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Abstract
Mood disorders such as major depressive disorder (MDD) and bipolar disorder (BD) are often resistant to current pharma-
cological treatment. Therefore, various alternative therapeutic approaches including diets are, therefore, under investigation. 
Ketogenic diet (KD) is effective for treatment-resistant epilepsy and metabolic diseases, however, only a few clinical studies 
suggest its beneficial effect also for mental disorders. Animal models are a useful tool to uncover the underlying mechanisms 
of therapeutic effects. Women have a twice-higher prevalence of mood disorders but very little is known about sex differ-
ences in nutritional psychiatry. In this review, we aim to summarize current knowledge of the sex-specific effects of KD in 
mood disorders. Ketone bodies improve mitochondrial functions and suppress oxidative stress, inducing neuroprotective and 
anti-inflammatory effects which are both beneficial for mental health. Limited data also suggest KD-induced improvement of 
monoaminergic circuits and hypothalamus–pituitary–adrenal axis—the key pathophysiological pathways of mood disorders. 
Gut microbiome is an important mediator of the beneficial and detrimental effects of diet on brain functioning and mental 
health. Gut microbiota composition is affected in mood disorders but its role in the therapeutic effects of different diets, 
including KD, remains poorly understood. Still little is known about sex differences in the effects of KD on mental health 
as well as on metabolism and body weight. Some animal studies used both sexes but did not find differences in behavior, 
body weight loss or gut microbiota composition. More studies, both on a preclinical and clinical level, are needed to better 
understand sex-specific effects of KD on mental health.
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Abbreviations
ADHD	� Attention deficit and hyperactivity disorder
ASD	� Autism-spectrum disorder
BHB	� β-Hydroxybutyrate
BD	� Bipolar disorder
HPA axis	� Hypothalamus–pituitary–adrenal axis
KD	� Ketogenic diet
LCFA	� Long-chain fatty acids
MCFA	� Medium-chain fatty acids
MDD	� Major depressive disorder

RCT​	� Randomized controlled trial
SCFA	� Short-chain fatty acids

Introduction

High-fat low-carbohydrate ketogenic diet (KD) was origi-
nally introduced into clinical practice for the management 
of drug-resistant epilepsy nearly 100 years ago (Peterman 
1925) and is still a very efficient treatment of epilepsy (Levy 
et al. 2012). Moreover, many studies have proven it as a 
powerful tool against obesity, metabolic and cardiovascular 
disorders (Zhu et al. 2022). The conventional macronutrient 
combination of KD is 4 g of fat to 1 g of protein and carbo-
hydrates (4:1), resulting in almost 90% of calories coming 
from fats, 8% from protein and only 1–2% from carbohy-
drates. In contrast, for healthy individuals the recommended 
macronutrient profile is 20–30% of fat, 10–15% of protein 
and 45–65% of carbohydrates (Hee Seo et al. 2007). The 
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main sources of fat in KD are lard, tallow, butter, fatty types 
of meat and fish, olive, coconut and avocado oil.

Besides epilepsy, metabolic and cardiovascular diseases 
growing amount of data suggest a beneficial effect of KD 
also in neurodegenerative diseases (Kashiwaya et al. 2000) 
and mental disorders, such as major depressive disorder 
(Brietzke et al. 2018), schizophrenia (Sarnyai et al. 2019) 
and autism-spectrum disorders (ASD) (Li et al. 2021).

Major depressive disorder (MDD) is a leading mental 
disorder affecting up to 300 million people worldwide, pro-
ducing a huge burden on society’s wellbeing and the world 
economy (Liu et al. 2020). Bipolar disorder (BD) I and II 
affect around 1% of the world population and still represent 
one of the biggest challenges in psychiatry (Baldessarini 
et al. 2019). While current antidepressants do not entirely 
cure up to 40% of patients (Holtzheimer and Mayberg 2011), 
different non-pharmacological approaches are actively inves-
tigated for mental disorders which gave a rise to the new 
field of nutritional psychiatry (Sarris et al. 2015).

