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—— Abstract
We continue the study initiated by Bonomo-Braberman and Gonzalez in 2020 on r-locally checkable
problems. We propose a dynamic programming algorithm that takes as input a graph with an
associated clique-width expression and solves a 1-locally checkable problem under certain restrictions.
We show that it runs in polynomial time in graphs of bounded clique-width, when the number of
colors of the locally checkable problem is fixed. Furthermore, we present a first extension of our
framework to global properties by taking into account the sizes of the color classes, and consequently
enlarge the set of problems solvable in polynomial time with our approach in graphs of bounded
clique-width. As examples, we apply this setting to show that, when parameterized by clique-width,
the [k]—Roman domination problem is FPT, and the k-community problem, Max PDS and other
variants are XP.
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1 Introduction

Many graph problems can be stated as a sort of partitioning, or equivalently, as a sort of
coloring problem. Furthermore, most decision problems on graphs from the literature belong
to the class NP, and their certificate verification algorithms often consist in checking some
local property for each vertex, i.e. involving itself and its neighborhood only, plus possibly
some global property concerning, for instance, the sizes or the connectivity of some subsets
of vertices. One could therefore try to cover a broad variety of these problems under a same
umbrella, and hence develop efficient algorithms to solve them at once. With this objective
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in mind, several definitions of subsets of partitioning problems, where each vertex has to
satisfy a local property, as well as extensions of these sets of problems including some global
property, have been proposed and shown to be solvable in polynomial time in various graph
classes. In particular, in [6], the authors defined so-called r-locally checkable problems. Each
of these problems has an associated set of colors and a check function, that is, a function that
takes as input a vertex v of the graph and a coloring of the r-neighborhood of v (i.e. the set
of vertices at distance at most r from v) and outputs TRUE or FALSE. A proper coloring of
the input graph G is defined as a coloring ¢ of the vertices such that, for every vertex v, the
check function applied to v and the restriction of ¢ to the r-neighborhood of v outputs TRUE.
They also consider a set of weights with a total order, and associate a weight to each pair of
vertex and possible color. The weight of a coloring c is then naturally obtained by combining
the weights of the pairs (v, ¢(v)). Then, an r-locally checkable problem consists in finding the
minimum weight of a proper coloring of the input graph G. Examples of r-locally checkable
problems include k-COLORING, MAXIMUM INDEPENDENT SET and MINIMUM DOMINATING
SET [6].

Since many r-locally checkable problems are hard on general graphs, it is of interest
to determine under which conditions (on the check function and the set of colors) we can
efficiently solve them for a given class of graphs. In [6], the authors showed that, under
mild conditions, r-locally checkable problems can be solved in polynomial time in graphs of
bounded tree-width. In this paper, we will focus on 1-locally checkable problems with an
associated color-counting check function, defined as follows.

» Definition 1. Let G be a graph and COLORS = {a1,...,aq} be a set of colors. A check
function f is color-counting if it only depends on the vertex v, the color it receives and, for
each color a € COLORS, the number of neighbors of v of color a.

In other words, a check function f is color-counting if there exists a function f' such that

f(U,C) = f/(vac(v)7n1a-~~anq)

for every verter v € V(G) and every coloring ¢ of the closed neighborhood of v, where
nj = [{u € Ng(v) : c(u) = a;}| for all j € {1,...,q}.

Since we are only going to work with color-counting check functions in this paper, we will
directly refer to them as check(v,a,ni,...,ng).

In [17], the authors analyzed the restrictions on 1-locally checkable problems with respect
to mim-width. They define d-stable check functions, which are a subset of the color-counting
check functions, and we will use them to improve our complexity results.

» Definition 2 ([17]). Let d € N. Let G be a graph, COLORS be a set of q colors and
check be a color-counting check function. We say that check is d-stable if for all v € V(G),
a € COLORS and non-negative integers ny,...,nqg we have

check(v,a,n1,...,ng) = check(v,a,min(d,ny), ..., min(d, nq)).

We present a dynamic programming algorithm, which is XP parameterized by clique-
width, for 1-locally checkable problems with a constant number of colors and a color-counting
check function. Moreover, this algorithm is FPT when the check function is also d-stable, for
any constant d. In a second step, we extend our framework in such a way that we are able
to ensure that the size of a given color class belongs to some predefined set of integers. By
including this global property for as many colors classes as necessary, the application of our
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framework allows to obtain first XP algorithms parameterized by clique-width for problems
such as k-COMMUNITY, MAaX PDS and (GLOBAL) [k]-ROMAN DOMINATION, as well as some
variants of them. A generalization of this framework to r-locally checkable problems, for any
fixed r, would be quite natural, and the authors of this paper are currently working on it.

The set of locally checkable problems considered here is a subset of the one considered
in [6], but notice that our assumptions above are not too restrictive. Indeed, if we do not
impose these assumptions then, as explained in [6], one obtains locally checkable problems
that are NP-hard on complete graphs (which have clique-width at most 2) and thus, it is
unlikely to find XP algorithms parameterized by clique-width for this more general class of
locally checkable problems.

As mentioned above, several definitions of subsets of partitioning problems have been
defined in the literature and shown to be solvable in polynomial time in various graph classes.
We cite here some of the corresponding publications that are the most closely related to our
work.

In [7, 20, 27|, the authors studied a large class of vertex partitioning problems called
locally checkable vertex partitioning (LCVP) problems. In these problems, a ¢ X ¢ matrix D is
given, where each entry is a finite or cofinite set of integers. A partition of the set of vertices
Vi,..., Vg is sought, such that for each 4,5 € {1,..., ¢}, we have |[Ng(v) NV;| € D[i, j] for
all v € V;. Empty partition classes are allowed. In [27], Telle and Proskurowski solved these
problems in polynomial time on graphs of bounded treewidth. This result was generalized
in [7], where Bui-Xuan, Telle and Vatshelle gave an algorithm that solves LCVP problems
given a decomposition tree of the input graph. In the same paper, they proved that this
algorithm is FPT parameterized by boolean-width, and later in [20], Jaffke et al. showed
that the same algorithm is XP parameterized by mim-width, when a suitable decomposition
tree is given. As shown in [17], every LCVP problem can be modeled as a 1-locally checkable
problem with a d-stable check function (where d is as defined in [7]):

check(v,a,n1,...,ng) = (Vj €{1,...,q}, nj € D[a,j]).

While many locally checkable problems are expressible as LCVP problems, there are still
some relevant problems that do not admit such a characterization, but do belong to the
set of problems we analyze in this paper. Examples include [k]—ROMAN DOMINATION and
BALANCED k-COMMUNITY, see Section 6.

In [16], Gerber and Kobler studied a variation of LCVP, with two modifications. On
one hand they restrict the entries of D to sets of consecutive integers, and on the other
hand, they associate to each vertex v a set p(v) C {1,...,q} such that v € V; = i € p(v).
They show that the problems in this framework are XP when parameterized by clique-width.
Notice that these problems are also covered by our framework.

n [10], Courcelle, Makowsky and Rotics presented an algorithm which, given as input a
graph with an associated clique-width expression, solves problems expressible in a certain
variation of Monadic Second-Order Logic, called MSO;. On graphs of clique-width at most
k, the running time of their algorithm is linear in the size of the input graph. However, as
pointed out in [14], the multiplicative constant grows extremely fast with k.

Following a similar research line, in their recent article [5], Bergougnoux, Dreier and
Jaffke defined an extension of existential MSOq, which they call distance neighborhood logic
with acyclicity and connectivity constraints (A&C DN logic). They provided an algorithm
that solves problems expressible in this logic, given a suitable branch decomposition of the
input graph. The complexity of the algorithm is expressed in terms of the d-neighborhood
equivalence relation (see [7]), allowing them to state their main result parameterized by
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mim-width (XP), tree-width, rank-width or clique-width (FPT), with a single-exponential
dependence. As shown in [17], all locally checkable problems with constant number of
colors and d-stable check functions, for some constant d, can be expressed in A&C DN
logic. However, locally checkable problems with a color-counting check function that is not
d-stable for any constant d, and possibly extended with global properties, such as BALANCED
k-COMMUNITY, cannot be directly expressed by an A&C DN logic formula of fixed length.

