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Abstract:
This paper provides a review of methodological advancements in the evaluation of heterogeneous treatment
effect models based on instrumental variable (IV) methods. We focus on models that achieve identification by
assuming monotonicity of the treatment in the IV and analyze local average and quantile treatment effects for
the subpopulation of compliers. We start with a comprehensive discussion of the binary treatment and binary
IV case as for instance relevant in randomized experiments with imperfect compliance. We then review exten-
sions to identification and estimation with covariates, multi-valued and multiple treatments and instruments,
outcome attrition and measurement error, and the identification of direct and indirect treatment effects, among
others. We also discuss testable implications and possible relaxations of the IV assumptions, approaches to ex-
trapolate from local to global treatment effects, and the relationship to other IV approaches.
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1 Introduction

In empirical research, the assessment of the causal effect of a treatment (e.g. training or education) on an out-
come (e.g. earnings) is frequently complicated by endogeneity, implying that the treatment is not as good as
randomly assigned. That is, individuals may select themselves into the treatment in a non-random way that
is related to their expected gains from the treatment in the outcome. This happens e.g. in experiments with
non-compliance in which access to the treatment is randomly assigned, but some individuals do not comply
with the randomization and choose a different treatment state. If compliance behaviour is associated with un-
observed characteristics (e.g. ability) that also affect the outcome, endogeneity jeopardizes a causal analysis
based on simple comparisons between treated and non-treated observations.

Causal effects can nevertheless be identified in the presence of an instrumental variable (IV) that (i) affects
the treatment decision of (at least) some subjects and (ii) is otherwise not associated with the potential outcomes
under either treatment state. For this reason, IV methods have become a cornerstone of causal inference. They
represent an alternative strategy to identification based on selection on observables, see for instance the surveys
in Imbens (2004) and Imbens and Wooldridge (2009), where the treatment decision is assumed to be as good
as random after controlling for observed characteristics. While the latter assumption permits identifying the
average treatment effect in the total population (ATE) or on the treated (ATT), it seems implausibly restrictive in
many applications, as subjects might select themselves into treatment based on unobserved information about
their potential outcomes and treatment gains.

This paper reviews the methodological advancements in the IV-based evaluation of treatment effects under
effect heterogeneity. This implies that treatment effectiveness may vary across subjects as a function of observed
and unobserved characteristics. In such models, two stage least squares (TSLS) consistently estimates the av-
erage treatment effect for the compliant subpopulation, the so-called local average treatment effect (LATE),
given that the treatment and instrument are binary and the treatment is weakly monotonic in the instrument.
In experiments, compliers are those whose treatment status is induced by the assignment. That is, they take the
treatment when randomized in, but abstain from it when randomized out.

Following the seminal paper of Imbens and Angrist (1994), much progress has been made in extending the
initial framework in various empirically relevant dimensions. This includes the evaluation of distributional and
quantile treatment effects, multivalued or multiple treatments and instruments, identification and estimation
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in the presence of observed covariates, attrition and measurement error, and more. Furthermore, it has been
acknowledged that the LATE assumptions have testable implications that may be verified in the data and that
causal effects might be point or partially identified under weaker conditions. Finally, conditions and tests for
the external validity of the LATE with respect to the ATE have been proposed. This appears important in the
light of the controversial debate about the relevance of the complier population, see for instance the discussions
in Deaton (2010), Imbens (2010), and Heckman and Urzúa (2010).

Our review complements more introductory surveys of the LATE framework, see Imbens (2014) and the
textbook discussions in Angrist and Pischke (2009, 2015). A more specialized review focussing on the spe-
cific aspects of identifying and estimating the local quantile treatment effect (LQTE) is provided by Melly and
Wüthrich (2018).

The survey is structured as follows. Section 2 reviews the IV assumptions in the binary instrument and treat-
ment case and the identification of the LATE, LQTE, and potential outcome means and distributions. It also
discusses identification under multivalued treatments and instruments and considers the concept of marginal
treatment effects. Section 3 considers a conditional version of the IV assumptions in the presence of covariates
along with the identification of local, quantile, and marginal treatment effects as well as more general func-
tionals among compliers. Section 4 discusses extensions of the IV framework to more complex identification
problems, including non-response bias in the outcome, measurement error in the treatment or the instrument,
the presence of dynamic, i.e. sequentially assigned, or multiple treatments, and the evaluation of causal mecha-
nisms (or direct and indirect effects) of the treatment. Section 5 discusses how violations of the IV assumptions
affect identification and under which relaxations of the assumptions causal effects on specific subpopulations
can nevertheless be obtained. Section 6 outlines approaches for testing the IV assumptions and briefly discusses
sensitivity checks and bounds analysis under specific violations of the assumptions. Section 7 is concerned with
the external validity of the LATE for the entire population. It discusses potential checks for external validity
based on observables, conditions for extrapolating the LATE to the ATE along with testable implications, and
partial identification of the ATE based on the IV assumptions and possibly further restrictions. Section 8 clarifies
the relationship of the framework considered in this paper and other IV approaches suggested in the literature.
Specifically, we discuss the connection to the classical linear IV model with covariates and to the instrumental
variable quantile regression model (Chernozhukov and Hansen 2005). Section 9 concludes.

2 Identification and Estimation without Covariates

We first consider a setup with a binary treatment and instrument. Section 2.1 discusses the IV assumptions,
while Section 2.2 shows the identification of the LATE, LQTE, and the potential outcome distributions among
compliers. Section 2.4 extends the setup to multivalued treatments. Section 2.3 considers multivalued IVs as
well as the marginal treatment effect.

2.1 Assumptions

Treatment evaluation typically considers the effect of a binary treatment D ∈ {1, 0}. Examples include receiving
or not receiving a labor market policy (e.g. training) or a medical treatment. Y denotes the outcome on which
the effect ought to be estimated, for instance, employment or earnings, measured at some point in time after
the treatment. Under endogeneity, unobserved factors affect both D and Y such that the treatment effect is
not obtained from simply comparing treatment and the control group. However, if there exists an instrument
Z which is relevant (i.e. influences the treatment status) and valid (i.e. not associated with the unobserved
factors) and does not directly affect the outcome, treatment effects can be identified. Such an IV can frequently
be thought of as exogenous encouragement or incentive to take the treatment.

Our formal discussion uses the potential outcome framework (see for instance Rubin 1974). Denote by D(z)
the potential treatment state that would occur if the instrument Z was exogenously set to value z. We assume
a binary IV, i.e. Z ∈ {1, 0}, while Section 2.3 extends the framework to multivalued Z. Furthermore, denote by
Y(z, d) the potential outcome when setting Z and D to z, d ∈ {1, 0}. Importantly, Y(z, d) simplifies to Y(d) if Z
does not directly affect Y other than through D, which is crucial in the IV context (see Assumption 1 below).
In this case, the potential outcome is only a function of the treatment, as it does not depend on z after setting
d. As an example, consider the experimental evaluation of a training program in which Z and D denote the
randomized assignment of and the actual participation in the training, respectively. D(1) and D(0) denote the
potential participation states when randomized into or out of the training. Similarly, Y(1) and Y(0) denote the
potential outcomes, e.g. employment states, when participating and not participating in the training. Defining
the potential outcomes as functions of training only implicitly assumes that randomized assignment does not
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directly affect employment other than through training participation. For each subject, only one of the two
potential outcomes and treatments are observed, because the observed variables are defined as Y = D ⋅ Y(1) +
(1 − D) ⋅ Y(0) and D = Z ⋅ D(1) + (1 − Z) ⋅ D(0).

Table 1: Definition of Types.

Types (T) D(1) D(0) Notion

a 1 1 Always takers
c 1 0 Compliers
d 0 1 Defiers
n 0 0 Never takers

Even without any assumptions, the population can be split into four treatment compliance types (denoted
by T ∈ {a, c, d, n}) defined by the joint potential treatment states under z = 1 and z = 0, see Angrist, Imbens, and
Rubin (1996). As shown in Table 1, the compliers (c: D(1) = 1, D(0) = 0) react on the randomization as intended by
the researcher and participate in the training when z = 1, while abstaining from it when z = 0. For the remaining
three types, D(z) ≠ z for either z = 1, or z = 0, or both: The always takers (a: D(1) = 1, D(0) = 1) always take the
training irrespectively of the IV, the never takers (n: D(1) = 0, D(0) = 0) are never treated, and the defiers (d: D(0)
= 1, D(0) = 1) react counter-intuitively to randomization by participating in the treatment when randomized
out, but not participating when randomized in. As either D(1) or D(0) remains unknown in the data, so does
any subject’s type, which is a function of both potential treatment states. This implies that any subject with a
particular observed combination of the treatment and the instrument may belong to one of two types, see Table
2.

Table 2: Observed Subgroups and Types.

Observed values of Z and D Potential types T

{Z = 1, D = 1} belongs either to a or to c
{Z = 1, D = 0} belongs either to d or to n
{Z = 0, D = 1} belongs either to a or to d
{Z = 0, D = 0} belongs either to c or to n

Therefore, the observable mean differences 𝐸(𝑌|𝐷 = 1) − 𝐸(𝑌|𝐷 = 0) or 𝐸(𝑌|𝐷 = 1, 𝑍 = 𝑧) − 𝐸(𝑌|𝐷 = 0, 𝑍 =
𝑧) (for z ∈ {1, 0}) do generally not correspond to any causal effect because the mixtures of types differ across D
or (D, Z). The reason is that types generally have different distributions of unobservables which may confound
the treatment and outcome. To convey the intuition, we consider the following nonparametric IV model:

𝑌 = 𝜙(𝐷, 𝑈), 𝐷 = 𝜂(𝑍, 𝑉), (1)

where ϕ(⋅) and η(⋅) denote general functions, while U and V are the unobserved terms (possibly scalars or
vectors). The unobservables U and V may be arbitrarily associated with each other, thus causing the treatment
to be endogenous. Potential outcomes and treatment states are obtained by exogenously setting the treatment
and the IV to particular values d and z, where “exogenously setting” means manipulating D and Z without
changing the values of U and V:

𝑌(1) = 𝜙(1, 𝑈), 𝑌(0) = 𝜙(0, 𝑈), 𝐷(1) = 𝜂(1, 𝑉), 𝐷(0) = 𝜂(0, 𝑉).

As D(1) = η(1, V) and D(0) = η(0, V) differ across types, i.e. they have different potential treatments for same
values of z, the distribution of V must necessarily differ across types (as D is a function of Z and V only).
Therefore, U also differs across types if it is associated with V. This can be illustrated by the following parametric
model, a special case of (1):

𝑌 = 𝛽𝐷 + 𝑈, 𝐷 = 𝐼{𝛿𝑍 ≥ 𝑉}, (2)

where β and δ are slope coefficients that are assumed to be constant across individuals. I{⋅} denotes the indicator
function which is equal to one if its argument is satisfied and zero otherwise. Furthermore, U and V are assumed
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to be scalars for simplicity. For the compliers, 𝐷(1) = 𝐼{𝛿 ≥ 𝑉} = 1, 𝐷(0) = 𝐼{0 ≥ 𝑉} = 0, so that the distribution
of V satisfies δ ≥ V > 0. Among always takers, however, 𝐷(1) = 𝐼{𝛿 ≥ 𝑉} = 1, 𝐷(0) = 𝐼{0 ≥ 𝑉} = 1, so that V ≤
0. Consequently, unless U and V are independent, the treatment and the outcome are confounded. Treatment
effects can therefore only be identified under additional assumptions on Z, as outlined below.

By the parametric model in (2), treatment effects are homogeneous due to a constant slope coefficient in the
outcome equation and additive separability of D and U. β = Y(1) − Y(0) is constant across individuals even if
U = Y(0) is not. In empirical applications, however, the impact of D on Y is likely heterogenous through de-
pendence on unobserved factors. Imbens and Angrist (1994) therefore postulate the identifying assumptions
for nonparametric IV models like (1) that permit effect heterogeneity, with the caveat that effects can gener-
ally only be obtained for the subpopulation of compliers. The assumptions impose IV validity (IV exogeneity
and an exclusion restriction), weak monotonicity of the treatment in the instrument, and IV relevance (for the
treatment). Formally, the first assumption can be stated as follows:

Assumption 1
(IV validity). (i) 𝑍⊥(𝐷(1), 𝐷(0), 𝑌(1, 1), 𝑌(1, 0), 𝑌(0, 1), 𝑌(0, 0)) and (ii) 𝑌(1, 𝑑) = 𝑌(0, 𝑑) = 𝑌(𝑑) for d ∈ {1, 0}

The symbol “⊥” denotes independence. Assumption 1 consists of two conditions. First, the IV is as good
as random and unrelated with factors affecting the treatment and/or outcome, implying that (U, V) ⊥ Z holds
in model (1). Therefore, not only the potential outcomes/treatment states, but also the types (defined by the
joint potential treatment states) are independent of the instrument. Second, Z must not have a direct effect on Y
other than through D, i.e. satisfy an exclusion restriction. This holds in (1) and (2), because Z does not enter the
equation of Y as an explanatory variable. We will henceforth often implicitly impose the exclusion restriction
and index potential outcomes by the treatment only.

Concerning the plausibility of Assumption 1, note that in a successfully conducted experiment, the random-
ness of Z holds by construction. The exclusion restriction holds if mere assignment for instance to a training
does not have a direct effect on the outcome, e.g. through increased motivation or frustration due to being
(not) offered the training. While Assumption 1 is plausible e.g. in a medical trial where individuals in the con-
trol group receive placebo treatments, it might be less so in so-called quasi-experimental settings. Taking the
estimation of the returns to education (D) as example, Angrist and Krueger (1991) suggest using quarter of
birth as IV (Z). It is related to years of education through regulations about school starting age, but is arguably
not driven by factors also affecting income and does not have a direct effect on income (Y). However, Bound,
Jaeger, and Baker (1995) contest Assumption 1 and present evidence that seasonal birth patterns are related to
family income, health, and school attendance, all of which may affect income. Buckles and Hungerman (2013)
document differences in maternal characteristics for births throughout the year. Scrutinizing IVs appearing
plausible at a first glance is therefore in order, in particular, when not randomly assigned by the researcher.

When aiming for a mean effect like the LATE (see (15) below), full independence between Z and Y(z, d),
see part (i) of Assumption 1, can be replaced by the weaker mean independence: 𝐸(𝑌(𝑧, 𝑑)|𝑇 = 𝑡, 𝑍 = 1) =
𝐸(𝑌(𝑧, 𝑑)|𝑇 = 𝑡, 𝑍 = 0) = 𝐸(𝑌(𝑧, 𝑑)|𝑇 = 𝑡) for d ∈ {0, 1} and t ∈ {a, c, d, n}. Likewise, the exclusion restriction
of part (ii) can be relaxed to a mean version: 𝐸(𝑌(1, 𝑑)|𝑇 = 𝑡) = 𝐸(𝑌(0, 𝑑)|𝑇 = 𝑡) = 𝐸(𝑌(𝑑)|𝑇 = 𝑡). Assumption
1 is, however, required for distributional features like quantile treatment effects. From a practical perspective,
this distinction is often less relevant, as setups in which mean independence holds, but full independence does
not, might seem odd. For instance, if one assumes that an IV is mean independent of the potential hourly
wage, it seems reasonable that it is also mean independent of the log of potential hourly wage. As the latter is
a nonlinear transformation of the original potential outcome, this implies independence also with respect to
higher moments. Therefore, strengthening mean to full independence often comes with little costs in terms of
credibility.

