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Abstract

This paper presents an oligopoly model of multiproduct firms in which firms are endowed with possibly
different marginal cost and product quality, and choose product ranges before product market competition.
Consistent with empirical evidence on a positive relationship between firm size and product diversification,
the analysis suggests that firms with higher quality–cost margins typically have both larger size and larger
product ranges. The main results are proved for Cournot competition and linear demand with differentiated
products. They also hold for duopoly under Bertrand competition in the nested multinomial logit model,
and, under some restrictions, for Bertrand competition with linear demand.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

By using various indicators, empirical evidence for the manufacturing sector strongly suggests
that there is a positive relationship between the size and diversification of firms.1 Moreover, there
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Switzerland.

E-mail address: volker.grossmann@unifr.ch.
1 This pattern seems to be consistent over time at least from the 1950s onwards. Well-known studies supporting this

conclusion are Gort (1962), Gollop and Monahan (1991), Lichtenberg (1992) and Markides (1995) for the US as well as
Amey (1964) and Utton (1977) for the UK. More recent studies include Aw and Batra (1998) for Taiwan, Davies et al.
(2001) for a sample of European firms and Gourlay and Seaton (2004) for the UK.
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is evidence on an important role of firm-specific characteristics for both diversification patterns
and firm size.2 For instance, Davies et al. (2001) conclude that “many empirical studies
confirm positive statistical associations between diversification, firm size, R&D and
advertising” (p. 1317) and argue that “diversification is driven […] by a desire to exploit a
specific asset” (p. 1334).

This paper presents an oligopoly model of asymmetric multiproduct firms in order to examine
the apparent link between firm size, diversification and specific characteristics of firms. The set up
may be described as follows. Potential firms decide whether or not to enter at some fixed cost.
They are endowed with some possibly different (and immutable) marginal cost and product
quality. These characteristics are of public good nature from the perspective of a firm, i.e., apply
to any good within a firm's product line. After entering the economy, firms choose the number of
products offered to the market (stage 1), and then enter product market competition (stage 2).

The main contribution of the paper is twofold. First, it derives basic properties of profit
functions of multiproduct firms for the widely used linear-demand model with differentiated
goods under Cournot competition, for a given configuration of product ranges (stage 2
equilibrium). Second, using these properties, the analysis shows that, typically, firms with more
favorable quality–cost margins have both larger size (measured by total sales) and larger product
ranges, consistent with the empirical evidence outlined above.

Moreover, the analysis seeks to identify determinants of average industry diversification, in
addition to those of the size–diversification relationship. For instance, Gorecki (1975, p. 134)
suggests that “specific assets of a technological nature formed the basis of much [industry]
diversification” in the UK, whereas Baldwin et al. (2000) find no evidence of a role of
technological characteristics for average diversification in Canada. The present analysis supports
the findings of Gorecki (1975) by showing that, for a given number of symmetric firms, an
increase in quality–cost margins raises product ranges. In contrast, higher substitutability of
products reduces diversification of product lines.

The mechanisms which give rise to a positive size–diversification relationship suggest more
generality beyond the Cournot model. For this reason, and in order to capture the notion that
products offered by a firm are closer substitutes for each other than for products sold by other
firms (unlike in the linear-demand model), Bertrand competition in the nested multinomial logit
model is examined (e.g. Anderson and de Palma, 1992; Anderson et al., 1992). Restricting the
analysis to duopoly for tractability reasons, it is also shown that in the nested multinomial logit
model a larger firm has a more diversified product line.3

There is a considerable literature on the determinants of corporate diversification.4 Besides
the emphasis of empirical researchers on the role of technological characteristics, at least three
further sources of diversification are frequently mentioned in the literature. First, there is the
“agency view”, according to which “a manager might direct a firm's diversification in a way
that increases the firm's demand for his or her particular skills” (Montgomery, 1994, p. 166).
Second, it has been suggested that diversification contributes to risk management of firms.
2 Roberts and Supina (2000) report a negative correlation between firm size and marginal costs among U.S.
manufacturing firms. Moreover, using micro-level data from the ‘Longitudinal Research Database’ (developed by the U.
S. Bureau of the Census), Baily et al. (1992) find that the size of U.S. manufacturing firms is positively related to their
total factor productivity (see their Tables 8 and 9).
3 Bertrand competition under linear demand is also analyzed. General results are difficult to obtain however, as reaction

functions at stage 1 may not be well-behaved everywhere. The underlying reason is that, compared to the Cournot case,
diversification incentives may be considerably weaker.
4 Montgomery (1994) provides an excellent literature review of this topic.



53V. Grossmann / Int. J. Ind. Organ. 25 (2007) 51–67
Third, diversification may be a mean to extend the boundaries of a firm in the presence of
internal coordination problems. Whereas the first two of these views do not seem to imply a
particular size–diversification relationship, the latter is potentially interesting in this respect as
internal coordination problems naturally arise in large firms. To the best of my knowledge,
however, the theoretical literature has not yet focussed on the relationship between product
diversification and firm size.5

The remainder of the paper is organized as follows. Section 2 presents the linear-demand
model with Cournot competition and asymmetric multiproduct firms. Section 3 analyzes the
equilibrium for this model in the light of the empirical regularities outlined above. Section 4
examines the size–diversification relationship in alternative multiproduct models. The last section
concludes.

2. The Cournot model

Consider a market for differentiated goods and let K be the set of all varieties in the market.
The varieties are produced by a set I ¼ f1; N ;Ig of firms (indexed by i), which is determined
under free entry. Let N i be the set of goods produced by firm i, in (endogenous) number Ni. The
inverse demand function for variety kaK has the familiar linear form

pk ¼ ak � bxk � g
X
lpk

x1; ð1Þ

β>γ>0, where pk and xk denote the price and quantity of product k, respectively. Suppose that
there is a large (but finite) number of potential entrants. In order to enter, firms have to incur sunk
cost F>0. Initially, all firms draw a quality parameter Ai and a (constant) marginal production cost
ci from some joint distribution function g(A, c) which has support (0, Ā]× [0, c̄ ], c̄≥0, 0<Ā−
c̄ <∞.6 Suppose ak=Ai for all kaN i in (1). Thus, both product quality and unit cost apply to any
variety a firm offers. This is meant to capture that, for instance, technological characteristics are
of public good nature from the perspective of a single firm (e.g., Caves, 1971).