The mechanisms of the beneficial effects of diets in treat-
ing mood disorders are thought to include alleviation of neu-
roinflammation, hippocampal neurogenesis, neuroendocrine 
regulation and gut microbiota composition (Marx et al. 
2020). On a molecular level, the cornerstone of these effects 
is an improved energy metabolism resulting in decreased 
free radicals production and cell death, which in turn reduces 
systemic inflammation (Marx et al. 2020).

Although no clinical trials have proven the efficacy of KD 
in MDD and BD patients, a beneficial effect was suggested 
by some case reports (Phelps et al. 2013; Danan et al. 2022). 
At the same time, the potential underlying mechanisms of 
the antidepressant effect of KD have been investigated in 
several preclinical studies (Huang et al. 2018; Guan et al. 
2020) Here we summarize data on the postulated antide-
pressant effect of KD as well as its potential sex differences.

Fatty acids and ketogenesis

Triglycerides and corresponding fatty acids are divided into 
three groups according to their length: short-chain fatty acids 
(SCFA), medium-chain FA (MCFA) and long-chain FA 
(LCFA) (Reviewed in (Lei et al. 2016)). SCFA (1–5 carbons: 
mainly acetate, butyrate and valproate) are produced by gut 
microbiota in the presence of dietary fibres and show neu-
roprotective and anti-inflammatory effects in animal models 
of mental and neurological disorders (Stilling et al. 2016). 
Saturated MCFA (6–12 carbons) are found predominantly 
in coconut oil and also in palm kernel oil, are absorbed and 
metabolized faster than LCFA (Hollis et al. 2018). LCFA 
includes mainly omega-3 polyunsaturated fatty acids with 
well-known anti-inflammatory and neuroprotective proper-
ties (Calder 2010) and omega-6 polyunsaturated fatty acids, 
first of all arachidonic acid, with pro-inflammatory activity 

and detrimental effects on a mental health (Simopoulos 
2011).

Free fatty acids poorly cross the blood–brain bar-
rier and thus do not provide energy for the brain unless 
they are converted into ketone bodies (Paoli et al. 2019). 
Ketogenesis takes place in mitochondria of the liver cells 
where fatty acids are metabolized to the ketone bodies 
β-hydroxybutyrate (BHB), acetate and acetoacetate (Fukao 
et al. 2004). The classic KD provides 60–80% of dietary 
energy from LCFA and not more than 40% from MCFA 
(Augustin et al. 2018). However, unlike LCFA, more lipid-
soluble MCFA can cross cell and mitochondria membranes 
without transporters (Hamilton 1999) and are therefore con-
sidered the preferential source of ketone bodies (Seaton et al. 
1986). MCFA-based diet, called alternative KD, comprises 
60% lauric/octanoic (C12) acid and about 40% decanoic 
(C10) acid (Augustin et al. 2018). Meanwhile, one study 
reported that C8 MCFA supplement is about three times 
more ketogenic than C10 MCFA and about six times more 
ketogenic than C12 MCFA although the sample included 
only 9 participants (St-Pierre et al. 2019). Through monocar-
boxylic acid transporters ketone bodies pass the blood–brain 
barrier, enter the neurons and provide more energy per gram 
of oxygen than glucose (Hartman et al. 2007). Improved 
mitochondria function and energy supply along with anti-
oxidant effects are thought to be the main mechanism of 
the beneficial effect of KD (Milder and Patel 2012). This in 
turn leads to neuroprotection and decreased neuronal death 
(Gasior et al. 2006) and, therefore, reduces brain and sys-
temic inflammation (Koh et al. 2020).

