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In this paper, we consider the problem of reducing the semitotal domination number of a 
given graph by contracting k edges, for some fixed k ≥ 1. We show that this can always be 
done with at most 3 edge contractions and further characterise those graphs requiring 1, 
2 or 3 edge contractions, respectively, to decrease their semitotal domination number. We 
then study the complexity of the problem for k = 1 and obtain in particular a complete 
complexity dichotomy for monogenic classes.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the standard graph modification problem, one is interested in modifying a given graph, using a minimum number of 
graph operations from a prescribed set, such that the resulting graph belongs to some fixed graph class. The related family 
of so-called blocker problems considers not a graph class, but rather asks for a specific graph parameter π to decrease: given 
a graph G , a set O of one or more graph operations and an integer k ≥ 1, the question is whether G can be transformed 
into a graph G ′ by using at most k operations from O such that π(G ′) ≤ π(G) − d for some threshold d ≥ 1. These types 
of problems (as well as the variants where one wants to increase some parameter π ) are related to other well-known 
graph problems like such as Hadwiger Number, Club Contraction and Graph Transversal (see [6,22]). While the set 
O generally consists of a single operation (namely vertex deletion, edge deletion, edge addition or edge contraction), a 
variety of parameters have been considered in the literature, including the chromatic number [1,6,7,22,24], the stability 
number [2,23], the clique number [18,20], the matching number [3,27], domination-like parameters [8,9,13,21] and others 
[4,14,17,16,25,28].

In this paper, we focus on one particular graph operation, namely edge contraction. Contracting an edge uv in a graph G
corresponds to deleting both vertices u and v from G and adding a new vertex which is made adjacent to every neighbour 
of u or v in the original graph G . We denote by ctπ (G) the smallest integer k such that there is a set of k edges in E(G)

whose contraction yields a graph for which the value of the parameter π is strictly smaller than π(G). As a parameter, we 
consider the semitotal domination number (denoted by γt2), which was first introduced in [12]: a semitotal dominating set of 
a graph G is a set D ⊆ V (G) such that every vertex in V (G) \ D has a neighbour in D (that is, D is dominating) and every 
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vertex x ∈ D is at distance at most two from a vertex in D \ {x}. Note that, by definition, every semitotal dominating set has 
at least two vertices. The semitotal domination number of G is the size of a minimum semitotal dominating set in G . We are 
more precisely interested in the following problem with π = γt2 and k ≥ 1.

k-Edge Contraction(π )

Instance: A graph G .
Question: Is ctπ (G) ≤ k?

We show that for every graph G such that γt2(G) ≥ 3, we have ctγt2 (G) ≤ 3. We further characterise for every fixed 
k ∈ {1, 2, 3}, those graphs for which ctγt2 (G) = k in terms of the structure of their semitotal dominating sets (see Fig. 1). We 
then determine the computational complexity of 1-Edge Contraction(γt2) for several graph classes, such as bipartite graphs 
and chordal graphs, as well as for every monogenic graph class (that is, graph classes defined by excluding one graph as an 
induced subgraph). From these results, we deduce in particular the following theorem.

Theorem 1. 1-Edge Contraction(γt2) is polynomial-time solvable when restricted to H-free graphs if H is an induced subgraph of 
P5 + t K1 with t ≥ 0 or H is an induced subgraph of P3 + pK2 + t K1 with p, t ≥ 0, and NP-hard or coNP-hard otherwise.

Related work. In [13], Huang and Xu considered for π the domination number (denoted by γ ) and the total domination 
number (denoted by γt ). A total dominating set of a graph is a set D of vertices such that every vertex of the graph has 
a neighbour in D . The total domination number of a graph is the size of a minimum total dominating set. They showed 
that for π ∈ {γ , γt}, ctπ (G) is never greater than 3 and further characterised for every fixed k ∈ {1, 2, 3}, the graphs for 
which ctπ (G) = k in terms of the structure of their (total) dominating sets. More specifically, they showed the following 
(see Section 2 for missing definitions).

Theorem 2 ([13]). For any graph G, the following holds.

(i) ctγ (G) = 1 if and only if there exists a minimum dominating set in G that is not independent.
(ii) ctγ (G) = 2 if and only if every minimum dominating set in G is independent and there exists a dominating set D in G of size 

γ (G) + 1 such that G[D] contains at least two edges.

Theorem 3 ([13]). For any graph G, the following holds.

(i) ctγt (G) = 1 if and only if there exists a minimum total dominating set D in G such that G[D] contains a P3 .
(ii) ctγt (G) = 2 if and only if every minimum total dominating set in G induces a graph that does not contain a P3 and there exists a 

total dominating set D in G of size γt(G) + 1 such that G[D] contains a subgraph isomorphic to P4, K1,3 or 2P3 .

The paper is organised as follows. In Section 2, we present the necessary definitions and notations. Section 3 is devoted 
to the proofs of our structural results, which will be used later in the paper. In Section 4, we consider different graph classes 
and determine the complexity of 1-Edge Contraction(γt2) when restricted to these classes. We then combine these results 
in Section 4.3 to prove our main result, that is, Theorem 1.

2. Preliminaries

Unless specified otherwise, we only consider finite and simple graphs. Furthermore, since, for any k ≥ 1 and any dis-
connected graph G , G is a Yes-instance for k-Edge Contraction(γt2) if and only if one connected component of G is a
Yes-instance for k-Edge Contraction(γt2), we only consider connected graphs. We refer the reader to [5] for any terminol-
ogy not defined here.

For a graph G , we denote its vertex set by V (G) and its edge set by E(G). For a set S ⊆ V (G), we let G[S] denote the 
graph induced by S , that is, the graph with vertex set S and edge set {xy ∈ E(G) : x, y ∈ S}. For an edge xy ∈ E(G), we 
denote by G/xy the graph obtained from G by contracting the edge xy. We say that two vertices x and y are adjacent, or 
neighbours, if xy is an edge. The neighbourhood NG(v) of a vertex v ∈ V (G) is the set {w ∈ V (G) : v w ∈ E(G)} and the closed 
neighbourhood NG [v] of v is the set N(v) ∪ {v} (if it is clear from the context, we may omit the subscript G). For any two 
vertices v, w ∈ V (G), a vertex u ∈ N(v) ∩ N(w) is called a common neighbour of v and w . Given two sets S, S ′ ⊆ V (G), we 
say that S is complete to S ′ if every vertex in S is adjacent to every vertex in S ′ . We say a vertex v ∈ V (G) is complete to a 
set S ⊆ V (G) if {v} is complete to S . For any two vertices x, y ∈ V (G), the distance between x and y is the number of edges 
in a shortest path from x to y and is denoted dG (x, y) (if it is clear from the context, we may omit the subscript G). For 
a set S ⊆ V (G) and a vertex v ∈ V (G), we define dG (v, S) = minw∈S dG (v, w). A set D ⊆ V (G) is a dominating set if every 
vertex v ∈ V (G) \ D has a neighbour in D .
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Let D be a dominating set of G and w ∈ V (G) \ D . For any neighbour v ∈ D ∩ N(w), we say that v dominates w . If 
N(w) ∩ D = {v}, we say that w is a private neighbour of v . The set of all private neighbours of a vertex v ∈ D is called the 
private neighbourhood of v . For any two vertices v, w ∈ D which are at distance at most two, we say that v witnesses w , or 
that v is a witness of w . This terminology allows us to characterise a semitotal dominating set as a dominating set in which 
every vertex is witnessed by another vertex in the dominating set.

We denote by Kn , Pn and Cn the complete graph, the path, and the cycle on n vertices, respectively. We may also call 
K3 a triangle. For a path P with endpoints x and y, we call any vertex in V (P ) \ {x, y} an internal vertex of P . The claw is 
the complete bipartite graph with partition sizes one and three. For a graph H , we say that a graph G is H-free if G does 
not contain H as an induced subgraph. For a family of graphs H, we say that a graph G is H-free if G is H-free for every 
H ∈ H. A graph is called chordal if it is Ck-free for every k ≥ 4. A graph class is called hereditary if it is closed under vertex 
deletion. Any hereditary graph class can be characterised by a set of forbidden induced subgraphs [15]. A hereditary graph 
class which can be characterised by a single forbidden induced graph is called monogenic.

3. Structural results

In this section, we present our structural results which will then be used in Section 4. These results are comparable to 
those obtained by Huang and Xu [13] for the domination and the total domination numbers. Observe that, by definition, 
γt2(G) ≥ 2 for any graph G , which justifies the lower bound on the semitotal domination number in the following.

Theorem 4. For any graph G with γt2(G) ≥ 3, ctγt2(G) ≤ 3.

Proof. Let G be a graph with γt2(G) ≥ 3 and let D be a minimum semitotal dominating set of G . Consider u, v ∈ D
such that dG (u, v) ≤ 2, and let w ∈ D \ {u, v} be a closest vertex to {u, v}, that is, dG (w, {u, v}) = dG(D \ {u, v}, {u, v}) =
minx∈D\{u,v} dG(x, {u, v}). We claim that dG (w, {u, v}) ≤ 3. Indeed, suppose that dG (w, {u, v}) > 3 and let x be the vertex 
at distance two from w on a shortest path from w to {u, v}. Then since x is nonadjacent to w, u and v , there exists a 
vertex y ∈ D \ {w, u, v} adjacent to x for otherwise, x would not be dominated. But then, dG (y, {u, v}) < dG(w, {u, v}), 
a contradiction to the choice of w . Thus, dG (w, {u, v}) ≤ 3. Now assume, without loss of generality, that dG (w, {u, v}) =
dG (w, u) and let P be a shortest path from w to u. We claim that the graph G ′ obtained by contracting the edges of 
P has a semitotal domination number strictly smaller than that of G . Indeed, denote by v P the vertex resulting from 
the contraction of the edges of P and let D ′ = (D \ {u, w}) ∪ {v P }. Then D ′ is a semitotal dominating set of G ′: indeed, 
every vertex x ∈ V (G) \ V (P ) adjacent to a vertex of P in G is adjacent to v P in G ′ , and dG ′ (v P , v) ≤ dG(u, v) ≤ 2. Thus, 
γt2(G ′) ≤ |D ′| = γt2(G) − 1 and since P has length at most three, the lemma follows. �

Next, we give necessary and sufficient conditions for ctγt2 to be equal to one or two. Given a graph G , a friendly triple
is a subset of three vertices x, y and z such that xy ∈ E(G) and dG (y, z) ≤ 2. The ST-configurations correspond to the set of 
configurations depicted in Fig. 1.

Theorem 5. For any graph G, the following holds.

(i) ctγt2(G) = 1 if and only if there exists a minimum semitotal dominating set D of G such that D contains a friendly triple.
(ii) ctγt2(G) = 2 if and only if no minimum semitotal dominating set of G contains a friendly triple and there exists a semitotal 

dominating set of size γt2(G) + 1 that contains an ST-configuration.

Proof. Let G be a graph. To prove (i), let D be a minimum semitotal dominating set of G containing a friendly triple, that 
is, there is a subset of three vertices x, y, z ∈ D such that xy ∈ E(G) and dG (y, z) ≤ 2. Let G ′ be the graph obtained from 

Fig. 1. The ST-configurations (the dashed lines indicate that the corresponding vertices are at distance 2 and the serpentine line indicates that the corre-
sponding vertices may be the same vertex). The thick edges correspond to the edges to contract in the proof of Theorem 5(ii).
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G by the contraction of the edge xy, and let vxy be the vertex resulting from this contraction (note that dG ′ (z, vxy) ≤ 2). 
Then it is easy to see that (D \ {x, y}) ∪ {vxy} is a semitotal dominating set of G ′ of size γt2(G) − 1. Conversely, assume 
that G has an edge xy whose contraction decreases the semitotal domination number of G . Let G ′ and vxy be the graph 
and the vertex obtained from this contraction, respectively. Let D ′ be a minimum semitotal dominating set of G ′ (note that 
|D ′| ≤ γt2(G) − 1). If vxy ∈ D ′ , then there exists z ∈ D ′ such that dG ′ (z, vxy) ≤ 2; in particular, at least one vertex of {x, y} is 
at distance at most two from z in G . It follows that D = (D ′ \ {vxy}) ∪ {x, y} is a semitotal dominating set of G containing 
a friendly triple, namely x, y and z. Moreover, D is minimum since |D ′| ≤ γt2(G) − 1 and |D| = |D ′| + 1. Now assume that 
vxy /∈ D ′ . Since vxy is dominated in D ′ , at least one vertex of {x, y} is dominated by a vertex of D ′ in G , say x without loss 
of generality. Consider the set D = D ′ ∪ {x} in G (note that since |D ′| ≤ γt2(G) − 1, |D| ≤ γt2(G)). Let us show that D is a 
semitotal dominating set of G . It is easy to see that D dominates every vertex of G and |D| = γt2(G). It remains to show 
that every vertex of D has a witness. This holds for x: a witness for x is any vertex z ∈ D ′ (thus, z ∈ D) that dominates 
vxy in G ′ and is adjacent to x in G (such a vertex exists by the assumption that x is dominated in D ′). Now consider a 
vertex p ∈ D \ {x} (note that p ∈ D ′) and let p′ be a witness for p in D ′ . If pp′ ∈ E(G) or there exists a path pup′ in G ′ with 
u 
= vxy , then p′ is still a witness for p in D . If a path of length at most two between p and p′ in G ′ contains vxy as an 
internal vertex, then dG (x, p) ≤ 2 and thus, x is a witness for p in D . Hence, every vertex in D \ {x} has a witness and, thus, 
D is a semitotal dominating set of G . Finally, observe that D contains a friendly triple: indeed, denoting by w a witness for 
z in D ′ , we have that w ∈ D and, since xz ∈ E(G), we conclude that {x, z, w} is a friendly triple in D , which completes the 
proof of (i).

We now proceed to the proof of (ii). If no minimum semitotal dominating set of G contains a friendly triple then by (i), 
ctγt2(G) > 1. Suppose that G has a semitotal dominating set S of size γt2(G) + 1 such that S contains an ST-configuration. It 
is straightforward to see that, for each configuration, the contraction of the two thick edges in Fig. 1 reduces the size of S
by two. Moreover, after these contractions, S remains a semitotal dominating set of the resulting graph. Thus, we conclude 
that the contraction of two edges reduces the semitotal domination number of G and, so, ctγt2 (G) = 2.