This paper is structured as follows. In Section 2, we give some definitions and notations.
In Section 3, we formally present our framework, while in Section 4, we describe the dynamic
programming algorithm, prove its correctness and analyse its complexity. Section 5 deals
with the extension of our results of the previous section to include the global size property.
Finally, in Section 6, we apply our results to some selected problems.

2 Preliminaries

2.1 Algebraic definitions

Let f: D — C be a function and let S C D. We denote by f|s the function f restricted to
the domain S, that is, the function f|s: S — C is defined as f|g(z) = f(z) for all z € S.
Let D' be a set such that DN D’ = (), and let g: D’ — C. We denote by f U g the function
h: DUD'" — C such that h(z) = f(z) if z € D, and h(z) = g(z) if x € D’. Note that, since
D and D’ are disjoint, f U g is well defined.

We denote by [a,b], with a,b € Z and a < b, the set of all integer numbers greater than
or equal to a and less than or equal to b, that is {a,a+1,...,b}. Furthermore, we use BooL
to denote the set {TRUE, FALSE}.

2.2 Graph theoretical definitions

Throughout this paper, we consider simple, finite and undirected graphs. For graph theoretical
notions not defined here, the reader is referred to [28].

The notion of clique-width of a graph G, denoted by cw(G), was first introduced in [11].
It is defined as the minimum number of labels needed to construct G' using the following 4
operations:

creation of a new vertex v with label i (denoted by i(v));

disjoint union of two labeled graphs G; and Ga (denoted by G1 & G2);

join between two labels i and j, i # j, i.e. adding an edge between every vertex with

label i and every vertex with label j (denoted by 7; ;);

renaming of label i to label j, i.e. every vertex with label ¢ gets label j (denoted by p;—;).

Given a graph class G, the clique-width of G is cw(G) = sup{cw(G) | G € G}. We say
that G is of bounded clique-width if cw(G) < oo.

A clique-width expression is simply a well-formed expression of operations each corre-
sponding to one of the four operations mentioned above. For a clique-width expression
e, we denote by G, the graph constructed by e. If the number of distinct labels used in
a clique-width expression e is at most k, then we say it is a clique-width k-expression. It
was shown in [12] that any graph G admitting a clique-width k-expression also admits an
trredundant clique-width k-expression, i.e., such that whenever we execute a join operation
75,5, there are no already existing edges between vertices with label ¢ and vertices with label j.

Consider a clique-width expression e and the corresponding graph G.. An expression tree
of G, is a rooted binary tree T, defined as follows:
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The nodes of T, are of four types corresponding to operations i(-), &, n and p.

The leaves of T, correspond to the creation operation i(-).

A disjoint union node & corresponds to the disjoint union of the graphs associated with
its two children.

A join node n; ; corresponds to the graph associated with its unique child in which we
make all vertices of label ¢ adjacent to all vertices of label j.

A relabeling node p;_,; corresponds to the graph associated with its unique child in which
we change label i to label j.

The graph G corresponds to the graph associated with the root of T,.

Notice that for every node t € V(T¢), the subtree of T, rooted at t defines a clique-width
expression e; the corresponding graph of which, denoted by G.,, is a subgraph of G.. We
say that e’ is a subexpression of e if €’ is the expression determined by the subtree of T,
rooted at some node ¢t € V(T,). Consider any vertex v in G, for some t € V(7). Then all
neighbors of v in G which are not yet neighbors of v in G.,, i.e. the edges between v and
these vertices are only defined by the ancestor operations of ¢ in T, are said to be upcoming
neighbors of v with respect to e;. Notice that for any two vertices in G, having the same
label, their sets of upcoming neighbors with respect to e; are identical.

Let e be a clique-width k-expression, G, be its corresponding graph and let T, be an
expression tree of Ge. We define the function £, : V(G) — [1, k] such that ¢.(v) is the final
label of v, i.e. the label of v after the operation corresponding to the root of T,. We also
define £(e) as the set of labels 7 such that there exists no v € V(G,) such that £.(v) = i.

In the remaining of our paper, we will only consider irredundant clique-width k-expressions
where in any relabeling operation p;_;(e) we have j ¢ {(e). Notice that under these
assumptions the total number of operations in such a clique-width expression of a graph G is

in O([V(G)| + [E(G)])-

2.3 Finite-state automata

A deterministic finite-state automaton is a five-tuple (Q, X, 9, qo, F') that consists of
Q: a finite set of states,
3 a finite set of input symbols (often called the alphabet),
0: Q X X = Q: a transition function,
qo € Q: an initial (or start) state, and
F C Q: aset of final (or accepting) states.

We say that an automaton M = (Q, %, d, qo, F') accepts a string ¢; .. .cy,, with n > 1, if
and only if ¢; € ¥ for all 1 <4 <mn and d(...5(5(go,c1),¢2)...,¢n) € F.
For more about automata theory, we refer the reader to [19].

2.4 Weight sets

Let (WEIGHTS, <) be a totally ordered set with a maximum element (called ERROR), together
with the minimum operation of the order < (called min) and a closed binary operation
on WEIGHTS (called ®) that is commutative and associative, has a neutral element and
an absorbing element that is equal to ERROR, and the following property is satisfied:
$1 X 83 = S1 ® S3 = s9 ® s3 for all s1,s2,s3 € WEIGHTS. In such a case, we say that
(WEIGHTS, <, ®) is a weight set.

A classic example of a weight set is (N U {+o0},<,4). Notice that the maximum
element is +oo in this case. We could also consider the reversed order of natural weights:
(NU {—00}, >, +), where the maximum element is now —oo. Another simple example worth
mentioning is ({0,1}, <, max).

31:5
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3 Color-counting 1-locally checkable problems

Suppose we are given:
a simple undirected graph G,
a set COLORS = {a1,...,aq},
for every v € V(G), a nonempty set L, C COLORS of possible colors for v,
a weight set (WEIGHTS, <, ®),
for every v € V(G) and for every a € L,, a weight w, , € WEIGHTS — {ERROR} of
assigning color a to vertex v, and
a color-counting check function check.

We say that a coloring ¢ : V(G) — COLORS is wvalid if ¢(v) € L, for all v € V(G). The
weight of a valid coloring ¢ is W(c) = ), ey, Wo,c(v)- Furthermore, we say that c is a proper
coloring of G if it is a valid coloring of G and check(v, c(v),n1,...,nq) is true for every
v € V(G), where nj = [{u € Ng(v) : c(u) = a;}| for all j € [1,q].

A color-counting 1-locally checkable problem consists in finding the minimum weight of a
proper coloring of the input graph G.

4 Algorithm

Consider a color-counting 1-locally checkable problem IT and let G be the input graph
and eg a clique-width k-expression of G. Let N € [1,|V(G)|] be an integer such that
check(v,a,ny,...,ng) = check(v,a,min(N,nqy),...,min(N,ny)) for all v € V(G), a €
CoLORS and non-negative integers ni, ..., nq.

In this section, we present an algorithm which computes the minimum weight of a proper
coloring of G by using the expression eg as well as the notion of (C, N)-coloring defined
hereafter.

» Definition 3 ((C, N)-coloring). Let e be a subexpression of eq, and let C and N be two
matrices in [0, N]**9. A walid coloring ¢ of G. is called a (C, N)-coloring of G. if the
following two conditions hold:
(C1) min(NV,|[{v € V(G.) : c(v) = a A l(v) = i}|) = Cli,a] for all i € [1,k] and all
a € COLORS;
(C2) for every vertex v € V(Ge) we have check(v,c(v),n1,...,ny) = TRUE, where nj; =
min(N, N[le(v), aj] + |[{u € Ng,_ (v) : c(u) = a;}|) for every j € [1,4q].
The minimum weight among all possible (C, N)-colorings of G, is denoted by A(e,C, N), i.e.
Ae,C,N) = min{w(c) : c is a (C, N)-coloring of G,.}. Notice that if no such coloring exists
then A(e,C, N) = ERROR.
The following lemma explains the link between proper colorings and (C, N)-colorings.