Treatment of mood disorders with KD

Clinical studies

No larger randomized clinical trials (RCT) have been 
performed for KD in any mental disorder up to date. 
Few studies are registered on clinicaltrials.gov for PTSD 
(NCT05415982), BD, psychotic disorders and schizophrenia 
(NCT03873922; NCT03935854), but have not reported their 
results yet. No RCTs of KD have been performed or started 
for MDD, while animal studies, case reports and a few small 
clinical trials suggest its beneficial effect on the mood. A 
recent small trial found improved depressive symptoms in 
6 MDD patients and 12 BD patients after 3 weeks on KD 
(Danan et al. 2022). In healthy volunteers, KD improved 
mood and quality of life similarly (McClernon et al. 2007; 
Halyburton et al. 2007) or better (Yancy et al. 2009) than a 
low-fat diet, while another study found no effect on men-
tal status in either diet (Iacovides et al. 2019). RCT of KD 
in epileptic patients found decreased anxiety and depres-
sive symptoms independently of seizure control (IJff et al. 
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2016). Long-term mood stabilization was also reported in 
two female patients with BD II (Phelps et al. 2013).

Disturbed monoamine neurotransmission is a key mecha-
nism of depression, schizophrenia, ADHD, ASD and other 
mental disorders (Hahn and Blakely 2002; Bortolato et al. 
2008). Some data show that monoamine-related pathways 
could be targeted by KD. In epileptic children metabolites of 
dopamine and serotonin, but not noradrenaline were down-
regulated in the cerebrospinal fluid after 3 months of KD 
(Dahlin et al. 2012).

Hypothalamus–pituitary–adrenal (HPA) axis dysregula-
tion is a core symptom of mood and anxiety disorders with 
elevated cortisol level and disturbed feedback inhibition 
(Arborelius et al. 1999). Up to date, very few studies have 
investigated the effect of KD on the basal and stress-induced 
activity of the HPA axis. In healthy humans, KD did not 
change basal blood cortisol level as well as testosterone and 
thyroid hormones level (Volek et al. 2002; Volek and Shar-
man 2004).

Inflammation is also a common pathway for a wide range 
of mental disorders (Najjar et al. 2013) and a target of the 
beneficial effects of KD (Koh et al. 2020). In MDD patients, 
inflammation is thought to be connected with weight gain 
and obesity, thus distinguishing a metabolic and atypical 
subtype of depression (Lamers et al. 2013). The anti-inflam-
matory effect of KD was shown in both clinical and animal 
studies (see below). In obese patients, KD decreased blood 
TNFα and CRP levels while increasing blood Il-10 levels 
(Monda et al. 2020).

The gut microbiome is profoundly involved in the patho-
genesis of various mental disorders, which are often associ-
ated with decreased diversity and altered composition of 
microbiota (Spichak et al. 2021; Nikolova et al. 2021). Gut 
microbiota is thought to mediate both the beneficial and neg-
ative effects of KD on metabolism and brain health (Attaye 
et al. 2022). KD increases the number of Bacteroidetes and 
Akkermansia in healthy sportsmen and obese patients while 
decreasing Actinobacteria (including Bifidobacteria) and 
Firmicutes (including Clostridiales) (Murtaza et al. 2019; 
Ang et al. 2020). Some authors argue that decline in gut 
Bifidobacteria and Lactobacillus could contribute to the pos-
sible detrimental effects of KD (Ang et al. 2020). Overall 
alpha-diversity was reported to be both increased by KD in 
obese patients (Gutiérrez-Repiso et al. 2019) or decreased by 
KD in children with epilepsy (Zhang et al. 2018).

Animal studies

Studies with KD or ketone body supplements in healthy 
rodents or translational stress models are summarized in 
Table 1. One study reported decreased basal anxiety in 
light–dark box (Hollis et al. 2018) but most of the studies 
with 2–4 weeks of KD did not find any effect on anxiety 

in elevated plus maze and light–dark box, depression-like 
behavior in forced swimming test and exploration in an 
open field (Murphy et al. 2005; Kasprowska-Liśkiewicz 
et al. 2017; Hollis et al. 2018; Ryan et al. 2018). One paper 
reported even increased anxiety and reduced exploration 
in an open field (Ling et al. 2019) which might, however, 
suggest a beneficial effect for ADHD (Murphy et al. 2005), 
although no clinical studies have been performed in patients 
yet. Meanwhile, long-term KD for 18 months ameliorated 
age-related memory decline in place avoidance test (New-
man et al. 2017).

