
Towards Interoperability of Open and
Permissionless Blockchains: A Cross-Chain Query

Language
Felix Härer

Digitalization and Information Systems Group
University of Fribourg
Fribourg, Switzerland

E-Mail: felix.haerer@unifr.ch

Abstract—The rise of open and permissionless blockchains
has introduced novel platforms for applications based on dis-
tributed data storage. At the application and business levels,
long-established query languages such as SQL provide interop-
erability that can be complemented by blockchain-based data
storage today, enabling permissionless and verifiable data storage
along with decentralized execution across tens of thousands
of nodes. However, when accessing one or more blockchains,
interoperability is not provided today, posing challenges such as
inhomogeneous data access in addition to different features and
trade-offs, e.g. in data and distribution, scalability, and security.
Towards interoperability in data access among the increasing
number of blockchain platforms, this paper introduces a cross-
chain query language for data access across blockchains. Similar
to SQL, the language abstracts from implementation based on
a data model compatible with the largest open and permission-
less blockchains (OPB) today. The language, data model, and
processing architecture are demonstrated and evaluated with an
implemented prototype, aiming to contribute to the discussion
on blockchain interoperability among OPB.

Index Terms—Query Languages, Distributed Systems,
Blockchains, Data Models, Interoperability

I. INTRODUCTION

In August 2022, at least 22 well-known openly accessi-
ble blockchains exist with a significant number of active
participants, processing their transactions over internet pro-
tocols1. These systems are, in their nature, open platforms
for distributed data and applications, allowing applications of
businesses or individuals to transact through a shared ledger
without centralized coordination based on algorithmic consen-
sus in the network [1]. Open systems with these components
- blockchain data, network, consensus protocol - are verifiable
in their operation and data by all participants, enabling novel
decentralized applications such as programmable money or
contracts [2]. In contrast to distributed systems of past decades,
hundreds to thousands of nodes establish open and permission-
less platforms. Estimations based on the connections of par-
ticipating nodes count about 15000 nodes operating Bitcoin2,

This work is partially supported by the Swiss National Science Foundation
project Domain-Specific Conceptual Modeling for Distributed Ledger Tech-
nologies [196889].

1https://messari.io/screener/active-adresses-15D9AE99
2https://bitnodes.io/

6000 operating Ethereum3, and 3000 operating Cardano4;
without accounting for additional nodes not visible due to
their configuration or placement behind routers and firewalls.
With the growing adoption, the increasing number of open and
permissionless blockchains, and the vast amounts of openly
available data, future relevance of these platforms for verifiable
data storage and execution is assumed as a premise of this
paper. Applications accessing the platforms include payments
and currency, e-commerce, timestamping, and the attestation
of data and links on the web [3]–[5].

Problem Statement. Software accessing data across open and
permissionless blockchains (OPB) today faces challenges due
to interoperability:

1) Inhomogeneous access to data due to various OPB
implementations.

2) Different OPB data models and features exist.
3) Different OPB trade-offs exist, notably regarding scala-

bility, security, and decentralization.
Research Objective and Contribution. The objective of this

research is to address the three challenges towards higher inter-
operability between OPB. In the discussion on this topic, the
paper contributes a cross-chain query language by specifying a
common data model, a standardized syntax, and a processing
architecture. For answering query statements written by users
or applications, data is read from multiple blockchain nodes,
integrated in the common data model, and processed according
to the statements. Given the state-of-the-art of conceptual mod-
els and query languages suggested before, such as [6] and [7],
the language design is derived abstract from implementation
for several of the largest OPB today. The proof-of-concept
implementation demonstrates feasibility and the potential for
software to utilize OPB as part of their architecture.

Application Example. Several e-commerce websites might
take part in commonly operated loyalty programs that issue
reward points for customer purchases. Among other industries,
these programs can be found for airlines working together5.