For the other direction, let e and e′ be two edges whose contraction decreases the semitotal domination number of G . 
In the remainder of this proof, we denote by G ′ the graph obtained from G by the contraction of the edges e and e′ and by 
D ′ a minimum semitotal dominating set of G ′ . Note that |D ′| = γt2(G) − 1 as ctγt2 (G) > 1 and the contraction of a single 
edge decreases the semitotal domination number of a graph by at most one. We start with the following observation that 
will be useful throughout the proof.

Observation 6. Let D be a semitotal dominating set of G . If D contains a (not necessarily induced) P4, then D contains 
Configuration O 4 or Configuration O 6.

Indeed, let D be a semitotal dominating set of G containing a (not necessarily induced) P4 on vertex set {a, b, c, d} with 
ab, bc, cd ∈ E(G). If ac ∈ E(G), then {a, b, c, d} contains O 4 in D since ac, bc, cd ∈ E(G). Otherwise, ac /∈ E(G) in which case 
dG (a, c) = 2 as b is a common neighbour of a and c. But then, {a, b, c, d} forms an O 6 in D as bc, cd ∈ E(G).

We now consider the following cases.
Case 1. e and e′ share a vertex. Let e = xy and e′ = yz and let vxyz be the vertex of G ′ resulting from the contraction of e

and e′ .
Case 1.1. vxyz /∈ D ′ . First note that, in this case, D = D ′ ∪ {x, y} is a semitotal dominating set of G (of size γt2(G) + 1). 

Indeed, D is a dominating set since D ′ is a dominating set of G ′ and y dominates z. Moreover, x is a witness for y (and 
vice versa). Now if there is a vertex p with witness p′ in D ′ such that the unique path of length two connecting p to p′
in G ′ contained vxyz , then dG (p, y) ≤ 2 and thus, y is now a witness for p. Using similar arguments, we can show that 
D ′ ∪ {y, z} is also a semitotal dominating set of G .

Now since D ′ is a dominating set of G ′ , at least one vertex of {x, y, z} is dominated by D ′ in G . Suppose first that D ′
dominates x in G and consider the set D = D ′ ∪ {x, y}. We next show that D contains an ST-configuration. Let w1 ∈ D ′ be 
a vertex that dominates x and let w ′

1 be a witness for w1 in D ′ . If dG (w1, w ′
1) = 2, then {x, y, w1, w ′

1} forms an O 5 in 
D . Otherwise, dG(w1, w ′

1) = 1 in which case D contains a P4 on vertex set {y, x, w1, w ′
1} and, so, by Observation 6, D

contains an O 4 or an O 6. We conclude similarly in the case where D ′ dominates y (respectively z) by considering the 
semitotal dominating set D = D ′ ∪ {x, y} (respectively D = D ′ ∪ {y, z}).

Case 1.2. vxyz ∈ D ′ . We first show that D = (D ′ \ {vxyz}) ∪ {x, y, z} is a semitotal dominating set of G (note that |D| =
γt2(G) + 1). It is easy to see that D is a dominating set. Furthermore, if vxyz was a witness for a vertex p in D ′ , then in G , 
p is at distance at most two to a vertex of {x, y, z} and thus, p has a witness in D .

We next show that D contains an ST-configuration. Let w ∈ D ′ be a witness for vxyz in D ′ . Suppose first that 
dG ′ (w, vxyz) = 1. If wy ∈ E(G), then {x, y, z, w} forms an O 4 in D . Otherwise, w is adjacent to x or z, in which case D
contains a P4 on vertex set {x, y, z, w} and, so, by Observation 6, D contains an O 4 or an O 6. Now if dG ′ (w, vxyz) = 2, then 
wx, wy, wz /∈ E(G) and w is at distance two to a vertex of {x, y, z}. Then, either dG (w, y) = 2, in which case {x, y, z, w}
forms an O 6 in D , or the same set forms an O 5 in D .

Case 2. e and e′ do not share a vertex. Let e = xy and e′ = zw and let vxy and vzw be the vertices of G ′ resulting from the 
contraction of e and e′ , respectively.

Case 2.1. D ′ ∩ {vxy, vzw} = ∅. Since D ′ dominates vxy and vzw , at least one of {x, y} is dominated by D ′ (the same 
holds for {z, w}). Assume, without loss of generality, that x and z are dominated by D ′ and let D = D ′ ∪ {x, z}. Note 
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that D is a semitotal dominating set of G of size γt2(G) + 1. We next show that D contains an ST-configuration. Let w1
(respectively w2) be a vertex of D that dominates x (respectively z). If w1 = w2, let w ′ be a witness of w1 in D ′ . Then 
{x, z, w1, w ′} forms an O 4 (if dG(w ′, w1) = 1) or an O 6 (if dG(w ′, w1) = 2) in D . Suppose next that w1 
= w2 and let 
w ′

1 (respectively w ′
2) be a witness for w1 (respectively w2) in D ′ . Assume first that w ′

1 = w ′
2. If dG(w2, w ′

1) = 1 and 
dG (w1, w ′

1) = 1, then D contains a P4 on vertex set {x, w1, w ′
1, w2} and, so, by Observation 6, D contains an O 4 or 

an O 6. If dG (w2, w ′
1) = 1 and dG(w1, w ′

1) = 2, then {w1, w ′
1, w2, z} forms an O 5 in D . Finally, if both dG (w2, w ′

1) =
2 and dG (w1, w ′

1) = 2, then {x, w1, w ′
1, w2, z} forms an O 3 in D . Assume henceforth that w ′

1 
= w ′
2. If w ′

1 = w2 and 
w1 w2 ∈ E(G), then D contains a P4 on vertex set {x, w1, w2, z} and, so, by Observation 6, D contains an O 4 or an O 6. If 
w ′

1 = w2 and w1 w2 /∈ E(G), then {x, w1, w2, z} forms an O 7 in D . Finally, assume that w1, w ′
1, w2, w ′

2 are four distinct 
vertices in G . If dG (w1, w ′

1) = 1 and dG (w2, w ′
2) = 1, then {x, z, w1, w ′

1, w2, w ′
2} forms an O 1 in D . If dG(w1, w ′

1) = 1 and 
dG (w2, w ′

2) = 2, then {x, z, w1, w ′
1, w2, w ′

2} forms an O 2 in D . Finally, if both dG (w1, w ′
1) = 2 and dG (w2, w ′

2) = 2, then 
{x, z, w1, w ′

1, w2, w ′
2} forms an O 3 in D .

Case 2.2. D ′ ∩ {vxy, vzw} 
= ∅. If |D ′ ∩ {vxy, vzw}| = 1 then assume, without loss of generality, that vxy ∈ D ′ . Since vzw /∈
D ′ , there exists z′ ∈ D ′ such that z′ is adjacent to z or w , say zz′ ∈ E(G) without loss of generality. Consider the set 
D = (D ′ \ {vxy}) ∪ {x, y, z} (note that |D| = γt2(G) + 1). Let us show that D contains an ST-configuration. Let p be a witness 
of vxy in D ′ . Assume without loss of generality that dG (p, y) ≤ 2. Suppose first that z′ = vxy . If dG (p, y) = 1 and zy ∈ E(G), 
then {x, y, z, p} forms an O 4 in D . If dG (p, y) = 1 and zy /∈ E(G), then dG(y, z) = 2 and therefore {x, y, z, p} forms an O 6 in 
D . If dG (p, y) = 2 and zy ∈ E(G), then {x, y, z, p} forms an O 6 in D . Finally, if dG (p, y) = 2 and zx ∈ E(G), then {z, x, y, p}
forms an O 5 in D . Second, suppose that z′ 
= vxy . If p = z′ , we have two possibilities. Either dG(p, y) = 1 in which case D
contains a P4 on vertex set {x, y, p, z} and, so, by Observation 6, D contains an O 4 or an O 6. Or dG(p, y) = 2 in which case 
{x, y, p, z} forms an O 7 in D . Assume henceforth that p 
= z′ and let z′′ be a witness of z′ in D ′ . If z′′ = vxy , then either y or 
x is a witness of z′ in D . By symmetry, we can assume that dG (y, z′) ≤ 2. If dG (y, z′) = 1 then, by Observation 6, {z, z′, y, x}
forms an O 4 or an O 6 in D . If dG (y, z′) = 2, then the same set forms an O 7 in D . Hence, we can safely assume that z′′ 
= vxy . 
Now note that {z, z′, z′′} and {x, y, p} form friendly triples in D (recall that dG (p, y) ≤ 2) and it may still be the case that 
p = z′′ . Suppose first that p = z′′ . If dG (z′, z′′) = 1 and dG (z′′, y) = 1, then by Observation 6, we have either an O 4 or an 
O 6 in D . If dG (z′, z′′) = 1 and dG (z′′, y) = 2, then {z, z′, z′′, y} forms an O 5 in D . Finally, if dG (z′, z′′) = 2 and dG (z′′, y) = 1
(respectively dG(z′′, y) = 2), then {z, z′, z′′, y} (respectively {z, z′, z′′, y, x}) forms an O 7 (respectively O 3) in D . Thus we 
may assume that p 
= z′′ . Then {z, z′, z′′} and {x, y, p} are two disjoint friendly triples in D and thus, {z, z′, z′′, x, y, p}
forms either an O 1 (if dG(y, p) = dG(z′, z′′) = 1), an O 2 (if exactly one of dG (y, p) or dG(z′, z′′) equals two) or an O 3 (if 
dG (y, p) = dG(z′, z′′) = 2).

We conclude the proof by considering the case where {vxy, vzw} ⊆ D ′ to which a similar case analysis applies. Consider 
the set D = (D ′ \ {vxy, vzw}) ∪ {x, y, z, w} (note that D is a semitotal dominating set of G of size γt2(G) + 1). Let us show 
that D contains an ST-configuration. If a vertex of {x, y} is adjacent to a vertex of {z, w}, then D contains a P4 and so, by 
Observation 6, {x, y, z, w} forms an O 4 or an O 6 in D . If a vertex of {x, y} is at distance exactly two from a vertex in {z, w}, 
then D contains an O 7. If neither of these conditions hold, that is, if dG ′ (vxy, vzw) ≥ 3, then let p (resp. p′) be a witness for 
vxy (resp. vzw ) in D ′ . Note that p 
= vzw and p′ 
= vxy since dG ′ (vxy, vzw) ≥ 3. Hence, if p = p′ then D contains an O 3 or 
an O 5. Otherwise, {x, y, p} and {z, w, p′} are two disjoint friendly triples in D and thus, {x, y, z, w, p, p′} forms either an 
O 1, an O 2 or an O 3 in D , which concludes the proof. �
4. The complexity of 1-EDGE CONTRACTION(γt2)

In this section, we consider several graph classes and determine for each of them whether 1-Edge Contraction(γt2) is 
(co)NP-hard (Section 4.1) or polynomial-time solvable (Section 4.2). Putting these results together then leads to our main 
theorem (Section 4.3).

4.1. Hardness results

Similarly to the case of domination, we have the two following results.

Theorem 7. 1-Edge Contraction(γt2) is coNP-hard when restricted to claw-free graphs.

Proof. We reduce from the Positive Exactly 3-Bounded 1-In-3 3-Sat problem which is a variant of the 3-Sat problem where, 
given a formula � in which all literals are positive, every clause contains exactly three literals and every variable appears 
in exactly three clauses, the problem is to determine whether there exists a truth assignment such that each clause has 
exactly one true literal. This problem was shown to be NP-complete in [19].

We first introduce the following graph, called the long paw, which we will use in the reduction (see Fig. 2).
As mentioned above, we reduce from Positive Exactly 3-Bounded 1-In-3 3-Sat: given an instance � of this problem, 

with variable set X and clause set C , we construct an instance G of 1-Edge Contraction(γt2) such that � is a Yes-instance 
for Positive 1-In-3 3-Sat if and only if G is a No-instance for 1-Edge Contraction(γt2), as follows. For every variable x ∈ X
contained in clauses c, c′ and c′′ , we introduce the gadget Gx depicted in Fig. 3 (where the rectangles indicate that the 
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P (1) P (2)

P (3)

P (4)

P (5)

Fig. 2. The long paw P .

Fig. 3. The gadget Gx for a variable x ∈ X contained in clauses c, c′ and c′′ (rectangles indicate that the corresponding set of vertices induces a clique).

Fig. 4. The gadget Gc for a clause c ∈ C containing variables x, y and z.

corresponding set of vertices is a clique). For every clause c ∈ C containing variables x, y and z, we introduce the gadget 
Gc depicted in Fig. 4 consisting of the disjoint union of the graph G T

c and the graph G F
c . Finally, for every clause c ∈ C

containing variables x, y and z, we add edges between the corresponding gadgets as follows.

· For every p ∈ {x, y, z}, we connect P c
p,1(2) to f ab

c if and only if p ∈ {a, b}.

· For every p ∈ {x, y, z}, we connect P c
p,2(1) to t p

c and further connect P c
p,2(1) to wab

c if and only if p ∈ {a, b}.

We denote by G the resulting graph.

Observation 8. Let D be a semitotal dominating set of G . Then, for every variable x ∈ X , |D ∩ V (Gx)| ≥ 14.

Indeed, for every long paw P (see Fig. 2), the vertex P (5) must be dominated and the vertex dominating P (5) must have 
a witness. Since every variable gadget contains 7 long paws, the result follows.

Observation 9. Let D be a semitotal dominating set of G . If |D ∩ V (Gx)| = 14 for some variable x ∈ X contained in clauses 
c, c′ and c′′ , then the following holds.

1. If P q
x,2(1) ∈ D for some q ∈ {c, c′, c′′} then Tx ∈ D .

2. If P q
(2) ∈ D for some q ∈ {c, c′, c′′} then Fx ∈ D .
x,1
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In particular, if P q
x,2(1) ∈ D for some q ∈ {c, c′, c′′}, then D ∩ {P c

x,1(2), P c′
x,1(2), P c′′

x,1(2)} =∅. Similarly, if P q
x,1(2) ∈ D for some 

q ∈ {c, c′, c′′}, then D ∩ {P c
x,2(1), P c′

x,2(1), P c′′
x,2(1)} = ∅.