» Lemma 4. Let II be a color-counting 1-locally checkable problem with input graph G and
let eq be a clique-width k-expression of G. Then the minimum weight of a proper coloring of
G equals the minimum among all (eq, C, No), where Ny € [0, N]**? is the matriz whose

elements are all 0 and C € [0, N]¥*? is any matriz such that Cli,a] = 0 for every i € {(eg)
and every a € COLORS.

Proof. We will show that for every proper coloring ¢ of G there exists a matrix C' €

[0, N]¥*? such that C[i,a] = 0 for every i € {(ec) and every a € COLORS, and such
that w(c) > Aeg,C, Ng). On the other hand, we will then show that for every matrix

C € [0, N]*¥*4 such that C[i,a] = 0 for every i € £(ec) and every a € COLORS, and such that
Aeg,C, Nog) # ERROR, there exists a proper coloring ¢ of G such that w(c) = A(eg, C, Np).
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Suppose we have a proper coloring ¢ of G. Let C € [0, N]**? be the matrix such that
Cliya] = min(NV, [{v € V(G) : ¢(v) = a A lc(v) = i}|) for all i € [1,k] and all a« € COLORS.
Clearly, C[i,a] = 0 for every i € {(eq) and every a € COLORS. Also, for every v € V(G) we
have that check(v, c(v),n1,...,ng) is true, where n; = min(N, No[le(v), a;] + [{u € Ng(v) :
c(u) = a;}]) for every j € [1,q], because Ny[le(v),a;] = 0 for every j € [1,¢] and c is a
proper coloring of G. Therefore, ¢ is a (C, Ny)-coloring of G and so w(c) > A(eg, C, Np).

Now suppose we have a matrix C' € [0, N]**4 such that C[i,a] = 0 for every i € {(ec)
and every a € COLORS, and such that A(eg, C, Ny) # ERROR. Let ¢ be a (C, Ny)-coloring of
G of minimum weight (notice that at least one such ¢ exists, since A(eg, C, Ng) # ERROR).
We will prove that ¢ is a proper coloring of G. By definition of a (C, Np)-coloring, ¢
is a valid coloring, so it only remains to prove that check(v,c|y.[y)) is true for every
v € V(G). We know that for every v € V(G), we have that check(v,c(v),n,...,nq) is
true, where n; = min(N, No[lc(v),a;] + {u € Ng(v) : ¢(u) = a;}|) for every j € [1,4q].
Since No[le(v),a;] = 0 for every v € V(G) and j € [1,q], we have that check(v, c|ng[v]) =
check(v, c(v),n1,...,ny) = TRUE, where n; = min(N, |[{u € Ng(v) : ¢(u) = a;}|) for all
J €14l <

So Lemma 4 tells us that in order to solve a color-counting 1-locally checkable problem
II, i.e. in order to find a minimum weight of a proper coloring, it is sufficient to find the
minimum weight among all (C, Ny)-colorings of the input graph G, where C' and N, are
as described above. Our algorithm is based exactly on this idea, i.e. it determines the
minimum among all A(eg, C, Ny). This is achieved by traversing the binary rooted tree T.
in a bottom-up fashion and determining in a recursive way the values A(e, C, N), where e is
a subexpression of eq and C, N € [[0,/\/’]]“‘1. Throughout this recursion, the matrices C' and
N will intuitively behave in the following way: if we have a proper coloring ¢ of G such that
clv(a.) is a (C, N)-coloring of G, then

Ci, a) represents the minimum between A and the number of vertices v in G, such that

Le(v) =i and ¢(v) = a, and

Ni,a] represents the minimum between A and the number of vertices u € V(G) with

¢(u) = a that are upcoming neighbors with respect to e of every vertex v with . (v) = i.

For the next four lemmas, we will assume that we are given matrices C' and N in
[0, N']¥*4. We will describe the recursive computation of A(e, C, N) by distinguishing four
cases depending on the kind of clique-width operation at the root of the tree Ts.

» Lemma 5 (Creating new vertex: i(v)). If there exists a € L, such that C[i,a] = 1 and
Clj,b] = 0 for all the other entries [§,b] in C, and if check(v,a, N[i,a1],...,N[i, aq]) is true,
then A(i(v),C, N) = Wy q. Otherwise, A(i(v), C, N) = ERROR.

Proof. First notice that G, is the graph consisting of a single vertex v with label i.
Therefore, if C' and N have the above properties (i.e. there exists a € L, such that Cli,a] =1
and C[j,b] = 0 for all the other entries [4,b] in C, and check(v,a, N[i,a1], ..., N[i,a4]) is
true), there is exactly one (C, N)-coloring ¢ of Gj(,), defined by c(v) = a. Indeed, since
a € L,, it follows that c¢ is a valid coloring. Moreover, conditions (C1) and (C2) are trivially
satisfied. Then, A(i(v),C,N) = W(c) = Wy 4.

On the other hand, if C' does not have exactly one nonzero entry, or if it is not in row ¢, or if
it is in a column a ¢ L,, or if this entry is not equal to 1, then no valid coloring satisfying con-
dition (C1) exists. If for this unique possible choice of color a, check(v, a, N[i,a1],. .., N[z, a4])
is false, then no (C, N)-coloring of G, exists either. Therefore A(i(v), C, N) = ERROR. <
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» Lemma 6 (Disjoint union: e; @ es). Let Ny and Ny be two matrices in [0, N]¥*9 such that:

Nili,a] =0 for every label i € £(e1) and every color a € COLORS;

Nili,a] = Nli,a] for every label i ¢ £(e1) and every color a € COLORS; and

Ny is defined analogously with respect to es.
Then

Aer @ eq, C, N) =min{ (e, C1, N1) ® A(ea, Ca, Na) :
(a) 01,02 S [[O,N]]kxq
(b) Ciliya]l =0 for alli € £(e1),a € COLORS;

(c) Cali,al =0 for all i € £(e2),a € COLORS;
(d) Cli,a] = min(N, C1[i, a] + Cali,a]) for all i€[1,k],a€ COLORS}.

Proof. Let a = min{A(e1,Cy, N1)®A(ez, Ca, Na) : (a), (b), (¢), (d) are satisfied}. We will first
prove that A(e; @ ez, C, N) > a. If M(e; @ eg, C, N) = ERROR, then we are done. So assume
that A(eq @ ez, C, N) # ERROR and let ¢ be a (C, N)-coloring of G, ., whose weight equals
Ae1@ea, O, N). We need to show that there exist C; and Cy in [0, N]¥*4 satisfying (b), (c), (d)
and such that the weight of ¢ is at least A(e1,C1, N1) ® A(ea, Co, Na). Let ¢; = c|V(G21) and
ca = cly(a,,). Then, we define C1[i,a] = min(N, [{v € V(Ge,) : e1(v) = a A le, (v) = i}])
for any label ¢ € [1,k] and color a € COLORS, and similarly for Cy with respect to es.
Consequently, conditions (b) and (c) are satisfied: if i € £(e;), then {v € V(G,) : Le, (v) =
i} = 0, thus C1[i,a] = 0, and similarly for Cy. Condition (d) is also satisfied because
¢ is a (C, N)-coloring of Ge,ge,, V(Ge,) and V(G.,) are disjoint, £., (v) = Lo, e, (v) for
every v € V(G.,) and £, (v) = Lo, @e, (v) for every v € V(G.,). We now show that ¢; is a
(C1, N1)-coloring of G.,. Condition (C1) is trivially satisfied by the definition of Cy. To show
that condition (C2) is satisfied, we will show that check(v,ci(v),n}, ..., ny) is true for every
vertex v € V(G,), where n; = min(N, Ny[le, (v), a;] + [{u € Ng,, (v) : c1(u) = a;}|) for
every j € [1,¢]. Since c is a (C, N)-coloring of Ge,@e,, we have that check(v, c(v),nq,...,ng)
is true for every v € V(Ge,ge,), where nj = min(N, N[le, ge, (v), a;] + [{u € Ng, 4., (V) :
c(u) = a;}|) for every j € [1,¢]. By definition of Ny and since l, (v) = L, ge,(v) for
every v € V(Ge,), we have Ny[le, (v),a;] = N[le,ae,(v),a;] for every v € V(Ge,) and
every j € [1,¢]. Also, Ng,, (v) = Ng, ., (v) for every v € V(G,,) and ¢1 = c|y(q,,), 0
{u € Ng,, (v) : ci(u) = aj}] = {u € Ng, 4., (v) : c(u) = a;}| for every v € V(G,,) and
every j € [1,q]. Therefore n; = n; for every j € [1,q] and hence, check(v, c1(v),ny, ..., ng)
is true for every v € V(G,, ). Using similar arguments, we can show that ¢y is a (Cy, Na)-
coloring of Ge,. Moreover, w(c) = W(c1) ® W(cz) by definition of ¢; and ¢, and consequently,
)\(61 ® ea, C, N) = W(C) = W(Cl) ® W(Cg) > )\(61, Cl, Nl) ® )\(62, 627N2) > .