In stress models, KD showed a beneficial effect against 
behavioral disturbances. Chronic unpredictable mild stress 
for 4 weeks along with (Yamanashi et al. 2017) or followed 
(Huang et al. 2018) by BHB resulted in prevented depres-
sion-like behavior in the forced swimming test and sucrose 
preference test, anxiety in elevated plus maze and novelty 
suppressed feeding. Similar improvements in anhedonia and 
despair as well as in social avoidance were found in KD 
following repeated social defeat stress (Guan et al. 2020). 
Restrain stress-induced memory decline in the Morris water 
maze and new object recognition test was ameliorated by 
both KD and ketone bodies supplement (Brownlow et al. 
2017). Along with behavioral improvements in stress models 
KD or ketone bodies suppressed inflammation and BDNF 
reduction in hippocampus (Brownlow et al. 2017; Yama-
nashi et al. 2017), microglia activation and neuronal excit-
ability in the lateral habenula (Huang et al. 2018; Guan et al. 
2020).

Improvement in social behavior were reported both in 
healthy animals (Kasprowska-Liśkiewicz et al. 2017; Hollis 
et al. 2018) and in mouse ASD models – maternal immune 
activation (Ruskin et al. 2017b), BTBR mice (Mychasiuk 
and Rho 2017; Ahn et al. 2020) and EL mice (Ruskin et al. 
2017a). Given beforehand KD provides neuroprotection and 
reduces motor, mental and cognitive disturbances induced 
by traumatic brain injury in mice and rats (Brownlow et al. 
2017; Salberg et al. 2019). Since BD is still difficult to model 
in animal experiments (Beyer and Freund 2017), no transla-
tional studies investigated the effects of KD in BD.

Few animal studies looked into the role of the monoam-
ine system and HPA axis in the potentially beneficial effect 
of KD for mood disorders. Mice fed with KD for 3 weeks 
had significantly increased dopamine (but not serotonin) 
metabolism in the motor and somatosensory cortex, but 
not in the midbrain and basal ganglia. However, the total 
level of dopamine, serotonin and noradrenaline remained 
unchanged in all brain regions explored in this study (Church 
et al. 2014). In another study brain levels of tryptophan and 
its metabolite kynurenic acid were increased by MCFA-
based KD (Maciejak et al. 2016). Dopamine β-hydroxylase 
knockout mice lacking noradrenaline showed no beneficial 
effect of KD against chemically induced seizures, suggesting 
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Table 1   Animal studies with ketogenic diet (KD) and ketone bodies supplement (KS)

Study Animals Intervention Outcome

Healthy animals
 (Ari et al. 2017) 2 mo old Sprague–Dawley rats Ketone ester (KE), BHB supplement 

(KS) or BHB + MCT (KSMCT)
KE, KS and KSMCT decreases anxiety 

in EPM and OFT
 (Hollis et al. 2018) 2–3 mo old male Wistar rats MCT-based KD for 15 days Decreased anxiety in LDB

Enhanced social competitive behavior 
in SDT

No differences in depression in FST, 
sociability in TCT​

 (Kasprowska-
Liśkiewicz et al. 
2017)

4 wk old male Long-Evans rats KD for 4 wk
Ketone bodies for 3 days

Increased sociability in reciprocal SIT
No effect on locomotion in OFT, anxi-

ety in EPM, object memory in NOR
No effect on sociability in reciprocal 

SIT
 (Ling et al. 2019) 3 wk old Sprague–Dawley rats Daily (KD) or every other day 

