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Abstract

We propose a detection method for flagging bid-rigging cartels, particularly useful
when cartels are incomplete. Our approach combines screens, i.e., statistics derived
from the distribution of bids in a tender, with machine learning to predict the
probability of collusion. As a methodological innovation, we calculate such screens
for all possible subgroups of three or four bids within a tender and use summary
statistics like the mean, median, maximum, and minimum of each screen as pre-
dictors in the machine learning algorithm. This approach tackles the issue that
competitive bids in incomplete cartels distort the statistical signals produced by bid
rigging and it outperforms previously suggested methods in applications to incom-
plete cartels based on empirical data from Switzerland.
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1 Introduction

When firms deviate from competitive behavior and instigate a cartel, they secretly
conspire to raise prices or lower the quality of goods or services. As such,
conspiracies directly harm taxpayers, buyers, or sellers. Cartel formation remains a
pervasive problem and has been considered in a range of studies. See for instance the
Swedish asphalt cartel described in Bergman et al. (2020), collusion among seafood
processors in the US (Abrantes-Metz et al. 2006), bid rigging in public procurement
auctions for construction works in Japan (Ishii 2014), in Poland (Foremny et al.
2018), in Canada (Clark et al. 2018) and in the US (Porter and Zona 1993; Feinstein
et al. 1985) and bid rigging for school milk contracts in Ohio (Porter and Zona 1999),
Florida and Texas (Pesendorfer 2000). To enhance the fight against cartels, the
OECD recommends competition agencies to promote pro-active methods for
uncovering conspiracies, as such methods may help to discover cartels where
leniency is unlikely to be sought (OECD 2013). Answering the need for statistical
tools in this context, Porter and Zona (1993), Bajari and Ye (2003), Harrington
(2008), Jimenez and Perdiguero (2012), Imhof et al. (2018), Crede (2019) and
Bergman et al. (2020), among others, have proposed different methods for
uncovering cartels.

However, the detection of cartels might be more challenging in the presence of
competitive bidders participating in markets in which a cartel is active (McAfee and
McMillan 1992; Hendricks et al. 2008; Asker 2010; Bos and Harrington 2010;
Conley and Decarolis 2016; Decarolis et al. 2020). When a cartel is incomplete due
to competitive bidders, it weakens the statistical pattern produced by bid rigging in
the distribution of bids, increasing the difficulty of detecting a cartel. Moreover, a
cartel might temporarily collapse because of deserters, i.e., it is not always stable.
This instability in the cartel might affect the screens rendering the statistical signals
of bid rigging more challenging to detect. Finally, a cartel aware of methods for
uncovering cartels might try to weaken the statistical pattern due to bid rigging in
order to decrease the ability of such methods to predict the cartel’s presence.

Thus, this paper offers an original application of a detection method based on
screens to detect both incomplete and complete bid-rigging cartels. Screens are
statistics derived from the distribution of bids in a tender capturing the distributional
changes produced by bid rigging (see Abrantes-Metz et al. 2006; Hueschelrath and
Veith 2014; Abrantes-Metz et al. 2012; Jimenez and Perdiguero 2012; Imhof et al.
2018; Imhof 2019). Our novel approach consists of calculating screens for all
possible subgroups of three or four bids in a tender and not only for all bids. We then
use the screens calculated for all the subgroups in a particular tender to calculate
descriptive statistics of each screen, which synthesize the properties of the
distribution of bids in a tender. Those descriptive statistics of screens, henceforth
called ’summary screens’, circumvent the distortion that competitive bidders or
deserters generate in the statistical signals produced by bid rigging in a tender,
rendering our suggested method robust to the presence of competitive bidders.

In our study, we combine the summary screens with machine learning as in a
prediction policy problem (see Kleinberg et al. 2015). Machine learning has been
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applied in a rapidly increasing number of studies (Rabuzin and Modrusan 2019;
Imhof and Wallimann 2021; Garcia Rodriguez et al. 2020; Rodriguez et al. 2022;
Silveira et al. 2022; Huber et al. 2022) and aims at finding the optimal combination
of covariates that best predicts the presence or absence of bid rigging in a tender.
Also related to our paper is the recent study of Uslu et al. (2021), applying machine
learning to investigate trade-based manipulations of capital market instruments.
Moreover, our paper is related to studies analyzing bidding strategies (see, e.g., Liu
et al. 2020; Cai et al. 2019) and applying predictive models (see, e.g., Mir et al. 2020;
Mirzapour et al. 2019) in other research fields. As we focus on the predictive
performance, we do not have to construct explicit structural models for collusion. To
train and evaluate models, we focus on the random forest (see Breiman 2001) as
machine learner because it provides a flexible prediction method that does not
impose any parametric (e.g., linearity) assumptions when considering our large set of
screens. In contrast to many other machine learners, random forests do not require
tuning specific penalty terms, see the discussion in Athey and Imbens (2019), and are
therefore easier to be implemented. This appears desirable if a competition agency
applies our detection method for screening procurement markets.

Calculating screens for subgroups as in our approach is also considered in Conley
and Decarolis (2016) and Chassang et al. (2022). First, Conley and Decarolis (2016)
investigate subgroups to detect cartels in collusive auctions in Italy, but in contrast to
our method (which considers all possible subgroups in a tender), they exploit firm-
specific covariates (such as, e.g., common owner, municipality, or country) to form
subgroups. Relying on firm-specific covariates could impede a broad screening
activity if firm-specific data are unavailable or if the time needed to collect them
without raising the attention of potential cartel participants is lacking. Chassang et al.
(2022) show that winning bids tend to be isolated in terms of value when bidders
collude. For analyzing the missing density of bids between the first and the second-
lowest bids, they calculate the normalized margin. First, bids are normalized by the
reserve price (which would be impossible in our data). Second, they calculate for
each normalized bid i the difference with the minimal normalized bid (other than i) in
each tender. A missing density around zero for the normalized margin is
incompatible with competition, especially if repeatedly observed. A competitive
bidder rationally maximizing profits would be tempted to increase her or his bids if
she or he regularly observes that other bidders submit substantially higher bids.
Therefore, a density gap around zero is incompatible with competition.

Two important arguments favor of our approach based on machine learning and
synthetized screens. First, it exclusively relies on information about bids rather than
firm-specific characteristics or cost-related variables required for econometric tests
(see for instance Bajari and Ye 2003; Aryal and Gabrielli 2013). Our suggested
method requires only bid summaries, which are either public or readily accessible for
competition agencies and thus not as costly to acquire as firm- or cost-specific
information. The necessity to gather firm-level information can attract, in some cases,
the attention of the cartel, decreasing the chance of success in acting against it.
Second, machine learning relies on the hypothesis that bid rigging affects the
distribution of bids in a tender (also common to other methods for flagging bid-
rigging cartels as the econometric tests suggested by Bajari and Ye (2003)) but
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remains agnostic about how the distribution is affected. In our case, it is sufficient to
assume that bid rigging modifies the distribution of bids and that screens can capture
these changes.

Our study investigates the correct classification rates of different methods in the
context of incomplete cartels. We first apply a benchmark method, suggested by
Imhof et al. (2018), which implements two screens with benchmarks, i.e., a rule of
thumb, for classifying a tender as collusive or competitive. The second method
applies machine learning using a set of screens, calculated based on all bids in a
tender, so-called ’tender-based screens’, to predict collusion. Finally, the third
method is the novel approach suggested in this paper, which includes summary
statistics of the screens (median, mean, maximum and minimum) calculated for all
possible subgroups of bids in a tender as predictors in the random forest.

We use data from Switzerland, where the incidence of collusive and competitive
tenders is known. We apply our approach to two investigations of the Swiss
competition commission (hereafter COMCO): See-Gaster and Strassenbau Grau-
biinden. Both cases were characterized by well-organized bid-rigging cartels, which
sometimes faced competition from outsiders. These competitive bidders might have
tried on one hand to benefit from the umbrella effect of the cartel by bidding higher
than they would have done in a competitive situation (Bos and Harrington 2010). On
the other hand, too many competitive bidders could have destabilized the formation
of cartels.

We find that the benchmarking approach exhibits low correct classification rates
for incomplete cartels. Using tender-based screens in predictive models, we obtain
correct classification rates from 61 and 77% when competitive bidders are present.
Applying our novel approach based on summary screens increases the performance
to correct classification rates ranging between 67 and 84%. Further, we note that the
performance of machine learning decreases with the proportion of competitive bids.
This result confirms the findings from the investigations that cartel participants
partially endogenize the presence of competitive bidders by adopting a more
competitive behavior, at least in some cases.

The remainder of this study is organized as follows. Section 2 presents the bid-
rigging cartels uncovered in Switzerland from which our data are drawn. Section 3
outlines the detection methods for flagging both complete and incomplete bid-rigging
cartels. Section 4 applies our original application to incomplete cartels based on
empirical data from the cases of See-Gaster and Strassenbau Graubiinden. Section 5
concludes.

2 Bid-Rigging Cartels and Data

The Swiss Parliament revised the federal Cartel Act and introduced a sanction regime
in April 2004, with an adaptation period of one year, alongside a compliance
program. This legislative modification helped initiating a change in the praxis
towards economically harmful bid-rigging cartels. At the end of 2004, COMCO
began investigating the Ticino cartel, releasing its decision in 2007. The Ticino cartel
dissolved without sanctions since it had ended its illegal conduct precisely before

@ Springer



A Machine Learning Approach...

Table 1 Decisions of COMCO in bid-rigging cases

Decisions of COMCO (excerpt) Year  Sanctions (million CHF)  Participants
Road asphalting in Ticino 2007 - 17
Electric installations Bern 2009 1.2 7
Road construction and civil engineering Aargau 2011 7 18
Road construction and civil engineering Zurich 2013 0.5 12
Tunnel cleaning 2015 0.16 3
Road construction and civil engineering see-Gaster 2016 5 8
Construction in Val Mustair 2017 - 5
Six short decisions in Engadine 2017 1 12
Construction in lower Engadine 2018 7.5 7
One short decision in Engadine 2019 0.5 3
Road construction Graubiinden 2019 11 12

April 2005, consuming the entire adaptation period. However, it stressed the damage
and mischief of a bid-rigging cartel with a price increase of over 30% (see Imhof
2019). In 2008, COMCO decided to prioritize fighting bid rigging.

Following its decision in the Ticino case, the authority prosecuted many bid-
rigging cases. Initially, COMCO rendered an essential decision against bid rigging
every other year. From 2015 onwards, however, COMCO rendered more decisions,
emphasizing its determination to prosecute bid-rigging conspiracies. Table 1 lists
COMCO’s most important decisions in bid-rigging cases and the sanctions it
imposed in each case.

Overall, COMCO opens an investigation if there are reasonable grounds to
assume the existence of a bid-rigging cartel. Compliance programs, whistleblowers,
and procurement agencies can provide insightful information leading to the opening
of an investigation. However, COMCO decided to reduce its dependence on such
sources and started to develop statistical methods for detecting bid rigging based on
screens (see also Imhof et al. 2018). Based on the latter method, COMCO opened an
investigation of bid rigging in the region of See-Gaster in 2013.

Considering the evolution of the cases investigated by the COMCO in recent
years, incomplete bid-rigging cartels occur more often than well-organized complete
cartels. Therefore, if COMCO desires to reduce the dependence on external sources
to open investigations, it must continue to improve its detection methods. Our
approach for flagging both incomplete and complete bid-rigging cartels proposed in
this paper responds to that need. It is likely to be of interest to competition agencies
around the world."

In the empirical analyses, we use data from two of Switzerland’s most important
cases: the See-Gaster cartel and the Graubiinden asphalt cartel. Finally, after

! Another recent example is the new Procurement Collusion Strike Force (PCSF) in the US, which focuses
on deterring, detecting, investigating, and prosecuting antitrust crimes, such as bid-rigging conspiracies
and related fraudulent schemes. See https://www.justice.gov/opa/pr/justice-department-announces-pro-
curement-collusion-strike-force-coordinated-national-response (accessed on June 6, 2021).
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discussing procurement in Switzerland, we synthesize the main aspects of Swiss
procurement data in both cases.

2.1 Procurement Data

Procurement agencies of cantons and cities in Switzerland follow the Agreement on
Public Markets, which states that procurement agency can choose between four
procedures: the open, the invitation, the selection, and the discretionary procedure.”
In the construction sector, a procurement agency generally uses either the open
procedure or the procedure on invitation. The open procedure does not restrict the
participation of submitting firms, in contrast to the procedure on invitation, where the
procurement agency invites only a small number of firms, in general, three to five, to
submit a bid. This changes the nature of the competition, as the participating firms
are aware of the restricted number of potential competitors.

A procurement agency announces future contracts and the deadline for submitting
bids (varying according to the procedure) in an official journal. If a firm is interested
in submitting, the procurement agency provides the firm with all the relevant
documents or information for the contract. Firms prepare their bids for submission
between the time of the announcement and the deadline. Collusive agreements, if
any, between firms are typically concluded during this period.

At a pre-announced date, the procurement agency gathers the incoming bids for
the contract and opens them. It officially records all the bids received on time in a bid
summary or so-called official record of the bid opening and registers the firms’
names, addresses, and bids. Having registered the official record of the bid opening,
the procurement agency proceeds with a detailed examination of the bids. In
awarding the contract, the agency considers not only the price of the bids, but also
other criteria such as quality, references and environmental or social aspects.
However, as contracts are relatively homogeneous in the construction sector,
especially in road construction and associated civil engineering, the price in practice
remains the most important criterion for awarding the contract. Furthermore, the
differences in firms’ criteria other than price are typically small. We, therefore,
consider the procurement process as an almost first-price sealed-bid auction.

2.2 The Cartel in See-Gaster

COMCO opened its investigation in the region of See-Gaster mainly because of a
statistical analysis based on procurement data from 2004 to 2010 provided by the
canton of St. Gallen (see Imhof et al. 2018).? In total, eight firms participated in bid-

2 The selection procedure allows the procurement agency to select and qualify a set of bidders to
participate in a tender. This procedure is useful when bidders are too numerous, for example, in
architectural design, where hundreds of architects are interested in bidding for the project. However, such a
high number of bidders is rarely a problem in the construction sector.

3 Report release: see decision Bauleistung See-Gaster: Verfiigung vom 8. Juli 2016, available on the
following internet page: https://www.weko.admin.ch/weko/fr/home/actualites/dernieres-decisions.html.
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rigging conspiracies in the region of See-Gaster, including the district of See-Gaster
in the canton of St. Gallen and the districts of March and Hofe in the canton of
Schwyz.* Cartel participants regularly met once or twice a month. They discussed
future contracts being put out to tender in their meetings and exchanged their interest
in them. The contracts included road construction, asphalting and civil engineering.
Before each meeting, one cartel participant sent an actualized table to all the others,
listing all future contracts in the region of See-Gaster. Each cartel participant had a
column to put a star to a contract if it was interested in obtaining the contract, or two
stars if it wished to register a very high interest.” When the tender procedure for a
contract started, the cartel typically designated the cartel participant that should win
it. The allocation mechanism was based on the interests that had been announced and
fairness in allocating contracts to participants for maintaining cartel stability.® In
addition, if two cartel participants had both put two stars for a specific contract, they
might have formed a consortium to share the contract, while other participants
covered the consortium.’

The cartel took decisions on contract allocation during the meetings in which they
discussed the list, but they organized separate meetings to discuss the price of the
bids.®* One reason for separate meetings is that not all cartel participants were
interested in fixing the price since not all necessarily participated in the tender.
Second, discussions about price might have taken up too much time, such that the
cartel preferred the designated winner to invite the other bidders to a separate
meeting for discussing the price. COMCO found some evidence that from time to
time, the cartel used the mechanism of the mean in determining the bid to be made by
the designated winner,” which implies that the latter had to submit either its own bid
or the mean of all the exchanged bids in the separate meetings. Using this
mechanism, the designated winner had some incentive to provide a relatively high
bid to influence the calculated mean in the separate meeting. All the other cartel
participants whose announced bids were below the mean or below the winner’s bid
increased their bids to cover the designated winner. As a result, they generally
ensured a minimal price difference of 2-3% between the bid of the designated winner
and their own bids."’

Finally, the cartel also made decisions about contracts that were left free for
competitive bidding.'" This decision was also determined by the presence of external
bidders. When the extent of external bidders increased, the chances of a cartel’s
success decreased, and, thus, the incentive to collude declined. This was the case for

4 See decision Bauleistung See-Gaster: Verfiigung vom 8. Juli 2016, available on the following internet
page: https://www.weko.admin.ch/weko/fi/home/actualites/dernieres-decisions.html.

5 See decision Bauleistung See-Gaster, R. 809 ff.

¢ See decision Bauleistung See-Gaster, R 587, R 608 and R 623.
7 See decision Bauleistung See-Gaster, R 620 ff. and R. 645.

8 See decision Bauleistung See-Gaster, R. 649 ff.

% See decision Bauleistung See-Gaster, R. 714 ff.