After deciding, based on firm characteristics, whether or not to enter the market, there are two
stages, in which firms make decisions non-cooperatively and simultaneously. At stage 1, firms
choose their number of products Ni (“product range”). Let C(Ni) denote the costs of firm i to
introduce Ni∈ [1, N̄ ] products in the market, where C:½1; N̄ �YRþ is an increasing, twice
continuously differentiable and convex function, N̄ <∞.7 For instance, one may think of C as
costs for marketing or designing products.8 The I-tuple N=(N1, N2, …, NI) is called a
“configuration of product ranges”. At stage 2, firms enter Cournot competition. This timing of
events follows some existing literature on multiproduct firms (e.g., Raubitschek, 1987; Sutton,
5 Generally, multiproduct models with asymmetric firms are rare. A notable exception is Champsaur and Rochet
(1989), who propose a duopoly model of asymmetric multiproduct firms with vertical product differentiation.
6 Introducing asymmetry of firms under free entry in this way heavily draws on recent contributions of Anderson and

de Palma (2001) and Melitz (2003).
7 As will become apparent, restricting the choice set of firms at stage 1 to the closed interval [1, N̄ ], rather than to

[1, ∞), ensures existence of equilibrium. It is a weak assumption as N̄ can be arbitrarily large.
8 Assuming convexity of C(·) does not deny that there may be economies of scope (or “subadditive costs”) in

marketing, designing or manufacturing multiple products within a firm (see, e.g., Baumol, 1977). However, one may
think of increasing (Coasian) bureaucracy costs of product proliferation as a counteracting force. In fact, all that is needed
is that C(·) is not “too concave” in the relevant range.
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1998; Ottaviano and Thisse, 1999). However, in contrast to this literature, the present set up
allows for asymmetry of firms ex ante.

3. Equilibrium analysis

In this section, the equilibrium of the Cournot model is analyzed.

3.1. Cournot competition (stage 2)

First, consider the decision problem of firms at stage 2, for a given configuration N. Taking
output levels of rival firms as given, each firm iaI solves

max
xkz0; kaN i

pi ¼
X
kaN i

ðpk � ciÞxk s:t: ð1Þ and ak ¼ Ai 8kaN i: ð2Þ

The first result shows that stage 2 equilibrium profits depend on quality–cost margins
aiuAi � ci; iaI . We denote α=(α1, α2, …, αI). Moreover, a multi-product firm i produces equal
output levels for all varieties kaN i which it offers.

Proposition 1. Equilibrium at stage 2 in Cournot competition under (1). In an interior Cournot–
Nash equilibrium at stage 2, for all kaN i, firm iaI produces output level

xk ¼ Ki

ð1þPi CiÞ½2ðb� gÞ þ gNi�uXiðN;a;b;gÞ ð3Þ

and earns profits

pi ¼ Niðb� gþ gNiÞXiðN;a;b;gÞ2ujiðN;a;b;gÞ; ð4Þ
where Γi≡γNi/[2(β−γ)+γNi]∈ (0, 1) and Λi≡αi(1+∑j≠iΓj)−∑j≠iαjΓj.

All proofs are relegated to the Appendix. The following corollary characterizes profit functions
∏i in equilibrium at stage 2.

Corollary 1. For all i,jaI , j≠ i, we have (i) ∂∏i/∂Ni>0 and ∂2∏i/∂Ni
2<0, (ii) ∂∏i/∂Nj<0, (iii)

∂∏i/∂αi>0 and ∂∏i/∂αj<0, (iv) ∂2∏i/∂Ni∂αi>0 and ∂2∏i/∂Ni∂αj<0; (v) if αi≤αj, then ∂2∏i/
∂Ni∂Nj<0.

To gain insight into Corollary 1, it is helpful to decompose∏i into the product of total demand
(or sales) of firm i in equilibrium at stage 2, Di(N, α, β, γ)≡NiXi(N, α, β, γ), and its price–cost
difference (“mark-up”), Mi(N, α, β, γ)≡ (β−γ+γNi)Xi(N, α, β, γ).9 That is, ∏i=DiMi, implying
∂∏i/∂Nj=Mi(∂Di/∂Nj)+Di(∂Mi/∂Nj) and

A2 ji

ANjANi
¼ A2Di

ANjANi
Mi þ ADi

ANj

AMi

ANi
þ ADi

ANi

AMi

ANj
þ Di

A2Mi

ANjANi
; ð5Þ

i;jaI . Total sales Di of a firm are used as measure of firm size throughout the paper. The
properties of Di andMi as functions of (N,α), which are referred to in the following discussion of
Corollary 1, are formally derived in a supplement available online.
9 I am grateful to Armin Schmutzler for this suggestion.
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First, the impact of an increase in product range Ni on both equilibrium demand, Di, and on
equilibrium mark-up, Mi, are positive.