Assumption 2
(Monotonicity). Pr(𝐷(1) ≥ 𝐷(0)) = 1

Assumption 2 says that the potential treatment state of any individual does not decrease in the IV. Alterna-
tively to imposing weak positive monotonicity, one could also impose weak negative monotonicity (Pr(𝐷(1) ≤
𝐷(0)) = 1). However, the latter case is omitted, because it is symmetric in the sense that negative can be turned
into positive monotonicity by recoding the instrument as 1 − Z. Assumption 2 rules out the existence of defiers
(type T = d), because for the latter group, D(1) < D(0). The population therefore only consists of always takers,
never takes, and compliers. This condition is implicit in parametric models like (2), where δ is a constant so that
the effect of Z is homogeneous and V is a scalar unobservable.

Furthermore, Assumption 2 is satisfied by construction in randomized experiments with so-called one-
sided non-compliance (see Bloom 1984): if no subject randomized out of a job training can manage to “sneak
into” the training, then Pr(𝐷(0) = 1) = 0 such that defiers as well always takers do not exist. Even in many
field experiments where Pr(𝐷(0) = 1) > 0, the presence of defiers appears implausible as it would imply
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counter-intuitive behavior to the randomization protocol. In several quasi-experimental settings, however, the
assumption might be disputable. Reconsidering the quarter of birth instrument, positive monotonicity appears
plausible in the US context at a first glance. Arguably, among students entering school in the same year, those
who are born in an earlier quarter can drop out after less years of completed education at the age of 16 when
compulsory schooling ends than those born later, in particular after the end of the academic year. However,
strategic postponement of school entry due to redshirting or unobserved school policies may reverse the relation
of education and quarter of birth for some individuals (defiers), see Aliprantis (2012), Barua and Lang (2009),
and Klein (2010). Assumption 2 therefore needs to be scrutinized with similar care as Assumption 1.

Assumption 3 imposes the existence of a first stage effect of the IV on the treatment.

Assumption 3
(First stage). 𝐸(𝐷|𝑍 = 1) − 𝐸(𝐷|𝑍 = 0) ≠ 0

Under Assumption 1 and Assumption 2, 𝐸(𝐷|𝑍 = 1) − 𝐸(𝐷|𝑍 = 0) ≠ 0 implies the existence of compliers
(type T = c) in the population, namely Pr(𝐷(1) > 𝐷(0)) > 0, see equation (14) further below. In our para-
metric model, this is satisfied if δ is positive and sufficiently large to shift the treatment decision at least for a
subpopulation when switching from z = 0 to z = 1.

In seminal work, Vytlacil (2002) shows that Assumption 1 – Assumption 3 correspond to a particular non-
parametric IV model (1) with the following threshold crossing selection equation

𝐷 = 1(𝜇(𝑍) ≥ 𝑉), (3)

where V is a scalar (index of) unobservable(s) and μ(Z) is a nontrivial function of Z.1

2.2 Identification under a Binary Treatment and Instrument

To demonstrate how Assumption 1–Assumption 3 permit identifying the LATE, LQTE, and the potential out-
come distributions, we introduce further notation that heavily borrows from Kitagawa (2009). Let 𝑓 (𝑦, 𝐷 =
𝑑|𝑍 = 𝑧) denote the joint density of the observed outcome and D = d conditional on Z = z for d, z ∈ {1, 0}. Denote
by 𝑓 (𝑦(𝑧, 𝑑), 𝑇 = 𝑡|𝑍 = 𝑧) the unobserved joint density of the potential outcome and type t conditional on Z = z,
where t ∈ {a, c, d, n}. In the absence of Assumption 1–Assumption 3, it follows from Table 2 that any observed
joint density is a function of the potential outcomes of two types conditional on Z. Therefore, the subsequent
relationships of observed and unobserved joint densities hold for all y in the support of Y:

𝑓 (𝑦, 𝐷 = 1|𝑍 = 1) = 𝑓 (𝑦(1, 1), 𝑇 = 𝑐|𝑍 = 1) + 𝑓 (𝑦(1, 1), 𝑇 = 𝑎|𝑍 = 1), (4)

𝑓 (𝑦, 𝐷 = 1|𝑍 = 0) = 𝑓 (𝑦(0, 1), 𝑇 = 𝑑|𝑍 = 0) + 𝑓 (𝑦(0, 1), 𝑇 = 𝑎|𝑍 = 0), (5)

𝑓 (𝑦, 𝐷 = 0|𝑍 = 1) = 𝑓 (𝑦(1, 0), 𝑇 = 𝑑|𝑍 = 1) + 𝑓 (𝑦(1, 0), 𝑇 = 𝑛|𝑍 = 1), (6)

𝑓 (𝑦, 𝐷 = 0|𝑍 = 0) = 𝑓 (𝑦(0, 0), 𝑇 = 𝑐|𝑍 = 0) + 𝑓 (𝑦(0, 0), 𝑇 = 𝑛|𝑍 = 0). (7)

Under Assumption 1, 𝑓 (𝑦(𝑧, 𝑑), 𝑇 = 𝑡|𝑍 = 𝑧) simplifies to f (y(d), T = t) for any type and d, z ∈ {1, 0}, because (i) IV
independence of the potential treatments/outcomes allows dropping conditioning on Z and (ii) the exclusion
restriction implies Y(z, d) = Y(d). Under Assumption 2, f (y(1), T = d) and f (y(0), T = d) are zero. Therefore,
equations (4) to (7) become

𝑓 (𝑦, 𝐷 = 1|𝑍 = 1) = 𝑓 (𝑦(1), 𝑇 = 𝑐) + 𝑓 (𝑦(1), 𝑇 = 𝑎), (8)

𝑓 (𝑦, 𝐷 = 1|𝑍 = 0) = 𝑓 (𝑦(1), 𝑇 = 𝑎), (9)
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𝑓 (𝑦, 𝐷 = 0|𝑍 = 1) = 𝑓 (𝑦(0), 𝑇 = 𝑛), (10)

𝑓 (𝑦, 𝐷 = 0|𝑍 = 0) = 𝑓 (𝑦(0), 𝑇 = 𝑐) + 𝑓 (𝑦(0), 𝑇 = 𝑛). (11)

By Assumption 3, f (y(0), T = c) and f (y(1), T = c) are nonzero for at least some values (y(0), y(1)) in the support of
(Y(0), Y(1)). Subtracting (9) from (8) and (10) from (11) yields the joint densities of the compliers under treatment
and non-treatment:

𝑓 (𝑦, 𝐷 = 1|𝑍 = 1) − 𝑓 (𝑦, 𝐷 = 1|𝑍 = 0) = 𝑓 (𝑦(1), 𝑇 = 𝑐), (12)

𝑓 (𝑦, 𝐷 = 0|𝑍 = 0) − 𝑓 (𝑦, 𝐷 = 0|𝑍 = 1) = 𝑓 (𝑦(0), 𝑇 = 𝑐). (13)

To obtain the LATE, note that ∫ 𝑓 (𝑦(𝑑), 𝑇 = 𝑐)𝑑𝑦 = 𝜋𝑐, where 𝜋𝑐 = Pr(𝑇 = 𝑐) denotes the share of compliers
in the population. More generally, 𝜋𝑡 = Pr(𝑇 = 𝑡) will henceforth denote the share of type t. Therefore, πc is
identified by

𝜋𝑐 = ∫[𝑓 (𝑦, 𝐷 = 1|𝑍 = 1) − 𝑓 (𝑦, 𝐷 = 1|𝑍 = 0)]𝑑𝑦
= Pr(𝐷 = 1|𝑍 = 1) − Pr(𝐷 = 1|𝑍 = 0) = 𝐸(𝐷|𝑍 = 1) − 𝐸(𝐷|𝑍 = 0). (14)

Furthermore, ∫ 𝑦𝑓 (𝑦(𝑑), 𝑇 = 𝑐)𝑑𝑦 = ∫ 𝑦𝑓 (𝑦(𝑑)|𝑇 = 𝑐)𝜋𝑐𝑑𝑦 = 𝐸[𝑌(𝑑)|𝑇 = 𝑐] ⋅ 𝜋𝑐 implies that

𝐸[𝑌(1) − 𝑌(0)|𝑇 = 𝑐] ⋅ 𝜋𝑐
= ∫ 𝑦{[𝑓 (𝑦, 𝐷 = 1|𝑍 = 1) − 𝑓 (𝑦, 𝐷 = 1|𝑍 = 0)] − [𝑓 (𝑦, 𝐷 = 0|𝑍 = 0) − 𝑓 (𝑦, 𝐷 = 0|𝑍 = 1)]}𝑑𝑦
= ∫ 𝑦[𝑓 (𝑦|𝑍 = 1) − 𝑓 (𝑦|𝑍 = 0)]𝑑𝑦 = 𝐸(𝑌|𝑍 = 1) − 𝐸(𝑌|𝑍 = 0),

which is the intention-to-treat effect (ITT). The latter generally deviates from the ATE because it does not com-
prise the effects on the always and never takers. By scaling the ITT by the share of compliers we obtain the
standard identification result for the LATE, denote by Δc:

𝐸(𝑌|𝑍 = 1) − 𝐸(𝑌|𝑍 = 0)
𝐸(𝐷|𝑍 = 1) − 𝐸(𝐷|𝑍 = 0) = 𝐸[𝑌(1) − 𝑌(0)|𝑇 = 𝑐] = Δ𝑐. (15)

That is, the so-called Wald estimand, which in the binary treatment and instrument case corresponds to the
probability limit of TSLS,2 identifies the LATE. It is worth noting that under one-sided noncompliance, the
LATE simplifies to 𝐸(𝑌|𝑍=1)−𝐸(𝑌|𝑍=0)

𝐸(𝐷|𝑍=1) and coincides with the average treatment effect on the treated (ATT),
Δ𝐷=1 = 𝐸(𝑌(1) − 𝑌(0)|𝐷 = 1):

Δ𝑐 = 𝐸(𝑌(1) − 𝑌(0)|𝐷(1) = 1, 𝐷(0) = 0) = 𝐸(𝑌(1) − 𝑌(0)|𝐷(1) = 1)
= 𝐸(𝑌(1) − 𝑌(0)|𝐷(1) = 1, 𝑍 = 1) = 𝐸(𝑌(1) − 𝑌(0)|𝐷 = 1, 𝑍 = 1) = 𝐸(𝑌(1) − 𝑌(0)|𝐷 = 1).

The second equality follows from Pr(𝐷(0) = 1) = 0 such that D(1) = 1 implies T = c, the third from Assumption
1, the fourth from the definition of potential treatments, and the fifth from Pr(𝐷(0) = 1) = 0 ⇒ Pr(𝐷 = 1|𝑍 =
0) = 0 such that 𝐷 = 1 ⇒ 𝐷 = 1, 𝑍 = 1.

Also the density functions of the potential outcomes among compliers are identified, see Imbens and Rubin
(1997). By (12), (13), and (14),

𝑓 (𝑦(1)|𝑇 = 𝑐) = 𝑓 (𝑦, 𝐷 = 1|𝑍 = 1) − 𝑓 (𝑦, 𝐷 = 1|𝑍 = 0)
Pr(𝐷 = 1|𝑍 = 1) − Pr(𝐷 = 1|𝑍 = 0)

= 𝑓 (𝑦|𝐷 = 1, 𝑍 = 1) ⋅ Pr(𝐷 = 1|𝑍 = 1) − 𝑓 (𝑦|𝐷 = 1, 𝑍 = 0) ⋅ Pr(𝐷 = 1|𝑍 = 0)
Pr(𝐷 = 1|𝑍 = 1) − Pr(𝐷 = 1|𝑍 = 0) .

𝑓 (𝑦(0)|𝑇 = 𝑐) = 𝑓 (𝑦, 𝐷 = 0|𝑍 = 0) − 𝑓 (𝑦, 𝐷 = 0|𝑍 = 1)
Pr(𝐷 = 0|𝑍 = 0) − Pr(𝐷 = 0|𝑍 = 1)

= 𝑓 (𝑦|𝐷 = 0, 𝑍 = 0) ⋅ Pr(𝐷 = 0|𝑍 = 0) − 𝑓 (𝑦|𝐷 = 0, 𝑍 = 1) ⋅ Pr(𝐷 = 0|𝑍 = 1)
Pr(𝐷 = 0|𝑍 = 0) − Pr(𝐷 = 0|𝑍 = 1) .

6

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Huber andWüthrich

The mean potential outcomes among compliers correspond to the following expressions, see also Imbens and
Rubin (1997) and Abadie (2002):

𝐸(𝑌(1)|𝑇 = 𝑐) =
∫ 𝑦{𝑓 (𝑦, 𝐷 = 1|𝑍 = 1) − 𝑓 (𝑦, 𝐷 = 1|𝑍 = 0)}𝑑𝑦

Pr(𝐷 = 1|𝑍 = 1) − Pr(𝐷 = 1|𝑍 = 0)
= 𝐸(𝑌 ⋅ 𝐷|𝑍 = 1) − 𝐸(𝑌 ⋅ 𝐷|𝑍 = 0)

𝐸(𝐷|𝑍 = 1) − 𝐸(𝐷|𝑍 = 0) .
(16)

𝐸(𝑌(0)|𝑇 = 𝑐) =
∫ 𝑦{𝑓 (𝑦, 𝐷 = 0|𝑍 = 0) − 𝑓 (𝑦, 𝐷 = 0|𝑍 = 1)}𝑑𝑦

Pr(𝐷 = 0|𝑍 = 0) − Pr(𝐷 = 0|𝑍 = 1)
= 𝐸(𝑌 ⋅ (1 − 𝐷)|𝑍 = 1) − 𝐸(𝑌 ⋅ (1 − 𝐷)|𝑍 = 0)

𝐸(1 − 𝐷|𝑍 = 1) − 𝐸(1 − 𝐷|𝑍 = 0) .

𝐸(𝑌(1)|𝑇 = 𝑐) can be consistently estimated by TSLS when using Z as instrument in a regression of Y ⋅ D on a
constant and D, where the coefficient on the latter gives the estimate. An estimate of 𝐸(𝑌(0)|𝑇 = 𝑐) is obtained
from a TSLS regression of Y ⋅ (1 − D) on (1 − D).

As shown in Lemma 2.1 of Abadie (2002), the identification results (16) not only hold with respect to Y, but
also for any function of the outcome, denoted by h(y), with a finite first moment. As an important case, setting
h(y) = 1(Y ≤ y), with y being some value on the real line, allows identifying cumulative distribution functions
(cdf) of potential outcomes:

𝐹𝑌(1)|𝑇=𝑐(𝑦) = 𝐸(1(𝑌 ≤ 𝑦) ⋅ 𝐷|𝑍 = 1) − 𝐸(1(𝑌 ≤ 𝑦) ⋅ 𝐷|𝑍 = 0)
𝐸(𝐷|𝑍 = 1) − 𝐸(𝐷|𝑍 = 0) , (17)

𝐹𝑌(0)|𝑇=𝑐(𝑦) = 𝐸(1(𝑌 ≤ 𝑦) ⋅ (1 − 𝐷)|𝑍 = 1) − 𝐸(1(𝑌 ≤ 𝑦) ⋅ (1 − 𝐷)|𝑍 = 0)
𝐸(1 − 𝐷|𝑍 = 1) − 𝐸(1 − 𝐷|𝑍 = 0) .