10 See decision Bauleistung See-Gaster, R. 714 ff. and R 718.

' See decision Bauleistung See-Gaster, R 681 ff. and R. 815 ff.
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some high value contracts, for which more non-cartel firms were interested in
bidding. Sometimes, the cartel also tried to bring external firms into the agreement.

In June 2009, the cartel ended its illegal conduct after COMCO launched house
searches in the canton of Aargau, which to a certain extent explained the breakdown
of the cartel. In its decision, COMCO attested that the cartel had discussed more than
400 contracts in the region of See-Gaster from 2004 to 2009 with a value of 198
million CHF. COMCO also proved that the cartel had attempted to rig at least 200
contracts with a value of 67.5 million CHF.'? In making its decision, COMCO
sanctioned the firms involved for bid-rigging conspiracies with more than five
million CHF. Two firms applied to the leniency program, and two other firms settled
an agreement to close the case. Four firms appealed against the decision.

2.3 The Strassenbau Cartel in Graubiinden

The local trade association members organized the cartel in the canton of
Graubiinden for road construction. In its decision, COMCO proved that the cartel
participants met regularly in the period being investigated, from 2004 to the end of
May 2010. The meetings, called “allocation meetings” or “calculation meetings”,
were mainly held at the beginning of the year since the canton and the local
municipalities put most of their contracts out to tender in the spring of each year.'?
The cartel discussed contracts for road construction and asphalting tendered by the
canton of Graubiinden and the local municipalities. Since mountains and valleys
profoundly mark the geography of Graubiinden, the cartel was divided into firms
operating in the north and south, respectively.

In the north of Graubiinden, the cartel mostly organized its meetings in the office
of the most important mixing plant in the canton and, to a lesser extent, in the offices
of the cartel participants. The meetings included either all of the twelve to thirteen
cartel participants'* or two different subgroups.' In the south, the total of six cartel
participants'® also organized such meetings, though changing their locations.

COMCO stated in its press release that the cartel decided upon the allocation of
contracts based on a contingent determination for all the cartel participants in the
canton of Graubiinden.'” The cartel allocated contracts according to the interests of
each firm and fixed the price of the designated winner following a specific calculation
method."® The price of the designated winner was usually above the minimal bid
announced in the respective meeting. The calculation method, therefore, contributed
to raising the price.

12 See decision Bauleistung See-Gaster, R. 797 ff. and table 15.

13 Qee decision Strassenbau Graubiinden, R. 139.
See decision Strassenbau Graubiinden, R 247 ff.

See decision Strassenbau Graubiinden, R 195 ff.

14
15

16 See decision Strassenbau Graubiinden, R 248.

17" See press release: https://www.newsd.admin.ch/newsd/message/attachments/58229 pdf.

'8 The online published decision Strassenbau Graubiinden and the press release currently give no details

of the calculation method.
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During the period investigated, from 2004 to the end of May 2010, the cartel
distributed 70% to 80% of the total value of the cantonal and communal road
construction contracts. The cartel rigged approximately 650 road construction
contracts concerning with a total value of 190 million CHF of market volume.'® The
cartel ceased its illegal conduct in the summer of 2010 since some firms decided to
stop, mainly because of increasing concerns regarding the Cartel Act.*

2.4 Data from the Cases See-Gaster and Graubiinden

We requested data on all bid summaries from the investigations of See-Gaster and
Graubiinden based on the Federal Act on Freedom of Information in the
Administration (Freedom of information Act, FolA).>! COMCO approved the
request and sent us the data, referred to hereafter as the Swiss data. They contain the
bids, a running number for each contract, a dummy variable for each of the
anonymized cartel participants and a dummy variable indicating whether the tender
took place in the cartel period (taking the value of 1 for a cartel and 0 otherwise).
Moreover, it includes a categorical variable for the contract type (taking the value of
1 for contracts in road construction and asphalting, 2 for mixed contracts, including
road construction and civil engineering and 3 for civil engineering contracts), as well
as the anonymized date and year. The first year in our sample begins with a value of 1
and the last year ends with a value of 14. The first anonymized date equals 42, and
the last 4,886. To ensure anonymization of the bids, COMCO multiplied them with a
factor between 1 and 1.2. The transformation does not affect the calculation of the
screens.

Table 2 provides key information on the Swiss data. In order to calculate the
predictors of our empirical analysis, we consider tenders with four bids or more. In
total, there are 310 tenders with complete cartels with a total value of more than 110
million CHF and 2,031 bids submitted by the cartel participants. Furthermore, there
are 287 tenders with incomplete cartels with a total value of more than 114 million
CHF. Cartel participants submitted 1,414 bids in these tenders and external firms 650
bids. Finally, we observe 2,398 competitive tenders with a value of roughly 1,700
million CHF and 13,925 submitted bids. In Appendix D, we present additional
descriptive statistics of the Swiss data.

3 Detection Methods

This section outlines our novel approach to detect bid rigging. We first describe the
concept of a random forest, the machine learning algorithm used for training and
testing predictive models for collusion (see Ho 1995; Breiman 2001). Second, we
present the screens that enter in the algorithm as potential predictors in detail. Third,
we discuss five different predictive models applied to our data that differ in the

19 See press release: https://www.newsd.admin.ch/newsd/message/attachments/58229.pdf.
20 See decision Strassenbau Graubiinden, R 197.
2! https://www.admin.ch/opc/en/classified-compilation/20022540/index.html.
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Table 2 Overview for the Swiss data

Tenders with complete cartels 310
Volume of tenders with complete cartels in million CHF 111.74
Collusive bids in tenders with complete cartels 2,031
Tenders with incomplete cartels 287
Volume of tenders with incomplete cartels in million CHF 114.73
Competitive bids in tenders with incomplete cartels 650
Collusive bids in tenders with incomplete cartels 1,414
Competitive tenders 2,398
Volume of competitive tenders 1,73591
Competitive bids in competitive tenders 13,925
Tenders for road construction and asphalting 1,389
Tenders for civil engineering 1,286
Tenders for mixed contracts 273

included screens. Finally, we provide descriptive statistics for two important screens
in each dataset.

3.1 Random Forest

We use the random forest as a machine learning algorithm for predicting collusive
and competitive tenders. In our data, the outcome is given a value of 1 for collusive
tenders, including both incomplete and complete bid-rigging cartels, and 0 for
competitive tenders. Note that we intentionally do not distinguish between
incomplete and complete cartels, as we aim to construct a reliable method for
detecting any form of bid rigging. Tenders are therefore either collusive or
competitive.

Machine learning requires the data to be randomly split into the so-called training
data, used to develop the predictive model, and the test data used to evaluate the
model’s performance. We randomly split the data such that the training and test data
consist of 75 and 25% of the observations, respectively. The random forest is a so-
called ensemble method that averages over multiple decision trees to predict the
outcome. Tree-based methods split the predictor space (according to the values,
which the screens might take) of the training data recursively into a number of non-
overlapping regions. Each split aims to maximize the homogeneity of the dependent
variable within the newly created regions according to a goodness of fit criterion like
the Gini coefficient. The latter measures the average gain in purity (or homogeneity)
of outcome values when splitting and is popular for binary variables like our
collusion dummy. Splitting is continued until the decision tree reaches a specific
stopping rule, e.g. a minimum number of observations in a region or a maximum
number of splits. Tree-based predictions of bid rigging (1) or competition (0) are
based on whether collusive or competitive tenders dominate in the region that
contains the values of the screens for which the outcome is to be predicted.
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Importantly, there exists a bias-variance trade-off in out of (training) sample
prediction when using such tree-based (and other machine learning) methods when it
comes to model generality. More splits reduce the bias and increase the flexibility of
the model specification, though at the cost of a greater variance in the unseen data, as
the test sample is not used for training due to the regions being smaller. The issue of a
too large variance can be mitigated by repeatedly drawing many subsamples from the
initial training data and estimating the predictive model, i.e. the tree (or splitting)
structure, in each of the newly generated samples. For this reason, we apply a random
forest algorithm, which predicts the collusion outcome by a majority rule based on
the individual trees. This means that the outcome is classified as collusion or
competition depending on whether the majority of the trees estimated in the various
subsamples predicts collusion or competition, respectively, for particular values of
the screens. A further feature of the random forest is that at each splitting step in a
specific subsample, only a random subsample of possible predictors (i.e. screens) is
considered, reducing the correlation of tree structures across the subsamples and thus
further reducing the prediction variance. In our application, we use the randomForest
package by Breiman and Cutler (2018) for the statistical software R with growing
1,000 trees to estimate the predictive models in the training data and assess their
performance in the test data based on the correct classification rate.

Note that we repeat the random sample splitting into 75% training and 25% test
data and assess the predictive performance in the latter 100 times. Our reported
correct classification rate corresponds to the average of the correct classification rates
across the 100 repetitions. This procedure is likely to entail a smaller variance in
estimating the correct classification rate than relying on a single random data split.

3.2 Screens

Screens are statistics that permit data analysis to flag anomalous outcomes indicating
potential anticompetitive issues. The literature usually differentiates structural from
behavioral screens in cartel detection (see Harrington 2008; OECD 2013; Froeb et al.
2014). Structural screens focus on the factors facilitating the emergence of collusive
agreements and help to identify markets in which collusion is more likely. Among
these factors, distinctions are made between market structure, demand-related factors,
and supply-related factors (OECD 2013). In contrast, behavioral screens empirically
measure the behavior of market participants and assess whether the observed
behavior significantly departs from competitive behavior to flag it as a potential issue
worth scrutinizing further. Following Huber and Imhof (2019) we propose using
various descriptive statistics as screens and combining them with machine learning,
however, to uncover not only complete but also incomplete bid-rigging cartels.”” We
consider three classes of screens: variance, asymmetry, and uniformity.

22 In contrast to the context of causal inference, causality goes from the dependent variable (collusion or
competition) to the predictors (screens) rather than the other way around. The incidence of collusion as an
explanatory variable affects the distribution of bids and thus the screens in causal terms. As in Huber and
Imhof (2019) our prediction problem consists of analyzing a reverse causality. By investigating the screens,
we infer the existence of their cause: collusion.
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As variance screens, we implement the coefficient of variation (CV) and the
kurtosis statistic (KURTO), as suggested by Huber and Imhof (2019) and Imhof
(2019). In addition, we also implement the spread (SPD) of the distribution of the
bids as a screen.

The coefficient of variation is widely discussed in the literature (see Abrantes-
Metz et al. 2006; Esposito and Ferrero 2006; Jimenez and Perdiguero 2012;
Abrantes-Metz et al. 2012; Imhof 2019) and is defined as the standard deviation
divided by the arithmetic mean of all bids submitted in a tender:

St

cr=7, (1)
where s, is the standard deviation and b, is the mean of the bids in some tender z. The
coordination and manipulation of bids by cartel participants might affect the con-
vergence in the distribution of the bids. More precisely, we suspect that bids con-
verge when firms in an auction form a cartel. This is the case because cover bids are
somewhat higher than that of the designated winner and concentrate around similar
values which are considered to be large enough to make sure that the lowest bid wins.
For this reason, the following kurtosis statistic appears appropriate for capturing such
convergence effects in cover bids:

ny(n; + 1) nzt(bit - Bt)4 _ 3(n — 1)3

KURTO: = G =y tny = 2) (s = 3) L, (n,—2)(n, —3)’

(2)

where b;; denotes the bid 7 in tender ¢, n; the number of bids in tender t, s, the standard
deviation of bids, and b, the mean of bids in that tender. To put it bluntly, the smaller
the difference between the bids, the higher the kurtosis statistic, and thus, the higher
the incidence for a collusive situation. Furthermore, we estimate the spread using the
following formula:

SPDt _ bmax,t - bmin,t ’ (3)
bmin,t

where b,,qy; denotes the maximum bid and b,,;,, the minimum bid in some tender ¢.
As bid rigging may produce asymmetries in the distribution of bids, we implement
the following cover-bidding screens as in Huber and Imhof (2019): the percentage
difference (DIFFP), the skewness (SKEW), the relative distance (RD), and the
normalized distance (RDNOR). In addition, we add an alternative measure for
calculating the relative difference, namely the alternative relative distance (RDALT).
It seems plausible that cartel participants manipulate the difference between the
lowest and second lowest bids to secure that the contract is awarded to the cartel’s
designated winner. To analyze the difference between the two lowest bids, we use the

following formula to calculate the percentage difference:

by — by,

1t

DIFFP, = (4)

where by, is the lowest bid and b,; the second-lowest bid in some tender . We also
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consider the absolute difference between the first and second-lowest bids D, =
by, — by, in the empirical analysis.

The manipulation of bids by cartel participants can simultaneously affect both the
difference between the first and the second-lowest bid and the differences across the
losing bids. Therefore, following Imhof et al. (2018), we calculate a relative distance
(relative to a measure of dispersion) in a tender by dividing the difference between
the first and the second-lowest bid by the standard deviation of the losing bids:

by — by,

RD[ - 5
Slosingbids,t

(5)
where by, denotes the lowest bid, by, the second-lowest bid, and s, josingpias the
standard deviation calculated among the losing bids in some tender ¢. In terms of its
predictive power the RD was outperformed by the difference between the first and
the second-lowest bid divided (or normalized) by the average of the differences
between all adjacent bids (see Huber and Imhof 2019)). We also consider this nor-
malized distance in our study:

by —b
RDNOR, = —2 =21 6
w (6)

n—1

where by, is the lowest bid, b,; the second-lowest bid, #, is the number of bids and b;,
b are adjacent bids (in terms of price) in tender ¢, with bids being arranged in
increasing order.

We consider a further alternative measure for the relative distance, initially
suggested by Imhof et al. (2018):

b= bu

n—2

RDALT, =

where by, is the lowest bid, b,, the second-lowest bid, 7, is the number of bids and b;;,
bj, are adjacent losing bids in a tender ¢, with bids being arranged in increasing order.
In contrast to the normalized distance, the mean of the differences in the denominator
is calculated using only losing bids. Furthermore, bid manipulation might affect the
symmetry of the distribution of bids. For example, due to a greater difference
between the first and the second-lowest bid, we assume that bid-rigging causes a
more asymmetric distribution of bids. We, therefore, include the skewness as a
screen:

ny a bit*b_t
SKEW, =
! (n,—l)(n,—Z);( s,

), (8)

where n, denotes the number of the bids, b;, the i bid, s, the standard deviation of
the bids, and b, the mean of the bids in tender ¢.

Finally, we verify whether bid rigging (or competition) transforms the distribution
of the bids into a less uniform distribution. More concisely, we again suspect that the
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higher difference between the first and the second-lowest bid influences the
asymmetry, and thus a cartel leads to a less uniform distribution. Therefore, we
consider the nonparametric Kolmogorov—Smirnov statistic (KS):

I ), D; = max;(

: .
mt 1 o ) KSe = max(Df,D7), - (9)

D = max;(x; —
where #n; is the number of bids in a tender, i, the rank of a bid and x;; the standardized
bid for the i rank in tender ¢. The standardized bids x;, are the bids b;, divided by the
standard deviation of bids in tender t to facilitate the comparison of tenders with
different contract values. We suspect that the KS-statistic should generally differ
across cartels and competitive periods.

3.3 Summary Screens

In incomplete cartels, competitive bidders distort the statistical signals produced by
bid rigging in the distribution of bids in a tender. We demonstrate this in Fig. 1.
Suppose we have four colluding firms colluding. We would assume that the bids
converge when firms form a cartel, which could e.g. be detected based on a reduced
coefficient of variation, as exemplified in the top-left panel of Fig. 1. However, a
competitive bidder might distort the statistical signal produced by the cartel if
bidding (significantly) lower or higher than cartel members, as exemplified by bidder
5 in the bottom-left and the top-right panel of Fig. 1. Only if the competitor submits a
bid close to the collusive bids, the signal will remain (almost) unaffected, as it is the
case in the bottom-right panel. Such a situation can result from a competitor trying to
enjoy the umbrella effect and bidding closer to the collusive bids or from pure
coincidence.

1100 1100 L ]
1050 1050

1000 1000

900 S00

1100 1100
1050 1050
1000 1000

950 950

300 L] 900
Fig. 1 The potential effect of a competitive bidder
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Table 3 Example of possible subgroups for three and four bids in a tender

Bids in a tender Subgroups formed with three bids Subgroups formed with four bids
4 4 1
5 10 5
6 20 15
7 35 35
8 56 70
9 84 126
10 120 210

Therefore, the tender-based screens can fail to recognize bid rigging if they are
calculated for all bids. We circumvent that distortion by calculating the screens not
(only) for all the bids in a tender but all possible subgroups of three and four bids.
Table 3 gives the number of possible subgroups of three or four bids, respectively,
when the total number of bids in a tender varies between four to ten bids.

