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a b s t r a c t 

On social media platforms, true and false information compete. Importantly, some mes- 

sages travel much further than others, even if they concern the same topic. This fact is not 

reflected in models of social learning (or opinion formation) in networks. Our model fills 

this gap by allowing different types of information to have different decay factors and to 

be shared with different networks of people, incorporating asymmetries in sharing behav- 

iors. More “shareable” information then dominates in the long run. This yields a substan- 

tial probability of misinformation, in contrast to the special case of symmetry covered by 

the literature. Asymptotic learning requires a perfect balance between two types of asym- 

metry: the product of decay factor and largest eigenvalue in the respective signal sharing 

networks must coincide. Approaching this balance reduces the speed of convergence and 

enables social learning in the shorter term. Our analysis thus suggests that policy mak- 

ers, who do not know the true state, aim to mitigate asymmetries in signal sharing, e.g. 

by weakening echo chambers or by fostering the shareability of cumbersome, boring mes- 

sages. 
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1. Introduction 

“If it doesn’t spread, it’s dead.” (e.g. henryjenkins.org) 

Misinformation is thriving. This is problematic because it can lead people to make poor decisions and hence generate 

various socially harmful outcomes, such as lower vaccination coverage or dangerous political developments ( Burki, 2019; 

Pennycook and Rand, 2021 ). While there is an ongoing public and scientific debate about how prevalent misinformation 

really is and to which extent it translates into decision making, there seems to be broad consensus that misinformation

exists and should be curbed ( European Commission, 2018; Greene and Murphy, 2021; Grinberg et al., 2019; Lazer et al.,
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2018 ). To evaluate adequate policies in the fight against misinformation, the way it spreads has to be properly understood.

However, there are significant gaps between theoretical models on how people learn from each other and empirical studies 

on how information spreads. 

Models of social learning, which analyze the formation of beliefs on a given issue in social networks, implicitly as- 

sume that all signals are shared in the same manner (see, Golub and Sadler, 2016; Grabisch and Rusinowska, 2020 for

two surveys). In contrast, empirical studies of information diffusion on social media platforms provide ample evidence that 

some messages travel further and are shared in different parts of the network than other messages (e.g. Cheng et al., 2014;

Del Vicario et al., 2016; Goel et al., 2016; Johnson et al., 2020; Vosoughi et al., 2018 ). The reason for such differences in “in-

fectiousness” or shareability seems to be underlying characteristics concerning the form (text, image, video,...) and content 

(emotionally loaded, surprising, disgusting, boring,...) of a message, similar to the study of “newsworthiness” in communi- 

cation studies. Importantly, differences in shareability also occur on the same issue, as it has been shown, e.g. regarding 

vaccination ( Johnson et al., 2020 ). This is highly plausible if we consider that signals supporting and questioning a certain

claim may differ in form and certainly differ in content, as e.g. messages supporting the claim that vaccines cause autism

may create a different emotional response than messages questioning it. 

The goal of this paper is to study how such asymmetries in signal sharing affect social learning and misinformation. We

particularly consider two types of asymmetry when agents share positive , i.e. supporting, and negative , i.e. questioning, sig- 

nals on a given issue: decay asymmetry and network asymmetry. First, positive and negative signals need not be shared to

the same extent ( decay asymmetry ). This is particularly motivated by studies documenting that fact-checked false informa- 

tion travels significantly further than fact-checked true information ( Juul and Ugander, 2021; Vosoughi et al., 2018 ). Second,

positive and negative signals need not be shared with the same people ( network asymmetry ). This is particularly motivated

by studies documenting that some type of information is shared more or less heavily in different parts of a given network,

e.g. some people are sharing more rumors while others are sharing more scientific papers ( Del Vicario et al., 2016; Johnson

et al., 2020; Zollo et al., 2017 ). Decay asymmetry and network asymmetry embody differences in shareability. 

We propose the first model of social learning that admits such differences. It builds on the social learning literature, 

where agents repeatedly share binary signals. Consider an original network that consists of nodes that are interpreted as 

agents and links that are interpreted as possible communication channels between these agents. The (sub)set of links which 

is used to share positive signals on a given issue is captured by a symmetric adjacency matrix and called the positive signal

sharing network ; likewise, we define the negative signal sharing network as the (sub)set of links which is used to share

negative signals). Network asymmetry means technically that these two networks do not coincide, which occurs, e.g. if 

two agents share positive signals while they do not share negative signals on this issue. Moreover, we introduce decay 

asymmetry by two decay factors, one for positive signals and one for negative signals, which admits that the two types of

signals may face different decay when shared. With this model, we investigate how network and decay asymmetry drive 

the probability of misinformation. A particular focus is how the results depend on network size, specifically, whether the 

probability of misinformation converges to zero when the network grows large ( asymptotic learning ). 

We first address the benchmark scenario that both asymmetries are absent. In this scenario of symmetry, the probability 

of misinformation is bounded. Moreover, it converges to zero with increasing network size under a mild condition. The 

condition is well-known from the DeGroot model and means that there are no agents with excessive influence ( Golub and

Jackson, 2010 ). Our analysis of the general case then reveals that the symmetry benchmark is a special case. We establish a

threshold condition that determines which mix of signals will be held in the long run. The condition compares the product

of decay factor and largest eigenvalue between the positive signal sharing network and the negative signal sharing network. 

Asymptotic learning can only occur when the threshold condition is exactly met. Even slight asymmetry is sufficient to cause 

one signal type to fully dominate in the long run (as long as there is at least one of each signal initially), reminding of the

saying “If it doesn’t spread, it’s dead.” As a consequence, the long-run probability of misinformation is substantial, even in 

large networks. The probability of misinformation essentially equals the ex ante probability that the state with the more 

shareable signals turns out to be true. We further show that agents can be ordered according to their ratio of eigenvector

centralities in the two different networks. Those who lean more to the more shareable signal type, i.e. those who are

relatively more central in the network that shares this signal type, are more prone to be misinformed. We then extend the

model to allow agents to have pair-specific relationships, which accommodates heterogeneous subgroups, directed networks 

and idiosyncratic learning; and show that the results still hold. 

While our results provide reasons for misinformation to thrive, they also indicate how misinformation could be miti- 

gated. When asymmetries are mild, speed of convergence is low. As a consequence, information aggregation does take place 

and the probability of misinformation remains low in the short and medium term (before the more shareable signal starts 

to dominate). To mitigate network asymmetry, additional links in the network where the less shareable signal is shared help 

as they always increase its eigenvalue. However, for a given number of links, smaller denser groups have a (much) stronger

effect on the largest eigenvalue than sparser larger groups: the echo chamber effect. Conversely, we show by numerical 

examples that the required decay asymmetry favoring one type of signal needed to compensate for the dominance of the 

other type of signal gets disproportionately large with the existence of such echo chambers. Our results provide a new per-

spective on measures against misinformation. They suggest as general policy implications that asymmetries in shareability 

should be identified and mitigated. Specifically, this might mean to hamper the spread of sensational, catchy messages, e.g. 

by breaking the corresponding echo chambers, and to foster the spread of cumbersome, boring messages, e.g. by making 

them more attractive to share. 
2 
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The remainder of the paper is structured as follows. Section 2 relates it to the literature. We introduce the model in

Section 3 and study the special case of symmetry as a benchmark in Section 4 . Section 5 presents the main results. We

illustrate our results in Section 6 and provide the extension in Section 7 . We discuss policy implications and limitations in

Section 8 . 

2. Related literature 

Our paper belongs to the literature on social learning (or opinion dynamics), where agents repeatedly learn from their 

neighbors in a social network. If agents were fully Bayesian, then perfect information aggregation would occur in any con- 

nected network ( DeMarzo et al., 2003; Mueller-Frank, 2013 ). However, Bayesian rationality is very demanding when it comes 

to learning in a network structure. 2 The classic model of repeated linear updating ( DeGroot, 1974 ) has been studied inten-

sively and it has been extended in many interesting directions ( Banerjee et al., 2019; Buechel et al., 2015; DeMarzo et al.,

2003; Friedkin and Johnsen, 1990; Golub and Jackson, 2010; 2012; Grabisch et al., 2019 ). A main focus is whether the long-

run consensus opinion optimally aggregates the initially dispersed pieces of information. This is satisfied, at least asymptot- 

ically, if there are no individuals with excessive influence on the others ( Golub and Jackson, 2010 ). 3 Our main contribution

is to qualify this conclusion by additional conditions: there must be a balance between different asymmetries (embodied 

by the products of decay factor and largest eigenvalue which must coincide for both networks) and that an agent’s ratio

of centralities between the two networks must be moderate compared to the ratio of centrality concentration in the two 

networks. Both additional conditions happen to be satisfied under symmetry, an implicit assumption that is ubiquitous in 

the theoretical literature, but hard to justify empirically. 

To our knowledge, none of the existing models accommodates asymmetric treatment of signals. Symmetric treatment of 

signals is related to so-called “label neutrality,” which is an underlying assumption of the models in the literature and in fact

a characterizing feature of the DeGroot model ( Molavi et al., 2018 ). We contribute, to our best knowledge, the first model

of social learning that relaxes label neutrality. We do so by addressing network or decay asymmetry in signal sharing. As in

the DeGroot model positive and negative signals are mingled into continuous opinions, it is unclear to us how asymmetries 

could be meaningfully introduced. Instead, we base our model on the baseline model introduced in Sikder et al. (2020) ,

which has the same properties as the DeGroot model in the special case of symmetry, but keeps track of all signals at all

times. 

As we show, the consequences are drastic as either decay or network asymmetry favoring one type of signal can be

sufficient for misinformation. That is, not only is the society’s long-run belief a suboptimal aggregation of the initial signals, 

but all members of the society are likely misinformed and hence would make the wrong decision with high probability.

Similarly drastic conclusions are known in the literature only in the presence of forceful (or biased or stubborn) agents 

who, at some point, do not learn at all but still heavily influence the other agents ( Acemoglu et al., 2010; Azzimonti and

Fernandes, 2018; Della Lena, 2019; Grabisch et al., 2018; Rusinowska and Taalaibekova, 2019; Sikder et al., 2020 ). The policy

implications that can be drawn from these models rather suggest acting on forceful agents and on fighting disinformation. 

Complementary to these insights, we argue that the way signals are shared is crucial for avoiding misinformation. Even in 

the absence of forceful agents, misinformation is likely and policy makers could act on signals’ shareability to fight it. 

Sharing behavior and signal accumulation in our model is closest to Sikder et al. (2020) , in which agents repeatedly

share binary signals in a rather naïve way but with Bayesian-style updating. These authors show that the introduction of 

confirmation bias leads to polarization. While Sikder et al. (2020) mostly focus on regular graphs, we first show for any

connected network that misinformation in this baseline model is bounded and converges to zero under mild conditions. 

We then generalize their baseline model to any network structure and by introducing decay and network asymmetries 

depending on the type of information shared. Our model is also related to Fernandes (2019) and a model variation of

Taalaibekova (2020 , Chapter 3.3) who both consider agents who perceive or receive more positive or more negative signals 

without being aware of it. Despite biased reception or perception of signals, these agents still treat different signals in the

same way, while our agents share positive and negative information asymmetrically. 4 

The justification to consider asymmetries stems from various strands of empirical literature. Most importantly, empirical 

studies of information diffusion on social media platforms including Facebook, LinkedIn, and Twitter document that the 

spread of information items depends on the type of information ( Cheng et al., 2014; Del Vicario et al., 2016; Goel et al., 2016;

Johnson et al., 2020; Vosoughi et al., 2018 ). The information type may not only concern its form (news, videos, pictures,...)

but also its content (e.g. emotional content, surprise, disgust, fear,...), which both make some messages more “infectious”

than others ( Juul and Ugander, 2021 ). Moreover, there is a long history in communication studies investigating information

value to determine which factors influence how “newsworthy” a certain news item is (e.g. Harcup and O’Neill, 2017 ). In
2 As experimental studies reveal, actual behaviors are less often consistent with Bayesian learning than they are with simpler updating rules such as 

repeated averaging ( Chandrasekhar et al., 2020; Corazzini et al., 2012; Friedkin and Bullo, 2017; Grimm and Mengel, 2020 ). 
3 Other sufficient conditions are that there is at least one agent who is perfectly Bayesian ( Mueller-Frank, 2014 ); and that agents additionally receive a 

private signal in each period and treat this signal in a Bayesian manner ( Jadbabaie et al., 2012 ). More generally, there are (relatively weak) conditions on 

non-Bayesian learning which are sufficient for learning the true underlying state in the long run ( Molavi et al., 2018 ). 
4 Moreover, decay in a framework of naïve learning, has been considered recently by Grabisch et al. (2021) who consider decay of social influence, while 

we consider decay of information. 

