered under D¼ 0. Therefore, their interdependence may be ignored for esti-
mation purposes and the optimization problem in the sample outlined below may be split into two distinct opti-
mization problems, as described in subsections A.2 and A.5.

B.2. Optimization problem in the sample

min=max
x, t

Xn
i¼1

Yi � Di � Si � x11
i �

Xn
i¼1

Yi � ð1� DiÞ � Si � x01
i

s:t:

8i : x11
i � t11

1

p̂A1i � �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q� � � 1

p̂A3i � �A3, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q� � ,

x11
i � t11

1

p̂A1i þ �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q� � � 1

p̂A3i þ �A3, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q� � ,

8i : x01
i � t01 � 1

p̂A1i � �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q � 1

1� p̂A2i � �A2, 1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A2i ð1� p̂A2i Þ

q � 1

0
@

1
A � 1

p̂A3i � �A3, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q
x01

i � t01 � 1

p̂A1i þ �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q � 1

1� p̂A2i þ �A2, 1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A2i ð1� p̂A2i Þ

q � 1

0
@

1
A � 1

p̂A3i þ �A3, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q
Xn
i¼1

Di � Si � x11
i ¼ 1, x11

i � 0, t11 � 0,

Xn
i¼1

ð1� DiÞ � Si � x01
i ¼ 1, x01

i � 0, t01 � 0:

Let us now consider the bounds on the natural indirect effect under treatment, i.e., dð1Þ, and notice that analogous
arguments also hold for dð0Þ: The optimization problem for obtaining the bounds in the population is given below.
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B.3. Population optimization problem

min=max
qA1, qA2, qA3

dð1Þ ¼ E½Yð1,Mð1ÞÞ� � E½Yð1,Mð0ÞÞ� ¼

E½Y � D � S � 1
qA1

� 1
qA3|fflfflfflfflffl{zfflfflfflfflffl}

x11

� � E½Y � D � S � 1
1� qA1

� ð 1
qA2

� 1Þ � 1
qA3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

x10

�:

s:t:

jqA1 � pA1j � �A1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA1ð1� pA1Þ

p
,

jqA2 � pA2j � �A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA2ð1� pA2Þ

p
,

jqA3 � pA3j � �A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA3ð1� pA3Þ

p
:

We see that both x11 and x10 are simultaneously used for the optimization when D¼ 1 and therefore, their
dependence cannot be ignored. The following optimization problem for estimating the bounds in the sample
ignores this dependence and thus only provides valid, but generally not sharp bounds on dð1Þ:

B.4. Optimization problem in the sample

min=max
x, t

Xn
i¼1

Yi � Di � Si � x11
i �

Xn
i¼1

Yi � Di � Si � x10
i

s:t:

8i : x11
i � t11

1

p̂A1i � �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q� � � 1

p̂A3i � �A3, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q� � ,

x11
i � t11

1

p̂A1i þ �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q� � � 1

p̂A3i þ �A3, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q� � ,

8i : x10
i � t10 � 1

1� p̂A1i � �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q � 1

p̂A2i � �A2, 1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A2i ð1� p̂A2i Þ

q � 1

0
@

1
A � 1

p̂A3i � �A3, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q ,

x10
i � t10 � 1

1� p̂A1i þ �A1, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q � 1

p̂A2i þ �A2, 1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A2i ð1� p̂A2i Þ

q � 1

0
@

1
A � 1

p̂A3i þ �A3, 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q ,

Xn
i¼1

Di � Si � x11
i ¼ 1, x11

i � 0, t11 � 0,

Xn
i¼1

ð1� DiÞ � Si � x10
i ¼ 1, x10

i � 0, t10 � 0:

The dependence between x11 and x10 cannot be captured via linear restrictions and therefore, the optimization
problem can no longer be formulated as a linear program.

In principle, we could avoid any transformations and solve this optimization problem directly:

min=max
qA1, qA2, qA3

Xn
i¼1

Yi � Di � Si � 1
qA1i

� 1
qA3i

�Xn
i¼1

Di

qA1i

Si
qA3i

� 1
1� qA1i

� 1
qA2i

� 1
� �

� 1
qA3i

�Xn
i¼1

Di

1� qA1i
� 1

qA2i
� 1

� �
� Si
qA3i

 !

s:t:

8i : jqA1i � p̂A1i j � �A1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A1i ð1� p̂A1i Þ

q
,

jqA2i � p̂A2i j � �A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A2i ð1� p̂A2i Þ

q
,

jqA3i � p̂A3i j � �A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂A3i ð1� p̂A3i Þ

q
:

qA1i 2 0, 1½ �, qA2i 2 0, 1½ �, qA3i 2 0, 1½ �:
While these constraints are linear, the objective function is, however, highly non-linear such that this optimiza-

tion is in general computationally expensive.