Let us show now that A(e; @ ez, C,N) < «. Consider two matrices C; and Cs in
[0, N']¥*4 satisfying (b), (¢), (d). If A(e1, Oy, N1) = ERROR or A(ez, Co, N3) = ERROR, then
we are done. Otherwise, we are going to construct a (C, N)-coloring ¢ of G.,ge, such that
w(c) = Ae1,Cy, N1) ® A(ea, Ca, N2). Let ¢; be a (Cy, Ny)-coloring of G., whose weight is
A(e1, Cy, N1) and ¢35 be a (Cay, Na)-coloring of G, whose weight is A(ez, Ca, Na). Let ¢ = ¢;Ucs
(note that ¢ is well defined because V(G,,) and V(G.,,) are disjoint sets). Clearly, ¢ is a
valid coloring and w(c) = W(c1) ® W(cz). We now show that ¢ is a (C, N)-coloring of G, ge,-
We start with condition (C1). Consider i € [1,%] and a € COLORS. Since ¢; is a (Cy, Ny)-
coloring of G, and cg is a (Ca, Na)-coloring of G.,, we have C1[i,a] = min(N, [{v € V (G, ) :
c1(v) = a Al (v) =i}]) and Csfi,a] = min(N, [{v € V(G,) : ca(v) = a A Le,(v) = i}])).
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Then,

C[i,a] =min(N, C1[i, a] + Csli, a))
=min(N, min(N, |[{v € V(Ge,) : c1(v) = a A lo, (v) =i}|)+
min(N, [{v € V(Ge,) : c2(v) = a A le,(v) = i}]))
=min(N, |[{v € V(G,) : c1(v) = a A b, (v) =i}|+
H{v € V(Ge,) : ca(v) = a A le,(v) =1}])
=min(N, |[{v € V(Ge ge,) : ¢(V) = a A ey ge, (V) = i}]).

The last equality is simply due to the definition of ¢ and to the facts that V(Ge,ge,) =
V(Ge,)UV(G,,) and for every v € G., we have that ., (v) = £, g, (v) and for every v € G,
we have that £e, (v) = le, e, (V). Let us focus on (C2) now. Consider v € Ge,ge,. Assume,
without loss of generality, that v € V(Ge,). We will prove that check(v, c(v),n1,...,ng)
is true, where n; = min(N, N[le,ge, (v),a;] + {u € Ng, ., (v) : c(u) = a;}|) for every

J €[1,4q]. Since ¢; is a (C1, N1)-coloring of G.,, we know that check(v,ci(v),ny,...,n,) is

true, where n; = min(N, N1[l., (v),a;] + [{u € Ng,, (v) : c1(u) = a;}|) for every j € [1,4].

J
Using similar arguments as above, we obtain again that n; = n; for every j € [1,¢]. Due to

the definition of ¢, we then conclude that check(v, c(v),nq,...,n,) is true for every v € V(QG),
and so (C2) is satisfied. Thus, ¢ is a (C, N)-coloring of G.,ge,- <

» Lemma 7 (Join: 7, j(e)). Let N, € [0, N]**? be such that

N.li,a] = min(N, Ni,a] + C[j,a]) for every a € COLORS;

N.lj,a] = min(N, N[j,a] + C[i,a]) for every a € COLORS;

Nc[h,a] = Nlh,a] for every h € [1,k] \ {4,j} and every a € COLORS.
Then, A(n; j(e),C,N) = A(e,C, N.).

Proof. First of all, since the labelings of the vertices do not change between G, () and G,
we simply use £ to denote both labelings £, and £, (c). Also, since V(G,, (¢)) = V(G.), we
simply denote this set by V.

Let ¢: V' — COLORS be a valid coloring. We are going to show that ¢ is a (C, N)-coloring
of Gy, (e if and only if c is a (C, N.)-coloring of G. In order to prove this, it suffices to show
that, for every color a € COLORS and every vertex v € V', we have min(N, N[{(v),a] + |{u €
N, () ¢ c(u) = a}]) = min(N, N[0(v).a] + [{u € Ne, (v) : c(u) = a}). If £(v) # i,
then N.[£(v),a;] = N[€(v),a;] by definition of N, and clearly N¢,_ (v) = Na,. (v). On the
other hand, if ¢(v) = ¢ (if £(v) = j the proof is analogous) then

min(N, Ne[i,a] + [{u € Ng,_(v) : c(u) = a}|)
=min(N, min(N, N[i,a] + C[j,a]) + |{u € Ng,(v) : ¢(u) = a}|)
=min(N, N[i,a] + C[j,a] + [{u € Ng, (v) : c¢(u) = a}|)
=min(N, N[i,a] + min(N,|{u € V : c(u) = a A b(u) = j}|) + |[{v € Ng,(v) : c(u) = a}|)
=min(N, N[i,a] + {u € V : c(u) =aAl(u) = j} + |{u € Ng,(v) : c¢(u) = a}|)
=min(N, N[i,a] + [{u € Ng, ) (0) :c(u) =aNl(u) = L(v) c(u) = a}])
:min(/\/,N[z,a]—!—HueNG" J()(v) c(u) = a}|).

The last two equalities follow from the fact that every vertex with label j is a neighbor
of v in Gy, () but a non-neighbor of v in G (recall that we are working with irredundant
clique-width expressions). <
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» Lemma 8 (Relabeling: p;_,;(e)). Let N. be such that
N.[i,a] = N[j,a] for every a € COLORS;
Nc[h,a] = Nh,a] for every h € [1,k] \ {i} and every a € COLORS.

If Cli,a] = 0 for all a € COLORS, then

A(Pi—)j (6), C, N) = min{)‘(ev Ce, Ne) :

(a) Ce € [0, N]"
(b) Clj,a] = min(N, C.[i, a] + Ce[j,a]) for all a € COLORS;
(¢) Celhya] = Clh,a] for all h € [1,k] \ {i,j},a € COLORS}.

Otherwise, A(p;—;(e),C,N) = ERROR.

Proof. If C[i,a] # 0 for some a € COLORS, then, by definition, there exists no (C, N)-
coloring of G, , () and A(p;—;(e),C, N) = ERROR. So we may assume now that C[i,a] =0
for all @ € COLORS. Let o = min{A(e, C,, N¢) : (a),(b), (c) are satisfied}. We will first
prove that A(pi—;(e),C,N) > a. Let ¢ be a (C, N)-coloring of G, (c) whose weight equals
A(pimj(e),C,N). We will show that there exists a matrix C, in [[O,N}]kxq satistying (b), (c)
and such that ¢ is a (Ce, N.)-coloring of G.. Let