For instance, in a tender with a total number of six bids, we calculate the same
screen but for 15 different subgroups containing four bids and for 20 different
subgroups containing three bids. In each tender, we then include summary statistics
for each screen: the mean, the median, the minimum, and the maximum of the
respective screen across the various subgroups of three or four bids. We use these
summary statistics, so-called ’summary screens’, as predictors for flagging collusive
and competitive tenders and, therefore, permit comparing tenders with different
numbers of bids. We subsequently exemplify the computation of such summary
screens by means of the coefficient of variation for subgroups formed on four bids.

The mean of all coefficients of variation calculated for subgroups of four bids in
each tender is:

u Sst/[;st
MEANACY, = Z(T
t

s=1

); (10)

where s and ¢ denote the indices for some sub-group s and some tender ¢ respectively,
N, is the number of all the possible subgroups of four bids in tender ¢ and s, and b,
are the standard deviation and the mean of the bids respectively. Likewise, the
minimum and maximum of the coefficients of variation across the subgroups in a
tender correspond respectively to:

Ss
MINACY, = minsl;‘—t, (11)

st

Ss
MAXACY, = maxsl;‘—t, (12)

st

In order to calculate the median for subgroups of four bids in each tender, define the
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coefficient of variation in subgroup s and tender ¢ as CV, = % and order the coef-
st
ficients in so that

CV][ S CVZ; S S CVSt S e S CV]V,t'

If the number of subgroups N, in a tender is uneven, the median of the coefficient of
variation in tender ¢ is calculated as follows:

MEDIANACY, = CVin,41)/2.5 (13)
If the number of subgroups is even, the median corresponds to:

CVyj2i+ CVyjagrs
3 )

We apply these approaches to all the screens discussed above across the different
tenders. Note that we do not calculate summary screens for subgroups of two bidders
because of the impossibility of calculating some screens as the relative distance (RD),
the alternative measure for the relative distance (RDALT), the normalized distance
(RDNOR), the kurtosis statistic (KURTO), or the skewness (SKEW). Moreover,
cartel participants usually numbered more than two in tenders characterized by
incomplete cartels. We also renounce calculating screens for sub-groups of five
bidders or more. Using summary screens calculated for subgroups of five bidders
only makes sense for tenders with six bids and more. Using tenders with six bids or
more would have restricted our sample too much and limited the application of our
suggested methods in other cases. Finally, our original application of summary
screens does not require the identity of bidders. Instead, we only need the bids in
each tender to apply them in many different contexts.

Appendix E presents the descriptive statistics for the samples used in the empirical
analyses of the Swiss data.

MEDIANACY, = (14)

3.4 Model Specification

In the empirical analyses, we consider five different predictive models that vary in
terms of screens considered and a benchmarking method. For the latter, we use the
benchmarks suggested by Imhof et al. (2018), developed for and applied to the Swiss
construction market.>> Model 1 only includes screens calculated for all bids in a
tender (rather than summary screens). This approach relates to the one discussed by
Huber and Imhof (2019). Still, it extends the set of predictors compared to the study
by including the relative measure for the alternative distance (RDALT), the spread
(SPD), and the Kolmogorov-Smirnov statistic (KS). In total, we use nine predictors
and exclude all screens based on the absolute bid value to consider only scale-
invariant screens in model 1.

In contrast, model 2 exclusively includes the summary screens, calculated for all
possible subgroups of three bids in a tender. In total, we consider the application of

23 More precisely, tenders with a coefficient of variation (CV) below 6 and a relative distance (RD) above
1 are classified as conspicuous.
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32 of these summary screens, using all screens of model 1 but the kurtosis (KURTO),
which requires at least four bids. Model 3 uses the summary screens of all screens
presented above for all possible subgroups of four bids in a tender, making a total of
36 predictors (now including the kurtosis). Model 4 considers all predictors included
in models 1, 2, and 3, resulting in 77 screens in total, mixing the summary screens
with the tender-based screens. Finally, model 5 also includes three screens based on
absolute bid values (and thus not scale-invariant) and the number of bids in a tender
(NBRBIDS), producing 81 predictors in total. The motivation for including the
number of bids is that it might be easier to settle an agreement with fewer rather than
more bidders. Moreover, we can account for behavioral responses of bidders to
fiercer competition due to an increased number of bidders (see, e.g., Vickrey 1961).
The three value-based screens are the mean bid in a tender included as a proxy for the
contract value (MEANBIDS), the standard deviation of the bids in a tender
(STDBIDS), and the absolute difference between the first and the second-lowest bid

D).

4 Flagging Incomplete Bid-Rigging Cartels
4.1 Application

We apply our detection method to data drawn from the cases of See-Gaster and
Strassenbau Graubiinden, characterized by well-organized bid-rigging cartels, which,
however, faced competitive outsiders from time to time. In these real cases,
competitive and collusive bidders were aware of their reciprocal existence. Evidence
from COMCO’s investigations has pointed out that cartel participants adopted a more
competitive behavior in the presence of competitive bidders by deciding not to
collude in some tenders. An agreement’s poor chance of success due to several
(potential) competitive bidders motivated such decisions to bid independently for
some contracts. However, in other tenders, the cartel faced only one competitive
bidder and tried to include her or him in the agreement. Moreover, competitive
bidders aware of the existence of the cartel might have tried—if not enrolled in the
agreement—to benefit from the umbrella effect of a cartel by bidding higher than
they would have in a fully competitive situation. As a consequence of the umbrella
effect, bids of the competitive bidder fall nearer to bids of collusive bidders, such as
competitive bids distort less the statistical pattern produced by bid rigging (as
illustrated in the bottom-right panel of Fig. 1).

We construct different samples of collusive tenders. Sample 1 includes all tenders
with incomplete bid-rigging cartels and at least two cartel participants. As stated in
Table 4, the average percentage of cartel participants in sample 1 amounts to 71%.
Sample 2 includes tenders with incomplete bid-rigging cartels formed with at least
three cartel participants. Since sample 2 excludes tenders with only two cartel
participants, the average rate of cartel participants of 75% in sample 2 is superior to
that in sample 1. The logic is the same for samples 3 to 5. Consequently, sample 5
has the highest average percentage of cartel participants and contains fewer
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Table 4 Correct classification rate in the Swiss data

Sample Cart.F  Perc.Cart.F  Tenders Bench. Ml M2 M3 M4 M5
1 > 1 All 0.524 0.612 0.637 0.642 0.645 0.673
Comp. 0.901 0.612 0.607 0.612 0.62 0.646
Coll. 0.147 0.615 0.671 0.677 0.677 0.706
2 >2 75% All 0.525 0.648 0.665 0.675 0.678 0.708
Comp. 0.901 0.652  0.643 0.645 0.65 0.683
Coll. 0.148 0.647 0.691 0.71 0.709  0.737
3 >3 79% All 0.511 0.706 0.722 0.748 0.745 0.759
Comp. 0.901 0.705 0.688 0.705 0.707 0.719
Coll. 0.121 0.708 0.758 0.792 0.784  0.800
4 >4 83% All 0.506 0.743  0.770 0.8 0.798 0.814
Comp. 0.901 0.755 0.751 0.764 0.771 0.783
Coll. 0.111 0.735 0.791 0.835 0.826 0.846
5 >5 88% All 0.494 0.766  0.805 0.813 0.818 0.841
Comp. 0.901 0.771 0.769 0.786 0.788  0.813
Coll. 0.087 0.763 0.844 0.842 0.849 0.871
Compl. Cartel ~ All 100% All 0.617 0.826 0.813 0.82 0.823  0.833
Comp. 0.900 0.83 0.818 0.819 0.827 0.833
Coll. 0.334 0.823 0.808 0.823 0.82 0.834

Note: “Sample”, “Cartel.F”, “Per.Cart.F”, “Tenders”, "Bench.”, “M1”, “M2”, “M3”, “M4” and “M5”
denote the sample, the number of cartel firms in the collusive tenders, the percentage of cartel firms in the
collusive tenders, the type of tenders, the results produced by the screening methods of the benchmarking
approach, model 1, model 2, model 3, model 4 and model 5 respectively. For the type of tenders, “All”,
“Comp.” and “Coll.” denote the prediction for all types of tenders, the prediction for the competitive
tenders and the prediction for the collusive tenders respectively

competitive bidders but at least one per tender. In addition, we construct a sample
including all tenders with complete cartels.

First, we investigate the performance of predictive models starting with complete
cartels. As shown in Table 4, the correct classification rates do not differ notably
across machine learning-based models 1 to 5, the range being 81.3% to 83.3%.
However, for the benchmarking method, the correct classification rate of 61.7% is
clearly below that of models 1 to 5. In addition, it differs strongly between
competitive and collusive tenders, amounting to only 33.4% in the latter case.
Possible explanations for this poor performance are the reliance on only two screens,
which are not necessarily the optimal predictors, and the use of benchmark values for
these two screens drawn from two previous investigations, which are not necessarily
optimal in the dataset being considered. In contrast, machine learning approaches use
a more extensive set of screens and weight their importance in a data-driven way.
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However, if we adjust the benchmarks of our benchmarking approach applied, we
can achieve better prediction rates for complete cartels. In Appendix B, we depict a
decision tree on Fig. 2 corresponding to the minimal cross-validation error. Our
pruned tree, using as predictors only the relative distance (RD) and the coefficient of
variation (CV) as in Imhof et al. (2018), shows a correct classification rate of 81.6%
for complete cartels. This discrepancy illustrates the fundamental difference between
a benchmark method and machine learning: benchmarks are exogenous, whereas
machine learning outperforms benchmarks since it chooses the best predictors in
each case. While a benchmark can still be adapted to different cases, machine
learning algorithms are far more precise. Nonetheless, a benchmark method requires
less information to be implemented and therefore remains a simple (first) step in
flagging cartels.

Considering models 1 to 5, the correct classification rates vary between 61.2% and
84.1%, depending on the sample and the model. When the proportion of competitive
bidders increases, the correct predictions generally decrease, as depicted in Table 4.
This result suggests that cartel participants anticipated competitive bids and decided
not to collude in some peculiar tenders, for example, in the case of See-Gaster. The
models with summary screens calculated for subgroups outperform model 1. Among
them, models 3 and 4 slightly outperform model 2, indicating that in our case,
summary screens calculated for subgroups of four bids exhibit a higher predictive
power than those calculated for subgroups of three bids. The fact that we have four
cartel participants per tender in most cases likely explains this result. In contrast,
summary screens calculated for subgroups of three bids may work better if we
mainly observe three cartel participants per tender.

Model 5, the only one including the number of bidders or the contract value as
predictors, outperforms the other models and has correct classification rates of 5 to 10
percentage points higher than model 1. The advantage of models 3 or 4 over model 1
varies from 3 to 5.7 percentage points. This points to a decrease in the error rate by
roughly more than 20% in some cases, even in the presence of potentially strategic
interactions, i.e., outsiders aware of the existence of bid-rigging cartels and trying to
benefit from the umbrella effect (Bos and Harrington 2010). Therefore, competition
agencies should consider summary screens for subgroups to detect both complete and
incomplete bid-rigging cartels.

Moreover, note that the benchmarking method poorly performs when flagging
incomplete bid-rigging cartels and does no better than tossing a coin. Specifically for
truly collusive tenders, the correct classification rates vary only between 8.7% and
14.7%.

When looking at the variable importance as reported in Table 5, we find for all
models and samples that the Kolmogorov-Smirnov statistic (KS) is an important
predictor. In many cases, it is among the three most important variables. This
suggests that even if collusive and competitive tenders generally do not follow a
uniform distribution, collusive bids are usually far less uniform than competitive
bids. Therefore, the Kolmogorov-Smirnov statistic for deviations from the uniform
distribution tends to exhibit notably higher values in rigged tenders than in
competitive tenders.

@ Springer



H. Wallimann et al.

The random forest generally picks up a balanced set of screens for the variance
and asymmetry along with the Kolmogorov-Smirnov statistic for model 1 in all
samples. Specifically for the sample with complete cartels, we observe for models 2
to 5 that the random forest selects screens for the variance, mainly the coefficient of
variation (CV) and the spread (SPD), along with the Kolmogorov-Smirnov statistic
(KS). Screens for asymmetry in the distribution of bids remain unselected for models
2 and 5 when the cartel is complete. However, when cartels are incomplete, the
random forest selects for models 2 to 5 screens for asymmetry in the distribution of
bids, mostly the skewness (SKEW), the relative distance (RD), the percentage
difference (DIFFP), and the alternative distance (RDALT). Even though the results
suggest that the screens for asymmetry are less important than the screens for
variance and the Kolmogorov-Smirnov statistic (KS).

For all samples with incomplete cartels, the minima and maxima of the summary
screens are the most important predictors, while the mean and median are most
important in complete cartels. The results suggest that a few competitive bids
sufficiently disturb the statistical pattern produced by bid rigging that it becomes
difficult to detect collusion using tender-based screens. In contrast, the use of the
minimum or maximum of summary screens mitigates the distortion of competitive
bids in the statistical patterns produced by bid rigging and it allows us to detect with
a high probability both incomplete and complete bid-rigging cartels in the Swiss data.

4.2 Robustness Analysis

We investigate the robustness of our results by discarding the most important
predictors and applying the random forest to the remaining predictors. Since model 1
uses fewer predictors than the other models, we leave out the three most important
variables, while for models 2 to 5, we drop the five best predictors. Table 6 reports
the difference in percentage points in the correct classification rates when keeping vs.
dropping the respective predictors.

The overall correct classification rate of model 1 in samples 1, 3, and 4, keeping
all variables, predominates when dropping the three best predictors by 3.4 to 4.8
percentage points. Considering the other models and samples, we observe more or
less the same predictive power when discarding the most important variables.
Therefore, the remaining predictors seem to be suitable substitutes for the discarded
ones. Other variables become more important when the most important predictors are
omitted, and the correct classification rate is hardly affected.

Furthermore, we investigate the robustness for the type of contract. We
subsequently only consider contracts for road construction and asphalting for both
the cartel and post-cartel periods. We exclude contracts for civil engineering and
mixed contracts combining civil engineering with road construction or asphalting.
The reason for this is that certain specific characteristics of contracts in civil
engineering might affect the screens and, therefore, the correct classification rate.
Dropping mixed contracts and contracts for civil engineering permits us to verify
whether this importantly affects the correct classification rate among the remaining
contracts for road construction and asphalting. Table 7 reports the difference in
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Table 6 Differences between original random forest and random forest with discarded variables

Sample Cart. Perc. Tenders M1 M2 M3 M4 M5
F Cart.F
1 > 1 71% All 34 1.1 -0.2 0 1.8
Comp. 3.6 -0.9 -1.2 -0.3 1.8
Coll. 32 3.1 0.9 0.3 1.8
2 >2 75% All 1.8 1.3 -0.4 0 1.4
Comp. 2.9 -0.4 -1.1 -0.3 1.4
Coll. 0.6 3 0.3 0.3 1.3
3 >3 79% All 4.8 0.1 0.1 0.1 0.5
Comp. 6.3 -0.4 -0.2 -0.2 0.1
Coll. 32 0.6 0.6 0.5 0.9
4 >4 83% All 34 1.2 0.2 0.9 1.8
Comp. 4.1 0.9 -0.2 0.5 0.9
Coll. 2.6 1.6 0.6 1.3 2.7
5 >5 88% All 0.6 2 0.2 0.2 1.7
Comp. 1.3 0.9 0.5 0.2 1.5
Coll. -0.2 3.1 -0.4 0 1.7
Compl. All 100% All 1 -0.2 0.4 0 0
Cartel
Comp. 0.7 0.5 0.6 0.2 -0.2
Coll. 1.3 -0.8 0.3 -0.1 0.2

Note: “Sample”, “Cartel.F”, “Per.Cart.F”, “Tenders”, "M1”, “M2”, “M3”, “M4” and “M5” denote the
sample, the number of cartel firms in the collusive tenders, the percentage of cartel firms in the collusive
tenders, the type of tenders, model 1, model 2, model 3, model 4 and model 5 respectively. For the type of
tenders, “All”, “Comp.” and “Coll.” denote the prediction for all types of tenders, the prediction for the
competitive tenders and the prediction for the collusive tenders respectively

percentage points in the correct classification rates when using all contracts vs. using
contracts for road construction and asphalting only.