Appendix C. Confidence intervals based on subsampling

This section describes the construction of the 95% confidence intervals based on subsampling. Consider a param-
eter of interest, denoted by h, which may represent a natural direct or indirect effect under d¼ 1 or d¼ 0, or the
total effect. Under the relaxation of the identifying assumptions we have that h 2 ½h, �h�, where h and �h denote the
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upper and lower bounds in the population. The estimates of the bounds in the sample are denoted by ½ĥ , �̂h�: We
apply subsampling separately to h and �h: Our ð1� aÞ—confidence interval for ½h, �h� consists of the lower limit of
the confidence interval for h and the upper limit of the confidence interval for �h: The subsampling procedure
below is justified in Politis et al. (1999; see Chapter 2) under mild regularity conditions.

1. Choose the subsample size bn such that bn ! 1 and bn=n ! 0 is satisfied. Our choice in the application
is bn ¼ bn0:7c:

2. Draw bn observations without replacement from the data and repeat this step B times. We set the number of
subsamples to B¼ 1000.

3. Estimate the upper and lower bounds in every subsample, which yields ĥ
1
, ĥ

2
, :::, ĥ

B
and �̂h

1
, �̂h

2
, :::, �̂h

B
:

4. Calculate LnðtÞ ¼ 1
B

PB
i¼1 Ið

ffiffiffiffiffi
bn

p ðĥ i � ĥÞ � tÞ and UnðtÞ ¼ 1
B

PB
i¼1 Ið

ffiffiffiffiffi
bn

p ð�̂hi � �̂hÞ � tÞ and denote by l̂1�a=2 the
ð1� a=2Þ quantile of Ln and by ûa=2 the a=2 quantile of Un:

5. Compute the confidence interval by

ĥ � l̂1�a=2ffiffiffi
n

p , �̂h � ûa=2ffiffiffi
n

p
" #

:

Appendix D. Descriptive statistics of the application

Table D1. Summary statistics and mean differences by gender.

Variables Male(D¼ 1) Female(D¼ 0) Difference p-value

Outcome Y (non-logged, refers to selected population with S¼ 1)
Hourly wage 19.370 14.164 5.206 0.000

Mediators M (refer to 1998 unless otherwise is stated)
Married 0.566 0.568 �0.002 0.882
Years married total since 1979 6.430 7.537 �1.107 0.000
Northeastern region 0.153 0.155 �0.002 0.857
North Central region 0.242 0.237 0.005 0.602
West region 0.206 0.195 0.011 0.244
South region (ref.) 0.399 0.414 �0.015 0.205
Years lived in current region since 1979 14.839 15.246 �0.407 0.000
Resides in SMSA 0.811 0.816 �0.005 0.584
Years lived in SMSA since 1979 13.488 14.201 �0.713 0.000
Less than high school (ref.) 0.129 0.101 0.028 0.000
High school graduate 0.459 0.416 0.043 0.000
Some college 0.208 0.271 �0.063 0.000
College or more 0.204 0.213 �0.009 0.413
First job before 1975 0.065 0.046 0.019 0.001
First job in 1976–79 0.115 0.128 �0.013 0.083
First job after 1979 (ref.) 0.821 0.825 �0.004 0.623
Numer of jobs ever had 10.555 9.239 1.316 0.000
Tenure with current employer (wks.) 276.056 212.662 63.394 0.000
Industry: Primary sector 0.227 0.078 0.149 0.000
Industry: Manufacturing (ref.) 0.140 0.053 0.087 0.000
Industry: Transport 0.115 0.048 0.067 0.000
Industry: Trade 0.134 0.142 �0.008 0.322
Industry: Finance 0.040 0.064 �0.024 0.000
Industry: Services (business, personnel, and entertain.) 0.121 0.124 �0.003 0.768
Industry: Professional services 0.113 0.297 �0.184 0.000
Industry: Public administration 0.054 0.052 0.002 0.751
Years worked in current industry since 1982 3.555 2.622 0.933 0.000
Manager 0.234 0.258 �0.024 0.022
Technical occupation (ref.) 0.039 0.038 0.001 0.907
Occupation in sales 0.067 0.082 �0.015 0.021
Clerical occupation 0.056 0.212 �0.156 0.000
Occupation in service 0.102 0.163 �0.061 0.000
Farmer or laborer 0.276 0.042 0.234 0.000

(continued)
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