3 
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particular, news stories are more attractive if they are surprising, or contain particularly good or bad news. Marketing studies 

have come to the same conclusions regarding the importance of emotional content, may it be positive or negative, for a post

to “go viral” (e.g. Berger and Milkman, 2012 ). Finally, in the framework of the spread of competing viruses, the rate at which

people become infected and at which they recover determines which virus will dominate, a result that is also motivated by

the spread of information (e.g. Prakash et al., 2012 ). 

All of these strands of empirical literature show that the extent to which some piece of information is shared depends on

its properties that are summarized as “infectiousness”, “newsworthiness,” “virality”, or simply shareability . Moreover, they 

suggest that shareability may well differ between messages that concern the same topic, which is the motivation of our 

model. 

3. A model of asymmetric signal sharing 

Ingredients There are n agents N = { 1 , . . . , n } who talk about a binary issue. One classic example is whether vaccines

cause autism; new examples are popping up every day. To model uncertainty, nature draws the true state with a commonly

known prior probability and then each agent receives a signal. Specifically, the true state θ ∈ { 0 , 1 } is drawn with prior

probability b + = P (θ = 1) ∈ (0 , 1) . As a convention, we call state θ = 1 the positive state and θ = 0 the negative state. Each

agent i independently receives signal s i ∈ { 0 , 1 } which matches the true state with probability ρ , i.e. P (s i = 1 | θ = 1) = P (s i =
0 | θ = 0) = ρ ∈ ( 1 2 , 1) . Conditional on the state, the signals are independent. Continuing with our convention, we call signal

1, i.e. a signal that indicates state θ = 1 , a positive signal and 0 a negative signal. These two types of signals may differ in

relevant characteristics, e.g. information indicating that vaccine causes autism may be more or less emotionally loaded than 

information indicating the opposite state. 

Time is discrete t = 0 , 1 , 2 , . . . . At time t = 0 , the initial signals are received. At each time step t > 0 , agents communicate

with their neighbors in a social network, as specified below. We model this communication activity in a way that admits

asymmetric treatment of positive and negative signals since sharing behavior between the two types of messages might 

differ. 

When a signal is passed on from one agent to the next, it decays by δ+ ∈ (0 , 1] if it is positive and by δ− ∈ (0 , 1] if it is

negative. Decay can be either (i) due to senders who only share a fraction δ+ of their signals, (ii) due to the signal’s ability

to travel through the communication channel where a fraction 1 − δ+ gets lost, or (iii) due to the recipients who discount

the received signals by δ+ . 5 If, for any reason, δ+ � = δ−, there is decay asymmetry . 

Positive signals are shared in a network (N, A 

+ ) , negative signals in a network (N, A 

−) , where A 

+ and A 

− are both sym-

metric n × n matrices with entries 0 or 1, i.e. adjacency matrices representing each an undirected unweighted network. We 

assume that both these networks are connected, which implies that the matrices are irreducible. As an interpretation, con- 

sider one single original network consisting of all possible communication channels between the fixed set of agents. Then 

the (sub)set of links which are used to share positive signals are represented by A 

+ and the (sub)set of links which are used

to share negative signals are represented by A 

−. If, for any reason, A 

+ � = A 

−, there is network asymmetry . 

Signal Accumulation Given these ingredients, we can now formulate how signals are shared and accumulated. Let N 

+ 
i 
(t) 

denote number of positive signals of node i at time t and let N 

+ (t) be the ( n × 1 )-vector. The law of motion for positive

signals is 

N 

+ (t) = (I + δ+ A 

+ ) N 

+ (t − 1) . (1) 

Hence, the number of agent i ’s positive signals in a given period is the number of positive signals i held in the previous

period plus the number of positive signals that i ′ s neighbors in network A 

+ held in the previous period discounted by δ+ .
For the negative signals the law of motion and the notation is fully analogous. N 

−(t) is the vector of negative signals and

the law of motion is N 

−(t) = (I + δ−A 

−) N 

−(t − 1) . Let N 

+ (0) and N 

−(0) be the vectors of initial signals, i.e. N 

+ (0) = s and

N 

−(0) = 1 − s . Given the initial signals and the law of motion, we can compute the number of signals of any agent at any

time. The signal accumulation for positive signals is 

N 

+ (t) = (I + δ+ A 

+ ) t s. (2) 

Technically, the entries in the matrix (I + δ+ A 

+ ) t can be considered as the number of walks of length t or smaller, when

the network A 

+ is augmented by self-loops (ones on the diagonal); thereby each walk is discounted by δ+ at any step,

except when using a self-loop. A less technical interpretation is that agents share all the positive signals that they have with

their neighbors in the positive signal sharing network; and whenever signals are passed on only a fraction δ+ arrives at the

recipient. And analogously for negative signals. 

Signal Mixes and Misinformation An agent’s signal mix is the fraction of positive signals that i holds, i.e. 

x i (t) := 

N 

+ 
i 
(t) 

N 

+ (t) + N 

−(t) 
, (3) 
i i 

5 In Online Appendix C.2, we show that all three interpretations can be explicitly modeled and are captured in a reduced form in our model with one 

parameter δ+ . All Online Appendices are permanently available here: www.berno.info under the name MisInfo_SupplementaryOnlineMaterial.pdf. In an 

extension of the model, we will study pair-specific decay factors which admit heterogeneity in behavior of senders, communication channels, or recipients 

( Section 7 ). 
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and the vector x (t) contains all agents’ signal mixes at time t . 

To measure misinformation, we assess whether an agent has received more false signals than true signals, where a 

signal is called true if it indicates the true state and false if it indicates the other state. Hence, we consider an agent i to

be misinformed if her signal mix satisfies x i (t) < 0 . 5 when the true state is θ = 1 or if x i (t) > 0 . 5 when the true state is

θ = 0 . Agents with x i (t) = 0 . 5 are considered as misinformed with probability 0.5. While it is thinkable that an agent who

is misinformed according to this definition still holds a belief that is accurate, this is implausible for prior belief b + = 0 . 5

and, for any prior belief, it becomes less and less plausible over time. When x i (t) converges to a value not equal to 0.5, then

the difference between positive and negative signals grows arbitrarily large as more and more signals are acquired. Hence, 

an agent who is misinformed according to our definition, is prone to hold an inaccurate belief and to make a poor decision.

We define p Mis 
i 

(t) as agent i ′ s probability of misinformation at time t from an ex ante perspective, i.e. before the true state

and the initial signals are realized. Initially, at t = 0 , an agent is misinformed with probability p Mis 
i 

(0) = 1 − ρ < 0 . 5 , as ρ
is the probability that the received signal matches the true state. The long-run probability of misinformation is denoted by 

p Mis 
i 

(∞ ) := lim t→∞ 

p Mis 
i 

(t) and will be characterized in the next sections. 

Besides analyzing networks of given size n , we also study how the probability of misinformation depends on the network

size. For this purpose, we consider sequences of growing networks ( n → ∞ ), where size-dependent quantities are denoted

by an additional index n , e.g. adjacency matrices are denoted by A 

+ 
n and A 

−
n and the long-run probabilities of misinformation

are denoted by p Mis 
i,n 

(∞ ) . At each element of such a sequence, the model as defined above applies, while the prior b + and

the signal quality ρ stay unchanged and the realization of true state and signals is independent across networks. 

4. Benchmark: misinformation under symmetry 

To assess the effects of decay and network asymmetry, a natural benchmark is, of course, the special case of symmetry :

δ+ = δ− =: δ and A 

+ = A 

− =: A . This is a generalization of the baseline model introduced in Sikder et al. (2020) , which our

model nests for δ = 1 . In the original article by Sikder et al. (2020) , the focus is on regular networks (N, A ) , that are char-

acterized by each node having the same degree. 6 Regular networks happen to minimize the probability of misinformation, 

as our Proposition 1 below implies. More importantly, this result shows that the probability of misinformation is always 

bounded under symmetry. Let λ1 be the largest eigenvalue of A . 7 Let c = (c 1 , . . . , c n ) 
� be its corresponding eigenvector, nor-

malized such that its components sum to one, i.e. Ac = λ1 c and 

∑ 

i c i = 1 . 8 Entries in the eigenvector c are a measure of

eigenvector centrality ( Bonacich, 1972; Friedkin, 1991 ). 

Proposition 1 (Symmetry) . Under symmetry, the long-run signal mix is a convex combination of the initial signals s j with

weights according to eigenvector centrality, i.e. for all i , lim 

t→∞ 

x i (t) = 

∑ n 
j=1 c j s j . Therefore, the probability of long-run misinforma-

tion p Mis 
i 

(∞ ) is bounded from above by 0.5. Moreover, if for some sequence of growing networks, indexed by network size n , we

have lim 

n →∞ 

max 
j=1 , ... ,n 

c j,n = 0 , then the probability of long-run misinformation converges to zero, i.e. for all i , lim 

n →∞ 

p Mis 
i,n 

(∞ ) = 0 . 

The proofs of this proposition and of all other results are collected in Appendix A . Proposition 1 means that misinfor-

mation under symmetry only occurs due to an unlucky distribution of signals. It depends on the relative influence of each

agent on the long-run opinions, as measured by her entry in the largest eigenvector. In the best case, all agents, who are by

assumption equally well-informed, are equally influential. 9 This is satisfied in regular graphs, in which by definition every 

agent has the same degree. Then the long-run signal mix of every agent exactly reflects the initial signal distribution, i.e.

lim 

t→∞ 

x i (t) = 

1 
n 

∑ n 
j=1 s j , which is just the mean of the initial signals. Hence, under symmetry and when the network is regular,

naïve agents who accumulate the same signals over and over again can fare equally well as Bayesians would (as we discuss

in Example C.1 in Online Appendix C.1). In the worst case, there is a group of agents who are overly influential (as discussed

in Example C.2 in Online Appendix C.1). 

The probability of misinformation in these two extreme cases is illustrated in Fig. 1 , with the lowest and highest line

(“Best” and “Worst”). In addition, the figure reports the probability of misinformation from simulations with two classes of 

random networks: Erdös-Rényi (ER), in which the probability of every link is fixed ( p), and Barabasi-Albert (BA) where in

every step of constructing the network, m new links are created. The thickness of the two lines represents the variation of

misinformation that covers 50% of all simulation runs (from 25th to 75th percentile). Selecting parameters ( p and m ) such

that the two random networks have the same expected density, it is expected that the probability of misinformation tends 

to be higher in the BA random networks since their degree distribution is more skewed than that in ER random graphs. The

simulations confirm this. Moreover, Fig. 1 illustrates that misinformation for the two classes of random graphs is closer to 

the regular graph’s. In particular, we observe that the probability of misinformation decreases with network size n . Relatedly, 
6 Sikder et al. (2020) find polarization in an extension of their model, in which they introduce agents with confirmation bias. 
7 More precisely, λ1 is the largest positive eigenvalue of A and other eigenvalues of A might exist which are as large in absolute value as λ1 . For ease of 

reading, we usually omit ‘positive’ when addressing largest positive eigenvalues. 
8 Recall that by assumption the adjacency matrix is symmetric. Hence, there is no need yet to distinguish between left-hand and right-hand eigenvectors. 
9 More generally, the requirement is a balance between idiosyncratic signal precision and social influence (see, e.g. Buechel et al., 2015 ). 