10 Thus, ∂∏i/∂Ni>0, as stated in part (i) of Corollary 1.11

Moreover, strict concavity of ∏i as function of Ni means that a firm's incentive to launch
additional varieties is weaker, the more diversified the firm is. This result is driven by the fact that
the marginal gain of an increase in Ni regarding both Di and Mi is decreasing, i.e., ∂2Di/∂Ni

2 <0
and ∂2Mi/∂Ni

2 <0. It reflects competition within a firm's own product line. Part (ii) of Corollary 1
means that equilibrium profits at stage 2 decline if any rival offers additional products, which
reflects a conventional “business-stealing effect”. In fact, an increase in Nj reduces both Di andMi

when i≠ j. Part (iii) says that, not surprisingly, ∏i increases with its own quality–cost margin, αi,
but decreases with that of other firms, αj, j≠ i, holding the configuration of product ranges N
constant. Again, the effects regarding both Di and Mi go in the same direction. According to part
(iv), the profit gain of firm i from introducing an additional variety increases with αi, but decreases
with quality–cost margins of rivals, αj, j≠ i, all other things equal. An increase in αi raises the
impact of an increase in product range Ni on both sales Di and mark-up Mi (i.e., ∂2Di/∂Ni∂αi>0
and ∂2Mi/∂Ni∂αi>0), whereas an increase in αj, j≠ i, has the opposite effect on ∂Di/∂Ni and ∂Mi/
∂Ni, respectively.

Finally, consider the impact of an increase in a rival's product range Nj on the incentive
of a firm i≠ j to launch new varieties (i.e., how ∂∏i/∂Ni changes with Nj, j≠ i). From the
previous discussion of parts (i) and (ii), for j≠ i, one can conclude that the second and third
summand of the right-hand side of (5) are both negative. However, one can also show that
the first and last summand have ambiguous sign, i.e., an increase in Nj, when j≠ i, may
accentuate or weaken either effect, ∂Di/∂Ni and ∂Mi/∂Ni. Part (v) of Corollary 1 says that
the profit gain of a firm i from increasing product diversification is reduced by an increase
in a rival's product range Nj, j≠ i, if αi≤αj. In this case, the optimal response at stage 1 to
an increase in a rival's product number is to decrease the own number of varieties, i.e.,
product ranges of firms are strategic substitutes. ∂2∏i/∂Ni∂Nj≥0 may occur, however, if
αi>αj.

3.2. Firms' choice of number of products (stage 1)

The profit maximization problem for each firm iaI at stage 1 is to solve

max
Nia½1;N̄ �

WiðN;a;b;gÞujiðN;a;b;gÞ � CðNiÞ: ð6Þ

Applying a classical result (Debreu, 1952), as profit functions are continuous on Ni∈ [1, N̄ ]
and ∏i is strictly concave as function of Ni (part (i) of Corollary 1), existence of equilibrium is
ensured.
10 The latter effect may be somewhat surprising at first glance, but can easily be understood as follows. Note that
pk−ci=αi− (β−γ)Xi−γQ[=Mi] for all kaN i; iaI where Q≡∑iNiXi equals total sales in the industry. On the one hand, it
is easy to check that an increase in Ni raisesQ in stage 2 equilibrium, all other things equal (use Eq. (A.4) in the Appendix).
This has a negative effect on Mi. On the other hand, however, firm i reduces equilibrium output per variety (Xi) when
increasing Ni, which has a positive effect on Mi. The second effect dominates the first one under Cournot competition.
(This does typically not hold under Bertrand competition; see Section 4.2.).
11 An important assumption for this is β>γ, i.e., varieties are imperfect substitutes. In contrast, for γ → β, the limiting
profit function of a firm i at stage 2 is given by limγ→β∏i=[(Iαi−∑j≠iαj) / (1+ I)]

2/γ, according to (3) and (4). Obviously,
it does not pay for firms to supply more than one variety in this limit case.
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Let Ni⁎(α, β, γ) be an equilibrium product range offered by firm iaI . Using (6), an
equilibrium configuration of product ranges, N⁎, is (provided that Ni⁎< N̄ for all i) given by first-
order conditions

AjiðN⁎;a;b;gÞ
aNi

VC VðN⁎
i Þ; iaI ; ð7Þ

with strict equality if Ni⁎>1.

3.3. Entry

As will become apparent (see Proposition 4), not surprisingly, firms with higher quality–cost
margins earn higher stage 1 equilibrium profits, Ψi⁎(α, β, γ)≡Ψi(N⁎, α, β, γ). Moreover, since
∂∏i/∂Nj<0 for j≠ i (part (ii) of Corollary 1), it is immediate that entry of an additional firm
lowers stage 1 profits. Thus, there exists a “long-run” equilibrium (with free entry of firms) in
which firms in the market are those with the highest quality–cost margins. That is, there is a
unique cut-off point for quality–cost margins such that Ψi⁎(α, ·)≥F for entering firms and all
other firms from the pool of potential entrants rationally anticipate that they will not be able to
enter.12

3.4. Diversification of symmetric firms

Determinants of average diversification is examined next. Some empirical studies look at the
determinants of average diversification (e.g. Gorecki, 1975; Baldwin et al., 2000). As asymmetry
of firms is not crucial for this issue, for simplicity, suppose αi=α for all iaI , i.e., α=(α, …, α),
and focus on a symmetric equilibrium at stage 1. Thus, we have Ni⁎(α, β, γ)=N⁎ for all iaI . In
the following, the impact of an increase in both quality–cost margin α and the “degree of
substitutability”, measured by γ, on equilibrium product range, N⁎, is considered for a given set of
firms (i.e., when there are barriers to entry).13

Proposition 2. Diversification of symmetric firms. For a given set of symmetric firms, an
increase in α raises N⁎, whereas an increase in γ lowers N⁎.

