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Lipschitz k-connectivity, Euclidean isoperimetric inequalities, 
and coning inequalities all measure the difficulty of filling a 
k-dimensional cycle in a space by a (k+1)-dimensional object. 
In many cases, such as Banach spaces and CAT(0) spaces, it 
is easy to prove Lipschitz connectivity or a coning inequality, 
but harder to obtain a Euclidean isoperimetric inequality. We 
show that in spaces of finite Nagata dimension, Lipschitz con-
nectedness implies Euclidean isoperimetric inequalities, and 
Euclidean isoperimetric inequalities imply coning inequali-
ties. We show this by proving that if X has finite Nagata 
dimension and is Lipschitz k-connected or admits Euclidean 
isoperimetric inequalities up to dimension k then any isomet-
ric embedding of X into a metric space is isoperimetrically 
undistorted up to dimension k + 1. Since X embeds in L∞, 
which admits a Euclidean isoperimetric inequality and a con-
ing inequality, X admits such inequalities as well. In addition, 
we prove that an analog of the Federer-Fleming deformation 
theorem holds in such spaces X and use it to show that if 
X has finite Nagata dimension and is Lipschitz k-connected, 
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then integral (k + 1)-currents in X can be approximated by 
Lipschitz chains in total mass.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

1.1. Overview

Isoperimetric inequalities measure how difficult it is to fill (Lipschitz) cycles in a 
given space by (Lipschitz) chains of one dimension higher. They are important in many 
branches of mathematics and play a crucial role in particular in asymptotic geometry 
and geometric group theory, where they appear as Dehn functions and higher filling func-
tions and are quasi-isometry invariants of the underlying space or group. In this article, 
we study the relationship between isoperimetric inequalities and extension properties, 
especially Lipschitz connectivity and coning inequalities.

A space X is Lipschitz k-connected if Lipschitz maps from k-spheres to X can be 
extended to Lipschitz maps from (k + 1)-balls. This is a key ingredient in constructing 
Lipschitz extensions in general; see [2], [29]. A 1-dimensional Lipschitz cycle is a sum 
of closed Lipschitz curves, so if X is Lipschitz 1-connected, it can be filled by filling 
each curve by a Lipschitz disc. Higher-dimensional Lipschitz cycles, however, can have 
complicated topology and it may not be possible to decompose them as sums of Lipschitz 
spheres. For this reason, it is often much more difficult to prove higher dimensional 
isoperimetric inequalities, and it is open in general whether Lipschitz k-connectedness 
implies a k-dimensional isoperimetric inequality of Euclidean type.

Coning inequalities bound the filling volume of a cycle in terms of its mass and 
diameter. They were introduced by Gromov in his seminal article [20], where it was 
shown that Riemannian manifolds with coning inequalities admit Euclidean isoperimetric 
inequalities. This result was later generalized to complete metric spaces by the second 
named author in [42]. Coning inequalities have also played a crucial role in recent articles 
on higher rank hyperbolicity [27], Morse quasiflats [24], [23], and the equivalence of flat 
and weak convergence of currents [43]. It is open in general whether spaces with k-
dimensional Euclidean isoperimetric inequalities admit k-dimensional coning inequalities. 
This is clear in dimension 1, where one can fill a Lipschitz closed curve with diameter 
d and length L by decomposing it into L/d closed curves of length at most 3d, but it 
is not clear whether higher-dimensional Lipschitz cycles can be decomposed in the same 
way.

In this paper, we will show that Lipschitz connectivity implies Euclidean isoperimetric 
inequalities and that Euclidean isoperimetric inequalities imply coning inequalities when 
the underlying space has finite Nagata dimension, thus establishing a partial converse 
to the results mentioned above. Nagata dimension can be thought of as a quantitative 
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metric version of topological dimension and is closely related to Gromov’s asymptotic 
dimension [21]. These results are consequences of a more general theorem about isoperi-
metric subspace distortion. Isoperimetric distortion of subspaces was briefly addressed 
by Gromov in [21] and has recently been studied in the articles [11], [49], [31], [32] in con-
nection with conjectures of Thurston, Gromov, and Bux-Wortman. Roughly speaking, a 
subspace X of a metric space Y is (isoperimetrically) undistorted up to dimension k+ 1
if m-cycles in X with 0 ≤ m ≤ k can be filled almost as efficiently by (m + 1)-chains in 
the subspace X as they can be filled in the ambient space Y . Our theorem about isoperi-
metric distortion asserts that if a quasiconvex metric space X of finite Nagata dimension 
is Lipschitz k-connected or has Euclidean isoperimetric inequalities up to dimension k
then X is undistorted up to dimension k + 1 in any ambient space Y . This generalizes 
and strengthens a recent result of the third named author [49]. Since any metric space 
embeds isometrically in a Banach space and Banach spaces admit coning inequalities 
and hence Euclidean isoperimetric inequalities the relationships between Lipschitz con-
nectedness, Euclidean isoperimetric inequalities, and coning inequalities described above 
follow.

Besides these structural results, our theorem on isoperimetric subspace distortion also 
allows for a Federer-Fleming type deformation theorem in quasiconvex metric spaces of fi-
nite Nagata dimension that admit Euclidean isoperimetric inequalities. The deformation 
theorem and its variants approximate chains or currents in Euclidean space or a simpli-
cial complex by polyhedral chains in a cubical lattice or triangulation. Metric spaces of 
finite Nagata dimension need not admit a triangulation, but we show that any quasicon-
vex space X of finite Nagata dimension can be approximated by simplicial complexes. 
When X has a Euclidean isoperimetric inequality, we can use these approximations to 
define substitutes for polyhedral chains in X. Moreover, we obtain a Federer-Fleming 
type deformation theorem in X by combining the classical deformation theorem in the 
simplicial approximation and the isoperimetric subspace distortion theorem in X. As an 
application, we show that when X has finite Nagata dimension and is Lipschitz con-
nected, integral currents in X can be approximated in total mass by Lipschitz chains.

1.2. Undistorted fillings and first applications

Given a complete metric space X and k ≥ 0, we denote by Ik(X) the abelian group 
of k-dimensional metric integral currents in X in the sense of Ambrosio-Kirchheim [3]. 
See Sections 2 and 3 for the definitions and concepts used throughout this introduction. 
Every Lipschitz k-chain in X induces a k-dimensional metric integral current in X and 
we encourage the geometrically minded reader to think of integral currents as suitable 
limits of Lipschitz chains. The filling volume in X of T ∈ Ik(X) is defined by

FillvolX(T ) = inf
{
M(S) : S ∈ Ik+1(X) and ∂S = T

}
,

where M(S) denotes the mass of S and ∂S is its boundary.
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We say that X has (EIk) for some k ≥ 0 if there exists D > 0 such that for every 
0 ≤ m ≤ k and every cycle T ∈ Im(X) we have

FillvolX(T ) ≤ DM(T )
m+1
m .

This means that X has Euclidean isoperimetric inequalities in dimensions m = 1, . . . , k
whenever k ≥ 1. Condition (EI0) is always true and is only included to shorten the 
statements of our theorems. We remark that (EIk) is sometimes also denoted by (EIIk)
by some authors (see e.g. [19], [24]).

We say that X has (LCk) or that X is Lipschitz k-connected if there exists c ≥ 1
such that for every 0 ≤ m ≤ k each L-Lipschitz map from the Euclidean m-sphere 
to X extends to a cL-Lipschitz map defined on the (m + 1)-ball. It is not difficult to 
see that a metric space has (LC0) if and only if it is quasiconvex (see Section 2.1 for 
the precise definition). Examples of Lipschitz k-connected metric spaces are compact 
k-connected Riemannian manifolds, CAT(0)-spaces and, more generally, spaces with a 
convex bicombing. This class also includes some Carnot groups such as the (2k + 1)-
dimensional Heisenberg group.

A closed subset X ⊂ Y of a complete metric space Y is said to be (isoperimetrically) 
undistorted in Y up to dimension k + 1, for some k ≥ 0, if there exists C > 0 such that 
for all cycles T ∈ Im(X) with 0 ≤ m ≤ k one has

FillvolX(T ) ≤ C FillvolY (T ).

Our definition of undistorted does not involve additive error terms and thus differs 
slightly from the definitions introduced in [11], [49], [32]. The following theorem is one 
of the main results in the present paper.

Theorem 1.1. Let Y be a complete metric space and X ⊂ Y a closed quasiconvex subset of 
finite Nagata dimension. If X has (LCk) or (EIk) for some k ≥ 0, then X is undistorted 
in Y up to dimension k + 1. The distortion constant only depends on the data of X.

For the definition of Nagata dimension see Section 2.3 and [29]. Examples of metric 
spaces of finite Nagata dimension include compact Riemannian manifolds, homoge-
neous or negatively pinched Hadamard manifolds, Carnot groups and, more generally, 
equiregular sub-Riemannian manifolds, doubling metric spaces and many more. More-
over, products, finite unions, and subsets of spaces of finite Nagata dimension have finite 
Nagata dimension.

In Section 5.1 we will discuss variants and generalizations of Theorem 1.1 in which we 
relax the condition that X have finite Nagata dimension and in addition obtain control 
on the support of fillings in X. Theorem 1.1 generalizes and strengthens [49, Theorem 
1.3] by the third named author, which was used to prove isoperimetric inequalities for 
subsets of symmetric spaces. Notice that in [49] the ambient space Y is assumed to 
have finite Nagata dimension. In contrast, we do not pose any restrictions on Y . Since 
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X embeds isometrically into a Banach space and since every Banach space admits Eu-
clidean isoperimetric inequalities and coning inequalities in all dimensions, see [42], we 
in particular obtain the following consequences.

Corollary 1.2. Let X be a complete metric space of finite Nagata dimension. If X has 
(LCk) for some k ≥ 1, then X has (EIk).

When k = 1 the corollary holds without the assumption that X have finite Nagata 
dimension and is much easier to prove. This is because integral 1-cycles can be decom-
posed into the sum of closed Lipschitz curves, see [44]. The corollary is furthermore 
known when X has (LCk) and is of Nagata dimension at most k because in this case X
is an absolute Lipschitz retract by [29]. Thus, the corollary is most interesting for spaces 
which are not Lipschitz connected up to the Nagata dimension. Typical examples with 
such a behavior are Carnot groups such as the higher Heisenberg groups; see the para-
graph after the next corollary. We mention that the (LCk) property is preserved under 
various constructions such as taking products, or passing to ultralimits or asymptotic 
cones. In comparison, it is not known whether the (EIk) condition is preserved under 
these constructions.

In order to formulate the second consequence of the theorem, recall that a complete 
metric space X is said to admit coning inequalities up to dimension k, or has (CIk) for 
short, if there exists C > 0 such that for every 0 ≤ m ≤ k and every cycle T ∈ Im(X) of 
bounded support sptT we have

FillvolX(T ) ≤ C diam(sptT )M(T ).

It is well-known that in a complete metric space (CIk) implies (EIk). This was proved 
by Gromov [20] for Riemannian manifolds and extended to metric spaces in [42]. The 
following corollary gives a partial converse.

Corollary 1.3. Let X be a complete quasiconvex metric space of finite Nagata dimension. 
If X has (EIk) for some k ≥ 1, then X has (CIk).

Using a suitable variant of Theorem 1.1 established in Section 5.1 we will actually 
get a stronger version of the coning inequality in which we also obtain control over the 
diameter of the filling chain; see Corollary 5.2. Coning inequalities play an important 
role in the recent articles [24], [23], [27], and the stronger version of the coning inequality 
established in Corollary 5.2 prominently appears in [24], [23], where it is called strong 
coning inequality.

We now briefly discuss some examples of spaces to which Corollaries 1.2 and 1.3 apply. 
Compact k-connected Riemannian manifolds have (LCk) and finite Nagata dimension 
by [29] and therefore have (CIk) and (EIk). The n-th Heisenberg group Hn of topological 
dimension 2n + 1, equipped with a left-invariant sub-Riemannian or sub-Finsler metric 
dc, has Nagata dimension 2n +1 by [30] and satisfies (LCn−1) by [46]. It thus follows from 
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the corollaries above that (Hn, dc) has (CIn−1) and (EIn−1). Previously, it was known 
that Hn, when equipped with a left-invariant Riemannian metric, admits Euclidean 
isoperimetric inequalities up to dimension n − 1 for Lipschitz cycles, see [48]. Together 
with [45] this also yields that (Hn, dc) has (EIn−1) for compactly supported integral 
currents.

We finally mention that Theorem 1.1 can be reformulated in terms of the absolute 
filling volume of a cycle T ∈ Ik(X) in a complete metric space X defined by

Fillvol∞(T ) := inf
{
FillvolY (T ) : Y complete metric space containing X

}
,

compare with Gromov’s filling volume of abstract Riemannian manifolds in [20]. Our 
theorem then says that if X is a complete, quasiconvex metric space of finite Nagata 
dimension which has (LCk) or (EIk) for some k ≥ 0 then every cycle T ∈ Ik(X) satisfies

FillvolX(T ) ≤ C Fillvol∞(T )

for some C > 0 only depending on the data of X. It is easy to see that if Y is an injective 
metric space containing X then Fillvol∞(T ) = FillvolY (T ) for every cycle T ∈ Ik(X). 
Particular examples of such spaces Y are the Banach space �∞(X) of bounded functions 
on X equipped with the sup norm or the injective hull of X; see [25].

1.3. Deformation theorem in spaces of finite Nagata dimension

The classical deformation theorem of Federer-Fleming, see [17] or [16], shows that 
integral k-currents in Euclidean Rn can be approximated by polyhedral k-chains in the 
k-skeleton of the standard cubical subdivision of Rn. This result can be generalized to 
the setting of Riemannian manifolds with a geometric group action and, more generally, 
to metric spaces admitting a bilipschitz triangulation. The deformation theorem and its 
variants have been of fundamental importance in geometric measure theory and other 
fields, for example in the context of Dehn functions and higher filling functions; see, for 
example, [15], [10], [49], [48], [1]. Metric spaces of finite Nagata dimension do not in 
general admit a bilipschitz triangulation. Nevertheless, using a variant of Theorem 1.1
and the methods developed in its proof, we can establish an analog of the Federer-Fleming 
deformation theorem in spaces of finite Nagata dimension.

We first introduce a substitute for a cubical subdivision in our setting. Given a metric 
simplicial complex Σ and m ≥ 0, let Pm(Σ) be the abelian group of polyhedral m-
chains in Σ, that is, finite sums of the form 

∑
θi�σi�, where θi ∈ Z and �σi� is the 

current induced by the (oriented) m-simplex σi ⊂ Σ. Let X be a complete metric space 
and let k ∈ N and C, ε > 0. Suppose there exist a finite-dimensional metric simplicial 
complex Σ and a map ϕ : Σ(0) → X, defined on the 0-skeleton Σ(0) of Σ, with the 
following properties:
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(1) the metric on Σ is a length metric and each simplex in Σ is a Euclidean simplex of 
side length ε;

(2) ϕ is a quasi-isometry; more precisely, the image of ϕ is (Cε)-dense in X and

d(z, w) − Cε ≤ d(ϕ(z), ϕ(w)) ≤ Cd(z, w) for all z, w ∈ Σ(0).

Suppose also that there are homomorphisms Λm : Pm(Σ) → Im(X), m = 0, . . . , k, 
subject to:

(3) ∂ ◦ Λm+1 = Λm ◦ ∂ and Λ0(�z�) = �ϕ(z)� for every z ∈ Σ(0);
(4) Λm(�σ�) has support in B

(
ϕ(σ(0)), Cε

)
and M(Λm(�σ�)) ≤ Cεm for every m-simplex 

σ in Σ.

Any triple (Σ, ϕ, Λ∗), where Σ, ϕ and Λ∗ = {Λ0, . . . , Λk} satisfy the properties listed 
above, is called (k, ε)-polyhedral structure on X with constant C. If such a polyhedral 
structure is given we set Pm(X) :=

{
Λm(Q) : Q ∈ Pm(Σ)

}
and call its elements 

polyhedral m-chains in X.

Theorem 1.4. Let X be a complete quasiconvex metric space of finite Nagata dimension 
which has (LCk) or (EIk) for some k ≥ 1. Then there exists C > 0 such that for every 
ε > 0 there is a (k, ε)-polyhedral structure on X with constant C such that the following 
holds. For every m = 1, . . . , k and every T ∈ Im(X) there exist P ∈ Pm(X), R ∈ Im(X), 
and S ∈ Im+1(X) with T = P + R + ∂S and such that

M(P ) ≤ C M(T ), M(∂P ) ≤ C M(∂T ),

M(S) ≤ εC M(T ) + ε2 C M(∂T ), M(R) ≤ εC M(∂T ),

as well as sptP , sptS ⊂ B(sptT, Cε) and spt ∂P , sptR ⊂ B(spt ∂T, Cε).

The bounds on the mass of P , ∂P , and R in Theorem 1.4 are as in the deformation 
theorems of Simon [39] and White [47]. In particular, this gives a slightly sharper bound 
on the mass of P than the original version of Federer and Fleming, which only gives a 
bound M(P ) ≤ C[M(T ) +ε M(∂T )]. The bound on the mass of S includes an additional 
error term coming from a use of Theorem 1.1. This error term disappears however when 
T is a cycle. If X has (LCk) then the map ϕ in the polyhedral structure (Σ, ϕ, Λ∗) in 
Theorem 1.4 is even defined on Σ(k) and the homomorphisms Λm are simply given by the 
pushforward under ϕ. Hence, in this case, elements of Pk(X) are (currents induced by) 
Lipschitz k-chains. It thus follows that if a metric space X has finite Nagata dimension 
and has (LCk) for some k ≥ 1 then integral k-currents in X can be approximated in the 
flat norm by Lipschitz chains; see Corollary 7.3. The classical deformation theorem yields 
a stronger approximation result in Euclidean space which asserts that integral currents 
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can be approximated by Lipschitz chains in total mass. Using the tools developed to 
prove Theorem 1.4 we can generalize this stronger approximation result as follows.

Corollary 1.5. Let X be a complete metric space of finite Nagata dimension and let 
T ∈ Ik(X) for some k ≥ 1. If X has (LCk−1) then there exists a sequence of Lipschitz 
k-chains such that the induced integral currents Ti converge to T in total mass, that is, 
M(T − Ti) → 0 and M(∂T − ∂Ti) → 0 as i → ∞.

For related approximation results in a different setting see for example [13], [18]. We 
do not know whether Corollary 1.5 holds without the assumption that X have finite 
Nagata dimension.

The proof of Theorem 1.4 crucially relies on the following approximation result which 
should be of independent interest and whose proof uses methods and arguments devel-
oped by Lang-Schlichenmaier [29] in the context of Lipschitz extensions.