5
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Fig. 1. Misinformation under symmetry: comparing different network structures. Notes: Signal precision ρ = 0 . 6 . Number of nodes n = 10 , . . . , 100 on the 

x-axis. Random graph parameters are set such that asymptotic average degree is 6 in these simulation runs. 1,0 0 0 simulation runs per class of random 

network of a given size. Thickness of corresponding line represents variation covering 50% of all outcomes (from 25th to 75th percentile). 

 

 

 

 

 

Proposition 1 , provides a formal condition for asymptotic learning: in a sequence of growing networks, the probability of 

long-run misinformation vanishes if the largest eigenvector centrality converges to zero. 

The results in this section closely resemble those of the common DeGroot model of naïve learning. In Online Ap- 

pendix C.4, we describe the similarities and differences of these two models and their results in some detail. Importantly, in

the DeGroot model positive and negative signals are mingled into continuous opinions, while our model of naïve learning 

keeps track of all signals. As a consequence, we can use our model to study asymmetries in signal sharing, as we do next. 

5. Results 

5.1. Key result 

We now study how misinformation in the long run is affected by asymmetric treatment of signals. Decay asymmetry is 

captured simply by its two parameters δ+ and δ−. For network asymmetry, the adjacency spectrum of the two matrices A 

+ 

and A 

− matters. Analogously to before, let λ+ 
1 

be the largest eigenvalue of A 

+ . Let c + = (c + 
1 
, . . . , c + n ) 

� be its corresponding

eigenvector, normalized such that its components sum to one, i.e. A 

+ c + = λ+ 
1 

c + and 

∑ 

i c 
+ 
i 

= 1 . And likewise λ−
1 

and c − are

the largest eigenvalue and its normalized eigenvector of A 

−, i.e. A 

−c − = λ−
1 

c − and 

∑ 

i c 
−
i 

= 1 . Entries in the eigenvectors c + ,
c − are the respective eigenvector centrality. 

Proposition 2 (Key Result) . Suppose that the initial distribution of signals contains at least one positive and at least one negative

signal. 

1. If δ+ λ+ 
1 

< δ−λ−
1 

, then for all i and large t: 

x i (t) ≈ c + 
i 

c −
i 

(
1 + δ+ λ+ 

1 

1 + δ−λ−
1 

)t ∑ n 
k =1 ( c 

−
k 
) 2 ∑ n 

k =1 ( c 
+ 
k 
) 2 

∑ n 
j=1 c 

+ 
j 

s j 

1 − ∑ n 
j=1 c 

−
j 

s j 

such that lim 

t→∞ 

x i (t) = 0 . 

2. If δ+ λ+ 
1 

> δ−λ−
1 

, then for all i and large t: 

x i (t) ≈ 1 − c −
i 

c + 
i 

(
1 + δ−λ−

1 

1 + δ+ λ+ 
1 

)t ∑ n 
k =1 (c + 

k 
) 2 ∑ n 

k =1 (c −
k 
) 2 

1 − ∑ n 
j=1 c 

−
j 

s j ∑ n 
j=1 c 

+ 
j 

s j 

such that lim 

t→∞ 

x i (t) = 1 . 

3. If δ+ λ+ 
1 

= δ−λ−
1 

, then for all i : 

lim 

t→∞ 

x i (t) = 

1 

1 + 

c −
i 

c + 
i 

∑ n 
k =1 (c + 

k 
) 2 ∑ n 

k =1 (c −
k 
) 2 

1 − ∑ n 
j=1 c 

−
j 

s j ∑ n 
j=1 c 

+ 
j 

s j 

∈ (0 , 1) . 
6
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The proposition states that the combination of decay factor and largest eigenvalue, δ+ λ+ 
1 
≶ δ−λ−

1 
, determine which sig- 

nals dominate in the long run, given that there is at least one of each signals. Intuitively, the condition for Case 1, requires

that the decay factor for positive signals δ+ is low compared to the decay factor with negative signals δ−, which means

that positive signals are shared to a lower extent; and that the eigenvalue λ+ 
1 

of the positive signal sharing network A 

+ 

is low compared to λ−
1 

, which has the interpretation that the agents are generally better connected in the negative signal

sharing network A 

−. In the knife-edge case, Case 3, decay and network asymmetry compensate each other: δ+ 
δ− = 

λ−
1 

λ+ 
1 

; and

the distribution of initial signals matters for the long-run signal mixes. This case also nests the symmetry benchmark. While 

in the symmetry benchmark the common decay factor δ did not affect the long-run opinions, decay factors δ+ and δ− are 

crucial for the case distinction under asymmetry. 

In Case 1, there are four factors that determine asymptotic behavior: 

x i (t) ≈ c + 
i 

c −
i ︸︷︷︸ 

centrality ratio 

·
(

1 + δ+ λ+ 
1 

1 + δ−λ−
1 

)t 

︸ ︷︷ ︸ 
exponential decay 

·
∑ n 

k =1 (c −
k 
) 2 ∑ n 

k =1 (c + 
k 
) 2 ︸ ︷︷ ︸ 

concentration ratio 

·
∑ n 

j=1 c 
+ 
j 

s j 

1 − ∑ n 
j=1 c 

−
j 

s j ︸ ︷︷ ︸ 
signal averages 

(4) 

The first is agent-specific, the three latter factors are common for all agents in a given society. The first factor shows that

agent i ’s characteristics enter her asymptotic signal mix x i (t) via her ratio of eigenvector centrality in the positive signal

sharing network over her centrality in the negative signal sharing network: 
c + 

i 

c −
i 

. We will refer to this as i ’s centrality ratio . The

second factor shows the exponential decay process, which depends on the (information) decay factors δ+ and δ−, as well as

on the largest eigenvalues of the two networks. The next factor is the inverse ratio of the sums of squared centralities. This

can be considered as the relative concentration (or centralization) of the networks. Indeed, the larger the sum of squared 

centralities, the more centrality is concentrated on a few agents, while this sum is minimal in regular networks (where every

agent’s centrality is equal to 1 
n ). The last factor is determined by weighted averages of the initial signals, whereas the weights

are the eigenvector centralities. The centrality ratio will determine opinion diversity, the exponential decay will determine 

speed of convergence, the weighted signal averages will determine the levels of the signal mixes. For Case 2, the factor

decomposition is analogous. In Case 3, opinion diversity is also determined by the centrality ratio, whereas misinformation 

depends on the concentration ratio, as further discussed below. 

5.2. Implications 

Through the key result, we can derive implications regarding the probability of misinformation, the diversity of opinions, 

and the speed of convergence. 

Probability of Misinformation Trivially, when all signals happen to be correct, which occurs with probability ρn , there is 

never misinformation, while when all signals happen to be false, which occurs with probability (1 − ρ) n , there is always

misinformation. All remaining cases are covered by Proposition 2 . As a consequence, we receive the following main result. 

Corollary 1 (Probability of Misinformation) . 

1. If δ+ λ+ 
1 

< δ−λ−
1 

, then each agent i ’s probability of long-run misinformation is 

p Mis 
i (∞ ) = (1 − b + )(1 − ρ) n + b + (1 − ρn ) , 

which is essentially b + for large networks. 

2. If δ+ λ+ 
1 

> δ−λ−
1 

, then each agent i ’s probability of long-run misinformation is 

p Mis 
i (∞ ) = (1 − b + )(1 − ρn ) + b + (1 − ρ) n , 

which is essentially 1 − b + for large networks. 

3. If δ+ λ+ 
1 

= δ−λ−
1 

, 

then an agent i ’s probability of long-run misinformation is bounded by 

p Mis 
i (∞ ) ≤ max { (1 − b + )(1 − ρ) n + b + (1 − ρn ) , (1 − b + )(1 − ρn ) + b + (1 − ρ) n } < max { b + , 1 − b + } . 

The intuition behind the first two parts of Corollary 1 is simple. Consider Case 1. According to Proposition 2 , negative

signals dominate in the long run given that there is at least one negative signal initially. Hence, the probability of long-

run misinformation equals the the probability that the positive state is realized while there is at least one negative signal,

b + (1 − ρn ) , plus the probability that the negative state is realized while there are only positive signals, (1 − b + )(1 − ρ) n .

For growing network size n , this probability converges (quickly) to b + . That is, when negative signals are more shareable

(Case 1), then the long-run probability of misinformation is essentially the probability that the true state is the positive 

state. 

For equal prior b + = 0 . 5 , a setting that many models in the literature focus on, the probability of misinformation is

essentially 0.5 in both Case 1 and Case 2. Hence, there is substantial misinformation independent of whether positive or 
7 
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negative signals are more shareable. The reason is that, despite the initially informative distribution of signals, one of the 

two signals will fully dominate in the long run (“if it doesn’t spread, it’s dead”), while both states are equally likely. For

b + > 0 . 5 ( b + < 0 . 5 ) misinformation is even more likely in Case 1 (in Case 2). The interpretation is that the positive state

has a higher ex ante probability of being true ( b + > 0 . 5 ), while negative signals have a higher shareability (Case 1). Such a

scenario can naturally arise, e.g. because signals indicating the ex ante less likely state are more sensational and hence tend

to be shared more and decay less. The opposite scenario is also well thinkable: it could be that the ex ante more likely state

is indicated by signals which are more plausible or for some other reason are shared more and decay less. However, even

then the probability of misinformation is converging to b + > 0 or 1 − b + > 0 and hence does not converge to zero for large

networks. 

Concerning Case 3, Corollary 1 provides an upper bound for the probability of misinformation, showing that it is always

weakly lower than in the worse case of Case 1 or Case 2. 10 

We now study the conditions under which the probability of misinformation converges to zero for large networks. Con- 

sider a sequence of growing networks, n as defined in the last paragraph of Section 3 . Proposition 3 provides a necessary

condition and a set of sufficient conditions for asymptotic learning. 

Proposition 3 (Asymptotic Learning) . Consider a sequence of growing networks, indexed by network size n . 

1. If some agent i ’s probability of long-run misinformation converges to zero ( lim 

n →∞ 

p Mis 
i,n 

(∞ ) = 0 ), then the products of decay

factor and largest eigenvalue of the two networks coincide from a certain point in time on, i.e. there is a natural number n ∗

such that δ+ 
n λ1 (A 

+ 
n ) = δ−

n λ1 (A 

−
n ) for all n > n ∗. 

2. For a fixed agent i the probability of long-run misinformation converges to zero ( lim 

n →∞ 

p Mis 
i,n 

(∞ ) = 0 ) if the following three

conditions are all satisfied: 

(i) The products of decay factor and largest eigenvalue of the two networks coincide from a certain point in time on, i.e. there

is a natural number n ∗ such that δ+ 
n λ1 (A 

+ 
n ) = δ−

n λ1 (A 

−
n ) for all n > n ∗. 

(ii) Maximal eigenvector centrality in both networks converges to zero, i.e. lim 

n →∞ 

max 
j=1 , ... ,n 

c + 
j,n 

= 0 and lim 

n →∞ 

max 
j=1 , ... ,n 

c −
j,n 

= 0 . 