(KOD) for 1, 2 or 3 wk
KD (but not KOD) decreases locomo-

tion and increases grooming in OFT 
after 3 weeks

 (Maciejak et al. 2016) Adult male Wistar rats Single MCT intragastric administra-
tion

Elevated tryptophan metabolites in 
plasma and hippocampus 1.5 and 6 h 
after MCT intake

 (Murphy et al. 2005) Adult male Wistar rats 6.3:1 or 4:1 KD for 2 wk No effect on locomotion, exploration 
and grooming in OFT

 (Newman et al. 2017) 12–30 mo male C56/BL6 mice 1 wk ND: 1 wk KD for 18 mo Prevents memory decline in PAT at 22 
mo and NOR at 28 mo

No effect on anxiety in EPM
 (Ryan et al. 2018) Adult male Long-Evans rats KD for 3–4 wk

MCT vs LCT by oral gavage
No effect on anxiety in EPM and 

despair in FST
Elevated basal and restrain stress-

induced CORT (but not ACTH), 
reduced thymus mass

Increased CORT and ACTH elevation, 
c-Fos positive neurons in PVN

Models of depression and anxiety
 (Brownlow et al. 2017) 6–8 wk old male Sprague–Dawley 

rats
4 wk KD/KS → 5 wk KD/

KS + restrain
Improved disturbances in spatial 

memory in MWM only by KD and 
in object memory in NOR by KD 
and KS

No effect on stress-induced elevation 
of CORT and ACTH

Attenuated hippocampal BDNF reduc-
tion by KD and KS

 (Guan et al. 2020) 2–3 mo old male C57BL/6 J mice LPS and R-SDS models of depres-
sion → 1–2 wk KD

Decreased despair in TST and FST, 
anhedonia in SPT, social avoidance 
in reciprocal SIT, microglia activa-
tion, neuronal excitability in the 
lateral habenula

 (Huang et al. 2018) 8–10 wk old male C57BL/6 J mice BHB for 3 days → LPS
CUMS for 25 days → CUMS + BHB 

for 10 days

Increased microglia ramification, anti-
inflammatory cytokines

Prevents LPS and CUMS-induced 
despair in FST and TST, anhedonia 
in SPT

 (Sahagun et al. 2019) 4 mo old male and female Long-
Evans rats

CUMS + KD for 3wk No effect of stress and diet on anxiety 
in EPM, despair in FST, IL-1β in 
serum, NPY and CRH in hypothala-
mus

KD prevented CUMS-induced 
decreased in serum CORT in females
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the involvement of noradrenaline in the anti-epileptic effect 
of diet (Szot et  al. 2001). Some animal studies report 
unchanged (Brownlow et al. 2017) or even increased basal 
and stress-induced activity of the HPA axis (Ryan et al. 
2018).

Anti-inflammatory effect of KD was also shown in trans-
lational studies. In the animal stress models, BHB amelio-
rated stress-induced elevation of plasma Il-1β (Yamanashi 
et al. 2017), suppressed inflammatory microglia and acti-
vated neuroprotective microglia (Huang et al. 2018; Guan 
et al. 2020). KD-induced cognitive improvement was shown 
to be mediated by the expression of PPARγ-activated genes 
(Newman et al. 2017). Microglial PPARγ activation drives 
microglial reactivity (Fumagalli et al. 2018) and improves 
mitochondrial metabolism (Morris et  al. 2020). Thus, 
PPARγ is thought to be a key pathway of the anti-inflam-
matory effect of KD. Along with microglia, astrocytes are 
also important mediators of the therapeutical effects of KD, 
as they were shown to change their shape and signaling upon 
the diet (Gzielo et al. 2019; Koppel et al. 2021).