In samples 1 and 2, we find the correct classification rates of the random forest for
road construction and asphalting contracts to be superior to the classification rate of
the random forest with all types of contracts. For example, the difference in the
(overall) classification rate of model 1 in samples 1 and 2 accounts for 6.2 and 2.8
percentage points, respectively. A possible explanation could be that we implicitly
suppress some competitors when we keep only the road construction and asphalting
contracts. For example, in sample 1, the average percentage of collusive bidders is
81%, which is considerably higher, as is the situation with all types of contracts
(71%, see Table 4). Therefore, the cartel percentage is higher for this restricted
sample of road construction and asphalting contracts alone and explains the higher
performance in samples 1 and 2. In sample 3, the situation begins to change for both
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Table 7 Differences between original random forest and random forest using only contracts for road
construction and asphalting

Sample Cart. Perc. Tenders M1 M2 M3 M4 M5
F Cart.F

1 > 1 81% All -6.2 -5.2 -6.7 -5.5 -3.6
Comp. 272 -4.6 -6.9 -5.7 -3.8
Coll. -5.2 -5.8 -6.2 -5.2 -3.3

2 >2 82% All -2.8 -3 4.3 -3.6 -1.2
Comp. -3.6 3.1 -4.7 -3.9 -1.4
Coll. -1.9 -2.9 -3.8 -3.2 -1

3 >3 84% All 0.1 -0.6 -0.9 -0.6 0.2
Comp. -1.9 -1.5 -2.7 2.1 -1.9
Coll. 2 0 0.5 0.5 1.9

4 >4 86% All 1.5 22 2 2.4 34
Comp. 22 2.7 1.9 2.5 3.1
Coll. 1 1.9 1.9 22 3.6

5 >5 88% All 2.6 33 2 2.1 2.7
Comp. 3.1 33 22 1.8 3
Coll. 1.9 32 1.9 2.4 2.3

Compl. All 100% All 0.7 0.3 0 0.3 0.3

Cartel

Comp. 0.9 -0.3 -0.4 0 -0.2
Coll. 0.4 0.9 0.4 0.5 0.8

Note: “Sample”, “Cartel. F”, “Per.Cart.F”, “Tenders”, "M1”, “M2”, “M3”, “M4” and “M5” denote the
sample, the number of cartel firms in the collusive tenders, the percentage of cartel firms in the collusive
tenders, the type of tenders, model 1, model 2, model 3, model 4 and model 5 respectively. For the outcome
classification, “All”, “Comp.” and “Coll.” denote the prediction for all types of tenders, the prediction for
the competitive tenders and the prediction for the collusive tenders respectively

types, the correct classification rates being almost identical. Noticeably, the
differences increase again for all models in samples 3 and 4. However, not as
strong as before and in the opposite direction. Therefore, for an almost identical
average percentage of cartel participants, the correct classification rates of the random
forest for all types of contracts are slightly superior to those for road construction and
asphalting.

To investigate the robustness of the correct classification rate across different
machine learning algorithms, we also assess the performance of lasso regression and
an ensemble method (including bagged trees, random forest, and neural networks)
for all models and samples. We explain these algorithms, also outlined by Huber and
Imhof (2019), in more detail in Appendix C. Table 8 reports the difference in
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percentage points in the correct classification rates of the random forest minus the
correct classification rates of the lasso and ensemble method.

Considering samples 1 and 2 in Table 8, we find that the lasso and ensemble
method slightly outperform the random forest. The maximum difference in (overall)
correct classification rates across models and samples is 2.9 percentage points. While
the somewhat lower rates speak against the random forest, performance is more
uniform. Therefore, there is less divergence across both the competitive and collusive
periods, which may be important to practitioners. For samples 3, 4 and 5, in general,
the lasso and ensemble method slightly outperform the random forest, in two cases
even more profoundly, with higher correct classification rates of 4.3 to 6.7 percentage
points for model 1 in samples 4 and 5. This implies that in samples 4 and 5 (with a
high amount of collusive bidders), considering summary screens does not
significantly improve the predictive power of the lasso and ensemble method, in
contrast to the random forest. On the other hand, and as for samples 1 and 2, the
random forest shows a more uniform performance (e.g. correct classification rates are
not too different for competitive and collusive tenders). We find a similar
performance with regard to the (overall) correct classification rates between the
random forest and the ensemble method for complete cartels. However, the random
forest slightly dominates the lasso regression. Considering imbalances in the
predictive performance across competitive and collusive periods, the random forest
and the ensemble method have a more homogeneous performance than the lasso
regression.

To conclude, in Table 8, the random forest shows a somewhat lower correct
classification rate than the lasso and the ensemble method. Still, it exhibits a more
homogeneous correct classification rate across both the competitive and collusive
tenders. All in all, this robustness check shows the stability of our results.

5 Conclusion

In this paper, we have suggested a robust method for flagging bid rigging in tenders
that is likely to be more powerful for detecting incomplete cartels than previously
suggested methods. Our approach combined screens, i.e, statistics derived from the
distribution of bids in a tender, with machine learning to predict the probability of
collusion. As a methodological innovation, we calculated the screens for all possible
subgroups of three or four bids within a tender and considered summary statistics as
the mean, median, maximum, and minimum for each screen as predictors in the
machine learning algorithm. By doing so, we improved on the issue that competitive
bids may distort the statistical signals produced by bid rigging.

We applied our method to data from the investigations involving incomplete
cartels in the regions See-Gaster and Graubiinden in Switzerland. The out-of-sample
performance of machine learning using summary screens (calculated for all possible
subgroups of three and four bids) as predictors outperformed other screening
methods. However, the performance of all machine learning-based methods in all
models still decreased concerning the relative number of competitive bids in the data
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of the investigations involving incomplete cartels. This decrease indicates that cartel
participants anticipated competition from non-cartel bidders.

Compared to tender-based screens, summary screens increased the correct
classification rate by 3 to 5.7 percentage points for incomplete cartels. This implies a
substantial decrease in the error rate (one minus the correct classification rate) of
22.2%, despite the threat that predictive performance might be partially compromised
by competitive bidders trying to benefit from the umbrella effect, i.e. bidding closer
to collusive bids (Bos and Harrington 2010). As screening by competition agencies
can trigger investigations with legal consequences for potential cartel members, such
a decrease in the error rate of 22.2% appears highly desirable. Thus, our results
demonstrate the usefulness of combining machine learning with an improved set of
statistical screens to reduce distortions of competitive bids in incomplete cartels.
Moreover, the method appears promising for detecting collusion in other industries or
countries.

A limitation of our study is that we restricted ourselves to summary screens
calculated per (within a) tender. On the one hand, this makes the method simple to
implement on a large scale, i.e., for many tenders, in order to flag those ones
appearing suspicious. On the other hand, competition authorities are in a second step
required to identify those bidders worth investigating further, e.g., by verifying which
bidders participated in multiple tenders among those flagged suspicious. The burden
of taking this second step might be overcome by screening methods capable of
directly flagging suspicious bidders (rather than tenders) (see, e.g., Imhof and
Wallimann 2021). Therefore, combining our proposed summary screens with firm-
specific predictors of collusion appears to be a promising agenda for future research.

Appendix

A Nomenclature for Abbreviations
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Table 9 Nomenclature for abbreviation

COMCO Swiss Competition Commission

Swiss data The data from investigations of See-Gaster and Graubiinden
(0% The coefficient of variation

KURTO The kurtosis statistic

SPD The spread

DIFFP The percentage difference

RD The relative distance

RDNOR The normalized distance

RDALT The alternative measure for the relative distance
SKEW The skewness

KS The Kolmogorov-Smirnov statistic

MEAN4CV The mean of all CVs for subgroups of 4 bids
MIN4CV The minimum of all CVs for subgroups of 4 bids
MAX4CV The maximum of all CVs for subgroups of 4 bids
MEDIAN4CV The median of all CVs for subgroups of 4 bids
MEAN3CV The mean of all CVs for subgroups of 3 bids
MIN3CV The minimum of all CVs for subgroups of 3 bids
MAX3CV The maximum of all CVs for subgroups of 3 bids
MEDIAN3CV The median of all CVs for subgroups of 3 bids

Note: This table exemplifies the summary screens by means of the coefficient of variation. The summary
screen “MEAN4CV” indicates that it is the mean (MEAN) of all the coefficients of variation (CV)
calculated for subgroups of four bids (4). The same can be interpreted for any screen. For example, the
“MAX3KS” in Table 5 for sample 1 and model 2 indicates the maximum (MAX) of the Kolmogorov-
Smirnov statistic (KS) for subgroups of three bids (3)

B Classification Tree Adjusting the Benchmarking Rule of Imhof et al. (2018)
in the Swiss Data in Sample Only with Complete Cartels

Fig. 2 Adjusted Classification
Tree
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C Details About Lasso Regression and the Ensemble Method

Here, we discuss the machine learning approaches of the lasso regression and ensemble
method in more detail. Similar to the random forest, the lasso regression and ensemble
method require randomly splitting the data into training (used for estimating the model
parameters) and test data (used for out-of-sample prediction and performance evaluation).
Again, our training and test samples contain 75% and 25% of the observations,
respectively. Lasso regression corresponds to a penalized logit regression, where the
penalty term restricts the sum of the estimated coefficients. The coefficients of less
predictive variables thus shrink towards or even exactly to zero depending on the penalty
term. Therefore, the lasso regression may perform predictor selection.

The estimation of lasso logit coefficients is based on the following optimization
problem:

r/r}la;;({zn: |3’i (ﬂo + zp:ﬁjxy) — log(l + eﬂﬁzle ﬁfx”')] - lzp: ﬁ;|} (15)
T = =

05 P

where f3, denotes the intercept, f§ the estimated coefficients of each predictor, x the
vector of predictors, i indexes an observation in our data set (with n being the number
of observations), j indexes a predictor (with p being the number of predictors), and 4 a
penalty term larger than zero. We use the same predictors as described in the main text
for the different models. In our application, we use the hdm package by Chernozhukov
et al. (2016) for the statistical software R. We apply 15-fold cross-validation to select
the penalty term A based on minimizing the mean squared error of prediction.

For the ensemble method, we apply the “SuperLearner” package for “R” by van der
Laan et al. (2008) with default values for bagged regression tree, random forest and
neural network algorithms in the “ipredbagg”, “cforest” and “nnet” packages
respectively. The ensemble method also relies on training data to estimate the model
parameters and test data for prediction and performance evaluation. However, any
estimation step now consists of a weighted average of bagged classification trees,
random forest and neural networks. Bagged trees involve estimating single trees (rather
than random forest) repeatedly using the outcome residuals of the respective previous
tree as the outcome. Rather than splitting the predictor space, neural networks aim at
fitting a system of non-linear functions that models the influence of the predictors of
collusion in a flexible way. To do so, we model the association between the predictors
and the outcomes using a network of non-linear intermediate functions, so-called
hidden notes. Several layers of hidden nodes allow modelling associations and
interactions between the predictors in a flexible way. Including more nodes and layers
in the network will surely reduce the bias but will also increase the varaince.

D Descriptive Statistics for the Swiss Data

Figure 3 depicts the distribution of the number of bids per tender for complete cartels,
incomplete cartels and competitive tenders, respectively. While tenders with four to
seven bids dominate, there is also a sufficient number of tenders with eight or more
bids (see Table 10).
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Period

; Competitive tenders (N=2398)
0.20 : — Complete cartels (N=310)
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Number of bids

Fig. 3 Distribution of tenders for a predetermined number of bids in the Swiss data

Table 11 depicts the empirical distribution of the lowest bids in a tender with
complete and incomplete cartels as well as for tenders with only competitive bids
(tenders in the post-cartel period). The empirical distributions of the lowest bids for
tenders with complete cartels and with incomplete cartels are similar. However, this
is not the case for competitive tenders, which have many more contracts, varying in
value from one thousand CHF to 148 million CHF. All the empirical distributions of
the lowes bids in a tender are right-skewed, such that the mean is higher than the
median. The phenomenon appears to be more noticeable for competitive tenders than
for tenders with complete or incomplete cartels.

E Descriptive Statistics for Predictors

In the following tables, we present tables of descriptive statistics for all the different
samples used in the empirical analyses. Here, we review the key information drawn
from the descriptive statistics for the coefficient of variation (CV) and the
normalized distance (RDNOR). Similar interpretations can be made for other
screens.

For the Swiss data, we find that the mean of the coefficient of variation during the
cartel period amounts to 3.66, the median to 3.29 and the standard deviation to 2.09
(see Table 12). In contrast, the post-cartel period (competitive tenders) in the Swiss
data exhibits a mean of 10.12, a median of 8.45 and a standard deviation of 7.89 (see
Table 13). Note that in the empirical analyses, we select only competitive tenders
with an anonymized year superior or equal to 8. Since collusive tenders superior or
equal to 8 are absent in the anonymized years, we conclude that both bid-rigging
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Table 10 Numbers of bids in a tender in the Swiss data

Number of bids in a tender 4 5 6 7 8 9 10 10+
Tenders with complete cartels 94 50 29 24 33 33 23 24
Tenders with incomplete cartels 56 36 38 40 27 28 24 38
Competitive tenders 786 559 365 257 158 129 74 70

Table 11 Empirical distributions of bids in the Swiss data (in million CHF)

Complete cartels Incomplete cartels Competitive tenders

Mean 0.36 0.4 0.72

Std 0.36 0.47 3.81

Min 0.03 0.02 0.001

Lower Q. 0.16 0.12 0.13

Median 0.29 0.25 0.31

Upper Q. 0.44 0.50 0.66

Max 3.45 3.46 147.73

N 310 287 2,398

Note: “Mean”, “Std”, “Min”, “Lower Q.”, “Median”, “Upper Q.”, “Max”, and “N” denote the mean,
standard deviation, minimum, lower quartile, median, upper quartile, maximum, and number of obser-
vations respectively

cartels collapsed in this post-cartel period. This ensures that a competitive tender in
the post-cartel period is really a “competitive” one.

If we look at the coefficient of variation for the incomplete bid-rigging cartel in
sample 1 of the Swiss data (collusive tenders characterized by incomplete cartels
with at least two colluding firms), the CV is affected by the presence of competitive
bids with a mean of 7.79, a median of 6.79 and a standard deviation of 3.89 (see
Table 14). Looking more precisely at the minimum of all coefficients of variation
calculated for subgroups of four bids in a tender (MIN4CV), we find a mean of 3.16,
a median of 2.26 and a standard deviation of 2.97 for the incomplete bid-rigging
cartels in sample 1 (see Table 14). However, the MIN4CV for the competitive tenders
exhibits higher values with a mean of 6.24, a median of 4.49 and a standard deviation
of 6.77 (see Table 13). Noteworthy, the differences are weaker for the maxima of all
coefficients of variation calculated for subgroups of four bids (MAX4CV), between
incomplete cartels in sample 1 (mean of 10.63, median of 9.43 and a standard
deviation of 5.46 in Table 14) and competitive tenders (mean of 12.14, median of
10.13 and a standard deviation of 9.73 in Table 13). This example is crucial to
understand the benefit delivered by summary statistics of the screens. Even if the
maxima of the coefficient of variation is high in both cases of incomplete bid-rigging
cartels and competition, the minima diverge notably and could be used to
differentiate between competition and collusion.
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Table 12 Descriptive statistics for the collusive tenders including only cartel participants in the Swiss data

Predictors Mean Std Min Lower Median  Upper Max N
Q Q.

NBRBIDS 6.57 2.44 4 4 6 9 13 308
MEANBIDS 379.88 376.09 3442 172.13 305.81  460.98 3509.71 308
STDBIDS 13.15 13.67 0.49 5.59 9.75 15.88 109.94 308
CvV 3.66 2.09 0.6 222 3.29 4.51 15.73 308
KURTO 0.16 1.65 -5.4 -0.99 0.21 1.33 4.37 308
SKEW 0.08 0.81 -1.94 -0.42 0.07 0.7 1.78 308
SPD 0.11 0.07 0.01 0.06 0.09 0.13 0.5 308
D 9.20 13.32 0.14 2.93 6.02 10.11 121.30 308
RD 1.16 1.36 0.01 0.46 0.75 1.31 13.66 308
RDNOR 1.38 0.79 0.02 0.78 1.24 1.72 5.03 308
RDALT 1.83 1.73 0.01 0.74 1.33 2.2 13.89 308
DIFFP 2.76 291 0.06 1.3 1.94 3.24 34.11 308
KS 36.54 20.15 6.59 22.69 31.2 45.55 167.93 308
MIN3CV 1.08 1.01 0.04 0.48 0.81 1.26 8.46 308
MAX3CV 5.49 3.41 0.73 3.14 4.72 6.88 21.17 308
MEAN3CV 3.41 1.94 0.57 2.1 3.04 4.18 15.32 308
MEDIAN3CV 3.46 2 0.63 2.1 3 425 16.87 308
MIN3SKEW -1.48 0.44 -1.73 -1.73 -1.7 -1.42 0.69 308
MAX3SKEW 1.41 0.63 -1.49 1.43 1.68 1.73 1.73 308
MEAN3SKEW 0 0.49 -1.61 -0.26 0.05 0.33 1.16 308
MEDIAN3SKEW 0.03 0.69 -1.7 -0.41 0.07 0.55 1.53 308
MIN3D 2.67 6.13 0.00 0.38 1.03 2.99 73.33 308
MAX3D 26.81 27.14 0.59 10.58 20.08 32.20 200.26 308
MEAN3D 11.62 13.40 0.43 4.63 8.44 13.24 118.06 308
MEDIAN3D 10.88 13.28 0.42 3.89 7.87 12.01 121.30 308
MIN3RD 0.38 0.73 0 0.04 0.14 0.38 6.13 308
MAX3RD 117.7 665.15 0.87 5.26 16.67 54.56 9157.71 308
MEAN3RD 7.53 23.86 0.55 1.92 3.04 5.7 291.4 308
MEDIAN3RD 1.95 2.79 0.29 0.97 1.37 1.98 39.01 308
MIN3RDNOR 0.3 0.33 0 0.06 0.17 0.42 1.63 308
MAX3RDNOR 1.73 0.28 0.76 1.58 1.85 1.95 2 308
MEAN3RDNOR 1 0.22 0.51 0.86 0.98 1.11 1.8 308
MEDIAN3RDNOR  0.99 0.26 0.33 0.81 0.98 1.14 1.85 308
MIN3RDALT 0.27 0.52 0 0.03 0.1 0.27 434 308
MAX3RDALT 83.23 47033 0.62 3.72 11.79 38.58 6475.48 308
MEAN3RDALT 5.32 16.87 0.39 1.36 2.15 4.03 206.05 308
MEDIAN3RDALT  1.38 1.97 0.2 0.68 0.97 1.4 27.58 308
MIN3DIFFP 0.69 0.85 0 0.15 0.44 0.91 8.62 308
MAX3DIFFP 8.1 6.07 1.13 4.26 6.76 10.05 47.45 308
MEAN3DIFFP 3.37 2.32 0.77 1.99 2.77 4.08 22.76 308
MEDIAN3DIFFP 3.13 2.31 0.69 1.79 2.51 3.95 2391 308
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Table 12 continued

Predictors Mean Std Min Lower Median ~ Upper Max N
Q. Q.