Theorem 1.6. Let X, Y be metric spaces such that X is quasiconvex and of Nagata 
dimension ≤ n and Y has (LCn−1) and contains X. Then there exists a constant C
depending only on the data of X and Y such that for every ε > 0 there is a metric 
simplicial complex Σ and C-Lipschitz maps ψ : X → Σ and ϕ : Σ → Y with the following 
properties:

(1) Σ has dimension ≤ n, the metric on Σ is a length metric, and every simplex in Σ
is a Euclidean simplex of side length ε;

(2) ϕ(Σ(0)) ⊂ X, Hull(ψ(X)) = Σ and d
(
x, ϕ(ψ(x))

)
≤ Cε for all x ∈ X.

If X has (LCk−1) for some k ≥ 1, then ϕ(Σ(k)) ⊂ X.

If X is compact then Σ is a finite simplicial complex and, in particular, the metric 
on Σ is a geodesic metric. The hull of a subset A ⊂ Σ is the smallest subcomplex of 
Σ containing A and is denoted Hull(A). Theorem 1.6 is used as follows to construct a 
(k, ε)-polyhedral structure on a metric space X as in Theorem 1.4. Let Σ, ψ, ϕ be as 
in Theorem 1.6, when applied to X and Y = �∞(X). It is not difficult to see that Σ
and the restriction ϕ|Σ(0) : Σ(0) → X satisfy properties (1) and (2) in the definition of 
a polyhedral structure. Furthermore, using ϕ|Σ(0) and the (LCk) or (EIk) condition on 
X one easily builds homomorphisms Λm : Pm(Σ) → Im(X) for m = 0, . . . , k satisfying 
properties (3) and (4) in the definition of a polyhedral structure. This is accomplished 
in Proposition 3.8. We finally mention that Theorem 1.6 has found another application 
in the recent article [35], where it was used to prove the existence of a quasiconformal 
parametrization of 2-dimensional metric surface under minimal conditions.
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1.4. Outlines of proof

The idea behind the proof of Theorem 1.1 is inspired by the arguments used to prove 
[49, Theorem 1.3]. Let X and Y be as in the statement of the theorem. After possibly 
embedding Y into a bigger space (for example a Banach space) we may assume that Y
has (LCn), where n is the Nagata dimension of X.

One of the main ingredients in the proof is a factorization theorem (see Theorem 4.1), 
which is established using arguments from [29] and roughly says the following. There 
exists a Lipschitz map f : Y → Y such that f restricts to the identity on X and f |Y \X
factors through an (n + 1)-dimensional simplicial complex Σ. More precisely, on Y \X
we have f = h ◦g for suitable maps g : Y \X → Σ and h : Σ → Y satisfying the following 
properties. Let 	 : Y → R be the distance function from the set X and let r > 0. Then 
g is Cr−1-Lipschitz on the set {	 > r} and h is Cr-Lipschitz on every simplex σ ⊂ Σ
for which g−1(stσ) ∩ {	 ≤ r} 
= ∅, where C is independent of r and stσ denotes the 
open star of σ in Σ. Moreover, h maps the 1-skeleton of Σ to X. The simplicial complex 
Σ is equipped with the so-called �2-metric and every simplex is isometric to a standard 
Euclidean simplex.

We now outline how this factorization theorem is used to prove Theorem 1.1. Let 
T ∈ Ik(X) be a cycle in X and S ∈ Ik+1(Y ) a filling of T in Y . After possibly modifying 
Y and S slightly we may achieve that S meets the set X only on the boundary T and 
not too much mass of S is concentrated near X. For suitable r > 0 (small) we then 
send the restriction S {	 > r} to an integral current S′

r ∈ Ik+1(Σ) via the map g. 
Notice that the mass distortion of g is proportional to s−(k+1) on the part of S located 
at a distance around s. Next, we use a refined version of the classical Federer-Fleming 
deformation theorem in Σ to “push” the integral current S′

r to the (k + 1)-skeleton 
Σ(k+1) of Σ and obtain a polyhedral chain P ′

r ∈ Pk+1(Σ). This refined version of the 
deformation theorem, a detailed proof of which is given in the Appendix, includes local 
mass estimates and allows us to control the mass of P ′

r on every simplex. Finally, we 
map P ′

r back to X via a chain homomorphism Λk+1 : Pk+1(Σ) → Ik+1(X). Here, Λ1
is the map induced by the restriction h|Σ(1) : Σ(1) → X. For m = 2, . . . , k, we construct 
Λm+1 from Λm by applying the (LCm) or (EIm) property of X. For a suitable sequence 
ri → 0, the currents Pi := Λk+1(P ′

ri) ∈ Ik+1(X) converge to a filling P ∈ Ik+1(X) of T
with the desired bound on mass, thus concluding the proof of Theorem 1.1.

The proof of Theorem 1.4 is similar but somewhat easier because all the involved 
maps are globally Lipschitz. Instead of using the factorization theorem sketched above 
we apply Theorem 1.6 with Y = �∞(X) to obtain a finite dimensional metric simplicial 
complex Σ and Lipschitz maps ψ : X → Σ and ϕ : Σ → Y as in the theorem. As described 
after the theorem, this leads to a (k, ε)-polyhedral structure (Σ, ϕ, Λ∗) on X. Now, let 
T ∈ Ik(X) and consider the pushforward current T ′ = ψ#T ∈ Ik(Σ). The classical 
Federer-Fleming deformation theorem in Σ yields a decomposition T ′ = P ′+R′+∂S′ for 
currents P ′ ∈ Pk(Σ) and R′ ∈ Ik(X), S′ ∈ Ik+1(Σ) with suitable bounds on mass. We 
then use the fact that ϕ ◦ψ is close to the identity on X together with further properties 
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of Λm to show that T can be decomposed as T = P + R̂ + ∂Ŝ, where P = Λk(P ′) and 
where R̂ ∈ Ik(Y ) and Ŝ ∈ Ik+1(Y ) are suitable currents. We finally use Theorem 1.1 to 
“push” R̂ and Ŝ from Y to X in order to obtain a decomposition as in Theorem 1.4.

1.5. Structure of the paper

In Section 2 we introduce notation and definitions concerning concepts used in the ar-
ticle, including simplicial complexes, Nagata dimension, Lipschitz connectedness, and 
pointwise Lipschitz constants. Section 3 contains the necessary definitions from the 
Ambrosio-Kirchheim theory of metric currents. We furthermore prove Proposition 3.8
which allows us to construct suitable homomorphisms from the group of polyhedral 
chains in a simplicial complex to the group of integral currents in a metric space. This 
technical result will be needed in the proofs of Theorems 1.1 and 1.4. The main result 
in Section 4 is the factorization theorem sketched in Section 1.4 above; see Theorem 4.1. 
As already mentioned, this is one of the main ingredients in the proof of Theorem 1.1. In 
Section 5 we discuss and prove variants and generalizations of Theorem 1.1 and deduce 
Theorem 1.1 from them. The main aim of Section 6 is to establish Theorem 1.6, whose 
proof is similar to that of Theorem 4.1. Section 7 contains the proof of Theorem 1.4. Fi-
nally, in the Appendix we give a detailed proof of a refined version of the Federer-Fleming 
deformation theorem in metric spaces admitting a bilipschitz triangulation. Our refined 
version includes local mass estimates which are of particular importance in the proof of 
our isoperimetric subspace distortion theorem.
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2. Preliminaries

2.1. Notation and definitions

We recall standard notation and definitions from metric geometry. Suppose that A, 
B ⊂ X are subsets of a metric space X. We write

d(A,B) := inf
{
d(a, b) : a ∈ A, b ∈ B

}
and diam(B) := sup{d(x, x′) : x, x′ ∈ B}.

We use the convention that inf ∅ = +∞ and sup∅ = −∞. For every ε > 0 we let 
U(A, ε) and B(A, ε) denote the open and closed ε-neighborhood of A, respectively. We 
say that a subset Z ⊂ X is an ε-net if d(z, z′) > ε for all distinct z, z′ ∈ Z and if the 
family of all balls B(z, ε) with z ∈ Z covers X.

A metric space X is called c-quasiconvex, c ≥ 1, if all x, x′ ∈ X can be connected 
by a curve γ : [0, 1] → X such that �(γ) ≤ cd(x, x′). For us a curve is always continuous 
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and we use �(γ) ∈ [0, ∞] to denote the length of a curve γ. Let k ≥ 0 and denote 
by H k the k-dimensional Hausdorff measure on X and let L k denote the Lebesgue 
measure on Rk. A subset A ⊂ X is said to be countably H k-rectifiable if it is H k-
measurable and there exist subsets Ai ⊂ Rk and Lipschitz maps fi : Ai → X such that 
H k

(
A \

⋃∞
i=1 fi(Ai)

)
= 0. A finite Borel measure μ on X is said to be concentrated on 

a Borel set B ⊂ X if μ(X \ B) = 0. The set sptμ consisting of all x ∈ X such that 
μ(U(x, ε)) > 0 for all ε > 0 is called the support of μ. If X is separable and complete 
then μ is concentrated on sptμ and sptμ is σ-compact. This is true more generally if 
the cardinality of X is an Ulam number; see [16, 2.1.6]. As is done for example in [3] we 
will assume throughout this paper that the cardinality of any set is an Ulam number so 
that our arguments apply in both the separable and non-separable cases; see [3, Lemma 
2.9] and the remark following it.

2.2. Simplicial complexes

For the concepts appearing below we refer e.g. to [40]. Let Σ be a simplicial complex. 
We denote by Fk(Σ) the collection of closed k-simplices in Σ and by F(Σ) the collection 
of closed simplices of any dimension in Σ. We also write Fk and F if there is no danger 
of ambiguity. We say that Σ is n-dimensional if Fn 
= ∅ and Fn+1 = ∅. The k-skeleton 
of Σ is denoted by Σ(k). Notice that if Σ is n-dimensional, then Σ(m) = Σ(n) for every 
m ≥ n. The smallest subcomplex of Σ containing a given subset A ⊂ Σ is called the hull 
of A and is denoted Hull(A). The open star of σ ∈ F is defined by

stσ :=
⋃{

int τ : τ ∈ F and σ ⊂ τ
}
,

where int τ is the interior of τ . We will use the following two specific choices of a metric 
on a given simplicial complex. For a nonempty index set I define a simplicial complex 
by

Σ(I) :=
{
x ∈ �2(I) : xi ≥ 0 and

∑
i∈I

xi = 1
}

and equip Σ(I) ⊂ �2(I) with the metric induced by the norm of �2(I). A given simplicial 
complex Σ can be naturally realized as a subset of Σ(I), where I = F0 is the collection 
of vertices in Σ. The induced metric on Σ ⊂ Σ(I) will be referred to as the �2-metric on 
Σ. The diameter of Σ with respect to the �2-metric is always at most 

√
2. If Σ is path-

connected then the associated length metric on Σ will be called the length metric on Σ. 
Notice that with respect to either metric each simplex of Σ is isometric to a standard 
Euclidean simplex. We close this subsection with the following lemma which collects 
various results that will be used later.

Lemma 2.1. Let Σ be a finite-dimensional simplicial complex, equipped with the �2-metric. 
Then the following holds:
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(1) For every x ∈ Σ, there is εx > 0 such that if y ∈ U(x, εx) then x and y lie in a 
common simplex;

(2) If A ⊂ Σ is separable, then Σ′ := Hull(A) is a countable simplicial complex, that is, 
the set of vertices of Σ′ is countable;

(3) If Σ is path-connected, then the length metric and the �2-metric induce the same 
topology.

An analogous statement holds when the �2-metric is replaced by the length metric.

Proof. For x ∈ Σ denote by σ(x) the unique simplex σ such that x ∈ intσ. Given 
x = (xi)i∈I , we put I(x) := {i ∈ X : xi 
= 0} and εx := min{xi : i ∈ I(x)}. Clearly, 
εx > 0 and if |x − y| < εx, then yi 
= 0 for all i ∈ I(x). Hence, σ(x) ⊂ σ(y) whenever 
|x − y| < εx. This gives (1). Next, we show (2). Let Z be a countable dense subset of A. 
We claim that

Hull(A) =
⋃
z∈Z

σ(z). (2.1)

Fix x ∈ A. As Z is a dense subset of A, there exists z ∈ Z such that |x − z| < εx and 
thus σ(x) ⊂ σ(z). This yields (2.1) and (2) follows.

Finally, we prove (3). Suppose now that Σ is path-connected. By virtue of (1), the 
open balls U(x, ε), where ε ≤ εx, with respect to the length metric and the �2-metric 
coincide with each other. This shows in particular that both metrics induce the same 
topology on Σ, as desired. �
2.3. Nagata dimension

In the following, we recall the definition of Nagata dimension and some of its basic 
properties. A covering B = (Bi)i∈I of a metric space X is said to be D-bounded, for a 
real number D ≥ 0, if every set B ∈ B has diameter less than or equal to D. Let n ≥ 0
be an integer and s > 0 a real number. A covering B has s-multiplicity at most n if every 
subset B ⊂ X with diam(B) ≤ s meets at most n members of B.

Definition 2.2. We say that a metric space X has Nagata dimension ≤ n with constant c
if for every real number s > 0, X admits a cs-bounded covering Bs having s-multiplicity 
at most n + 1.

Equivalent definitions can be found in [29, Proposition 2.5]. The infimum of those 
n ≥ 0 for which X has Nagata dimension ≤ n is denoted by dimN (X) and is called the 
Nagata dimension of X. Nagata dimension was introduced by Assouad in [4], building 
on earlier work of Nagata [36]. It can be thought of as a quantitative metric version of 
the topological dimension dim(X) of X. Clearly, one has dim(X) ≤ dimN (X) and this 
inequality can be strict. For example, dim(Z) = 0 but dimN (Z) = 1. As a more striking 
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example, it can be shown that the group (Z /2 Z) � Z2 has topological dimension zero 
but infinite Nagata dimension (see [8]).

However, on the positive side, if X is a compact Riemannian manifold or a Carnot 
group equipped with the Carnot-Carathéodory distance, then dim(X) = dimN (X). See 
[29, p. 3635] and [30, Theorem 4.2]. Moreover, any doubling metric space has finite 
Nagata dimension (see [29, Lemma 2.3]). Nagata dimension also enjoys many good struc-
tural properties. For example, dimN X×Y ≤ dimN X +dimN Y and if X = A ∪B, then 
dimN X = sup

{
dimN (A), dimN (B)

}
. In [14], [30] it is proved that dim(Z) ≤ dimN (X)

whenever Z is an asymptotic cone or tangent cone of X. For further results concerning 
Nagata dimension we refer to the articles [5], [7], [9], [29], [30] and the references therein.

2.4. Lipschitz connectedness

Let X and Y be metric spaces. A map f : X → Y is called L-Lipschitz, where L ≥ 0
is a real number, if d(f(x), f(x′)) ≤ L d(x, x′) for all x, x′ ∈ X. The quantity

Lip(f) := inf
{
L ≥ 0 : f is L-Lipschitz

}

is called the Lipschitz constant of f . We say that f is C-bilipschitz, C ≥ 1, if

C−1d(x, y) ≤ d(f(x), f(y)) ≤ Cd(x, y)

for all x, y ∈ X. In the following, we recall the definition of Lipschitz k-connected metric 
spaces and state several examples. Let Bm+1 :=

{
x ∈ Rm+1 : |x| ≤ 1

}
, for m ≥ 0, 

denote the closed (m + 1)-dimensional Euclidean unit ball and put Sm := ∂Bm+1. We 
equip Sm and Bm+1 with the induced Euclidean metric.

Definition 2.3. A metric space X is said to be Lipschitz k-connected if there exists c ≥ 1
such that every L-Lipschitz map f : Sm → X with 0 ≤ m ≤ k has a cL-Lipschitz 
extension f̄ : Bm+1 → X. We abbreviate this by saying that X has property (LCk).

In particular, Banach spaces and CAT(0) spaces or, more generally, metric spaces 
admitting a convex bicombing have (LCk) with constant 3; see [38, Proposition 6.2.2.]. 
Every k-connected compact Riemannian manifold has (LCk). This follows from [29, 
Theorem 5.1] which states that if a compact metric space X is k-connected and Lipschitz 
k-connected in the small, then X has (LCk). Moreover, certain horospheres in symmetric 
spaces of noncompact type of rank k or in the product of k proper CAT(0) spaces have 
(LCk−2). This has been established in [31] and [33], respectively. The jet space Carnot 
groups (Js(Rk), dc) have (LCk−1); see [46]. Examples of Carnot groups which can be 
realized as jet space Carnot groups include the nth Heisenberg group, the Engel group 
and the model filiform groups. We refer to [41] for more information on these groups. 
There are many examples of metric groups which have (LC1); see e.g. [12], [34].
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2.5. Pointwise Lipschitz constants

Let f : X → Y be a map between metric spaces X and Y . The pointwise (lower) 
Lipschitz constant of f at x is defined by

lip f(x) := lim
r→0+

�rf(x), where �rf(x) := inf
0<s<r

sup
d(x,y)<s

d(f(x), f(y))
s

.

If f is Lipschitz then the function lip f is real-valued and Borel; see [26, Lemma 4.1.2].

Lemma 2.4. Let f : X → Y be a map such that lip f(x) ≤ C for all x ∈ X. Then 
f is continuous and �(f ◦ γ) ≤ C�(γ) for every curve γ in X. In particular, if X is 
λ-quasiconvex, then f is Cλ-Lipschitz.

Proof. Let x ∈ X. Since lip f(x) ≤ C, for every r > 0 there is s ∈ (0, r) such that

sup
d(x,y)<s

d(f(x), f(y)) ≤ 2Cs;

hence, f is continuous at x. In order to prove the second statement it is enough to show 
that

d
(
f(γ(0)), f(γ(l))

)
≤ C�(γ) (2.2)

for every rectifiable curve γ : [0, l] → X. Fix a rectifiable curve γ, which we may assume 
to be parametrized by arc-length. Let C ′ > C and consider the set

A :=
{
t ∈ [0, l] : d

(
f
(
γ(0)

)
, f

(
γ(t)

))
≤ C ′t

}
.

Clearly, A is nonempty and closed, so t := supA is contained in A. We claim that t = l. 
We argue by contradiction and assume that t < l. Choose s > 0 sufficiently small such 
that t + s < l and

sup
d(γ(t),y)<s

d(f(γ(t)), f(y))
s

≤ C ′.

Since d(γ(t), γ(t + s′)) ≤ �(γ|[t,t+s′]) = s′ for all 0 < s′ < s, we obtain from the above 
and the continuity of f that d

(
f(γ(t)), f(γ(t + s))

)
≤ C ′s and hence

d
(
f(γ(0)), f(γ(t + s))

)
≤ C ′(t + s).