Indeed, suppose that |D ∩ V (Gx)| = 14 for some variable x ∈ X contained in clauses c, c′ and c′′ . Observe first that, by 
Observation 8, D ∩ {aq

x, b
q
x | q ∈ {c, c′, c′′}} = ∅ and |D ∩ {P q

x, j(1), P q
x, j(2)}| ≤ 1 for any j ∈ [2] and q ∈ {c, c′, c′′} (similarly, 

|D ∩ {Tx, Fx}| ≤ 1). Thus, if P q
x,2(1) ∈ D for some clause q ∈ {c, c′, c′′}, then Tx ∈ D as bq

x must be dominated. Similarly, if 
P q

x,1(2) ∈ D for some q ∈ {c, c′, c′′}, then Fx ∈ D as aq
x must be dominated.

Observation 10. Let D be a semitotal dominating set of G . Then, for every clause c ∈ C , D ∩ V (G T
c ) 
= ∅. Furthermore, if 

P c
x,2(1) /∈ D for every variable x contained in c, then |D ∩ V (G T

c )| ≥ 2.

Indeed, since uc must be dominated, D ∩ V (G T
c ) 
= ∅. Now if P c

x,2(1) /∈ D for every variable x contained in c, then the 
result follows from the fact that γ (G T

c ) = 2.

Observation 11. Let D be a semitotal dominating set of G . Then, for every clause c ∈ C containing variables x, y and z, if 
|D ∩ {P c

x,1(2), P c
y,1(2), P c

z,1(2)}| < 2 then |D ∩ V (G F
c )| ≥ 1.

Indeed, if say P c
x,1(2), P c

y,1(2) /∈ D without loss of generality, then N[ f xy
c ] \ {P c

x,1(2), P c
y,1(2)} ∩ D 
= ∅ as f xy

c should be 
dominated.

Claim 12. γt2(G) = 14|X | + |C | if and only if � is a Yes-instance for Positive 1-In-3 3-Sat.

Proof. Assume first that � is a Yes-instance for Positive 1-In-3 3-Sat and consider a truth assignment satisfying �. We 
construct a semitotal dominating set D of G as follows. For every variable x ∈ X contained in clauses c, c′ and c′′ , if x is set 
to true, then we add {Tx, vx} ∪ {P q

x, j(1), P q
x, j(4) | j ∈ [2], q ∈ {c, c′, c′′}}; otherwise, we add {Fx, vx} ∪ {P q

x, j(2), P q
x, j(4) | j ∈

[2], q ∈ {c, c′, c′′}}. For every clause c ∈ C containing variables x, y and z, exactly one variable is set to true, say x without 
loss of generality, in which case we add t y

c to D . It is not difficult to see that the constructed set D is a semitotal dominating 
set of G of size 14|X | + |C |. We then conclude by Observations 8 and 10 that D has minimum size.

Conversely, assume that γt2(G) = 14|X | + |C | and consider a minimum semitotal dominating set D of G . Note that, by 
Observations 8 and 10, |D ∩ V (Gx)| = 14 for every variable x ∈ X and |D ∩ V (G T

c )| = 1 for every clause c ∈ C ; in particular, 
D ∩ V (G F

c ) =∅ for every clause c ∈ C . Now consider a clause c ∈ C containing variables x, y and z. Since D ∩ V (G F
c ) =∅, it 

follows from Observation 11 that |D ∩{P c
x,1(2), P c

y,1(2), P c
z,1(2)}| ≥ 2, say P c

x,1(2), P c
y,1(2) ∈ D without loss of generality. Note 

that then, by Observation 9, Fx, F y ∈ D (and thus, Tx, T y /∈ D). Then, we claim that, P c
z,2(1) ∈ D . Indeed, by Observation 9, 

we have that P c
x,2(1), P c

y,2(1) /∈ D . Thus, if P c
z,2(1) /∈ D then, by Observation 10, |D ∩ V (G T

c )| ≥ 2 a contradiction. Thus, 
P c

z,2(1) ∈ D and so, by Observation 9, T z ∈ D (which implies that F z /∈ D). We thus construct a truth assignment satisfying 
� as follows: for every variable x ∈ X , if Tx ∈ D then set x to true, otherwise set x to false. �
Claim 13. γt2(G) = 14|X | + |C | if and only if G is a No-instance for 1-Edge Contraction(γt2).

Proof. Assume first that γt2(G) = 14|X | + |C | and consider a minimum semitotal dominating set D of G . Then, by Ob-
servations 8 and 10, |D ∩ V (Gx)| = 14 for every variable x ∈ X and |D ∩ V (G T

c )| = 1 for every clause c ∈ C ; in particular, 
D ∩ V (G F

c ) =∅ for every clause c ∈ C . It follows that, for every variable x ∈ X , D ∩ V (Gx) contains no friendly triple: indeed, 
any two distinct long paws are at distance at least 2 from one another. Moreover, if some long paw P contains an edge 
e ∈ E(D), then P (4) is an endvertex of e and so, e is at distance at least three from any other vertex in D ∩ V (Gx). Now 
consider a clause c ∈ C containing variables x, y and z and denote by u the vertex in D ∩ V (G T

c ). Since u cannot alone 
dominate every vertex in V (G T

c ), there must exist p ∈ {x, y, z} such that P c
p,2(1) ∈ D , say p = x without loss of generality. 

We claim that then, P c
y,2(1), P c

z,2(1) /∈ D . Indeed, if say P c
y,2(1) ∈ D then, by Observation 9, P c

x,1(2), P c
y,1(2) /∈ D . But then, 

by Observation 11, D ∩ V (G F
c ) 
=∅, a contradiction. Thus, P c

y,2(1) /∈ D and we conclude similarly that P c
z,2(1) /∈ D . But then, 

u /∈ {wxz
c , wxy

c , tx
c }: indeed, if u = tx

c then w yz
c is not dominated, and if u ∈ {wxz

c , wxy
c } then uc is not dominated. It follows 

that u is at distance at least two from P c
x,2(1); in particular, u cannot be part of a friendly triple. Hence, D contains no 

friendly triple and so, G is a No-instance for 1-Edge Contraction(γt2) by Theorem 5(i).
Conversely, assume that G is a No-instance for 1-Edge Contraction(γt2) and consider a minimum semitotal dominating 

set D of G . Observe first that if |D ∩ V (P )| ≥ 3 for some long paw P , then either D ∩ V (P ) contains a friendly triple or 
D ∩ V (P ) = {P (1), P (2), P (5)}. In the latter case, we have that D \ {P (5)} ∪ {P (4)} is a minimum semitotal dominating 
set containing a friendly triple, a contradiction to the fact that G is a No-instance for 1-Edge Contraction(γt2). Thus for 
every variable x ∈ X contained in clauses c, c′ and c′′ , |D ∩ V (P q

x, j)| ≤ 2 for every j ∈ [2] and q ∈ {c, c′, c′′} (similarly, 
|D ∩ {Tx, Fx, ux, vx, wx}| ≤ 2). By Observation 8, we conclude that in fact equality holds. We may further assume that 
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P (5) /∈ D for every long paw P of Gx (consider otherwise (D \{P (5), P (4), P (3)}) ∪{P (3), P (4)}) which implies, in particular, 
that every vertex of a long paw P is dominated by some vertex in D ∩ V (P ). It follows that, for any q ∈ {c, c′, c′′}, bq

x /∈ D: 
indeed, if bq

x ∈ D then Tx /∈ D (D would otherwise contain a friendly triple, namely bq
x, Tx, vx) and so, D ′ = (D \ {bq

x}) ∪ {Tx}
is a minimum semitotal dominating set of G containing a friendly triple, namely D ′ ∩ {Tx, Fx, ux, vx, wx}, a contradiction. By 
symmetry, we conclude that aq

x /∈ D for any q ∈ {c, c′, c′′}. Hence, |D ∩ V (Gx)| = 14. Now consider a clause c ∈ C containing 
variables x, y and z. Suppose first that |D ∩ V (G T

c )| ≥ 2. Then D ∩ {P c
x,2(1), P c

y,2(1), P c
z,2(1)} = ∅: indeed, if say P c

x,2(1) ∈
D , then (D \ V (G T

c )) ∪ {tx
c , t

y
c } is a semitotal dominating set of G of size at most that of D containing a friendly triple, 

namely tx
c , t

y
c , P c

x,2(1), a contradiction. Thus, P c
x,2(1) /∈ D and we conclude similarly that P c

y,2(1), P c
z,2(1) /∈ D . But then, 

D ′ = (D \ V (G T
c )) ∪ {t y

c , P c
x,2(1)} is a semitotal dominating set of G of size at most that of D containing a friendly triple, 

namely D ′ ∩ V (P c
x,2), a contradiction. Thus, |D ∩ V (G T

c )| ≤ 1 and we conclude by Observation 10 that in fact equality 
holds. Second, observe that if |D ∩ V (G F

c )| ≥ 2, say f yz
c , f xy

c ∈ D without loss of generality, then D contains a friendly 
triple as D ∩ {P c

x,1(1), P c
x,1(2), P c

x,1(3)} 
= ∅ by the above, a contradiction. Thus, suppose that |D ∩ V (G F
c )| = 1, say f xy

c ∈ D . 
Then P c

x,1(2), P c
y,1(2) /∈ D: indeed, if P c

p,1(2) ∈ D for some p ∈ {x, y}, then f xy
c ∪ (D ∩ V (P c

p,1)) contains a friendly triple, a 
contradiction. It follows that Fx /∈ D for otherwise (D \ V (P c

x,1)) ∪{P c
x,1(2), P c

x,1(4)} is a minimum semitotal dominating set of 
G containing a friendly triple, namely P c

x,1(2), f xy
c , P c

x,1(4), a contradiction. We conclude similarly that F y /∈ D . But then, we 
may assume that Tx, T y ∈ D (consider otherwise (D \{ux, vx, wx, u y, v y, w y}) ∪{Tx, vx, T y, v y}) and that P c

x,2(1), P c
y,2(1) ∈ D

(consider otherwise (D \ (V (P c
x,2) ∪ V (P c

y,2))) ∪ {P p,2(1), P p,2(4) | p ∈ {x, y}}). But then, (D \ V (G T
c )) ∪ {tx

c } is a minimum 
semitotal dominating set of G containing a friendly triple, namely P c

y,2(1), tx
c , P c

x,2(1), a contradiction. Thus, D ∩ V (G F
c ) = ∅

and so, |D ∩ V (Gc)| = 1. Therefore, |D| = 14|X | + |C |, which concludes the proof. �
By combining Claims 12 and 13, we obtain that G is a No-instance for 1-Edge Contraction(γt2) if and only if � is a Yes-

instance for Positive 1-In-3 3-Sat. There remains to show that G is claw-free. To prove this, we show that, for every vertex 
v ∈ V (G), the neighbourhood of v can be partitioned into (at most) two cliques. Consider first a clause c ∈ C containing 
variables x, y and z. Clearly, N(uc) = {tx

c , t
y
c , tz

c } is a clique. For every � ∈ {x, y, z}, the neighbourhood of tx
c consists of the 

clique {uc, t
y
c , tz

c } and the clique {P c
x,2(1), wxy

c , wxz
c }. We conclude by symmetry that the neighbourhood of t y

c and that of tz
c

consist of two cliques as well. Similarly, the neighbourhood of wxy
c consists of the clique {tx

c , wxz
c , P c

x,2(1)} and the clique 
{t y

c , w yz
c , P c

y,2(1)}. We conclude by symmetry that the neighbourhood of wxz
c and that of w yz

c consist of two cliques as 
well. Finally, the neighbourhood of f xy

c consists of the clique { f xz
c , P c

x,1(2)} and the clique { f yz
c , P c

y,1(2)}. We conclude by 
symmetry that the neighbourhood of f xz

c and that of f yz
c consist of two cliques as well. Consider next a variable x ∈ X

contained in clauses c, c′ and c′′ . Clearly, the neighbourhood of any vertex of degree at most two is partitioned into at 
most two cliques. For every long paw P of Gx , the neighbourhood of P (3) consists of the clique {P (1), P (2)} and the clique 
{P (4)}. The neighbourhood of Tx consists of the clique {Fx, ux} and the clique {bc

x, bc′
x , bc′′

x }. We conclude by symmetry 
that the neighbourhood of Fx consists of two cliques. For every � ∈ {c, c′, c′′}, the neighbourhood of b�

x consists of the 
clique {Tx} ∪ {bp

c | p ∈ {c, c′, c′′} \ {�}} and the clique {P �
x,2(2)}. We conclude by symmetry that, for every � ∈ {c, c′, c′′}, the 

neighbourhood of a�
x consists of two cliques. For every � ∈ {c, c′, c′′}, the neighbourhood of P �

x,2(2) consists of the cliques 
{P �

x,2(1), P �
x,2(3)} and {b�

x}. We conclude by symmetry that for every � ∈ {c, c′, c′′}, the neighbourhood of P �
x,1(1) consists 

of two cliques. Finally, consider a clause � ∈ {c,′ c, c′′} and let y, z ∈ X be the other two variables occurring in �. Then 
the neighbourhood of P �

x,2(1) consists of the cliques {P �
x,2(2), P �

x,2(3)} and {tx
�, w

xy
� , wxz

� }. Similarly, the neighbourhood of 
P �

x,1(2) consists of the clique {P �
x,1(1), P �

x,1(3)} and the clique { f xy
� , f xz

� }. Therefore, G is claw-free. �
Theorem 14. 1-Edge Contraction(γt2) is coNP-hard when restricted to 2P3-free graphs.

Proof. We introduce an auxiliary problem which will be helpful in showing the coNP-hardness of 1-Edge Contraction(γt2)

when restricted to 2P3-free graphs.

All Independent MSD

Instance: A graph G .
Question: Is every minimum semitotal dominating set of G independent?

In the following hardness proof, we reduce from the Positive 1-In-3 3-Sat problem which is a variant of the 3-Sat

problem where, given a formula � in which all literals are positive, the problem is to determine whether there exists a 
truth assignment such that each clause has exactly one true literal. This problem was shown to be NP-complete in [26].

Lemma 15. All Independent MSD is NP-hard when restricted to 2P3-free graphs.
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Proof. We reduce from Positive 1-In-3 3-Sat: given a instance � of this problem, with variable set X and clause set C , we 
construct an equivalent instance G� of All Independent MSD as follows. For every variable x ∈ X , we introduce a triangle 
Gx which has two distinguished truth vertices Tx and Fx (we denote by ux the third vertex of Gx). For every clause c ∈ C
containing variables x, y, z, we introduce a K5, denoted by Gc , with vertex set {vx

c, v
y
c , vz

c, uT
c , uF

c }. The adjacencies between 
the gadgets are as follows.