MIN3SPD 0.02 0.02 0 0.01 0.02 0.03 0.18 308
MAX3SPD 0.11 0.07 0.01 0.06 0.09 0.13 0.5 308
MEAN3SPD 0.07 0.04 0.01 0.04 0.06 0.08 0.37 308
MEDIAN3SPD 0.07 0.04 0.01 0.04 0.06 0.08 0.41 308
MIN3KS 26.02 17.06 4.76 14.83 21.48 31.93 137.18 308
MAX3KS 181.77  213.13  12.09  79.31 124.09  206.54 2751.23 308
MEAN3KS 48.26 25.64 7.44 30.53 42.03 60.32 199.62 308
MEDIAN3KS 38.19 20.28 6.19 24.04 33.58 47.94 158.95 308
MIN4CV 1.93 1.66 0.22 0.91 1.5 2.37 15.73 308
MAXA4CV 4.74 2.95 0.6 2.75 4.07 5.83 19.16 308
MEAN4CV 3.54 2.01 0.6 2.18 3.13 435 15.73 308
MEDIAN4CV 3.6 2.07 0.6 222 3.21 4.39 15.73 308
MIN4SKEW -1.07 0.98 -2 -1.89 -1.5 -0.41 1.78 308
MAX4SKEW 1.07 1.02 -1.93 0.46 1.48 1.87 2 308
MEAN4SKEW 0.04 0.68 -1.93 -0.35 0.07 0.5 1.78 308
MEDIAN4SKEW 0.05 0.71 -1.93 -0.3 0.03 0.54 1.78 308
MIN4D 4.47 11.64 0.00 0.50 1.36 3.86 121.30 308
MAX4D 20.38 20.98 0.36 7.07 14.66 25.33 121.30 308
MEAN4D 10.11 12.76 0.36 3.81 6.99 11.59 121.30 308
MEDIAN4D 9.73 13.27 0.17 3.48 6.40 10.73 121.30 308
MIN4RD 0.68 1.38 0 0.06 0.23 0.67 13.66 308
MAX4RD 9.14 19.83 0.15 1.51 431 10.73 298.7 308
MEAN4RD 1.66 1.53 0.15 0.87 1.26 1.94 13.66 308
MEDIAN4RD 1.26 1.37 0.07 0.61 0.87 1.35 13.66 308
MIN4RDNOR 0.53 0.58 0 0.1 0.31 0.77 2.62 308
MAX4RDNOR 1.9 0.72 0.22 1.31 2.09 2.55 2.98 308
MEAN4RDNOR 1.07 0.4 0.22 0.8 1.02 1.27 2.62 308
MEDIAN4RDNOR  1.02 0.44 0.1 0.72 0.93 1.23 2.62 308
MIN4RDALT 0.71 1.44 0 0.07 0.23 0.69 13.89 308
MAX4RDALT 9.67 22.08 0.15 1.55 4.57 11.2 340.47 308
MEAN4RDALT 1.74 1.62 0.15 0.91 1.33 2.02 13.89 308
MEDIAN4RDALT  1.31 1.42 0.07 0.64 0.9 1.38 13.89 308
MIN4DIFFP 1.19 1.93 0 0.19 0.67 1.55 2391 308
MAXA4DIFFP 6.2 5.28 0.64 2.59 4.98 7.89 39.3 308
MEAN4DIFFP 2.95 2.42 0.61 1.66 2.29 3.56 24.48 308
MEDIAN4DIFFP 2.82 2.74 0.2 1.49 2.08 3.28 34.11 308
MIN4KURTO -2.96 2.98 -6 -5.63 -4.23 -0.28 3.75 308
MAX4KURTO 2.44 1.83 -5.4 1.66 3.14 3.77 4 308
MEAN4KURTO 0.14 1.36 -5.4 -0.58 0.09 0.95 3.75 308
MEDIAN4KURTO  0.34 1.54 -5.4 -0.28 0.61 1.31 3.75 308
MIN4SPD 0.05 0.04 0.01 0.02 0.03 0.05 0.47 308
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Table 12 continued

Predictors Mean Std Min Lower Median ~ Upper Max N
Q. Q.

MAX4SPD 0.11 0.07 0.01 0.06 0.09 0.13 0.5 308
MEAN4SPD 0.08 0.05 0.01 0.05 0.07 0.1 0.47 308
MEDIAN4SPD 0.09 0.05 0.01 0.05 0.08 0.1 0.47 308
MIN4KS 30.68 20.89 5.42 17.65 24.8 36.76 167.93 308
MAX4KS 88.22 69.07 6.59 42.47 67.21 110.66 458.02 308
MEAN4KS 39.97 20.41 6.59 26.34 35.08 50.1 167.93 308
MEDIAN4KS 36.66 19.93 6.59 23.01 31.38 45.53 167.93 308

Note: “Mean”, “Std”,

“Min”, “Lower Q.”, “Median”, “Upper Q.”, “Max”, and “N” denote the mean,
standard deviation, minimum, lower quartile, median, upper quartile, maximum, and number of obser-
vations respectively. The value for “MEANBIDS”, “STDBIDS”, “D”, “MIN3D”, “MAX3D”,
“MEAN3D”, "MEDIAN3D”, “MIN4D”, “MAX4D”, “MEAN4D” and “MEDIAN4D” are expressed in
thousand CHF. “KS”, “CV”, “SPD”, “RD”, “RDNOR?”, “RDALT”, “SKEW”, "DIFFP”, “KURTO”, “D”,
“STDBIDS”, “MEANBIDS” and “NBRBIDS” denote the Kolmogorov-Smirnov statistic, the coefficient of
variation, the spread, the relative distance, the normalized distance, the alternative relative distance, the
skewness statistic, the percentage difference, the kurtosis statistic, the difference in absolute between the
first and second lowest bids, the standard deviation of the bids in a tender, the mean of the bids in a tender
and the number of the bids in a tender respectively. For the abbreviations, see also Table 9 in Appendix A

Table 13 Descriptive statistics for the competitive tenders in the Swiss data

Predictors Mean  Std Min Lower Median  Upper Max N
Q Q.

NBRBIDS 5.73 1.86 4 4 5 7 13 1082
MEANBIDS 828.06 1803.84 13.63  203.87 42397  858.67 37786.87 1082
STDBIDS 87.35 21652 041 13.96 32.74 81.27 3996.24 1082
CvV 10.12  7.89 0.76 5.91 8.45 11.64 128 1082
KURTO 0.25 227 -6 -1.27 0.13 1.75 8.03 1082
SKEW 0.26 0.97 -2.68  -0.37 0.28 0.92 2.47 1082
SPD 2.5 29.79 0.02 0.16 0.24 0.35 730.71 1082
D 5494  223.18  0.00 5.18 14.19 39.12 4656.85 1082
RD 1.16 2.45 0 0.23 0.57 1.13 41.26 1082
RDNOR 1.04 0.82 0 0.43 0.87 1.44 6.95 1082
RDALT 1.61 3.19 0 0.36 0.84 1.66 47.49 1082
DIFFP 176.79  2246.36 0 1.84 436 8.43 50228.95 1082
KS 15.07  10.98 1.48 9.12 12.24 17.44 132.33 1082
MIN3CV 3.37 3.13 0.02 1.16 2.33 4.68 24.05 1082
MAX3CV 1422 1146 0.93 8.19 11.77 16.52 122.06 1082
MEAN3CV 9.37 6.9 0.73 5.56 7.92 10.9 91.8 1082
MEDIAN3CV 9.7 7.83 0.6 5.61 8.19 11.41 121.69 1082
MIN3SKEW -1.38 0.62 -1.73 -1.73 -1.67 -1.34 1.68 1082
MAX3SKEW 1.47 0.53 -1.61 1.48 1.69 1.73 1.73 1082
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Table 13 continued

Predictors Mean  Std Min Lower Median  Upper Max N
Q Q.

MEAN3SKEW 0.13 0.58 -1.66  -0.22 0.16 0.51 1.71 1082
MEDIAN3SKEW 0.22 0.83 -1.73 -0.35 0.26 0.83 1.73 1082
MIN3D 13.03  30.15 0.00 1.10 3.79 11.64 364.58 1082
MAX3D 15493 433.88 0.72 22.68 52.94 132.40 7506.55 1082
MEAN3D 69.05 178.70  0.44 11.05 25.66 60.66 2536.05 1082
MEDIAN3D 6440 171.21 0.36 10.29 23.09 56.37 264097 1082
MIN3RD 0.32 0.68 0 0.03 0.12 0.34 8.83 1082
MAX3RD 69.28 26538  0.13 4.44 12.27 38.7 5315.77 1082
MEAN3RD 8.2 25.53 0.08 1.55 2.78 6.05 421.57 1082
MEDIAN3RD 222 4.95 0.01 0.78 1.21 1.98 72.77 1082
MIN3RDNOR 0.27 0.3 0 0.05 0.16 0.39 1.72 1082
MAX3RDNOR 1.68 0.34 0.17 1.52 1.8 1.93 2 1082
MEAN3RDNOR 0.94 0.27 0.11 0.77 0.93 1.11 1.85 1082
MEDIAN3RDNOR  0.92 0.34 0.01 0.7 0.91 1.12 1.94 1082
MIN3RDALT 0.22 0.48 0 0.02 0.09 0.24 6.24 1082
MAX3RDALT 4899  187.65 0.1 3.14 8.67 27.36 3758.82 1082
MEAN3RDALT 5.8 18.05 0.06 1.1 1.96 427 298.09 1082
MEDIAN3RDALT  1.57 35 0 0.55 0.85 1.4 51.46 1082
MIN3DIFFP 2.07 2.77 0 0.36 0.98 2.56 22.67 1082
MAX3DIFFP 226.26 2740.18 0.89 9.94 15.42 23.4 63802.49 1082
MEAN3DIFFP 92.86  1118.61 0.64 4.6 7.07 10.73 2373493 1082
MEDIAN3DIFFP 60.05 1011.71  0.54 4.08 6.52 10.25 25112.51 1082
MIN3SPD 0.07 0.07 0 0.02 0.05 0.09 0.58 1082
MAX3SPD 25 29.79 0.02 0.16 0.24 0.35 730.71 1082
MEAN3SPD 1.14 12.52 0.01 0.11 0.16 0.23 279.23 1082
MEDIAN3SPD 0.76 10.69 0.01 0.11 0.17 0.25 264.32 1082
MIN3KS 1096  8.72 1.1 6.33 8.72 12.45 107.96 1082
MAX3KS 82.65 179.47 421 21.54 43 86.79 4045.44 1082
MEAN3KS 2145 2135 2.62 11.62 16.51 24.77 463.06 1082
MEDIAN3KS 1578 1343 1.2 9.07 12.57 18.27 167.49 1082
MIN4CV 6.24 6.77 0.07 2.29 4.49 8.14 128 1082
MAX4CV 12.14  9.73 0.76 7.07 10.13 14.17 128 1082
MEAN4CVB 9.82 7.64 0.76 5.74 8.29 11.45 128 1082
MEDIAN4CV 1024 821 0.76 6 8.55 11.74 128 1082
MIN4SKEW -0.75 1.09 -2 -1.72 -1.02 0 2 1082
MAX4SKEW 1.02 1 -1.99 034 1.4 1.85 2 1082
MEAN4SKEW 0.19 0.8 -1.99  -031 0.22 0.74 2 1082
MEDIAN4SKEW 0.22 0.86 -1.99  -0.27 0.19 0.79 2 1082
MIN4D 2295  76.73 0.00 1.76 5.64 18.51 1226.06 1082
MAX4D 111.58  328.01 0.02 13.13 34.32 86.30 5764.43 1082
MEAN4D 59.42  181.05  0.02 8.14 19.23 46.70 3035.79 1082
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Table 13 continued

Predictors Mean  Std Min Lower Median  Upper Max N
Q Q.

MEDIAN4D 59.94 22426  0.00 6.98 18.35 45.41 4656.85 1082
MIN4RD 0.71 2.05 0 0.06 0.2 0.62 41.26 1082
MAX4RD 6.73 17.51 0 0.88 2.55 6.3 266.72 1082
MEAN4RD 1.69 3.23 0 0.56 1 1.72 67.61 1082
MEDIAN4RD 1.24 2.28 0 0.39 0.74 1.25 41.26 1082
MIN4RDNOR 0.51 0.56 0 0.09 0.29 0.76 2.87 1082
MAX4RDNOR 1.62 0.81 0 0.96 1.74 2.3 2.98 1082
MEAN4RDNOR 0.95 0.51 0 0.61 0.9 1.21 2.87 1082
MEDIAN4RDNOR 0.9 0.55 0 0.51 0.84 1.19 2.87 1082
MIN4RDALT 0.75 2.18 0 0.06 0.21 0.67 435 1082
MAXA4RDALT 7.07 18.5 0 0.93 2.69 6.57 267.55 1082
MEAN4RDALT 1.77 3.36 0 0.59 1.05 1.8 68.45 1082
MEDIAN4RDALT 1.3 2.4 0 0.41 0.78 1.31 435 1082
MIN4DIFFP 2035 54937 0 0.51 1.54 4.44 18073.22 1082
MAXA4DIFFP 206.69 2603.79 0.03 5.44 9.88 16.43 6217531 1082
MEAN4DIFFP 116.56  1450.99 0.03 3.24 5.46 9.08 30433.18 1082
MEDIAN4DIFFP 14096 201138 0 2.73 5.24 8.95 50228.95 1082
MIN4KURTO -2.61 3.02 -6 -5.39 -3.37 0.07 4 1082
MAX4KURTO 2.07 2.28 -6 1.43 2.94 3.72 4 1082
MEAN4KURTO 0.12 1.83 -6 -0.83 0.1 1.31 4 1082
MEDIAN4KURTO  0.29 2.06 -6 -0.75 0.6 1.62 4 1082
MIN4SPD 0.34 6.03 0 0.05 0.1 0.2 198.43 1082
MAX4SPD 2.5 29.79 0.02 0.16 0.24 0.35 730.71 1082
MEAN4SPD 1.54 17.19 0.02 0.14 0.2 0.29 388.02 1082
MEDIAN4SPD 1.78 23.58 0.02 0.14 0.21 0.3 621.75 1082
MIN4KS 12.89 1047 1.38 7.42 10.24 14.5 132.33 1082
MAXA4KS 36.64  66.05 1.48 12.61 22.53 44.04 1433.11 1082
MEAN4KS 16.65 11.9 1.48 9.73 13.55 19.78 132.33 1082
MEDIAN4KS 1487 113 1.48 8.9 12.14 16.99 132.33 1082

Note: “Mean”, “Std”, “Min”, “Lower Q.”, “Median”, “Upper Q.”, “Max”, and “N” denote the mean,
standard deviation, minimum, lower quartile, median, upper quartile, maximum, and number of obser-
vations respectively. The value for “MEANBIDS”, “STDBIDS”, “D”, “MIN3D”, “MAX3D”,
“MEAN3D”, "MEDIAN3D”, “MIN4D”, “MAX4D”, “MEAN4D” and “MEDIAN4D” are expressed in
thousand CHF. “KS”, “CV”, “SPD”, “RD”, “RDNOR”, “RDALT”, “SKEW”, "DIFFP”, “KURTO”, “D”,
“STDBIDS”, “MEANBIDS” and “NBRBIDS” denote the Kolmogorov-Smirnov statistic, the coefficient of
variation, the spread, the relative distance, the normalized distance, the alternative relative distance, the
skewness statistic, the percentage difference, the kurtosis statistic, the difference in absolute between the
first and second lowest bids, the standard deviation of the bids in a tender, the mean of the bids in a tender
and the number of the bids in a tender respectively. For the abbreviations, see also Table 9 in Appendix A
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Table 14 Descriptive statistics for incomplete bid-rigging cartels in sample 1 (Swiss data)

Predictors Mean Std Min Lower Median Upper Max N
Q Q.