This shows that t + s ∈ A, which is impossible. We therefore have t = l and thereby 
d
(
f(γ(0)), f(γ(l))

)
≤ C ′l = C ′�(γ). Since C ′ > C was arbitrary this shows (2.2) and 

proves the second statement of the lemma. �
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3. Currents in metric spaces

We recall relevant notions from Ambrosio-Kirchheim’s theory of currents of finite mass 
in metric spaces [3]. See [28] for a variant of this theory.

3.1. Currents of finite mass, push-forwards and restrictions

Let X be a complete metric space, k ≥ 0 an integer, and let Dk(X) be the set of 
tuples (π0, . . . , πk) of Lipschitz functions πi : X → R with π0 bounded.

Definition 3.1. A multi-linear functional T : Dk(X) → X is called metric k-current (of 
finite mass) in X if the following properties hold:

(i) T (π0, π
j
1, . . . , π

j
k) → T (π0, π1, . . . , πk) whenever supi,j Lip

(
πj
i

)
< ∞ and πj

i con-
verges pointwise to πi.

(ii) if {x ∈ X : π0(x) 
= 0} is contained in the union 
⋃k

i=1 Bi of Borel sets Bi and if πi

is constant on Bi, then T (π0, . . . , πk) = 0.
(iii) there exists a finite Borel measure μ on X such that for all (π0, . . . , πk) ∈ Dk

(
X
)

|T (π0, . . . , πk)| ≤
k∏

i=1
Lip(πi)

∫
X

|π0(x)| dμ(x). (3.1)

The minimal Borel measure μ satisfying (3.1) is denoted ‖T‖. The closed set

sptT :=
{
x ∈ X : ‖T‖

(
U(x, r)

)
> 0 for all r > 0

}

is called the support of T , and M(T ) = ‖T‖(X) is the mass of T . Let Mk(X) be the 
space of metric k-currents in X. When equipped with the mass norm M(·), this becomes 
a Banach space. If T ∈ Mk(X) and T 
= 0, then dimN (sptT ) ≥ k; see [51, Proposition 
2.5]. In particular, one has Mk(X) = {0} whenever k > dimN (X).

Let Y be another complete metric space and let f : X → Y be a Lipschitz map. The 
push-forward of T ∈ Mk(X) under f is the element f#T ∈ Mk(Y ) defined by

f#T (π0, . . . , πk) = T (π0 ◦ f, . . . , πk ◦ f)

for all (π0, . . . , πk) ∈ Dk(Y ). We have spt f#T ⊂ f(sptT ) and M(f#T ) ≤ Lip(f)k M(T ). 
If T ∈ Mk(X) then the restriction T B to a Borel set B ⊂ X is defined by

T B (π0, . . . , πk) := T (1B π0, π1, . . . , πk)

for all (π0, . . . , πk) ∈ Dk(X), where 1B is the characteristic function of B. This is well-
defined since T admits a unique extension to a functional on (k + 1)-tuples for which 
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the first argument is a bounded Borel function. One has T B ∈ Mk(X) and ‖T B‖ =
‖T‖ B. Moreover, we have (f#T ) B = f#

(
T f−1(B)

)
whenever f : X → Y is Lipschitz 

and B ⊂ Y is Borel.
A sequence (Ti) ⊂ Mk(X) is said to converge weakly to T ∈ Mk(X) if (Ti) converges 

pointwise to T , thus for all (π0, . . . , πk) ∈ Dk
(
X
)

we have Ti(π0, . . . , πk) → T (π0, . . . , πk)
as i → ∞.

3.2. Boundaries, slicings and integral currents

When k ≥ 1, the boundary of T ∈ Mk(X) is the function ∂T : Dk−1(X) → R given 
by

∂T (π0, . . . , πk−1) := T (1, π0, π1, . . . , πk−1).

Any T ∈ Mk(X), k ≥ 1, satisfying ∂T = 0 is called a cycle. If T ∈ M0(X) then we 
say that T is a cycle provided that T (1) = 0. Notice that ∂T always satisfies (i) and 
(ii) of Definition 3.1. If ∂T ∈ Mk−1(X) then T is called normal current. For such T we 
have spt(∂T ) ⊂ sptT . We denote by Nk(X) the space of normal k-currents for k ≥ 1, 
and we set N0(X) := M0(X). Notice that ∂(∂T ) = 0 for all T ∈ Nk(X) with k ≥ 2. If 
θ ∈ L1(Rk) then the function �θ� : Dk(Rk) → R given by

�θ�(π0, . . . , πk) :=
∫

Rk

θ π0 det
([

∂iπj

]k
i,j=1

)
dL k

defines an element of Mk(Rk) and satisfies ‖ �θ� ‖ = |θ| L k. If θ has bounded variation 
then �θ� ∈ Nk(Rk). In particular, if B ⊂ Rk is a bounded Borel set of finite perimeter 
then �B� := �1B� belongs to Nk(Rk).

Definition 3.2. An element T ∈ Nk(X) with k ≥ 1 is called an integral current if ‖T‖ is 
concentrated on a countably H k-rectifiable set and if for any Lipschitz map f : X → Rk

and any open set U ⊂ X there exists θ ∈ L1(Rk, Z) such that f#(T U) = �θ�.

Furthermore, T ∈ N0(X) is called an integral current if there exist x1, . . . , xm ∈ X

and θ1, . . . , θm ∈ Z such that T =
∑m

i=1 θi�xi�. Here, for x ∈ X the current �x� ∈ N0(X)
is defined by �x�(π) = π(x) for every bounded Lipschitz function π : X → R. The family 
of integral k-currents in X is an additive subgroup of Nk(X) and is denoted by Ik(X). 
If f : X → Y is Lipschitz and T ∈ Ik(X) then f#T ∈ Ik(Y ). In particular, if Δ ⊂ Rk is 
a k-simplex and ϕ : Δ → X a Lipschitz map then ϕ#�Δ� ∈ Ik(X); consequently, every 
Lipschitz chain in X induces an integral current in X. The following lemma shows that 
the mass estimate M(f#T ) ≤ Lip(f)k M(T ) can be improved if T is an integral current.
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Lemma 3.3. If f : X → Y is a Lipschitz map then

‖f#T‖(B) ≤
∫

f−1(B)

[
lip f(x)

]k
d‖T‖(x)

for every integral current T ∈ Ik(X) and every Borel set B ⊂ Y .

Proof. The inequality is obviously true when k = 0. If k ≥ 1 then [37, Lemma 3.10]
implies that

|f#T (π0, . . . , πk)| ≤
∫
X

|(π0 ◦ f)(x)|
k∏

i=1
lip(πi ◦ f)(x) d‖T‖(x)

for all (π0, . . . , πk) ∈ Dk(Y ). Since lip(πi ◦ f)(x) ≤ Lip(πi) · lip f(x) for all x ∈ X, we 
have

|f#T (π0, . . . , πk)| ≤
k∏

i=1
Lip(πi)

∫
X

|π0 ◦ f(x)| ·
[
lip f(x)

]k
d‖T‖(x).

Hence, the claim follows from the definition of ‖f#T‖. �
If T ∈ Nk(X) with k ≥ 1 and u : X → R is Lipschitz then for almost every r ∈ R,

〈T, u, r〉 := ∂
(
T {u ≤ r}

)
− (∂T ) {u ≤ r}

defines an element of Nk−1(X), which is called a slice of T . By the slicing theorem, the 
measure ‖〈T, u, r〉‖ is supported on sptT ∩ {u = r}, and

b∫
a

M(〈T, u, r〉) dr ≤ Lip(u) ‖T‖({a < u < b})

whenever a < b. Moreover, if T ∈ Ik(X) then 〈T, u, r〉 ∈ Ik−1(X) for almost all r ∈ R.

3.3. Homotopy formula and coning inequality

Let ε > 0 and let [0, ε] × X be equipped with the Euclidean product metric. For a 
function f : [0, ε] ×X → R and t ∈ [0, ε] we let ft : X → R be defined by ft(x) := f(t, x). 
If T ∈ Ik(X) for some k ≥ 0 then the function on Dk

(
[0, ε] ×X

)
given by

�t� × T (π0, . . . , πk) := T (π0t, . . . , πkt)

defines an element of Ik([0, ε] ×X). Moreover, the functional �0, ε� × T assigning
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(π0, . . . , πk+1) �→
k+1∑
i=1

(−1)i+1
ε∫

0

T
(
π0t

∂πit

∂t
, π1t, . . . , π(i−1)t, π(i+1)t, . . . , π(k+1)t

)
dt

is a multi-linear functional on Dk+1([0, ε] ×X
)

and has the following property.

Proposition 3.4. If T ∈ Ik(X) then �0, ε� × T ∈ Ik+1
(
[0, ε] ×X

)
and

∂
(
�0, ε� × T

)
+ �0, ε� × ∂T = �ε� × T − �0� × T. (3.2)

For k = 0 the second term on the left-hand side is zero.

This is analogous to [42, Theorem 2.9] and [3]. Notice that the assumption made in 
[42, Theorem 2.9] that T has bounded support is not needed.

Given a map h : [0, ε] × X → Y and t ∈ [0, ε], x ∈ X, we let ht : X → Y and 
hx : [0, ε] → Y be the maps given by ht(z) := h(t, z) and hx(s) := h(s, x).

Lemma 3.5. If h : [0, ε] ×X → Y is Lipschitz and T ∈ Ik(X), then

‖h#
(
�0, ε� × T

)
‖(B) ≤ (k + 1)

∫
h−1(B)

liphx(t) ·
[
lipht(x)

]k
d(L 1 × ‖T‖)(t, x)

for every Borel set B ⊂ Y .

Proof. Let (π0, . . . , πk+1) ∈ Dk+1(Y ). We have

∣∣h#
(
�0, ε� × T

)
(π0, . . . , πk+1)

∣∣

≤
k+1∑
i=1

∣∣∣
ε∫

0

T
(
π0 ◦ ht

∂(πi ◦ ht)
∂t

, π1 ◦ ht, . . . , π(i−1) ◦ ht, π(i+1) ◦ ht, . . . , π(k+1) ◦ ht

)
dt
∣∣∣

≤
k+1∑
i=1

ε∫
0

∫
X

∣∣∣π0 ◦ ht
∂(πi ◦ ht)

∂t

∣∣∣
k+1∏

j=1,j �=i

lip(πj ◦ ht)(x) d‖T‖(x) dt,

where the second inequality follows from the definition of ‖T‖ when k = 0 and from [37, 
Lemma 3.10] when k ≥ 1. Since

∣∣∂(πi ◦ ht(x))
∂t

∣∣ = lip(πi ◦ hx)(t)

for almost all t ∈ [0, ε] and since lip(πj ◦ ht)(x) ≤ Lip(πj) lipht(x) we obtain

∣∣h#
(
�0, ε� × T

)
(π0, . . . , πk+1)

∣∣
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≤ (k + 1)
k+1∏
i=1

Lip(πi)
1∫

0

∫
X

|(π0 ◦ h)(t, x)| liphx(t) ·
[
lipht(x)

]k
d‖T‖ dt.

Hence, the claim follows from the definition of ‖h#
(
�0, ε� × T

)
‖. �

With the homotopy formula from Proposition 3.4 and the mass estimate from 
Lemma 3.5 at hand it is not hard to see that Banach spaces admit coning inequali-
ties for any k ≥ 1.

Corollary 3.6. Banach spaces have (CIk) with constant C = 1 for every k ≥ 0.

Proof. Let X be a Banach space and T ∈ Ik(X) a cycle of bounded support for some 
k ≥ 0. Fix x0 ∈ sptT . The map h : [0, 1] × X → X given by h(t, x) = (1 − t)x0 + tx

is Lipschitz and satisfies liphx(t) ≤ diam(sptT ) and lipht(x) = t for all t ∈ [0, 1]
and all x ∈ sptT . Thus, by Proposition 3.4 and Lemma 3.5 the current defined by 
S := h#

(
�0, 1� × T

)
belongs to Ik+1(X) and satisfies ∂S = T as well as

M(S) ≤ (k + 1) diam(sptT )
∫

[0,1]×X

tk d(L 1 × ‖T‖) = diam(sptT )M(T ),

as desired. Since this holds for every k ≥ 0 the proof is complete. �
We conclude this subsection with the following lemma which will be used in the proof 

of Proposition 3.8 and also later in the article.

Lemma 3.7. Let X be a complete metric space and T ∈ Ik(X) a cycle, where k ≥ 1. If 
X has (EIk), then for every ε > 0 there exists S ∈ Ik+1(X) with ∂S = T and such that

M(S) ≤ FillvolX(T ) + ε and sptS ⊂ B
(
sptT,DM(T ) 1

k

)
(3.3)

for some D only depending on k and on the constant in (EIk). All minimal fillings of T
satisfy (3.3).

The lemma follows directly from [42, Lemma 3.4] and its proof. By choosing ε > 0
small enough we may assume that the filling S satisfies the isoperimetric inequality 
M(S) ≤ DM(T ) k+1

k .

3.4. Mapping polyhedral currents to spaces with (LCk) or (EIk)

The aim of this subsection is to prove the technical Proposition 3.8 below which will 
be important in the proofs of Theorems 1.1 and 1.4.

Let Σ be a simplicial complex, equipped with the length metric or the �2-metric. We 
define the set Pk(Σ) ⊂ Ik(Σ) of polyhedral k-chains in Σ as follows. One has P ∈ Pk(Σ)
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if and only if there exist finitely many σi ∈ Fk, θi ∈ Z, and isometries ϕi : Δ → σi, where 
Δ denotes the standard Euclidean k-simplex, such that

P =
∑

θi ϕi#�Δ�.

Since Δ can be embedded isometrically into Rk, the integral current �Δ� is well-defined. 
By construction, Pk(Σ) ⊂ Ik(Σ) is an additive subgroup with generating set 

{
�σ� :

σ ∈ Fk

}
. We use the convention that �σ� denotes any of the currents ϕ#�Δ�, where 

ϕ : Δ → σ is an isometry. Notice that �σ� is uniquely determined up to a sign.
Given a Lipschitz map h : Σ → Y such that h(Σ(0)) ⊂ X, the following proposition 

constructs a chain homomorphism Λ∗ : P∗(Σ) → I∗(X) and a chain homotopy Γ∗ :
P∗(Σ) → I∗+1(X) from Λ∗ to h#. This chain homotopy connects Λ∗ to h# in the sense 
that if T ∈ Pm(Σ) is a m-cycle, then Γk(T ) is an (m + 1)-chain such that ∂Γm(T ) =
Λm(T ) − h#T .

Proposition 3.8. Let Y be complete metric space, X ⊂ Y a closed quasiconvex subset and 
Σ a simplicial complex equipped with the length metric or �2-metric, both rescaled by a 
factor ε > 0. Suppose that h : Σ → Y is a map such that h(Σ(0)) ⊂ X and h|σ is Lipschitz 
for every σ ∈ F . Let k ≥ 0 and suppose Y has (EIk+1) and X has (LCk) or (EIk). Then 
there exist homomorphisms Λm : Pm(Σ) → Im(X) and Γm : Pm(Σ) → Im+1(Y ) for 
m = 0, . . . , k + 1 with the following properties:

(1) Λ0 = h# and Γ0 = 0,
(2) Λm ◦ ∂ = ∂ ◦ Λm+1 for m = 0, . . . , k,
(3) ∂ ◦ Γm = Λm − h# − Γm−1 ◦ ∂ for m = 1, . . . , k + 1,
(4) For each m = 0, . . . , k + 1 and each σ ∈ Fm,

M
(
Λm(�σ�)

)
≤ C ·

[
εLip(h|σ)

]m

and

M
(
Γm(�σ�)

)
≤ C ·

[
εLip(h|σ)

]m+1
,

(5) For each m = 0, . . . , k + 1 and σ ∈ Fm the currents Λm(�σ�) and Γm(�σ�) have 
support in B

(
h(σ(0)), Cε Lip(h|σ)

)
.

The constant C depends only on k and the data of X and Y .

We use the convention that 00 = 1.

Proof. By a simple scaling argument, it suffices to consider the case when ε = 1. We first 
construct the homomorphisms Λm. If X has (LCk), then there exists a map h̄ : Σ(k+1) →
X which agrees with h on Σ(0) and which is C Lip(h|σ)-Lipschitz on every simplex 



G. Basso et al. / Advances in Mathematics 423 (2023) 109024 21
σ ⊂ Σ(k+1). In this case we define Λm(�σ�) := h̄#�σ� for every oriented m-simplex σ ⊂ Σ
with 0 ≤ m ≤ k+1 and extend Λm linearly to Pm(Σ). This yields a homomomorphism 
Λm with the desired properties.

Next, we construct Λm in the case when X has (EIk). Set Λ0 := h#. If σ is an oriented 
1-simplex in Σ with vertices e− and e+ we let Λ1(�σ�) be the integral current induced by 
a Lipschitz curve γ in X from h(e−) to h(e+) of length �(γ) ≤ C0 d(h(e−), h(e+)), where 
C0 is the quasiconvexity constant of X. In particular, we have ∂Λ1(�σ�) = Λ0(�∂σ�) and

M(Λ1(�σ�) ≤ �(γ) ≤ C1 Lip(h|σ)

and spt(Λ1(�σ�) ⊂ B
(
h(σ(0)), C1 Lip(h|σ(0))

)
, where C1 :=

√
2C0. Doing this for ev-

ery oriented 1-simplex σ and extending linearly we obtain the desired homomorphism 
Λ1 : P1(Σ) → I1(X). If k = 0 this finishes the construction of the homomorphisms 
Λm. If k ≥ 1, then suppose we have defined Λm with properties (2), (4), (5) for some 
1 ≤ m ≤ k. Let σ be an oriented (m + 1)-simplex in Σ. It follows from (2) that 
Λm(∂�σ�) is a cycle in Im(X). Thus, by Lemma 3.7, there exists S ∈ Im+1(X) such 
that ∂S = Λm(∂�σ�) and

M(S) ≤ DM(Λm(∂�σ�))
m+1
m ≤ D

[
(m + 2)Cm Lip(h|σ)m

]m+1
m ≤ Cm+1 Lip(h|σ)m+1

and

spt(S) ⊂ B
(
spt(Λm(∂�σ�)), DM

(
Λm(∂�σ�)

) 1
m

)
⊂ B

(
h(σ(0)), Cm+1 Lip(h|σ)

)
,

where Cm+1 := Cm + D
(
(m + 2)Cm

)m+1
m . We set Λm+1(�σ�) := S and by defining 

Λm+1(�σ�) like this for every oriented (m + 1)-simplex and extending linearly we obtain 
a homomorphism Λm+1 : Pm+1(Σ) → Im+1(X) satisfying properties (2), (4), (5).