(iii) The agent’s centrality ratio over the two networks’ concentration ratio has all accumulation points in the open interval (
1 −ρ
ρ , 

ρ
1 −ρ

)
, i.e. there is a positive real number ε > 0 and an integer n ∗∗ such that for all n ≥ n ∗∗, 

γi,n := 

c + 
i,n 

c −
i,n ∑ n 

k =1 (c + 
k,n 

) 2 ∑ n 
k =1 (c −

k,n 
) 2 

∈ 

[ 
1 − ρ

ρ
+ ε, 

ρ

1 − ρ
− ε 

] 
. (5) 

In its first part Proposition 3 shows that asymptotic learning necessarily requires that the condition of the knife-edge 

case, Case 3, is always satisfied after some point. Otherwise, we would have infinitely many occurrences of Case 1 or Case 2,

which would imply that the sequence p Mis 
i,n 

(∞ ) would not converge to zero. In other words: if the two types of asymme-

try are not in perfect balance, then the probability of misinformation does not vanish for any agent. The second part of

Proposition 3 provides sufficient conditions on top of this first requirement: (ii) all agents’ influence is vanishing; and (iii)

the agent’s centrality ratio, in relation to the networks’ concentration ratio, is in a moderate range. To understand the last

condition, consider an agent i with low centrality ratio (relative to the concentration ratio), γi,n ≤ 1 , which means that this

agent leans more towards negative signals than others. Now, if γi,n < 

1 −ρ
ρ < 1 , her tendency to negative signals is not mod-

erate and she will behave like all agents in Case 1, letting negative signals dominate, and be misinformed with probability

b + in large networks. If, in contrast, her tendency is moderate, 1 −ρ
ρ < γi,n < 1 , and the two other conditions are satisfied,

she will incorporate signals of both kinds and eventually learn the true state with high probability. Analogously for γi,n > 1 .

The condition on moderate centrality ratios is less demanding for large ρ and it is always satisfied in the special case of

symmetry, which implies γi,n = 1 ; and the condition (i), that we are in Case 3, in the first place. 

While long-run misinformation is bounded in the symmetric benchmark and converges to zero for most networks when 

they become large ( Section 4 ), introducing even slight asymmetry is sufficient to induce substantial levels of long-run mis-

information even for large networks, as Corollary 1 and Proposition 3 in this subsection show. 

Opinion Diversity 

Proposition 2 already indicates that individual differences between agent’s beliefs are driven by their centrality ratio 
c + 

i 

c −
i 

. The following corollary of it establishes this relation, considering two agents’ ratios of positive over negative signals, 

N + 
i 

(t) 

N −
i 

(t) 

/ N + 
j 
(t) 

N −
j 
(t) 

. 11 Clearly, if an agent’s ratio of positive over negative signals is above another agent’s ratio, then her signal mix

is higher, i.e. closer to the positive state. 
10 Indeed, there are networks where agents in Case 3 are equally prone to misinformation as in Case 1 (Case 2) because they always converge to a signal 

mix below (above) 0.5 given that there is at least one signal of each type signal initially. 
11 Notice that agent i ’s ratio of positive over negative signals, 

N + 
i 
(t) 

N −
i 
(t) 

, can equivalently be written as x i (t) 
1 −x i (t) 

. 

8 
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Corollary 2 (Centrality Ratios and Opinion Diversity) . Suppose that the initial distribution of signals contains at least one pos- 

itive and at least one negative signal. Then the ratio of two agents’ ratios of positive over negative signals converges to these

agents’ ratio of centrality ratios, i.e. 

lim 

t→∞ 

N 

+ 
i 
(t) 

N 

−
i 
(t) 

/ N 

+ 
j 
(t) 

N 

−
j 
(t) 

= 

c + 
i 

c −
i 

/ c + 
j 

c −
j 

. (6) 

Hence, an agent i with higher centrality ratio than another agent j has a higher asymptotic signal mix, i.e. if 
c + 

i 

c −
i 

> 

c + 
j 

c −
j 

(or

equivalently, γi > γ j when using the definition from Eq. (5) ), then for large t, x i (t) > x j (t) . 

Corollary 2 applies to all three cases of Proposition 2 . It means that, even if signal mixes converge to consensus in Cases

1 and 2, they are ordered by the centrality ratios. In Case 3, this order also holds and opinion diversity even persists in the

limit, as Example 1 below will show. 

Minimal opinion diversity is given in all networks where 
c + 

i 

c −
i 

is constant across agents, which holds in particular, if A 

+ =
A 

−. Corollary 2 then implies that all agents approach the same signal mix and opinions converge to consensus. We have

seen this in the symmetry benchmark ( Section 4 ), where the positive and negative signal sharing network coincide by

assumption. In contrast, strong opinion diversity emerges in networks where the centrality ratios differ strongly across 

agents. For example, consider two star networks (N, A 

+ ) and (N, A 

−) with different agents at the center. The ratio of one

center is 
c + 

i 

c −
i 

= 

√ 

n −1 
1 , the ratio of the other center 

c + 
j 

c −
j 

= 

1 √ 

n −1 
. Hence, by Corollary 2 , 

N + 
i 

(t) 

N −
i 

(t) 

/ N + 
j 
(t) 

N −
j 
(t) 

converges to n − 1 . That is,

agent i has asymptotically n − 1 times more positive signals over negative signals than agent j. Again, this holds in all of

the three cases, even if the differences in signal mix vanish for large t . 

With respect to misinformation, Corollary 2 first implies that if, for instance, the true state is positive ( θ = 1 ) and some

agent i is misinformed in the long run x i (∞ ) < 0 . 5 , then all agents with lower centrality ratios must be as well. Moreover,

agents with relatively low centrality in the positive signals network, i.e. γi < 1 , are more prone to be misinformed in the

long run if b + >> 0 . 5 . Comparative-statics further show that i ’s probability of misinformation is then weakly increasing in

b + : as she leans towards negative signals, she is more often misinformed when the positive state is ex ante more likely. 12 

The implications are analogous for agents with a relatively high centrality in the positive signals network. Finally, the order 

of the signal mixes will have consequences for the probability of misinformation in the shorter term as well. 

Speed of Convergence 

The motivation for studying misinformation is that agents make decisions, which may be based on inaccurate informa- 

tion. If the point of decision making is not far in the future, then the short or medium term opinion dynamics matter. Speed

of convergence can also be measured with the help of Proposition 2 . For instance, in Case 1, the speed of convergence is

governed by the speed that the exponential decay factor 

(
1+ δ+ λ+ 

1 

1+ δ−λ−
1 

)t 

converges to 0 (see also Eq. (4) ). Looking for the half-

life, as it is standard for exponential decay processes, we define t 1 / 2 as the number of periods it takes for this quantity to

fall to one half of its initial value. Thus, we obtain half-life in Cases 1 and 2 as another Corollary of Proposition 2 . 

Corollary 3 (Speed of Convergence) . Suppose that δ+ λ+ 
1 

� = δ−λ−
1 

. Then half-life is 

t 1 / 2 = 

log (0 . 5) 

log (τ ) 
, with τ := 

1 + min { δ+ λ+ 
1 
, δ−λ−

1 
} 

1 + max { δ+ λ+ 
1 
, δ−λ−

1 
} . (7) 

Half-life will be large when δ+ λ+ 
1 

and δ−λ−
1 

are close to each other, i.e. when we are close to Case 3. In some sense,

Case 3 can be considered as unlikely because it is a special case of the parameter space. Still, it is important to study this

case for at least two reasons. First, in the absence of asymmetry – the special case that has been studied in the literature

– we are in Case 3, as it was discussed in Section 4 . Second, under certain conditions, opinions in the short and medium

term are well approximated by the analysis of Case 3, even if this does not hold in the long run. 13 

Concerning misinformation, this might mean that the low levels of misinformation, which are typical for Case 3, can be 

held for a while before the unfavorable long-run properties of Cases 1 and 2 unfold. 14 An illustration helps. 

6. Illustration 

6.1. Illustration of key result and implications 

Example 1 illustrates Proposition 2 and Cororallies 1 –3 . 
12 It is possible that the probability of misinformation is increasing (decreasing) in b + for all i . Typically for Case 3, however, it will be increasing in b + 

for some agents and decreasing in b + for others, as some agents’ centrality ratio will be above the concentration ratio and the other agents’ will be below. 
13 Conditions are discussed in Online Appendix C.3. 
14 Moreover, it seems to be a rule of thumb that this is particularly true for those with γi tending to the signals which will not dominate in the long 

run: agents with moderate or moderately small γi in Case 2 and agents with moderate or moderately large γi in Case 1. The reasons is that, by Corollary 2 , 

these agents’ signal mixes tend to be less extreme than those of the agents who already lean toward the state that has the more shareable signals. 

9 
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Fig. 2. Illustration of results. Notes: Dynamics of signal mixes in Example 1 over time. Agent 1, illustrated by the black dashed line, is the center in the 

negative signal sharing network. The first four panels with δ+ < 0 . 4 belong to Case 1 of Proposition 2 . The middle panel with δ+ = 0 . 4 yields Case 3. The 

last four panels with δ+ > 0 . 4 belong to Case 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 1. Consider five agents N = { 1 , 2 , 3 , 4 , 5 } . The positive signal sharing network (N, A 

+ ) is the complete network, i.e.

a + 
i j 

= 1 for all i � = j. The negative signal sharing network (N, A 

−) is a star network with Agent 1 at the center, i.e. a −
1 j 

= a −
j1 

= 1

for all j = 2 , 3 , 4 , 5 and a −
i j 

= 0 else. 15 We fix the decay factor of negative signals to be δ− = 0 . 8 , whereas we vary the decay

factor of the positive signals. 

Proposition 2 distinguishes three cases based on the condition δ+ λ+ 
1 
≶ δ−λ−

1 
. In the complete network, we have λ+ 

1 
= 

n − 1 = 4 . In the star network, we have λ−
1 

= 

√ 

n − 1 = 2 . Hence, w e are in Case 3 of Proposition 2 if δ+ = 0 . 4 , in Case 1 if

δ+ < 0 . 4 , and in Case 2 if δ+ > 0 . 4 (indeed, δ+ λ+ 
1 

= 0 . 4 · 4 = 0 . 8 · 2 = δ−λ−
1 

yields Case 3). The corresponding dynamics of

signal mixes is illustrated in Fig. 2 for the signal distribution s = (0 , 0 , 1 , 1 , 1) and for values of parameter δ+ close to the

equality threshold of 0.4. The first four panels belong to Case 1 of Proposition 2 , where signal mixes converge to 0. The

last four panels belong to Case 2, where signal mixes converge to 1. The middle panel induces Case 3 by setting δ+ = 0 . 4 .

Interestingly, in that case ( δ+ = 0 . 4 ) Agent 1, the center of the star network, receives more negative signals than positive

signals as x 1 (∞ ) < 0 . 5 , which does not hold for the other agents as x i (∞ ) > 0 . 5 for i = 2 , 3 , 4 , 5 . 

To illustrate opinion diversity, established in Corollary 2 , we compute eigenvector centralities: c + 
1 , 2 , 3 , 4 , 5 

= 

1 
5 , c −

1 
= 

1 
3 and

c −
2 , 3 , 4 , 5 

= 

1 
6 . The centrality ratios 

c + 
i 

c −
i 

for the four agents are hence ( 3 5 , 
6 
5 , 

6 
5 , 

6 
5 , 

6 
5 ) . In words, the first agent has a smaller

relative importance in the positive network relative to the negative network than all other agents. The reason is that this

agent, as the center of the star network, is better connected in the negative signal sharing network than the others, while

all agents are equally well-connected in the positive signal sharing network, the complete network. By Corollary 2 , this

implies that this agent’s signal mix will asymptotically always be closer to 0 than those of the other agents: x 1 (t) < x i (t) ,

for i = 2 , 3 , 4 , 5 . In all panels of Fig. 2 this can be observed as Agent 1’s signal mix is below the others’ signal mix, even if

they converge to 1 or 0. Finally, observe that, in line with Corollary 3 , convergence is slower the closer the parameter δ+ to

the critical value that induces Case 3. 