Celh,a] = min(N, {v € V(Ge) : c(v) = a Al.(v) = h})

for every h € [1,k] and every a € COLORS. Since c is a (C, N)-coloring of G,,_, (), then
Clh,a] = min(N, {v € V(G () : c(v) = a AL, ()(v) = h}) for every h € [1,k] and
a € CoLORS. Therefore, (c) is trivially satisfied, since £, ()(v) = le(v) for any vertex v
whose label is neither 7 nor j in G.. Furthermore the following inequalities hold,

min(N, Ce[i, a] + Celg, a]) =min(N, min(N, [{v € V(Ge) : c(v) = a A le(v) = i}])
+ min(N, [{v € V(G.) : c(v) = a A le(v) =j}))
=min(N, [{v € V(Ge) : c¢(v) = a A le(v) = i}]
+ {v e V(Ge) : ¢(v) = anile(v) = j})
=min(V, [{v € V(Ge) : ¢(v) = a A (Le(v) =iV Le(v) = j)})
=min(N, |{v € V(Gy ) i cv) =ant, _ ((v) =3}
=Clj, q]

and thus, condition (b) is satisfied as well. We next show that ¢ is a (C,., N,)-coloring
of G.. We know that c is a valid coloring because c is a (C, N)-coloring of G, (c)-
Also, (C1) is trivially satisfied from our definition of C,.. For (C2), we have to show that
check(v,c(v),ny,...,ny) is true for every v in G, where n;, = min(N, Ne[€e(v), ap] + [{u €
Ng, (v) : e(u) = ap}|) for every v € V(G,) and every b € [1,¢]. Since ¢ is a (C, N)-coloring
of Gy,_, (e, we know that check(v,c(v),n1,...,n,) is true for every v € V(G,,_ (e)), Where
ny = min(N, N[l,,_, (e)(v),ap] + [{u € NGpH,-(w(U) : c(u) = ap}]) for every b € [1,¢]. By
definition of N, and since Ng,_(v) = NGPHJ@) (v) for all vertices v, we have nj, = nj, for all
b € [1,q], and therefore check(v, c(v),ny,...,n;) is true for every v € G, and b € [1,q].
We now show that A(p;—;(e),C, N) < a. Let C. be a matrix in [0, N]¥*? satisfying
(b), (¢), and let ¢ be a (Ce, Ne)-coloring of G of weight A(e, Ce, N.). We are going to show
that c is also a (C, N)-coloring of G, |
hin [1,k]\ {¢,7} and every color a. For label 4, condition (C1) is also true since C[i,a] =0
by assumption and there are no vertices with label i in V(G,,_, (.)). We can show in a

(e)- Condition (C1) is trivially satisfied for every label
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Algorithm 1 Main algorithm.

Juy

for every subexpression e of e, traversing them in a bottom-up fashion, do
forall matrices C, N € [0,N]**? do
Compute A(e, C, N) using Lemmas 5, 6, 7 or 8, according to the type of the
operation at the root of T,.
Store the result in memory for future uses.

w N

4
5 end

6 end

7 Let Ny be the matrix in [0, N]¥*¢ such that all its elements are 0.
8 Let m < ERROR

9 forall C € [0, N]¥*9 such that Cli,a] = 0 for every i € {(ec),a € COLORS do
10 m « min(m, A(eg, C, Np))

11 end

12 return m

similar way as above that C[j,a] = min(N,[{v € V(G,,_ () : c(v) = a ALy, (ey(v) = j}|)
for all @ € CoLORs. We need to verify now (C2), i.e., for every vertex v, we have that
check(v, c(v),n1, ..., ng) is true, where ny, = min(N, N[€,,_ (e)(v), ap] + [{u € Ne,, o (v) :
c(u) = ap}|). As before, this is a consequence of the fact that ¢ is a (C,, N, )-coloring of
G., and that for every vertex v and color a,, we have N[l.(v),ap] = N[{,,_, (c)(v),ap] by
definition and |{u € Ng, (v) : c(u) = ap}]) = |{u € Na,, o (v) : c(u) = ap}|. <

Our algorithm, which takes the same input as a locally checkable problem, plus the
number A and an irredundant clique-width k-expression eg of the input graph G together
with its binary rooted tree T, and outputs the minimum weight of a proper coloring of G,
is presented in Algorithm 1. As explained above, we proceed in a bottom-up fashion, i.e. we
start with the leaf nodes of T, , then continue with their parents and so on, and compute
each time A(e, C, N) for the corresponding subexpression e (i.e. for the subexpression e
corresponding to the node of T, that we are currently analyzing) and all possible choices of
C and N using the recurrences in Lemmas 5, 6, 7 and 8 (see lines 1-3). Since we are storing
the results (see line 4), the number of times we need to compute some value A(, -, ) is given
by the number of subexpressions of e times the possible choices for the matrices C and N.
Since we have O(|V(G)| + | E(G)|) subexpressions in the given clique-width expression (see
Section 2), and since there exist (A -+ 1)*? possible matrices C, respectively possible matrices
N, we obtain that line 3 of our algorithm is called at most O((|V(G)| + |E(G)|)(N + 1)2k49)
times. In lines 7-11, we then determine the minimum among all A(eg, C, Ny), where Ny is
the matrix whose elements are all 0, and C € [0, N]**9 is any matrix such that C[i,a] = 0
for every i € £(eg) and every a € COLORS. This can be done in time O((N 4 1)%9).

It remains to determine the complexity of computing some value A(-,-,-). This clearly
depends on the operation we consider. Thus, we distinguish 4 cases:

Creating new vertex: We need to go through the entries of C', which can be done

in time O(kq). Let us denote by tcheck(|V(G)], ¢, N') the complexity of evaluating the

check function. Hence, we obtain a complexity of O(kq + tehecr(|[V (G)|, ¢, N)) for this
operation.

Disjoint union: We first need to determine N; and Ns, which takes O(kq) time, and

then we need to find the minimum weight by going through all possible choices of C; and

Cs, which can be done in time O((N + 1)?%9). This gives us an overall complexity of

O((N + 1)%%4) for determining A(-, -, -) for the disjoint union operation.
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Join: We simply need to determine the matrix N., which can be done in O(kq) time.
Relabeling: First, we need to determine the matrix N., which takes O(kq) time, and
then we need to find the minimum weight by considering possible choices of C, with all
rows fixed except two, which clearly takes O((N + 1)2%). Thus, overall the complexity of
determining (-, -, -) for the relabeling operation is O(kq + (N + 1)29).

Now the complexity of computing any A(e, C, N) is bounded by the sum of the complexities
of the four cases, for which we obtain O(teheer(|V (G)|, ¢, N) + (N + 1)2k9). Thus, we obtain
the following complexity:

O((IV(G) + [ E(G))YN + 1)*  (teheck (|V (G 4, N) + (N +1)2M9)).

» Remark 9. We can modify the algorithm in order to also obtain the coloring function as
an output. This does not affect the complexity.

Let us highlight the following main consequences of the previous analysis. Notice that,
by the results in [23], we do not need a clique-width expression as input.

» Corollary 10. Consider a color-counting 1-locally checkable problem I1 with constant number
of colors and a check function computable in polynomial time. Then II is XP parameterized
by clique-width.

» Corollary 11. Let d € N. If1I is a d-stable 1-locally checkable problem where the number
of colors is O(log |V (G)|) and the check function can be computed in polynomial time, then
II is XP parameterized by clique-width.

» Corollary 12. Let d € N. If 1l is a d-stable 1-locally checkable problem where the number
of colors is constant and the check function can be computed in constant time, then II is FPT
parameterized by clique-width. Moreover, if an irredundant clique-width k-expression is given
as input, then it is linear FPT parameterized by k.

Notice that various well-known graph theoretical problems, such as k-COLORING, MAXI-
MUM INDEPENDENT SET, as well as [k] ~ROMAN DOMINATION (see Section 6), are indeed
d-stable 1-locally checkable problems, for some constant d, with constant number of colors.

We would also like to mention that Lemmas 4, 5, 6, 7 and 8 still hold if in this section
we replace every occurrence of “min(N,-)” by “ mod (N + 1)”. Further, the complexity of
Algorithm 1 remains the same. By doing so, we obtain FPT algorithms parameterized by
clique-width for problems such as parity domination [15, 18] and finding the minimum size
of a non-z(mod k) dominating set [8]. The next corollary formally states this observation.

» Corollary 13. Let m € N. Consider a color-counting 1-locally checkable problem 11 where
the number of colors is constant, and the check function can be computed in constant time and
is such that check(v,a,nq,...,ng) = check(v,a,ny modm,...,ng modm) for all v e V(G),
a € COLORS and non-negative integers ny,...,nq. Then Il is FPT parameterized by clique-
width. Moreover, if an irredundant clique-width k-expression is given as input, then it is
linear FPT parameterized by k.