The neuroprotective effect of KD is mediated by several 
mechanisms, such as increased expression of BDNF (Zhao 
et al. 2017) and anti-apoptotic factors (Cheng et al. 2007), 
as well as by decreased expression of pro-apoptotic factors 
(Noh et al. 2003) and suppressed release of cytochrome-
c (Hu et al. 2009). Another molecular mechanism of the 
anti-inflammatory and neuroprotective effects of KD is 
improved energy metabolism in mitochondria, resulting in 
decreased oxidative stress. Mitochondria was shown to play 
an important role in the stress response and their impaired 
function can contribute to mental disorders (Daniels et al. 
2020). Ketone bodies increase the expression of bioener-
getic enzymes (Bough et al. 2006), glutathione levels and 
glutathione peroxidase activity (Ziegler et al. 2003; Jarrett 
et al. 2008). Improved mitochondria function was shown 

to mediate the beneficial effect of KD in animal models of 
ASD (Ahn et al. 2020), epilepsy (Bough et al. 2006) and 
amyotrophic lateral sclerosis (Zhao et al. 2006).

Similarly to human patients KD increases the number of 
Bacteroidetes and Akkermansia in rodents while decreasing 
Actinobacteria (including Bifidobacteria) and Firmicutes 
(including Clostridiales) (Ma et al. 2018; Ang et al. 2020; 
Park et al. 2020). Akkermansia-based probiotics showed 
antidepressant-like properties in the animal stress model 
(Ding et al. 2021) suggesting also its potential role in the 
antidepressant effect of KD. Despite a general reduction in 
the number of gut Firmicutes, the number of Lactobacil-
lus was reported by different studies to either decrease or 
increase (Ma et al. 2018; Ang et al. 2020; Park et al. 2020). 
In animal studies, alpha-diversity was also reported to be 
increased (Yue et al. 2021) or decreased (Ma et al. 2018; 
Olson et al. 2018). Still very little is known about the role of 
the gut microbiome in the treatment of mental disorders with 
KD. One work showed its role in a mouse ASD model (New-
ell et al. 2016), while KD-induced improvement in other 
psychiatric disorders have not been directly associated with 
the gut microbiome.

Despite its impressive beneficial effects on different dis-
orders, KD has also a number of disadvantages. It is not 
only hard to follow (Cavaleri and Bashar 2018) but it is also 
associated with some harmful side effects including growth 
retardation, nephrolithiasis, hyperlipidemia and atherogen-
esis (Kang et al. 2004; Hartman and Vining 2007). One key 
therapeutic goal is therefore to try to replace the KD and its 
strict requirements for adherence with dietary supplements 
that can produce sustained ketosis and mimic the effects 
of the ketogenic diet. Exogenous ketone body supplements 
considered as a future “ketogenic diet in a pill” showed ben-
eficial effects in patients with obesity (Walsh et al. 2021) and 
mild cognitive impairment (Roy et al. 2021). Animal studies 

ACTH adrenocorticotropic hormone, CORT corticosterone, CUMS chronic unpredictable mild stress, EPM elevated plus maze, HFSD high-fat 
high-sugar diet, KD ketogenic diet, KS ketone supplement (medium-chain triglycerides), LPS bacterial lipopolysaccharide, FST forced swim-
ming test, LCT long-chain triglycerides, LDB light–dark box, MCT medium-chain triglycerides, MWM Morris water maze, ND normal diet, 
NOR new object recognition test, NSF novelty suppressed feeding test, OFT open field test, PAT place avoidance test, PVN paraventricular 
nucleus of hypothalamus, R-SDS repeated social defeat stress, SDT social dominance test, SIT social interaction test, SPT sucrose preference test, 
TCT​ three-chamber social preference test, TST tail suspension test

Table 1   (continued)

Study Animals Intervention Outcome

 (Sahagun et al. 2021) Adult male and female Sprague–
Dawley rats

HFSD for 2 wk → ND or KD for 3 
wk

HFSD-induced elevation of CORT in 
females was reduced by KD

HFSD-induced decrease of CORT in 
males stayed unaffected by KD

 (Yamanashi et al. 2017) 9–10 wk old male Sprague–Dawley 
rats

CUMS + BHB for 4–6 wk
BHB injection → 1 h → acute immo-

bilization stress

Prevented despair in FST, anhedonia 
in SPT, anxiety in EPM and NSF, 
decreased TNFɑ in hippocampus

Decreased IL-1β and TNFɑ in hip-
pocampus, serum CORT
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of anxiety, mood and cognitive disturbances also reported 
promising results of ketone supplementation (Ari et al. 2017, 
2020; Brownlow et al. 2017; Huang et al. 2018; Shcherba-
kova et al. 2023).