3https://ethernodes.org/
4https://adastat.net/pools/
5E.g. https://www.miles-and-more.com/ch/en.html

https://messari.io/screener/active-adresses-15D9AE99
https://bitnodes.io/
https://ethernodes.org/
https://adastat.net/pools/
https://www.miles-and-more.com/ch/en.html

Given a cross-chain query language, business-level applica-
tions of different airlines could re-use and standardize data
access, the underlying blockchain could be changed, and
multiple blockchains of several loyalty programs could be used
from individual applications.

The remainder of this paper is structured as follows. Sec-
tion II introduces foundations and related work. Section III
discusses OPB with their properties for the derivation of a
data model. Subsequently, the data model, a grammar of the
language syntax, and a processing architecture are derived.
This approach is evaluated in Section IV with a prototype
implementation utilizing multiple OPB. Section V concludes.

II. FOUNDATIONS AND RELATED WORK

Blockchain foundations are introduced first, followed by
open and permissioned blockchains and interoperability.

A. Blockchains

Following the initial publication of the Bitcoin whitepaper
and software in 2008 and 2009, respectively [8], [9], the
term blockchain has been introduced as a generalization of
its technical architecture. The main components of (1.) a
data structure of backward-linked blocks, (2.) a peer-to-peer
network for data distribution, and (3.) a consensus protocol
allow for novel properties. Notably, coordinating and validat-
ing all operations without centralized control, open access to
all data and operations, and permissionless access where data
and operations are not restricted to specific participants [2],
[10]. Ethereum, and other blockchains following it, extended
the capabilities with smart contracts as quasi Turing-complete
programs [11], [12]. In addition to payments and money, smart
contracts enable e-commerce, sales contracts, timestamping,
and attestations, among other applications [3], [5], [13].

B. Open and Permissionless Blockchains

Growing development and adoption originating from Bit-
coin and Ethereum have resulted in OPB with various proper-
ties. Table I lists five well-known OPB in order of their public
number of network nodes, characterized by the properties of
their data structure, network, and consensus protocols, as well
as features related to smart contracts.

Data Structures. The initial design of backward-linked
blocks in Bitcoin is combined in most other OPB with
additional trees or graphs. In addition to transaction data
from blocks, further queries must be carried out for non-
transactional data or older data that has been pruned. For
example, separate tree structures are present for state storage
in Ethereum, where balances and smart contract variables can
be retrieved [6].

Networks. Major OPB networks consist of approximately
1300 to 15000 nodes. Due to algorithmic operation and
validation, higher node counts increase security, e.g. related to
51% attacks and selfish mining [14], [15] frequently observed
in small Proof-of-Work systems such as Bitcoin Gold [15].

Consensus Protocols. In the protocols initially created be-
tween 2008 and 2022, a shift away from Proof-of-Work to

Proof-of-Stake can be observed, introducing several trade-offs.
While established blockchains such as Bitcoin and Ethereum
have been emphasizing security and decentralization over the
past years, efforts to improve efficiency and scalability are
made in Cardano [16], Avalanche [17], and Solana [18]. The
tendency is reflected in work on novel consensus protocols by
the three blockchains, mostly based on Proof-of-Stake [19],
[20] with higher efficiency and advantages to environmental
impact. Avalanche and especially Solana emphasize scalabil-
ity. In Solana, however, temporary protocol failures can be
observed frequently, resulting in non-availability [21].

Smart Contract Features. For data queries and software
applications, smart contract features are required. In this area,
Bitcoin possesses a limited scripting language used for pro-
grammable monetary transactions and the scalable lightning
overlay network [22]. The introduction of general-purpose pro-
gramming in Ethereum and others introduces greater features
and complexity. At present, most implementations are written
and compiled for the Ethereum Virtual Machine, present in
Ethereum and Avalanche. Cardano and Solana possess their
own architectures with support for general-purpose programs.

C. Blockchain Interoperability

Interoperability is broadly recognized for transactions across
blockchains in cross-chain swaps and similar concepts found
in practice in so-called bridges. In addition, standardization
efforts related to inhomogeneous data are beginning, not
limited to query languages.