Estimation can proceed by TSLS, regressing 1(Y ≤ y) ⋅ D on D and 1(Y ≤ y) ⋅ (1 − D) on (1 − D). Quantiles of
the potential outcomes of compliers are obtained by inverting the cdfs:

𝑄𝑌(𝑑)|𝑇=𝑐(𝜏) = {inf𝑦 Pr(𝑌(𝑑) ≤ 𝑦|𝑇 = 𝑐) ≥ 𝜏} = 𝐹−1
𝑌(𝑑)|𝑇=𝑐(𝜏), (18)

where τ ∈ (0, 1) is the rank in the potential outcome distribution under D = d. This allows for defining the local
quantile treatment effect (LQTE) at the τth quantile, which corresponds to

Δ𝑐(𝜏) = 𝑄𝑌(1)|𝑇=𝑐(𝜏) − 𝑄𝑌(0)|𝑇=𝑐(𝜏). (19)

Estimation can be performed by inverting the empirical potential outcome cdfs. Under standard regularity
conditions estimation is consistent and asymptotically normal if the densities of the potential outcomes among
compliers are strictly positive: 𝑓 (𝑦(𝑑)|𝑇 = 𝑐) > 0 for d ∈ {0, 1}.

2.3 Multivalued Instruments and Marginal Treatment Effects

This section considers extensions to nonbinary IVs while maintaining a binary treatment. If the IV is multival-
ued one can identify a LATE with respect to any pair of values (z′′, z′) satisfying Assumption 1–Assumption 3. In-
stead of identifying many pairwise effects, one might be interested in the effect for the largest possible complier
population. By defining monotonicity with respect to the treatment propensity score 𝑝(𝑧) = Pr(𝐷 = 1|𝑍 = 𝑧),
this is achieved by finding the two instrument values that minimize and maximize p(z), (𝑧min, 𝑧max), and evalu-
ating the LATE at these values. The propensity score (rather than Z itself) might be used as IV for identification:

Δ𝑐(𝑝(𝑧min), 𝑝(𝑧max)) = 𝐸(𝑌|𝑝(𝑍) = 𝑝(𝑧max)) − 𝐸(𝑌|𝑝(𝑍) = 𝑝(𝑧min))
𝐸(𝐷|𝑝(𝑍) = 𝑝(𝑧max)) − 𝐸(𝐷|𝑝(𝑍) = 𝑝(𝑧min)) .

This strategy is particularly useful if Z is multidimensional, as the different elements in Z can then be straight-
forwardly collapsed into a single instrument by using p(Z).
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If the IV(s) is/are continuous, a continuum of effects is identified. See Heckman and Vytlacil (2001b, 2005),
who call the resulting parameter based on an infinitesimal change in the IV the marginal treatment effect (MTE).
The latter is defined as average treatment effect conditional on V, the unobserved term in the treatment model
(1):

Δ(𝑣) = 𝐸(𝑌(1) − 𝑌(0)|𝑉 = 𝑣). (20)

Assume that V represents the (unobserved) cost or disutility of treatment. The MTE is the average effect among
persons being indifferent between treatment or not if exogenously assigned a value of Z, say z, such that μ(z)
= v. This follows from 𝐷 = 1(𝜇(𝑍) ≥ 𝑉), see (3). Any LATE (and any other average effect) can be expressed as
a (density-)weighted average of MTEs. For any (z′′, z′) such that p(z′′) > p(z′), a complier is someone satisfying
𝐷(𝑧′′) = 1(𝜇(𝑧′′) ≥ 𝑉) = 1 and 𝐷(𝑧′) = 1(𝜇(𝑧′) ≥ 𝑉) = 0. Put differently, compliers c(z′′, z′) are characterized
by v′ < V ≤ v′′ so that D(z′′) = 1 and D(z′) = 0 holds. Therefore, the LATE for T = c(z′′, z′) is

𝐸(𝑌(1) − 𝑌(0)|𝑇 = 𝑐(𝑧′′, 𝑧′)) = 𝐸(𝑌(1) − 𝑌(0)|𝐷(𝑧′′) = 1, 𝐷(𝑧′) = 0)

= 𝐸(𝑌(1) − 𝑌(0)|𝑣′ < 𝑉 ≤ 𝑣′′) = Δ𝑐(𝑣′′, 𝑣′) = 1
𝐹𝑉(𝑣′′) − 𝐹𝑉(𝑣′) ∫

𝑣′′

𝑣′
Δ(𝑣)𝑑𝐹𝑉(𝑣).

V can be normalized so that the normalization (denoted by �̄�) satisfies �̄� ∼ Uniform[0, 1] and corresponds
to the cdf: �̄� = FV. Normalizing is innocuous, because if 𝐷 = 1(𝜇(𝑍) ≥ 𝑉), then by applying a probabil-
ity transformation, the model can be reparametrized so that 𝐷 = 1(𝜂(𝑍) ≥ �̄�), with η(Z) = FV(μ(Z)). Thus,
Δ𝑐( ̄𝑣′′, ̄𝑣′) = 1

�̄�′′−�̄�′ ∫�̄�′′

�̄�′ Δ( ̄𝑣)𝑑 ̄𝑣.
The MTE can be identified by the fact that ̄𝑣′′ = 𝐹𝑉(𝑣′′) = Pr(𝐷(𝑧′′) = 1) = Pr(𝐷 = 1|𝑍 = 𝑧′′) = 𝑝(𝑧′′)

and equivalently, ̄𝑣′ = 𝑝(𝑧′). Therefore, the MTE is recovered pointwise by the derivative of the conditional
expectation of Y with respect to p(Z):

Δ(�̄� = 𝑝(𝑧)) = 𝜕𝐸(𝑌|𝑝(𝑍) = 𝑝(𝑧))
𝜕𝑝(𝑧) . (21)

Heckman and Vytlacil (1999) coined the term local IV (LIV) for Δ(�̄� = p), a parameter even “more local” than
the LATE Δ𝑐( ̄𝑣′′, ̄𝑣′) based on a quantifiable difference between ̄𝑣′′ and ̄𝑣′. Note, however, that the LATE is
equivalent to the LIV for ̄𝑣′′ − ̄𝑣′ infinitesimally small. Using similar arguments, Carneiro and Lee (2009) extend
these ideas to the identification of the QTE analogs of the MTE, the marginal quantile treatment effects (MQTE):

Δ(𝜏|�̄� = 𝑝(𝑧)) = 𝑄𝑌1
(𝜏|�̄� = 𝑝(𝑧)) − 𝑄𝑌0

(𝜏|�̄� = 𝑝(𝑧)). (22)

𝑄𝑌1
(𝜏|�̄� = 𝑝(𝑧)) and 𝑄𝑌0

(𝜏|�̄� = 𝑝(𝑧)) are identified as the inverses of

𝐹𝑌(1)(𝑦|�̄� = 𝑝(𝑧)) = 𝐹𝑌(𝑦|𝑃(𝑍) = 𝑝(𝑧), 𝐷 = 1) + 𝑝(𝑧)𝜕𝐹𝑌(𝑦|𝑃(𝑍) = 𝑝(𝑧), 𝐷 = 1)
𝜕𝑝 ,

𝐹𝑌(0)(𝑦|�̄� = 𝑝(𝑧)) = 𝐹𝑌(𝑦|𝑃(𝑍) = 𝑝(𝑧), 𝐷 = 0) − (1 − 𝑝(𝑧))𝜕𝐹𝑌(𝑦|𝑃(𝑍) = 𝑝(𝑧), 𝐷 = 0)
𝜕𝑝 .

2.4 Multivalued Treatments

In contrast to extending binary to multivalued IVs (see Section 2.3), generalizing binary to nonbinary treatments
is not straightforward. For illustration, consider a setup with a single binary instrument Z ∈ {0, 1} and an ordered
discrete treatment 𝐷 ∈ {0, 1, ..., 𝐽}, where J + 1 is the number of possible treatment doses. We cannot identify
causal effects for single compliance types at specific treatment values, e.g. for those increasing the treatment
from 1 to 2 when the instrument switches from 0 to 1. Is is, however, possible to identify a weighted average
of causal effects of unit-level increases in the treatment. Angrist and Imbens (1995) show that if Pr(𝐷(1) ≥ 𝑗 >
𝐷(0)) > 0 for some value j such that compliers exist at some treatment margin,

𝐸(𝑌|𝑍 = 1) − 𝐸(𝑌|𝑍 = 0)
𝐸(𝐷|𝑍 = 1) − 𝐸(𝐷|𝑍 = 0) =

𝐽
∑
𝑗=1

𝑤𝑗 ⋅ 𝐸(𝑌(𝑗) − 𝑌(𝑗 − 1)|𝐷(1) ≥ 𝑗 > 𝐷(0)), (23)
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with 𝑤𝑗 = Pr(𝐷(1) ≥ 𝑗 > 𝐷(0))
∑𝐽

𝑗=1 Pr(𝐷(1) ≥ 𝑗 > 𝐷(0))
, implying that 0 ≤ wj ≤ 1 and ∑𝐽

𝑗=1 𝑤𝑗 = 1. Therefore, the Wald estimand equals

a weighted average of effects of unit changes in the treatment on heterogeneous complier groups defined by
different margins of the potential treatments. However, the various treatment effects based on unit changes,
𝐸(𝑌(𝑗) − 𝑌(𝑗 − 1)|𝐷(1) ≥ 𝑗 > 𝐷(0)), remain unidentified. Furthermore, complier groups might be overlap-
ping. Some individuals could satisfy both (𝐷(1) ≥ 𝑗 > 𝐷(0)) and (𝐷(1) ≥ 𝑗 + 1 > 𝐷(0)) for some j and
therefore be accounted multiple times. This arguably compromises the interpretability of the effect.3 Angrist
and Imbens (1995) show that similar results hold in setups with multiple instruments and covariates. While
this strategy yields weighted LATEs, it cannot be used for LQTEs, which rely on separately identifying and
inverting marginal distributions of potential outcomes.

In contrast to an ordered treatment, Behaghel, Crépon, and Gurgand (2013) consider multiple unordered
treatments that are mutually exclusive, which is equivalent to the case of a single treatment with multiple, albeit
unordered values. Under Assumption 1 and a particular monotonicity assumption tailored to a three-valued
treatment and instrument (D, Z ∈ {0, 1, 2}), LATEs among the two complier populations 𝑐1 ∶ 𝐷(1) = 1, 𝐷(0) = 0
and 𝑐2 ∶ 𝐷(2) = 2, 𝐷(0) = 0 are identified.4 Kirkeboen, Leuven, and Mogstad (2016) obtain identification under a
somewhat weaker monotonicity assumption by exploiting information about individuals’ preferred treatments
and next-best treatment alternatives. Heckman and Pinto (2018) consider an unordered monotonicity assump-
tion. It requires for any specific value of the unordered treatment that if some subjects move into (out of) the
respective value when the instrument is switched, then no subjects can at the same time move out of (into)
that value. Imposing conditional IV validity in the spirit of Assumption 4, Hull (2015) shows under a modified
monotonicity assumption for a three-valued treatment that LATEs can be obtained from a binary instrument
if (i) compliance is heterogeneous and (ii) LATEs are homogeneous in observables X. Lee and Salanie (2015)
assume that any treatment value is a measurable function of some threshold-crossing models and sufficiently
many continuous instruments are available, but require no classical monotonicity assumption.

3 Treatment Evaluation with Covariates

Section 3.1 presents the identifying assumptions in the presence of covariates. Sections 3.2, 3.3, and 3.4 consider
local, quantile, and marginal treatment effects. Section 3.5 discusses the identification of general functionals
among compliers.

3.1 Identifying Assumptions

It may not appear credible that an instrument satisfies Assumption 1–Assumption 3 unconditionally, i.e. with-
out controlling for further covariates. This is commonly the case in observational data in which the instrument
is typically not explicitly randomized like in an experiment. As an example, consider the study of Card (1995),
who evaluates the returns to education using the US National Longitudinal Survey of Young Men. Geographic
proximity to college serves as instrument for the potentially endogenous education decision. Proximity should
induce some individuals to strive for a college degree who would otherwise not, for instance due to costs asso-
ciated with not living at home. However, the instrument might be correlated with factors like local labor market
conditions or family background. These factors might be related to the earnings outcome, implying a violation
of Assumption 1. For this reason, Card (1995) includes a range of control variables, e.g. parents’ education,
ethnicity, urbanity, and geographic region.

We subsequently reconsider the binary instrument and treatment case of Section 2.1. However, we impose
conditional IV assumptions (see for instance Abadie 2003), implying that the IV assumptions only hold when
controlling for a vector of observed covariates denoted by X.

Assumption 4
(Conditional IV validity). (i) 𝑍⊥(𝐷(1), 𝐷(0), 𝑌(1, 1), 𝑌(1, 0), 𝑌(0, 1), 𝑌(0, 0))|𝑋 and (ii) Pr(𝑌(1, 𝑑) = 𝑌(0, 𝑑) =

𝑌(𝑑)|𝑋) = 1 for d ∈ {1, 0}

Assumption 5
(Conditional monotonicity). Pr(𝐷(1) ≥ 𝐷(0)|𝑋) = 1

Assumption 6
(Conditional first stage). 𝐸(𝐷|𝑍 = 1, 𝑋) − 𝐸(𝐷|𝑍 = 0, 𝑋) ≠ 0
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Assumption 4 is weaker than Assumption 1, because IV validity now is only required to hold among
units with the same values of X rather than unconditionally. Assumption 5 requires that defiers do not ex-
ist for every value of X. Theoretically, one could construct cases where defiers exist unconditionally (such that
Pr(𝐷(1) ≥ 𝐷(0)) = 1 as stated in Assumption 2 does not hold), but not after conditioning on X, for instance
if Z affected X positively and X affected D (sufficiently strongly) negatively. Assumption 6 states that the first
stage is non-zero for every value of X in its support, which is stronger than Assumption 3. Under Assumption
4 and Assumption 5, this implies Pr(𝐷(1) > 𝐷(0)|𝑋) > 0, which allows identifying the conditional LATE or
LQTE almost everywhere, see Sections 3.2 and 3.3. In contrast, Pr(𝐷(1) > 𝐷(0)) > 0 would suffice if one was
only interested in the (unconditional) LATE and LQTE.

Assumption 7
(Common support). 0 < Pr(𝑍 = 1|𝑋) < 1

Assumption 7 is a common support restriction requiring that no value of X perfectly predicts instrument
assignment. Otherwise, no comparable units (in terms of X) across IV states Z = 1 and Z = 0 exist at some values
of X so that identification breaks down.

Similar to (1), we briefly consider a general IV model that now includes X:

𝑌 = 𝜙(𝐷, 𝑋, 𝑈), 𝑌(𝑑) = 𝜙(𝑑, 𝑋, 𝑈), 𝐷 = 𝛿(𝑍, 𝑋, 𝑉), 𝐷(𝑧) = 𝛿(𝑧, 𝑋, 𝑉). (24)

Assumption 4 implies that (𝑈, 𝑉)⊥𝑍|𝑋. Furthermore, under Assumption 5–Assumption 6, D can also be rep-
resented as 𝐷 = 1(𝜇(𝑍, 𝑋) ≥ 𝑉), see Vytlacil (2002).