Let us now consider misinformation, as established by Corollary 1 . For this purpose we relax the assumption of a specific

signal realization and return to the ex ante perspective. Figure 3 shows the probability of misinformation over time for the

setting b + = 0 . 6 (i.e. the positive state is slightly more likely than the negative state) and information quality ρ = 0 . 8 . In

Case 3 the probability of misinformation decreases quickly and remains on the low level. This is due to learning of each

other’s signals with an aggregation that is balanced. In contrast, in Case 1 the probability of misinformation will settle on

(1 − b + )(1 − ρ) n + b + (1 − ρn ) , which is generally close to b + and only reduced by the possibility that all initial signals are

correct (which happens here relatively frequently as n = 5 and ρ = 0 . 8 ). Likewise in Case 2, the probability of misinformation

will settle below 1 − b + , which is better than in Case 1 because the positive state, which is reached in Case 2, has a higher ex
15 For illustration purpose, one can think of five colleagues who discuss the rumour that their company has been sold to a competitor. All of them share 

information that speak against this theory while they exchange information supporting this claim with only one person, Agent 1. 

10 
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Fig. 3. Probability of Misinformation in Example 1 . Notes: Probability misinformation in Example 1 over time. Agent 1 is the center in the negative signal 

sharing network. Agent 2-5 are in structurally equivalent positions. In each panel, the dotted lines indicate the levels of the probability of misinformation 

initially and in the long run in Cases 1 and 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ante probability: b + = 0 . 6 . In both Case 1 and Case 2, the long-run probability of misinformation is substantial. Importantly,

even in Case 1 and 2, there is a low level of misinformation that is quickly reached. How long this can be sustained, then

depends on the extent of asymmetry: the more moderate the asymmetry, i.e. the closer we are to the threshold (which

is here obtained at δ+ = 0 . 4 ), the longer the low level of misinformation can be sustained. Moreover, we can observe that

Agent 1, who tends to negative signals, tends to be more often misinformed than the other agents in Case 1, where negative

signals dominate eventually, but not in Case 2, where positive signals dominate eventually. 

Since Example 1 is restricted to n = 5 , we finally look at some larger networks. 

6.2. Decay asymmetry vs. network asymmetry 

To illustrate how additional links in the positive signal sharing network A 

+ can compensate for decay favoring negative 

signals (or inversely), we use the following construction. We generate a graph with 250 random links on n = 100 agents. 16 

We keep it and call it A if it is connected. The network of negative signals is then fixed to A 

− = A . The network of positive

signals A 

+ also consists of all links in A , but has α+ additional links. Because, by construction, A 

− is a subgraph of A 

+ (i.e.

for each entry, a + 
i j 

≥ a −
i j 

, and for some entry a + 
i j 

> a −
i j 

) and both are connected, we have λ+ 
1 

> λ−
1 

. There is hence network

asymmetry favoring positive signals. We also introduce decay asymmetry, this time favoring negative signals, by fixing δ− = 

1 and setting δ+ ∈ (0 , 1) . 

While decay asymmetry is immediate, the intensity of network asymmetry depends not only on how many positive links 

are added ( α+ ), but also on how they are added. We compare two link generation processes: random and echo chamber. In

the random link generation process, we add the α+ additional links at random. In the echo chamber process, each additional

link is created in order to generate an increasingly large echo chamber. The first additional link is generated between two

random nodes, the second between these two nodes and a third. The third link will either increase the connectedness of

the first three nodes, or, if all links are already present, create a link between a fourth node and the first three, and so on

until α+ links are added to the positive signal sharing network. 

In Fig. 4 , we show the ratio of decay factors needed to exactly compensate network asymmetry. Network asymmetry is

determined by a given ratio of links between A 

+ and A 

−, using the two different link generation processes. In the lower

left (upper right) of the parameter space we are in Case 1 (Case 2) where negative (positive) signals eventually dominate.

The purple and black line show the points in the parameter space where the threshold condition is met with equality. Near

these lines misinformation can be small in the short and medium term, while further away from these lines the probability

of misinformation is substantial, apart from the very first periods. 

For example, if there are 20% more links in the positive network than in the negative network and all links are created

at random, then positive signals must face a decay of roughly 0.8 to compensate it, as δ+ 
− ≈ 0 . 8 at the position where the
δ

16 These networks are like Erdös-Rényi random graphs with average degree of five. 
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Fig. 4. Compensating decay asymmetry with network asymmetry. Notes: Results based on 10’0 0 0 replications per setting. Each line represents a different 

additional link generation process. The lines draw the median ratios of decay asymmetry that exactly compensate the ratio of links between the A + and A −

networks, generating Case 3 of Proposition 2 . For parameters at the lower left (upper right) of a given line negative (positive) signals dominate. Parameters 

close to a given line foster information aggregation in the short and medium term. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bright line is at 1.2. If, however, the 20% additional positive links are arranged in an echo chamber, then it takes much

stronger decay decay for positive signals compared with negative signals to achieve a balanced sharing, as δ+ 
δ− ≈ 0 . 5 at the

position where the black line is at 1.2. Hence, network asymmetry produced by echo chambers causes misinformation and 

is hard to compensate. 

7. Extension: heterogeneous relations 

In this section, we extend the model by defining decay factors that are pair-specific. Formally, we consider two 

weighted graphs (N, M 

+ ) and (N, M 

−) , where M 

+ and M 

− are n × n matrices with entries m 

+ 
i j 

= δ+ 
i j 

∈ (0 , 1] or m 

+ 
i j 

= 0 , and

m 

−
i j 

= δ−
i j 

∈ (0 , 1] or m 

−
i j 

= 0 . Like in the baseline model, a positive entry δ+ 
i j 

> 0 is the decay of information for the pair i j,

i.e. the fraction of positive signals that agent i receives when communicating with agent j. Signal accumulation becomes 

N 

+ (t) = (I + M 

+ ) N 

+ (t − 1) for positive signals and likewise N 

−(t) = (I + M 

−) N 

−(t − 1) for negative signals. We extend the

assumption of connectedness by assuming here that both networks are strongly connected. In all other aspects, the extended 

model is defined as the baseline model, introduced in Section 3 . 

This extension makes the model more flexible since it can accommodate many forms of heterogeneity. First, it allows for 

every pair i, j to have a different quality of communication and hence a pair-specific decay factor. Second, networks can be

directed such that some agent i receives signals from another agent j, while j does not receive signals of i , i.e. m 

+ 
i j 

= δi j > 0

and m 

+ 
ji 

= 0 . Third, it allows an agent i to face a stronger decay as a receiver of information, i.e. δi j < δk j for all linked j, k .

This can incorporate in particular differences in discounting of received signals. Fourth, it allows for some agent i to face a

stronger decay than others as a sender of information, i.e. δ ji < δ jk for and all linked j, k . This could incorporate in particular

differences in which fraction of signals is shared. These variations can be applied at the individual level to single agents, or

more broadly to groups of agents. 

Even though this extension carries a rich array of new applications, our results neatly generalize, as we show in On-

line Appendix B. A noteworthy difference is that left and right eigenvectors do not coincide. Hence, we define right-hand 

eigenvector centrality c + , c −, that is originally defined ( Bonacich, 1987 ) and left-hand eigenvector centrality d + , d − that

determines social influence in the DeGroot model ( Golub and Sadler, 2016 ). Interestingly, we have lim 

t→∞ 

N + 
i 

(t) ∑ 

j N 
+ 
j 
(t) 

→ c + 
i 

and

lim 

t→∞ 

N −
i 

(t) ∑ 

j N 
−
j 
(t) 

→ c −
i 

, showing that the right-hand eigenvectors capture which fraction of all positive, respectively negative, 

signals in the society is asymptotically held by agent i . In contrast, the left-hand eigenvector d + 
i 

expresses which fraction of

on average asymptotically held signals originated from agent i ’s initial signal. In other words: the right eigenvectors c + , c −

determine the relations between the asymptotic signal mixes of agents, while the left eigenvectors d + , d − determine the

effect of agents’ initial signals on the asymptotic signal mix, as Extended Proposition 2 and Extended Corollary 2 in the

Online Appendix B demonstrate. 

The generalization shows that it is not essential that the network is undirected or that discounting is similar for different

agents, while symmetry or asymmetry between positive and negative networks is still crucial. 
12 
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8. Discussion 

8.1. Policy implications 

Our main results imply that the fight against misinformation is challenging. Slight asymmetry is sufficient for substan- 

tial misinformation in the long run. 17 Countervailing measures that do not reach the threshold condition, δ+ λ+ 
1 

= δ−λ−
1 

, 

eventually lead to the same result. Countervailing measures that go beyond the threshold condition lead to substantial mis- 

information as well. Achieving a perfect balance between sharing of negative and positive signals (i.e. hitting the threshold 

δ+ λ+ 
1 

= δ−λ−
1 

) seems unrealistically hard. 18 Our analysis, however, also shows that it is still worthwhile to strive for such a

balance. When asymmetries are reduced, δ+ λ+ 
1 

≈ δ−λ−
1 

, speed of convergence to one dominant signal is slow, which enables 

information aggregation and low levels of misinformation in the short and medium term. In the fight against misinforma- 

tion hence the first step is to identify asymmetry of the positive and negative messages regarding the issue. Consider an

issue for which positive signals are less shareable than negative signals, i.e. δ+ λ+ 
1 

<< δ−λ−
1 

, because, say, they have a higher

emotional content, are more sensational, are less boring, are more plausible, come in a simpler form, or for some other

reason. Then we can tackle misinformation by moderating the asymmetry. Potential counter-measures address the form of 

the message, the platforms’ feed algorithms, and the literacy of users. 

Concerning the form, an example of particular importance are scientific publications. Most of them still exist only in 

article form and their complexity regularly constitutes a high barrier for the general public. In the meantime, concurring 

information is created in ways that is simple and easily shareable online via social media or messaging apps, such as images,

videos and news-like posts. Providers of scientific information are thus not always fighting with the appropriate tools and 

should consider how to tailor their message in a way that allows them to keep its informative integrity, while being easily

shareable. This could improve sharing of positive signals in both dimensions, reducing decay (“δ+ ↑ ”) and increasing the 

number of people it is shared with (“λ+ ↑ ”), in order to moderate the stipulated asymmetry above (that positive signals

were less shareable than negative signals). 

Through feed algorithms, social media platforms strongly affect which information we are confronted with. Such feed 

algorithms could reduce the push of messages that are sensational, simple etc. and already shared heavily, but instead, 

more often select messages that are rather boring, complicated, etc., and hence have not yet been shared heavily. Users 

would then be confronted more often with opposing information and might later than earlier commit to a one-sided view 

of the issue. However, such policies have to be implemented and monitored with care as they can backfire. 19 More easily,

feed algorithms that support echo chambers where only one type of information shared can be altered to reduce network 

asymmetry. 

Finally, to fight asymmetric sharing of signals, people’s sharing behavior can be affected by giving nudges and by ed- 

ucation. Experiments find that simply asking people to pause and reflect before sharing may decrease their intention to 

share false information ( Fazio, 2020 ). Stressing the importance of accuracy can have a similar effect ( Pennycook et al., 2021 ).

Educating people to higher information literacy, which emphasizes the ability to navigate and locate information, to recog- 

nize opinion pieces or to search databases ( Livingstone et al., 2008 ), can make them less prone to misinformation ( Jones-

Jang et al., 2021 ). Interestingly, a recent study finds that increasing acceptance of information from credible news sources 

can have a much higher impact than reducing acceptance of information from dubious news sources ( Acerbi et al., 2022 ). 

These suggestions for how to counter-act misinformation, are all from the perspective of a policy maker that does not 

know the true state. If it would, the same measures could be used to promote the correct signals and to hamper the spread

of the false signals. Of course, another approach is to increase the accuracy of information and to fact-check messages, 

given there is such a technology. In our model this would result in a higher signal quality ρ , which is slightly reducing

misinformation, but qualitatively as problematic as long as there are asymmetries. 

8.2. Limitations 

Separating decay and signal type Our model assumes decay and networks to be fully dependent on signal type. Agents 

share all positive, and respectively negative, signals to the same extent and with the same people. More realistically, decay 

and signal sharing networks would be idiosyncratic to the signal and only partly correlated to signal type. For instance, 

negative signals on some issue might generally be more shareable (and hence decay less and be shared with more people),

but some positive signals might also be highly shareable. 