NBRBIDS 7.49 2.54 4 5 7 9 13 252
MEANBIDS 43590  476.67 18.01 146.59 296.62  538.73 3460.91 252
STDBIDS 35.12 50.17 1.54 9.60 19.62 33.72 362.86 252
Cv 7.79 3.89 1.77 5.14 6.79 9.6 23.92 252
KURTO 0.41 2.12 -5.9 -0.94 0.04 1.54 6.97 252
SKEW -0.07 0.99 -2.59  -0.67 -0.06 0.5 2.57 252
SPD 0.26 0.16 0.05 0.16 0.21 0.32 0.89 252
D 21.07 39.03 0.08 433 9.10 20.87 351.83 252
RD 1.39 2.67 0.01 0.26 0.58 1.42 28.37 252
RDNOR 1.41 1.11 0.01 0.59 1.14 2 5.48 252
RDALT 2.32 3.52 0.01 0.55 1.17 2.65 28.54 252
DIFFP 6.34 8.85 0.03 1.8 3.69 7.02 73.53 252
KS 16.62 8.04 4.15 10.99 15.24 19.97 57.54 252
MIN3CV 1.68 1.73 0 0.65 1.24 2.14 14.77 252
MAX3CV 12.26 6.39 2.9 7.87 10.66 15.21 38.48 252
MEAN3CV 7.12 3.48 1.55 4.7 6.32 8.98 22.96 252
MEDIAN3CV 7.06 3.81 1.01 4.59 6.28 8.51 29.82 252
MIN3SKEW -1.6 0.36 -1.73 173 -1.72 -1.65 0.97 252
MAX3SKEW 1.53 0.48 -1.1 1.64 1.72 1.73 1.73 252
MEAN3SKEW -0.04 0.5 -143 03 -0.03 0.25 1.47 252
MEDIAN3SKEW  -0.05 0.77 -1.71  -0.59 -0.05 0.51 1.73 252
MIN3D 3.64 8.58 0.00 0.43 1.31 3.23 80.15 252
MAX3D 76.68 107.56  1.58 18.87 41.15 80.60 842.70 252
MEAN3D 29.56 44.27 0.62 8.00 16.57 28.64 437.36 252
MEDIAN3D 26.54 40.57 0.41 7.70 14.60 27.21 424.30 252
MIN3RD 0.23 0.45 0 0.02 0.07 0.19 3.35 252
MAX3RD 1203.97 99939  0.68 10.98 31.05 96.88 122393.82 252
MEAN3RD 27.54 191.86  0.31 2.5 4.5 9.16 2742.11 252
MEDIAN3RD 2.09 2.42 0.21 1.02 1.49 2.21 27.08 252
MIN3RDNOR 0.21 0.28 0 0.03 0.09 0.24 1.41 252
MAX3RDNOR 1.83 0.23 0.65 1.77 1.92 1.97 2 252
MEAN3RDNOR 1.02 0.22 0.33 0.89 1.02 1.12 1.73 252
MEDIAN3RDNOR  1.02 0.3 0.26 0.83 1.02 1.2 1.89 252
MIN3RDALT 0.16 0.32 0 0.02 0.05 0.14 2.37 252
MAX3RDALT 851.33  7066.76 0.48 7.76 21.95 68.51 86545.5 252
MEAN3RDALT 19.47 135.66  0.22 1.77 3.18 6.48 1938.96 252
MEDIAN3RDALT 1.48 1.71 0.15 0.72 1.06 1.56 19.15 252
MIN3DIFFP 0.97 1.58 0 0.17 0.47 1.15 12.6 252
MAX3DIFFP 19.61 12.81 2.29 11.28 16.77 25.1 87.65 252
MEAN3DIFFP 7.76 5.62 1.39 4.79 6.4 8.94 49.6 252
MEDIAN3DIFFP 7.11 6.59 1.14 39 5.72 8.21 73.53 252
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Table 14 continued

Predictors Mean Std Min Lower Median Upper Max N
Q. Q.

MIN3SPD 0.03 0.04 0 0.01 0.02 0.04 0.32 252
MAX3SPD 0.26 0.16 0.05 0.16 0.21 0.32 0.89 252
MEAN3SPD 0.15 0.08 0.03 0.09 0.13 0.19 0.62 252
MEDIAN3SPD 0.15 0.09 0.02 0.09 0.13 0.18 0.83 252
MIN3KS 10.96 6.18 3 6.88 9.62 12.9 34.52 252
MAX3KS 357.52  3429.85 6.79 47.14 80.58 155 54476.99 252
MEAN3KS 27.25 34.52 6.03 15.6 21.55 29.85 495.16 252
MEDIAN3KS 18.68 11.16 3.36 12.03 16.1 2221 99.02 252
MIN4CV 3.16 297 0.12 1.31 2.26 4.2 23.92 252
MAXA4CV 10.63 5.46 2.38 6.97 9.43 13.25 33.94 252
MEAN4CV 7.43 3.65 1.64 4.89 6.54 9.33 23.92 252
MEDIAN4CV 7.65 391 1.69 5.02 6.76 9.66 25.38 252
MIN4SKEW -1.42 0.79 -2 -1.95 -1.78 -1.22 1.87 252
MAX4SKEW 1.28 0.97 -1.98  1.09 1.79 1.94 2 252
MEAN4SKEW -0.07 0.69 -1.98  -043 -0.05 0.38 1.87 252
MEDIAN4SKEW  -0.07 0.79 -1.98  -0.47 -0.03 0.32 1.87 252
MIN4D 4.98 11.53 0.00 0.48 1.63 4.68 102.18 252
MAX4D 60.49 87.82 0.18 13.66 33.62 66.93 771.65 252
MEAN4D 25.08 38.97 0.18 6.81 14.32 25.80 410.17 252
MEDIAN4D 24.93 42.34 0.14 6.02 13.17 25.38 424.30 252
MIN4RD 0.59 2.26 0 0.03 0.09 0.31 28.37 252
MAX4RD 25.25 166.8 0.04 3.1 7.14 16.87 2627.72 252
MEAN4RD 2.25 2.96 0.04 0.91 1.52 2.37 28.37 252
MEDIAN4RD 1.53 2.43 0.04 0.53 1.01 1.66 28.37 252
MIN4RDNOR 0.37 0.54 0 0.05 0.15 0.42 2.8 252
MAX4RDNOR 2.18 0.68 0.07 1.83 2.37 2.7 3 252
MEAN4RDNOR 1.11 0.46 0.07 0.8 1.08 1.33 2.8 252
MEDIAN4RDNOR  1.06 0.54 0.07 0.66 1.05 1.38 2.8 252
MIN4RDALT 0.61 2.29 0 0.03 0.1 0.32 28.54 252
MAX4RDALT 27.16 186.06  0.04 3.13 7.47 18.11 2933.56 252
MEAN4RDALT 2.35 3.08 0.04 0.96 1.62 2.48 28.54 252
MEDIAN4RDALT  1.59 2.46 0.04 0.56 1.08 1.7 28.54 252
MIN4DIFFP 1.83 4.55 0 0.19 0.58 1.58 57.15 252
MAXA4DIFFP 16.09 11.96 0.3 8.81 13.53 20.12 77.43 252
MEAN4DIFFP 7.05 6.61 0.3 3.75 5.57 7.76 60.05 252
MEDIAN4DIFFP 6.8 7.49 0.24 3.19 5.09 7.32 73.53 252
MIN4KURTO -4 2.64 -6 -5.86 -5.28 -3.15 3.94 252
MAX4KURTO 2.99 1.68 -5.9 2.79 3.68 3.91 4 252
MEAN4KURTO 0.16 1.38 -5.9 -0.48 0.04 0.84 3.94 252
MEDIAN4KURTO  0.51 1.67 -5.9 -0.08 0.64 1.49 3.94 252
MIN4SPRD 0.08 0.08 0 0.03 0.05 0.09 0.81 252
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Table 14 continued

Predictors Mean Std Min Lower Median Upper Max N
Q. Q.

MAX4SPD 0.26 0.16 0.05 0.16 0.21 0.32 0.89 252
MEAN4SPD 0.19 0.11 0.04 0.12 0.16 0.23 0.81 252
MEDIAN4SPD 0.19 0.12 0.04 0.12 0.16 0.24 0.89 252
MIN4KS 12.65 7.28 3.64 7.85 10.91 14.56 42.15 252
MAX4KS 64.97 79.07 4.15 24.21 4441 76.85 862.88 252
MEAN4KS 19.96 11.22 4.15 12.92 17.51 23.75 97.43 252
MEDIAN4KS 16.85 8.23 3.87 11.12 15.26 20.29 59.16 252

Note: “Mean”, “Std”, “Min”, “Lower Q.”, “Median”, “Upper Q.”, “Max”, and “N” denote the mean,
standard deviation, minimum, lower quartile, median, upper quartile, maximum, and number of obser-
vations respectively. The value for “MEANBIDS”, “STDBIDS”, “D”, “MIN3D”, “MAX3D”,
“MEAN3D”, "MEDIAN3D”, “MIN4D”, “MAX4D”, “MEAN4D” and “MEDIAN4D” are expressed in
thousand CHF. “KS”, “CV”, “SPD”, “RD”, “RDNOR?”, “RDALT”, “SKEW”, "DIFFP”, “KURTO”, “D”,
“STDBIDS”, “MEANBIDS” and “NBRBIDS” denote the Kolmogorov-Smirnov statistic, the coefficient of
variation, the spread, the relative distance, the normalized distance, the alternative relative distance, the
skewness statistic, the percentage difference, the kurtosis statistic, the difference in absolute between the
first and second lowest bids, the standard deviation of the bids in a tender, the mean of the bids in a tender
and the number of the bids in a tender respectively. For the abbreviations, see also Table 9 in Appendix A

Table 15 Descriptive statistics for incomplete bid-rigging cartels in sample 2 (Swiss data)

Predictors Mean Std Min Lower Median  Upper Max N
Q. Q.

NBRBIDS 7.77 247 4 6 8 10 13 223
MEANBIDS 40524 37235 27.84 149.78 302.21  535.40 3002.37 223
STDBIDS 30.96 37.64 1.63  9.65 19.51  33.19 270.82 223
Ccv 7.6 3.77 1.77  5.14 6.66 9.07 23.92 223
KURTO 0.44 2.08 -5.75  -0.94 0.04 1.47 6.97 223
SKEW -0.07 0.97 259 -0.62 -0.08 0.46 2.57 223
SPD 0.26 0.16 0.05  0.16 0.21 0.31 0.89 223
D 20.13 36.04 0.08  4.13 8.90 21.08 351.83 223
RD 1.29 2.12 0.01  0.27 0.58 1.36 18.04 223
RDNOR 1.45 1.14 0.01 0.61 1.14 2.06 5.48 223
RDALT 23 3.24 0.01  0.58 1.17 2.83 20.74 223
DIFFP 6.3 9.13 0.03 1.88 3.69 6.78 73.53 223
KS 16.85 7.91 4.15 11.89 1554 19.99 57.54 223
MIN3CV 1.47 1.22 0 0.62 1.15 1.93 7.05 223
MAX3CV 12.24 6.43 293 8 10.57  14.98 38.48 223
MEAN3CV 6.92 333 1.55  4.69 6.09 8.33 22.96 223
MEDIAN3CV 6.75 3.56 1.01 458 6 8.06 29.82 223
MIN3SKEW -1.63 0.29 -1.73 -1.73 -1.72 -1.68 0.62 223
MAX3SKEW 1.58 0.38 -1.1 1.68 1.72 1.73 1.73 223
MEAN3SKEW -0.04 0.45 -1.33  -0.28 -0.04 0.25 1.31 223
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Table 15 continued

Predictors Mean Std Min Lower Median Upper Max N
Q. Q

MEDIAN3SKEW  -0.05 0.74 -1.69  -0.58 -0.06 0.45 1.73 223
MIN3D 2.76 5.42 0.00 0.38 1.17 2.87 56.23 223
MAX3D 69.79 84.97 238  20.13 42.35 79.53 670.57 223
MEAN3D 26.13 30.47 1.42 8.28 16.72 28.29 235.67 223
MEDIAN3D 23.11 25.43 1.52 7.92 14.63 26.60 171.87 223
MIN3RD 0.18 0.37 0 0.02 0.06 0.15 3.35 223
MAX3RD 135545 10617.14 0.92 14.74 37.36 128.17 122393.82 223
MEAN3RD 30.39 203.82 0.43 2.65 4.66 9.35 2742.11 223
MEDIAN3RD 1.92 1.72 0.26 1.06 1.5 2.14 18.63 223
MIN3RDNOR 0.18 0.25 0 0.03 0.08 0.19 1.41 223
MAX3RDNOR 1.85 0.2 0.79 1.82 1.93 1.98 2 223
MEAN3RDNOR 1.02 0.2 0.41 0.9 1.02 1.12 1.66 223
MEDIAN3RDNOR  1.02 0.28 0.3 0.85 1.02 1.2 1.85 223
MIN3RDALT 0.13 0.26 0 0.01 0.04 0.11 2.37 223
MAX3RDALT 958.45 750745 0.65 10.42 26.42 90.63 86545.5 223
MEAN3RDALT 21.49 144.12 0.3 1.88 3.29 6.61 1938.96 223
MEDIAN3RDALT 1.36 1.21 0.18 0.75 1.06 1.51 13.18 223
MIN3DIFFP 0.81 1.25 0 0.14 0.43 0.99 10.47 223
MAX3DIFFP 19.73 12.93 2.29 11.81 16.81 24.42 87.65 223
MEAN3DIFFP 7.59 5.58 1.39 482 6.35 8.75 49.6 223
MEDIAN3DIFFP 6.92 6.67 1.14 3.91 5.71 8.1 73.53 223
MIN3SPD 0.03 0.02 0 0.01 0.02 0.04 0.15 223
MAX3SPD 0.26 0.16 0.05 0.16 0.21 0.31 0.89 223
MEAN3SPD 0.15 0.08 0.03 0.09 0.13 0.18 0.62 223
MEDIAN3SPD 0.14 0.09 0.02 0.09 0.12 0.17 0.83 223
MIN3KS 10.9 6.01 3 6.98 9.7 12.52 34.52 223
MAX3KS 39481 364521 1427 52.14 87.43 161.06 54476.99 223
MEAN3KS 27.97 36.27 6.25 16 21.99 30.38 495.16 223
MEDIAN3KS 19.22 11.35 3.36 12.64 16.97 22.22 99.02 223
MIN4CV 2.8 2.48 0.12 1.2 2.17 3.87 23.92 223
MAX4CV 10.63 5.48 2.48 7.05 9.36 13.08 33.94 223
MEAN4CV 7.22 35 1.64 488 6.32 8.58 23.92 223
MEDIAN4CV 7.41 3.75 1.69 5.01 6.51 8.9 25.38 223
MIN4SKEW -1.51 0.71 2 -1.95 -1.82 -1.42 1.84 223
MAX4SKEW 1.38 0.85 -1.96  1.23 1.82 1.94 2 223
MEAN4SKEW -0.06 0.64 -1.96  -04 -0.07 0.35 1.84 223
MEDIAN4SKEW  -0.07 0.74 -1.96  -0.46 -0.04 0.29 1.84 223
MIN4D 3.82 8.45 0.00 0.43 1.43 3.77 96.23 223
MAX4D 58.39 72.08 0.18 16.06 37.52 68.97 535.26 223
MEAN4D 23.35 29.62 0.18 7.26 14.45 25.83 274.73 223
MEDIAN4D 23.01 32.93 0.14 6.07 13.49 25.40 351.83 223
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Table 15 continued