We proceed analogously in order to construct Γm. Set Γ0 := 0 and suppose we have 
already constructed Γm−1 with the desired properties for some 1 ≤ m ≤ k + 1. Let σ be 
an oriented m-simplex in Σ. The current P := Λm(�σ�) − h#�σ� − Γm−1(�σ�) is a cycle 
and satisfies

M(P ) ≤ M(Λm(�σ�)) + M(h#�σ�) + M(Γm−1(�σ�)) ≤ C ′′
m Lip(h|σ)m,

where C ′′
m := Cm + 1 + C ′

m−1. Therefore, by Lemma 3.7, there exists S ∈ Im+1(Y ) with 
∂S = P and

M(S) ≤ D′ M(P )
m+1
m ≤ D′C ′′

m

m+1
m Lip(h|σ)m+1 ≤ C ′

m Lip(h|σ)m+1

and

spt(S) ⊂ B
(
spt(P ), D′ M(P ) 1

m

)
⊂ B

(
h(σ(0)), C ′

m Lip(h|σ)
)
,
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where C ′
m := C ′′

m +D′C ′′
m

m+1
m . We put Γm(�σ�) := S. Doing this for all σ and extending 

linearly yields the desired homomorphism Γm. It is clear that it satisfies all the desired 
properties. We set C := max{Cm ·C ′

m : m = 0, . . . , k+1}. This completes the proof. �
4. Factorization through simplicial complexes

In this section, we prove the factorization theorem sketched in Section 1.4. The theo-
rem is obtained by a close inspection of the proofs of Lang and Schlichenmaier’s results 
in [29].

Theorem 4.1. Let Z ⊂ Y be complete metric spaces such that Z has Nagata dimension n
and Y is Lipschitz n-connected for some integer n ≥ 0. Then there exist C ≥ 1, an (n +1)-
dimensional simplicial complex Σ equipped with the �2-metric, and maps g : Y \ Z → Σ
and h : Σ → Y with h

(
Σ(0)) ⊂ Z such that the following holds:

(1) f : Y → Y , defined by f = h ◦ g on Y \ Z and f = idZ on Z, is C-Lipschitz;
(2) g is Cr−1-Lipschitz on 

{
y ∈ Y : d(y, Z) > r

}
for all r > 0;

(3) h is Crσ-Lipschitz on every σ ∈ F , where rσ := inf
{
d(y, Z) : y ∈ g−1(stσ)

}
;

(4) for every σ ∈ F one has Rσ ≤ Crσ, where Rσ := sup
{
d(y, Z) : y ∈ g−1(stσ)

}
.

Moreover, if B ⊂ Y is a bounded subset intersecting Z, then there exists a simplicial 
complex Σ′ ⊂ Σ such that Σ′ is (n + 1)-dimensional and C-quasiconvex, g(B \ Z) ⊂ Σ′

and h is C diam(B)-Lipschitz on Σ′.

The constant C depends only on the data of Z and Y . Theorem 4.1 is a crucial 
component of the proof of Theorem 1.1. If X ⊂ Y is a closed subset which contains Z
and is Lipschitz k-connected for some k ≥ 0 then we may choose h to furthermore satisfy 
h
(
Σ(k+1)) ⊂ X. As a result, if Z is Lipschitz n-connected, then it follows that f is a 

C-Lipschitz retraction onto Z.

Proof. We may suppose that Y \ Z 
= ∅. Following [29, Theorems 1.6 and 5.2], we find 
an infinite index set I, a covering (Bi)i∈I of Y \ Z by subsets of Y \ Z, and constants 
δ ∈ (0, 1) and α > 0 depending only on the data of Z such that the following holds. For 
all i ∈ I, diam(Bi) ≤ αd(Bi, Z) and for every y ∈ Y \ Z there are at most n + 2 indices 
i ∈ I such that τi(y) > 0. Here, τi : Y \ Z → [0, +∞) is defined by

τi(y) = max
{
δd(Bi, Z) − d(y,Bi), 0

}
.

We set Σ := Σ(n+1)(I) and τ̄(y) :=
∑

i∈I τi(y). By the above, Σ is (n + 1)-dimensional 
and g : Y \ Z → Σ assigning y �→ τ̄(y)−1(τi(y))i∈I

is well-defined. In the following, we 
prove items (1) – (4). To begin, we show that g : Y \ Z → Σ has the desired properties. 
Let y, y′ ∈ Y \ Z and denote by K ⊂ I the set of all i ∈ I such that τi(y) > 0 or 
τi(y′) > 0. Notice that K contains at most 2(n + 2) elements. We estimate
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∑
i∈K

∣∣∣τi(y)
τ̄(y) − τi(y′)

τ̄(y′)

∣∣∣ =
∑
i∈K

1
τ̄(y)τ̄(y′)

∣∣∣ ∑
j∈K

(
τi(y)τj(y′) − τi(y′)τj(y)

)∣∣∣

≤ 2
τ̄(y)τ̄(y′)

∑
i∈K

∑
j∈K

τj(y′)|τi(y) − τi(y′)|

≤ 4(n + 2)
τ̄(y) d(y, y′),

where in the last inequality we used that τi is 1-Lipschitz. Since (Bi)i∈I covers Y \ Z, 
there exists i ∈ I such that y ∈ Bi. As a result,

d(y, Z) ≤ diam(Bi) + d(Bi, Z) ≤ (1 + α)d(Bi, Z)

and τ̄(y) ≥ δd(Bi, Z). Thus, (1 + α)τ̄(y) ≥ (1 + α)δd(Bi, Z) ≥ δd(y, Z). By the above,

|g(y) − g(y′)| ≤ 4(n + 2)(1 + α)
δ

1
d(y, Z)d(y, y

′).

This shows that g is C1r
−1-Lipschitz on 

{
y ∈ Y : d(y, Z) > r

}
. Next, we show (3)

and (4). For each i ∈ I select yi ∈ Bi and xi ∈ Z for which d(yi, xi) ≤ 2d(Bi, Z). Let 
h0 : Σ(0) → Z denote the map that sends ei to xi for each i ∈ I. Here, ei ∈ �2(I) is 
defined by (ei)j = 1 if j = i and (ei)j = 0 otherwise. Notice that Σ(0) =

{
ei : i ∈ I

}
. 

Using that Y is Lipschitz n-connected, we obtain a constant C2 > 0 and an extension 
h : Σ → Y of h0 such that h is C2 Lip

(
h|σ(0)

)
-Lipschitz on each σ ∈ F . Let σ ∈ F such 

that g−1(stσ) 
= ∅. Notice that

rσ = inf
{
d
(
Z, g−1(intσ′)

)
: σ′ ∈ F and σ ⊂ σ′}.

Thus, to show that h is C3rσ-Lipschitz on σ it suffices to show that h is C3r-Lipschitz 
on each σ′ ∈ F with σ ⊂ σ′, where r := d

(
Z, g−1(intσ′)

)
. Fix σ′ ∈ F and let ei and ej

be two vertices of σ′. We may suppose that d(Z, Bj) ≤ d(Z, Bi) and there exists some 
y ∈ Y \ Z such that g(y) ∈ intσ′. We estimate

d(h(ei), h(ej)) ≤ d(xi, y) + d(y, xj)

≤ 2d(Z,Bi) + d(yi, y) + d(yj , y) + 2d(Z,Bj).

As g(y) ∈ intσ′, we infer τi(y) > 0 and thus d(y, Bi) ≤ δd(Z, Bi). Therefore, d(yi, y) ≤
diam(Bi) + d(y, Bi) ≤ diam(Bi) + δd(Z, Bi), and we arrive at

d(h(ei), h(ej)) ≤ 2(2 + δ + α)d(Z,Bi).

Since (1 − δ)d(Bi, Z) ≤ d(y, Z), we obtain

d(h(ei), h(ej)) ≤
√

2
(

2 + δ + α
)
d(y, Z) |ei − ej |.
1 − δ
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As y ∈ Y \ Z with g(y) ∈ int(σ′) was arbitrary, this implies that h is C3r-Lipschitz on 
σ′ for r := d

(
Z, g−1(intσ′)

)
, as desired. This concludes the proof of (3). If ei is a vertex 

of σ, then we have

d(y, Z) ≤ 2d(Z,Bi) + d(yi, y) ≤ (2 + δ + α)d(Z,Bi) ≤
(

2 + δ + α

1 − δ

)
rσ,

and so Rσ ≤ C3rσ, as y ∈ g−1(stσ) was arbitrary. This yields (4).
Next, we show (1). Notice that Y is c-quasiconvex for some c ≥ 1. We want to apply 

Lemma 2.4 to show that f is C4c-Lipschitz. To this end, we prove that lip f(y) ≤ C4 for 
all y ∈ Y . For any y ∈ Y \ Z there exists i ∈ I such that y ∈ Bi and thus using (3) we 
obtain d(f(y), xi) = d(h(g(y)), h(ei)) ≤ C3 d(y, Z)

√
2, and so

d(f(y), y) ≤ d(f(y), xi) + d(xi, yi) + d(yi, y) ≤
(
C3
√

2 + 2 + α
)
d(y, Z). (4.1)

By combining d(f(x), f(y)) ≤ d(x, y) + d(y, f(y)), where x ∈ Z, with (4.1), we find that 
lip f(x) ≤ (C3

√
2 + 3 + α) for all x ∈ Z. Now, fix y ∈ Y \ Z and choose ε > 0 such 

that d(y′, Z) ≤ 2d(y, Z) for all y′ ∈ Uε(y), and whenever y′ ∈ Uε(y) is contained in 
g−1(int(σ)) for some σ ∈ F , then y ∈ g−1(σ). Because of (2) and (3), for all y′ ∈ Uε(y),

d(f(y), f(y′)) ≤ C3 d(y′, Z) d(g(y), g(y′)) ≤ 2C3C1 d(y, y′),

and so lip f(y) ≤ 2C3C1. Hence, we have shown that lip f(y) ≤ C4 for all y ∈ Y . By 
Lemma 2.4, f is C4c-Lipschitz, as desired.

To finish the proof, we show the statements of the moreover part. Let B ⊂ Y be a 
bounded subset intersecting Z and suppose that J ⊂ I is the subset of those indices 
i ∈ I for which there exists y ∈ B such that τi(y) > 0. By enlarging B (if necessary) 
we may assume that J has infinitely many elements. We set Σ′ := Σ(n+1)(J). Clearly, 
Σ′ ⊂ Σ and Σ′ is (n + 1)-dimensional. By definition of g, we have g(B \ Z) ⊂ Σ′. Next, 
we claim that Σ′ is C5-quasiconvex for some constant C5 depending only on n. Let σ1, 
σ2 ∈ F(Σ′). Clearly, there is σ ∈ F

(
Σ(J)

)
of dimension at most 2n + 3 such that σ1, 

σ2 ⊂ σ(n+1). As σ is isometric to a Euclidean standard simplex, it follows that σ(n+1)

C5-quasiconvex, and so, by using that σ(n+1) ⊂ Σ′, we find that Σ′ is C5-quasiconvex as 
well. Next, we show that h is C6 diam(B)-Lipschitz on Σ′. For each r ∈ J choose zr ∈ B

such that τr(zr) > 0. We estimate

d(h(er), h(es)) ≤ d(xr, yr) + d(yr, zr) + d(zr, zs) + d(zs, ys) + d(ys, xs)

≤ diam(B) + 2(2 + α + δ) max
{
d(Br, Z), d(Bs, Z)

}
,

for all r, s ∈ J . Fix y0 ∈ B ∩ Z. Since (1 − δ)d(Bs, Z) ≤ d(zs, Z) for all s ∈ J , it follows 
that

d(h(er), h(es)) ≤ diam(B) + 2
(

2 + δ + α
)

diam(B);
1 − δ
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thus, by construction of h, for each σ ∈ F(Σ′), the map h is C6 diam(B)-Lipschitz on σ. 
Now, an argument as in the proof of (1) above yields liph(x) ≤ C6 diam(B) for all x ∈ Σ′. 
Hence, as Σ′ is C5-quasiconvex, Lemma 2.4 tells us that h is C5C6 diam(B)-Lipschitz on 
Σ′, as desired. We put C := max

{
Ci : i = 1, . . . , 6

}
. �

If h is as in Theorem 4.1 above, then h is Cr-Lipschitz on every σ ∈ F for which 
g−1(stσ) ∩{d(y, Z) ≤ r} 
= ∅. Hence, the following proposition tells us that liph|Σ′(x) ≤
Cr for every x ∈ Σ′, where Σ′ := Hull

(
g({y ∈ Y : 0 < d(y, Z) ≤ r})

)
.

Proposition 4.2. Let h : Σ → Y be a map from a simplicial complex Σ equipped with the 
�2-metric to a metric space Y . Let L > 0 and suppose A ⊂ Σ is such that h is L-Lipschitz 
on every σ ∈ F for which stσ∩A 
= ∅. Then the restriction of h to Σ′ := Hull(A) satisfies 
liph|Σ′(x) ≤ L for every x ∈ Σ′.

Proof. For y ∈ Σ denote by σ(y) be the unique simplex in Σ with y ∈ intσ(y). Notice 
that if y ∈ Σ′ then h|σ(y) is L-Lipschitz because σ(y) ⊂ Σ′ and hence stσ(y) ∩A 
= ∅.

Now, let x ∈ Σ′. By Lemma 2.1 there is a real number s0 > 0 such that x ∈ σ(y) for 
all y ∈ Σ′ with |x − y| < s0. Therefore, if y ∈ Σ′ satisfies 0 < |x − y| < s < s0 then, by 
the above,

d(h(x), h(y))
s

≤ d(h(x), h(y))
|x− y| ≤ L.

This implies that liph|Σ′(x) ≤ L for all x ∈ Σ′, as was to be shown. �
Corollary 4.3. Suppose that h : Σ → X is a homeomorphism between a simplicial complex 
Σ equipped with the �2-metric and a metric space X. If h is D-bilipschitz on every σ ∈ F
and X is c-quasiconvex, then h : Σ → X is cD-bilipschitz when Σ is equipped with the 
length metric.

Proof. Proposition 4.2 tells us that liph(z) ≤ D for all z ∈ Σ. Let z, z′ ∈ Σ and let γ
be a curve in Σ connecting z and z′. By Lemma 2.4, it follows that

d(h(z), h(z′)) ≤ �(h ◦ γ) ≤ D�(γ).

Consequently, h is D-Lipschitz with respect to the length metric di on Σ. To finish the 
proof it remains to show that g : X → (Σ, di) given by x �→ h−1(x) is cD-Lipschitz.

For every z ∈ Σ denote by σ(z) the unique simplex σ ∈ F such that z ∈ intσ. Given 
x ∈ X, we abbreviate σ(x) := h

(
σ(z)

)
, where z = g(x). As h is a homeomorphism, 

for every x ∈ X there exists εx > 0 such that x ∈ σ(x′) whenever x′ ∈ U(x, εx). See 
Lemma 2.1. Notice that g is D-Lipschitz on σ(x) for every x ∈ X. Hence, exactly the 
same argument as in the proof of Proposition 4.2 shows that lip g(x) ≤ D for all x ∈ X. 
Now, by invoking Lemma 2.4 we get that g is cD-Lipschitz, as X is c-quasiconvex. This 
completes the proof. �
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5. Proof of Theorem 1.1 and generalizations

In this section we prove Theorem 1.1 from the introduction about isoperimetric sub-
space distortion. We also establish strengthenings and generalizations of this theorem 
which will be used in Section 7 to establish Theorem 1.4, a deformation theorem in 
spaces of finite Nagata dimension.

5.1. Undistorted fillings with controlled support

In this subsection, we discuss two theorems on isoperimetric subspace distortion and 
deduce Theorem 1.1 from them. The main difference between the following theorem and 
Theorem 1.1 is that we do not assume that the whole subspace X has finite Nagata 
dimension and that in addition we obtain control on the filling chain in the subspace X.

Theorem 5.1. Let Y be a complete metric space and let Z ⊂ X ⊂ Y be closed subsets such 
that Z is bounded and has finite Nagata dimension, and X is quasiconvex and has (LCk)
or (EIk) for some k ≥ 0. If S ∈ Ik+1(Y ) satisfies spt(∂S) ⊂ Z and sptS ⊂ B(Z, η) for 
some η > 0, then there exists S̄ ∈ Ik+1(Y ) which has support in X and satisfies ∂S̄ = ∂S

as well as

M(S̄) ≤ C M(S) and spt S̄ ⊂ B(Z,Cη),

where C depends only on the data of X and the Nagata dimension and constant of Z. 
Moreover, if Y is a Banach space then there exists W ∈ Ik+2(Y ) with ∂W = S̄ − S and 
such that M(W ) ≤ ηC M(S) and sptW ⊂ B(Z, Cη).

Notice that the constant C is independent of the diameter of Z. The hypothesis that Z
be bounded can be dropped if one assumes that the whole subspace X has finite Nagata 
dimension, see Theorem 5.3 below. Theorem 5.1 will be proved in Subsection 5.2. As a 
consequence of the theorem we obtain the following strengthening of Corollary 1.3.

Corollary 5.2. Let X be a complete quasiconvex metric space of finite Nagata dimension. 
Suppose that X has (LCk) or (EIk) for some k ≥ 0. Then every cycle T ∈ Im(X) of 
bounded support with m = 0, . . . , k admits a filling S ∈ Im+1(X) satisfying

M(S) ≤ C diam(sptT ) · M(T ) and diam(sptS) ≤ C diam(sptT )

for some constant C > 0 depending only on the data of X. In particular, X has (CIk).

The stronger version of the coning inequality asserted in the corollary is called strong 
coning inequality in [24] and [23] and plays an important role in these papers.
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Proof. Let m ∈ {0, . . . , k} be an integer and suppose that T ∈ Im(X) is a cycle of 
bounded support. View X as a subset of Y := �∞(X) via a Kuratowski embedding. Fix 
x0 ∈ sptT and define h : [0, 1] ×Y → Y by h(t, y) := (1 − t)x0 + ty. The integral current 
S := h#(�0, 1� × T ) satisfies ∂S = T and M(S) ≤ diam(sptT ) M(T ) as well as

sptS ⊂ h
(
[0, 1] × sptT

)
⊂ B

(
sptT, diam(sptT )

)
;

see Section 3.3. Applying Theorem 5.1 with Z = sptT , we obtain S̄ ∈ Im+1(X) with 
∂S̄ = T and such that

M(S̄) ≤ C M(S) ≤ C diam(sptT )M(T )

as well as

spt S̄ ⊂ B
(
sptT,C diam(sptT )

)

for some constant C only depending on the data of X. In particular, it follows that 
diam(spt S̄) ≤ (2C + 1) diam(sptT ). �

Every complete metric space with (CIk) also has (EIk), as was shown in [42]. Hence, 
by Corollary 5.2, if X is quasiconvex, has finite Nagata dimension and satisfies (LCk)
for some k ≥ 1, then X has (EIk). In the following, we use this fact in combination with 
Theorem 5.1, to show that when X has finite Nagata dimension, then the conclusion 
of Theorem 5.1 is also valid for currents S ∈ Ik+1(Y ) for which the support of ∂S is 
unbounded.