5 Global size property

In this section, we extend the results of Section 3 by considering color-counting 1-locally
checkable problems in which it is also required that the number of vertices that receive a
given color a € COLORS belongs to a predefined set o, of non-negative integers.
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Let (Q,{1},9,qo, F') be a deterministic finite-state automaton which accepts a string of ¢
consecutive 1’s if and only if ¢t € o,. Note that for all finite sets of non-negative integers,
there exists such an automaton (for example, let m be the maximum element of the set, then
we set Q@ = {S0,..-,8m+1}s 90 = S0, F = {s;:1 €0}, §(84,1) = s;41 for all 0 < i < m and
§(Sm+1,1) = 8ma1). Let us define the notation §°(s;) = s; and 6"(s;) = 6(6"1(s;),1) for
every state s; € @ and positive integer n.

We will now proceed in a similar way as in Section 4 but considering additional parameters.

Let us first introduce the relevant notion of (C,N,p1,...,pm)-colorings, which will be
defined recursively. This notion can be used to extend the results of the aforementioned
section using different global properties. Intuitively, if C, N € [0, N]**? and pi,...,pm
are parameters such that (C, N,p1,...,pm)-colorings of G, are defined, then, for additional
parameters Dpyi1, ..., Pmtms, We define a (C,N,p1,...,Dm,Pm+1,-- - Pmtm )-coloring of
G. as a (C,N,p1,...,pm)-coloring of G, such that parameters py,+1,...,Pmtms satisfy
some predefined property. In the case of the particular global property mentioned at the
beginning of this section, we will only consider two additional parameters. The first such
parameter is a state s, € () and the second parameter is a function f,: @ — BooL. We
then define a (C,N,p1,...,Dm, Sa, fa)-coloring ¢ of G. as a (C,N,p1,...,pm)-coloring of
G, such that f,(0"(s,)) = TRUE, where n = [{v € V(Ge) : ¢(v) = a}|. Also, in the same
spirit as before, we will denote by A(e,C, N,p1,...,Pm, Sa, fo) the minimum weight among
all (C,N,p1,...,DmsSa, fa)-colorings of G.. If we want to fix the size of R color classes, say
ai,...,aR, it suffices to associate an automaton M; and the corresponding parameters s,,
and f,, with each color class a;, for i € [1, R].

By providing a lemma explaining how to solve a color-counting 1-locally checkable
problem with given global properties by using (C, N, p1,...,Pm, Sa, fa)-colorings, and then
again distinguishing the four clique-width operations, as in the previous section, we can prove
that, when the number of colors is constant, this new algorithm is also XP parameterized by
clique-width. Due to space restrictions, their statements are omitted here, but presented in
Appendix A.

6 Applications

In this section, we provide some examples of problems whose complexity status in graphs of
bounded clique-width was unknown, and for each of which the application of our framework
yields a first polynomial-time algorithm in this class of graphs.

6.1 (Global) [k]-Roman domination

The [k]-ROMAN DOMINATION problem was first defined in [1] as a generalization of Roman
and double Roman domination [9, 4]. Let k& > 1 be an integer. A [k]-Roman dominating
function on a graph G is a function f: V(G) — [0, k+ 1] having the property that if f(v) < k
then -, ¢y f(u) = |AN£(1})| + k, where ANé(v) = {u € Ng(v) : f(u) > 1} (this set
is called the active neighborhood of v). The weight of a [k]-Roman dominating function
fis Xvev(q) f(v), and the minimum weight of a [k]-Roman dominating function on G is
the [k]-Roman domination number of G, denoted by ~xr)(G). The problem consists in
computing the [k]-Roman domination number of a given graph.

In [6], this problem was shown to be solvable in linear time in graphs of bounded
treewidth. In their model, the number of colors is a constant and the check function is
actually (k + 1)-stable. We can express it in the following way:
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CoLors = [0,k + 1] and L, = [0,k + 1] for all v € V(G);

(WEIGHTS, <X, ®) = (NU {+00},<,+) and w, , = a for all v € V(G),a € L,;

check(v,a,ng, ..., ngy1) = (a + Zf:é Jjn; > k+ Zf;rll nj).

Then, by Corollary 12, this problem is FPT parameterized by clique-width (and linear
FPT when a suitable clique-width expression is given).

In [25], the authors introduced a variant of this problem, called GLOBAL ROMAN DOMI-
NATION. This problem was later extended to GLOBAL DOUBLE ROMAN DOMINATION [26] and
GLOBAL TRIPLE ROMAN DOMINATION [21]. The definition of these problems can be naturally
generalized as follows. A global [k]-Roman dominating function on a graph G is a [k]-Roman
dominating function in both G and G. The GLOBAL [k]-ROMAN DOMINATION problem
consists in computing the minimum weight of a global [k]-Roman dominating function of a
graph.

In order to show that this problem is XP parameterized by clique-width, we first define
an auxiliary problem.

SPECIFIED SIZE GLOBAL [k]-ROMAN DOMINATION

Instance: A graph G and k + 2 non-negative integers so, ..., Sk+1 such that Efiol si = |V(@)).

Question: Does G admit a global [k]-Roman dominating function f such that, for all ¢ € [0, k4 1],
s; equals the number of vertices v € V(G) with f(v) =47

This last problem can be modeled as a color-counting 1-locally checkable problem with
global properties:

CoLORs = [0,k + 1] and L, = [0,k + 1] for all v € V(G);

(WEIGHTS, <X, ®) = (NU {+00},<,+) and w, , = a for all v € V(G),a € L,;

check(v,a,no, ..., nps1) = (a+ 051G — Dng > k) A (551 (G — 1)(sj — ny) > k);

for all @ € COLORS, we ask for the size of the color class of a to belong to {s,}.

Finally, to solve GLOBAL [k]-ROMAN DOMINATION on graphs of bounded clique-width, we

. . . o k+1
successively iterate over the feasible combinations of values s, ..., sgy1 such that Z;O Si =

|[V(G)| and s; > 0 for all ¢ € [0,k + 1]. Notice that the number of such combinations is

no more than (|[V(G)| + 1)¥*2. For each combination, we solve SPECIFIED SIZE GLOBAL
[k]-ROMAN DOMINATION, and we retain the solution of minimum weight.

6.2 k-community, Max PDS and other variants

The notion of community structure was first introduced in [22], as a partition {C1,...,Ck},
with k& > 2, of the set of vertices of a graph into so called communities, such that for each

i € [1,k] we have |C;| > 2 and, for each vertex v € C; and each community C; # C;,
[Ne(v)NCs| ~, [N (@)NC|
‘Cl‘fl — Cj
polynomial time (see [22]). However, the number of communities k in the obtained community
d V@)
2

. Finding a community structure in any graph G can be done in
structure can be any value between 2 an , and the algorithm does not apply when we
want to impose the number of communities. The 2-COMMUNITY problem was introduced
in [2] as the problem of deciding whether a given connected graph has a 2-community
structure, i.e. a community structure with 2 communities. This can be naturally generalized
to the k-COMMUNITY problem, for any fixed k, as the problem of deciding whether a given
connected graph has a community structure with k£ communities. The complexity status of
2-COMMUNITY is still unknown, and only a few graph classes are known to admit polynomial
time algorithms for this problem (for instance, graphs of maximum degree 3 and graphs of
minimum degree |V(G)| — 3 [2]).
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We show here that k-COMMUNITY is XP parameterized by clique-width. Our approach
is similar to the one for GLOBAL [k]—ROMAN DOMINATION, in the sense that we define a
variant of the problem where we require a certain size of each community, to which we reduce
k-COMMUNITY.

SPECIFIED SIZE k-COMMUNITY
Instance: A graph G and k integers si, ..., sk > 2, such that Zle si = |[V(@)).
Question: Does G admit a k-community structure {C1, ..., Ci} such that |C;| = s; for all ¢ € [1,k]?

The SPECIFIED SIZE k-COMMUNITY problem can be modeled as a color-counting 1-locally
checkable problem with global properties. Notice that since it is a decision problem, we only
need two values for the weight set.

CoLors = [1,k] and L, = [1,k] for all v € V(G);

(WEIGHTS, %X, ®) = ({0,1}, <,max) and W, , = 0 for all v € V(G),a € Ly;

check(v,a,ny,...,ng) = (Vb € [1,k], e > m);

Sq—1 — sp

for all @ € COLORS, we ask for the size of the color class of a to belong to {s,}.