Sex differences in the effects of the ketogenic diet

Many studies have found sex differences in the effect of diets 
on various metabolic and cardiovascular diseases, while very 
few described such sex-specific effects of nutrition in mental 
disorders. KD seems to reduce body weight, fat mass and 
γ-glutamyl transferase (marker of non-alcoholic fatty liver 
disease) better in men compared to pre-menopausal, but not 
post-menopausal women (Volek et al. 2004; D’Abbondanza 
et al. 2020). Authors suggest that one reason could be higher 
levels of more metabolically active visceral adipose tissue 
in men compared to women (Gerdts and Regitz-Zagrosek 
2019). Another study also reported a higher decrease in body 
weight and fat mass in obese men on KD although the blood 
BHB level was greater in obese women after 9 weeks of KD. 
Diet-induced decrease in GLP-1 but not in other appetite 
hormones was found to be stronger in women but its role 
in the overall effect of KD remains unclear (Lyngstad et al. 
2019).

One mice study reported body weight gain and glucose 
tolerance in females, but weight loss in males (Cochran et al. 
2018). Higher KD-induce elevation in blood ketone bodies 
and attenuation of blood glucose level were found in young 
female mice and rats (Dai et al. 2017; Cochran et al. 2018), 
while from 14 to 17th months of life these changes were 
stronger in males (Kovács et al. 2021). Together with dif-
ferences between pre- and post-menopausal women (Volek 
et al. 2004; D’Abbondanza et al. 2020) these data show age-
dependent sex differences in the effect of KD.

A recent study compared C8 and C10 MCFA-induced 
ketogenesis during aerobic exercise in middle-aged men 
and women with average body mass index and low physi-
cal activity. Carbohydrate oxidation was enhanced only in 
women on both diets, while in men on the C8 diet carbo-
hydrate oxidation was suppressed along with enhanced fat 
oxidation (Nosaka et al. 2021). As no differences between 
C8 and C10 MCFA were found in women, C8 MCFA might 
be a more effective source of ketone bodies than C10 (St-
Pierre et al. 2019) only in men but not in women. But given 
the small sample of only 9 participants (St-Pierre et al. 2019) 
these results should be taken with caution.

Rats fed with a high-fat high-sugar diet for 12 weeks 
showed opposite changes in HPA axis activity with 
decreased corticosterone level in males but increased 
level in females (Sahagun et al. 2021). Switching to KD 
partially reduced corticosterone level in females while no 
changes were observed in males. KD-induced weight loss 
was found in both sexes, but it correlated with plasma 

ketone bodies only in females (Sahagun et al. 2021). Given 
that improved mitochondrial function is thought to be a 
key mechanism of KD effects, it is worth to mention that in 
a rat model of traumatic brain injury, as well as in a control 
group, females demonstrated higher KD-induced increase 
of mitochondrial optic atrophy-1 (Opa1) gene expression 
(Salberg et al. 2019).