Theorem 5.3. Let Y be a complete metric space and let X ⊂ Y be a closed quasiconvex 
subset of finite Nagata dimension. Suppose furthermore that X has (LCk) or (EIk) for 
some k ≥ 0. Then for all subsets Z ⊂ X and all S ∈ Ik+1(Y ) with spt ∂S ⊂ Z and 
sptS ⊂ B(Z, η) for some η > 0, there exists S̄ ∈ Ik+1(Y ) which has support in X and 
satisfies ∂S̄ = ∂S as well as

M(S̄) ≤ C M(S) and spt S̄ ⊂ B(Z,Cη),

where C depends only on the data of X. Moreover, if Y is a Banach space then there exists 
W ∈ Ik+2(Y ) with ∂W = S̄−S and such that M(W ) ≤ ηC M(S) and sptW ⊂ B(Z, Cη).

Proof. We first treat the case k ≥ 1. The space X has (CIk) by Corollary 5.2 and hence 
also (EIk) by [42]. By possibly embedding Y isometrically into �∞(Y ) we may further 
assume that Y has (EIk). Lemma 3.7 thus implies that for every η > 0 the following 
holds. For every ε > 0 sufficiently small and every cycle U ∈ Im(Y ) with 1 ≤ m ≤ k

and M(U) ≤ ε there is a filling V ∈ Im+1(Y ) with M(V ) ≤ ε and sptV ⊂ B(sptU, η); 
if sptU ⊂ X then sptV ⊂ X.
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Let Z, S, and η be as in the statement of the theorem and set T := ∂S. Fix y0 ∈ Y

and let 	 : Y → R be the distance function from y0. Notice that 〈T, 	, r〉 and 〈S, 	, r〉 are 
integral currents for almost every r > 0 and

∂(T {	 ≤ r}) = 〈T, 	, r〉 = −∂〈S, 	, r〉.

Let ε ∈ (0, 1) be sufficiently small. There exists r > 0 arbitrarily large such that the 
integral currents 〈T, 	, r〉 and 〈S, 	, r〉 are supported on sptT ∩{	 = r} and sptS ∩{	 =
r}, respectively, and satisfy M(〈T, 	, r〉) ≤ ε and M(〈S, 	, r〉) ≤ ε. If r > 0 was chosen 
large enough we may also assume that M(T {	 > r}) ≤ ε and M(S {	 > r}) ≤ ε.

In the following, we consider the cases k = 1 and k ≥ 2 separately. Assume first that 
k ≥ 2. For s, t > 0 we abbreviate A(s, t) := B(Z, s) ∩B(y0, t). By the observation made 
at the beginning of the proof there exists a filling T ′ ∈ Ik(Y ) of the cycle 〈T, 	, r〉 with 
M(T ′) ≤ ε and sptT ′ ⊂ X ∩A(η, r + η). Define cycles by

T1 := T {	 > r} + T ′ and T2 := T {	 ≤ r} − T ′

and notice that T = T1 + T2. We will find a filling of T by constructing suitable fillings 
of T1 and T2. Since T1 has mass at most 2ε and support in X ∩ B(Z, η) it has a filling 
S̄1 of mass at most 2ε and support in X ∩ B(Z, 2η), again by the observation at the 
beginning of the proof. Next, we construct a filling of T2. Notice that T2 has support in 
the set Z ′ := X ∩ A(η, r + 5η). The cycle T ′ + 〈S, 	, r〉 is contained in Ik(Y ), has mass 
less than or equal to 2ε and is supported in A(η, r + η), so it has a filling S′ ∈ Ik+1(Y )
with M(S′) ≤ 2ε and support in A(2η, r + 2η). Thus, S2 := S {	 ≤ r} − S′ is a filling 
of T2 satisfying sptS2 ⊂ A(2η, r + 2η) ⊂ B(Z ′, 2η) and M(S2) ≤ M(S) + 2ε. Hence, by 
Theorem 5.1, there exists a filling S̄2 ∈ Ik+1(Y ) of T2 with support in X such that

M(S̄2) ≤ C M(S2) ≤ C M(S) + 2Cε

and spt S̄2 ⊂ B(Z ′, 2Cη) ⊂ B(Z, 3Cη) for some constant C ≥ 1 only depending on the 
data of X. It follows that S̄ := S̄1 + S̄2 is a filling of T with support in X and satisfying 
spt S̄ ⊂ B(Z, 3Cη) and

M(S̄) ≤ M(S̄1) + M(S̄2) ≤ C M(S) + 2(C + 1)ε ≤ 2C M(S),

where the last inequality holds provided ε > 0 was chosen small enough.
In order to prove the last statement in the theorem, suppose Y is a Banach space. 

Set R1 := S̄1 − S′ − S {	 > r} and notice that R1 is an integral cycle of mass at 
most 5ε and with support in B(Z, 2η). Therefore, if ε > 0 was chosen sufficiently small, 
then R1 has a filling W1 ∈ Ik+2(Y ) with M(W1) ≤ 5ε and sptW1 ⊂ B(Z, 3η), compare 
with the observation at the beginning of the proof. Moreover, by Theorem 5.1, there 
exists W2 ∈ Ik+2(Y ) with ∂W2 = S̄2 − S2 and sptW2 ⊂ B(Z, 3Cη) and such that 
M(W2) ≤ 3ηC M(S2). Consequently, if ε > 0 was chosen small enough, the integral 
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current W := W1 + W2 satisfies ∂W = S̄ − S, has support in B(Z, Cη) and mass 
bounded by ηC M(S) for some C only depending on the data of X. This concludes the 
proof of the case k ≥ 2.

If k = 1, then M(〈T, 	, r〉) is a non-negative integer satisfying M(〈T, 	, r〉) < ε. Hence, 
〈T, 	, r〉 = 0 and it follows that T1 = T {	 > r}, T2 = T {	 ≤ r} and 〈S, 	, r〉 are 
integral cycles. Now, the same reasoning as in the proof of the case k ≥ 2 yields a filling 
S̄ of T with the desired properties and, if Y is a Banach space, a filling W of S̄−S with 
the desired properties. This completes the proof when k ≥ 1.

We finally treat the remaining case k = 0. Let 	 be as above. Similarly to the case 
k = 1 there exist arbitrarily large r > 0 such that 〈S, 	, r〉 = 0. Thus, there clearly exists 
r such that the integral current S′ := S {	 ≤ r} satisfies ∂S′ = ∂S and has bounded 
support. Therefore, applying Theorem 5.1 to S′ we obtain a suitable filling of ∂S in X. 
The moreover part can easily be proved as above. �

We can finally prove Theorem 1.1.

Proof of Theorem 1.1. Let X and Y be as in the statement of the theorem and let 
T ∈ Im(X) be a non-trivial cycle for some m = 0, . . . , k. By replacing Y by �∞(Y ) we 
may assume that Y is quasiconvex and has (EIk). In particular, FillvolY (T ) is finite. To 
apply Theorem 5.3, we must find a filling S ∈ Im+1(Y ) of T with M(S) ≤ 2 FillvolY (T )
such that sptS ⊂ B(sptT, η) for some finite η > 0. When m ≥ 1, Lemma 3.7 implies 
that such an S exists. When m = 0 then for any filling S of T with M(S) ≤ 2 FillvolY (T )
one constructs a filling of T with smaller mass and bounded support by restricting S
to a suitable ball as at the end of the proof of Theorem 5.3. In either case, we apply 
Theorem 5.3 to S to show that there exists a filling S̄ ∈ Im+1(Y ) of T with support in 
X such that M(S̄) ≤ C M(S) ≤ 2C FillvolY (T ) for some constant C depending only on 
the data of X. This completes the proof. �
5.2. Proof of Theorem 5.1

Let Z, X, Y , S, η be as in the statement of Theorem 5.1. We may of course assume that 
∂S 
= 0 and thus k ≤ dimN (Z); see Section 3.1. By possibly embedding Y isometrically 
into �∞(Y ) we may assume that Y itself is a Banach space. In particular, Y has (LCn)
and (EIn) for all n ∈ N, with constants only depending on n (see [42]). Let 	 : Y → R

be the distance function from the set Z.

Lemma 5.4. We may assume that

‖S‖
(
{	 ≤ r}

)
≤ r (k + 1)M(∂S) and M

(
∂(S {	 > r})

)
≤ M(∂S) (5.1)

for almost every r > 0 small enough.
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Proof. It is clearly enough to find a metric space Ŷ containing Y and a current Ŝ ∈
Ik+1(Ŷ ) satisfying the properties stated in the lemma and with ∂Ŝ = ∂S, M(Ŝ) ≤
2 M(S) as well as spt Ŝ ⊂ B(Z, 2η).

Let 0 < ε < η be so small that ε(k + 1) M(∂S) ≤ M(S). We define Ŷ := [0, ε] × Y

and identify Y with the subset {0} × Y ⊂ Ŷ . We set

Ŝ := �ε� × S − �0, ε� × ∂S. (5.2)

Clearly, Ŝ ∈ Ik+1(Ŷ ) and ∂Ŝ = �0� × ∂S. It follows from Lemma 3.5 that

M(Ŝ) ≤ M(S) + ε(k + 1)M(∂S) ≤ 2M(S).

Since spt Ŝ ⊂ [0, ε] × sptS, we infer spt Ŝ ⊂ B(Z, 2η). We now show that Ŝ satisfies 
(5.1). Let 	̂ : Ŷ → R denote the distance function from Z. We claim that

Ŝ {	̂ ≤ r} = −�0, r� × ∂S (5.3)

for every r ∈ (0, ε). To simplify the notation, we set Qr := �0, r� × ∂S. To establish 
(5.3), it suffices to show that Qε {	̂ ≤ r} = Qr, as spt

(
�ε� × S

)
⊂ {ε} × sptS and thus (

�ε� × S
)

{	̂ ≤ r} = 0 for all r ∈ (0, ε). Choose a sequence �j : R → [0, 1] of Lipschitz 
functions such that �j → 1[0,r] in L1(R) as j → ∞. Letting 	̂j := �j ◦ 	̂ we observe that 
	̂j → 1{�̂≤r} in L1(Ŷ , ‖Qε‖

)
as j → ∞. Moreover, using that 	̂jt = �j(t) on Z, we find 

that Qε(	̂j π0, π1, . . . , πk+1) is equal to

k+1∑
i=1

(−1)i+1
ε∫

0

�j(t) · ∂S
(
π0t

∂πit

∂t
, π1t, . . . , π(i−1)t, π(i+1)t, . . . , π(k+1)t

)
dt

for all (π0, . . . , πk+1) ∈ Dk+1(Ŷ ). Hence, by letting j → ∞, we obtain Qε {	̂ ≤ r} = Qr

and (5.3) follows. Because of (5.3), we have

‖Ŝ‖
(
{	̂ ≤ r}

)
= M(�0, r� × ∂S) ≤ r (k + 1)M(∂S),

M
(
∂(Ŝ {	̂ > r})

)
= M

(
�r� × ∂S) = M(∂S)

for every r ∈ (0, ε). This completes the proof. �
Next, denote by n the Nagata dimension of Z. By applying Theorem 4.1 with B =

B(Z, η), we obtain an (n + 1)-dimensional simplicial complex Σ equipped with the �2-
metric and maps f : Y → Y , g : Y \ Z → Σ, and h : Σ → Y with h(Σ(0)) ⊂ Z satisfying 
the properties listed in the statement of that theorem. In particular, Σ is quasiconvex, 
g(B \Z) ⊂ Σ and h is Lipschitz on Σ. For the remainder of this section we denote by C
the constant of Theorem 4.1. Notice that C does not depend on the diameter of Z, but 
the Lipschitz constant of h might.
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For almost every r > 0 the current Sr := S {	 > r} belongs to Ik+1(Y ) and 
spt(∂Sr) ⊂ {	 = r}. Fix a decreasing sequence (ri) of positive real numbers converging 
to zero such that Sri ∈ Ik+1(Y ) and (5.1) holds with r = ri for all i ≥ 1. Notice that Sri
is supported on {	 ≥ ri} and g is Cr−1

i -Lipschitz on this set, so the current S′
i := g#Sri

is well-defined and an element of Ik+1(Σ). Let P ′
i ∈ Pk+1(Σ(k+1)), R′

i ∈ Ik+1(Σ), 
Q′

i ∈ Ik+2(Σ) with

S′
i = P ′

i + R′
i + ∂Q′

i (5.4)

be the integral currents obtained by applying the deformation theorem (Theorem A.2) 
to S′

i. Further, let Λm and Γm be the homomorphisms from Proposition 3.8 and define

Pi := Λk+1(P ′
i ) ∈ Ik+1(X). (5.5)

In what follows, we will show that the sequence (Pi) converges to a filling of T which 
has the desired properties.

To keep track of the constants, we denote by K the maximum of the constants ap-
pearing in Theorem A.2 and Proposition 3.8. By construction, K depends only on the 
data of X and on the Nagata dimension and constant of Z. The next two lemmas show 
that the Pi’s defined in (5.5) have uniformly bounded mass and boundary mass and the 
sequence (∂Pi) converges weakly to ∂S.

Lemma 5.5. For all sufficiently large i ≥ 1 we have sptPi ⊂ B(Z, C̄η) as well as

M(Pi) ≤ C̄ M(S) and M(∂Pi) ≤ C̄ M(∂S),

where C̄ is a constant depending only on n, C and K.

Proof. For each σ ∈ Fk+1 for which P ′
i σ 
= 0 we have

0 
= M(P ′
i σ) ≤ K M(S′

i stσ) = K M
(
g#(Sri g−1(stσ))

)
.

In particular, g−1(stσ) ∩B(Z, η) is nonempty, and so rσ := d(Z, g−1(stσ)) satisfies rσ ≤
η. It furthermore follows from Theorem 4.1(4) that rσ > 0. Since g−1(stσ) ⊂ {	 ≥ rσ}
and g is Cr−1

σ -Lipschitz on {	 ≥ rσ} it follows with the above that

M(P ′
i σ) ≤ K Ck+1r−(k+1)

σ M
(
Sri g−1(stσ)

)
.

Since h|σ is Crσ-Lipschitz, we conclude

M
(
Λk+1(P ′

i σ)
)
≤ KCk+1 rk+1

σ M(P ′
i σ)

≤ K2C2(k+1) M
(
Sri g−1(stσ)

)
.
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Summing over all σ ∈ Fk+1 and observing that each open simplex in Σ is in the open 
star of at most Cn,k different (k + 1)-simplices we obtain

M(Pi) ≤ Cn,kK
2C2(k+1) M(Sri),

and hence M(Pi) ≤ C̄ M(S) for all i large enough, where C̄ := 2Cn,kK
2C2(k+1). The 

same argument as above shows that for each σ ∈ Fk we have

M
(
Λk

(
(∂P ′

i ) σ
))

≤ K2C2k M
(
(∂Sri) g−1(stσ)

)
.

From this one concludes as above that

M(∂Pi) ≤ Cn,kK
2C2k M(∂Sri) ≤ C̄ M(∂S).

Finally, for every σ for which P ′
i σ 
= 0 we have Lip(h|σ) ≤ Crσ ≤ Cη and therefore

spt(Λk+1(P ′
i σ)) ⊂ B(h(σ(0)),KCη) ⊂ B(Z, C̄η).

This shows that sptPi ⊂ B(Z, C̄η) and completes the proof. �
Lemma 5.6. We have FillvolY (∂S − ∂Pi) → 0 as i → ∞. In particular, the sequence 
(∂Pi) converges weakly to ∂S.

Proof. Since ∂P ′
i = ∂S′

i − ∂R′
i, we find

h#(∂P ′
i ) = ∂(h#S′

i) − ∂(h#R′
i) = ∂(f#Sri) − ∂(h#R′

i)

and thus, by Proposition 3.8,

∂S − ∂Pi = ∂S − Λk(∂P ′
i ) = ∂S − h#(∂P ′

i ) − ∂Γk(∂P ′
i )

= ∂(f#(S − Sri)) + ∂(h#R′
i) − ∂Γk(∂P ′

i ) =: ∂Ai.

It follows that

FillvolY (∂S − ∂Pi) ≤ M(Ai) ≤ M(f#(S − Sri)) + M(h#R′
i) + M(Γk(∂P ′

i )).

We claim that there is a constant C̄ > 0 such that for every i each term on the right 
hand side in the inequality above is bounded by C̄ri M(∂S). Clearly, we have

M(f#(S − Sri)) ≤ Ck+1 M(S − Sri) = Ck+1‖S‖({	 ≤ ri}) ≤ Ck+1(k + 1) ri M(∂S),

where we have used (5.1) in the last inequality. Next, set Mi := sptR′
i and observe that
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Mi ⊂ Hull(spt ∂S′
i) ⊂ Hull

(
g(spt ∂Sri)

)
⊂ Hull

(
g({	 = ri})

)
. (5.6)

Thanks to Theorem 4.1(3), h is Cri-Lipschitz on every σ ∈ F for which the set 
stσ ∩ g

(
{	 = ri}

)
is nonempty. It thus follows from (5.6) and Proposition 4.2 that 

lip(h|Mi
)(x) ≤ Cri for all x ∈ Mi, and so, by Lemma 3.3, we get

M(h#R′
i) ≤ Ck+1rk+1

i M(R′
i) ≤ KCk+1rk+1

i M(∂S′
i)

and hence M(h#R′
i) ≤ KC2k+1ri M(∂S). Finally, one calculates exactly as in the proof 

of Lemma 5.5 that for each σ ∈ Fk

M
(
Γk((∂P ′

i ) σ)
)
≤ K2C2k ri M

(
(∂Sri) g−1(stσ)

)

and

M
(
Γk(∂P ′

i )
)
≤ Cn,kK

2C2kri M(∂S).