· For every clause c ∈ C containing variables x, y, z, we connect uT
c to Tx, T y, T z and uF

c to Fx, F y, F z . We further connect 
vs

c to Ts and Fr for every s ∈ {x, y, z} and every r ∈ {x, y, z} \ {s}.
· ⋃

c∈C V (Gc) induces a clique.

We denote by G� the resulting graph.
Since ux must be dominated in any semitotal dominating set, we trivially have the following.

Observation 16. Let D be a semitotal dominating set of G� . Then |D ∩ V (Gx)| ≥ 1 for every variable x ∈ X .

Claim 17. γt2(G�) = |X | if and only if � is satisfiable.

Proof. Assume that � is satisfiable and consider a truth assignment satisfying �. We construct a semitotal dominating set 
D of G� as follows. For every variable x ∈ X , if x is set to true, then we add Tx to D; otherwise, we add Fx to D . Clearly, 
every variable gadget is dominated by some vertex in D . Now consider a clause c containing variables x, y, z. Then, exactly 
one variable is set to true, say x without loss of generality. Since {Tx, F y, F z} ⊂ D , vx

c and uT
c are dominated by Tx , v y

c and 
uF

c are dominated by F z and vz
c is dominated by F y . Furthermore, Tx, F y, F z are pairwise at distance exactly two (vx

c is a 
common neighbour). Thus, D is a semitotal dominating set of G� and has minimum size by Observation 16.

Conversely, assume that γt2(G�) = |X | and let D be a minimum semitotal dominating set of G� . Then, by Observation 16, 
|D ∩ V (Gx)| = 1 for every variable x ∈ X which, in turn, implies that D ∩ ⋃

c∈C V (Gc) = ∅. It follows that, for any variable 
x ∈ X , ux /∈ D: indeed, if ux ∈ D for some variable x ∈ X , then ux has no witness as D ∩ ({Tx, Fx} ∪ ⋃

c∈C V (Gc)) = ∅, a 
contradiction. Now consider a clause c ∈ C containing variables x, y, z. Suppose that there exist two variables s, r ∈ {x, y, z}
such that {Ts, Tr} ⊂ D . Then one of uF

c and vq
c , where q ∈ {x, y, z} \ {s, r}, is not dominated: indeed, either Tq ∈ D in which 

case uF
c is not dominated, or Fq ∈ D in which case vq

c is not dominated. Thus, there exists at most one variable s ∈ {x, y, z}
such that Ts ∈ D , and since uT

c must be dominated, we conclude that such a variable exists. It follows that the truth 
assignment obtained by setting x to true if Tx ∈ D , and x to false if Fx ∈ D , satisfies �. �
Claim 18. γt2(G�) = |X | if and only if G� is a Yes-instance for All Independent MSD.

Proof. Assume that γt2(G�) = |X | and let D be a minimum semitotal dominating set of G� . Then, by Observation 16, 
|D ∩ V (Gx)| = 1 for any variable x ∈ X , which implies that D ∩ ⋃

c∈C V (Gc) = ∅. Thus, D is independent and so, G� is a
Yes-instance for All Independent MSD.

Conversely, assume that G� is a Yes-instance for All Independent MSD and let D be a minimum semitotal dominating 
set of G� . Since D is independent, |D ∩ V (Gx)| ≤ 1 for any variable x ∈ X , and we conclude by Observation 16 that, in fact, 
equality holds. Furthermore, we may assume that for any variable x ∈ X , ux /∈ D as it suffices to consider (D \ {ux}) ∪ {Tx}
otherwise. It follows that if two variables x and y both occur in some clause c, and that r ∈ D ∩ V (Gx) and s ∈ D ∩
V (G y), then r and s witness each other: indeed, d(Tx, T y) = d(Fx, F y) = d(Tx, F y) = d(T y, Fx) = 2. Now consider a clause 
c ∈ C containing variables x, y, z, and suppose to the contrary that there exists w ∈ V (Gc) ∩ D . Since D is independent, 
(D ∩ ⋃

c′∈C V (Gc′ )) = {w} (recall that 
⋃

c′∈C V (Gc′ ) induces a clique). Furthermore, by the previous observation, any vertex 
t ∈ D witnessed by w is also witnessed by a vertex in D \ {w}. Thus, we may replace w with either uT

c or uF
c , and obtain a 

semitotal dominating set of G� which is not independent. Indeed, if D ∩{Fx, F y, F z} 
=∅, then (D \{w}) ∪{uF
c } is a minimum 

semitotal dominating set of G� which is not independent. Otherwise, (D \ {w}) ∪ {uT
c } is a minimum semitotal dominating 

set of G� which is not independent. Since this contradicts the fact that G� is a Yes-instance for All Independent MSD, we 
conclude that D ∩ ⋃

c∈C V (Gc) =∅ and so, γt2(G�) = |D| = |X |. �
By combining Claims 17 and 18, we obtain that � is satisfiable if and only if G� is a Yes-instance for All Independent 

MSD. Since G� is easily seen to be 2P3-free, the lemma follows. �
Lemma 19. Let G be a 2P3-free graph. Then G is a Yes-instance for 1-Edge Contrac-tion(γt2) if and only if G is a No-instance for
All Independent MSD.

Proof. If G is a Yes-instance for 1-Edge Contraction(γt2) then, by Theorem 5(i), G has a minimum semitotal dominating 
set containing a friendly triple which is, a fortiori, not independent. Thus, G is a No-instance for All Independent MSD.

Conversely, assume that G is a No-instance for All Independent MSD and let D be a minimum semitotal dominating set 
of G which is not independent. If D contains a friendly triple, then we conclude by Theorem 5(i) that G is a Yes-instance 
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for 1-Edge Contraction(γt2). Thus, suppose that D contains no friendly triple. We show that we can modify D to obtain 
a minimum semitotal dominating set which contains a friendly triple. To this end, let x, y ∈ D be two adjacent vertices. 
Consider a vertex z ∈ D \ {x, y} such that d(z, {x, y}) = minu∈D\{x,y} d(u, {x, y}) and assume without loss of generality that 
d(z, {x, y}) = d(z, x). By assumption, d(x, z) > 2 and, since G is 2P3-free, d(x, z) ≤ 5.

Suppose first that d(x, z) = 3 and let P = xuvz be a shortest path from x to z. Let w ∈ D be a closest witness for z. 
Suppose first that w is adjacent to z. If y has no private neighbour, then (D \ {y}) ∪ {u} is a minimum semitotal dominating 
set of G (indeed, since D contains no friendly triple by assumption, y is a witness for x only) containing a friendly triple, 
namely x, u, z. We conclude similarly if w has no private neighbour. Thus, we may assume that both y and w have at 
least one private neighbour, say p y and pw respectively. Then the private neighbourhood of w must be complete to the 
private neighbourhood of y: indeed, if y has a private neighbour a and w has a private neighbour b such that a and b
are nonadjacent, then {a, y, x, b, w, z} induces a 2P3, a contradiction. It follows that (D \ {y, w}) ∪ {p y, pw} is a minimum 
semitotal dominating set containing a friendly triple, namely p y, pw , x. Second, suppose that d(z, w) = 2. If w is adjacent 
to v , then every private neighbour of y is adjacent to v: indeed, if y has a private neighbour p y which is nonadjacent to 
v , then {p y, y, x, z, v, w} induces a 2P3, a contradiction. But then, (D \ {y}) ∪ {v} is a minimum semitotal dominating set 
containing a friendly triple, namely z, v, w . Thus, assume that w is nonadjacent to v and let t be the internal vertex in a 
shortest path from z to w . If x has no private neighbour, then y is adjacent to u (u would otherwise be a private neighbour 
of x) and so, the minimum dominating set (D \ {x}) ∪ {u} contains a friendly triple, namely y, u, z. Thus, assume that x has 
at least one private neighbour. Then every private neighbour px of x must be adjacent to t , for otherwise {px, x, y, z, t, w}
induces a 2P3; in particular, x is at distance two from t . Similarly, we conclude that every private neighbour of y is adjacent 
to t . It then follows that (D \ {y}) ∪ {t} is a minimum semitotal dominating set of G containing a friendly triple, namely 
z, t, w .

Suppose next that d(x, z) = 4 and let P = xuvtz be a shortest path from x to z. Let w ∈ D be a witness for z. Suppose 
first that w is adjacent to z. We claim that either y has no private neighbour or w has no private neighbour. Indeed, 
if y has a private neighbour p y and w has a private neighbour pw , then p y and pw must be adjacent for otherwise, 
{p y, y, x, pw , w, z} induces a 2P3, a contradiction. But then, d(y, w) ≤ 3 < d(x, z), a contradiction to our assumption. Thus, 
assume, without loss of generality, that y has no private neighbour. Then it suffices to consider (D \ {y}) ∪ {u} and go back 
to the previous case. Second, suppose that d(z, w) = 2 and let q be the internal vertex in a shortest path from z to w . Then 
y has no private neighbour: indeed, if y has a private neighbour a, then a is adjacent to q ({a, y, x, w, q, z} would otherwise 
induce a 2P3), which implies that d(y, z) ≤ 3 < d(x, z), a contradiction to the choice of z. But then, it suffices to consider 
(D \ {y}) ∪ {u} and go back to the previous case.

Suppose, finally, that d(x, z) = 5 and let P = u1 . . . u6, where u1 = x and u6 = z, be a shortest path from x to z. Then y has 
no private neighbour: indeed, if y has a private neighbour a, then a is adjacent to either u4 or u5 (since {a, y, x, u4, u5, z}
would otherwise induce a 2P3) and so, d(y, z) ≤ 4 < d(x, z), a contradiction to our assumption. But then, it suffices to 
consider (D \ {y}) ∪ {u2} and go back to the previous case, which concludes the proof. �

Theorem 14 now follows from Lemmas 15 and 19. �
We next focus on C-free graphs, where C is a (possibly infinite) family of cycles, and show a relation between 1-Edge 

Contraction(γ ) and 1-Edge Contraction(γt2).

Lemma 20. Let C be a (possibly infinite) family of cycles. If 1-Edge Contraction(γ ) is NP-hard when restricted to C-free graphs then
1-Edge Contraction(γt2) is NP-hard when restricted to C-free graphs.

Proof. Let G be a C-free graph. We construct a C-free graph T (G) such that G is a Yes-instance for 1-Edge Contraction(γ )

if and only if T (G) is a Yes-instance for 1-Edge Contraction(γt2), as follows. For every vertex v ∈ V (G), we attach a copy of 
the tree T v depicted in Fig. 5 by connecting v to av . We let T (G) be the resulting graph. Clearly, T (G) is C-free.

Fig. 5. The tree T v .

Let us first show that γt2(T (G)) = γ (G) + 2|V (G)|. Clearly, if D is a minimum dominating set of G then D ∪ {bv , dv : v ∈
V (G)} is a semitotal dominating set of T (G). Thus, γt2(T (G)) ≤ γ (G) + 2|V (G)|. Conversely, let D be a minimum semitotal 
dominating set of T (G). We claim that, for every v ∈ V (G), bv ∈ D . Indeed, suppose to the contrary that there exists 
v ∈ V (G) such that bv /∈ D . Since for every i ∈ [3], yv

i must be dominated, it follows that yv
1 , yv

2 , yv
3 ∈ D . But then, (D \

{yv , yv}) ∪ {bv} is a semitotal dominating set of T (G) of size strictly less than |D|, a contradiction to the minimality of D . 
1 2
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Using similar arguments, we can show that, for every v ∈ V (G), dv ∈ D . This implies that, for every v ∈ V (G) and i ∈ [3], 
cv , xv

i , yv
i /∈ D . Moreover, if av ∈ D for some v ∈ V (G), then (D \ {av}) ∪ {v} is a semitotal dominating set of T (G) of size at 

most |D|. Thus, T (G) has a minimum semitotal dominating set D such that D ∩ {av : v ∈ V (G)} = ∅, and, since bv , dv ∈ D
for every v ∈ V (G), in fact D ∩ V (T v ) = {bv , dv} for every v ∈ V (G). Let D be such a minimum semitotal dominating 
set. We claim that D \ {bv , dv : v ∈ V (G)} is a dominating set of G . Indeed, since, for every v ∈ V (G), av /∈ D , necessarily 
D ∩ (NT (G)[v] \ {av}) 
=∅ for, otherwise, v would not be dominated in D . Thus, γ (G) ≤ γt2(T (G)) − 2|V (G)| and, combined 
with the above inequality, we conclude that in fact equality holds.

Now assume that G is a Yes-instance for 1-Edge Contraction(γ ) and let D be a minimum dominating set of G containing 
at least one edge xy ∈ E(G) (see Theorem 2(i)). Then, clearly, D ∪ {bv , dv : v ∈ V (G)} is a minimum semitotal dominating 
set containing a friendly triple, namely x, y, by .

Conversely, assume that T (G) is a Yes-instance for 1-Edge Contraction(γt2) and let D be a minimum semitotal dominat-
ing set containing a friendly triple (see Theorem 5), say x, y, z where xy ∈ E(T (G)) and dT (G)(y, z) ≤ 2. Now observe that 
either both x and y belong to V (G), or there exists v ∈ V (G) such that both x and y belong to V (T v ). Indeed, if x ∈ V (G)

and y ∈ V (T v) for some v ∈ V (G), then necessarily v = x and y = av . But then, since bv ∈ D by the above, D \ {av} is a 
semitotal dominating set of T (G) of size strictly less that |D|, a contradiction to the minimality of D . Now if both x and y
belong to V (G) then, by the above, (D ∩ V (G)) ∪ {v : av ∈ D} is a minimum dominating set of G containing an edge, namely 
xy. Next, assume that there exists v ∈ V (G) such that x, y ∈ V (T v). As shown above, {x, y} ∩ {yv

1 , yv
2 , yv

3 , xv
1 , xv

2 , xv
3 , cv} = ∅

(it would otherwise contradict the minimality of D as bv , dv ∈ D) and so, {x, y} = {av , bv}. But then, v /∈ D for otherwise, 
D \ {av} would be a semitotal dominating set of T (G) of size strictly less than |D|. Now consider a neighbour w ∈ V (G)

of v . Then w /∈ D for otherwise, D \ {av} would be a semitotal dominating set of T (G) of size strictly less than |D|, a 
contradiction to the minimality of D . But since w is dominated in D , w has a neighbour u in D . If u = aw then, by the 
above, (D ∩ V (G)) ∪ {t : at ∈ D} is a minimum dominating set of G containing an edge, namely w v . Otherwise, u ∈ V (G)

and so, (D \ {av}) ∪ {w} is a minimum semitotal dominating set of T (G) containing a friendly triple whose edge lies in 
V (G), namely u, w, bw , and we proceed as previously. Since, in any case, we can construct a minimum dominating set of G
containing an edge, we conclude by Theorem 2(i) that G is a Yes-instance for 1-Edge Contraction(γ ). �

In [8], the authors showed the following result for 1-Edge Contraction(γ ).