Then, k-COMMUNITY can be solved by successively iterating over the feasible combinations
of values s1,..., sy such that Zle s; = |[V(G)| and s; > 2 for all ¢ € [1, k], and for each of
the combinations solving SPECIFIED SIZE k-COMMUNITY.

Note that BALANCED k-COMMUNITY, i.e. the problem of finding a k-community structure
with all parts having the same size, is equivalent to SPECIFIED SIZE k-COMMUNITY with
s; = s;, for all 4,5 € [1,k]. Hence, it is also XP parameterized by clique-width. In [13], it
was shown that this problem is NP-complete in general, and in [2] it was pointed out to
be polynomially solvable in graphs of bounded treewidth. It is not difficult to see that the
problem WEAK k-COMMUNITY, defined in [2], can also be solved by slightly modifying the
above check function.

A closely related problem is the MAXIMUM PROPORTIONALLY DENSE SUBGRAPH (MAX
PDS) problem, originally defined in [3]. Let G be a graph and S C V(G), such that
2 < |S] < |[V(G)|. We say that the induced subgraph G[S] is a proportionally dense subgraph

(PDS) if for every v € S, we have |N|GS(I@TS‘ > \Nc‘%‘)m?\. Then, the Max PDS problem

consists in finding a proportionally dense subgraph in G of maximum size. The authors of [3]
showed that the MAX PDS problem is NP-hard, even when restricted to split graphs or
bipartite graphs, and that it can be solved in linear time in cubic Hamiltonian graphs.

By proceeding in a similar way as before, where in the associated auxiliary problem

we have only two colors, s and S, and the check function is given by check(v,a,ng,n1) =

(a =Ss= Ss”_sl > Z—;), we can show that MAx PDS is XP parameterized by clique-width.

Another variation defined in [3] is the PDS EXTENSION problem, which asks whether
there exists a proportionally dense subgraph G[S] such that U C S, for some U C V(QG)
given as an input. It was shown in [3] that the PDS EXTENSION problem is NP-complete,
and no polynomial time algorithms were known for any graph class. We can show that this
problem is also XP parameterized by clique-width, by proceeding almost exactly as explained
above, where the only change is that we now set L, = {s} for all v € U.

Given a graph G and a real number v € (0, 1], a degree-based -quasi-clique is defined as
a subset S C V(G) such that the degree of any vertex in G[S] is at least v(|S| — 1), that is,
'NIGS(‘% > 7. The MAXIMUM DEGREE-BASED 7y-QUASI-CLIQUE problem consists in finding
a degree-based y-quasi-clique of maximum cardinality in a graph. In [24], it was shown
that this problem is NP-hard for any fixed . Using the same techniques as for MAX-PDS
(only slightly modifying the check function), we obtain that MAXIMUM DEGREE-BASED
Y-QUASI-CLIQUE is XP parameterized by clique-width.
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A Examples and omitted lemmas

We include here examples of color-counting 1-locally checkable problems, and the lemmas
omitted from Section 5. Due to space constraints, only some of the proofs are presented.

A.1 Examples of color-counting 1-locally checkable problems

» Example 14. Consider the k-COLORING problem. This problem can be seen as a color-
counting 1-locally checkable problem with the following characteristics:

CoLoRrs = [1,k] and L, = [1,k] for all v € V(G);
(WEIGHTS, <, ®) = ({0,1}, <,max) and W, , = 0 for all v € V(G),a € Ly;

check(v,a,ny,...,ng) = (ng =0).

» Example 15. The MAXIMUM INDEPENDENT SET problem can also be modeled as a
color-counting 1-locally checkable problem:

Corors = {0,1} and L, = {0,1} for all v € V(G);
(WEIGHTS, <X, ®) = (NU {—o00},>,+) and w, , = a for all v € V(G),a € L,;

check(v,a,ng,n1) = (a =0V ny =0).

» Example 16. The MINIMUM ODD DOMINATING SET problem can as well be modeled as a
color-counting 1-locally checkable problem, as follows:

Corors = {0,1} and L, = {0,1} for all v € V(G);
(WEIGHTS, <X, ®) = (NU {400}, <,+) and W, , = a for all v € V(G),a € L,;

check(v,a,ng,n1) = (a+ny =1 mod 2).
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A.2 Omitted lemmas of Section 5

In what follows, we will write p instead of p1, ..., p,, to make the notation less cumbersome.
Note that p is empty when m = 0.

» Lemma 17. Let II be color-counting 1-locally checkable problem with a set of global
properties ', input graph G with a clique-width k-expression eg of G, and let a € COLORS.
Let 0 C N and let (Q,{1},9,qo, F) be a deterministic finite-state automaton that accepts a
string of n consecutive 1’s if and only if n € 0. Let €p: QQ — BOOL be the function such
that € (q) = (¢ € F).

Assume that the minimum weight of a proper coloring of G satisfying I' equals

min{)\(eGaC7 NJ/D\) : P(C7 NJ/D\) = TRUE}

for some property P. Furthermore, assume that

(1) for every proper coloring ¢ of G satisfying T’ there exist C, N,p such that P(C,N,p) =
TRUE and such that ¢ is a (C, N,p)-coloring of G;

(2) for every C,N,p such that P(C, N,p) = TRUE and such that A(ec,C, N,p) # ERROR,

every (C, N, p)-coloring of G is a proper coloring of G satisfying T.

Then, the minimum weight of a proper coloring ¢ of G satisfying I' and such that
H{v € V(Q) : c¢(v) = a}| € o equals

min{\(eg, C, N, P, g, €r) : P(C,N,p) = TRUE}.

Moreowver,

(a) for every proper coloring ¢ of G satisfying I' and such that |{v € V(G) : ¢(v) = a}| € o,
there exist C, N,p such that P(C,N,p) = TRUE and such that ¢ is (C,N,D, qo, €F)-
coloring of G,

(b) for every C,N,p such that P(C,N,p) = TRUE and such that X\(eg,C,N,p, qo, €F) #
ERROR, every (C, N, D, qo, €F)-coloring ¢ of G is a proper coloring of G satisfying T and
such that |[{v € V(G) : ¢(v) = a}| € 0.

Proof. We will first show that for every proper coloring ¢ of G satisfying I" and such that
H{v € V(G) : ¢(v) = a}| € o, there exist C, N, p such that P(C, N,p) = TRUE and such that
w(c) > Meg,C, N, P, qo, €r). Suppose we have such a proper coloring ¢ of G satisfying I" and
such that |{v € V(G) : ¢(v) = a}| € 0. By assumption (1), we know that there exist C, N,p
such that P(C, N,p) = TRUE and c is a (C, N, p)-coloring of G. Since we are assuming that
{v € V(G) : ¢(v) = a}| € o, and since the automaton accepts a string of ¢ consecutive 1’s if
and only if ¢ € o, it follows that € (6"(go)) = TRUE, where n = [{v € V(G) : ¢(v) = a}|.
Thus, ¢ is a (C, N, p, qo, € r)-coloring of G and w(c) > A(C, N, p, qo, €F).