Thus, M(Ai) → 0 as i goes to infinity. This proves the claim and completes the proof. �
The proof of all except the last statement of Theorem 5.1 can now easily be concluded 

if we can show that (Pi) has a weakly converging subsequence, which we will show in the 
following lemma. Indeed, if a subsequence of (Pi) converges weakly to S̄, then S̄ belongs 
to Ik+1(X) and satisfies

M(S̄) ≤ C̄ M(S) and spt S̄ ⊂ B(Z, C̄η),

as follows from Lemma 5.5, the closure theorem [3, Theorem 8.5], and the lower semi-
continuity of mass. Moreover, we have ∂S̄ = ∂S thanks to Lemma 5.6, and thus S̄
satisfies the properties stated in Theorem 5.1.

Lemma 5.7. The sequence (Pi) has a weakly converging subsequence.

Notice that when X is proper the lemma follows directly from Lemma 5.5 and the 
compactness theorem [3, Theorem 5.2].

Proof. Fix r > 0, let Ar be the collection of all σ ∈ Fk+1 satisfying rσ > r, and denote by 
Ar the union of all simplices in Ar. We first claim that the set 

{
P ′
i Ar : i ≥ 1

}
contains 

only finitely many elements. To see this, let σ ∈ Ar and notice that P ′
i σ = θσi �σ� for 

some θσi ∈ Z. By (A.2) we have

L (Δ) · |θσi | = M(P ′
i σ) ≤ K M

(
S′
i stσ

)
=: KMσ

i , (5.7)

where L (Δ) denotes the Lebesgue measure of the Euclidean (k + 1)-simplex Δ. By 
construction, there exists i0 ≥ 1 depending on r such that for all σ ∈ Ar and all i, j ≥ i0
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we have S′
i stσ = S′

j stσ. In particular, Mσ
i = Mσ

i0
=: Mσ for all i ≥ i0. Furthermore, 

since Mσ 
= 0 for at most countably many σ ∈ Ar, we see that

∑
σ∈Ar

Mσ =
∑
σ∈Ar

M
(
S′
i0 stσ

)
≤ Cn,k

∑
τ∈F, rτ>r

M
(
S′
i0 int τ

)
≤ Cn,k M(S′

i0) < ∞,

where we have used that each open simplex in Σ is in the open star of at most Cn,k

different (k + 1)-simplices. Thus, the collection C :=
{
σ ∈ Ar : KMσ ≥ L (Δ)

}
is finite 

and letting M := supσ′∈Ar
Mσ′

< ∞, by virtue of (5.7) we find that for all i ≥ i0, θσi = 0
if σ /∈ C and |θσi | ≤ KM for all σ ∈ C. This implies our first claim.

Next, we claim that for almost every r > 0 small enough and every i sufficiently large 
we have

∑
σ∈Fk+1\Ar

M(Λk+1(P ′
i σ)) ≤ C̄rM(∂S),

where C̄ only depends on n, C, and K. Indeed, the proof of Lemma 5.5 shows that

M
(
Λk+1(P ′

i σ)
)
≤ K2C2(k+1) M

(
Sri g−1(stσ)

)
.

Summing over all σ ∈ Fk+1 \ Ar and noting that g−1(stσ) ⊂ {	 ≤ Cr}, because of 
Theorem 4.1(4), yields

∑
σ∈Fk+1\Ar

M(Λk+1(P ′
i σ)) ≤ Cn,kK

2C2(k+1)‖Sri‖({	 ≤ Cr}),

and together with Lemma 5.4 we obtain the second claim.
Finally, it follows from the first claim and a standard diagonal sequence argument, 

that (P ′
i ) has a subsequence (P ′

i(m)) with the following property. For every r > 0 we have

P ′
i(m1) − P ′

i(m2) =
∑

σ∈Fk+1\Ar

(
P ′
i(m1) − P ′

i(m2)
)

σ

for all m1, m2 sufficiently large (depending on r). This together with the second claim 
shows that for every r > 0 sufficiently small, the mass of Pi(m1) − Pi(m2) is bounded by

∑
σ∈Fk+1\Ar

[
M(Λk+1(P ′

i(m1) σ)) + M(Λk+1(P ′
i(m2) σ))

]
≤ 2C̄rM(∂S)

whenever m1, m2 are sufficiently large. Consequently, (Pi(m)) is a Cauchy sequence in 
Mk+1(X) and, in particular, is a weakly converging subsequence of (Pi). �

The following lemma proves the last statement in Theorem 5.1.
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Lemma 5.8. If Y is a Banach space then there exists W ∈ Ik+2(Y ) with ∂W = S̄ − S

and such that

M(W ) ≤ ηC̄ M(S) and sptW ⊂ B(Z, C̄η)

for some C̄ depending only on n, C and K.

Proof. Let H : [0, 1] × Y → Y be the straight line homotopy defined by H(t, y) = (1 −
t)y+ tf(y). Since spt ∂S ⊂ Z and H(t, z) = z for every z ∈ Z it follows that H#(�0, 1� ×
∂S) = 0 and thus, by Proposition 3.4, the integral current V := H#(�0, 1� × S) satisfies 
∂V = f#S − S. We have d(y, f(y)) ≤ (C + 1)η for every y ∈ B(Z, η) and thus, by 
Lemma 3.5,

M(V ) ≤ (k + 2)Ck+1(C + 1)ηM(S)

as well as

sptV ⊂ H([0, 1] × sptS) ⊂ B(Z, (C + 1)Cη).

Fix i sufficiently large, to be determined later. By (5.4) and Proposition 3.8 we have

Pi = f#Sri + Γk(∂P ′
i )−h#R′

i + ∂Γk+1(P ′
i )− ∂h#Q′

i = f#S−Ai + ∂Γk+1(P ′
i )− ∂h#Q′

i,

where Ai is as in the proof of Lemma 5.6. Hence,

S̄ − S = (S̄ − Pi) −Ai + ∂Γk+1(P ′
i ) − ∂h#Q′

i + ∂V. (5.8)

Using the same arguments as in the proof of Lemma 5.5 one easily shows that Γk+1(P ′
i )

and h#Q′
i are supported in B(Z, C̄η) and satisfy M(h#Q′

i) ≤ ηC̄ M(S) as well as 
M(Γk+1(P ′

i )) ≤ C̄ηM(S) for some C̄ depending on n, C and K.
It follows from the proof of Lemma 5.7 that, after passing to a subsequence, Pi

converges to S̄ in mass, so we can take M(S̄ − Pi) arbitrarily small. By the proof of 
Lemma 5.6, M(Ai) converges to zero as i tends to infinity. Moreover, (5.8) implies that 
S̄−Pi−Ai is a cycle whose support is contained in B(Z, C̄η). Hence, by Lemma 3.7 and 
the remark following it, we can choose an arbitrarily large i such that S̄ −Pi −Ai has a 
filling U ∈ Ik+2(Y ) satisfying M(U) ≤ ηC̄ M(S) and sptU ⊂ B(Z, 2C̄η). Consequently, 
the integral current W := U + Γk+1(P ′

i ) − h#Q′
i + V satisfies ∂W = S̄ − S as well as 

M(W ) ≤ ηC̄ M(S) and sptW ⊂ B(Z, C̄η) for some C̄ depending on n, C and K. �
6. Approximating finite-dimensional spaces by simplicial complexes

The aim of this section is to prove Theorem 1.6 from the introduction. To this end, 
we first establish the following approximation result:
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Proposition 6.1. Let X ⊂ Y be metric spaces such that X has Nagata dimension ≤ n

and Y is Lipschitz (n − 1)-connected for some n ≥ 0. Then there is a constant C such 
that for every ε > 0 there exist a simplicial complex Σ equipped with the �2-metric and 
maps ψ : X → Σ and ϕ : Σ → Y with the following properties:

(1) ϕ(Σ(0)) ⊂ X, Hull
(
ψ(X)

)
= Σ and Σ has dimension ≤ n;

(2) ψ is Cε−1-Lipschitz and ϕ is Cε-Lipschitz on every σ ∈ F ;
(3) ϕ ◦ ψ is C-Lipschitz and d

(
x, ϕ(ψ(x))

)
≤ Cε for all x ∈ X.

The constant C depends only on the data of X and Y .

Notice that in the case n = 0, we do not impose any assumption on the Lipschitz 
connectedness of Y . If X ⊂ Y is a closed subset such that X is Lipschitz k-connected 
for some k ≤ n, then we can choose ϕ such that, in addition, ϕ(Σ(k+1)) ⊂ X. The proof 
of Proposition 6.1 is similar to the proof of the factorization theorem in Section 4.

Proof of Proposition 6.1. Let c denote the Nagata constant of X. Fix ε > 0 and let B =
(Bi)i∈I be a cε-bounded covering of X with ε-multiplicity n +1. We begin by constructing 
a map ψ : X → Σ(I). For each i ∈ I we define τi : X → R via x �→ max

{
ε
2 −d(x, Bi), 0

}
. 

If τi(x) > 0, then there is bi ∈ Bi with d(x, bi) ≤ ε
2 ; consequently, for any x ∈ X there 

are at most (n + 1) indices i ∈ I such that τi(x) > 0, as B has ε-multiplicity n + 1. We 
set τ̄(x) =

∑
i∈I τi(x). Clearly, τ̄(x) > 0 for every x ∈ X. By the above, ψ : X → Σ(I)

given by x �→ τ̄(x)−1(τi(x)
)
i∈I

is well-defined and Σ := Hull
(
ψ(X)

)
is an n-dimensional 

simplicial complex. In what follows, we equip Σ with the �2-metric and view ψ as a map 
from X to Σ. One calculates exactly as in the proof of Theorem 4.1 that for all x, x′ ∈ X,

|ψ(x) − ψ(x′)| ≤ 4(n + 1)
τ̄(x) d(x, x′).

Since B is a covering of X, it follows that τ̄(x) ≥ ε
2 for all x ∈ X, so by the estimate 

above, ψ is C0ε
−1-Lipschitz, as desired.

Next, we construct ϕ : Σ → Y . As Y is Lipschitz (n −1)-connected, the same argument 
as in the proof of Theorem 4.1 yields a map ϕ : Σ → Y such that h(ei) ∈ Bi and 
Lip(ϕ|σ) ≤ C1 Lip(ϕ|σ(0)) for every σ ∈ F(Σ). Here, C1 denotes a constant depending 
only the data of X and Y . Fix σ ∈ F and let ei, ej be two vertices of σ. Clearly, there 
is x ∈ ψ−1(stσ) such that τi(x) > 0 and τj(x) > 0. We obtain

d(ϕ(ei), ϕ(ej)) ≤ d(ϕ(ei), x) + d(x, ϕ(ej)) ≤ 2
(
cε + ε

2

)
,

since B is cε-bounded. Hence, by the above, ϕ is C2ε-Lipschitz on σ, where C2 :=√
2(c + 1)C1. We proceed by showing (3). Let δ := ϕ ◦ ψ. Fix x ∈ X and let σ ∈ F be 

the unique simplex such that ψ(x) ∈ intσ. Since there exists some i ∈ I with τi(x) > 0, 
we find that
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d(δ(x), x) ≤ d(δ(x), ϕ(ei)) + d(ϕ(ei), x) ≤ C3ε, (6.1)

as ϕ is C2ε-Lipschitz on σ and d(ϕ(ei), x) ≤ cε + ε
2 . In particular, if d(x, x′) ≥ ε

8 , then 
(6.1) yields d(δ(x), δ(x′)) ≤ C4d(x, x′), where C4 := 1 + 16C3. Now, suppose that x, 
x′ ∈ X satisfy d(x, x′) ≤ ε

8 , and let σ, σ′ ∈ F denote the unique simplices such that 
ψ(x) ∈ intσ and ψ(x′) ∈ intσ′, respectively. If x ∈ Bi for some i ∈ I, then τi(x′) > 0; 
thus, σ∩σ′ 
= ∅. There is p ∈ σ∩σ′ such that |ψ(x) −p| + |p −ψ(x′)| ≤ 2n|ψ(x) −ψ(x′)|, 
and we can estimate

d(δ(x), δ(x′)) ≤ d(δ(x), ϕ(p)) + d(ϕ(p), δ(x′)) ≤ C2ε
(
|ψ(x) − p| + |p− ψ(x′)|

)
.

Hence, d(δ(x), δ(x′)) ≤ 2C0C2n d(x, x′), for ψ is C0ε
−1-Lipschitz. By setting, C5 :=

2C0C2C4n, we conclude that δ = ϕ ◦ψ is C5-Lipschitz, as desired. We put C := max
{
Ci :

i = 0, . . . , 5
}
, which does not depend on ε. This finishes the proof of Proposition 6.1. �

We conclude this section with the proof of Theorem 1.6.

Proof of Theorem 1.6. By Proposition 6.1 there is C > 0 such that for every ε > 0 there 
exist a simplicial complex Σ of dimension ≤ n equipped with the �2-metric and maps 
ψ : X → Σ and ϕ : Σ → Y such that statements (1) – (3) of Proposition 6.1 hold. Fix 
ε > 0. Notice that ψ(X) is rectifiably connected and every z ∈ Σ lies in a simplex of 
Σ which intersects ψ(X), so Σ is also rectifiably connected. Let dε be the length metric 
on Σ, scaled by the factor ε · 2−1/2. Then dε is a length metric and (Σ, dε) satisfies (1). 
In the following, we show that ψ : X → (Σ, dε) and ϕ : (Σ, dε) → Y have the desired 
properties.

Let x, x′ ∈ X and let α be a curve in X from x to x′ satisfying �(α) ≤ cd(x, x′), where 
c is the quasiconvexity constant of X. Then

√
2 dε(ψ(x), ψ(x′)) ≤ ε �(ψ ◦ α) ≤ C�(α) ≤ Cc d(x, x′).

This shows that ψ : X → (Σ, dε) is 2−1/2 · Cc-Lipschitz. Next, let z, z′ ∈ Σ. It follows 
from Proposition 4.2 and Lemma 2.4 that for every curve γ in Σ connecting z and z′ we 
have d(ϕ(z), ϕ(z′)) ≤ Cε�(γ). By taking the infimum over all such curves γ, we conclude

d(ϕ(z), ϕ(z′)) ≤ C
√

2 dε(z, z′).

In particular, the map ϕ : (Σ, dε) → Y is C
√

2-Lipschitz and it is clear that ϕ and ψ
satisfy condition (2) and the remaining statements in the theorem. �
7. Deformation theorem in spaces of finite Nagata dimension

The aim of this section is to prove Theorem 1.4. The proof will rely on Theorem 1.6
from the introduction and the deformation theorem for bilipschitz triangulated metric 
spaces (see Theorem A.2). We follow the proof strategy outlined in Section 1.4.
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Let X be as in Theorem 1.4. We define Y := �∞(X) and view X as a subset of Y . By 
Theorem 1.6 there is a constant C > 0 depending only on the data of X such that for 
every ε > 0 there exist a metric simplicial complex Σ and C-Lipschitz maps ψ : X → Σ
and ϕ : Σ → Y such that (1) and (2) of Theorem 1.6 hold. Fix ε > 0. Let Λm and Γm

be the homomorphisms from Proposition 3.8 when applied to ϕ. These homomorphisms, 
satisfy

M(Λm(�σ�)) ≤ Cεm, M(Γm(�σ�)) ≤ Cεm+1

and sptΛm(�σ�), spt Γm(�σ�) ⊂ B
(
ϕ(σ(0)), Cε

)
for every m = 0, . . . , k + 1 and each m-

simplex σ in Σ. The proof of Theorem 1.4 relies on the following two auxiliary lemmas.

Lemma 7.1. For every subset A ⊂ X we have ϕ
(
Hull(ψ(A))

)
⊂ B(A, Cε). Moreover, if 

Q ∈ Pm(Σ) has support in Hull(ψ(A)), then

spt(Λm(Q)), spt(Γm(Q)) ⊂ B(A,Cε),

where C is a constant only depending on the data of X.

Proof. Let A ⊂ X be a nonempty set and let z ∈ Hull(ψ(A)). Then there exists x ∈ A

such that ψ(x) and z lie in a common simplex in Hull(ψ(A)). In particular, we have 
d(z, ψ(x)) ≤ ε and hence

d(ϕ(z), x) ≤ d(ϕ(z), ϕ(ψ(x))) + d(ϕ(ψ(x)), x) ≤ 2Cε.

This implies that ϕ
(
Hull(ψ(A))

)
⊂ B(A, 2Cε), as claimed. In order to prove the second 

statement, let σ ⊂ Hull(ψ(A)) be an m-simplex. Since ϕ(σ(0)) ⊂ B(A, 2Cε) it follows 
from Proposition 3.8 that

spt(Λm(�σ�)), spt(Γm(�σ�)) ⊂ B(A, 3Cε).

This implies the second statement. �
Lemma 7.2. The triple (Σ, ϕ|Σ(0) , Λ∗), where Λ∗ := {Λ0, Λ1, . . . , Λk}, defines a (k, ε)-
polyhedral structure with a constant only depending on the data of X.

Proof. We only need to show that ϕ|Σ(0) has the desired properties. Let z, w ∈ Σ(0). 
Then there exist x, y ∈ X such that z and ψ(x) lie in a common simplex and w and ψ(y)
lie in a common simplex. In particular, we have

d(ϕ(z), ϕ(w)) ≥ d(ϕ(ψ(x)), ϕ(ψ(y))) − d(ϕ(z), ϕ(ψ(x))) − d(ϕ(w), ϕ(ψ(y)))

≥ d(x, y) − 4Cε.

Moreover, for every x ∈ X we have
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d(x, ϕ(Σ(0))) ≤ Cε + d(ϕ(ψ(x)), ϕ(Σ(0))) ≤ Cε + Cd(ψ(x),Σ(0)) ≤ 2Cε.

This completes the proof. �
Now we are in a position to prove Theorem 1.4.

Proof of Theorem 1.4. In what follows, C and C ′ will denote constants depending only 
on k and the data of X and they may change from one appearance to another. Let 
1 ≤ m ≤ k and let T ∈ Im(X). Define T ′ := ψ#T and write T ′ = P ′ + R′ + ∂S′, where 
P ′, R′, S′ are as in Theorem A.2. If m is strictly larger than the dimension of Σ then 
T ′ = 0 by the comment after Theorem A.2 and in this case we let P ′, R′, and S′ be the 
zero currents. Define P := Λm(P ′). By Proposition 3.8 and Theorem A.2 we have that

M(P ) ≤ C M(T ), M(∂P ) ≤ C M(∂T ).

Moreover, sptP ′ ⊂ Hull(ψ(sptT )) and spt ∂P ′ ⊂ Hull(ψ(spt ∂T )) and thus Lemma 7.1
implies that

sptP ⊂ B(sptT,Cε), spt ∂P ⊂ B(spt ∂T,Cε).

Now, let H : [0, 1] ×X → Y be the straight line homotopy

H(t, x) := (1 − t)x + tϕ(ψ(x)).