Sex-specific effects of KD on mental health were evalu-
ated almost only in animal studies, although one study 
with obese volunteers did not find any sex differences 
in KD-induced changes in mood and cognitive function 
(Halyburton et  al. 2007). Stress-induced loss in body 
weight was found in both male and female rats, and in 
both groups it was prevented by KD (Sahagun et al. 2019). 
Stress-induced anxiety appeared only in females while cor-
ticosterone level in females decreases upon stress chronic 
mild stress which makes it difficult to compare the protec-
tive effects of KD between sexes. However, in females 
anxiety and corticosterone level remained unchanged 
under stress upon KD with no effect of diet in males (Saha-
gun et al. 2019). High-fat diet-induced obesity was accom-
panied by increased anxiety only in male mice and only 
in males diet enhanced further stress-related reduction of 
locomotion (Bridgewater et al. 2017). Despite some data 
that KD enhances neurogenesis in hippocampus (Benja-
min et al. 2017), one study compared its effects between 
sexes and found no increase in either males or females 
(Strandberg et al. 2008). Higher rate of inflammation in 
women was suggested to be a reason why female depres-
sion patients are 2–3 times more likely to have atypical 
symptoms such as increased appetite and body weight (Eid 
et al. 2019). Since inflammation is a key target of KD it 
might be expected that its antidepressant effect is higher in 
women, however, no studies have confirmed this assump-
tion so far.

Still very little is known about sex differences in gut 
microbiota in general (Reviewed in (Jaggar et al. 2020)) and 
even less about their role in mental health and dietary inter-
ventions (Reviewed in (Manosso et al. 2021)). Pre-menopau-
sal but not middle-aged women seem to have higher bacterial 
α-diversity (Jaggar et al. 2020) and lower gut permeability 
which are both thought to be bidirectionally regulated by sex 
hormones (Audet 2019). Firmicutes-to-Bacteroidetes ratio 
is well-known to be increased in a number of mental disor-
ders including depression and schizophrenia (Nikolova et al. 
2021). Whether this ratio changes differently in male and 
female psychiatric patients remains unknown, while only 
one study reported different gut microbiota changes in men 
and women with depression (Chen et al. 2018). Correlation 
with depressive symptoms was also found for different bac-
terial genera in males and females in this study. Similarly, 
early-life adversity in mice resulted in sex-specific behavio-
ral and gut microbiota changes (Rincel et al. 2019).
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Sex differences in diet-induced changes in gut microbiota 
were reported only in a few studies with polyphenol (Most 
et al. 2017) or oligofructose supplementation (Shastri et al. 
2015) and low-fat diet (Santos-Marcos et al. 2019) but not 
in KD. One study which showed an important role of gut 
microbiota in the antiepileptic effect of KD compared both 
sexes but did not find any differences (Olson et al. 2018). 
Higher overall abundance of SCFA-producing bacteria was 
shown in female mice (Hongchang et al. 2019) and can be 
important for sex differences in dietary effects. In summary, 
despite some data about sex differences in diet- and men-
tal disorders-associated changes in gut microbiota, no sex-
specific effects of KD in depression have been published.

Conclusion

Data from experimental animal models and small clinical 
studies suggest that the ketogenic diet may have beneficial 
effects both in MDD patients and in the healthy population. 
Its repeatedly proven neuroprotective and anti-inflammatory 
effect is thought to be a key mechanism of its potential anti-
depressant effect. Moreover, key pathways of MDD patho-
genesis, such as HPA axis hyperactivity and brain monoam-
ine circuit disturbances have also been shown to be improved 
by KD in animal stress models. Recent animal studies using 
depression models showed synergistic effects of antidepres-
sants combined with omega-3-rich fish oil (Paula Farias 
Waltrick et al. 2022) and caloric restriction (Haritov and 
Tivcheva 2020). High-fat Western diet, on contrary, dimin-
ished the efficacy of antidepressant treatment (Sial et al. 
2021). Future studies might shed more light on the inter-
action between pharmacological treatment and nutritional 
interventions, particularly KD. Very little is still known 
about sex differences in the overall effects of KD on body 
weight, metabolism and mental health. Studies in which both 
sexes have been used report contradictory results. Therefore, 
it is too early to judge whether KD acts differently in male 
and female MDD patients. More data are needed for valid 
conclusions. To address these questions, future preclinical 
and clinical studies using KD in psychiatry should include 
both sexes.
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