3.2 LATE

Under Assumption 4–Assumption 7, the conditional LATE given X = x is identified by

Δ𝑐(𝑥) = 𝐸(𝑌(1) − 𝑌(0)|𝑇 = 𝑐, 𝑋 = 𝑥) = 𝐸(𝑌|𝑍 = 1, 𝑋 = 𝑥) − 𝐸(𝑌|𝑍 = 0, 𝑋 = 𝑥)
𝐸(𝐷|𝑍 = 1, 𝑋 = 𝑥) − 𝐸(𝐷|𝑍 = 0, 𝑋 = 𝑥) , (25)

see for instance Heckman (1997). Nonparametric estimation of Δc(x) suffers from the curse of dimensionality
when X is high dimensional. To overcome this problem, one may either impose parametric restrictions on the
conditional means 𝐸(𝑌|𝑍 = 𝑧, 𝑋 = 𝑥) and 𝐸(𝐷|𝑍 = 𝑧, 𝑋 = 𝑥) for z ∈ {0, 1} as in Tan (2006), or employ the
weighting result by Abadie (2003) to construct semiparametric weighted regression estimates, see Section 3.5.

While identification of the conditional LATE permits investigating effect heterogeneity with respect to ob-
servable covariates, the (unconditional) LATE is frequently the main parameter of interest, also under con-
ditional IV assumptions. It is obtained as a weighted average of conditional LATEs among compliers, i.e. by
integrating over the distribution of X given T = c: Δ𝑐 = ∫Δ𝑐(𝑥)𝑑𝐹𝑋|𝑇=𝑐(𝑥). Frölich (2007) shows that the LATE
can also be represented by:

Δ𝑐 =
∫{𝐸(𝑌|𝑍 = 1, 𝑋 = 𝑥) − 𝐸(𝑌|𝑍 = 0, 𝑋 = 𝑥)}𝑑𝐹𝑋(𝑥)
∫{𝐸(𝐷|𝑍 = 1, 𝑋 = 𝑥) − 𝐸(𝐷|𝑍 = 0, 𝑋 = 𝑥)}𝑑𝐹𝑋(𝑥)

. (26)

By noting that ∫ 𝐸(𝑌|𝑍 = 1, 𝑋 = 𝑥)𝑑𝐹𝑋(𝑥) = ∫(1/𝜋(𝑥))𝐸(𝑌 ⋅ 𝑍|𝑋 = 𝑥)𝑑𝐹𝑋(𝑥) = 𝐸(𝑌 ⋅ 𝑍/𝜋(𝑋)), where 𝜋(𝑥) =
Pr(𝑍 = 1|𝑋 = 𝑥) is the instrument propensity score, one can also obtain a weighting-based expression, see Tan
(2006) and Frölich (2007):

Δ𝑐 = 𝐸[𝑌 ⋅ 𝑍/𝜋(𝑋) − 𝑌 ⋅ (1 − 𝑍)/(1 − 𝜋(𝑋))]
𝐸[𝐷 ⋅ 𝑍/𝜋(𝑋) − 𝐷 ⋅ (1 − 𝑍)/(1 − 𝜋(𝑋))] . (27)

Using a result of Rosenbaum and Rubin (1983) which shows that for identification, controlling for the propen-
sity score is as good as controlling for X, a third representation of the LATE is

Δ𝑐 =
∫{𝐸(𝑌|𝑍 = 1, 𝜋(𝑋) = 𝑝) − 𝐸(𝑌|𝑍 = 0, 𝜋(𝑋) = 𝑝)}𝑑𝐹𝜋(𝑝)
∫{𝐸(𝐷|𝑍 = 1, 𝜋(𝑋) = 𝑝) − 𝐸(𝐷|𝑍 = 0, 𝜋(𝑋) = 𝑝)}𝑑𝐹𝜋(𝑝)

. (28)
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This has the advantage that π(X) is one-dimensional, no matter of which dimension X is. The LATE can thus
be estimated as the ratio of two propensity score matching estimators with Z being the “treatment” and either
Y (numerator) or D (denominator) being the “outcome.”

Several analog estimators have been proposed based on (26) and (27). Frölich (2007) analyzes nonparametric
matching- and (local polynomial and series) regression-based estimation of (26). Donald, Hsu, and Lieli (2014a,
2014b) propose nonparametric inverse probability weighted estimators of (27), using series logit and local poly-
nomial regression-based estimation of the instrument propensity score. All estimators are √𝑛-consistent and
asymptotically normal under specific regularity conditions, as fully nonparametric estimation of the uncondi-
tional LATE involves averaging over conditional LATEs and does therefore not give rise to the curse of dimen-
sionality. Hong and Nekipelov (2010) derive semiparametric efficiency bounds for the estimation of nonlinear
LATE models and propose efficient estimators.

Parametric estimation strategies for the unconditional LATE are outlined in Tan (2006) and Uysal (2011),
who both propose estimators that rely on parametric models for the propensity scores and conditional expecta-
tions of the outcomes. To guard against misspecification, they consider so-called doubly-robust (DR) estimators.
DR estimators are consistent if either the propensity score, the conditional expectations, or both are correctly
specified.

Finally, Belloni et al. (2017) and Chernozhukov et al. (2017) consider estimation of the unconditional LATE in
data-rich environments where the number of potential control variables may be much larger than the number of
observations. Belloni et al. (2017) propose estimators based on LASSO and post-LASSO. A crucial assumption
for valid inference is “approximate sparsity,” implying that a relatively small number of covariates suffices
for capturing the relationship of X with the outcome, treatment, and instrument up to a small approximation
error. Given that sparsity holds, the advantage of the method of Belloni et al. (2017) is that it selects covariates
(and possibly interaction terms and higher order terms thereof similar to series estimation) in a data-driven
way rather than ad hoc. Chernozhukov et al. (2017) offer a general approach to machine learning-based LATE
estimation in the presence of high dimensional control variables based on orthogonalized moment conditions
and sample splitting (or cross-fitting). In addition to LASSO, further machine learning methods like random
forests, neural nets, boosting, and hybrids thereof might be used to control for X.

When the IV assumptions hold conditionally on X, the LATE among all compliers is different from the lo-
cal average treatment effect among treated compliers (LATT), which is considered for example by Hong and
Nekipelov (2010). The reason is that the distribution of X generally differs across treatment states. By appropri-
ate reweighting of the previous identification results, also the LATT is identified. One approach is weighting
observations in the denominator and numerator of expression (27) by 𝜋(𝑋)/ Pr(𝑍 = 1), see Donald, Hsu, and
Lieli (2014b), yielding:

Δ𝑐,𝐷=1 = 𝐸 (𝑌 ⋅ 𝑍 − 𝑌 ⋅ (1 − 𝑍) ⋅ 𝜋(𝑋)/(1 − 𝜋(𝑋)))
𝐸 (𝐷 ⋅ 𝑍 − 𝐷 ⋅ (1 − 𝑍) ⋅ 𝜋(𝑋)/(1 − 𝜋(𝑋))) . (29)

Note that in the case of one-sided non-compliance given X, Pr(𝐷(0) = 1|𝑋) = 0, the LATE does not correspond
to the ATT under Assumption 4–Assumption 7 (in contrast to Assumption 1–Assumption 3). Frölich and Melly
(2013a) show that in this case, the ATT is identified by

Δ𝐷=1 =
𝐸(𝑌) − ∫ 𝐸(𝑌|𝑍 = 0, 𝑋 = 𝑥)𝑑𝐹𝑋(𝑥)

Pr(𝐷 = 1) = 1
Pr(𝐷 = 1)𝐸 [𝑌 ⋅ (𝐷 − (1 − 𝐷) ⋅ 𝜋(𝑋) − 𝑍

1 − 𝜋(𝑋) )] .

3.3 LQTE

As for the LATE, one may define either conditional (given X) or unconditional LQTEs in the presence of covari-
ates. This distinction is important because of the definition of quantiles. Suppose that we are interested in the
relationship between education and wages. The unconditional 0.9 quantile of the wage distribution refers to
high wage workers who typically have many years of schooling, whereas the 0.9 quantile of the wage distribu-
tion conditional on schooling refers to the high wage earners within an education class who will not necessarily
be high overall earners; See Frölich and Melly (2013b), who provide a more detailed discussion about the differ-
ence between conditional and unconditional LQTEs. Abadie, Angrist, and Imbens (2002) consider estimation
of the conditional LQTE. Assuming that the conditional quantile function for the compliers satisfies

𝑄𝑌|𝐷,𝑋,𝑇=𝑐(𝜏) = 𝛼𝑐(𝜏)𝐷 + 𝑋′𝛽𝑐(𝜏), (30)
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they show that conditional LQTE, Δ𝑐(𝜏|𝑥), is identified by αc(τ), the coefficient on D in a weighted quantile
regression objective function:

(𝛼𝑐(𝜏), 𝛽𝑐(𝜏)) = arg min
𝑎,𝑏

𝐸 (𝜅 ⋅ 𝜌𝜏(𝑌 − 𝑎𝐷 − 𝑋′𝑏)) . (31)

κ, which is defined in expression (34) in Section 3.5 below, is a weighting function that allows identifying func-
tionals for compliers. Note that among the population of compliers, outcome comparisons by D conditional on
X as in (30) have a causal interpretation. This follows from Assumption 4 and the fact that compliers satisfy D
= Z:

𝑍⊥(𝐷(1), 𝐷(0), 𝑌(1), 𝑌(0))|𝑋 ⇒ 𝑍⊥(𝑌(1), 𝑌(0))|𝑋, 𝑇 = 𝑐 ⇒ 𝐷⊥𝑌(1), 𝑌(0)|𝑋, 𝑇 = 𝑐.

Although the population objective function (31) is globally convex, its sample counterpart is typically not as κ
is negative when D ≠ Z. Abadie, Angrist, and Imbens (2002) therefore suggest replacing the κ-weights by their
projections on (Y, D, X), which are guaranteed to be positive. Estimation consists of two steps: (i) nonparametric
power series estimation of the weights and (ii) a weighted quantile regression using the estimated weights from
the first step. Under appropriate regularity conditions, the resulting estimators ̂𝛼c(τ) and ̂𝛽c(τ) are √𝑛-consistent
and asymptotically normal, because the outcome equation is parametric.

Consider next the problem of identifying and estimating the unconditional LQTE when controlling for
covariates. First, note that the unconditional complier cdf – in analogy to (17) combined with (26) – is identified
as follows (Frölich and Melly 2013b):

𝐹𝑌(1)|𝑇=𝑐(𝑦) = 𝐸(𝜅𝐹𝑀 ⋅ 1(𝑌 ≤ 𝑦) ⋅ 𝐷)
𝐸(𝜅𝐹𝑀 ⋅ 𝐷) , where 𝜅FM = 𝑍 − 𝜋(𝑋)

𝜋(𝑋) ⋅ (1 − 𝜋(𝑋)) ⋅ (2𝐷 − 1). (32)

An analogous result holds for 𝐹𝑌(0)|𝑇=𝑐(𝑦) by replacing D with 1 − D, such that the unconditional LQTE is
Δ𝑐(𝜏) = 𝐹−1

𝑌(1)|𝑇=𝑐(𝜏)−𝐹−1
𝑌(0)|𝑇=𝑐(𝜏). Alternatively, the unconditional QTE can be obtained by weighted quantile

regression:

(𝛼𝑐(𝜏), 𝛽𝑐(𝜏)) = arg min
𝑎,𝑏

𝐸 (𝜅FM ⋅ 𝜌𝜏(𝑌 − 𝑎𝐷 − 𝑏)) . (33)

Finally, Frölich and Melly (2013a) show that under one-sided noncompliance, the quantile treatment effect on
the treated is given by Δ𝐷=1(𝜏) = 𝑄𝑌|𝐷=1(𝜏) − 𝐹−1

𝑌(0)|𝐷=1(𝜏), where

𝐹𝑌(0)|𝐷=1(𝜏) = 1
Pr(𝐷 = 1)𝐸 (1(𝑌 ≤ 𝑞) ⋅ (1 − 𝐷) ⋅ 𝜋(𝑋) − 𝑍

1 − 𝜋(𝑋) ) .

Hsu, Lai, and Lieli (2015) derive uniformly consistent and asymptotically Gaussian estimators based on (32)
using series logit regression for propensity score estimation. Frölich and Melly (2013b) estimate (33) using local
polynomial regression for propensity score estimation. Finally, Belloni et al. (2017) consider estimation of the
unconditional LQTE in data-rich environments, in which the number of potential control variables may be
larger than the number of observations.

3.4 Marginal Treatment Effects

In the presence of covariates, the marginal treatment effect given X, Δ(𝑥, 𝑣) = 𝐸(𝑌(1) − 𝑌(0)|𝑋 = 𝑥, 𝑉 =
𝑣), is identified by LIV: Δ(𝑋 = 𝑥, �̄� = 𝑝(𝑧,𝑥)) = 𝜕𝐸(𝑌|𝑋=𝑥,𝑝(𝑍,𝑋)=𝑝(𝑧,𝑥))

𝜕𝑝(𝑧,𝑥) , with 𝑝(𝑧, 𝑥) = Pr(𝐷 = 1|𝑍 = 𝑧, 𝑋 =
𝑥). Assumption 4–Assumption 6 must hold for all values of p(Z, X) of interest. Assumption 7 adapted to the
continuous instrument p(Z, X) implies that the MTE is only identified over the common support of p(Z, X)
across all values of X. This limits the practical feasibility of nonparametric MTE evaluation, in particular if X is
high dimensional and Z is not strong or rich in support. We refer to Cornelissen et al. (2016) for an introduction
and overview of different methods for estimating MTE with covariates.

Carneiro, Heckman, and Vytlacil (2011) increase identifying power by replacing Assumption 4 with:

Assumption 8
(𝑍, 𝑋)⊥(𝐷(𝑧), 𝐷(𝑧′), 𝑌(1), 𝑌(0)) for z, z′ in the support of Z
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Note that z = 1, z′ = 0 in the binary IV case. This restriction imposes independence between X and unobserv-
ables affecting D or Y, which is substantially stronger than Assumption 4. While observables X (e.g. education)
may confound Z and (D, Y), they must not be associated with unobservables (e.g. ability) that affect (D, Y),
i.e. with (V, U) in model (24). If Assumption 8 is nevertheless imposed, the MTE is identified over the uncon-
ditional support of p(Z, X) such that common support across values of X is not required. Brinch, Mogstad,
and Wiswall (2017) show that this property is even maintained when relaxing Assumption 8 by permitting
associations between V and X, as long as X is conditionally independent of U given V.

Identification of MQTE in the presence of covariates follows from the arguments of Section 2.3 conditional on
X. Carneiro and Lee (2009) propose a semiparametric estimation approach which relies on additive separability
of the structural functions determining potential outcomes. In contrast, Yu (2014) proposes a strategy that not
relying on separability.

3.5 General Functionals

Abadie (2003) shows that under Assumption 4–Assumption 7, it is possible to identify a broad class of func-
tionals for the compliers, rather than merely treatment effects. For any real function g(Y, D, X) with a finite first
moment and weighting functions

𝜅(0) = (1 − 𝐷) ⋅ (1 − 𝑍) − (1 − 𝜋(𝑋))
(1 − 𝜋(𝑋)) ⋅ 𝜋(𝑋) , 𝜅(1) = 𝐷 ⋅ 𝑍 − 𝜋(𝑋))

(1 − 𝜋(𝑋)) ⋅ 𝜋(𝑋) ,

𝜅 = 𝜅(0) ⋅ (1 − 𝜋(𝑋)) + 𝜅(1) ⋅ 𝜋(𝑋) = 1 − 𝐷 ⋅ (1 − 𝑍)
1 − 𝜋(𝑋) − (1 − 𝐷) ⋅ 𝑍

𝜋(𝑋) ,
(34)

it holds that 𝐸(𝑔(𝑌,𝐷,𝑋)|𝑇 = 𝑐) = 𝐸(𝜅⋅𝑔(𝑌,𝐷,𝑋))
𝐸(𝜅) , 𝐸(𝑔(𝑌(0),𝑋)|𝑇 = 𝑐) = 𝐸(𝜅(0)⋅𝑔(𝑌,𝑋))

𝐸(𝜅) , 𝐸(𝑔(𝑌(1),𝑋)|𝑇 = 𝑐) =
𝐸(𝜅(1)⋅𝑔(𝑌,𝑋))

𝐸(𝜅) : the weighting functions κ, κ(1), and κ(0) allow identifying functions (e.g. regression functions) for
compliers and for compliers under (non-)treatment.