Extending our model to allow for idiosyncratic decay factors and signal sharing networks would generalize our main 

condition δ+ λ+ ≶ δ−λ− to considering not the common decay factors and networks, but the maximally realized product 

1 1 

17 “Substantial” means that it does not converge to zero for large networks. The best case with substantial misinformation is the scenario where the state 

which has higher ex ante probability, say the positive state ( b + > 0 . 5 ), also has more shareable signals ( δ+ λ+ 
1 

> δ−λ−
1 

). Then the probability of long-run 

misinformation is still 1 − b + in large networks. 
18 And even if this balance was achieved, there are additional conditions for vanishing misinformation in the limit: moderate centrality ratios and van- 

ishing influence, see Proposition 3 . 
19 Users who have been exposed to debunking information regarding conspiracy theories have been observed to consequently increase the intensity of 

their engagement with conspiracy posts ( Zollo et al., 2017 ). 
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of decay factor and eigenvalue in this equation, i.e. the highest product among all positive signals and the highest product

among all negative signals. While gaining realism, this extension would not fundamentally change our analysis and conclu- 

sions. 

More Sophisticated Sharing Behavior In our model, agents are assumed to be naïve and the way they share signals is

mechanic. Recently, alternative approaches to model the sequential sharing of messages by more sophisticated agents have 

been introduced (e.g. Acemoglu et al., 2022; Papanastasiou, 2020 ). Incorporating asymmetry into such models is left for 

future research. 

Creation of Information We study how given information on an issue is used without studying the creation of information. 

First, knowledge is the product of scientific effort s of many institutions, which will add new information into the system.

This is not captured in our model, but it is a reason why we emphasize knowledge usage in the short and medium term, as

in the long term, new information arrives. Second, messages are produced by various institutions (companies, media outlets, 

governments, private persons,...) with various goals. Both aspects, arrival of new information and existence of forceful agents, 

have already been incorporated in the previous literature on social learning. 

9. Conclusion 

We have investigated asymmetric sharing of positive (supporting) and negative (questioning) information as a source 

of misinformation. Our results established that differences in the decay factor and in the connectedness, as measured by 

the largest eigenvalues, determine the long-run state a society reaches. Even slight asymmetries lead to substantial levels 

of misinformation in the long run. Though it is clear from our discussion that there is no silver bullet in the fight against

misinformation, we can conclude that counter-measures should consider signal-dependent sharing behaviors and moderate 

asymmetries in signal sharing. This aspect has not yet been studied in the (theoretical) literature on social learning, but may

deserve more attention in the future. 

Appendix A. Proofs 

This appendix contains the proofs of all results stated in the main text. 20 

A1. Proof of Proposition 1 

To prove Proposition 1 , we apply Proposition 2 , which is proven below. Using the result of Case 3 of Proposition 2 and

c + = c − = c, we find that 

lim 

t→∞ 

x i (t) = 

1 

1 + 

c −
i 

c + 
i 

∑ n 
k =1 (c + 

k 
) 2 ∑ n 

k =1 (c −
k 
) 2 

1 − ∑ n 
j=1 c 

−
j 

s j ∑ n 
j=1 c 

+ 
j 

s j 

= 

1 

1 + 

1 − ∑ n 
j=1 c j s j ∑ n 

j=1 c j s j 

= 

1 ∑ n 
j=1 c j s j + 1 − ∑ n 

j=1 c j s j ∑ n 
j=1 c j s j 

= 

n ∑ 

j=1 

c j s j . 

We now show that the probability of misinformation is bounded by 0.5, i.e. for θ = 1 , we have to show that 

p Mis 
i (∞ ) = P (x i (∞ ) < 0 . 5) + 0 . 5 P (x i (∞ ) = 0 . 5) ≤ 0 . 5 for all i, 

while for θ = 0 , we must prove 

p Mis 
i (∞ ) = P (x i (∞ ) > 0 . 5) + 0 . 5 P (x i (∞ ) = 0 . 5) ≤ 0 . 5 for all i. 

Defining T j := s j when θ = 1 and T j := 1 − s j when θ = 0 , this amounts to showing that 

P 

( 

n ∑ 

j=1 

c j T j < 

1 

2 

) 

+ 

1 

2 

P 

( 

n ∑ 

j=1 

c j T j = 

1 

2 

) 

≤ 1 

2 

, (A.1) 

as, for all i , x i (∞ ) = 

∑ n 
j=1 c j s j equals 

∑ n 
j=1 c j T j when θ = 1 and 1 − ∑ n 

j=1 c j T j when θ = 0 . Due to their construction, the

T j are iid B (0 , ρ) -distributed, independent of the true state θ . In order to prove Eq. (A.1) , we also define the following

quantities: p l (ρ) := P 
(∑ n 

j=1 c j T j < 

1 
2 

)
, p m 

(ρ) := P 
(∑ n 

j=1 c j T j = 

1 
2 

)
, and p u (ρ) := P 

(∑ n 
j=1 c j T j > 

1 
2 

)
, which obviously sum to

unity: p l (ρ) + p m 

(ρ) + p u (ρ) = 1 for all ρ . Using these, Eq. (A.1) can be restated as p l (ρ) + 

1 
2 p m 

(ρ) ≤ 1 
2 , which is equivalent

to 2 p l (ρ) + p m 

(ρ) ≤ 1 = p l (ρ) + p m 

(ρ) + p u (ρ) , which is in turn equivalent to p l (ρ) ≤ p u (ρ) . This part of the proof can

therefore be completed by showing that indeed p l (ρ) ≤ p u (ρ) for all ρ > 

1 
2 . Due to 

∑ n 
j=1 c j (1 − T j ) = 

∑ n 
j=1 c j −

∑ n 
j=1 c j T j =
20 Further appendices are provided as Supplementary Online Material, which is permanently available here: www.berno.info under the name Mis- 

Info_SupplementaryOnlineMaterial.pdf. 
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1 − ∑ n 
j=1 c j T j , the condition 

∑ n 
j=1 c j T j < 

1 
2 is equivalent to 

∑ n 
j=1 c j (1 − T j ) > 

1 
2 . As 1 − T j takes the values 0 and 1 with

probabilities ρ and 1 − ρ , respectively, we find that 

p l (ρ) = P 

( 

n ∑ 

j=1 

c j T j < 

1 

2 

) 

= P 

( 

n ∑ 

j=1 

c j (1 − T j ) > 

1 

2 

) 

= p u (1 − ρ) ≤ p u (ρ) , 

where the inequality at the end holds true because 1 − ρ < ρ , due to ρ > 

1 
2 . We thus have shown that p l (ρ) ≤ p u (ρ) ,

concluding the major part of the proof. 

Finally, concerning the result for network size growing to infinity, the proof proceeds along the lines of the proof 

of Lemma 1 of Golub and Jackson (2010) , a well-established result on the wisdom of crowds. In particular, for the

term 

∑ n 
j=1 c j,n T j,n , we first find that its expected value is ρ , as all T j,n have expectation ρ and 

∑ n 
j=1 c j,n = 1 . Similarly,

the term’s variance equals ρ(1 − ρ) 
∑ n 

j=1 c 
2 
j,n 

, as the T j,n are all independent with variance ρ(1 − ρ) . Due to 
∑ n 

j=1 c 
2 
j,n 

≤
max n 

j=1 
c j,n 

∑ n 
j=1 c j,n = max n 

j=1 
c j,n together with assumption max n 

j=1 
c j,n 

n →∞ −→ 0 , this variance converges to 0. With the help 

of Chebyshev’s inequality, this ensures that 
∑ n 

j=1 c j,n T j,n converges in probability to ρ > 0 . 5 . Thus, the probability of misin-

formation vanishes asymptotically. 

A2. Proof of Proposition 2 

To begin the proof, we use the eigendecompositions of the real symmetric matrices A 

+ and A 

−, writing them as

A 

+ = Q 

+ 
+ ( Q 

+ ) � and A 

− = Q 

−
−( Q 

−) 
� 

, respectively, with Q 

+ and Q 

− being orthogonal matrices whose columns are

eigenvectors of A 

+ and A 

−, and 
+ and 
− being diagonal matrices whose entries are the eigenvalues of A 

+ and A 

−.

From this, we have that I + δ+ A 

+ = Q 

+ ( I + δ+ 
+ ) ( Q 

+ ) � and I + δ−A 

− = Q 

−( I + δ−
−) ( Q 

−) 
� 

as well as ( I + δ+ A 

+ ) t =
Q 

+ ( I + δ+ 
+ ) t ( Q 

+ ) � and ( I + δ−A 

−) 
t = Q 

−( I + δ−
−) 
t 
( Q 

−) 
� 

for all t . Overall, this delivers (
I + δ+ A 

+ )t = 

n ∑ 

i =1 

(
1 + δ+ λ+ 

i 

)t 
q + 

i 

(
q + 

i 

)� 
, 
(
I + δ−A 

−)t = 

n ∑ 

i =1 

(
1 + δ−λ−

i 

)t 
q −

i 

(
q −

i 

)� 
, 

with q + 
i 

and q −
i 

( i = 1 , . . . , n ) denoting the eigenvectors of A 

+ and A 

−, respectively. Denoting the vector of initial signals by

s , we thus get: 

N 

+ (t) = 

(
I + δ+ A 

+ )t 
N 

+ (0) = 

(
I + δ+ A 

+ )t 
s = 

n ∑ 

j=1 

(
1 + δ+ λ+ 

j 

)t 
q + 

j 

(
q + 

j 

)� 
s, 

N 

−( t ) = 

(
I + δ−A 

−)t 
N 

−( 0 ) = 

(
I + δ−A 

−)t 
( � − s ) = 

n ∑ 

j=1 

(
1 + δ−λ−

j 

)t 
q −

j 

(
q −

j 

)� 
( � − s ) . 

From this, we get for the numbers of positive signals at time t , 

N 

+ (t) = 

(
1 + δ+ λ+ 

1 

)t 

( 

q + 1 

(
q + 1 

)� 
s + 

n ∑ 

j=2 

(
1 + δ+ λ+ 

j 

1 + δ+ λ+ 
1 

)t 

q + 
j 

(
q + 

j 

)� 
s 

) 

, (A.2) 

and for the numbers of negative signals at time t , 

N 

−(t) = 

(
1 + δ−λ−

1 

)t 

( 

q −1 
(
q −1 

)� 
(1 − s ) + 

n ∑ 

j=2 

(
1 + δ−λ−

j 

1 + δ−λ−
1 

)t 

q −
j 

(
q −

j 

)� 
(1 − s ) 

) 

. (A.3) 

Due to Perron-Frobenius theory, it is clear that 
1 + δ+ λ+ 

j 

1 + δ+ λ+ 
1 

and 

1 + δ−λ−
j 

1 + δ−λ−
1 

are both smaller than 1 for j = 2 , . . . , n , implying 

(
1 + δ+ λ+ 

1 

)−t 
N 

+ ( t ) 
t→∞ −→ q + 1 

(
q + 1 

)� 
s, 

(
1 + δ−λ−

1 

)−t 
N 

−( t ) 
t→∞ −→ q −1 

(
q −1 

)� 
( � − s ) . 

Now, using that q + 
1 

= 

c + 

|| c + || = 

c + √ 

n ∑ 

k =1 

(
c + 

k 

)2 

and q −
1 

= 

c −

|| c −|| = 

c −√ 

n ∑ 

k =1 

(
c −

k 

)2 

, we finally get: 

(
1 + δ+ λ+ 

1 

)−t 
N 

+ (t) 
t→∞ −→ c + 

( c + ) � s 
n ∑ 

k =1 

(
c + 

k 

)2 
= c + 

n ∑ 

j=1 

c + 
j 

s j 

n ∑ 

k =1 

(
c + 

k 

)2 
, (A.4) 
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(
1 + δ−λ−

1 

)−t 
N 

−(t) 
t→∞ −→ c −

( c −) 
� (1 − s ) 

n ∑ 

k =1 

(
c −

k 

)2 
= c −

n ∑ 

j=1 

c −
j 
( 1 − s j ) 

n ∑ 

k =1 

(
c −

k 

)2 
= c −

1 −
n ∑ 

j=1 

c −
j 

s j 

n ∑ 

k =1 

(
c −

k 

)2 
. (A.5) 

With these general results at hand, we can address the three cases considered in Proposition 2 . 