Theorem 21 ([8]). 1-Edge Contraction(γ ) is NP-hard when restricted to {C3, . . . , C�}-free graphs for any � ≥ 3, and when restricted 
to bipartite graphs.

By combining Lemma 20 and Theorem 21, we obtain the following.

Theorem 22. 1-Edge Contraction(γt2) is NP-hard when restricted to {C3, . . . , C�}-free graphs for any � ≥ 3, and when restricted to 
bipartite graphs.

Finally, similar to the case of domination, we can show the following.

Theorem 23. 1-Edge Contraction(γt2) is NP-hard when restricted to {P6, P4 + P2}-free chordal graphs.

Proof. We use the same construction as in [8, Theorem 3.1]: given an instance (G, �) of Dominating Set, we construct an 
equivalent instance G ′ of 1-Edge Contraction(γt2) as follows. We denote by {v1, . . . , vn} the vertex set of G . The vertex set 
of the graph G ′ is given by V (G ′) = V 0 ∪ . . .∪ V� ∪ {x0, . . . , x�, y}, where each V i is a copy of the vertex set of G . We denote 
the vertices of V i by vi

1, v
i
2, . . . , v

i
n . The adjacencies in G ′ are then defined as follows (see Fig. 6):

· V 0 ∪ {x0} is a clique;
· yx0 ∈ E(G ′);

and for 1 ≤ i ≤ �,

· V i is an independent set;
· xi is adjacent to all the vertices of V 0 ∪ V i ;
· vi

j is adjacent to {v0
a | va ∈ NG [v j]} for any 1 ≤ j ≤ n.

Claim 24. γt2(G ′) = min{γ (G) + 1, � + 1}.

Proof. It is clear that {x0, x1, . . . , x�} is a semitotal dominating set of G ′ and so, γt2(G ′) ≤ � + 1. Conversely, if γ (G) ≤ �

and {vi1 , . . . , vip } is a minimum dominating set of G , it is easily seen that {v0
i1
, . . . , v0

ip
, x0} is a semitotal dominating 

set of G ′ . Thus, γt2(G ′) ≤ γ (G) + 1 and so, γt2(G ′) ≤ min{γ (G) + 1, � + 1}. Now, suppose to the contrary that γt2(G ′) <
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V 0

x1

V 1

x2

V 2

. . .x�

V�

x0
y

Fig. 6. The graph G ′ (thick lines indicate that the vertex xi is adjacent to every vertex in V 0 and V i , for i = 0, . . . , �).

min{γ (G) + 1, � + 1}, and consider a minimum semitotal dominating set D ′ of G ′ . We first make the following simple 
observation.

Observation 25. For any semitotal dominating set D of G ′ , D ∩ {y, x0} 
= ∅.

Since γt2(G ′) < � + 1, there exists 1 ≤ i ≤ � such that xi /∈ D ′ (otherwise, {x1, . . . , x�} ⊂ D ′ and, combined with Ob-
servation 25, D ′ would be of size at least � + 1). But then, D ′′ = D ′ ∩ (V 0 ∪ V i) must dominate every vertex in V i , and 
so |D ′′| ≥ γ (G). Since |D ′′| ≤ |D ′| − 1 (recall that D ′ ∩ {y, x0} 
= ∅), we then have γ (G) ≤ |D ′| − 1, a contradiction. Thus, 
γt2(G ′) = min{γ (G) + 1, � + 1}. �

We now show that (G, �) is a Yes-instance for Dominating Set with γ (G) ≥ 2 if and only if G ′ is a Yes-instance for
1-Edge Contraction(γt2).

Assume first that γ (G) ≤ �. Then γt2(G ′) = γ (G) + 1 by the previous claim, and, if {vi1 , . . . , vip } is a minimum dominat-
ing set of G , then {v0

i1
, . . . , v0

ip
, x0} is a minimum semitotal dominating set of G ′ containing a friendly triple (recall that we 

assume that γ (G) ≥ 2). Hence, by Theorem 5(i), G ′ is a Yes-instance for 1-Edge Contraction(γt2).
Conversely, assume that G ′ is a Yes-instance for 1-Edge Contraction(γt2), that is, there exists a minimum semitotal 

dominating set D ′ of G ′ containing a friendly triple (see Theorem 5(i)), say x, y, z where xy ∈ E(G ′) and dG ′ (y, z) ≤ 2. Then 
Observation 25 implies that there exists 1 ≤ i ≤ � such that xi /∈ D ′: indeed, if this were not the case, then we would have, 
by Claim 24, that γt2(G ′) = � + 1. But then, D ′ would consist of x1, . . . , x� and x0, and so, D ′ would not contain a friendly 
triple, a contradiction. It follows that D ′′ = D ′ ∩ (V 0 ∪ V i) must dominate every vertex in V i and, thus, |D ′′| ≥ γ (G). But 
|D ′′| ≤ |D ′| −1 (recall that D ′ ∩ {y, x0} 
=∅) and so, by Claim 24, γ (G) ≤ |D ′| −1 ≤ (� +1) −1, that is, (G, �) is a Yes-instance 
for Dominating Set.

Since it was shown in [8, Theorem 3.1] that G ′ is a {P6, P4 + P2}-free chordal graph, the result follows. �
4.2. Polynomial cases

We now focus on graph classes for which 1-Edge Contraction(γt2) can be solved in polynomial time. A first simple 
approach to the problem, from which we obtain Proposition 26, is based on brute force.

Proposition 26. 1-Edge Contraction(γt2) (respectively 2-Edge Contraction(γt2)) can be solved in polynomial time when restricted 
to a graph class C , if either

(a) C is closed under edge contractions and Semitotal Dominating Set can be solved in polynomial time on C; or
(b) for every G ∈ C , γt2(G) ≤ q, where q is some fixed constant; or
(c) C is the class of (H + K1)-free graphs, where |V (H)| = q is a fixed constant and 1-Edge Contraction(γt2) (respectively 2-Edge 

Contraction(γt2)) is polynomial-time solvable on H-free graphs.

Proof. In order to prove item (a), it suffices to note that, if we can compute γt2(G), γt2(G/e) and γt2(G/ 
{

e, e′}), for any 
edges e, e′ of G , in polynomial time, then we can determine whether a graph G is a Yes-instance for 1-Edge Contraction(γt2)

or 2-Edge Contraction(γt2) in polynomial time.
For item (b), we proceed as follows. Given a graph G of C , we consider every subset S ⊆ V (G) with |S| ≤ q +1 and check 

whether it is a semitotal dominating set of G . Since there are at most O (nq+1) such possible subsets, we can determine the 
semitotal domination number of G and check whether the conditions given in Theorem 5 are satisfied in polynomial time.

Finally, so as to prove item (c), we provide the following algorithm. Let H and q be as stated and let G be a (H + K1)-
free graph. We first test whether G is H-free (note that this can be done in time O (nq)). If this is the case, we use the 
polynomial-time algorithm for 1-Edge Contraction(γt2) (respectively 2-Edge Contraction(γt2)) on H-free graphs. Otherwise, 
G has an induced subgraph isomorphic to H . But, since G is a (H + K1)-free graph, V (H) must then be a dominating 
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Fig. 7. The graph P .

set of G and so, γt2(G) ≤ 2q. We then conclude by Proposition 26(b) that 1-Edge Contraction(γt2) (respectively 2-Edge 
Contraction(γt2)) is also polynomial-time solvable in this case. �

We use below the following result by Galby et al. [8].

Lemma 27 ([8]). If G is a P5-free graph and γ (G) ≥ 3, then ctγ (G) = 1.

Lemma 28. Let G be a P5-free graph. If γt2(G) = 2 then G is a No-instance for 1-Edge Contraction(γt2), otherwise G is a Yes-
instance for 1-Edge Contraction(γt2).

Proof. Let G be a P5-free graph. If γt2(G) = 2 then G is clearly a No-instance for 1-Edge Contraction(γt2). Assume hence-
forth that γt2(G) ≥ 3. Since G is P5-free, G is in particular (C6, P6, P )-free (see Fig. 7). It then follows from [11] that 
γ (G) = γt2(G). Now, by Lemma 27, ctγ (G) = 1, which implies that there exists a minimum dominating set of G which is 
not independent (see Theorem 2(i)). Amongst those non-independent minimum dominating sets, consider one D with the 
fewest unwitnessed vertices. Let us show that D is a semitotal dominating set.

Suppose to the contrary that there exists w ∈ D such that w has no witness, and let u ∈ D be a vertex such that 
dG (w, D\{w}) = dG (w, u). Since G is P5-free, dG(u, w) ≤ 3, and, since dG (u, w) > 2 by assumption, in fact dG (u, w) = 3. Let 
x (respectively y) be the neighbour of u (respectively w) on a shortest path from u to w . We claim that NG (u) ∪ NG(w) ⊆
NG(x) ∪ NG(y). Indeed, if a is a neighbour of u, then a is nonadjacent to w (otherwise dG(u, w) ≤ 2). But then, a is adjacent 
to either x or y for otherwise, auxyw would induce a P5. We conclude similarly if a is a neighbour of w . It follows 
that (D\{u, w}) ∪ {x, y}) is a dominating set which is not independent and contains fewer unwitnessed vertices than D , a 
contradiction to its minimality. Thus, D is a minimum semitotal dominating set.

Now consider u, v ∈ D such that uv ∈ E(G). If there exists w ∈ D such that dG (w, {u, v}) ≤ 2, then u, v, w is a friendly 
triple contained in D , and we conclude by Theorem 5(i). Assume henceforth that no such vertex exists, and consider a 
vertex w ∈ D closest to {u, v}. Since G is P5-free, dG(w, {u, v}) ≤ 3, and, since dG(w, {u, v}) > 2 by assumption, in fact 
dG (w, {u, v}) = 3. Assume, without loss of generality, that dG (w, v) ≥ dG(w, u) = 3 and denote by x (respectively y) the 
neighbour of u (respectively w) on a shortest path from u to w . Then, as previously, we have that NG(w) ∪ NG(u) ⊆
NG(x) ∪ NG(y). It follows that D ′ = (D\{u, w}) ∪ {x, y} is a minimum semitotal dominating set: indeed, by assumption, no 
vertex in D \ {v} has u as a witness, and, since NG (w) ⊆ NG(x) ∪ NG(y), any vertex in D witnessed by w is witnessed by x
or y in D ′ . But D ′ contains a friendly triple, namely x, y, v , and, thus, ctγt2 (G) = 1 by Theorem 5(i). �

By combining Lemma 28 and Proposition 26(c), we obtain the following.

Theorem 29. For any fixed t ≥ 0, 1-Edge Contraction(γt2) is polynomial-time solvable when restricted to (P5 + t K1)-free graphs.

Let us now present the last result of this section which concerns P3 + kP2-free graphs.

Theorem 30. For any k ≥ 0, 1-Edge Contraction(γt2) is polynomial-time solvable when restricted to P3 + kP2-free graphs.

Proof. First observe that, if G does not contain an induced P3, then G is a clique (recall that, by assumption, G is connected) 
and, thus, a No-instance for 1-Edge Contraction(γt2). Assume henceforth that k ≥ 1 and let G be a P3 + kP2-free graph 
containing an induced P3 + (k − 1)P2. The following proof is similar to that of [10, Theorem 2]. Let A ⊆ V (G) be a set of 
vertices which induces a P3 + (k − 1)P2, let B ⊂ V (G) be the set of vertices at distance one from A and let C ⊂ V (G) be 
the set of vertices at distance two from A. Note that, since G is P3 + kP2-free, the sets A, B and C partition V (G) and C is 
an independent set. We call a vertex v1 ∈ C a regular vertex if there exist k vertices v2, . . . , vk+1 ∈ C such that v1, . . . , vk+1
are pairwise at distance at least four and, for every i ∈ [k + 1], N(vi) is a clique. We denote by R the set of regular vertices.

Claim 31. If R 
= ∅ then the following holds.

(i) γ (G) = γt2(G).
(ii) G is a Yes-instance for 1-Edge Contraction(γ ) if and only if G is a Yes-instance for 1-Edge Contraction(γt2).

Proof. Let V 1 ⊆ V (G) \ N[R] be the set of vertices at distance one from N[R] and let V 2 = V (G) \ (N[R] ∪ V 1). Note that, 
since G[N[R]] contains an induced (k + 1)P2, V 2 is P3-free and, thus, G[V 2] is a disjoint union of cliques.
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The following was shown in the proof of [10, Claim 6].

Claim 32 ([10]). If a vertex v ∈ V 1 is adjacent to a vertex in N(c), for some regular vertex c ∈R, then there exists c′ ∈R \{c}
such that v is complete to N(c′).

Let D be a minimum dominating set of G . We first show how to modify D in order to obtain a minimum dominating 
set S(D) of G satisfying the following.

(1) For every regular vertex c, S(D) ∩ N[c] = S(D) ∩ N(c) = {b} for some vertex b with at least one neighbour in V (G) \ N[c].
(2) For every u ∈ S(D) ∩ V 2, u has at least one neighbour in V 1.
(3) If D contains an edge e then S(D) also contains e.

First, it was shown in [10, Claim 7] that |D ∩ N[c]| = 1 for every regular vertex c. Now suppose that D does not already 
satisfy (1), that is, there exists a regular vertex c such that D ∩N[c] = {v} for some vertex v with no neighbour in V (G) \N[c]
(possibly v = c). Since G is connected, c must have a neighbour b with at least one neighbour in V (G) \ N[c]. Since c is 
regular, any neighbour of c contains N[c] in its neighbourhood and so N[b] ⊃ N[v] = N[c].