Section 3.3 has presented an application of this general weighting result to evaluate the conditional LQTE.
As a further application, consider the linear outcome model 𝑌 = 𝑋′𝛼 + 𝛽𝐷 + 𝑈, 𝐸(𝑈|𝑋, 𝐷) = 0, where α and
β are homogeneous coefficients on the covariates and the treatment, respectively. The optimization problem is
(𝛼𝑐, 𝛽𝑐) = arg min𝑎,𝑏 𝐸((𝑌 − 𝑋′𝑎 − 𝑏𝐷)2|𝑇 = 𝑐) = arg min𝑎,𝑏 𝐸(𝜅 ⋅ (𝑌 − 𝑋′𝑎 − 𝑏𝐷)2). Note that division by E(κ)
is not required as it does not affect the minimization problem. βc gives the conditional LATE, Δc(x), which in
our linear model also corresponds to the (unconditional) LATE, Δc, as well as the treatment effect in the entire
population. In contrast to TSLS, this approach does not require specifying a model for D, but instead relies on
a model for the instrument propensity score π(X).

4 Some Extensions

Section 4.1 presents approaches to LATE evaluation under outcome attrition, outcome non-response, or sample
selection. Section 4.2 discusses methods for dealing with measurement errors in the treatment or the instru-
ment. Section 4.3 considers identifying the effects of dynamic, i.e. sequentially assigned, or multiple treatments.
Section 4.4 is concerned with disentangling the (total) LATE into various causal mechanisms or direct and in-
direct effects.

4.1 LATE Evaluation under Outcome Attrition and Sample Selection

In addition to treatment endogeneity, evaluation is frequently complicated by selective attrition in the outcome.
Examples are drop-out bias in follow-up surveys measuring the outcome and sample selection, for example,
when the wage outcome is only observed for the working. Outcome non-response is frequently modeled by
a so-called missing-at-random (MAR) restriction, which assumes conditional independence of attrition and
outcomes given observed variables (e.g. Z, D, X), see for instance Rubin (1976) and Little and Rubin (1987).
An alternative to MAR which is particularly tailored to the LATE framework is the so-called latent ignorability
(LI) assumption of Frangakis and Rubin (1999). LI requires outcome non-response to be independent of the
potential outcomes conditional on the compliance type. Furthermore, MAR and LI might be combined such that
independence is assumed conditional on both observed characteristics and compliance types, see for instance
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Mealli et al. (2004): 𝑌⊥𝑅|𝑍, 𝑇, 𝑋, where R is a binary indicator for outcome Y. This condition is equivalent to
𝑌⊥𝑅|𝑍, 𝐷, 𝑇, 𝑋 as Z and T perfectly determine D. Frölich and Huber (2014) extend LATE identification under
MAR and both MAR and LI to dynamic non-response models with multiple outcome periods.

A shortcoming of LI (and MAR) is that outcome non-response must be related in a rather restrictive way to
unobservables affecting the outcome: The compliance type is assumed to be a sufficient statistic for the associ-
ation between response and unobservables, at least conditional on observed variables. So-called non-ignorable
non-response models do not impose such restrictions on the relation of R and, for instance, U in (24). How-
ever, without a second instrument for R, the LATE is only identified under tight structural assumptions, see
for instance Zhang, Rubin, and Mealli (2009) and Frumento et al. (2012). In contrast, Fricke et al. (2015) discuss
nonparametric LATE identification when a continuous instrument for R is available in addition to the binary
instrument for D and present an application in which the instruments are independently randomized. Chen
and Flores (2015) do not consider instruments, LI, or MAR with respect to response, but partially identify the
LATE based on imposing monotonicity of R in D among compliers. Furthermore, they assume a particular or-
der of mean potential outcomes under specific treatments across various subpopulations defined in terms of
compliance and response.

4.2 Measurement Error in the Treatment or Instrument

Ura (2016) discusses LATE evaluation when the treatment is measured with error, i.e. misclassified. While point
identification is generally lost, the study provides upper and lower bounds when Assumption 1–Assumption
3 are satisfied with respect to the true treatment. Ura (2016) clarifies that the Wald estimand may generally lie
outside the identified set and is only included in the latter if conditions (39) in Section 6.1 are satisfied with
respect to the mismeasured treatment.

Several contributions present methods that attain point identification of the LATE in spite of treatment
misclassification by imposing additional assumptions. Battistin, De Nadai, and Sianesi (2014) exploit multiple
measurements of the treatment in different data sets under the condition that misclassifications in the various
measurements are independent of each other conditional on the true treatment and Z. DiTraglia and Garcia-
Jimeno (2016) assume additive separability of the unobservable in the treatment effect model (implying effect
homogeneity conditional on covariates) and independence of the misclassification probability and Z. They also
invoke mean independence of the (demeaned) unobservable, its square, and its cube of Z, which holds under
Assumption 1. Yanagi (2017) assumes an exogenous variable that shifts the true treatment (in addition to Z),
influences the outcome homogenously across true treatment states given Z, and does not affect misclassification
given the true treatment and Z.

Chalak (2016) considers measurement error in the instrument rather than the treatment. Denoting by W
and Z the mismeasured and true instrument, respectively, W is assumed to be mean independent of Y and D
given Z and to satisfy an exclusion restriction, while monotonicity is not imposed. In the binary instrument
case and under the satisfaction of Assumption 1–Assumption 3, W identifies the same LATE that would have
been recovered under Z. For more general settings with multiple treatment and/or instrument values, Chalak
(2016) shows that the Wald and LIV estimands using W identify weighted averages of LATEs or MTEs. He also
discusses necessary and sufficient conditions for the weights being nonnegative.

4.3 Dynamic and Multiple Treatments

Rather than evaluating the effects of single treatments, one might be interested in the impact of several sequen-
tially assigned (i.e. dynamic) treatments that take place at various points in time. Consider for instance the
effectiveness of sequences of active labor market policies like a job application training, which is followed by
an IT course and a subsidized employment program. This sequence could be compared to non-participation in
any program or a different sequence of interventions. Such a dynamic treatment framework generally requires
multiple instruments for each of the treatments and specific multi-period monotonicity conditions. More for-
mally, consider a set up with two treatment periods and let D1 and D2 denote the first and second binary
treatment. Potential outcomes Y(d1, d2) are now defined in terms of two treatment interventions (with d1, d2
∈ {1, 0}). Furthermore, let T1 and T2 denote the compliance types defined in terms of the reaction of D1 to
the first instrument Z1 and of D2 to the second instrument Z2. Miquel (2002) discusses various conditions
under which dynamic LATEs for specific types defined in terms of first- and second-period compliance are
identified in panel data. She for instance considers the identification among compliers w.r.t. either instrument:
𝐸 (𝑌(𝑑1, 𝑑′

2) − 𝑌(𝑑′′
1 , 𝑑′′′

2 )|𝑇1 = 𝑐, 𝑇2 = 𝑐) for 𝑑1, 𝑑′
2, 𝑑′′

1 , 𝑑′′′
2 ∈ {1, 0}. Miquel (2002) also shows that if only one IV is

available for both treatment periods, only the effects of particular sequences can (under specific assumptions)
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be identified for individuals that are always or never takers in the first treatment and compliers in the second
one or vice versa.

In a multiple treatment framework, various treatments are not assigned sequentially, but rather at the same
point in time. At a first glance, the simultaneous availability of several binary treatments (e.g. alternative active
labor market policies) constitutes a similar evaluation problem like a treatment with multiple unordered values
as discussed in Section 2.4. However, one important distinction is that multiple treatments need not be mutually
exclusive and in fact, one might be interested in the effect of assigning several treatments at the same time. This
generally requires distinct instruments for each treatment. Blackwell (2015) considers LATE identification of
separate and joint effects of two treatments in various subpopulations defined upon compliance with either
of the binary instruments, namely: 𝐸(𝑌(1, 1) − 𝑌(0, 0)|𝑇1 = 𝑐, 𝑇2 = 𝑐), 𝐸(𝑌(1, 0) − 𝑌(0, 0)|𝑇1 = 𝑐, 𝑇2 ∈ {𝑐, 𝑛}),
𝐸(𝑌(1, 1) − 𝑌(0, 1)|𝑇1 = 𝑐, 𝑇2 ∈ {𝑐, 𝑎}).

4.4 Direct and Indirect Effects (Causal Mechanisms)

As a further extension that is related to dynamic treatment effects, consider the problem of disentangling the
total impact of a treatment into a direct effect and an indirect effect that operates via an intermediate variable
(or so-called mediator) which also affects the outcome. That is, the interest lies in disentangling a treatment
effect into various causal mechanisms. This may provide a better understanding of why specific treatments
are effective or ineffective. As an example, consider the health effect of college attendance (D1), which likely
affects the employment state (D2) which also influences the health outcome. Disentangling the direct effect of
college attendance and its indirect effect operating via employment shows whether the health impact of college
attendance is only driven by its impact on labor market participation, or also by other (“direct”) channels such
as college peers-induced changes of health behavior.

To formally define the effects of interest, let D2(d1) denote the potential state of the second treatment as
a function of the first. The standard notation for potential outcomes defined in terms of D1 can then be eas-
ily linked to the notation appropriate to analysing causal mechanisms, namely: 𝑌(𝑑1) = 𝑌(𝑑1, 𝐷2(𝑑1)), which
makes explicit that D1 might affect Y either directly or indirectly through its effect on D2. Therefore, the LATE
of the first treatment among compliers in the first treatment period can be expressed as

Δ𝑐1 = 𝐸 (𝑌(1) − 𝑌(0)|𝑇1 = 𝑐] = 𝐸[𝑌(1, 𝐷2(1)) − 𝑌(0, 𝐷2(0))|𝑇1 = 𝑐) , (35)

and comprises both the direct and indirect effect of D1 on Y.
The direct effect, denoted by θc1(d1), is obtained by shutting down the indirect causal mechanism through

fixing D2 at its potential value under a particular d1, while exogenously varying the first treatment D1:

𝜃𝑐1(𝑑1) = 𝐸 (𝑌(1, 𝐷2(𝑑1)) − 𝑌(0, 𝐷2(𝑑1))|𝑇1 = 𝑐) , for 𝑑1 ∈ {0, 1}. (36)

The indirect effect among compliers, denoted by δc1(d1), corresponds to the mean difference in outcomes when
exogenously shifting D2 to its potential values for d1 = 1 and d1 = 0, while keeping the first treatment fixed at
D1 = d1:

𝛿𝑐1(𝑑1) = 𝐸 (𝑌(𝑑1, 𝐷2(1)) − 𝑌(𝑑1, 𝐷2(0))|𝑇1 = 𝑐) , for 𝑑1 ∈ {0, 1}. (37)

The LATE is the sum of the direct and indirect effects defined upon opposite states of d1.This can be seen from
adding and subtracting either Y(0, D2(1)) or Y(1, D2(0)) in (35):

Δ𝑐1 = 𝐸 (𝑌(1, 𝐷2(1)) − 𝑌(0, 𝐷2(1))|𝑇1 = 𝑐) + 𝐸 (𝑌(0, 𝐷2(1)) − 𝑌(0, 𝐷2(0))|𝑇1 = 𝑐) = 𝜃𝑐1(1) + 𝛿𝑐1(0)
= 𝐸 (𝑌(1, 𝐷2(0)) − 𝑌(0, 𝐷2(0))|𝑇1 = 𝑐) + 𝐸 (𝑌(1, 𝐷2(1)) − 𝑌(1, 𝐷2(0))|𝑇1 = 𝑐) = 𝜃𝑐1(0) + 𝛿𝑐1(1).

The notation θc1(1), θc1(0), δc1(1), δc1(0) implies that effects may be heterogenous with respect to d1. This permits
interaction effects between D1 and D2 on Y. In our health example, θc1(1) and θc1(0) are the direct effects of
college attendance among first period compliers if their labor market states were set to their potential values
with and without going to college.

Yamamoto (2013) shows identification of (36) and (37) based on an instrument for D1 and a combined MAR
and LI-type assumption (cf. Section 4.1) with respect to D2: 𝑌(𝑑1, 𝑑2)⊥𝐷2(𝑑′

1)|𝑍, 𝑇1 = 𝑐, 𝑋, for 𝑑1, 𝑑′
1 ∈ {0, 1}.

This allows controlling for the endogeneity of D2 without a second IV. While D1 and its instrument are both
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assumed to be binary, D2 may be multivalued. Frölich and Huber (2017) base identification on two distinct
instruments Z1 and Z2 for D1 and D2. While Z1 and D1 are assumed to the binary, the authors consider various
sets of assumptions that yield (36) and (37) under continuous Z2 and D2, continuous Z2 and discrete D2, and
discrete Z2 and continuous D2. Furthermore, they also discuss identification of the so-called controlled direct
effect. Controlled direct effects are defined as the effect of D1 when D2 is fixed at a particular value d2 for every
complier (rather than its potential value D2(d1)) and also fit into the dynamic treatment effects framework:
𝐸(𝑌(1, 𝑑2) − 𝑌(0, 𝑑2)|𝑇1 = 𝑐).

5 Violations and Relaxations of the IV Assumptions

Sections 5.1 and 5.2 discuss violations of Assumption 1 and Assumption 2 (while maintaining Assumption 3)
and under which relaxations effects on specific populations are nevertheless identified.

5.1 Violation of the Exclusion Restriction

We analyze the Wald estimand under violations of the exclusion restriction, i.e. part (ii) in Assumption 1, while
maintaining instrument independence (part (i) of Assumption 1), monotonicity (Assumption 2), and a non-zero
first stage (Assumption 3). As an example, consider the effect of military service on later life income when using
a draft lottery as supposed IV, see for instance Angrist (1990). Proper implementation of the lottery satisfies part
(i) of Assumption 1. However, part (ii) is violated if the lottery induces draft avoiding behavior that itself has an
effect on income, thus constituting an alternative causal mechanism through which the IV affects the outcome.
Enrollment to college represents such a mechanism if students are entitled to deferments that delay military
conscription, see Card and Lemieux (2001).