Predictors Mean Std Min Lower Median Upper Max N
Q. Q

MIN4RD 0.41 1.4 0 0.03 0.09 0.25 18.04 223
MAX4RD 27.52 177.13 0.04 391 7.86 17.75 2627.72 223
MEAN4RD 2.19 2.53 0.04 0.96 1.62 2.37 24.7 223
MEDIAN4RD 1.42 1.77 0.04 0.57 1.02 1.52 18.04 223
MIN4RDNOR 0.32 0.46 0 0.04 0.14 0.36 2.7 223
MAX4RDNOR 2.25 0.61 007 2 2.42 2.71 3 223
MEAN4RDNOR 1.11 0.42 0.07 0.82 1.09 1.3 2.7 223
MEDIAN4RDNOR  1.06 0.51 0.07 0.69 1.06 1.31 2.7 223
MIN4RDALT 0.42 1.42 0 0.03 0.09 0.27 18.05 223
MAX4RDALT 29.63 197.6 0.04 4 8.35 18.57 2933.56 223
MEAN4RDALT 2.29 2.67 0.04 1.02 1.72 2.49 27.4 223
MEDIAN4RDALT  1.48 1.8 0.04 0.6 1.1 1.55 18.05 223
MIN4DIFFP 1.48 434 0 0.17 0.51 1.23 57.15 223
MAXA4DIFFP 16.59 11.97 0.3 9.6 13.87 20.28 77.43 223
MEAN4DIFFP 7 6.68 0.3 3.97 5.51 7.55 60.05 223
MEDIAN4DIFFP 6.74 7.66 0.24 3.24 5.08 7.23 73.53 223
MIN4KURTO -4.32 2.38 -6 -5.88 -5.48 -3.92 3.85 223
MAX4KURTO 3.16 1.43 -5.775 0 3.04 3.74 391 4 223
MEAN4KURTO 0.15 1.23 -5.75 <048 0.04 0.79 3.85 223
MEDIAN4KURTO 0.52 1.56 -5.75  -0.05 0.63 1.42 3.85 223
MIN4SPD 0.07 0.07 0 0.03 0.05 0.09 0.81 223
MAX4SPD 0.26 0.16 0.05 0.16 0.21 0.31 0.89 223
MEAN4SPD 0.18 0.11 0.04 0.12 0.15 0.22 0.81 223
MEDIAN4SPD 0.19 0.11 0.04 0.12 0.16 0.22 0.89 223
MIN4KS 12.55 7.02 3.64 7.95 11.06 14.33 40.78 223
MAXA4KS 69.75 82.58 4.15 26.17 46.65 84.1 862.88 223
MEAN4KS 20.49 11.41 4.15 13.41 18.45 23.97 97.43 223
MEDIAN4KS 17.14 8.1 3.87 11.75 15.89 20.31 59.16 223

Note: “Mean”, “Std”, “Min”, “Lower Q.”, “Median”, “Upper Q.”, “Max”, and “N” denote the mean,
standard deviation, minimum, lower quartile, median, upper quartile, maximum, and number of obser-
vations respectively. The value for “MEANBIDS”, “STDBIDS”, “D”, “MIN3D”, “MAX3D”,
“MEAN3D”, "MEDIAN3D”, “MIN4D”, “MAX4D”, “MEAN4D” and “MEDIAN4D” are expressed in
thousand CHF. “KS”, “CV”, “SPD”, “RD”, “RDNOR”, “RDALT”, “SKEW”, "DIFFP”, “KURTO”, “D”,
“STDBIDS”, “MEANBIDS” and “NBRBIDS” denote the Kolmogorov-Smirnov statistic, the coefficient
of variation, the spread, the relative distance, the normalized distance, the alternative relative distance, the
skewness statistic, the percentage difference, the kurtosis statistic, the difference in absolute between the
first and second lowest bids, the standard deviation of the bids in a tender, the mean of the bids in a tender
and the number of the bids in a tender respectively. For the abbreviations, see also Table 9 in Appendix A
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Table 16 Descriptive statistics for incomplete bid-rigging cartels in sample 3 (Swiss data)

Predictors Mean Std Min Lower Median Upper Max N
Q. Q

NBRBIDS 8.5 2.15 5 7 8 10 13 173
MEANBIDS 43936  388.89 3024  182.64 329.61 572.01 3002.37 173
STDBIDS 33.50 40.38 2.01 11.89 20.48 33.44 270.82 173
Cv 7.54 3.26 1.77 5.24 6.76 9.12 21.7 173
KURTO 0.46 1.97 -2.69  -0.88 -0.09 1.23 6.97 173
SKEW -0.07 0.95 -2.59  -0.56 -0.08 0.43 2.57 173
SPD 0.26 0.14 0.06 0.17 0.22 0.31 0.88 173
D 21.95 39.01 0.08  4.53 9.46 22.94 351.83 173
RD 1.14 1.76 0.01 0.29 0.58 1.19 12.47 173
RDNOR 1.54 1.17 0.02 0.66 1.17 2.17 5.48 173
RDALT 2.33 3.2 0.02 0.63 1.19 2.81 20.74 173
DIFFP 591 7.48 0.1 2.13 3.7 6.74 45.42 173
KS 16.55 7.64 6.19 11.84 15.48 19.69 57.54 173
MIN3CV 1.2 0.9 0 0.52 1.03 1.56 3.95 173
MAX3CV 12.6 5.86 2.93 8.78 10.99 15.19 38.48 173
MEAN3CV 6.82 2.83 1.55 4.79 6.11 8.34 16.5 173
MEDIAN3CV 6.51 2.79 1.01 4.67 5.92 8.02 14.2 173
MIN3SKEW -1.69 0.12 -1.73 -1.73 -1.73 -1.71 -0.88 173
MAX3SKEW 1.67 0.15 0.73 1.69 1.73 1.73 1.73 173
MEAN3SKEW -0.03 0.39 -1.02  -0.22 -0.04 0.23 0.88 173
MEDIAN3SKEW  -0.03 0.69 -1.48  -0.47 -0.06 0.41 1.73 173
MIN3D 2.35 4.05 0.00 0.34 1.03 2.40 30.19 173
MAX3D 78.60 90.43 370 24.82 51.54 89.92 670.57 173
MEAN3D 28.43 32.44 1.58 9.40 17.96 32.97 235.67 173
MEDIAN3D 2431 26.46 1.52 8.53 15.79 26.36 171.87 173
MIN3RD 0.11 0.19 0 0.02 0.04 0.12 1.76 173
MAX3RD 1737.96 12034.74 2.68 20.39 48.9 163.12 122393.82 173
MEAN3RD 37.63 231.03 0.92 291 5.15 9.8 2742.11 173
MEDIAN3RD 1.72 1.05 0.32 1.07 1.48 1.95 6.05 173
MIN3RDNOR 0.12 0.16 0 0.02 0.06 0.16 1 173
MAX3RDNOR 1.9 0.13 1.31 1.87 1.94 1.98 2 173
MEAN3RDNOR 1.02 0.18 0.61 0.91 1.03 1.11 1.46 173
MEDIAN3RDNOR  1.02 0.25 0.37 0.86 1.02 1.16 1.62 173
MIN3RDALT 0.08 0.14 0 0.01 0.03 0.09 1.25 173
MAX3RDALT 1228.92 8509.85 1.9 14.42 34.57 115.34 86545.5 173
MEAN3RDALT 26.61 163.36 0.65 2.06 3.64 6.93 1938.96 173
MEDIAN3RDALT 1.22 0.74 0.22 0.76 1.05 1.38 4.28 173
MIN3DIFFP 0.58 0.71 0 0.12 0.37 0.81 4.49 173
MAX3DIFFP 20.62 11.43 3.84 13.06 17.99 25.01 72.01 173
MEAN3DIFFP 7.33 3.89 1.55 5 6.42 8.68 22.8 173
MEDIAN3DIFFP 6.18 3.26 1.33 3.91 5.67 7.45 21.76 173
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Table 16 continued

Predictors Mean Std Min Lower Median Upper Max N
Q. Q

MIN3SPD 0.02 0.02 0 0.01 0.02 0.03 0.08 173
MAX3SPD 0.26 0.14 0.06 0.17 0.22 0.31 0.88 173
MEAN3SPD 0.14 0.07 0.03 0.1 0.13 0.18 0.38 173
MEDIAN3SPD 0.13 0.06 0.02 0.09 0.12 0.17 0.3 173
MIN3KS 10.03 5.06 3 6.91 9.18 11.63 34.52 173
MAX3KS 489.07  4136.34 2556 63.95 97.45 192.63 54476.99 173
MEAN3KS 29.3 40.7 9.3 16.34 21.99 30.15 495.16 173
MEDIAN3KS 19.58 12.05 7.28 12.7 17.13 21.76 99.02 173
MIN4CV 2.14 1.45 0.12 1.03 1.76 2.94 8.25 173
MAX4CV 11.02 5.04 2.48 7.92 9.6 13.24 33.94 173
MEAN4CV 7.12 2.98 1.64 499 6.32 8.58 18.01 173
MEDIAN4CV 7.27 3.09 1.69 5.15 6.57 8.91 17.17 173
MIN4SKEW -1.69 0.44 -2 -1.96 -1.88 -1.64 -0.04 173
MAX4SKEW 1.62 0.52 -0.4 1.49 1.84 1.95 2 173
MEAN4SKEW -0.05 0.55 -1.42 -0.34 -0.07 0.31 1.32 173
MEDIAN4SKEW  -0.06 0.67 -1.86  -0.42 -0.05 0.27 1.72 173
MIN4D 2.86 4.84 0.00 0.34 1.13 3.02 30.28 173
MAX4D 66.68 76.42 1.56  20.02 43.87 78.43 535.26 173
MEAN4D 25.49 31.63 1.22 8.73 15.85 27.51 274.73 173
MEDIAN4D 24.96 35.20 0.96 7.98 15.12 27.02 351.83 173
MIN4RD 0.16 0.26 0 0.02 0.06 0.17 1.93 173
MAX4RD 33.76 200.71 1.09 5.32 10.34 20.54 2627.72 173
MEAN4RD 2.22 2.44 0.35 1.04 1.68 2.38 24.7 173
MEDIAN4RD 1.31 1.24 0.16 0.69 1.05 1.39 9.81 173
MIN4RDNOR 0.2 0.25 0 0.03 0.1 0.25 1.51 173
MAX4RDNOR 2.42 0.44 1.07 22 2.53 2.75 3 173
MEAN4RDNOR 1.11 0.35 0.43 0.85 1.1 1.28 2.06 173
MEDIAN4RDNOR  1.07 0.44 0.22 0.79 1.07 1.25 2.5 173
MIN4RDALT 0.16 0.26 0 0.02 0.07 0.18 2.03 173
MAXA4RDALT 36.41 223.95 1.1 5.54 10.76 21.56 2933.56 173
MEAN4RDALT 2.31 2.61 0.37 1.09 1.75 2.51 274 173
MEDIAN4RDALT  1.37 1.27 0.16 0.72 1.11 1.43 9.91 173
MIN4DIFFP 0.71 0.9 0 0.13 0.41 0.98 6.52 173
MAXA4DIFFP 17.69 10.69 3.03 11.06 15.55 21.32 70.09 173
MEAN4DIFFP 6.67 4.5 1.18  4.22 5.62 7.44 26.42 173
MEDIAN4DIFFP 6.33 5.07 0.98 3.44 5.23 7.15 34.35 173
MIN4KURTO -4.9 1.6 -6 -5.92 -5.55 -4.6 1.44 173
MAX4KURTO 3.56 0.61 1 3.49 3.82 3.93 4 173
MEAN4KURTO 0.17 0.89 -1.78  -0.46 -0.05 0.63 3.19 173
MEDIAN4KURTO  0.63 1.19 442 0 0.63 1.34 3.57 173
MIN4SPD 0.05 0.03 0 0.02 0.04 0.07 0.2 173

@ Springer



H. Wallimann et al.

Table 16 continued

Predictors Mean Std Min Lower Median Upper Max N
Q. Q

MAX4SPD 0.26 0.14 0.06 0.17 0.22 0.31 0.88 173
MEAN4SPD 0.18 0.08 0.04 0.12 0.15 0.22 0.48 173
MEDIAN4SPD 0.18 0.09 0.04 0.12 0.16 0.22 0.48 173
MIN4KS 11.44 5.86 3.64 7.8 10.66 12.95 40.78 173
MAX4KS 81.53 89.76 1272 34.28 57.17 97.8 862.88 173
MEAN4KS 20.95 12.1 8.31 13.75 18.47 23.97 97.43 173
MEDIAN4KS 16.96 7.85 5.9 11.68 15.89 19.94 59.16 173

Note: “Mean”, “Std”, “Min”, “Lower Q.”, “Median”, “Upper Q.”, “Max”, and “N” denote the mean,
standard deviation, minimum, lower quartile, median, upper quartile, maximum, and number of obser-
vations respectively. The value for “MEANBIDS”, “STDBIDS”, “D”, “MIN3D”, “MAX3D”,
“MEAN3D”, "MEDIAN3D”, “MIN4D”, “MAX4D”, “MEAN4D” and “MEDIAN4D” are expressed in
thousand CHF. “KS”, “CV”, “SPD”, “RD”, “RDNOR?”, “RDALT”, “SKEW”, "DIFFP”, “KURTO”, “D”,
“STDBIDS”, “MEANBIDS” and “NBRBIDS” denote the Kolmogorov-Smirnov statistic, the coefficient of
variation, the spread, the relative distance, the normalized distance, the alternative relative distance, the
skewness statistic, the percentage difference, the kurtosis statistic, the difference in absolute between the
first and second lowest bids, the standard deviation of the bids in a tender, the mean of the bids in a tender
and the number of the bids in a tender respectively. For the abbreviations, see also Table 9 in Appendix A

Table 17 Descriptive statistics for incomplete bid-rigging cartels in sample 4 (Swiss data)

Predictors Mean Std Min Lower Median  Upper Max N
Q. Q.

NBRBIDS 9.08 1.87 6 8 9 11 13 135
MEANBIDS 44831 38431 4146 219.13 337.02  567.20 3002.37 135
STDBIDS 31.74 34.92 2.26 13.09 21.49 32.73 270.82 135
(0\% 7.19 2.93 1.77 522 6.3 8.62 18.9 135
KURTO 0.47 1.97 -2.26  -0.88 -0.18 1.18 6.97 135
SKEW -0.09 0.94 -2.59  -0.54 -0.12 0.44 2.57 135
SPD 0.26 0.13 0.06 0.17 0.21 0.31 0.76 135
D 22.85 42.70 026  4.76 9.34 22.35 351.83 135
RD 1.05 1.5 0.01 0.3 0.57 1.12 10.58 135
RDNOR 1.6 1.18 004 0.7 1.22 228 5.48 135
RDALT 2.33 3.02 0.04  0.67 1.27 2.86 20.74 135
DIFFP 5.82 7.82 0.1 2.03 3.36 6.58 45.42 135
KS 16.91 7.21 6.62 12.48 16.29 19.83 57.54 135
MIN3CV 0.94 0.62 0 0.43 0.82 1.28 3.04 135
MAX3CV 12.33 5.32 3.36 8.87 10.64 15.02 32.54 135
MEAN3CV 6.47 2.56 1.55 4.69 5.85 7.72 15.38 135
MEDIAN3CV 6.07 2.49 1.01 4.52 5.67 7.29 13.93 135
MIN3SKEW -1.71 0.07 -1.73 -1.73 -1.73 -1.72 -1.13 135
MAX3SKEW 1.69 0.1 0.93 1.71 1.73 1.73 1.73 135
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Table 17 continued

Predictors Mean Std Min Lower Median Upper Max N
Q. Q

MEAN3SKEW -0.04 0.37 -1.02  -0.24 -0.04 0.21 0.87 135
MEDIAN3SKEW  -0.03 0.66 -1.45  -0.47 -0.07 0.4 1.73 135
MIN3D 1.96 3.70 0.00 0.30 0.87 1.99 30.19 135
MAX3D 81.04 93.45 5.67 30.62 55.61 88.77 670.57 135
MEAN3D 28.50 33.46 2.14 11.22 18.00 30.40 235.67 135
MEDIAN3D 23.43 25.63 2.24 9.00 16.39 25.58 171.87 135
MIN3RD 0.09 0.18 0 0.02 0.04 0.1 1.76 135
MAX3RD 2203.8 1359791 3.46 27.6 62.53 192.17 122393.82 135
MEAN3RD 45.46 261.04 0.92 3.13 5.48 10.57 2742.11 135
MEDIAN3RD 1.69 0.96 0.45 1.08 1.5 1.95 5.61 135
MIN3RDNOR 0.1 0.14 0 0.02 0.06 0.13 1 135
MAX3RDNOR 1.92 0.1 1.42 1.91 1.96 1.99 2 135
MEAN3RDNOR 1.02 0.17 0.61 0.92 1.04 1.11 1.46 135
MEDIAN3RDNOR  1.02 0.24 0.49 0.87 1.02 1.16 1.6 135
MIN3RDALT 0.06 0.13 0 0.01 0.03 0.07 1.25 135
MAX3RDALT 155832 9615.17 2.44 19.52 44.22 135.89 86545.5 135
MEAN3RDALT 32.15 184.58 0.65 222 3.88 7.48 1938.96 135
MEDIAN3RDALT 1.2 0.68 0.32 0.76 1.06 1.38 3.97 135
MIN3DIFFP 0.44 0.47 0 0.11 0.27 0.56 2.32 135
MAX3DIFFP 20.71 11.13 3.84 13.33 17.81 25.2 63.38 135
MEAN3DIFFP 7.11 3.99 1.55 4.82 6.24 8.15 22.8 135
MEDIAN3DIFFP 5.68 2.93 1.33 3.81 5.29 6.99 21.76 135
MIN3SPD 0.02 0.01 0 0.01 0.02 0.02 0.06 135
MAX3SPD 0.26 0.13 0.06 0.17 0.21 0.31 0.76 135
MEAN3SPD 0.14 0.06 0.03 0.1 0.12 0.16 0.35 135
MEDIAN3SPD 0.12 0.05 0.02 0.09 0.11 0.15 0.3 135
MIN3KS 9.9 437 3.47 7 9.69 11.51 30.19 135
MAX3KS 603.24 467933 3293 77.85 12226 231.34 54477 135
MEAN3KS 30.89 43.76 10.24  18.79 23.63 31.72 495.16 135
MEDIAN3KS 20.34 11.39 7.28 14.06 17.92 22.59 99.02 135
MIN4CV 1.7 1.03 0.12 0.91 1.5 2.18 5.53 135
MAXA4CV 10.83 4.53 2.8 8 9.4 13.15 28.01 135
MEAN4CV 6.76 2.69 1.64 493 6.08 8 16.54 135
MEDIAN4CV 6.88 2.88 1.69 5.01 6.17 8.11 17.17 135
MIN4SKEW -1.81 0.29 -2 -1.97 -1.92 -1.76 -0.28 135
MAX4SKEW 1.72 0.4 -026 1.7 1.86 1.96 2 135
MEAN4SKEW -0.06 0.52 -1.37  -0.33 -0.1 0.28 1.18 135
MEDIAN4SKEW  -0.07 0.65 -1.69  -0.38 -0.07 0.26 1.72 135
MIN4D 2.38 4.46 0.00 0.33 1.04 2.48 30.28 135
MAXA4D 69.99 79.50 5.47 25.08 47.56 78.76 535.26 135
MEAN4D 25.93 33.56 1.39 9.45 16.57 26.24 274.73 135
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Table 17 continued