1. For 

(
1 + δ+ λ+ 

1 

1 + δ−λ−
1 

)−t 

x i (t) , we get when δ+ λ+ 
1 

< δ−λ−
1 

(Case 1): 

(
1 + δ+ λ+ 

1 

1 + δ−λ−
1 

)−t 

x i (t) = 

(
1 + δ+ λ+ 

1 

1 + δ−λ−
1 

)−t 
N 

+ 
i 
(t) 

N 

+ 
i 
(t) + N 

−
i 
(t) 

= 

(
1 + δ+ λ+ 

1 

)−t 
N 

+ 
i 
(t) (

1 + δ−λ−
1 

)−t (
N 

+ 
i 
(t) + N 

−
i 
(t) 

)
= 

(
1 + δ+ λ+ 

1 

)−t 
N 

+ 
i 
(t) (

1 + δ+ λ+ 
1 

1 + δ−λ−
1 

)t (
1 + δ+ λ+ 

1 

)−t 
N 

+ 
i 
(t) + 

(
1 + δ−λ−

1 

)−t 
N 

−
i 
(t) 

t→∞ −→ 

c + 
i 

n ∑ 

j=1 

c + 
j 

s j 

n ∑ 

k =1 

(
c + 

k 

)2 

c −
i 

1 −
n ∑ 

j=1 

c −
j 

s j 

n ∑ 

k =1 

(
c −

k 

)2 

= 

c + 
i 

c −
i 

n ∑ 

k =1 

(c −
k 
) 2 

n ∑ 

k =1 

(c + 
k 
) 2 

n ∑ 

j=1 

c + 
j 

s j 

1 −
n ∑ 

j=1 

c −
j 

s j 

. 

2. For 

(
1 + δ−λ−

1 

1 + δ+ λ+ 
1 

)−t 

(1 − x i (t)) , we get when δ+ λ+ 
1 

> δ−λ−
1 

(Case 2): 

(
1 + δ−λ−

1 

1 + δ+ λ+ 
1 

)−t 

(1 − x i (t)) = 

(
1 + δ−λ−

1 

1 + δ+ λ+ 
1 

)−t 
N 

−
i 
(t) 

N 

+ 
i 
(t) + N 

−
i 
(t) 

= 

(
1 + δ−λ−

1 

)−t 
N 

−
i 
(t) (

1 + δ+ λ+ 
1 

)−t (
N 

+ 
i 
(t) + N 

−
i 
(t) 

)
= 

(
1 + δ−λ−

1 

)−t 
N 

−
i 
(t) (

1 + δ+ λ+ 
1 

)−t 
N 

+ 
i 
(t) + 

(
1 + δ−λ−

1 

1 + δ+ λ+ 
1 

)t (
1 + δ−λ−

1 

)−t 
N 

−
i 
(t) 

t→∞ −→ 

c −
i 

1 −
n ∑ 

j=1 

c −
j 

s j 

n ∑ 

k =1 

(
c −

k 

)2 

c + 
i 

n ∑ 

j=1 

c + 
j 

s j 

n ∑ 

k =1 

(
c + 

k 

)2 

= 

c −
i 

c + 
i 

n ∑ 

k =1 

(c + 
k 
) 2 

n ∑ 

k =1 

(c −
k 
) 2 

1 −
n ∑ 

j=1 

c −
j 

s j 

n ∑ 

j=1 

c + 
j 

s j 

. 

3. Finally, when δ+ λ+ 
1 

= δ−λ−
1 

(Case 1), we get: 

x i (t) = 

(
1 + δ+ λ+ 

1 

)−t 
N 

+ 
i 
(t) (

1 + δ+ λ+ 
1 

)−t 
N 

+ 
i 
(t) + 

(
1 + δ−λ−

1 

)−t 
N 

−
i 
(t) 
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t→∞ −→ 

c + 
i 

n ∑ 

j=1 

c + 
j 

s j 

n ∑ 

k =1 

(
c + 

k 

)2 

c + 
i 

n ∑ 

j=1 

c + 
j 

s j 

n ∑ 

k =1 

(
c + 

k 

)2 
+ c −

i 

1 −
n ∑ 

j=1 

c −
j 

s j 

n ∑ 

k =1 

(
c −

k 

)2 

= 

1 

1 + 

c −
i 

c + 
i 

n ∑ 

k =1 

(c + 
k 
) 2 

n ∑ 

k =1 

(c −
k 
) 2 

1 −
n ∑ 

j=1 

c −
j 

s j 

n ∑ 

j=1 

c + 
j 

s j 

. 

A3. Proof of Corollary 1 

1. Due to the first part of Proposition 2 , there are only two important cases that have to be looked at: either all initial

signals are equal to 1, entailing lim 

t→∞ 

x i (t) = 1 , or at least one initial signal is 0, entailing lim 

t→∞ 

x i (t) = 0 . If the true state is

0, which happens with probability 1 − b + , then long-run misinformation occurs if all initial signals are equal to 1, and if

the true state is 1, which happens with probability b + , then long-run misinformation occurs if at least one initial signal

is 0. Thus, the probability of misinformation is given by the sum of (1 − b + )(1 − ρ) n , the probability of state 0 occurring

and leading to misinformation, and b + (1 − ρn ) , the probability of state 1 occurring and leading to misinformation. 

2. Due to the second part of Proposition 2 , there are only two important cases that have to be looked at: either all initial

signals are equal to 0, entailing lim 

t→∞ 

x i (t) = 0 , or at least one initial signal is 1, entailing lim 

t→∞ 

x i (t) = 1 . If the true state is

0, which happens with probability 1 − b + , then long-run misinformation occurs if at least one initial signal is equal to 1,

and if the true state is 1, which happens with probability b + , then long-run misinformation occurs if all initial signal are

0. Thus, the probability of misinformation is given by the sum of (1 − b + )(1 − ρn ) , the probability of state 0 occurring

and leading to misinformation, and b + (1 − ρ) n , the probability of state 1 occurring and leading to misinformation. 

3. In order to prove 

p Mis 
i (∞ ) ≤ max { (1 − b + )(1 − ρ) n + b + (1 − ρn ) , (1 − b + )(1 − ρn ) + b + (1 − ρ) n } , 

we proceed as follows: we first rearrange the right-hand side as 

(1 − ρ) n + 

(
1 − ρn − (1 − ρ) n 

)
max { b + , 1 − b + } 

and observe that this term can be interpreted as the sum of the probability of all agents’ initial signals being incorrect,

(1 − ρ) n , and the product of the probability of the initial signal distribution being non-trivial, 1 − ρn − (1 − ρ) n , and

the maximum of the probabilities of the state being equal to 1 and 0, respectively. Our task thus reduces to proving

that the conditional probability of long-run misinformation given non-trivially distributed initial signals is bounded by 

max { b + , 1 − b + } . Conditional on non-trivial signals and the state θ = 1 , the probability of misinformation is given by 

P 

(
c −

i 

c + 
i 

∑ n 
k =1 (c + 

k 
) 2 ∑ n 

k =1 (c −
k 
) 2 

1 − ∑ n 
j=1 c 

−
j 

s j ∑ n 
j=1 c 

+ 
j 

s j 
> 1 

)
+ 

1 

2 

P 

(
c −

i 

c + 
i 

∑ n 
k =1 (c + 

k 
) 2 ∑ n 

k =1 (c −
k 
) 2 

1 − ∑ n 
j=1 c 

−
j 

s j ∑ n 
j=1 c 

+ 
j 

s j 
= 1 

)
, 

while, conditional on θ = 0 , it is given by: 

P 

(
c −

i 

c + 
i 

∑ n 
k =1 (c + 

k 
) 2 ∑ n 

k =1 (c −
k 
) 2 

1 − ∑ n 
j=1 c 

−
j 

s j ∑ n 
j=1 c 

+ 
j 

s j 
< 1 

)
+ 

1 

2 

P 

(
c −

i 

c + 
i 

∑ n 
k =1 (c + 

k 
) 2 ∑ n 

k =1 (c −
k 
) 2 

1 − ∑ n 
j=1 c 

−
j 

s j ∑ n 
j=1 c 

+ 
j 

s j 
= 1 

)
. 

Defining T j := 1 if s j = θ and T j := 0 if s j � = θ , the two conditional probabilities above can be rearranged as 

p 1 (ρ) := P 

( 

n ∑ 

j=1 

( 

c −
i 

c −
j ∑ n 

k =1 

(
c −

k 

)2 
+ 

c + 
i 

c + 
j ∑ n 

k =1 

(
c + 

k 

)2 

) 

T j < 

c −
i ∑ n 

k =1 

(
c −

k 

)2 

) 

+ 

1 

2 

P 

( 

n ∑ 

j=1 

( 

c −
i 

c −
j ∑ n 

k =1 

(
c −

k 

)2 
+ 

c + 
i 

c + 
j ∑ n 

k =1 

(
c + 

k 

)2 

) 

T j = 

c −
i ∑ n 

k =1 

(
c −

k 

)2 

) 

for θ = 1 , while θ = 0 leads to 

p 0 (ρ) := P 

( 

n ∑ 

j=1 

( 

c −
i 

c −
j ∑ n 

k =1 

(
c −

k 

)2 
+ 

c + 
i 

c + 
j ∑ n 

k =1 

(
c + 

k 

)2 

) 

T j < 

c + 
i ∑ n 

k =1 

(
c + 

k 

)2 

) 

+ 

1 

2 

P 

( 

n ∑ 

j=1 

( 

c −
i 

c −
j ∑ n 

k =1 

(
c −

k 

)2 
+ 

c + 
i 

c + 
j ∑ n 

k =1 

(
c + 

k 

)2 

) 

T j = 

c + 
i ∑ n 

k =1 

(
c + 

k 

)2 

) 
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and the probability of misinformation conditional on non-trivially distributed initial signals is given by b + p 1 (ρ) + (1 −
b + ) p 0 (ρ) . For ρ = 0 . 5 , the T j have the same distribution as 1 − T j , and replacing T j by 1 − T j in one of the equa-

tions above shows that p 1 (0 . 5) + p 0 (0 . 5) = 1 . For ρ = 0 . 5 , we therefore have 

b + p 1 (ρ) + (1 − b + ) p 0 (ρ) = b + p 1 (0 . 5) + (1 − b + ) p 0 (0 . 5) 

≤ max { b + , 1 − b + } p 1 (0 . 5) + max { b + , 1 − b + } p 0 (0 . 5) 

= max { b + , 1 − b + } ( p 1 (0 . 5) + p 0 (0 . 5) ) = max { b + , 1 − b + } . 
This concludes the proof for ρ = 0 . 5 . For ρ > 0 . 5 , the assertion follows from the fact that both p 1 (ρ) and p 0 (ρ) are

decreasing in ρ , as the distribution of the T j is shifted to the right when ρ increases. 

The last inequality, finally, follows easily from b + and 1 − b + both being bounded by max { b + , 1 − b + } and from 1 − ρn +
(1 − ρ) n < 1 , with the last inequality holding due to ρ > 

1 
2 . 

A4. Proof of Proposition 3 

1. In order to prove the assertion, it is sufficient to show the following: if some agent i ’s probability of long-run misinfor-

mation converges to zero ( lim 

n →∞ 

p Mis 
i,n 

(∞ ) = 0 ), then the sets N 1 := { n : δ+ λ1 (A 

+ 
n ) < δ−λ1 (A 

−
n ) } and N 2 := { n : δ+ λ1 (A 

+ 
n ) >

δ−λ1 (A 

−
n ) } are both finite. Finiteness of the two sets will imply δ+ λ1 (A 

+ 
n ) = δ−λ1 (A 

−
n ) for all n ≥ n ∗ := max (N 1 ∪ N 2 ) + 1 .