We first consider a scenario in which the exclusion restriction is violated for noncompliers. Angrist, Imbens,
and Rubin (1996) show that the Wald estimand equals the LATE plus a bias term given by

𝐸(𝑌(1, 𝐷(1)) − 𝑌(0, 𝐷(0))
𝐸(𝐷(1) − 𝐷(0)) − 𝐸(𝑌(1, 𝐷(1)) − 𝑌(0, 𝐷(0))|𝑇 = 𝑐) = 𝐸(𝐻|𝑇 ≠ 𝑐) ⋅ 1 − 𝜋𝑐

𝜋𝑐
,

where H = Y(1, d) − Y(0, d) denotes the causal effect of Z on Y. Second, assume there is not only a direct effect
of Z on Y for noncompliers but also for compliers. In addition, suppose that Y(1, 0) − Y(0, 0) = Y(1, 1) − Y(0, 1)
for all compliers, which allows expressing the causal effect of Z on Y as H and the causal effect of D on Y as G
= Y(z, 1) − Y(z, 0). Using this additional notation, the IV estimand is 𝐸(𝑌(1,𝐷(1))−𝑌(0,𝐷(0))

𝐸(𝐷(1)−𝐷(0)) = 𝐸(𝐺|𝑇 = 𝑐) + 𝐸(𝐻)
𝜋𝑐

,
see Angrist, Imbens, and Rubin (1996). The second term gives the bias relative to the LATE and is

𝐸(𝐻|𝑇 = 𝑐) + 𝐸(𝐻|𝑇 ≠ 𝑐) ⋅ 1 − 𝜋𝑐
𝜋𝑐

. (38)

To interpret this result, consider the two components of the bias (38) separately. The first term originates from
the direct effect of Z on Y for the compliers and does not depend on the compliance rate πc. Thus, even under
perfect compliance (that is if πc = 1) this part of the bias would prevail whereas the second part would be
zero. The second term equals the product of the direct effect of Z on Y for noncompliers and the odds of being
a noncomplier. This implies that the sensitivity of the IV estimand to violations of the exclusion restriction
depends on the strength of the instrument as measured by the size of the compliant population. The exclusion
restriction is therefore crucial for point identification. In Section 6.2, we present alternative approaches to obtain
bounds on the LATE under violations of the exclusion restriction.

5.2 Violation and Relaxations of Monotonicity

A violation of monotonicity (Assumption 2) implies the existence of defiers. As an example, consider the sex
ratio of the first two siblings as IV for estimating the effect of having a third child on female labor supply as
in Angrist and Evans (1998). Presuming that parents have a preference for mixed sex children, the idea is that
having two children of the same sex, which is arguably randomly assigned by nature, induces some families
to get a third child (compliers). However, monotonicity fails if some parents have a preference for at least two
children of the same sex and choose to have a third child if the first two are of mixed sex. That such defiers
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may exist is for instance corroborated by Lee (2008), who finds that South Korean parents with one son and one
daughter are more likely to continue childbearing than parents with two sons.

With defiers, the equality in (15) does not hold, see Angrist, Imbens, and Rubin (1996), but becomes

𝐸(𝑌|𝑍 = 1) − 𝐸(𝑌|𝑍 = 0)
𝐸(𝐷|𝑍 = 1) − 𝐸(𝐷|𝑍 = 0) = Δ𝑐 − 𝜋𝑑 ⋅ (Δ𝑐 − Δ𝑑)

𝜋𝑐 − 𝜋𝑑
= 𝜋𝑐 ⋅ Δ𝑐 − 𝜋𝑑 ⋅ Δ𝑑

𝜋𝑐 − 𝜋𝑑
,

where Δ𝑑 = 𝐸[𝑌(1) − 𝑌(0)|𝑇 = 𝑑] is the LATE on defiers. Only in the special case that Δc = Δd (homogenous
LATEs on compliers and defiers) the LATE on compliers is identified.

When not imposing such a strong effect homogeneity assumption, the LATE is generally not obtained under
a violation of Assumption 2. This does, however, not mean that nothing can be said about the LATE at all. Small
and Tan (2007) and Small et al. (2017) show that the sign of Δc (as well as that of the ATE) is still identified if
Assumption 2 is replaced by a weaker stochastic monotonicity condition, implying that Pr(𝑇 = 𝑐|𝐴) ≥ 𝑃(𝑇 =
𝑑|𝐴) conditional on some latent stratum A. Stochastic monotonicity is, for instance, satisfied when A equals the
potential outcomes such that Pr(𝑇 = 𝑐|𝑌(1), 𝑌(0)) ≥ 𝑃(𝑇 = 𝑑|𝑌(1), 𝑌(0)) (or Pr(𝑇 = 𝑐|𝑈) ≥ 𝑃(𝑇 = 𝑑|𝑈) when
assuming model (1)). That is, given any pair of potential outcome values under treatment and non-treatment,
there must exist at least as many compliers as defiers. The same kind of assumption has also been considered
in DiNardo and Lee (2011).

Treatment effects can be point identified even under specific relaxations of Assumption 2. Klein (2010) con-
siders a nuisance term in the treatment equation that is unrelated with the potential outcomes and other unob-
served factors affecting D (V in model (1)) and entails random departures from monotonicity such that some
subjects defy. He discusses the conditions under which bias approximations for the identification of the LATE
and MTE are obtained. Secondly, de Chaisemartin (2016) shows that the Wald estimand identifies the LATE
among a subpopulation of compliers, which he denotes as “comvivors,” if the following assumption holds:

Assumption 9
(Compliers-defiers). There exists a subpopulation of compliers, denoted by T = cd, which satisfies 𝜋𝑐𝑑 = 𝜋𝑑 and

𝐸[𝑌(1) − 𝑌(0)|𝑇 = 𝑐𝑑] = Δ𝑐𝑑 = Δ𝑑.

Assumption 9 states that some proportion of the total of compliers is equal to the defiers in terms of average
effects and population size. Assumption 1, Assumption 3, and Assumption 9 identify the LATE on the remain-
ing compliers not necessarily resembling the defiers, the so-called comvivors, which are defined as T = cv : c
without cd. This is the effect among those compliers who outnumber the compliers who resemble the defiers:

𝐸(𝑌|𝑍 = 1) − 𝐸(𝑌|𝑍 = 0)
𝐸(𝐷|𝑍 = 1) − 𝐸(𝐷|𝑍 = 0) = 𝐸(𝑌(1) − 𝑌(0)|𝑇 = 𝑐𝑣) = Δ𝑐𝑣.

Assumption 9 may appear abstract, but de Chaisemartin (2016) discusses several restrictions that imply this
assumption and are easier to interpret. One possible condition is that compliers always outnumber defiers
with the same treatment effect: Pr(𝑇 = 𝑐|𝑌(1)−𝑌(0)) ≥ Pr(𝑇 = 𝑑|𝑌(1)−𝑌(0)), which is implied by, but weaker
than the stochastic monotonicity assumption of Small and Tan (2007) and Small et al. (2017) discussed before. A
second sufficient condition is that the LATEs of defiers and compliers have the same sign and that the ratio of the
LATEs is not “too” large: Either sgnΔ𝑑 = sgnΔ𝑐 ≠ 0 and Δ𝑑/Δ𝑐 ≤ 𝜋𝑐/𝜋𝑑 or Δ𝑑 = Δ𝑐 = 0. de Chaisemartin (2016)
gives several empirical examples in which Assumption 2 appears unrealistic but Assumption 9 is arguably likely
satisfied. Consider the evaluation of employment effects of disability insurance when using average allowance
rates of randomly assigned examiners as instrument (e.g. Maestas, Mullen, and Strand 2013), or the effects of
incarceration when using average sentencing rates of randomly assigned judges as an instrument (e.g. Aizer
and Doyle 2013).

As a further strategy, Dahl, Huber, and Mellace (2016) replace Assumption 2 by a weaker local monotonicity
condition given particular values of either marginal potential outcome distribution:

Assumption 10
(Local monotonicity). Either Pr(𝑇 = 𝑑|𝑌(𝑑) = 𝑦(𝑑)) = 0 or Pr(𝑇 = 𝑐|𝑌(𝑑) = 𝑦(𝑑)) = 0 for d ∈ {0, 1} and all

y(d) in the support of Y(d).

Assumption 10 implies that conditional on a specific value of the potential outcome under treatment or non-
treatment, either defiers or compliers do not exist. Thus, compliers and defiers are required to “inhabit” non-
overlapping regions of the marginal potential outcome distributions.5 Then, Δc is identified over all y satisfying
𝑓 (𝑦, 𝐷 = 1|𝑍 = 1)−𝑓 (𝑦, 𝐷 = 1|𝑍 = 0) > 0 and 𝑓 (𝑦, 𝐷 = 0|𝑍 = 0)−𝑓 (𝑦, 𝐷 = 0|𝑍 = 1) > 0 (see (12) and (13)), while
Δd is over all y with 𝑓 (𝑦, 𝐷 = 1|𝑍 = 1) − 𝑓 (𝑦, 𝐷 = 1|𝑍 = 0) < 0 and 𝑓 (𝑦, 𝐷 = 0|𝑍 = 0) − 𝑓 (𝑦, 𝐷 = 0|𝑍 = 1) < 0.
In most applications, a non-overlapping support in the potential outcomes of compliers and defiers appears
unrealistic. However, local monotonicity might be combined with stochastic monotonicity-type assumptions to
form conditions that seem more plausible.
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6 Testing, Sensitivity Checks, and Bounds

Section 6.1 discusses approaches for testing the IV assumptions. Section 6.2 outlines sensitivity checks and
bounds for the case that one is not willing to maintain Assumption 1–Assumption 3.

6.1 Testing the LATE Assumptions

Under Assumption 1 and Assumption 2, (12) and (13) not only permit evaluating local treatment effects, but
also provide testable implications of the identifying assumptions. Namely, 𝑓 (𝑦, 𝐷 = 1|𝑍 = 1) − 𝑓 (𝑦, 𝐷 = 1|𝑍 =
0) = 𝑓 (𝑦(1), 𝑇 = 𝑐) and 𝑓 (𝑦, 𝐷 = 0|𝑍 = 0) − 𝑓 (𝑦, 𝐷 = 0|𝑍 = 1) = 𝑓 (𝑦(0), 𝑇 = 𝑐) imply for all y in the support of
Y that

𝑓 (𝑦, 𝐷 = 1|𝑍 = 1) ≥ 𝑓 (𝑦, 𝐷 = 1|𝑍 = 0), 𝑓 (𝑦, 𝐷 = 0|𝑍 = 0) ≥ 𝑓 (𝑦, 𝐷 = 0|𝑍 = 1). (39)

Otherwise, the joint densities of the compliers would be negative. Therefore, if one or both of the weak inequal-
ities in (39) are violated, at least one of Assumption 1 and Assumption 2 is violated. These constraints were first
derived by Balke and Pearl (1997) for binary outcomes, while Heckman and Vytlacil (2005) formulated them
in terms of continuous outcomes. Note that the testable implications (39) remain unchanged when easing As-
sumption 2 to stochastic monotonicity of the form Pr(𝑇 = 𝑐|𝑌(𝑑)) ≥ Pr(𝑇 = 𝑑|𝑌(𝑑)) for d ∈ {1, 0}, see Mourifié
and Wan (2017).

For testing, (39) could be verified at each value y in the support of Y. However, if the outcome is of rich
support (e.g. continuous), finite sample power may be higher when partitioning the support into a finite number
of subsets. The testable constraints then are

Pr(𝑌 ∈ 𝐴, 𝐷 = 1|𝑍 = 1) ≥ Pr(𝑌 ∈ 𝐴, 𝐷 = 1|𝑍 = 0), Pr(𝑌 ∈ 𝐴, 𝐷 = 0|𝑍 = 0) ≥ Pr(𝑌 ∈ 𝐴, 𝐷 = 0|𝑍 = 1), (40)

where A denotes a subset of the support of Y. Kitagawa (2015) proposes a test based on resampling a variance-
weighted two sample Kolmogorov-Smirnov-type statistic on the supremum of Pr(𝑌 ∈ 𝐴, 𝐷 = 1|𝑍 = 0)−Pr(𝑌 ∈
𝐴, 𝐷 = 1|𝑍 = 1) and Pr(𝑌 ∈ 𝐴, 𝐷 = 0|𝑍 = 1) − Pr(𝑌 ∈ 𝐴, 𝐷 = 0|𝑍 = 0) across multiple subsets A. The method
can also be used for testing conditional on observed covariates, if the latter are binned into subsets of the support
in a similar way as the outcomes. As an alternative approach, Mourifié and Wan (2017) show that a modified
version of (40) making use of conditional moment inequality constraints fits the intersection bounds framework
of Chernozhukov, Lee, and Rosen (2013). For binary outcomes, Machado, Shaikh, and Vytlacil (2018) propose a
procedure that both verifies the constraints and the sign of the average treatment effect on the entire population.
The authors also consider monotonicity of the outcome in the treatment as additional or alternative assumption
to monotonicity of the treatment in the IV for testing.

As an alternative set of testable constraints, Huber and Mellace (2015) show that the LATE assumptions
imply the following restrictions related to the mean potential outcomes (i) of the always takers under treatment
and (ii) of the never takers under non-treatment:

𝐸(𝑌|𝐷 = 1, 𝑍 = 1, 𝑌 ≤ 𝑦𝑞) ≤ 𝐸(𝑌|𝐷 = 1, 𝑍 = 0) ≤ 𝐸(𝑌|𝐷 = 1, 𝑍 = 1, 𝑌 ≥ 𝑦1−𝑞),
𝐸(𝑌|𝐷 = 0, 𝑍 = 0, 𝑌 ≤ 𝑦𝑟) ≤ 𝐸(𝑌|𝐷 = 0, 𝑍 = 1) ≤ 𝐸(𝑌|𝐷 = 0, 𝑍 = 0, 𝑌 ≥ 𝑦1−𝑟). (41)

Under Assumption 1 and Assumption 2, 𝑞 = Pr(𝐷 = 1|𝑍 = 0)/ Pr(𝐷 = 1|𝑍 = 1) gives the share of always takers
among those with D = 1 and Z = 1, i.e. in the mixed population of compliers and always takers, and yq is the qth
quantile of Y given D = 1 and Z = 1. 𝑟 = 1− (Pr(𝐷 = 1|𝑍 = 1) − Pr(𝐷 = 1|𝑍 = 0))/ Pr(𝐷 = 0|𝑍 = 0) corresponds
to the share of never takers among those with D = 0 and Z = 0, and yr is the rth quantile of Y given D = 0 and
Z = 0. Considering the first line of (41), the intuition of the test is as follows: 𝐸(𝑌|𝐷 = 1, 𝑍 = 0) point identifies
the mean potential outcome of the always takers under treatment, as any subject with D = 1, Z = 0 must be
an always taker in the absence of defiers. Furthermore, the mean potential outcomes of the always takers are
bounded by the averages in the upper and lower outcome proportions with D = 1 and Z = 1 that correspond to
the share of the always takers in the mixed population: 𝐸(𝑌|𝐷 = 1, 𝑍 = 1, 𝑌 ≤ 𝑦𝑞), 𝐸(𝑌|𝐷 = 1, 𝑍 = 1, 𝑌 ≥ 𝑦1−𝑞).
𝐸(𝑌|𝐷 = 1, 𝑍 = 0) must lie within the latter bounds, otherwise the identifying assumptions are necessarily
violated. An analogous result applies to the mean potential outcome of never takers under non-treatment.

It needs to be pointed out that any of the tests discussed so far check for necessary, albeit not sufficient con-
ditions. That is, the methods are inconsistent in the sense there may exist counterfactual distributions which
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satisfy the testable restrictions, but violate Assumption 1 and Assumption 2. Sharma (2016) offers an extension
to merely testing (40) by determining the likelihood that the LATE assumptions hold when the testable con-
straints are satisfied. To this end, the method defines classes of valid causal models satisfying the identifying
assumptions as well as as invalid models and compares their marginal likelihood in the observed data.