Differences in α across industries may be thought of inter-industry differences in technological
characteristics. Thus, Proposition 2 is consistent with the empirical result of Gorecki (1975) that
industries which are characterized by better technological know-how tend to be more
diversified.14 Moreover, quite intuitively, better substitutability of products lowers the incentive
of firms to launch new varieties.
12 This reasoning is analogous to Anderson and de Palma (2001; Proposition 3.1), who consider a logit model with
single-product firms. As Anderson and de Palma (2001, p. 124) point out, however: “This will not be the only
equilibrium. It may be possible that some other set of firms is in the market but yet some excluded firm with a higher
quality–cost cannot profitably enter due to the presence of established firms even though it could make more money were
it to replace the latter”. Fortunately, as will become apparent, results on the size–diversification relationship analyzed in
Section 3.5 hold in any free-entry equilibrium.
13 Unfortunately, for the long-run equilibrium, this analysis becomes highly intractable. The exclusive focus in this
subsection therefore is on the case with entry barriers.
14 Gorecki (1975) uses R&D-intensity in an industry to proxy its technological know-how.
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Fig. 1. Comparison of α1=α2 (solid lines) and α1>α2 (dashed lines).
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3.5. Firm size and diversification

To examine the role of quality–cost margins for the relationship between firm size and product
diversification, we first turn to the question how differences in equilibrium product ranges among
firms (i.e., equilibrium diversification) depend on differences in quality–cost margins.

Proposition 3. Diversification of asymmetric firms. Suppose that for all i, jaI ; j p i;����A2 jiðN;dÞ
AN 2

i

���� >
����A2 jiðN;dÞ

ANiANj

���� when ai ¼ aj: ð8Þ

Then αi>αj implies Ni⁎>Nj⁎.

To gain insight into this result, let us first look at the duopoly case, Iaf1;2g. According to
parts (i) and (v) of Corollary 1 and first-order conditions (7), if α1=α2, reaction functions are
downward sloping in N1 − N2 space, as illustrated in Fig. 1. That is, product ranges are strategic
substitutes. From (7), it is also easy to see that under condition (8), if α1=α2, reaction function of
firm 1 is steeper than that of firm 2 in Fig. 1; this ensures both uniqueness of equilibrium and
N1⁎=N2⁎. According to part (iv) of Corollary 1, an increase in α1 or a decrease in α2 raises the
marginal gain of firm 1 to extend its product range and reduces the marginal gain of firm 2. Thus,
when α1>α2, any intersection of reaction curves lies South-East of the equilibrium for α1=α2, as
illustrated by the dashed lines in Fig. 1. The reaction function of firm 2 is still downward sloping
when α1>α2, according to part (v) of Corollary 1. This may or may not be true for firm 1. But
irrespective of whether the new equilibrium is still unique, it is apparent that α1>α2 implies
N1⁎>N2⁎ in the duopoly case.15
15 In principle, it is possible that there is no intersection of reaction curves when α1>α2. In this case, N1
⁎= N̄ >1=N2

⁎.
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This does not necessarily hold when condition (8) is violated. When α1=α2 and reaction
function of firm 2 would be steeper than that of firm 1, there would be three equilibria (one
symmetric, one equilibrium where N1⁎=1 and one equilibrium with N2⁎=1). Thus, when α1>α2,
an intersection of reaction curves where Ni⁎>1 for i=1, 2 would imply N1⁎<N2⁎. But as can be
deduced from the expressions for ∂2∏i/∂Ni

2 and ∂2∏i/∂Ni∂Nj given in the Proof of Corollary 1
(see Appendix), under rather weak restrictions condition (8) does hold.

What happens when there are other firms? As we are concerned with pairwise comparisons of
firms' product ranges, we can analyze the game between any pair of firms by holding fixed the
actions of all other firms at equilibrium values.16 Then, under (8), the firm with a higher quality–
cost margin must again have a larger product line.17

We are now ready to infer the relationship between firm size and diversification in equilibrium
(recall Di=NiXi). Equilibrium firm size is measured by total sales of a firm in equilibrium, i.e., by
equilibrium demand Di⁎(α, β, γ)≡Di(N⁎, α, β, γ), iaI . The next result is basically a corollary of
Proposition 3.

Proposition 4. Firm size and diversification in the Cournot model. Suppose that (8) holds. Then
αi>αj impliesΨi⁎>Ψj⁎ and Di⁎>Dj⁎ for all i, jaI . Thus, (i) there exists a long-run equilibrium in
which firms with the highest quality–cost margins enter, and (ii) firm size and product
diversification are positively related.

Proposition 4 says that firms with higher quality–cost margins have both higher equilibrium
profits and higher firm sizes. The first property implies that there exists an equilibrium where
firms enter the economy if and only if their quality–cost margin is sufficiently high (part (i) of
Proposition 4). The second property (positive relationship between quality–cost margin and firm
size) is consistent with evidence that productivity of a firm is positively related to its size (Baily et
al., 1992; Roberts and Supina, 2000). Importantly, combining this result with Proposition 3, it
follows that larger firms have more diversified product lines (part (ii) of Proposition 4). The
analysis suggests that this stylized fact is driven by differences in quality–cost margins across
firms.

4. Size and diversification in alternative models

This section examines whether the properties of the linear-demand model under Cournot
competition which give rise to a positive size–diversification relationship also hold under
modifications of the nature of competition or the structure of demand. First, Bertrand competition
in the nested multinomial logit model (e.g., Anderson and de Palma, 1992, 2001; Anderson et al.,
1992) is analyzed. Second, the case of Bertrand competition with linear demand (1) is briefly
discussed and compared to the Cournot case.
16 As Athey and Schmutzler (2001) point out, important properties to generalize beyond duopoly in such a way (applied
to an investment game in their paper) are “exchangeability” of profits as functions of (N, α) and “conditional
uniqueness”. Exchangeability means that if we exchange both (Ni, αi) and (Nj, αj) of two firms i and j (while holding
characteristics of all other firms constant), then profits of firms i and j exchange, without affecting other firms' profits.
This trivially holds in the present model. Conditional uniqueness essentially means that if we look at two firms and hold
other firms' actions fixed, equilibrium must be unique. Condition (8) ensures that this is the case when we consider two
symmetric firms.
17 Suppose that choice sets at stage 1 are restricted to positive integers, i.e. Ni∈{1, 2, …, N̄}, and a pure-strategy
equilibrium exists. In this case, one can show that αi>αj implies Ni