First, let us assume that N 1 was not finite, i.e., Case 1 would occur infinitely often. Then N 1 would contain an infinite

sub-sequence n 1 < n 2 < n 3 < . . . such that δ+ λ1 (A 

+ 
n m ) < δ−λ1 (A 

−
n m ) for all m = 1 , . . . , ∞ . For this sub-sequence, the first

part of Corollary 1 would imply that i ’s long-run probability of misinformation for network size n m 

is p Mis 
i,n m 

(∞ ) = (1 −
b + )(1 − ρ) n m + b + (1 − ρn m ) . This quantity would converge to b + > 0 for m → ∞ . The existence of a sub-sequence that

converges to a value different from 0 contradicts the assumption that the original sequence converges to 0. Thus, N 1 

must be finite. 

In a completely analogous way, one can see that N 2 not being finite would imply the existence of a sub-sequence n 1 <

n 2 < n 3 < . . . such that δ+ λ1 (A 

+ 
n m ) > δ−λ1 (A 

−
n m ) for all m = 1 , . . . , ∞ . In this case, we would have p Mis 

i,n m 
(∞ ) = (1 − b + )(1 −

ρn m ) + b + (1 − ρ) n m for i ’s long-run probability of misinformation for network size n m 

, and this quantity would thus

converge to 1 − b + > 0 for m → ∞ , again contradicting the assumption that the original sequence converges to 0. 

2. Condition (i) and Proposition 2 imply 

x i (∞ ) = 

1 

1 + 

c −
i,n 

c + 
i,n 

∑ n 
k =1 (c + 

k,n 
) 2 ∑ n 

k =1 (c −
k,n 

) 2 

1 − ∑ n 
j=1 c 

−
j,n 

s j ∑ n 
j=1 c 

+ 
j,n 

s j 

As the s j are iid B (1 , ρ) -distributed when θ = 1 and iid B (1 , 1 − ρ) -distributed when θ = 0 , the variances of∑ n 
j=1 c 

−
j,n 

s j and 

∑ n 
j=1 c 

+ 
j,n 

s j are in any case equal to ρ(1 − ρ) 
∑ n 

j=1 

(
c −

j,n 

)2 

and ρ(1 − ρ) 
∑ n 

j=1 

(
c + 

j,n 

)2 

, respectively. Due to

∑ n 
j=1 

(
c −

j,n 

)2 

≤ max 
j=1 , ... ,n 

c −
j,n 

∑ n 
j=1 c 

−
j,n 

= max 
j=1 , ... ,n 

c −
j,n 

and
∑ n 

j=1 

(
c + 

j,n 

)2 

≤ max 
j=1 , ... ,n 

c + 
j,n 

∑ n 
j=1 c 

+ 
j,n 

= max 
j=1 , ... ,n 

c + 
j,n 

, condition (ii) implies 

that these variances shrink to 0. As 
∑ n 

j=1 c 
−
j,n 

= 1 and 

∑ n 
j=1 c 

+ 
j,n 

= 1 imply that the expected values of 
∑ n 

j=1 c 
−
j,n 

s j and∑ n 
j=1 c 

+ 
j,n 

s j equal ρ when θ = 1 and 1 − ρ when θ = 0 , we find that 
∑ n 

j=1 c 
−
j,n 

s j and 

∑ n 
j=1 c 

+ 
j,n 

s j converge in probability

to ρ when θ = 1 and to 1 − ρ when θ = 0 . 

When θ = 1 , long-run misinformation is avoided if x i (∞ ) > 

1 
2 , which is equivalent to 

1 − ∑ n 
j=1 c 

−
j,n 

s j ∑ n 
j=1 c 

+ 
j,n 

s j 
< 

c + 
i,n 

c −
i,n 

∑ n 
k =1 (c −

k,n 
) 2 ∑ n 

k =1 (c + 
k,n 

) 2 
= γi,n . (A.6) 

Condition (iii) implies that for n large enough, there exists ε > 0 such that γi,n ≥ 1 −ρ
ρ + ε. As 

1 −∑ n 
j=1 c 

−
j,n 

s j ∑ n 
j=1 c 

+ 
j,n 

s j 
converges in

probability to 1 −ρ
ρ when θ = 1 , the probability of 

1 −∑ n 
j=1 c 

−
j,n 

s j ∑ n 
j=1 c 

+ 
j,n 

s j 
being smaller than 

1 −ρ
ρ + ε converges to 1, and thus the

long-run probability of misinformation shrinks to 0 when θ = 1 . 

When θ = 0 , long-run misinformation is avoided if x i (∞ ) < 

1 
2 , which is equivalent to 

1 − ∑ n 
j=1 c 

−
j,n 

s j ∑ n 
j=1 c 

+ 
j,n 

s j 
> 

c + 
i,n 

c −
i,n 

∑ n 
k =1 (c −

k,n 
) 2 ∑ n 

k =1 (c + 
k,n 

) 2 
= γi,n . (A.7) 

Condition (iii) implies that for n large enough, there exists ε > 0 such that γi,n ≤ ρ
1 −ρ − ε. As 

1 −∑ n 
j=1 c 

−
j,n 

s j ∑ n 
j=1 c 

+ 
j,n 

s j 
converges in

probability to ρ
1 −ρ when θ = 0 , the probability of 

1 −∑ n 
j=1 c 

−
j,n 

s j ∑ n 
j=1 c 

+ 
j,n 

s j 
being larger than 

ρ
1 −ρ − ε converges to 1, and thus the 
long-run probability of misinformation shrinks to 0 when θ = 0 , which concludes the proof. 
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A5. Proof of Corollary 2 

First of all, notice that 
N + 

i 
(t) 

N −
i 

(t) 

/ 

N + 
j 
(t) 

N −
j 
(t) 

can be written as 
x i (t) ( 1 −x j (t) ) 
x j (t) ( 1 −x i (t) ) 

. We thus have to prove that lim 

t→∞ 

x i (t) ( 1 −x j (t) ) 
x j (t) ( 1 −x i (t) ) 

= 

c + 
i 

c −
j 

c −
i 

c + 
j 

, 

which we will do by successively tackling the three cases given in Proposition 2 . For Case 1, we know that δ+ λ+ 
1 

< δ−λ−
1 

and 

x i (t) 

(
1 + δ−λ−

1 

1 + δ+ λ+ 
1 

)t 
t→∞ −→ 

c + 
i 

c −
i 

∑ n 
k =1 ( c 

−
k 
) 2 ∑ n 

k =1 ( c 
+ 
k 
) 2 

∑ n 
l=1 c 

+ 
l 

s l 

1 − ∑ n 
l=1 c 

−
l 

s l 
, 

as well as x i (t) 
t→∞ −→ 0 for all i . Trivially, thus, 1 − x i (t) and 1 − x j (t) each converge to 1. For 

x i (t) 

x j (t) 
= 

x i (t) 
(

1+ δ−λ−
1 

1+ δ+ λ+ 
1 

)t 

x j (t) 
(

1+ δ−λ−
1 

1+ δ+ λ+ 
1 

)t 
, 

we then find that it converges to 

c + 
i 

c −
i 

∑ n 
k =1 (c −

k 
) 2 ∑ n 

k =1 (c + 
k 
) 2 

∑ n 
l=1 c 

+ 
l 

s l 

1 −∑ n 
l=1 c 

−
l 

s l 

c + 
j 

c −
j 

∑ n 
k =1 (c −

k 
) 2 ∑ n 

k =1 (c + 
k 
) 2 

∑ n 
l=1 c 

+ 
l 

s l 

1 −∑ n 
l=1 c 

−
l 

s l 

= 

c + 
i 

c −
i 

c + 
j 

c −
j 

, 

which proves the assertion for Case 1. 

For Case 2, we know that δ+ λ+ 
1 

> δ−λ−
1 

and 

( 1 − x i (t) ) 

(
1 + δ+ λ+ 

1 

1 + δ−λ−
1 

)t 
t→∞ −→ 

c −
i 

c + 
i 

∑ n 
k =1 (c + 

k 
) 2 ∑ n 

k =1 (c −
k 
) 2 

∑ n 
l=1 c 

−
l 

s l 

1 − ∑ n 
l=1 c 

+ 
l 

s l 
. 

as well as x i (t) 
t→∞ −→ 1 for all i . Trivially, thus, x i (t) and x j (t) each converge to 1. For 

1 − x j (t) 

1 − x i (t) 
= 

(
1 − x j (t) 

)( 1+ δ+ λ+ 
1 

1+ δ−λ−
1 

)t 

( 1 − x i (t) ) 

(
1+ δ+ λ+ 

1 

1+ δ−λ−
1 

)t 
, 

we then find that it converges to 

c −
j 

c + 
j 

∑ n 
k =1 (c + 

k 
) 2 ∑ n 

k =1 (c −
k 
) 2 

∑ n 
l=1 c 

−
l 

s l 

1 −∑ n 
l=1 c 

+ 
l 

s l 

c −
i 

c + 
i 

∑ n 
k =1 (c + 

k 
) 2 ∑ n 

k =1 (c −
k 
) 2 

∑ n 
l=1 c 

−
l 

s l 

1 −∑ n 
l=1 c 

+ 
l 

s l 

= 

c + 
i 

c −
i 

c + 
j 

c −
j 

, 

which proves the assertion for Case 2. 

Finally, for the Case 3, we know that for all i 

lim 

t→∞ 

x i (t) = 

1 

1 + 

c −
i 

c + 
i 

∑ n 
k =1 (c + 

k 
) 2 ∑ n 

k =1 (c −
k 
) 2 

1 − ∑ n 
l=1 c 

−
l 

s l ∑ n 
l=1 c 

+ 
l 

s l 

∈ (0 , 1) . 

This immediately implies that 

lim 

t→∞ 

1 − x i (t) = 

c −
i 

c + 
i 

∑ n 
k =1 (c + 

k 
) 2 ∑ n 

k =1 (c −
k 
) 2 

1 − ∑ n 
j=1 c 

−
j 

s j ∑ n 
l=1 c 

+ 
l 

s l 

1 + 

c −
i 

c + 
i 

∑ n 
k =1 ( c 

+ 
k 
) 2 ∑ n 

k =1 ( c 
−
k 
) 2 

1 − ∑ n 
j=1 c 

−
j 

s j ∑ n 
l=1 c 

+ 
l 

s l 

as well as 

lim 

t→∞ 

x i (t) 

1 − x i (t) 
= 

c + 
i 

c −
i 

∑ n 
k =1 (c −

k 
) 2 ∑ n 

k =1 (c + 
k 
) 2 

∑ n 
l=1 c 

+ 
l 

s l 

1 − ∑ n 
l=1 c 

−
l 

s l 

for all i , from which it easily follows that lim 

t→∞ 

x i (t) ( 1 −x j (t) ) 
x j (t) ( 1 −x i (t) ) 

= 

c + 
i 

c −
j 

c −
i 

c + 
j 

. 

A6. Proof of Corollary 3 

We have already established that there is exponential decay according to 

(
1+ min { δ+ λ+ 

1 
,δ−λ−

1 
} 

1+ max { δ+ λ+ 
1 

,δ−λ−
1 
} 
)t 

. Therefore, half-life t 1 / 2 is 

determined by 

(
1+ min { δ+ λ+ 

1 
,δ−λ−

1 
} 

1+ max { δ+ λ+ ,δ−λ−} 
)t 1 / 2 = 0 . 5 , which leads t o t 1 / 2 = 

log (0 . 5) 
log (τ ) 

, with τ = 

1+ min { δ+ λ+ 
1 

,δ−λ−
1 
} 

1+ max { δ+ λ+ ,δ−λ−} . 

1 1 1 1 
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Supplementary material associated with this article can be found, in the online version, at 10.1016/j.jedc.2023.104641 . 
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