The integral currents in Y defined by U := H#(�0, 1� × ∂T ) and V := H#(�0, 1� × T )
satisfy

T − ϕ#T ′ = −U − ∂V

and, by Lemma 3.5, M(U) ≤ εC M(∂T ) and M(V ) ≤ εC M(T ). Moreover, we have

sptU ⊂ H([0, 1] × spt ∂T ) ⊂ B(spt ∂T,Cε)

and similarly sptV ⊂ H([0, 1] × sptT ) ⊂ B(sptT, Cε). Proposition 3.8 yields

ϕ#P ′ = P − ∂Γm(P ′) − Γm−1(∂P ′)

and hence

T = T − ϕ#T ′ + ϕ#T ′ = −U − ∂V + ϕ#P ′ + ϕ#R′ + ∂ϕ#S′ = P + R̂ + ∂Ŝ,

where we have set R̂ := ϕ#R′ −U − Γm−1(∂P ′) and Ŝ := ϕ#S′ − V − Γm(P ′). A direct 
calculation shows that
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M(R̂) ≤ εC M(∂T ), M(Ŝ) ≤ εC M(T ).

Moreover, Lemma 7.1 implies that spt R̂ ⊂ B(spt ∂T, Cε) and spt Ŝ ⊂ B(sptT, Cε).
Since ∂R̂ = ∂(T − P ) is supported in X, Theorem 5.3 implies the following two 

statements. There exists R ∈ Im(X) with ∂R = ∂R̂ and such that M(R) ≤ C M(R̂) ≤
ε C ′ M(∂T ) as well as sptR ⊂ B(spt ∂T, Cε). Moreover, there is S̄ ∈ Im+1(Y ) satisfying 
∂S̄ = R̂−R and

M(S̄) ≤ εC M(R̂) ≤ ε2C ′ M(∂T )

as well as spt S̄ ⊂ B
(
spt ∂T, C ′ε

)
. By construction, T = P + R + ∂(S̄ + Ŝ) and hence 

∂(S̄ + Ŝ) is supported in X and satisfies

spt(S̄ + Ŝ) ⊂ B
(
sptT,Cε

)
.

Thus, by Theorem 5.3, there exists S ∈ Im+1(X) with ∂S = ∂(S̄ + Ŝ) and

M(S) ≤ C M(S̄ + Ŝ) ≤ εC ′ M(T ) + ε2C ′ M(∂T )

as well as

sptS ⊂ B
(
sptT,C ′ε

)
.

Since T = P + R̂ + ∂Ŝ = P + R + ∂S̄ + ∂Ŝ = P + R + ∂S we have a decomposition as 
in the statement of the theorem. �

Theorem 1.4 implies the following approximation result mentioned in the introduction.

Corollary 7.3. Suppose X is a complete metric space of finite Nagata dimension which 
has (LCk) for some k ≥ 1, and let T ∈ Ik(X). Then there exists a sequence of Lipschitz 
k-chains in X such that the induced integral currents Ti satisfy FX(T − Ti) → 0 as 
i → ∞ and

sup
i

[
M(Ti) + M(∂Ti)

]
< ∞.

If T is a cycle, then the Ti are cycles and FillvolX(T − Ti) → 0 as i → ∞.

In the above, FX(T ) is the flat norm in X of a current T ∈ Ik(X) and is defined by

FX(T ) := inf{M(U) + M(V ) : U ∈ Ik(X), V ∈ Ik+1(X), T = U + ∂V }.

In any complete metric space, convergence with respect to the flat norm implies weak 
convergence. Moreover, in metric spaces with local coning inequalities the two notions 
of convergence are equivalent for sequences with uniformly bounded mass and boundary 
mass (see [43] for more information).
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Proof of Corollary 7.3. Since X has (LCk) the map ϕ constructed above satisfies 
ϕ(Σ(k+1)) ⊂ X; see Theorem 1.6. Moreover, the homomorphisms Λm in the poly-
hedral structure (Σ, ϕ|Σ(0) , Λ∗) can be chosen such that Λ(�σ�) = ϕ#�σ� for every 
m-simplex σ. See the beginning of the proof of Proposition 3.8. It thus follows that 
Pk(X) = {Λk(Q) : Q ∈ Pk(Σ)} consists of integral currents induced by Lipschitz 
chains in X. Now, the corollary follows from Theorem 1.4. �

We finally turn to the proof of Corollary 1.5. Given k ≥ 0 we denote the space 
of Lipschitz k-chains in X by CLip

k (X). Precisely, CLip
k (X) is the free abelian group 

generated by all Lipschitz maps ϕ : Δk → X, where Δk is the Euclidean standard k-
simplex. We view CLip

k (X) as a subcomplex of the singular chain complex of X and equip 
it with the singular boundary operator ∂ (see, for instance, [22, Ch. 2.1]).

As already mentioned in Section 3, Lipschitz chains induce integral currents. Indeed, 
if α =

∑N
i=1 θiϕi is a Lipschitz k-chain in X then

�α� :=
N∑
i=1

θi ϕi#�Δk�

is a k-dimensional integral current in X. Moreover, one has that ∂�α� = �∂α� for all 
α ∈ CLip

k (X). This can readily be verified by combining Stokes’ theorem for chains with 
[3, Theorem 11.1]. The following lemma proves Corollary 1.5 in the special case when 
∂T is induced by a Lipschitz cycle.

Lemma 7.4. Let X be a complete metric space of finite Nagata dimension and let T ∈
Ik(X) for some k ≥ 1. Suppose that there is a cycle δ ∈ CLip

k−1(X) such that ∂T = �δ�. If 
X has (LCk−1) then for every ε > 0 there exists 	 ∈ CLip

k (X) such that

∂	 = δ and M(T − �	�) ≤ ε.

We proceed with the proof of Corollary 1.5.

Proof of Corollary 1.5. Let ε > 0 and k ≥ 2. By Lemma 7.4, there exists 	′ ∈ CLip
k−1(X)

with ∂	′ = 0 and M(∂T − �	′�) ≤ ε. Using Corollary 1.2 we find that X has (EIk−1), 
and thus there is S′ ∈ Ik(X) satisfying ∂S′ = ∂T − �	′� and M(S′) ≤ D εk/(k−1). Let 
T ′ = T − S′. Then ∂T ′ = �	′�, and so by Lemma 7.4 there exists 	 ∈ CLip

k (X) with 
∂	 = 	′ and M(T ′ − �	�) ≤ ε. Therefore,

M(T − �	�) ≤ ε + M(S′) ≤ 2Dε

M(∂T − ∂�	�) = M(∂T − �	′�) ≤ ε.

This completes the proof in the case when k ≥ 2. If k = 1, then ∂T ∈ I0(X) and thus 
there are finitely many xi ∈ X and θi ∈ Z such that ∂T =

∑
θi�xi�. In particular, 
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∂T = �δ� for some cycle δ ∈ CLip
0 (X). Hence, by Lemma 7.4, for every ε > 0 there exists 

	 ∈ CLip
1 (X) with ∂	 = δ and M(T − �	�) ≤ ε, as desired. �

Thus, we are left to prove Lemma 7.4. The main components in its proof are The-
orem 1.6 and [50, Lemma 3]. Moreover, we will need the following straightforward 
approximation result.

Lemma 7.5. Let X be a complete metric space and let T ∈ Ik(X) for some k ≥ 1. If X
has (LCk−1) then for every ε > 0 there exists α ∈ CLip

k (X) such that M(T − �α�) ≤ ε.

Proof. Let K ⊂ Rk be a compact subset and ϕ : K → X a Lipschitz map. Due to [3, 
Theorem 4.5] and the inner regularity of the Lebesgue measure on Rk, to prove the lemma 
it suffices to show the following statement: for every ε > 0 there exists α ∈ CLip

k (X) such 
that M(ϕ#�K� − �α�) ≤ ε. Fix ε > 0. By a straightforward construction, we find finitely 
many k-cubes Qi ⊂ Rk such that K ⊂

⋃
Qi, intQi ∩ intQj = ∅ whenever i 
= j, and 

H k
(⋃

Qi

)
≤ H k(K) + ε. Clearly, there exists γ ∈ CLip

k (Rk) with �γ� =
∑

�Qi�. Now, 
since X has (LCk−1) there is a C-Lipschitz map ϕ̂ : Rk → X extending ϕ, and so by 
letting α := ϕ̂#γ, we obtain

M
(
ϕ#�K� − �α�

)
≤ Ck M

(
�K� −

∑
�Qi�

)
≤ Ck ε,

where in the first inequality we used that ϕ#�K� = ϕ̂#�K�. �
The proof of Lemma 7.4 will use the following construction. Let Σ be a simplicial 

complex. By choosing a total ordering on the vertices of Σ, we can construct an isomor-
phism from P∗(Σ) to a subcomplex of CLip

∗ (Σ). Namely, for every k and every k-simplex 
σ of Σ, there is a unique isometry ϕσ : Δk → Σ that preserves the ordering of the ver-
tices. The ordering also lets us fix an orientation for σ so that �σ� = (ϕσ)#�Δk�. Let 
q : Pk(Σ) → CLip

k (Σ) be defined by

q

(∑
σ

θσ�σ�

)
=

∑
σ

θσϕσ. (7.1)

Then q is a homomorphism of chain complexes and �q(P )� = P for any P ∈ P∗(Σ).

Proof of Lemma 7.4. By Theorem 1.6 there exists C > 0 such that for every ε > 0
there are a metric simplicial complex Σ = Σ(ε) and C-Lipschitz maps ψ : X → Σ and 
ϕ : Σ(k) → X satisfying the properties listed in Theorem 1.6. Fix ε0 > 0. By Lemma 7.5
there exists α̃ ∈ CLip

k (X) with M(T − �α̃�) ≤ ε0. Let α := ∂α̃ − δ. Then ∂α = 0, and 
thus by [50, Lemma 3] there is a cα > 0 such that for every ε > 0 there are γ ∈ CLip

k (Σ)
and λ ∈ CLip

k (X), and a (k − 1)-cycle α′ ∈ CLip
k−1(Σ), such that �α′� ∈ Pk−1(Σ) and

∂γ = ψ#(α) − α′, M(�γ�) ≤ cαε,
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∂λ = α− ϕ#(α′), M(�λ�) ≤ cαε.

After fixing a total ordering on the vertices of Σ, we may suppose that α′ = q(�α′�), 
where q is as in (7.1).

Fix ε > 0 small enough such that cαε ≤ ε0. The boundary of T ′ := ψ#
(
�α̃� −T

)
− �γ�

is equal to �α′� and one has M(T ′) ≤ Ckε0 + ε0. Now, on account of Theorem A.2, 
there exist P ′ ∈ Pk(Σ) and S′ ∈ Ik+1(Σ) with T ′ = P ′ + ∂S′ and such that M(P ′) ≤
K M(T ′), where K is a constant depending only on the Nagata dimension of X. Let 
β := q(P ′) ∈ CLip

k (Σ) and 	 := α̃ − λ − ϕ#(β). Then ∂β = q(∂P ′) = q(�α′�) = α′, and 
so ∂	 = δ and

M(T − �	�) ≤ ε0 + cαε + Ck M(P ′) ≤ 2ε0 + (CkK) ·M(T ′) ≤ C̄ε0,

where C̄ is a constant which is independent of ε0. �
Appendix A. Deformation theorem in bilipschitz triangulated metric spaces

The aim of this appendix is to provide a detailed proof of the classical Federer-Fleming 
deformation theorem in the setting of metric spaces admitting a bilipschitz triangulation 
in the sense below. In fact, we establish a version of the deformation theorem which 
moreover includes local mass estimates. Such estimates are of crucial importance in the 
proofs of Theorems 1.1 and 1.4.

Definition A.1. A metric space X is said to admit an (n, D, ε)-triangulation, where D ≥ 1, 
n ∈ N, ε > 0, if there exist an n-dimensional simplicial complex Σ and a homeomorphism 
p : Σ → X which is D-bilipschitz on every σ ∈ F if Σ is equipped with the scaled �2-
metric such that each simplex has side length ε.

Notice that in a path-connected simplicial complex the �2-metric and the length metric 
induce the same topology and they agree on each simplex. Thus, for path connected 
spaces X the definition above could equivalently be stated with the scaled �2-metric 
replaced by the scaled length metric on Σ. If X is quasiconvex then the homeomorphism 
p : Σ → X in the definition above is a bilipschitz homeomorphism when Σ is equipped 
with the scaled length metric; see Corollary 4.3.

We will use the following notation for simplices in (n, D, ε)-triangulated spaces. A 
subset σ ⊂ X of a metric space X admitting a triangulation p : Σ → X in the sense 
above is called k-simplex in X if p−1(σ) ⊂ Σ is a k-simplex. We denote by F the family 
of simplices in X and by Fk the collection of k-simplices in X. For every σ ∈ F we write 
intσ := p

(
int p−1(σ)

)
to denote the relative interior of σ in X. Given σ ∈ F , the set

stσ :=
⋃{

int τ : τ ∈ F and σ ⊂ τ
}
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is called the open star of σ. Further, the hull of a subset B ⊂ X is the union of all 
simplices σ ∈ F such that intσ∩B 
= ∅ and is denoted Hull(B). For k ≥ 0 we denote by 
Pk(X) the abelian subgroup of Ik(X) generated by currents of the form p#�σ�, where 
σ ⊂ Σ is a k-simplex.

Theorem A.2. Let X be a c-quasiconvex (n, D, ε)-triangulated metric space. Then there 
is C = C(c, n, D) > 0 such that for every k = 1, . . . , n and every T ∈ Ik(X) there exist 
P ∈ Pk(X), R ∈ Ik(X), and S ∈ Ik+1(X) with T = P + R + ∂S and

M(P ) ≤ C M(T ), M(∂P ) ≤ C M(∂T ), (A.1)

M(S) ≤ εC M(T ), M(R) ≤ εC M(∂T ),

as well as sptR, spt ∂P ⊂ Hull(spt ∂T ) and sptP, sptS ⊂ Hull(sptT ). Moreover,

‖P‖(intσ) ≤ C ‖T‖(stσ), ‖∂P‖(intσ) ≤ C ‖∂T‖(stσ), (A.2)

‖S‖(intσ) ≤ εC ‖T‖(stσ), ‖R‖(intσ) ≤ εC ‖∂T‖(stσ)

for all σ ∈ F .

If X is as in the theorem and T ∈ Ik(X) for some k > n then T = 0; see Remark A.6. 
Hence, the statement of the theorem holds also in this case with P , R, S equal to zero.

If M is a smooth Riemannian manifold of dimension n admitting a geometric group 
action by isometries, then M admits an (n, D, ε)-triangulation for every ε > 0, where 
D ≥ 1 depends only on M . For such manifolds a variant of Theorem A.2 without the 
local mass estimates was established in [15, Theorem 10.3.3]. We furthermore remark 
that any n-dimensional smooth Riemannian manifold of bounded geometry admits an 
(n, D, ε)-triangulation for every ε > 0, for some D ≥ 1 depending only on n and the 
parameters of bounded geometry (see [6] and the references therein).

We prove Theorem A.2 by analyzing radial projections from simplices of X to their 
boundaries. Let Δm be the Euclidean standard m-simplex and denote by o ∈ intΔm

and rm > 0 the incenter and inradius of Δm, respectively. There exists K > 0 only 
depending on m with the following property. If b ∈ Δm ∩ U(o, rm/2) then the radial 
projection 	b : Δm \ {b} → ∂Δm with center b is Kr−1-Lipschitz on Δm \ U(b, r) for 
every r > 0. The radial projection 	b is homotopic to the identity map on Δm by a 
straight-line homotopy h. Like the radial projection itself, the Lipschitz constant of h
depends on the distance from b, but Proposition A.3 below gives conditions under which 
we can define the pushforward of T under 	b and the pushforward of [0, 1] × T under h.

A.1. Limit homotopy formula

Let X be a complete metric space and let L, ε > 0. Suppose that u : X → [0, 1]
is 1-Lipschitz and h : [0, 1] × {u 
= 0} → X is a continuous map which is Lipschitz 
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on [0, 1] × {u > r} for every r > 0. Suppose furthermore that lipht(x) ≤ Lu(x)−1 and 
liphx(t) ≤ Lε for all t ∈ [0, 1] and all x ∈ {u 
= 0}, where we have abbreviated ht = h(t, ·)
and hx = h(·, x).

Let k ≥ 1 and T ∈ Ik(X). Then T {u > r} and (∂T ) {u > r} are integral currents 
for almost every r > 0 and thus T i

r := hi#(T {u > r}) for i = 0, 1 and

Sr := h#
(
�0, 1� × (T {u > r})

)
, Rr := h#

(
�0, 1� × ((∂T ) {u > r})

)

are also integral currents. We will call such r > 0 admissible.

Proposition A.3. Suppose 
{
Bl

}
l∈N is a Borel partition of X (for example, the partition 

of a countable simplicial complex into the interiors of its faces) such that for every l ≥ 1,
∫
Bl

u(x)−k d‖T‖(x) ≤ L ‖T‖(Bl),
∫
Bl

u(x)1−k d‖∂T‖(x) ≤ L ‖∂T‖(Bl).

Then there exist admissible rm ↘ 0 such that T i
rm → T i, Rrm → R, Srm → S for some 

T 0, T 1, R ∈ Ik(X) and S ∈ Ik+1(X) with

∂S + R = T 1 − T 0, (A.3)

and the following property holds for some C = C(L, k). If B ⊂ X is Borel then

‖T i‖(B) ≤ C‖T‖(A), ‖∂T i‖(B) ≤ C‖∂T‖(A), (A.4)

where A ⊂ X is the union of all Bl such that Bl ∩ h−1
i (B) 
= ∅, and

‖S‖(B) ≤ εC‖T‖(A′), ‖R‖(B) ≤ εC‖∂T‖(A′), (A.5)

where A′ ⊂ X is the union of all Bl such that Bl ∩ h−1
t (B) 
= ∅ for some t ∈ [0, 1].

Proof. By the slicing theorem we have for every r > 0 that

1
r

2r∫
r

t1−k M(〈T, u, t〉) dt ≤ r−k‖T‖({r ≤ u ≤ 2r}) ≤ 2k
∫

{u≤2r}

u(x)−k d‖T‖(x).

The last integral tends to zero with r → 0, so there exist admissible rm ↘ 0 such that

lim
m→∞

r1−k
m M(〈T, u, rm〉) = 0.