⁎≥Nj
⁎.
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4.1. A nested logit approach

Consider the nested multinomial logit model by Anderson and de Palma (1992). The model
may be described as follows. Let Pik be the probability that a consumer chooses variety kaK
when supplied by firm iaI . Normalizing the number of consumers to unity, the expected
demand for this product, xik, is thus given by xik=Pik. Suppose consumers first choose a
(multiproduct) firm i and subsequently choose amongst the set N i of products offered by i.
Let Pi denote the probability that firm i is selected and Pk|i the probability that good kaN i is
selected, conditional on firm i being chosen. Thus, Pik=PiPk|i. Suppose that the structure of
preferences exactly follows Anderson and de Palma (1992, p. 263f.) and let Ai>0 again be the
common quality measure of varieties kaN i. That is, we obtain demand functions xik=PiPk|i

with

Pi ¼
exp m

l ln
P

laN i
exp Ai�pil

m

� �� �
P

jaI exp
m
l ln
P

laN j
exp Aj�pjl

m

h i� � ; ð9Þ

Pkji ¼
exp Ai�pik

m

� �P
laN i

exp Ai�pil
m

� � ; kaN i; ð10Þ

where pik is the price of variety kaN i and μ≥ν≥0.18 Suppose firms compete in prices at
stage 2. Assumptions on technology are maintained from the previous analysis and, again,
ai ¼ Ai � ci; iaI .

For tractability reasons, the exclusive focus is on the duopoly case. The following result for
stage 2 equilibrium holds.

Proposition 5. Equilibrium at stage 2 in nested logit model. Let I ¼ f1;2g . At stage 2
equilibrium, output levels and mark-ups are the same within a firm's product line and total output
of firm iaI is given by Di=Pi. Moreover, gross profits of firm i are given by ∏i=μϒi, where ϒi
solves ϒi= (Ni/Nj)

ν/μexp[(αi−αj) /μ+1/ϒi−ϒi ], j≠ i.

Again, the structure of demand leads to symmetry within a firm's product line. Total output of
a firm (equilibrium sales), Di, simply equals the probability Pi that firm i is chosen (given a unit
mass of consumers). Moreover, Proposition 5 implies:

Corollary 2. For I ¼ f1;2g , ∂∏1/∂N1>0, ∂∏1/∂N2<0, ∂∏1/∂α1>0, ∂∏1/∂α2<0, ∂2∏1/
∂N1∂α1>0, ∂2∏1/∂N1∂α2<0, ∂2∏1/∂N1∂N2<0 and ∂2∏1/∂N1

2<0. (Firm 2 is analogous.)

Hence, the properties of profit functions in the nested logit model are similar to those of
the Cournot model with linear demand (Corollary 1). Moreover, it turns out that in N1−N2

space, the reaction function of firm 1 at stage 1 (choice of product range) is always steeper
than that of firm 2, i.e., equilibrium is unique (see Fig. 1). Hence, applying Corollary 2
gives rise to
18 When μ>(=)ν, goods are better (equal) substitutes within a firm than across firms. Moreover, ν measures the degree
of intra-firm heterogeneity of goods. If ν→0, goods become perfectly substitutable. (For a more detailed discussion of
these issues, see Anderson and de Palma, 1992, p. 263.).
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Proposition 6. Firm size and diversification in the nested logit model. For I ¼ f1;2g , α1>α2
implies N1⁎>N2⁎ and D1⁎>D2⁎, i.e., the firm with the higher quality–cost margin has both larger
product range and larger size.

4.2. Bertrand case with linear demand

Under Bertrand competition with linear demand (1), equilibrium profits at stage 2, ∏i, can be
derived analogously to Proposition 1. (The formal analysis to this subsection is relegated to the
supplement on the Journal's editorial web site.) Decomposing profits again into sales and mark-
up,∏i=DiMi, reveals that equilibrium mark-upMi is typically decreasing in Ni. That is, launching
additional varieties typically forces a firm to charge lower mark-ups to balance against the
increased competition induced by availability of new varieties. For instance, in an interior
Bertrand–Nash equilibrium with two firms, one finds that ∂Mi/∂Ni<0 if αi≤αj or if |αi−αj| is
sufficiently small. This is in contrast to the Cournot case, where ∂Mi/∂Ni>0 always holds (see
Section 3.1). It reflects the well-known fact that the intensity of competition under Bertrand
competition is higher than under Cournot competition.

Consequently, and in contrast to the results in Corollary 1 and 2, profits ∏i may not be
increasing as a function of own product range Ni everywhere. In particular, this may occur if
the firm's quality–cost margin is relatively low (compared to other firms) or if substitutability
among products, γ, is high. Some other properties of ∏i derived for the Cournot model and
the nested logit model fail to hold in general. What can be said, however, is the following.
Focussing on the duopoly case for simplicity, in the neighborhood of a symmetric
equilibrium, we have ∂2∏1/∂N1∂α1>0 and ∂2∏1/∂N1∂α2<0. This suggests that the firm with
the higher quality–cost margin again offers a larger product range, provided that reaction
functions are well-behaved as in Fig. 1 (which may be the case, according to numerical
analysis). Moreover, one can show that if α1>α2 and N1

⁎>N2
⁎, then D1

⁎>D2
⁎, giving rise to a

positive size–diversification relationship.

5. Concluding remarks

This paper has analyzed an oligopoly framework with asymmetric multiproduct firms, which
is able to address the empirical regularity that larger firms offer more diversified product lines.
The analysis suggests that heterogeneity of enterprises with respect to technological
characteristics is a driving force behind a positive relationship between firm size, measured by
total sales, and product diversification. Moreover, it has been shown that quality–cost margins
also play a crucial role for average product diversification at the industry level, as does the
substitutability of goods.