Several further tests that are not based on constraints (40) have been proposed. Slichter (2014) suggests
testing conditional IV validity (Assumption 4) by finding covariate values X = x for which Z has no first stage
and checking whether Z is associated with Y despite the absence of a first stage. For multivalued treatments, see
Section 2.4, Angrist and Imbens (1995) argue that Assumption 2 implies that the cdfs of D given Z = 1 and Z = 0
do not cross, Pr(𝐷 ≥ 𝑗|𝑍 = 1) ≥ Pr(𝐷 ≥ 𝑗|𝑍 = 0), for D, j ∈ {0, 1,…,J}, which may be verified in the data. Fiorini
and Stevens (2014) point out that testing this condition can have power against violations of both Assumption 2
and the independence of Z and D(1), D(0), which is part of Assumption 1. In the presence of both a binary and
a continuous IV, Dzemski and Sarnetzki (2014) suggest an overidentification test. Finally, if outcome variables
are observed in periods prior to IV and treatment assignment, placebo tests based on estimating the effect of Z
on pre-instrument outcomes permit checking the plausibility of Assumption 1.

6.2 Sensitivity Checks and Bounds

If IV validity appears questionable, one may consider sensitivity checks on the robustness of the LATE un-
der violations of the IV assumptions or the derivation of upper and lower bounds on the effect under weaker
assumptions. Huber (2014), for instance, proposes sensitivity checks under the non-satisfaction of the IV ex-
clusion restriction (inherent in Assumption 1) or Assumption 2. Under a presumed violation of the exclusion
restriction while maintaining the random assignment of Z and Assumption 2 and Assumption 3, the LATE can
be shown to correspond to

𝐸(𝑌|𝑍 = 1) − 𝐸(𝑌|𝑍 = 0) − Pr(𝐷 = 1|𝑍 = 0) ⋅ 𝛾𝑎 − Pr(𝐷 = 0|𝑍 = 1) ⋅ 𝛾𝑛
Pr(𝐷 = 1|𝑍 = 1) − Pr(𝐷 = 1|𝑍 = 0) − 𝛾𝑐. (42)

γc, γa, and γn denote the average direct effects of Z to the mean potential outcomes of the compliers, always
takers, and never takers. Jones (2015) derives a related result under the assumption that the direct effect on the
never takers (γn) is equal to zero. Under a homogeneous direct mean effect across types, implying that γa = γn
= γc = γ, (42) simplifies to (𝐸(𝑌|𝑍 = 1) − 𝐸(𝑌|𝑍 = 0) − 𝛾)/(Pr(𝐷 = 1|𝑍 = 1) − Pr(𝐷 = 1|𝑍 = 0)). Inference can
therefore be conducted if the researcher has a plausible prior about the range of values γc, γa, γn, or γ might take,
see also Conley, Hansen, and Rossi (2012). The approach suggested by Slichter (2014) based on his IV validity
test (see Section 6.1) may be used for determining such values in sensitivity checks.

Under a violation of Assumption 2 while maintaining Assumption 1 and Assumption 3, Huber (2014) shows
that the mean potential outcomes of the compliers correspond to:

𝐸(𝑌(1)|𝑇 = 𝑐) = Pr(𝐷 = 1|𝑍 = 1) ⋅ 𝐸(𝑌|𝐷 = 1, 𝑍 = 1)
𝜌𝑎(Pr(𝐷 = 1|𝑍 = 0) − 𝜋𝑑) + Pr(𝐷 = 1|𝑍 = 1) − Pr(𝐷 = 1|𝑍 = 0) + 𝜋𝑑

,

𝐸(𝑌(0)|𝑇 = 𝑐) = Pr(𝐷 = 0|𝑍 = 0) ⋅ 𝐸(𝑌|𝐷 = 0, 𝑍 = 0)
𝜌𝑛(Pr(𝐷 = 0|𝑍 = 1) − 𝜋𝑑) + Pr(𝐷 = 1|𝑍 = 1) − Pr(𝐷 = 1|𝑍 = 0) + 𝜋𝑑

,
(43)

where 𝜌𝑎 = 𝐸(𝑌(1)|𝑇 = 𝑎)/𝐸(𝑌(1)|𝑇 = 𝑐) and 𝜌𝑛 = 𝐸(𝑌(0)|𝑇 = 𝑛)/𝐸(𝑌(0)|𝑇 = 𝑐) are the ratios of mean
potential outcomes (i) of always takers and compliers under treatment and (ii) of never takers and compliers
under non-treatment. Considering various combinations of ρa, ρn, and πd allows for investigating the sensitivity
of the LATE to violations of monotonicity.

If plausible values for the aforementioned tuning parameters appear hard to justify, a bounds analysis may
seem more credible, at the likely cost of a larger set of potential LATE values. Flores and Flores-Lagunes (2013)
maintain Assumption 2 and the random assignment of Z, but assume a violation of the exclusion restriction.
They impose restrictions on the order of specific mean potential outcomes (i) across treatment or instrument
states within particular types and (ii) across types to narrow the bounds. Mealli and Pacini (2013) tighten the
bounds using an auxiliary variable for which the exclusion restriction holds (contrary to the outcome), e.g. a
covariate measured prior to randomization, and which is associated with the outcome and/or the compliance
type. Richardson and Robins (2010) maintain Assumption 1, but assume a violation of Assumption 2 and derive
bounds for the LATEs of various compliance types when the outcome is binary. Under mean independence of
Z and the potential outcomes/treatments, Huber, Laffers, and Mellace (2017) bound the LATEs on several sub-
populations when monotonicity is violated, with and without invoking a particular order in the mean potential
outcomes across types.
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7 External Validity of the LATE

Section 7.1 discusses checks for the external validity of the LATE based on observables. Section 7.2 presents con-
ditions for extrapolating the LATE to the ATE and tests thereof. Section 7.3 considers the partial identification
of the ATE based on the IV assumptions.

7.1 Comparability in Terms of Observables

Comparing compliers and the total population in terms of observed characteristics may be useful for judging
the plausibility of the LATE being (close to) externally valid. Angrist and Fernández-Val (2010) consider Pr(𝑋 =
𝑥|𝑇 = 𝑐)/ Pr(𝑋 = 𝑥), the relative likelihood of covariate values X = x among compliers compared to the entire
population, which is identified under Assumption 1–Assumption 3 by the ratio of the first stage given X = x to
the overall first stage:

Pr(𝑋 = 𝑥|𝑇 = 𝑐)
Pr(𝑋 = 𝑥) = Pr(𝑇 = 𝑐|𝑋 = 𝑥)

Pr(𝑇 = 𝑐) = 𝐸(𝐷|𝑍 = 1, 𝑋 = 𝑥) − 𝐸(𝐷|𝑍 = 0, 𝑋 = 𝑥)
𝐸(𝐷|𝑍 = 1) − 𝐸(𝐷|𝑍 = 0) .

Furthermore, under the conditional IV assumptions (Assumption 4–Assumption 7), the mean or other distribu-
tional features of the covariates among compliers can be obtained by using the κ-weighting function of Abadie
(2003) provided in Section 3.5: 𝐸(𝑋|𝑇 = 𝑐) = 𝐸(𝜅⋅𝑋)

𝐸(𝜅) . While such checks may provide important insights about
the representativeness of compliers in terms of X, the caveat remains that nothing can be said about unobserved
characteristics.

7.2 Conditions for Extrapolation and Testing

This section discusses assumptions that allow extrapolating from the LATE to the ATE. Angrist (2004) distin-
guishes two restrictions under which the LATE is directly externally valid, i.e. corresponds to the ATE. Under
the first restriction, there is no selection in the sense that mean potential outcomes under either treatment state
are constant across types. Under the second restriction, selection is quite specific such that the levels of the mean
potential outcomes differ across types, but the mean effects do not, i.e. are homogeneous. Note that under the
first restriction, both (i) the Wald estimand and (ii) 𝐸(𝑌|𝐷 = 1) − 𝐸(𝑌|𝐷 = 0) = 𝐸(𝑌(1)|𝑇 ∈ {𝑐, 𝑎}) − 𝐸(𝑌(0)|𝑇 ∈
{𝑐, 𝑛}) identify the ATE because 𝐸(𝑌(𝑑)|𝑇) = 𝐸(𝑌(𝑑)). Under the second restriction, only (i) but not (ii) yields
the effect, as 𝐸(𝑌(𝑑)|𝑇) ≠ 𝐸(𝑌(𝑑)). Angrist (2004), Brinch, Mogstad, and Wiswall (2017), and Huber (2013) con-
sider tests for the external validity of the LATE under the first restriction based on differences in mean potential
outcomes across types. To see this, consider the following regression, which is fully nonparametric as D and Z
are binary:

𝐸(𝑌|𝐷, 𝑍) = 𝛽0 + 𝛽𝐷𝐷 + 𝛽𝑍𝑍 + 𝛽𝐷𝑍𝐷𝑍, where
𝛽𝑍 = 𝐸(𝑌|𝐷 = 0, 𝑍 = 1) − 𝐸(𝑌|𝐷 = 0, 𝑍 = 0) = 𝐸(𝑌(0)|𝑇 = 𝑛) − 𝐸(𝑌(0)|𝑇 ∈ {𝑐, 𝑛}),

𝛽𝐷𝑍 = 𝐸(𝑌|𝐷 = 1, 𝑍 = 1) − 𝐸(𝑌|𝐷 = 0, 𝑍 = 1) − {𝐸(𝑌|𝐷 = 1, 𝑍 = 0) − 𝐸(𝑌|𝐷 = 0, 𝑍 = 0)}
= 𝐸(𝑌(1)|𝑇 ∈ {𝑐, 𝑎}) − 𝐸(𝑌(0)|𝑇 = 𝑛) − {𝐸(𝑌(1)|𝑇 = 𝑎) − 𝐸(𝑌(0)|𝑇 ∈ {𝑐, 𝑛})} .

βZ captures selection driven by the difference in mean potential outcomes of compliers and never takers under
non-treatment (or differences in U under model (1)). βDZ reflects both selection and treatment effect hetero-
geneity across types.

If βZ = 0, βDZ simplifies to 𝐸(𝑌(1)|𝑇 ∈ {𝑐, 𝑎}) − 𝐸(𝑌(1)|𝑇 = 𝑎), and a difference may be due to selection
or differential treatment effects across always takers and compliers. Therefore, jointly testing for βZ and βDZ
has in general non-trivial power to detect heterogeneity in mean potential outcomes across types, either driven
by selection or treatment effect heterogeneity, which generally implies that the LATEs differ across types, too.
However, not all potential violations can be tested, as the potential outcomes of never takers under treatment
and always takers under non-treatment are never observed. Strictly speaking, βZ = βDZ = 0 is therefore not
sufficient for external validity under the first restriction of Angrist (2004). Furthermore, it is not necessary either,
because the LATE can theoretically be homogeneous across groups even if potential outcomes differ (second
restriction of Angrist (2004)). However, under the assumption that differences in mean potential outcomes either
occur across all or across no types (i.e. either 𝐸(𝑌(𝑑)|𝑇) = 𝐸(𝑌(𝑑)) or 𝐸(𝑌(𝑑)|𝑇 = 𝑡) ≠ 𝐸(𝑌(𝑑)|𝑇 = 𝑡′) for any
𝑡 ≠ 𝑡′ and 𝑡, 𝑡′ ∈ {𝑐, 𝑎, 𝑛}), βZ suffices for detecting selection. Conditional on βZ = 0, βDZ in this case exclusively
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detects effect heterogeneity across types. For this reason, it appears worthwhile testing βZ = βDZ = 0, which can
be easily implemented by means of an F-test.6 In the case of one-sided noncompliance (Pr(𝐷(0) = 1) = 0), only
𝐸(𝑌|𝐷 = 0, 𝑍 = 1) − 𝐸(𝑌|𝐷 = 0, 𝑍 = 0) = 0 is testable.

If Assumption 4–Assumption 7 rather than Assumption 1–Assumption 3 are satisfied, the same type of test
may be conducted conditional on X, see de Luna and Johansson (2014) and Black et al. (2015). In this case,
testing can also be framed as a check for the conditional mean independence of the treatment and the potential
outcomes given observed covariates: 𝐸(𝑌(𝑑)|𝐷, 𝑋) = 𝐸(𝑌(𝑑)|𝑋), which would imply that 𝐸(𝑌|𝐷 = 1, 𝑋) −
𝐸(𝑌|𝐷 = 0, 𝑋) yielded the causal effect 𝐸(𝑌(1) − 𝑌(0)|𝑋). Donald, Hsu, and Lieli (2014b) suggest an alternative
approach to test this condition based on a comparison of treatment effects under one-sided noncompliance,
ruling out always takers and defiers. As in the latter case the LATT (Δc, D=1) corresponds to the ATT (ΔD=1),
Donald, Hsu, and Lieli (2014b) construct a Durbin-Wu-Hausmann-type test based on the z-statistic for the
difference of the respective estimates Δ̂c, D=1 and Δ̂D=1. These estimates are obtained by the sample analogue of
(29) and the approach suggested in Hirano, Imbens, and Ridder (2003). While the satisfaction of conditional
mean independence of the treatment implies that identification and extrapolation can be achieved without an
instrument, an instrument is required to obtain an overidentifying restriction and being able to construct a test
for 𝐸(𝑌(𝑑)|𝐷, 𝑋) = 𝐸(𝑌(𝑑)|𝑋). Note that if the latter assumption holds, not only the LATE on compliers, ATE,
and ATT are identified, but also the LATEs on never and always takers, as discussed in Frölich and Lechner
(2015).

If the strong assumption of effect homogeneity across types is not satisfied, the LATE may nevertheless
permit extrapolation to the ATE even under a binary instrument if particular parametric assumptions hold,
see Brinch, Mogstad, and Wiswall (2017). They assume the MTE Δ(�̄� = 𝑝(𝑧)) of Section 2.3 to be linear in
𝑝(𝑍) = Pr(𝐷 = 1|𝑍) by imposing linearity on 𝐸(𝑌(0)|𝑝(𝑍)) and 𝐸(𝑌(1)|𝑝(𝑍)), see also Restriction 3 in Angrist
(2004). Brinch, Mogstad, and Wiswall (2017) furthermore demonstrate that polynomial (rather than linear) MTE
functions are identified if the MTE is additively separable in X and unobservable factors and if X satisfies
specific support conditions.

As an alternative source of extrapolation, Angrist and Fernández-Val (2010) and Aronow and Carnegie
(2013) consider homogeneity of the ATE given X across types, a conditional version of effect homogeneity
under the second restriction of Angrist (2004):

Assumption 11
(Conditional effect homogeneity). 𝐸(𝑌(1) − 𝑌(0)|𝑇, 𝑋) = 𝐸(𝑌(1) − 𝑌(0)|𝑋)

Assumption 11 implies that heterogeneity in average effects across types is solely due to X, such that Δ𝑐(𝑥) =
𝐸(𝑌(1) − 𝑌(0)|𝑋 = 𝑥) = Δ(𝑥). Therefore, the ATE, denoted as Δ, is obtained by ∫Δ𝑐(𝑥)𝑑𝐹𝑋(𝑥) = 𝐸(Δ𝑐(𝑥)) if
the conditional LATE assumptions (Assumption 4–Assumption 7) are satisfied.7 More generally, the ATE on
some population selected by the binary indicator S (e.g. S = D for the treated and S = 1 − D for the nontreated)
corresponds to

Δ𝑆=1 = ∫Δ𝑐(𝑥)𝑑𝐹𝑋|𝑆=1(𝑥) = ∫Δ𝑐(𝑥)Pr(𝑆 = 1|𝑋)
Pr(𝑆 = 1) 𝑑𝐹𝑋(𝑥) = 𝐸 [Δ𝑐(𝑥)Pr(𝑆 = 1|𝑋)

Pr(𝑆 = 1) ] .