On the other hand, we will now show that for every C, N, p such that P(C, N,p) = TRUE
and such that A(eg, C, N, p, qo, €r) # ERROR, there exists a proper coloring ¢ of G satisfying I’
and such that |[{v € V(G) : ¢(v) = a}| € o with w(c) = A(eg, C, N, D, qo, €Er). So suppose we
have C, N, p such that P(C, N,p) = TRUE and such that A(C, N, p, qo, €r) # ERROR. By the
latter assumption and by the definition of A(C, N, D, qo, €F), we get that A(C, N, D) # ERROR.
Let ¢ be a (C,N,D, qo, €r)-coloring of G (notice that at least one such ¢ exists). By
definition, ¢ is a (C, N, p)-coloring of G. Then we conclude by assumption (2) that ¢ is a
proper coloring of G satisfying I'. Finally, since ¢ is a (C, N, P, qo, €r)-coloring of G, we
have that €p (0"(qp)) = TRUE, where n = [{v € V(G) : ¢(v) = a}|, which implies that
Hv € V(G) : ¢(v) = a}| € o. If we consider in particular ¢ of minimum weight, then
w(c) = Mea, C, N, P, qo, €F)-

Notice that (a) and (b) are implicitly shown by the above. <
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» Lemma 18 (Creating new vertex: i(v)). If Cli,a] = 1 and f,(6(sq,1)) = TRUE, or if
Cli,a] =0 and f,(ss) = TRUE, then

A(i(v), C, N, D, $a, fa) = A(i(v), C, N, p).
Otherwise, A(i(v),C, N,D, Sq, fo) = ERROR.
» Lemma 19 (Disjoint union: e; @ e3). Assume that

Ae1 @ ez, C, N,p) = min{A(e1,C1, N1,p1) ® A(ea, Ca, N2, p2) :
P(CaNa]/)\7ClaNl7ﬁ\l7C27N2ap/\2) = TRUE}

for some property P. Moreover, assume that

(1) for every (C, N,Dp)-coloring ¢ of Ge,ge, there exist C1, N1, p1,Ca, Na, pa such that P(C, N,
D, C1, N1,p1,Co, No, p3) = TRUE and such that c|V(G61) is a (C1, N1,p1)-coloring of G,
and C|V(Gez) is a (Ca, N2, pa)-coloring of G, ;

(2) fOT’ all Cl, Nl,ﬁ\l, CQ, Nz,p/\g such that P(C, N,ﬁ, Cl, Nl,ﬁ\l, CQ, NQ,]/)\Q) = TRUE, Zf c1 1S
a (C1, N1,p1)-coloring of G, and co is a (Cq, N, p3)-coloring of Ge,, then ¢ = ¢1 Ucy
is a (C, N, p)-coloring of Ge,ge,-

Then,

)\(61 57 62,0; Naﬁv Savfa) = min{)‘(el,ChNh]a\lvsaveqt]) ® >‘(627C2aN27pA2aqafa) :
q S Q G/ﬂd P(CaNaﬁvclaNhﬁ\hCQ)NQvﬁ\Q) = TRUE}'

Moreover,

(a) for every (C,N,p,sq, fo)-coloring ¢ of G, ge, there exist q, Ci,Ny,p1,Co, No, Do
such that ¢ € Q, P(C,N,p,Ci,Ni,p1,C2,N2,p3) = TRUE, and cly,,) s a
(C1, N1,p1, 8a, €qq)-coloring of Ge, and cly(q.,) s a (Ca, Na, p2,q, fa)-coloring of Ge,;

(b) for all q, Cy, N1,p1,C2, Na, 3 such that ¢ € Q and P(C,N,p,C1, N1,p1,Co, No,p2) =
TRUE, if ¢1 is a (C1, N1, P1, Sq, €qq)-coloring of G., and ¢z is a (Ca, Na, P2, q, f)-coloring
of Ge, then c =c¢; Ucg is a (C, N, P, Sq, fa)-coloring of Ge,ge,-

» Lemma 20 (Join: 7; ;(e)). Assume that there exist C’,N’,]/)\’ such that ¢ is a (C, N,D)-

coloring of Gy, ,(ey if and only if ¢ is a (C', N’,l/)\’)-coloring of Ge.

Then, c is a (C,N,p, sa, fa)-coloring of G, () if and only if c is a (C”,N’,Z/)\’,sa,fa)—

coloring of G.. In particular,

)‘(ni7j(e)aca Naﬁ) Sa7fa) = )‘(670/7N/7];/a8aafa)~

» Lemma 21 (Relabeling: p;_,;(e)). Assume that
)\(pzﬁj(e)a C7 Nﬂﬁ) = min{)\(e, Cea N6715:3) : P(Cu Naﬁv 067 Neaﬁ;) = TRUE}

for some property P. Moreover, assume that

(1) for every (C,N,p)-coloring c of G,,_, (e), there exist parameters Ce, Ne,pe such that
P(C,N,p, C., Ne,p.) = TRUE and ¢ is a (Ce, Ne, pe)-coloring of G;

(2) for all parameters Ce, Ne,pe such that P(C,N,p,Ce,Ne,p.) = TRUE, if ¢ is a
(Ce, N, pe)-coloring of G., then c is also a (C, N,p)-coloring ¢ of G,,_, (e)-
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Then,
A(pi—)j(e)aca Naﬁa Saafa) = min{A(e7C€7Neaﬁ\eaSaafa) : P(Cv Nvﬁa Ce,Ne7ﬁ\6) = TRUE}'

Moreover,

(a) for every (C,N,D, sq, fa)-coloring c of G,,_, (), there exist parameters Ce, Ne,pe such
that P(C, N, p,Ce, N, ps) = TRUE and ¢ is a (Ce, Ne, Pe, Sa, fa)-coloring of G.;

(b) for all parameters Ce, N, pe such that P(C, N, D, Ce, Ne, D) = TRUE, if ¢ is a (Ce, Ne, pe,
Sas fa)-coloring of G, then c is also a (C, N, D, 54, fa)-coloring c of G,,_, (e

Proof. Let o = min{\(e, Ce, N¢, Pe, Sa, fa) : P(C,N,D,Ce, Ne,p.) = TRUE}. We will first
prove that A(p;—;(e), C, N, D, 84, fa) > a. Let ¢ be a (C, N,p,sq, fa)-coloring of G, (c)-
We show that there exist parameters C., N, p, such that P(C, N, p, C., N, p.) = TRUE and
cis a (Ce, Ne, Pe, Sa, fa)-coloring of G.. By definition, ¢ is a (C, N,p)-coloring of G, _, (e
such that f,(0"(s.)) = TRUE, where n = [{v € V(G,,_, () : ¢(v) = a}|. Therefore, by
assumption (1), there exist parameters C., N, p, such that P(C, N, p,Ce, N., p.) = TRUE
and ¢ is a (Ce, Ne, pe)-coloring of G.. Furthermore, since n, = |[{v € V(G.) : ¢(v) =
afl = Hv € V(G,,_,(e) : c(v) = a}| = n, it immediately follows that f,(6"(sq)) =
TRUE. Thus, ¢ is a (Ce, Ne, De, Sa, fo)-coloring of G.. If we consider in particular a
(C, N, D, 5a; fa)-coloring c of G, _, ¢y of minimum weight, then A(p;—;(e), C, N, D, 84, fo) =
W(c) > A(e, Ce, Ne, Pey Sas fa) > .

Let us now show that A(p;—;(e),C,N,D, sq, fa) < . Let Ce, Ne,pe be such that
P(C,N,p,Ce, Ne,p.) = TRUE. Let ¢ be a (Ce, Ne, De, Sa, fa)-coloring of G.. By defini-
tion, ¢ is a (Ce, Ne, pe)-coloring of G, such that f,(6™(s,)) = TRUE, where n, = |{v €
V(G.) : c¢(v) = a}|. Then, by assumption (2), ¢ is also a (C, N, p)-coloring c of G, (e)-
Furthermore, since n = [{v € V(G,,_ () : c(v) = a}| = {v € V(G,) : c(v) = a}| = ne, it
immediately follows that f,(6"(s,)) = TRUE. Therefore, ¢ is a (C, N, D, 4, fa)-coloring ¢
of Gy, (e)- If we consider in particular a (Ce, Ne, Pe, S, fa)-coloring ¢ of G, for which « is
obtained, then oo = w(c) > A(p;—j(e), C, N, P, Sa, fa)-

Notice that (a) and (b) are implicitly shown by the above. <

A.2.1 Complexity of the modified algorithm

First, assume that for any possible parameter f, and state ¢, (s, 1) and f,(¢) can be computed
in constant time. Also, assume that we want to fix the size of R color classes ay,...,ar. Let
S be the size of the largest set of states among the R considered automata. Then, we add a
term R to the complexity corresponding to the operation of creating a new labeled vertex,
and we multiply by a term S® the complexity corresponding to the disjoint union operation.
Moreover, whenever we go through all the possible A(e, C, N, D, Sq,, fars- - Sars far)» W€
multiply the complexity by a factor (S(S + 1))®. Hence, since R is at most the number of
colors and § < |V(G)|, we conclude that the new algorithm is also XP parameterized by
clique-width when the number of colors is constant.
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