Admittedly, the focus of the present analysis on the number of products as a measure of
product diversification is quite narrow. For instance, Gollop and Monahan (1991) construct a
diversification index which, in addition to the number of products supplied by an enterprise,
also accounts for the distribution of sales from these products within a firm and differences in
the heterogeneity of products. However, applying this index to a large data set of U.S.
manufacturing firms and establishments, they find that the “number component is the
dominant force” in explaining corporate diversification (p. 327). This gives some justification
for focussing the theoretical analysis on the number of products, exogenously fixing the
degree of product differentiation, and in turn leading to a uniform sales distribution within a
firm.
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The proposed oligopoly framework with asymmetric multiproduct firms may be employed to
examine other interesting questions. To name one, the issues of profitability and desirability of
horizontal mergers with multiproduct firms remain an area open to further analysis, which can be
addressed in this framework.
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Appendix A

Proof of Proposition 1. First, note that pi ¼
P

kaN i
ðpk � ciÞxk implies

Api
Axk

¼ pk � ci þ
X
laN i

Apl
Axk

xl; ðA:1Þ

where ∂pl/∂xl=−β and ∂pl/∂xk=−γ for l≠k, according to demand structure (1). Thus, optimal
behavior of firm iaI at stage 2 is given by the following set of first-order conditions (presuming
an interior solution): ai � 2bxk � g

P
laKqfkg xl � g

P
laN iqfkg xl ¼ 0; kaN i, where ak=Ai for

kaN i and αi=Ai−ci has been used. Adding and subtracting 2γxk implies

ai � 2ðb� gÞxk � gQ� g
X
laN i

xl ¼ 0 ðA:2Þ

where Qu
P

laK xl is total output in the market. Thus, xk=Xi for all kaN i, which impliesP
laN i

xl ¼ NiXi. Hence, using (A.2),

Xi ¼ ai � gQ
2ðb� gÞ þ gNi

: ðA:3Þ

Also note that Q=∑i NiXi. Multiplying both sides of (A.3) by Ni and summing over all iaI , one
thus obtains

gQ ¼
P

i aiCi

1þPi Ci
; ðA:4Þ

where Γi=γNi / [2(β−γ)+γNi] has been used. (A.4) implies

ai � gQ ¼ Ki

1þPi Ci
; ðA:5Þ

where Λi is defined in Proposition 1. Combining (A.3) and (A.5) yields (3).
To obtain (4), first, note that pk−ci=αi−γQ− (β−γ)xk for all kaN i, according to (1), ak=Ai

for kaN i and αi=Ai−ci. Since xk=Xi for all kaN i and αi−γQ=[2(β−γ)+γNi] Xi, according to
(A.3), we obtain equilibrium price–cost differences pk−ci=(β−γ+γNi)Xi[=Mi] for all kaN i.
Finally, noting that ∏i=NiXiMi confirms (4). This concludes the proof. □
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Proof of Corollary 1. First, let us write
P

haI Ch ¼ 1þ U�i þ Ci, where Φ−i≡∑h≠iΓh. Thus,
using Γi=γNi / [2(β−γ)+γNi], we have

Xi ¼ Ki

ð1þ U�iÞð2ðb� gÞ þ gNiÞ þ gNi
; ðA:6Þ

according to (3). By substituting (A.6) into (4), we obtain

ji ¼ Niðb� gþ gNiÞK2
i

ð1þ U�iÞð2ðb� gÞ þ gNiÞ þ gNi½ �2 : ðA:7Þ

Tedious derivations reveal that19

Aji

ANi
¼ ðb� gÞ½2ðb� gþ gNiÞ þ ð2ðb� gÞ þ 3gNiÞU�i�K2

i

½ð1þ U�iÞð2ðb� gÞ þ gNiÞ þ gNi�3
> 0; ðA:8Þ

A2 ji

AN2
i

¼ �2gðb� gÞK2
i

½ð1þ U�iÞð2ðb� gÞ þ gNiÞ þ gNi�4
� ½b� gþ gNi þ ðb� gþ 5gNiÞU�i

þ 3gNiU
2
�i� < 0: ðA:9Þ

Moreover, for j≠ i,

Aji

ANj
¼ �4gðb� gÞNiðb� gþ gNiÞð2ðb� gÞ þ gNiÞKiKj

½2ðb� gÞ þ gNj�2½ð1þ U�iÞð2ðb� gÞ þ gNiÞ þ gNi�3
< 0; ðA:10Þ

A2 ji

ANiANj
¼ � 4gðb� gÞ2Ki

½ð1þ U�iÞð2ðb� gÞ þ gNiÞ þ gNi�4½2ðb� gÞ þ gNj�2
� fðai � ajÞ½2ðb� gþ gNiÞ þ ð2ðb� gÞ þ 3gNiÞU�i� � ½2ðb� gþ gNiÞ
þ ð2ðb� gÞ þ gNiÞU�i� � Ki½ð2ðb� gÞ þ gNiÞð2ðb� gÞ þ 3gNiÞU�i

þ 4ðb� gÞðb� gþ gNiÞ�g: ðA:11Þ

(A.8) and (A.9) confirm part (i) of Corollary 1 and (A.10) confirms part (ii). (Recall
that Λi, Λj>0 in interior equilibrium.) Moreover, note that for all i;jaI ; jpi; AKi=Aai >
0 and AKi=Aaj < 0 recall Ki ¼ ai 1þPjpi Cj

� �
�Pjpi ajCj

� �
. Using this, parts (iii) and (iv)

follow from (A.7) and (A.8), respectively. Part (v) follows from (A.11) and the definition of Λi.
This concludes the proof. □
19 Detailed derivations of (A.8)–(A.11) can be found online.
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Proof of Proposition 2. First, letW (N, α, β, γ)≡∂∏i(N,…, N, α,…, α, β, γ)/∂Ni and consider the
following

Lemma A.1. ∂W/∂α>0 and ∂W/∂γ<0.