It follows that (D \ {v}) ∪ {b} is a dominating set which contains fewer regular vertices violating (1) than D . Further note 
that, if D contains an edge e, then v is not an endpoint of e since N[v] = N[c] and |N[c] ∩ D| = 1. Thus, no edge is destroyed 
by replacing v with b in D . By reiterating this process if necessary, we obtain a minimum dominating set satisfying (1). 
Suppose next that D does not already satisfy (2), that is, there exists a vertex v ∈ D ∩ V 2 such that v has no neighbour 
in V 1. Denote by Cv the clique of V 2 containing v . Note that, by minimality of D , D ∩ C v = {v}. Furthermore, since G is 
connected, Cv \ {v} 
= ∅ and Nv = {w ∈ Cv \ {v} | N(w) ∩ V 1 
= ∅} 
= ∅. Thus, the dominating set (D \ {v}) ∪ {u}, where 
u ∈ Nv , contains fewer vertices in V 2 violating (2) than D . Additionally, if D contains an edge e, then v is not an endpoint 
of e and so, no edge is destroyed by replacing v with u in D . By reiterating this process if necessary, we obtain a minimum 
dominating set satisfying (2), and still satisfying (1). Furthermore, no edge, if it exists, is destroyed in a replacement process 
and thus, (3) holds true as well.

We now claim that S(D) is in fact a semitotal dominating set. Indeed, let us show that every vertex in S(D) is within 
distance at most two from another vertex in S(D). Consider first a regular vertex c ∈R. By (1), S(D) ∩ N[c] = S(D) ∩ N(c) =
{b} for some vertex b with at least one neighbour outside of N[c], that is, with at least one neighbour in V 1 ∪ N[R \ {c}]. 
Suppose first that b has a neighbour in N[R \ {c}], and let c′ ∈R \ {c} be a regular vertex such that b is adjacent to a vertex 
in N[c′]. Let us show that b /∈ N(c′) (note that b 
= c′ since C is an independent set). Suppose for a contradiction that b is 
adjacent to c′ . Since c is a regular vertex, there exist k regular vertices c1, . . . , ck ∈ R \ {c, c′} pairwise at distance at least 
four, such that c is at distance at least four from each ci (which is the reason why c′ 
= ci for each i). Now for every i ∈ [k], 
let vi ∈ N(ci) be a neighbour of ci . Then, for every i ∈ [k], vi is nonadjacent to c′: indeed, if there exists i ∈ [k] such that 
vi ∈ N(c′) then vi is adjacent to b since N(c′) is a clique (recall that c′ is a regular vertex); but, then, ci vibc is a path of 
length three from ci to c, a contradiction to the fact that d(ci, c) ≥ 4. It follows that the set {c, b, c′} ∪{ci, vi | i ∈ [k]} induces 
a P3 +kP2, a contradiction. Therefore, b /∈ N(c′); but, by (1), N(c′) ∩ S(D) 
= ∅, and N(c′) is a clique, and, so, b is at distance 
at most two from the vertex in N(c′) ∩ S(D). Second, suppose that b has no neighbour in N[R \ {c}]. Then, by assumption, 
b must have a neighbour v ∈ V 1. By Claim 32, there then exists c′ ∈ R \ {c} such that v is complete to N(c′). But, by (1), 
N(c′) ∩ S(D) 
= ∅, and b /∈ N(c′) by assumption, and, so, b is at distance two from the vertex in N(c′) ∩ S(D). Thus, in both 
cases, we conclude that b is within distance at most two from another vertex in S(D). Now, every vertex v ∈ S(D) ∩ V 1
has a witness in S(D) ∩ N(R) as, by Claim 32, v is complete to N(c) for some regular vertex c, and N(c) ∩ S(D) 
= ∅ by 
(1). Similarly, every vertex in S(D) ∩ V 2 is within distance at most two from a vertex in S(D) ∩ N(R). Indeed, every vertex 
v ∈ S(D) ∩ V 2 has at least one neighbour u ∈ V 1 by (2). However, by Claim 32, u is complete to N(c) for some regular vertex 
c, and S(D) ∩ N(c) 
= ∅ by (1). It follows that every vertex in S(D) has a witness and, thus, S(D) is a semitotal dominating 
set of G as claimed. Since γ (H) ≤ γt2(H) for any graph H , we conclude that γ (G) = γt2(G).

Now suppose that D initially contained an edge e = uv , that is, G is a Yes-instance for 1-Edge Contraction(γ ). Then, by 
(3), S(D) also contains the edge e. Suppose first that u ∈ N(c) and v ∈ N(c′) for some c, c′ ∈ R (note that c 
= c′ as, by (1), 
|S(D) ∩ N(v)| = 1 for every regular vertex v). Since c is a regular vertex, there exist c1, . . . , ck ∈ R such that c, c1, . . . , ck
are pairwise at distance at least four (note that, since u and v are adjacent, d(c, c′) ≤ 3 and, so, c′ 
= ci for every i ∈ [k]). 
For every i ∈ [k], denote by vi the vertex in S(D) ∩ N(ci) (such vertices exist by (1)). Note that, since, for every i ∈ [k], c is 
at distance at least four from ci , u is nonadjacent to vi . Similarly, for every i ∈ [k], v is nonadjacent to ci : indeed, if there 
exists i ∈ [k] such that v is adjacent to ci , then the path cuvci has length 3 < d(c, ci) (recall that, by assumption, c is at 
distance at least four from ci ), a contradiction. It follows that there exists j ∈ [k] such that v is adjacent to v j for, otherwise, 
v, u, c, c1, v1, . . . , ck, vk induce a P3 + kP2. But, then, u, v, v j is a friendly triple. Now suppose that one of u and v belongs 
to V 1, say u ∈ V 1 without loss of generality. By definition of V 1, there exists w ∈ R such that u is adjacent to a vertex 
of N(w). By Claim 32, there then exists a regular vertex c ∈ R \ {w} such that u is complete to N(c); and, by applying 
Claim 32 a second time with c, we conclude that there exists a regular vertex c′ ∈R \ {c} such that u is complete to N(c′). 
Note that c′ could be w . Now, by (1), there are vertices x and y such that S(D) ∩ N(c) = {x} and S(D) ∩ N(c′) = {y}. Since u
is complete to both N(c) and N(c′) it follows that u is adjacent to both x and y. We claim that x 
= y. Indeed, suppose for a 
contradiction that x = y. Since c is a regular vertex, there exist c1, . . . , ck ∈R such that c, c1, . . . , ck are pairwise at distance 
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at least four (note that, since d(c, c′) ≤ 2, c′ 
= ci for every i ∈ [k]). Now, for every i ∈ [k], let vi ∈ N(ci) be a neighbour of ci . 
Then, for every i ∈ [k], vi is nonadjacent to x: indeed, if there exists i ∈ [k] such that vi ∈ N(x) then cxvici is a path of length 
three from c to ci , a contradiction to the fact that d(c, ci) ≥ 4. Similarly, for every i ∈ [k], vi is nonadjacent to c′: indeed, if 
there exists i ∈ [k] such that vi ∈ N(c′) then vi is adjacent to y = x since N(c′) is a clique (recall that c′ is a regular vertex); 
but, then, ci vi xc is a path of length three from ci to c, a contradiction to the fact that d(c, ci) ≥ 4. It follows that the set 
{c, x, c′} ∪ {ci, vi | i ∈ [k]} induces a P3 + kP2, a contradiction. Therefore, x 
= y. Assuming without loss of generality that 
v 
= y, we then have that u, v, y is a friendly triple. Finally, if u, v ∈ V 2 then, by (2), u is adjacent to some vertex w ∈ V 1. 
However, by the above, w is then complete to N(c) for some regular vertex c, and since, by (1), S(D) ∩ N(c) = {b}, it follows 
that u, v, b is a friendly triple. Since, in every case, we can find a friendly triple, we conclude by Theorem 5(i) that G is a
Yes-instance for 1-Edge Contraction(γt2). Conversely, if there exists a minimum semitotal dominating set D of G containing 
a friendly triple, then D is, a fortiori, a minimum dominating set of G containing an edge and, thus, G is a Yes-instance for
1-Edge Contraction(γ ). �
Proposition 33. If R =∅ and G is a No-instance for 1-Edge Contraction (γt2) then γt2(G) ≤ (k + 1)(|A| + 2k + 4) +k + 6|A| − 4.

Proof. To prove Proposition 33, we first prove the following claims. Assume henceforth that R = ∅.

Claim 34. If G is a No-instance for 1-Edge Contraction(γt2) and D is a minimum semitotal dominating set of G , then every 
connected component of G[D] has cardinality at most two and there are at most |A| components of cardinality 2.

Proof. The first claim follows from Theorem 5(i), since any connected component of size at least three in G[D] would 
contain a friendly triple. For the second claim, since any component of size two has to be at distance at least three to 
every other component (D would otherwise contain a friendly triple), every vertex of A can be adjacent to at most one 
component of size two. On the other hand, every size-two-component C0 of G[D] has to be adjacent to at least one vertex 
in A for otherwise A ∪ C0 would induce a P3 + kP2. �

Assume henceforth that G is a No-instance. In the following, given a minimum semitotal dominating set D of G , we 
denote by D ′ ⊆ D the set of size-one components in D (note that D ′ is an independent set).

Claim 35. Let D be a minimum semitotal dominating set of G . If there exists a vertex b ∈ B ∩ D ′ such that b has more than 
one private neighbour in C , then |B ∩ D ′| ≤ k|A|.

Proof. Assume that there exists a vertex b ∈ B ∩ D ′ which has at least two private neighbours in C , say x and y. Suppose 
for a contradiction that there are at least k|A| further vertices in B ∩ D ′ besides b, say b1, . . . , bk|A| . For every i ∈ [k], there 
has to be a vertex ci ∈ C such that N(ci) ∩ D ⊆ {b(i−1)|A|+1, . . . , bi|A|}. Indeed, if, for some i ∈ [k], no such vertex in C
exists, then (D \ {b(i−1)|A|+1, . . . , bi|A|}) ∪ A is a minimum semitotal dominating set containing a friendly triple P3 in A (note 
indeed that A dominates all of A ∪ B and every vertex is within distance at most two of a vertex in A), a contradiction 
to Theorem 5. Thus, assume, without loss of generality, that bi|A| is adjacent to ci for every i ∈ [k]. Then, the vertices 
x, b, y, c1, . . . , ck, b|A|, b2|A|, . . . , bk|A| induce a P3 + kP2, a contradiction. �
Claim 36. Let D be a minimum semitotal dominating set of G . If there exists a vertex c ∈ C such that |N(c) ∩ D ′| ≥ 2, then 
c is adjacent to all vertices in B ∩ D ′ except for at most k|A| − 1.

Proof. Assume that c ∈ C has at least two neighbours x, y ∈ B ∩ D ′ . Suppose for a contradiction that there are at least k|A|
vertices in B ∩ D ′ which are not adjacent to c, say b1, . . . , bk|A| . As shown in the proof of Claim 35, there then has to be, 
for every i ∈ [k], a vertex ci ∈ C such that N(ci) ∩ D ⊆ {b(i−1)|A|+1, . . . , bi|A|}. Assume, without loss of generality, that bi|A| is 
adjacent to ci for every i ∈ [k]. Then the vertices x, c, y, c1, . . . , ck, b|A|, b2|A|, . . . , bk|A| induce a P3 +kP2, a contradiction. �
Claim 37. Let D be a minimum semitotal dominating set of G . If there are |A| vertices in B ∩ D ′ which do not have a private 
neighbour in C , then |B ∩ D ′| ≤ (k + 1)|A| − 1.

Proof. Assume that |B ∩ D ′| ≥ (k + 1)|A|. Suppose for a contradiction that there are |A| vertices, say b1, . . . , b|A| ∈ B ∩ D ′ , 
which have no private neighbours in C . Then, for every i ∈ [|A|], any vertex c ∈ N(bi) ∩ C has to be adjacent to at least 
two vertices in B ∩ D ′ and thus, by Claim 36, c has to be adjacent to at least |A| + 1 vertices in B ∩ D ′ . But then, (D \
{b1, . . . , b|A|}) ∪ A is a minimum semitotal dominating set containing a friendly triple, a contradiction to Theorem 5(i). �
Claim 38. Let D be a minimum semitotal dominating set of G . If there exists a vertex v ∈ B ∩ D ′ which has a private 
neighbour c ∈ N(v) ∩ C and a private neighbour b ∈ N(v) such that c is not adjacent to b, then |B ∩ D ′| ≤ (k + 1)|A|.
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Proof. If there exists a vertex in B ∩ D ′ with two private neighbours in C , then we conclude by Claim 35. Thus, from now 
on, we may assume that no vertex in B ∩ D ′ has more than one private neighbour in C . Now assume that there exists a 
vertex v ∈ B ∩ D ′ which has exactly one private neighbour c ∈ C and another private neighbour b ∈ B ∪ A such that b and 
c are not adjacent. Suppose for a contradiction that |B ∩ D ′| ≥ (k + 1)|A| + 1. Then, by Claim 37, there are at most |A| − 1
vertices in B ∩ D ′ which do not have a private neighbour in C . Hence, besides v , there are at least k|A| + 1 further vertices 
in B ∩ D ′ which do have private neighbours in C . Let b1, . . . , b|A|+k ∈ B ∩ D ′ be |A| +k of them (notice that k|A| +1 ≥ |A| +k, 
since k ≥ 1) and let c1, . . . , c|A|+k ∈ C be their private neighbours, respectively (recall that we assumed that no vertex in 
B ∩ D ′ has more than one private neighbour in C , and hence each bi has in fact a unique private neighbour in C ). By the 
pigeonhole principle, there are either k indices i ∈ [|A| + k] such that ci is nonadjacent to b, or |A| + 1 indices i ∈ [|A| + k]
such that ci is adjacent to b. In the first case, assume, without loss of generality, that c1, . . . , ck are nonadjacent to b. Then 
c, v, b, b1, . . . , bk, c1, . . . , ck induce a P3 + kP2, a contradiction. In the second case, assume, without loss of generality, that 
b is complete to {c1, . . . , c|A|+1}. Claim 36 then implies that any vertex c ∈ C with |N(c) ∩ D ′| ≥ 2 is adjacent to at least 
(k + 1)|A| + 1 − (k|A| − 1) ≥ |A| + 2 vertices in B ∩ D ′ . We then conclude that every vertex in C which is adjacent to a vertex 
in {b1, . . . , b|A|+1} is adjacent to a vertex in ((B ∩ D) \ {b1, . . . , b|A|+1}) ∪ {b} as well, and, so, (D \ {b1, . . . , b|A|+1}) ∪ {b} ∪ A
is a minimum semitotal dominating set containing a friendly triple, a contradiction to Theorem 5(i). �
Claim 39. Let D be a minimum semitotal dominating set of G . If there exists a vertex v ∈ V (G) \ D such that v has exactly 
two neighbours in D ′ , then |B ∩ D ′| ≤ (k + 1)(|A| + 1) − 1.