Set T i
m := T i

rm and observe that if l > m then T i
l − T i

m = hi#(T {rl < u ≤ rm}) and

∂T i
l − ∂T i

m = hi#((∂T ) {rl < u ≤ rm}) + hi#〈T, u, rm〉 − hi#〈T, u, rl〉,
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so Lemma 3.3 implies

M(T i
l − T i

m) ≤ Lk

∫
{u≤rm}

u(x)−k d‖T‖(x)

and

M(∂T i
l − ∂T i

m) ≤Lk−1
∫

{u≤rm}

u(x)1−k d‖∂T‖(x)

+ Lk−1
[
r1−k
m M(〈T, u, rm〉) + r1−k

l M(〈T, u, rl〉)
]
.

The right hand side in both inequalities tends to zero as both m, l → ∞, thus (T i
m) is a 

Cauchy sequence in Nk(X) and hence converges to some T i ∈ Nk(X).
Next, set Sm := Srm and notice that

Sl − Sm = h#
(
�0, 1� × (T {rl < u ≤ rm})

)

for l > m and thus, by Lemma 3.5,

M(Sl − Sm) ≤ (k + 1)Lk+1ε

∫
{u≤rm}

u(x)−k d‖T‖(x).

Since the integral on the right tends to 0 as m → ∞ it follows that (Sm) is a Cauchy 
sequence in Mk+1(X) and converges to some S ∈ Mk+1(X). One shows analogously 
that Rm := Rrm converges to some R ∈ Mk(X) as m → ∞. Since

∂Sm = T 1
m − T 0

m −Rm + h#(�0, 1� × 〈T, u, rm〉)

by the homotopy formula and since

M
(
h#(�0, 1� × 〈T, u, rm〉)

)
≤ kεLkr1−k

m M(〈T, u, rm〉) → 0

as m → ∞, it follows that ∂S +R = T 1 −T 0. From this we conclude that S ∈ Nk+1(X)
and R ∈ Nk(X). As T i

m, Sm, Rm are integral currents for all m and the convergence is 
in mass it follows that T i, S, R are also integral currents.

Finally, if B ⊂ X is Borel and A ⊂ X is the union of all Bl such that Bl∩h−1
i (B) 
= ∅

then, by Lemma 3.3,

‖T i
m‖(B) ≤ Lk

∫

h−1
i (B)

u(x)−k d‖T‖(x) ≤ Lk+1‖T‖(A)

and
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‖∂T i
m‖(B) ≤ Lk−1

∫

h−1
i (B)

u(x)1−k d‖∂T‖(x) + Lk−1r1−k
m M(〈T, u, rm〉),

which implies (A.4) upon taking m → ∞. The inequalities in (A.5) are proved analo-
gously using Lemma 3.5. �
A.2. Special case of the deformation theorem

We will prove the deformation theorem by successive applications of the following 
proposition, which we prove by applying Proposition A.3 to a map from X to X which 
restricts to a radial projection on each m-simplex.

Proposition A.4. Given m > k ≥ 1 and D, c ≥ 1 there is a positive constant C with 
the following property. Let X be a complete c-quasiconvex metric space admitting an 
(m, D, ε)-triangulation and T ∈ Ik(X). Then there exist P, R ∈ Ik(X) and S ∈ Ik+1(X)
with sptP ⊂ X(m−1) and such that T = P + R + ∂S as well as

M(P ) ≤ C M(T ), M(∂P ) ≤ C M(∂T ),

M(S) ≤ εC M(T ), M(R) ≤ εC M(∂T )

and sptR, spt ∂P ⊂ Hull(spt ∂T ), and sptP, sptS ⊂ Hull(sptT ). Moreover,

‖P‖(intσ) ≤ C ‖T‖(stσ), ‖∂P‖(intσ) ≤ C ‖∂T‖(stσ),

‖S‖(intσ) ≤ εC ‖T‖(stσ), ‖R‖(intσ) ≤ εC ‖∂T‖(stσ),

for every σ ∈ F .

Let o ∈ intΔm and rm > 0 be the incenter and inradius of Δm as above. As in [17], 
one can establish that there exists K > 0 only depending on m such that if μ1, μ2 are 
finite Borel measures on Δm then there exists b ∈ Δm∩U(o, rm/2) such that for i = 1, 2,

∫
int Δm

|y − b|1−m dμi(y) ≤ Kμi(intΔm).

Proof of Proposition A.4. Denote the metric on X by d. By possibly considering X
equipped with the metric ε−1d we may assume that ε = 1. Let q : X → Σ be the inverse 
of an (m, D, 1)-triangulation of X, and let T ∈ Ik(X). By the discussion preceding the 
proof there exists, for every σ ∈ Fm, some point aσ ∈ intσ such that

∫
intσ

d(x, aσ)−k d‖T‖(x) ≤ KDk‖T‖(intσ)

and
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∫
intσ

d(x, aσ)1−k d‖∂T‖(x) ≤ KDk‖∂T‖(intσ).

Set Z := {aσ : σ ∈ Fm} and define a 1-Lipschitz function u : X → [0, 1] by

u(x) := min{1, d(x, Z)}.

Set r′ := rm
2cD and observe that u(x) ≥ r′ for every x ∈ X(m−1) and if σ ∈ Fm then

min{d(x, aσ), r′} ≤ u(x) ≤ d(x, aσ)

for every x ∈ σ. With the above it follows that for every τ ∈ F we have
∫

int τ

u(x)−k d‖T‖(x) ≤ K ′‖T‖(int τ),
∫

int τ

u(x)1−k d‖∂T‖(x) ≤ K ′‖∂T‖(int τ)

for some K ′ = K ′(D, m, c).
Let h : [0, 1] × {u 
= 0} → X be the unique map such that for each σ ∈ Fm,

q(h(t, x)) = (1 − t)q(x) + t	q(aσ)(q(x))

for all t ∈ [0, 1] and all x ∈ σ, where we have naturally identified q(σ) with Δm. We have 
h(t, x) = x for all t ∈ [0, 1] and all x ∈ X(m−1), so this is well-defined. Then h0(x) = x

and h1(x) ∈ X(m−1) for all x ∈ {u 
= 0}. Moreover, if A ⊂ {u 
= 0} then

h([0, 1] ×A) ⊂ Hull(A)

and if σ, σ′ ∈ F are simplices such that h([0, 1] × intσ′) ∩ intσ 
= ∅ then σ′ = σ or σ′ is 
m-dimensional and contains σ.

Let t ∈ [0, 1] and x ∈
{
u 
= 0

}
. Then clearly we have liphx(t) ≤ D2. We next 

show that lipht(x) ≤ K ′′u(x)−1 for some K ′′ = K ′′(D, m, c). For this, given y ∈ X let 
σ(y) ⊂ X be the unique simplex containing y in its interior. Let x ∈

{
u 
= 0

}
. For all 

y ∈ X sufficiently close to x we have σ(x) ⊂ σ(y). If σ(y) ⊂ X(m−1) then ht(x) = x

and ht(y) = y and therefore d(ht(x), ht(y)) = d(x, y) ≤ r′u(x)−1 · d(x, y). If σ(y) is 
m-dimensional then, letting b = q(aσ(y)) and identifying q(σ(y)) with Δm, we have

d(ht(x), ht(y)) ≤ D
(
(1 − t) |q(x) − q(y)| + t |	b(q(x)) − 	b(q(y))|

)

≤ D2
(

1 + tKD

min
{
d(x, aσ), d(y, aσ)

}
)
d(x, y),

which implies d(ht(x), ht(y)) ≤ D2(1 + tKDmin{u(x), u(y)}−1)d(x, y). As a result, 
lipht(x) ≤ K ′′(1 + tu(x)−1) ≤ 2K ′′u(x)−1 for some K ′′ = K ′′(D, m, c). Next, since 
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{u ≤ r} =
⋃
B(aσ, r) for sufficiently small r > 0, it follows that {u > r} is quasiconvex 

and hence, by Lemma 2.4, h is Lipschitz on [0, 1] × {u > r} for sufficiently small r > 0.
Finally, let T i

r , Sr, Rr be defined as at the beginning of Section A.1. By the properties 
of h listed above, T 0

r = T {u > r}, sptT 1
r ⊂ X(m−1), and sptT 1

r , sptSr ⊂ Hull(sptT )
as well as sptRr ⊂ Hull(spt ∂T ) for almost every r > 0.

By Lemma 2.1, it follows that q
(
Hull(sptT )

)
is a countable simplicial complex and 

thus A :=
{
intσ : σ ∈ F and σ ⊂ Hull(sptT )

}
is countable. Applying Proposition A.3

with the countable Borel partition A ∪{X\Hull(sptT )} shows that there exists a sequence 
of admissible rs ↘ 0 such that the currents T i

rs , Srs , Rrs converge to currents T i, S, R
satisfying the properties listed in Proposition A.3.

Set P := T 1. It follows that T 0 = T , sptP ⊂ X(m−1), and sptP , sptS ⊂ Hull(sptT )
as well as sptR ⊂ Hull(spt ∂T ). Since T = P − R − ∂S it moreover follows that 
spt ∂P ⊂ spt ∂T ∪ spt ∂R ⊂ Hull(spt ∂T ). The remaining properties of P , S, R listed in 
the statement of the proposition easily follow from Proposition A.3 and the properties 
of h listed above. �

When k = m, we can use similar techniques to approximate T by P ∈ Pm(X).

Proposition A.5. Given m ≥ 1 and D, c ≥ 1 there is a positive constant C with the fol-
lowing property. Let X be a complete c-quasiconvex metric space admitting an (m, D, ε)-
triangulation and T ∈ Im(X). Then there exist P, R ∈ Im(X) with P ∈ Pm(X) such 
that T = P + R as well as

M(P ) ≤ C M(T ), M(∂P ) ≤ C M(∂T ), M(R) ≤ εC M(∂T )

and sptR, spt ∂P ⊂ Hull(spt ∂T ), and sptP ⊂ Hull(sptT ). Moreover,

‖P‖(σ) ≤ C ‖T‖(σ), ‖∂P‖(τ) ≤ C ‖∂T‖(st τ), ‖R‖(σ) ≤ εC ‖∂T‖(intσ)

for every σ ∈ Fm and every τ ∈ Fm−1.

Proof. We may suppose that ε = 1. After possibly changing the metric on X in a 
bilipschitz way we may assume by Corollary 4.3 that X is isometric to Σ equipped with 
the length metric. Let q : X → Σ be as above and let σ ∈ Fm. Then q|σ is an isometry 
and we may view it as a map from σ to Δm. There exists a function θσ ∈ L1(σ, Z) such 
that T intσ = �θσ� and ‖θσ‖1 ≤ K1‖T‖(σ) for some K1 = K1(m), where �θσ� is the 
m-current in X given by integrating θσ along σ.

By the discussion preceding the proof of Proposition A.4, there exists K2 = K2(m)
such that for every σ ∈ Fm there are a point aσ ∈ intσ such that

∫
d(x, aσ)1−m d‖∂T‖(x) ≤ K2‖∂T‖(intσ) (A.6)
intσ
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and an integer zσ such that |zσ| ≤ K2‖T‖(σ) and

lim
r→0

1
rm

∫
U(aσ,r)

|θσ − zσ| dH m = 0. (A.7)

In particular, zσ = 0 for all but finitely many σ ∈ Fm. We claim that

P =
∑

σ∈Fm

zσ�σ�

and R = T − P satisfy the proposition. By construction, for every σ ∈ Fm, we have 
‖P‖(σ) ≤ C ‖T‖(σ), so sptP ⊂ Hull(sptT ) and M(P ) ≤ C M(T ) for some C = C(m).

Let u and h be as above. We bound ∂P and R by applying Proposition A.3 to ∂T . 
For every admissible r > 0, let

(∂T )r := h1 #(∂T {u > r}), Sr := h#
(
�0, 1� × (∂T {u > r})

)
.

As above, there is a K3 = K3(m) such that for every τ ∈ Fm,
∫

int τ

u(x)1−m d‖∂T‖(x) ≤ K3‖∂T‖(int τ).

Therefore, by Proposition A.3 applied to ∂T , there exist admissible ri ↘ 0, Q ∈
Im−1(X), and S ∈ Im(X) with sptQ ⊂ X(m−1) and such that (∂T )ri → Q, Sri → S, 
∂S = Q − ∂T , and

‖S‖(intσ) ≤ C‖∂T‖(intσ) ‖Q‖(int τ) ≤ C‖∂T‖(st τ) (A.8)

for every σ ∈ Fm and every τ ∈ Fm−1. We let R = S and claim that S = P − T ; it 
follows that Q = ∂P , and (A.8) implies the desired bounds on ‖R‖ and ‖∂P‖.

For sufficiently small r > 0, let gr : X → X be the continuous map such that

q(gr(x)) = (1 − tr(x))q(aσ) + tr(x)	q(aσ)(q(x))

for all x ∈ σ \ {aσ}, where tr(x) = min{1, r−1u(x)}. Let moreover hr : [0, 1] ×X → X be 
the straight-line homotopy from idX to gr, i.e., q(hr(t, x)) = (1 −t)q(x) +tq(gr(x)). Then 
for σ ∈ Fm, we have gr(σ ∩ {u ≥ r}) = h1(σ ∩ {u ≥ r}) ⊂ ∂σ and gr(σ ∩ {u ≤ r}) = σ. 
Furthermore, it follows as in the proof of Proposition A.4 that there exists K4 = K4(m)
such that lip gr(x) ≤ K4r

−1 and liphr
t (x) ≤ K4r

−1 as well as liphr
x(t) ≤ K4, where we 

have used the notation hr
t (x) = hr(t, x) = hr

x(t) as above. In particular, gr and hr are 
Lipschitz.

The currents Ui = gri #(T ) and Vi = hri
#(�0, 1� × ∂T ) satisfy

Ui = T + Vi
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because Wi = hri
#(�0, 1� × T ) is an (m + 1)-chain in X, hence Wi = 0 and therefore

0 = ∂Wi = hri
1 #(T ) − hri

0 #(T ) − hri
#(�0, 1� × ∂T ) = Ui − T − Vi.

Since hr(t, x) = h(t, x) whenever u(x) > r, we have Vi−Sri = hri
#(�0, 1� ×(∂T {u ≤ r})). 

Therefore, letting K5 := mKm
4 ,

M(Vi − Sri) ≤ K5r
1−m
i M(∂T {u ≤ ri})

≤ K5
∑

σ∈Fm

∫
σ∩{u≤ri}

d(x, aσ)1−m d‖∂T‖(x) ≤ K5K2 M(∂T ),

where we use (A.6) in the last inequality. As i → ∞, each term in the sum goes to zero, so 
by dominated convergence, M(Sri − Vi) → 0. Thus Vi → S in mass and (Ui) converges 
in mass too. Finally, since gr is injective on U(aσ, r), we have for each σ ∈ Fm that 
Ui intσ = �θσ◦g−1

ri |intσ�. By (A.7), for every σ ∈ Fm we have that ‖θσ◦g−1
ri |intσ−zσ‖1 →

0 as i → ∞. Since (Ui) converges in mass this implies that Ui → P in mass. This shows 
that S = P − T , as desired. �
Remark A.6. It is not difficult to see that if X is an (n, D, ε)-triangulated metric space 
and T ∈ Ik(X) for some k > n then T = 0. Indeed, for every simplex σ in X we have 
‖T‖(σ) = 0 because the Hausdorff dimension of σ is strictly smaller than k. Now, since 
sptT is separable it follows from Lemma 2.1 that Hull(sptT ) is a countable simplicial 
complex and hence M(T ) = ‖T‖(Hull(sptT )) = 0. Thus, T = 0, as desired.

A.3. Proof of the deformation theorem

Let p : Σ → X be an (n, D, ε)-triangulation of X and T ∈ Ik(X) for some 1 ≤ k ≤ n. 
It is not difficult to show that for each i = 1, . . . , n − k the restriction p|Σ(n−i) is an 
(n − i, D, ε)-triangulation of X(n−i) and that X(n−i) is quasiconvex with constant only 
depending on c, n, and D.

In the following, C and Ci will denote a constant depending on D, c, n and the 
constant may change from one occurrence to another. Set P0 := T . By Proposition A.4, 
applied to X(n−i+1) and Pi−1 for i = 1, . . . , n − k, we have Pi−1 = Pi + Ri + ∂Si for 
some Pi, Ri ∈ Ik(X(n−i+1)), Si ∈ Ik+1(X(n−i+1)) such that sptPi ⊂ X(n−i) and

M(Pi) ≤ Ci M(T ), M(∂Pi) ≤ Ci M(∂T ), (A.9)

M(Si) ≤ εCi M(T ), M(Ri) ≤ εCi M(∂T ).

Moreover, sptPi, sptSi ⊂ Hull(sptT ) and spt ∂Pi, sptRi ⊂ Hull(spt ∂T ) and the follow-
ing property holds. For each simplex σ ∈ F we have
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‖Pi‖(intσ) ≤ C‖Pi−1‖(stσ), ‖∂Pi‖(intσ) ≤ C‖∂Pi−1‖(stσ), (A.10)

‖Si‖(intσ) ≤ εC‖Pi−1‖(stσ), ‖Ri‖(intσ) ≤ εC‖∂Pi−1‖(stσ).

By Proposition A.5, we may write Pn−k = Pn−k+1 + Rn−k+1 with Pn−k+1 ∈ Pk(X)
and Rn−k+1 ∈ Ik(X) with sptRn−k+1 ⊂ X(k). These likewise satisfy sptPn−k+1 ⊂
Hull(sptT ) and spt ∂Pn−k+1, sptRn−k+1 ⊂ Hull(spt ∂T ), and their masses satisfy (A.9)
and (A.10). Let P := Pn−k+1, R := R1 + · · ·+Rn−k+1, and S := S1 + · · ·+ Sn−k. Then 
T = P + R + ∂S and (A.1) as well as sptP, sptS ⊂ Hull(sptT ) and spt ∂P, sptR ⊂
Hull(spt ∂T ) are satisfied. Finally, we show the local mass estimates in (A.2). For any 
i ≥ 1 and any σ ∈ F ,

‖Pi‖(intσ) ≤ C‖Pi−1‖(stσ) = C
∑
σ⊂σ1

‖Pi−1‖(intσ1),

where σ1 ∈ F . By induction,

‖Pi‖(intσ) ≤ Ci
∑

σ⊂σ1⊂···⊂σi

‖T‖(intσi),

where the sum is taken over all chains of simplices σi ∈ F . Let N be the number of 
chains of simplices σ0 ⊂ σ1 ⊂ · · · ⊂ σn−k ⊂ Δn. Then for any σ ∈ F ,

‖P‖(intσ) ≤ Cn−k+1N‖T‖(stσ).

The same argument with Pi replaced by ∂Pi gives

‖∂P‖(intσ) ≤ Cn−k+1N‖∂T‖(stσ).

The estimates of ‖S‖ and ‖R‖ then follow from (A.10).
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