Proof. Noting that Λi=α under symmetry of firms, ∂W/∂α>0 is immediately implied by (A.8).
∂W/∂γ<0 is shown in the supplement on the Journal's editorial web site. □

According to (7) and the definition of W, the equilibrium product range, N⁎, is given by W
(N⁎, α, β, γ)−C′(N⁎)=0. Applying the implicit function theorem, one obtains ∂N⁎/∂ξ=(∂W/
∂ξ) /Δ for ξ∈{α,γ}, where Δ≡∂2∏i/∂Ni

2 +∑j≠i∂2∏i/∂Ni∂Nj−C″(N⁎)<0. Thus, Δ<0,
according to C″(·)≥0 as well as parts (i) and (v) of Corollary 1. Proposition 2 then follows
from Lemma A.1. □

Proof of Proposition 4. It is first proven that αi>αj implies Ψi⁎>Ψj⁎. The proof is by
contradiction. Note that αi>αj implies Ψi(N, α, ·)>Ψj(N, α, ·) if Ni=Nj, according to part (iii) of
Corollary 1, and recall ∂∏i/∂Nj<0 for j≠ i from part (ii) of Corollary 1. Now supposeΨi⁎(α, ·)≤
Ψj⁎(α, ·) if αi>αj and recall that under (8), we have Ni⁎>Nj⁎ if αi>αj (Proposition 3). Also
suppose firm i decreases its product range from Ni⁎ to Ni=Nj⁎, which increases profits of firm j (as
∂∏j/∂Ni<0 for i≠ j). Moreover, profits of firm i would now be higher than those of j (as seen
above). Thus, profits of i must have increased. But this means that no situation with Ψi⁎(α, ·)≤
Ψj⁎(α, ·) if αi>αj can occur.

To show that αi>αj implies Ψi⁎>Ψj⁎, define Γi⁎≡γNi⁎ / [2(β−γ)+γNi⁎] and

Ki*uai 1þ
X
jpi

Cj

 !
�
X
jpi

ajCj; ðA:12Þ

iaI . Thus, one can write

Diða;dÞ ¼ NiXiðN*;a;dÞ ¼ NiKi

1þPi CiÞ 2ðb� gÞ þ gNi�;½� ðA:13Þ

according to (3). Hence, we have Di⁎(α, ·)>Dj⁎(α, ·) if and only if

NiKi

2ðb� gÞ þ gNi
>

NjKj

2ðb� gÞ þ gNj:
ðA:14Þ

Recall from Proposition 3 that Ni⁎>Nj⁎ if αi>αj. Thus, using (A.14), the result is confirmed if, for
instance, αi>αj implies Λi⁎>Λj⁎. To see that this is indeed the case, first, rewrite (A.12) as

Ki¼ ai 1þ
X
hpi;j

Ch

!
þ ðai � ajÞCj�

X
hpi;j

ahCh;

 
ðA:15Þ

i;jaI . (A.15) then implies that

Ki�Kj¼ ðai � ajÞ 1þ
X
hpi;j

Ch

!
þ ðai � ajÞCj�ðaj � aiÞCi

 

¼ ðai � ajÞ 1þ
X
iaI

Ci

!
;

 
ðA:16Þ

i.e., Λi
⁎>Λj

⁎ if αi>αj. This concludes the proof. □
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Proof of Proposition 5. Noting that xil=PiPl|i for all laN i, at stage 2 firm i solves
maxpil ;laN i

P
laN i

ðpil � ciÞPiPlji s.t. (9) and (10). The first-order condition with respect to pik
yields:

PiPkji þ
X
laN i

ðpil � ciÞ APi

Apik
Plji þ

X
laN i

ðpil � ciÞPi
APlji
Apik

¼ 0: ðA:17Þ

Using (10), it is straightforward to show that ∂Pk|i/∂pik=−Pk|i(1−Pk|i)/ν and, for l≠k,
∂Pl|i/∂pik=Pk|iPl|i/ν; moreover, ∂Pi/∂pik=−Pi(1−Pi)Pk|i/μ, according to (9), kaN i. Substituting
these expressions into (A.17), one obtains20

pik � ci ¼ mþ 1� l
m
ð1� PiÞ

h iX
laN i

ðpil � ciÞPlji: ðA:18Þ

We seek for a price equilibrium in which pik−ci is the same for all kaN i. Using
P

laN i
Plji ¼ 1,

(A.18) implies that mark-up pik −ci=μ / (1−Pi) in such an equilibrium. Thus, pik=ci+μ / (1−Pi),
which implies Ai−pik=αi−μ / (1−Pi)≡ζi for all kaN i. Using this fact, Pk|i=1/Ni for all kaN i,
according to (10). Thus, recalling xik=PiPk|i, we have xik=Pi/Ni for all kaN i. This confirms that
both output levels and mark-ups are the same within a firm's product line. Moreover, obviously,
Di=Pi.

We next turn to derive ∏1. (The derivation of ∏2 is analogous.) Substituting Ai−pik=ζi into
(9), one obtains in duopoly:

P1 ¼ ðN1Þm=l

ðN1Þm=l þ ðN2Þm=lexp f2�f1
l

h i : ðA:19Þ

Also note that p1k−c1=μ / (1−P1) and Pk|1=1/N1 for all kaN 1 imply
P

laN 1
ðp1l � c1ÞP1Plj1 ¼

lP1=ð1� P1Þ½¼ j1� for stage 2 equilibrium profits of firm 1. Thus, using (A.19),

j1 ¼ l
N1

N2

� 	m=l

expv; ðA:20Þ

where χ≡ (ζ1−ζ2) /μ. Moreover, recalling ζi=αi−μ / (1−Pi) and using P2=1−P1, we have χ=
(α1−α2) /μ−1 / (1−P1)+1 /P1. We can now confirm that ϒ1=P1/(1−P1) (and thus ∏1=μϒ1>0)
with ϒ1 as defined in Proposition 5. To see this, first, note that ϒ1=P1 / (1−P1) implies 1/P1=
1 /ϒ1+1 and 1 / (1−P1)=1+ϒ1. Thus,

v ¼ a1 � a2
l

þ 1
Y 1

� Y 1: ðA:21Þ

In view of (A.20), this confirms ∏1=μϒ1 with ϒ1 as defined in Proposition 5. □
20 Comparison to Anderson and de Palma (1992, p. 272) reveals that, in the duopoly case, one can follow their proof to
establish existence of a unique price equilibrium at stage 2.
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Proof of Corollary 2. Using ϒ1= (N1/N2)
ν/μexpχ, we obtain ∂ϒ1/∂N1=ϒ1[(ν /μ) /N1+∂χ /∂N1]

and ∂ϒ1/∂N2=ϒ1[− (ν/μ)/N2+∂χ/∂N2], where ∂χ/∂Ni=− (1/ϒ1
2 +1)∂ϒ1/∂N1, i∈{1, 2}, according

to (A.21). Combining these results and solving for ∂ϒ1/∂N1 and ∂ϒ1/∂N2 yields

AY 1

AN1
¼ ðm=lÞY 1

N1 1þ Y 1 þ 1
Y 1

� � > 0 and
AY 1

AN2
¼ �N1

N2

AY 1

AN1
< 0; ðA:22Þ

respectively. Similarly, ∂ϒ1/∂αi=ϒ1∂χ/∂αi, i∈{1, 2}, where ∂χ/∂α1=1/μ− (1/ϒ12 +1)∂ϒ1/∂α1
and ∂χ/∂α2=−1/μ− (1/ϒ12 +1)∂ϒ1/∂α2, according to (A.21). Hence,

AY 1

Aa1
¼ Y 1=l

1þ Y 1 þ 1
Y 1

> 0 and
AY 1

Aa2
¼ �AY 1

Aa1
: ðA:23Þ

Thus, as∏1=μϒ1 and ϒ1>0, ∂∏1/∂N1>0, ∂∏1/∂N2<0, ∂∏1/∂α1>0, ∂∏1/∂α2<0, according to
(A.22) and (A.23). Moreover, using again (A.22) and ∏1=μϒ1, it is easy to show that

A2 j1

AN1Ad
¼

m 1þ 2
Y 1

� �
AY 1
Ad

N1 1þ Y 1 þ 1
Y 1

� �2 ; ðA:24Þ

δ∈{α1, α2, N2}. Hence, as ∂ϒ1/∂α1>0, ∂ϒ1/∂α2<0 and ∂ϒ1/∂N2<0, one finds ∂2∏1/∂N1∂α1>0,
∂2∏1/∂N1∂α2<0 and ∂2∏1/∂N1∂N2<0, respectively. Finally, to confirm strict concavity of ∏1

as a function of N1, note that

A2 j1

AN2
1

¼ � mY 1

N1 1þ Y 1 þ 1
Y 1

� �
|{z}

¼lðAY 1=AN1Þ

1
N1

þl
AY 1

AN1

m
l 1þ 2

Y 1

� �
N1 1þ Y 1 þ 1

Y 1

� �2 ; ðA:25Þ

according to ∏1=μϒ1 and (A.22). Hence,

A2 j1

AN 2
1

¼ � l AY 1
AN1

N1 1þ Y 1 þ 1
Y 1

� �2 Y 1ð2þ Y 1Þ þ 2þ 1

Y
2
1

þ 1� m
l

� 	
1þ 2

Y 1

� 	" #
< 0

ðA:26Þ
(recall ν≤μ). This confirms Corollary 2. □

Proof of Proposition 6. The result is proven in two steps. First, it is shown that α1>α2 implies
N1
⁎>N2

⁎, and second, that α1>α2 implies D1
⁎>D2

⁎.

Step 1: Corollary 2 implies that reaction functions at stage 1 are downward-sloping in N1−N2

space. Moreover, an increase in αi or a decrease in αj shifts the reaction curve of firm i
outward and that of firm j≠ i inward. Hence, α1>α2 implies N1

⁎>N2
⁎ if the reaction

function of firm 1 is steeper than that of firm 2 (compare Fig. 1). Applying the implicit
function theorem to (7) and using C″≥0, a sufficient condition for this is

A2 j1

AN2
1

A2 j2

AN2
2

>
A2 j1

AN1AN2

A2 j2

AN1AN2
: ðA:27Þ
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Substituting (A.24) and (A.26) into (A.27) as well as using both (A.22) and ν≤μ reveals
that (A.27) holds if

Y 1ð2þ Y 1Þ þ 2þ 1

Y
2
1

" #
Y 2ð2þ Y 2Þ þ 2þ 1

Y
2
2

" #

> 1þ 2
Y 1

� 	
1þ 2

Y 2

� 	
: ðA:28Þ

It is easy to show that, for any (ϒ1, ϒ2), (A.28) is fulfilled. This concludes step 1.

Step 2: To see that α1>α2 also implies D1
⁎>D2

⁎, recall that ϒi solves ϒi = (Ni/Nj)
ν/μ exp [(αi−αj)/

μ+1/ϒi−ϒi], j≠ i (Proposition 5). Thus, obviously, ϒ1>ϒ2 if α1>α2 and N1>N2. But we
already know that N1

⁎>N2
⁎ if α1>α2. Hence, in equilibrium, ϒ1>ϒ2 if α1>α2. Finally,

recall that Di=Pi and ϒ1=P1/(1−P1), i.e., P1=ϒ1/(1+ϒ1). This confirms D1
⁎>D2

⁎ if
α1>α2, concluding the proof. □

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version at
doi:10.1016/j.ijindorg.2005.12.003.
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