Proof. Assume that there exists a vertex v ∈ V (G) \ D such that v has exactly two neighbours in D ′ , say b and b′ . Suppose to 
the contrary that |B ∩ D ′| ≥ (k +1)(|A| +1). Then, by Claim 35, every vertex in B ∩ D ′ has at most one private neighbour in C . 
Moreover, Claim 37 ensures that there are at least k(|A| + 1) + 2 vertices b1, . . . , bk(|A|+1)+2 ∈ B ∩ D ′ which do have a private 
neighbour in C , say c1, . . . , ck(|A|+1)+2 ∈ C respectively. Assume without loss of generality that b and b′ are distinct from 
b1, . . . , bk(|A|+1) . Then there exist at least k|A| + 1 indices i ∈ [k(|A| + 1)] such that ci is adjacent to v: indeed, if there are at 
most k|A| such indices, then there are at least k indices i ∈ [k(|A| +1)] such that ci is nonadjacent to v , say indices 1 through 
k without loss of generality. But, then, the vertices b, v, b′, b1, . . . , bk, c1, . . . , ck induce a P3 + kP2, a contradiction. Thus, 
assume, without loss of generality, that ci is adjacent to v for every i ∈ [k|A| + 1]. Then S = (D \ {b1, . . . , b|A|+1}) ∪ {v} ∪ A
is a minimum semitotal dominating set of G: indeed, if some vertex c ∈ C is adjacent to both bi and b j for two distinct 
i, j ∈ [k(|A| + 1) + 2] then, by Claim 36, c is adjacent to at least one vertex in S ∩ {b� | � ∈ [k(|A| + 1) + 2]}. However, S
contains a friendly triple, a contradiction to Theorem 5(i). �
Claim 40. There exists a minimum semitotal dominating set D of G with a maximum number of size-two components 
amongst all minimum semitotal dominating sets of G , such that the number of size-one components outside of C is at most 
(k + 1)(|A| + 2) + 2|A|.

Proof. Let D be a minimum semitotal dominating set of G with the maximum number of size-two components amongst all 
minimum semitotal dominating sets of G , such that |B ∩ D ′| has minimum size amongst all minimum semitotal dominating 
sets with the maximum number of size-two components. First note that |D ′ ∩ A| ≤ |A|. Now suppose for a contradiction 
that |B ∩ D ′| ≥ (k + 1)(|A| + 2) + |A| + 1. Then, by Claim 35, every vertex in B ∩ D ′ has at most one private neighbour in 
C . Moreover, Claim 37 ensures that there are at least (k + 1)(|A| + 2) + 2 vertices b1, . . . , b(k+1)(|A|+2)+2 ∈ B ∩ D ′ which do 
have a private neighbour in C , say c1, . . . , c(k+1)(|A|+2)+2 ∈ C respectively. Now observe that the set S = (D \ {b1}) ∪ {c1} is 
a dominating set of G of size γt2(G) for, otherwise, b1 has a private neighbour p ∈ N(b1) which is not adjacent to c1, a 
contradiction to Claim 38. However, S cannot be a semitotal dominating set of G as it would contradict the fact that |B ∩ D ′|
has minimum size amongst all minimum dominating sets with the maximum number of size-two components. Thus, in S , 
either c1 has no witness, or there exists a vertex w ∈ D ′ which is at distance two from b1 but at distance at least three 
from c1 and every other vertex in D ′. In the latter case, let v be a common neighbour of b1 and w . Then, by assumption, 
v has exactly two neighbours in D ′ , namely b1 and w , a contradiction to Claim 39 as |B ∩ D ′| ≥ (k + 1)(|A| + 2) + |A| + 1
by assumption. Thus, assume that c1 has no witness in S . Suppose that N(c1) contains two nonadjacent vertices, say x
and y. Notice that neither x nor y is adjacent to some b j , as otherwise b j would be a witness for c1. Then, since, for any 
i ∈ [|A| + 2], the set {x, c1, y, b(i−1)k+2, c(i−1)k+2, . . . , bik+1, cik+1} cannot induce a P3 + kP2, it follows that x or y has to 
be adjacent to c(i−1)k+ j+1 for some j ∈ [k], say, for every i ∈ [|A| + 2], cik is adjacent to x or y without loss of generality. 
Then S = (D \ {bik | i ∈ [|A| + 2]}) ∪ {x, y} ∪ A is a minimum semitotal dominating set of G: indeed, if some vertex c ∈ C is 
adjacent to both bi and b j for two distinct i, j ∈ [(k +1)(|A| +2) +2] then, by Claim 36, c is adjacent to at least one vertex in 
S ∩{b� | � ∈ [(k +1)(|A| +2) +2]}. However, S contains a friendly triple, a contradiction to Theorem 5(i). It follows that N(c1)

is a clique, and a similar reasoning shows that, in fact, N(ci) is a clique for every i ∈ [(k + 1)(|A| + 2) + 2]. Now suppose that 
there exist two indices i, j ∈ [(k + 1)(|A| + 2) + 2] such that ci and c j are at distance two, and let b be a common neighbour 
of ci and c j . Then, by Claim 38, every private neighbour of bi , besides ci , has to be adjacent to ci and, thus, to b as well, since 
N(ci) is a clique. But, then, (D \ {bi}) ∪ {b} is a minimum semitotal dominating set containing more size-two components 
than D: indeed, bi belongs to no size-two components of D by assumption (recall that {b1, . . . , b(k+1)(|A|+2)+2} ⊆ D ′) and 
b is adjacent to b j since N(c j) is a clique. This, however, contradicts the choice of D . Now if there exist two indices 
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i, j ∈ [(k + 1)(|A| + 2) + 2] such that ci and c j are at distance three, then there are two adjacent vertices vi ∈ N(ci) and 
v j ∈ N(c j). Then, for any p ∈ {i, j}, any private neighbour of bp , besides cp , has to be adjacent to cp by Claim 38, and, thus, 
to v p , since N(cp) is a clique. Moreover, any common neighbour of bi and b j must have at least one other neighbour in D ′
by Claim 39. It follows that S ′ = (D \ {bi, b j}) ∪ {vi, v j} is a dominating set of G of size γt2. We further claim that S ′ is a 
semitotal dominating set of G . Indeed, suppose to the contrary that there exists a vertex w ∈ D ′ such that w has no witness 
in S ′ . Then w must be at distance two from bi or b j , say dG (w, bi) = 2 without loss of generality. Let v be a common 
neighbour of w and bi . Then there must exist at least two indices p, q ∈ [(k + 1)(|A| + 2) + 2] \ {i} such that v is adjacent 
to cp and cq for, otherwise, {w, v, bi} ∪ {b�, c� | � : v /∈ N(c�)} would contain an induced P3 + kP2, a contradiction. But 
this implies, in particular, that cp and cq are at distance two, a contradiction by the previous case. Thus, S ′ is a minimum 
semitotal dominating set of G . However, S ′ contains strictly more size-two components than D , a contradiction. It follows 
that, for any i, j ∈ [(k + 1)(|A| + 2) + 2], ci and c j are at distance at least four and, so, for any i ∈ [(k + 1)(|A| + 2) + 2], ci
is a regular vertex, a contradiction to the fact that R is empty. This implies that |B ∩ D ′| ≤ (k + 1)(|A| + 2) + |A| and, since 
|D ′ ∩ A| ≤ |A| as observed above, the claim follows. �
Claim 41. Let D be a minimum semitotal dominating set of G with a maximum number of size-two components amongst 
all minimum semitotal dominating set of G . If S ⊆ C ∩ D ′ is a subset of vertices which are pairwise at distance at least 
three, and every vertex in S has two nonadjacent neighbours, then |S| ≤ (k + 1)2 − 1.

Proof. Assume that S ′ = {c1, . . . , ck+1} ⊆ C ∩ D ′ is a set of k + 1 vertices which are pairwise at distance at least three such 
that, for every i ∈ [k + 1], there are two nonadjacent vertices bi, b′

i ∈ N(ci). If, for every i, j ∈ [k + 1], the vertices ci and c j
are at distance at least four, then b1, b′

1, c1, . . . , bk+1, b′
k+1, ck+1 induce a (k + 1)P3, a contradiction. Hence, there exist two 

indices i, j ∈ [k + 1] such that ci and c j are at distance exactly three. In other words, there exist i, j ∈ [k + 1], bi ∈ N(ci) and 
b j ∈ N(c j) such that bi and b j are adjacent. Therefore, we have proven the following.

Observation 42. Let S ′ ⊆ C ∩ D ′ be a set of at least k + 1 vertices which are pairwise at distance at least three. If every 
vertex in S ′ has two non-adjacent neighbours, then N(S ′) contains an edge.

Suppose for a contradiction that there is a set S ⊆ C ∩ D ′ of at least (k + 1)2 vertices which are pairwise at distance at 
least three and such that, for every vertex v ∈ S , there are two nonadjacent vertices in N(v). By the above remark, there 
exist two vertices at distance exactly three in S , which implies in particular that N(S) contains an edge. Let S1 ⊆ N(S)

be a maximum subset of N(S) such that G[S1] contains exactly one edge and no two vertices in S1 share a common 
neighbour in S . Observe that |N(S1) ∩ S| = |S1| since dG (u, v) ≥ 3 for each u and v in S , and that S1 ∪ (N(S1) ∩ S) induces 
a P4 + (|S1| − 2)P2. In particular, |S1| ≤ k + 1. We construct a sequence of sets of vertices according to the following 
procedure.

1. Initialize i = 1. Set C1 = N(S1) ∩ S and B1 = N(C1).
2. Increase i by one.
3. If there exists a set L ⊂ N(S) \ Bi−1 such that G[L] contains exactly one edge and no two vertices in L share a common 

neighbour in S , then let Si be such a set which has maximum size amongst all such sets. Otherwise, set Si = ∅. Set 
Ci = Ci−1 ∪ (N(Si) ∩ S) and Bi = Bi−1 ∪ N(Ci).

4. If |Si | = |Si−1|, stop the procedure. Otherwise, return to Step 2.

Consider the value of i at the end of the procedure (note that i ≥ 2). Observe that, for each j > 1, B j−1 is included in 
B j by definition, and hence N(S) \ B j is included in N(S) \ B j−1; in particular, for each j > 1, S j ⊆ N(S) \ B j−1. It follows 
that for every j ∈ [i − 1] \ {1}, |S j| is not strictly larger than |S j−1| for, otherwise, S j−1 would not have been picked in Step 
3, since it does not have maximum size (the procedure could have indeed picked S j , for instance). Since, additionally, for 
any j ∈ [i − 1] \ {1}, |S j | 
= |S j−1| (the procedure would have otherwise stopped in j), it follows that, for any j ∈ [i − 1] \ {1}, 
|S j | < |S j−1|. Since |S1| ≤ k + 1, this implies in particular that, for any j ∈ [i − 1], |S j | ≤ k + 2 − j.

Let us now show that S j 
= ∅ for any j ∈ [i]. Note that it is enough to show that Si 
= ∅. Observe first that |C j| =∑
p∈[ j] |S p| for every j ∈ [i − 1]. Indeed, since C1 = N(S1) ∩ S and no two vertices in S1 have a common neighbour in S , 

we have that |C1| = |S1|. Now Bi = N(C1) ∪ . . . ∪ N(Ci), which implies in particular that, for each j > 1, S j is a subset of 
N(S) \ B j−1 = N(S) \ (N(C1) ∪ . . . ∪ N(C j−1)). Therefore, there is no edge with one endpoint in S j and one endpoint in 
C j−1. In other words, N(S j) ∩ C j−1 is empty. It follows that, for any j > 1, |C j | = |C j−1 ∪ (N(S j) ∩ S)| = |C j−1| + |N(S j) ∩ S|. 
Since no two vertices in S j have a common neighbour in S , and since dG (u, v) ≥ 3 for each u and v in S , it follows that 
|N(S j) ∩ S| = |S j |. Thus, since |C1| = |S1|, we conclude by induction that, for each j > 1:

|C j| = |C j−1| + |S j| =
∑

p∈[ j]
|S p|.

Since |S| ≥ (k + 1)2 and |S j | ≤ k + 1 for any j ∈ [i − 1], it follows that
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|S \ C j| = |S| −
j∑

p=1

|S p| ≥ (k + 1)2 − j(k + 1) = (k + 1 − j)(k + 1).

Thus, for any j ∈ [min{i − 1, k}], we have that |S \ C j | ≥ k + 1. It now follows from Observation 42 that, for any j ∈
[min{i − 1, k}], the set N(S \ C j) contains an edge. Since the vertices in S are pairwise at distance at least three, it follows 
that N(S \ C j) = N(S) \ N(C j) and it follows from the construction that B j = N(C1) ∪ . . . ∪ N(C j) = N(C1 ∪ . . . ∪ C j) = N(C j)

(the last equality follows from the fact that C1 ⊆ . . . ⊆ C j , by definition of the sets C1, . . . , C j). The two facts above imply 
that the set N(S) \ B j contains an edge and, in particular, the set S j+1 is not empty for any j ∈ [min{i − 1, k}] since there 
exist, in Step 3, such sets L. We now claim that i cannot be larger than k + 1. Indeed, if i > k + 1 then, for any j ∈ [k + 1] \ 1, 
|S j | < |S j−1|, with Sk+1 
= ∅ as shown above; in particular, |Sk+1| ≥ 2, since Sk+1 contains an edge by definition. However, 
|S j | ≤ k + 2 − j for any j ∈ [i − 1], which implies that |Sk+1| ≤ 1, a contradiction. Thus, i ≤ k + 1 and, so, Si 
= ∅ by the 
above. Let us now prove the two following observations.

Observation 43. For any vertex c ∈ N(Si) ∩ S , every vertex v ∈ N(c) is adjacent to a vertex in Si−1.