Predictors Mean Std Min Lower Median Upper Max N
Q. Q

MEDIAN4D 25.13 37.53 0.96 7.99 16.21 25.40 351.83 135
MIN4RD 0.12 0.19 0 0.02 0.05 0.14 1.47 135
MAX4RD 41.1 226.79 1.09 6.95 13.21 23.81 2627.72 135
MEAN4RD 227 2.46 0.35 1.11 1.72 2.51 24.7 135
MEDIAN4RD 1.25 0.95 0.16 0.69 1.06 1.36 5.95 135
MIN4RDNOR 0.16 0.19 0 0.03 0.09 0.21 1.02 135
MAX4RDNOR 2.53 0.35 1.07 2.34 2.61 2.79 3 135
MEAN4RDNOR 1.11 0.33 0.43 0.87 1.11 1.28 2.05 135
MEDIAN4RDNOR  1.07 0.42 0.22 0.8 1.07 1.25 227 135
MIN4RDALT 0.12 0.17 0 0.02 0.06 0.15 1.04 135
MAXA4RDALT 44.43 253.08 1.1 7.07 13.34 26.04 2933.56 135
MEAN4RDALT 2.37 2.65 0.37 1.16 1.79 2.62 274 135
MEDIAN4RDALT  1.31 1 0.16 0.73 1.11 1.43 6.3 135
MIN4DIFFP 0.53 0.59 0 0.12 0.37 0.81 3.21 135
MAXA4DIFFP 18.02 10.4 3.03 11.48 15.55 22.07 56.74 135
MEAN4DIFFP 6.55 4.74 1.18  4.08 5.51 7.01 26.42 135
MEDIAN4DIFFP 6.13 5.32 0.98 3.26 4.82 6.87 34.35 135
MIN4KURTO -5.26 1.06 -6 -5.93 -5.69 -5.08 -0.16 135
MAX4KURTO 3.71 0.39 2.18 3.62 3.86 3.95 4 135
MEAN4KURTO 0.16 0.8 -1.21 04 -0.07 0.62 2.41 135
MEDIAN4KURTO 0.72 0.98 -3.63  0.06 0.68 1.38 3.11 135
MIN4SPD 0.04 0.02 0 0.02 0.03 0.05 0.13 135
MAX4SPD 0.26 0.13 0.06 0.17 0.21 0.31 0.76 135
MEAN4SPD 0.17 0.08 0.04 0.12 0.15 0.2 0.45 135
MEDIAN4SPD 0.17 0.08 0.04 0.12 0.15 0.2 0.48 135
MIN4KS 11.21 5.03 425 7.95 10.99 12.79 36.12 135
MAXA4KS 91.93 91.08 18.25 46.29 67.17 110.97 862.88 135
MEAN4KS 21.62 10.72 8.43 15.07 19.14 24.63 97.28 135
MEDIAN4KS 17.62 7.69 5.9 13.03 16.55 20.31 59.16 135

Note: “Mean”, “Std”, “Min”, “Lower Q.”, “Median”, “Upper Q.”, “Max”, and “N” denote the mean,
standard deviation, minimum, lower quartile, median, upper quartile, maximum, and number of obser-
vations respectively. The value for “MEANBIDS”, “STDBIDS”, “D”, “MIN3D”, “MAX3D”,
“MEAN3D”, "MEDIAN3D”, “MIN4D”, “MAX4D”, “MEAN4D” and “MEDIAN4D” are expressed in
thousand CHF. “KS”, “CV”, “SPD”, “RD”, “RDNOR”, “RDALT”, “SKEW”, "DIFFP”, “KURTO”, “D”,
“STDBIDS”, “MEANBIDS” and “NBRBIDS” denote the Kolmogorov-Smirnov statistic, the coefficient of
variation, the spread, the relative distance, the normalized distance, the alternative relative distance, the
skewness statistic, the percentage difference, the kurtosis statistic, the difference in absolute between the
first and second lowest bids, the standard deviation of the bids in a tender, the mean of the bids in a tender
and the number of the bids in a tender respectively. For the abbreviations, see also Table 9 in Appendix A
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Table 18 Descriptive statistics for incomplete bid-rigging cartels in sample 5 (Swiss data)

Predictors Mean Std Min Lower Median Upper Max N
Q. Q

NBRBIDS 9.42 1.81 7 8 9 11 13 104
MEANBIDS 434.09  290.66 86.12 232.84 345.62 534.23 1559.96 104
STDBIDS 29.66 26.44 4.58 15.43 21.89 32.70 191.92 104
Cv 6.87 2.53 1.77 5.19 6.22 8.05 14.4 104
KURTO 0.52 2.06 -226  -0.89 -0.15 1.17 6.97 104
SKEW -0.1 0.94 259 -0.62 -0.16 0.43 2.57 104
SPD 0.25 0.12 0.06 0.18 0.21 0.28 0.66 104
D 23.61 46.99 0.26 5.33 8.88 21.49 351.83 104
RD 1.03 1.56 0.01 0.3 0.57 1.09 10.58 104
RDNOR 1.65 1.24 0.04 0.72 1.25 2.39 5.48 104
RDALT 2.4 3.23 0.04 0.69 1.29 3.01 20.74 104
DIFFP 591 8.38 0.1 1.77 3.22 6.14 45.42 104
KS 17.25 7.04 6.93 13.12 16.66 19.81 57.54 104
MIN3CV 0.86 0.6 0 0.38 0.75 1.21 3.04 104
MAX3CV 11.97 4.77 3.36 8.96 10.54 13.64 26.24 104
MEAN3CV 6.19 2.19 1.55 4.7 5.74 7.34 12.47 104
MEDIAN3CV 5.71 2.04 1.55 4.39 5.55 6.88 11.38 104
MIN3SKEW -1.71 0.08 -1.73 -1.73 -1.73 -1.72 -1.13 104
MAX3SKEW 1.71 0.05 1.48 1.71 1.73 1.73 1.73 104
MEAN3SKEW -0.04 0.35 -1.02  -0.25 -0.05 0.16 0.87 104
MEDIAN3SKEW  -0.05 0.62 -1.45  -0.47 -0.07 0.36 1.32 104
MIN3D 1.47 2.09 0.00 0.31 0.81 1.65 13.14 104
MAX3D 76.95 75.24 9.36 35.44 56.91 86.41 530.84 104
MEAN3D 27.35 30.06 3.76 12.85 18.95 28.64 235.67 104
MEDIAN3D 21.88 21.69 2.24 10.65 16.45 24.90 144.14 104
MIN3RD 0.06 0.07 0 0.01 0.04 0.09 0.34 104
MAX3RD 2673.49 1539037 3.46 35.67 75.98 246.78 122393.82 104
MEAN3RD 53.44 294.68 0.92 3.42 5.6 10.88 2742.11 104
MEDIAN3RD 1.66 0.88 0.45 1.11 1.48 1.95 5.61 104
MIN3RDNOR 0.08 0.08 0 0.02 0.06 0.11 0.39 104
MAX3RDNOR 1.93 0.09 1.42 1.92 1.96 1.99 2 104
MEAN3RDNOR 1.02 0.16 0.61 0.92 1.04 1.11 1.46 104
MEDIAN3RDNOR  1.02 0.23 0.49 0.88 1.02 1.16 1.6 104
MIN3RDALT 0.04 0.05 0 0.01 0.03 0.06 0.24 104
MAX3RDALT 1890.44 10882.63 244 2522 53.73 174.5 86545.5 104
MEAN3RDALT 37.79 208.37 0.65 242 3.96 7.69 1938.96 104
MEDIAN3RDALT 1.17 0.62 0.32 0.78 1.05 1.38 3.97 104
MIN3DIFFP 0.37 0.4 0 0.09 0.24 0.5 2.32 104
MAX3DIFFP 20.4 11.4 3.84 13.56 17.28 24.31 63.38 104
MEAN3DIFFP 6.93 4.04 1.55 4.74 5.94 7.75 22.8 104
MEDIAN3DIFFP 5.4 2.68 1.33 3.54 5 6.68 14.62 104
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Table 18 continued

Predictors Mean Std Min Lower Median Upper Max N
Q. Q

MIN3SPD 0.02 0.01 0 0.01 0.01 0.02 0.06 104
MAX3SPD 0.25 0.12 0.06 0.18 0.21 0.28 0.66 104
MEAN3SPD 0.13 0.05 0.03 0.1 0.12 0.15 0.3 104
MEDIAN3SPD 0.12 0.04 0.03 0.09 0.11 0.14 0.25 104
MIN3KS 9.91 4.06 3.91 7.59 9.79 11.48 30.19 104
MAX3KS 748.1 532842 3293 82.68 133.82  260.68 54476.99 104
MEAN3KS 32.57 48.85 11.03  20.32 24.65 32.78 495.16 104
MEDIAN3KS 20.44 8.91 9.05 14.76 18.19 22.87 65.09 104
MIN4CV 1.54 0.97 0.12 0.85 1.34 2.04 5.53 104
MAX4CV 10.53 4.01 2.8 8.13 9.12 12.21 21.92 104
MEAN4CV 6.46 2.3 1.64 49 5.96 7.61 13.1 104
MEDIAN4CV 6.52 2.52 1.69  4.99 6.07 7.47 17.17 104
MIN4SKEW -1.82 0.31 -2 -1.98 -1.94 -1.82 -0.28 104
MAX4SKEW 1.78 0.31 0.11 1.75 1.88 1.96 2 104
MEAN4SKEW -0.06 0.5 -1.37  -0.34 -0.09 0.24 1.18 104
MEDIAN4SKEW  -0.07 0.62 -1.69  -0.38 -0.07 0.24 1.72 104
MIN4D 1.95 3.57 0.00 0.31 0.93 2.26 30.28 104
MAX4D 68.42 69.32 8.37 31.49 50.56 780.10 495.98 104
MEAN4D 25.58 33.77 2.31 10.61 17.47 25.20 274.73 104
MEDIAN4D 24.81 39.62 0.96 8.97 15.70 23.58 351.83 104
MIN4RD 0.09 0.1 0 0.02 0.05 0.11 0.45 104
MAX4RD 49.4 257.96 1.09 8.05 15.98 26.88 2627.72 104
MEAN4RD 233 2.67 0.35 1.15 1.76 2.51 24.7 104
MEDIAN4RD 1.24 0.92 0.16 0.74 1.07 1.35 5.95 104
MIN4RDNOR 0.13 0.14 0 0.03 0.09 0.18 0.58 104
MAX4RDNOR 2.56 0.37 1.07 2.44 2.67 2.81 3 104
MEAN4RDNOR 1.11 0.31 0.43 0.92 1.12 1.28 2.05 104
MEDIAN4RDNOR  1.07 0.4 0.22 0.84 1.08 1.25 227 104
MIN4RDALT 0.1 0.11 0 0.02 0.06 0.13 0.48 104
MAXA4RDALT 53.65 287.9 1.1 8.68 16.19 29.49 2933.56 104
MEAN4RDALT 2.46 2.92 0.37 1.19 1.81 2.61 274 104
MEDIAN4RDALT 1.3 0.98 0.16 0.78 1.12 1.43 6.3 104
MIN4DIFFP 0.46 0.52 0 0.1 0.31 0.6 2.5 104
MAXA4DIFFP 18.1 10.77 3.03 11.85 15.64 20.51 56.74 104
MEAN4DIFFP 6.47 4.92 1.18 3.87 5.34 6.87 26.42 104
MEDIAN4DIFFP 5.98 5.32 0.98 3.21 4.61 6.49 34.35 104
MIN4KURTO -5.39 0.94 -6 -5.94 -5.77 -5.33 -1.12 104
MAX4KURTO 3.75 0.33 227 3.66 3.88 3.95 4 104
MEAN4KURTO 0.17 0.79 -1.07  -0.4 -0.06 0.56 2.41 104
MEDIAN4KURTO 0.71 0.98 -3.63  0.11 0.62 1.3 3.11 104
MIN4SPD 0.03 0.02 0 0.02 0.03 0.05 0.13 104
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Table 18 continued

Predictors Mean Std Min Lower Median Upper Max N
Q. Q

MAX4SPD 0.25 0.12 0.06 0.18 0.21 0.28 0.66 104
MEAN4SPD 0.16 0.07 0.04 0.12 0.14 0.19 0.39 104
MEDIAN4SPD 0.16 0.07 0.04 0.12 0.14 0.17 0.48 104
MIN4KS 11.18 4.58 4.66 8.45 11.24 12.71 36.12 104
MAX4KS 101.52 9991 18.25 49.53 75.09 118.27 862.88 104
MEAN4KS 2221 10.63 9.43 16.22 19.85 25.26 97.28 104
MEDIAN4KS 18.1 7.29 5.9 13.93 17.06 20.66 59.16 104

Note: “Mean”, “Std”, “Min”, “Lower Q.”, “Median”, “Upper Q.”, “Max”, and “N” denote the mean,
standard deviation, minimum, lower quartile, median, upper quartile, maximum, and number of obser-
vations respectively. The value for “MEANBIDS”, “STDBIDS”, “D”, “MIN3D”, “MAX3D”,
“MEAN3D”, "MEDIAN3D”, “MIN4D”, “MAX4D”, “MEAN4D” and “MEDIAN4D” are expressed in
thousand CHF. “KS”, “CV”, “SPD”, “RD”, “RDNOR?”, “RDALT”, “SKEW”, "DIFFP”, “KURTO”, “D”,
“STDBIDS”, “MEANBIDS” and “NBRBIDS” denote the Kolmogorov-Smirnov statistic, the coefficient of
variation, the spread, the relative distance, the normalized distance, the alternative relative distance, the
skewness statistic, the percentage difference, the kurtosis statistic, the difference in absolute between the
first and second lowest bids, the standard deviation of the bids in a tender, the mean of the bids in a tender
and the number of the bids in a tender respectively. For the abbreviations, see also Table 9 in Appendix A

The normalized distance (RDNOR) assumes higher values in collusive periods
than in competitive periods. For example, we find a divergence in the data between
collusive tenders (with a mean of 1.38, a median of 1.24 and a standard deviation of
0.79 in Table 12) and competitive tenders (with a mean of 1.04, a median of 0.87 and
a standard deviation of 0.82 in Table 13). We find similar values for the minima of
the normalized distance (MIN4ARDNOR) between incomplete bid-rigging cartels in
sample 1 (mean of 0.37, median of 0.15, standard deviation of 0.54 in Table 14) and
competitive tenders (with a mean of 0.51, a median of 0.29 and a standard deviation
0f 0.56 in Table 13). The values are more divergent for the maxima (MAX4RDNOR)
between the two types of tender. For the incomplete bid-rigging cartels in sample 1,
we observe a mean of 2.18, a median of 2.37 and a standard deviation of 0.68 in
Table 14, contrasting with competitive periods, which exhibit a mean of 1.62, a
median of 1.74 and a standard deviation of 0.81 in Table 13. The result indicates that
the maxima of the RDNOR could be used to discriminate between incomplete bid-
rigging cartels and competition.
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