It is noteworthy that conditional effect homogeneity rules out that effect heterogeneity is driven by unobserved
gains, which importantly restricts the source of treatment effect heterogeneity and is not consistent with the
Roy (1951) model. Angrist and Fernández-Val (2010) demonstrate that Assumption 11 is testable (conditional
on the satisfaction of Assumption 4–Assumption 7) if more than one instrument is available. Denote by Δ𝑊

𝑐 (𝑥)
and Δ𝑍

𝑐 (𝑥) the conditional LATEs based on two different instruments W and Z. It must hold that

Δ𝑆=1 = ∫Δ𝑊
𝑐 (𝑥)Pr(𝑆 = 1|𝑋)

Pr(𝑆 = 1) 𝑑𝐹𝑋(𝑥) = ∫Δ𝑍
𝑐 (𝑥)Pr(𝑆 = 1|𝑋)

Pr(𝑆 = 1) 𝑑𝐹𝑋(𝑥).

See also Heckman, Schmierer, and Urzua (2010) for testing approaches in the context of the MTE framework
that verify conditional effect homogeneity based on multiple instruments.8

Another extrapolation strategy is based on the rank invariance assumption discussed in Section 8.2.
Wüthrich (2018) and Vuong and Xu (2017) show that the counterfactual mappings,

𝑃01|𝑇=𝑡 = 𝑄𝑌(0)|𝑇=𝑡 (𝐹𝑌(1)|𝑇=𝑡(𝑦)) and 𝑃10|𝑇=𝑡 = 𝑄𝑌(1)|𝑇=𝑡 (𝐹𝑌(0)|𝑇=𝑡(𝑦)) ,

which relate each individual outcome to its counterfactual, do not depend on the type T under rank invariance.
Hence, one can use 𝑃01|𝑇=𝑐(𝑦) and 𝑃10|𝑇=𝑐(𝑦), which are identified under Assumption 1–Assumption 3, for
imputing the distributions of Y(1) for never takers and of Y(0) for always takers. This is the intuition underlying
the IV quantile regression model of Section 8.2.
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7.3 Partial Identification of the ATE

Even if point identification of the ATE fails because the LATE estimates are not externally valid, the identifying
power of the IV assumptions may be used to partially identify the ATE and other parameters (such as the ATT)
not discussed here. Balke and Pearl (1997) (for binary outcomes) as well as Heckman and Vytlacil (2001a) and
Kitagawa (2009) (for more general outcomes) derive bounds on the ATE under Assumption 1–Assumption 3.
They also provide the interesting result that these bounds coincide with the bounds of Manski (1990), who
merely assumes 𝐸(𝑌(𝑑)|𝑍 = 1) = 𝐸(𝑌(𝑑)|𝑍 = 0) for d ∈ {1, 0}. Shaikh and Vytlacil (2011) sharpen the bounds
on the ATE in the binary outcome case under the assumption that the treatment effect is either weakly positive
or weakly negative for all individuals (while the direction is a priori not restricted). Cheng and Small (2006)
extend the results for binary outcomes to the case that the treatment can take three values under particular
forms of (one-sided) noncompliance.

Under mean independence of Z and the potential outcomes/treatments and Assumption 2, Huber, Laffers,
and Mellace (2017) bound the ATE when assuming a particular order in the mean potential outcomes across
types. Chen, Flores, and Flores-Lagunes (2017) consider such restrictions in addition to Assumptions 1 and 2,
too, but also invoke a specific order of mean potential outcomes across treatment states within specific types.
Furthermore, see Chiburis (2010) and references therein for the derivation of semiparametric (rather than non-
parametric) bounds on the ATE under the IV assumptions. Kowalski (2016) considers the MTE framework and
assumes the marginal outcomes under treatment and non-treatment, 𝐸(𝑌(1)|𝑉 = 𝑣) and 𝐸(𝑌(0)|𝑉 = 𝑣), to be
monotonic in the unobserved term of treatment model (1) to bound the ATE. Angrist (2004) offers a sensitivity
check for the ATE based on particular proportionality conditions across the mean potential outcomes of vari-
ous types. Finally, Mogstad, Santos, and Torgovitsky (2017) develop a framework for obtaining identified sets
on the ATE and other parameters by exploiting the fact that the IV estimand and many other parameters of
interest can be expressed as a weighted average of the MTE.

8 Relationship to Other Instrumental Variable Approaches

We discuss the relationship between the LATE setup and two popular IV models: the linear IV model with
covariates (Section 8.1) and the IV quantile regression model (Section 8.2).

8.1 Linear IV Models

Linear IV models such as 𝑌 = 𝑋′𝛾+𝛽𝐷+𝜀 play a central role in applied research, with X now comprising a con-
stant and the vector of covariates, γ and β denoting coefficients, and ε representing the error term. If treatment
effects are homogeneous across individuals, then β is constant and corresponds to the population ATE. The
latter can thus be consistently estimated using classical estimators such as TSLS or limited information maxi-
mum likelihood (LIML). In most applications it appears implausible that treatment effects are homogeneous
and thus unrelated to observables or unobservables. It is therefore important to understand which parameters
linear IV methods estimate when treatment effects are in fact heterogeneous.

To formalize the analysis, we follow Angrist and Imbens (1995) and Angrist and Pischke (2009) and consider
the TSLS estimand with fully saturated first and second stage equations

𝐷 = 𝜋𝑋 + 𝜋1𝑋𝑍 + 𝑢, 𝑌 = 𝛼𝑋 + 𝛽𝐷 + 𝜀.

πX and αX denote saturated models for the covariates and 𝜋1𝑋 denotes separate first-stage effects of Z for every
value of X. Under the assumptions of the LATE framework with covariates (Assumption 4–Assumption 7) it
can be shown that

𝛽 = 𝐸 (𝜔(𝑋) ⋅ Δ𝑐(𝑋)) , where 𝜔(𝑋) = 𝑉𝑎𝑟 (𝐸(𝐷|𝑋, 𝑍)|𝑋)
𝐸 (𝑉𝑎𝑟 (𝐸(𝐷|𝑋, 𝑍)|𝑋)) .

That is, TSLS with a fully saturated first stage and a second stage which is saturated in the covariates converges
to a weighted average of covariate-specific LATEs. The weights are proportional to the average conditional
variance of the population first-stage fitted value E(D|X, Z).

Kolesar (2013) generalizes the analysis in Angrist and Imbens (1995) by characterizing the estimands of
general two-step estimators (such as TSLS) and minimum distance estimators (such as LIML) under the LATE
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framework. His analysis shows that while the probability limit of TSLS can be expressed as a convex combina-
tion of LATEs as in the special case discussed before, that of LIML and related estimators may be outside the
convex hull of LATEs. Such estimands may thus not correspond to a causal effect under effect heterogeneity.

8.2 IV Quantile Regression

The instrumental variable quantile regression (IVQR) model introduced by Chernozhukov and Hansen (2005)
provides an alternative framework for evaluating heterogeneous treatment effects with IVs. In contrast to the
LATE framework, the IVQR model does not impose a monotonicity assumption in the selection equation. In-
stead, it relies on rank invariance in the outcome equation, a restriction on the evolution of individual ranks
across treatment states.9 By rank invariance, the IVQR model identifies population level treatment effects. This
is in sharp contrast to the LATE framework under which treatment effects are only identified among compliers.
However, rank invariance substantially restricts treatment effect heterogeneity and may therefore be implau-
sible in many applications. As noted by Heckman and Vytlacil (2007), rank invariance rules out scenarios in
which agents self-select based on their individual effects and does not allow effect heterogeneity as generated
by the generalized Roy model.

To formalize rank invariance, note that by the Skorohod representation of random variables, the potential
outcome Y(d) can be related to its quantile function QY(d)(τ) as follows:

𝑌(𝑑) = 𝑄𝑌(𝑑)(𝑈(𝑑)), where 𝑈(𝑑) ∼ Uniform(0, 1). (44)

If the potential outcomes are continuous random variables, QY(d)(⋅) is strictly increasing and the disturbance
U(d) determines the individual position or rank in the distribution of Y(d). We therefore refer to U(d) as “rank.”
With this notation at hand, one can formally define rank invariance as U(1) = U(0). Under rank invariance and
IV validity, the population QTE, Δ(𝜏) = 𝑄𝑌(1)(𝜏)−𝑄𝑌(0)(𝜏), is identified by the following conditional moment
restriction:

Pr (𝑌 ≤ 𝑄𝑌(𝐷)(𝜏)|𝑍) = 𝜏. (45)

On the surface, the IVQR and the LQTE model do not seem to be connected since they rely on different, non-
nested assumptions and identify treatment effects for different populations. Despite these differences, Wüthrich
(2018) shows that

Δ(𝜏) = Δ𝑐 (𝐹𝑌(0)|𝑇=𝑐 (𝑄𝑌(0)(𝜏))) = Δ𝑐 (𝐹𝑌(1)|𝑇=𝑐 (𝑄𝑌(1)(𝜏))) , (46)

where QY(1) and QY(0) are the inverses of FY(1) and FY(0) which are defined as

𝐹𝑌(1)(𝑦) = 𝜋𝑎𝐹𝑌(1)|𝑇=𝑎(𝑦) + 𝜋𝑐𝐹𝑌(1)|𝑇=𝑐(𝑦) + 𝜋𝑛𝐹𝑌(0)|𝑇=𝑛 (𝑄𝑌(0)|𝑇=𝑐 (𝐹𝑌(1)|𝑇=𝑐(𝑦))) ,
𝐹𝑌(0)(𝑦) = 𝜋𝑛𝐹𝑌(0)|𝑇=𝑛(𝑦) + 𝜋𝑐𝐹𝑌(0)|𝑇=𝑐(𝑦) + 𝜋𝑎𝐹𝑌(1)|𝑇=𝑎 (𝑄𝑌(1)|𝑇=𝑐 (𝐹𝑌(0)|𝑇=𝑐(𝑦))) .

Equation (46) shows that the IVQR QTE estimand at quantile level τ corresponds to the LQTE at τ′, where τ
is generally not equal to τ′. The difference between the estimands is determined by two factors: (i) differences
between the potential outcome distributions of the untreated compliers and never takers as well as differences
between the potential outcome distributions of the treated compliers and always takers, and (ii) the relative
size of the three subpopulations.

The results in Wüthrich (2018) confirm that if treatment effect heterogeneity is unrestricted, all the infor-
mation about treatment effects has to come from the compliant subpopulation, i.e. the only subpopulation
for which potential outcomes are identified under both treatment states. Furthermore, the results demonstrate
that IVQR achieves identification by extrapolating from the compliers to the overall population. This motivates
the use of IVQR for extrapolation in the LATE framework, see Section 7.2.

9 Conclusion

This paper provides a survey on the methodological advancements in the evaluation of local average treatment
effects based on instruments. We first review the classical framework going back to the seminal contributions of
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Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996), which have been very influential in applied
empirical research. We then proceed by summarizing and synthesizing important methodological extensions,
for example distributional and quantile treatment effects, multivalued or multiple treatments and instruments,
identification and estimation in the presence of observed covariates, attrition and measurement error, testing
and relaxations of identifying assumptions, conditions for external validity, and the relationship to other IV
approaches. We thereby complement more introductory reviews that focus on implementation and applications
such as Imbens (2014) and the textbook discussions in Angrist and Pischke (2009, 2015).
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Notes
1 IV-based identification can also be obtained in structural models that are different to (1) and (2). This concerns for instance the relation of Z
and D, see for instance Hernan and Robins (2006): 𝑌 = 𝜙(𝐷, 𝑈), 𝐷 = 𝜂(𝑉, 𝑈), 𝑍 = 𝜅(𝑉), 𝑈⊥𝑉, where ϕ(⋅), η(⋅), κ(⋅) are unknown
functions. Here, D is not affected by Z, but the variables are correlated through V so that Z predicts D. As V and U are independent,
Assumption 1 holds. See also Chalak and White (2011), who exhaustively discuss structural relations under which Z is a valid IV.
2 Conventionally, TSLS has been used for linear IV models with homogeneous effects. TSLS then converges to Cov(Y, Z)/Cov(D, Z) for
scalar instrument and treatment variables, under the conditions that Z has a zero covariance with the error term of Y and a non-zero
covariance with Z. The latter two conditions are implied by Assumption 1-Assumption 3, while effect homogeneity is not. Therefore, TSLS
estimates the average effect on the compliers in our nonparametric context, rather than a constant effect as in the linear context. Furthermore,
𝐶𝑜𝑣(𝑌,𝑍)/𝐶𝑜𝑣(𝐷,𝑍) = 𝐶𝑜𝑣(𝑌,𝑍)

𝑉𝑎𝑟(𝑍) / 𝐶𝑜𝑣(𝐷,𝑍)
𝑉𝑎𝑟(𝑍)

�, which equals the Wald estimand 𝐸(𝑌|𝑍=1)−𝐸(𝑌|𝑍=0)
𝐸(𝐷|𝑍=1)−𝐸(𝐷|𝑍=0) for a binary Z.

3 One might therefore be tempted to binarize the multivalued treatment based on a specific threshold in its support, e.g. using a binary in-
dicator for completing high school as treatment rather than years of schooling. However, this generally violates the IV exclusion restriction,
see Marshall (2016) and Andresen and Huber (2018).
4 Monotonicity requires that changing Z from 0 to 1 (2) affects treatment choice 1 (2) vs. 0, but not 2 (1).
5 As an example, reconsider the quarter of birth instrument for education and redshirting (postponement of school entry) as source of de-
fiers, which more frequently occurs among families with a high socio-economic status, see Bedard and Dhuey (2006) and Aliprantis (2012).
Assumption 10 would be satisfied if the socioeconomic status determined both defiance and the potential outcomes in a deterministic way,
e.g. if children coming from defying families with a high socio-economic status had higher potential earnings than children of complying
ones.
6 The following approaches are asymptotically equivalent to such an F-test: Testing (i) 𝐸(𝑌|𝑍=1)−𝐸(𝑌|𝑍=0)

𝐸(𝐷|𝑍=1)−𝐸(𝐷|𝑍=0) = 𝐸(𝑌|𝐷 = 1) − 𝐸(𝑌|𝐷 = 0) as
in the classical Hausman (1978) test, (ii) 𝐸(𝑌|𝑍=1)−𝐸(𝑌|𝑍=0)

𝐸(𝐷|𝑍=1)−𝐸(𝐷|𝑍=0) = 𝐸(𝑌|𝐷 = 1, 𝑍 = 0) − 𝐸(𝑌|𝐷 = 0, 𝑍 = 1) as suggested in Angrist (2004), and
(iii) 𝐸(𝑌|𝐷 = 1, 𝑍 = 1) = 𝐸(𝑌|𝐷 = 1, 𝑍 = 0), 𝐸(𝑌|𝐷 = 0, 𝑍 = 1) = 𝐸(𝑌|𝐷 = 0, 𝑍 = 0) as considered by Bertanha and Imbens (2015).
7 Under Assumption 11, Assumption 5 might even be relaxed, e.g. to stochastic monotonicity given X.
8 Kédagni and Mourifié (2016) discuss yet another approach for testing the external validity of the LATE with a single instrument, however,
when relying on a different set of restrictions than the standard LATE assumptions. Notably, they assume (i) that the instrument and the
potential outcomes are uncorrelated rather than fully independent and (ii) that the potential outcomes have bounded support.
9 Chernozhukov and Hansen (2005) show that rank invariance can be somewhat relaxed to rank similarity that allows for random devia-
tions from the expected rank.
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