Indeed, suppose for a contradiction that there exist c ∈ N(Si) ∩ S and v ∈ N(c) such that v has no neighbour in Si−1. Let 
us show that, in this case, the procedure could have output Si−1 ∪ {v} in place of Si−1, which, if true, would contradict the 
maximality of |Si−1|. To this end, let us first show that no two vertices in Si−1 ∪{v} have a common neighbour in S . Suppose 
to the contrary that this does not hold. Since, by definition, no two vertices in Si−1 have a common neighbour in S , there 
must exist u ∈ Si−1 such that u and v have a common neighbour c′ ∈ S . If c′ 
= c then d(c, c′) = 2, a contradiction to the 
definition of S . Suppose therefore that c = c′ and let c′′ ∈ N(Si−1) ∩ S be a neighbour of u. Then c 
= c′′ since c ∈ N(Si) ∩ S
and N(Si) ∩ N(Si−1) ∩ S = ∅ (indeed, recall that N(Si) ∩Ci−1 = ∅, as shown above, and that N(Si−1) ∩ S ⊆ Ci−1 by definition). 
It follows that d(c, c′′) = 2, a contradiction to the definition of S . Therefore, no two vertices in Si−1 ∪ {v} have a common 
neighbour in S . Now, by construction, c ∈ N(Si) ∩ S = Ci \ Ci−1 and v ∈ N(c), which implies that v ∈ Bi \ Bi−1; in particular, 
v /∈ Bi−2 ⊆ Bi−1. Since Si−1 ⊆ N(S) \ Bi−2, it follows that Si−1 ∪ {v} ⊆ N(S) \ Bi−2. Finally observe that, by assumption, v is 
nonadjacent to every vertex in Si−1, and, since Si−1 contains exactly one edge, it follows that Si−1 ∪ {v} contains exactly 
one edge. Therefore, by combining the above, we conclude that the procedure could have output Si−1 ∪{v} in place of Si−1, 
a contradiction which proves Observation 43.

Observation 44. For any vertex c ∈ N(Si−1) ∩ S , every vertex v ∈ N(c) is adjacent to a vertex in Si .

Indeed, suppose for a contradiction that there exists c ∈ N(Si−1) ∩ S and v ∈ N(c) such that v has no neighbour in Si . 
Let us show that, in this case, the procedure could have output Si ∪ {v} in place of Si−1, which, if true, would contradict 
the maximality of Si−1 (recall, indeed, that |Si | = |Si−1| by construction). To this end, let us first show that no two vertices 
in Si ∪ {v} have a common neighbour in S . Suppose to the contrary that this does not hold. Since, by construction, no two 
vertices in Si have a common neighbour in S , there must exist u ∈ Si such that u and v have a common neighbour c′ ∈ S . 
If c 
= c′ then d(c, c′) = 2, a contradiction to the definition of S . Suppose therefore that c = c′ and let c′′ ∈ N(Si) ∩ S be a 
neighbour of u. Then c 
= c′′ , since c ∈ N(Si−1) ∩ S and N(Si) ∩ N(Si−1) ∩ S = ∅, and, so, d(c, c′′) = 2, a contradiction to the 
definition of S . Now, by construction, Si ⊆ N(S) \ Bi−1 ⊆ N(S) \ Bi−2 since Bi−2 ⊆ Bi−1. Since c has a neighbour in Si−1
it follows that c cannot be contained in Ci−2. Since v cannot have two neighbours in S (recall that the vertices in S are 
pairwise at distance at least three), it follows that v cannot have a neighbour in Ci−2 and thus cannot be contained in Bi−2. 
Furthermore, by assumption, v has no neighbour in Si , and since, by construction, Si contains exactly one edge, it follows 
that Si ∪ {v} contains exactly one edge. Therefore, by combining the above, we conclude that the procedure could have 
output Si ∪ {v} in place of Si−1, a contradiction which proves Observation 44.

To conclude, let us show that the set T = (D \ (N(Si ∪ Si−1) ∩ S)) ∪ (Si ∪ Si−1) is a minimum semitotal dominating set of 
G . Observe first that, for any j ∈ {i −1, i}, since no two vertices in S j have a common neighbour in S , and since dG (u, v) ≥ 3
for each u and v in S , it follows that |N(S j) ∩ S| = |S j |. Furthermore, by construction, Si−1 ∩ Si = ∅ (since Si ⊆ N(S) \ Bi−1

and Si−1 ⊆ Bi−1) and N(Si−1) ∩ N(Si) ∩ S = ∅ (this implies in particular that N(Si−1) ∩ S and N(Si) ∩ S are disjoint sets), 
which implies that

|N(Si ∪ Si−1) ∩ S| = |N(Si) ∩ S ∪ N(Si−1) ∩ S| = |N(Si) ∩ S| + |N(Si−1) ∩ S|
= |Si| + |Si−1| = |Si ∪ Si−1|.

Since, further, we have that S is a subset of D , Si ∪ Si−1 ⊂ N(S) and N(S) ∩ S = ∅, we can conclude that |T | = |D|. 
Furthermore, by Observations 43 and 44, any vertex which is dominated (or witnessed) by a vertex in N(Si) ∩ S or N(Si−1) ∩
S has to be dominated (or witnessed) by a vertex in Si−1 or Si , respectively. However, T contains strictly more size-two 
components than D: indeed, no vertex of S belongs to a size-two component of D by assumption (recall that S ⊆ D ′), while 
Si and Si−1 both contain an edge. This, however, contradicts the choice of D , which concludes the proof. �
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Claim 45. Let D be a minimum semitotal dominating set of G with a maximum number of size-two components amongst 
all minimum semitotal dominating set of G . Then the number of vertices in C ∩ D ′ which are at distance two from another 
vertex in C ∩ D ′ is at most 2|A| + (k + 1)2 − 3.

Proof. If every two vertices in C ∩ D ′ are at distance at least three from one another, then the claim trivially holds. Thus, 
assume that there are two vertices in C ∩ D ′ which are at distance two from one another. Let S = arg maxS⊆B |N(S) ∩ C ∩
D ′| −|S| and let S ∈ S be a set of minimum size in S . As there are two vertices in C ∩ D ′ which have a common neighbour, 
S is non-empty. If |N(S) ∩ C ∩ D ′| ≥ |A| + |S|, then D \ (N(S) ∩ C ∩ D ′) ∪ S ∪ A is a semitotal dominating set of G which 
has cardinality at most |D| and which contains a P3, a contradiction to Theorem 5(i). Hence, |N(S) ∩ C ∩ D ′| < |S| + |A|. 
We now claim that every vertex in S is adjacent to two vertices in C ∩ D ′ which are adjacent to no other vertex in S . 
Indeed, if there exists a vertex s ∈ S such that every one of its neighbours in C ∩ D ′ is adjacent to another vertex in S , 
then we could remove s from S without changing the cardinality of |N(S) ∩ C ∩ D ′|, thereby contradicting the fact that 
S ∈ S . If a vertex s ∈ S has only one neighbour c in C ∩ D ′ which is adjacent to no other vertex in S , then removing s
from S would only remove c from N(S) ∩ C ∩ D ′ , thus leaving the value of |N(S) ∩ C ∩ D| − |S| unchanged while decreasing 
the cardinality of S , a contradiction to the minimality of |S|. This implies that |N(S) ∩ C ∩ D ′| ≥ 2|S|. Combined with the 
inequality above, it follows that |S| < |A| and |N(S) ∩ C ∩ D ′| ≤ 2|A| − 2. Now denote by C ′ = (C ∩ D ′) \ N(S) the set of 
vertices in C ∩ D ′ which are not adjacent to a vertex in S . Note that every pair of vertices c, c′ ∈ C ′ does not have a common 
neighbour b for, otherwise, S ′ = S ∪ {b} would be such that |S ′| = |S| + 1 and |N(S ′) ∩ C ∩ D ′| ≥ |N(S) ∩ C ∩ D ′| + 2 and, 
thus, |N(S ′) ∩ C ∩ D ′| − |S ′| > |N(S) ∩ C ∩ D ′| − |S|, a contradiction to the choice of S . Hence, C ′ is a set of vertices which 
are pairwise at distance at least three. By Claim 41, it follows that at most (k + 1)2 − 1 vertices in C ′ do not have cliques as 
neighbourhoods. Denote C ′′ ⊂ C ′ the set of vertices whose neighbourhoods are cliques. Note that no vertex c in C ′′ can be 
at distance two to any other vertex c′ in C ∩ D ′ for, otherwise, we could remove c from D ′ and replace it with a common 
neighbour of c and c′ , thus yielding a minimum semitotal dominating set containing strictly more size-two components than 
D , a contradiction to the choice of D . Thus, every vertex in C ∩ D ′ which has a common neighbour with another vertex in 
C ∩ D ′ must be contained in N(S) ∩ C ∩ D ′ or in C ′ \ C ′′ , which together have cardinality at most 2|A| + (k + 1)2 − 3. �
Claim 46. There exists a minimum semitotal dominating set D of G such that |D ′| ≤ (k + 1)(|A| + 2k + 4) + k + 4(|A| − 1).

Proof. It follows from Claim 40 that there exists a minimum semitotal dominating set D with the maximum number of 
size-two components amongst all minimum semitotal dominating sets of G such that |D ′ \ C | ≤ (k + 1)(|A| + 2) + 2|A|. 
Let C1 ⊂ C ∩ D ′ be the set of vertices in C ∩ D ′ which are at distance at least three to every other vertex in C ∩ D ′ . Let 
C2 ⊆ C1 be the set of vertices in C1 whose neighbourhood is a clique. Suppose for a contradiction that there are two vertices 
c, c′ ∈ C2 which are at distance three. Let b ∈ N(c) and b′ ∈ N(c′) be two adjacent vertices. Then (D \ {c, c′}) ∪ {b, b′} is a 
minimum semitotal dominating set containing strictly more size-two components than D , a contradiction to the choice of 
D . Thus, the vertices in C2 are pairwise at distance at least four from one another and, so, |C2| ≤ k as R = ∅. It now follows 
from Claim 45 that |(C ∩ D ′) \ C1| ≤ 2|A| + (k + 1)2 − 3 and from Claim 41 that |C1 \ C2| ≤ (k + 1)2 − 1, which implies the 
claim. �

Proposition 33 now follows from Claims 34 and 46. �
Consider now the following algorithm whose correctness is guaranteed by Claim 31 and Proposition 33.

1. Compute A, B , C and R.
2. If R 
=∅ then check whether G is a Yes-instance for 1-Edge Contraction(γ ).

2.1 If the answer is yes then output Yes.
2.2 Otherwise output No.

3. If R =∅ then check whether there exists a semitotal dominating set of size at most (k + 1)(|A| + 2k + 4) +k + 6|A| − 4.
3.1 If the answer is no then output Yes.
3.2 Otherwise, determine whether there exists a minimum semitotal dominating set containing a friendly triple or not 

using brute force (see Theorem 5(i)).

Regarding its complexity, first note that the sets in Step 1 can be computed in time nO (k) by simple brute force (recall 
that, by definition, |A| = 3 + 2(k − 1)). Furthermore, it is shown in [10] that checking whether G is a Yes-instance for 1-Edge 
Contraction(γ ) can be done in polynomial time. Thus, Step 2 can be done in polynomial time. Checking whether there 
exists a minimum semitotal dominating set of size at most (k + 1)(|A| + 2k + 4) + k + 6|A| − 4 containing a friendly triple 
can also be done in polynomial time (by simple brute force). We conclude that the algorithm above runs in polynomial 
time. �
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4.3. Proof of Theorem 1

We finally prove Theorem 1. Let H be a graph. If H contains a cycle then 1-Edge Contraction(γt2) is NP-hard when 
restricted to H-free graphs by Theorem 22. Thus, we may assume that H is a forest. If H contains a vertex of degree at 
least three, then H contains an induced claw and, so, 1-Edge Contraction(γt2) is coNP-hard when restricted to H-free 
graphs by Theorem 7. Assume henceforth that H is a linear forest. If H contains a path on at least six vertices, then 1-Edge 
Contraction(γt2) is NP-hard when restricted to H-free graphs by Theorem 23. Thus, we may assume that every connected 
component of H induces a path on at most five vertices. Now suppose that H contains a path on at least four vertices. If 
H has another connected component on more than one vertex, then 1-Edge Contraction(γt2) is NP-hard when restricted 
to H-free graphs by Theorem 23. Otherwise, every other connected component of H (if any) contains exactly one vertex, 
in which case 1-Edge Contraction(γt2) is polynomial-time solvable by Theorem 29. Now suppose that the longest path in 
H has length three. If H has another connected component on three vertices, then 1-Edge Contraction(γt2) is coNP-hard 
by Theorem 14. Otherwise, every other connected component of H (if any) has at most two vertices, in which case 1-Edge 
Contraction(γt2) is polynomial-time solvable when restricted to H-free graphs by Theorem 30. Finally, if every connected 
component of H has at most two vertices, then 1-Edge Contraction(γt2) is polynomial-time solvable when restricted H-free 
graphs by Theorem 30, which concludes the proof.

5. Conclusion

It has been shown in [11] that the complexities of the Dominating Set problem (that is, given a graph G and an 
integer k ≥ 0, does there exist a dominating set of size at most k?), the Total Dominating Set problem (given a graph 
G and an integer k ≥ 0, does there exist a total dominating set of size at most k?) and the Semitotal Dominating Set

problem (given a graph G and an integer k ≥ 0, does there exist a semitotal dominating set of size at most k?) agree 
on all monogenic graph classes. Interestingly, this is no longer the case when we consider blocker problems with respect 
to these parameters together with edge contractions: combining our results with the complexity dichotomies for 1-Edge 
Contraction(γ ) and 1-Edge Contraction(γt ) obtained in [8,10] and [9], respectively, we can observe that the complexities 
of 1-Edge Contraction(γt2) and 1-Edge Contraction(γt ) disagree on some monogenic graph classes. Whether there is a 
hereditary graph class on which 1-Edge Contraction(γ ) and 1-Edge Contraction(γt2) differ remains an open question. We 
note however that, if such a class exists, its characterising set of forbidden induced subgraphs has to contain at least two 
graphs. In light of Lemma 20, we conjecture that such a graph class, if it exists, has to have a graph non-isomorphic to a 
cycle as a forbidden induced subgraph.
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