Cross-Chain Swaps. Swaps are commonly initiated through
a protocol on an initial blockchain, where tokens or arbitrary
data are locked to prevent further transfer in the beginning.
A counterparty transaction is issued on a second blockchain
to the initiator of the cross-chain swap, i.e., often another
party pays for the tokens with another asset on the second
chain. This transaction includes a cryptographic proof with a
secret that unlocks the tokens on the initial chain. Finally, the
counterparty withdraws tokens from the initial chain. Various
protocols on this basis and variants exist [23], [24]. In atomic
cross-chain swaps [25], [26], atomicity is provided for all
transfers involved in a cross-chain swap. Implementations in
bridges may, in practice, exhibit differing properties and assur-
ances, not necessarily providing atomicity or other guarantees
for the completion of the exchange. Bridges exist mainly
for cryptocurrency exchange, e.g. Anyswap6 and Connext7

allow for cross-chain swaps between Ethereum, Avalanche,
and others. Cross-chain swaps and bridges are not standardized
and do not provide homogeneous access or queries.

Inhomogeneous Data. Standardization efforts address inho-
mogeneous data with few prior works related to inhomoge-
neous access. For Ethereum, [6] discusses a conceptual schema
derived from the main data structures of the blockchain. [7]
propose a query language for the content of blocks and trans-
actions. The language design is based on SQL in its syntax

6https://anyswap.exchange/
7https://bridge.connext.network/

https://anyswap.exchange/
https://bridge.connext.network/

TABLE I
PROPERTIES OF WELL-KNOWN OPEN AND PERMISSIONLESS BLOCKCHAINS.

Blockchain Data Structure Network Consensus Protocol Smart Contract
Features

[1] Bitcoina Blocks, UTXO
data model

Bitcoin, approx.
15000 nodes

Nakamoto Consensus,
Proof-of-Work

Stack-based script
execution, monetary
transactions

[2] Ethereumb
Blocks, account
state storage in tree
data structures

Ethereum Mainnet,
approx.
6000 nodes

Ethash, memory-hard
Proof-of-Work

Ethereum Virtual
Machine, general-
purpose programs

[3] Cardanoc Blocks, extended
UTXO model

Cardano,
approx.
3000 nodes

Ouroboros,
Proof-of-Stake

General-purpose
programs,
functional

[4] Solanad
Block and graph
data structures over
different time spans

Solana Mainnet Beta,
approx.
1600 nodes

Graph-based (proof-
-of-history), Proof-of-
Stake

General-purpose
programs

[5] Avalanchee
Block and graph
data structures over
different networks

Platform/Exchange/
Contract (P/X/C)
chain, approx.
1300 nodes

Avalanche (P Chain)
Snowman (X/C Chain),
Proof-of-Stake

Ethereum Virtual
Machine (C Chain),
general-purpose
programs

a[18], https://bitnodes.io/
b[29], https://ethereum.org/en/developers/docs/, https://ethernodes.org/
c[15], https://adastat.net/pools/
d[30], https://docs.solana.com, https://solanabeach.io/validators/
e[23], https://stats.avax.network/dashboard/network-status/

and supports concepts such as projection and selection within
Ethereum. For data analysis, a framework and implementation
based on Scala has been proposed [27], where SQL or NoSQL
is used with aggregation functions and similar analysis meth-
ods. The analysis approach [28] describes a data warehouse
and ETL process for analyzing Ethereum data using standard
SQL with a multi-dimensional data model for queries of
dimension attributes and data aggregation support. This work
and similar works might connect to multiple blockchains, how-
ever, they do not provide homogeneous data access, queries,
or simultaneous access to data of multiple blockchains. Other
works based on SQL include [29], using multiple blockchains
for populating a standard MySQL database with the third-party
service Google BigQuery. The use of third-party services as
data sources presents another problem often observed in prior
work, where validation of blockchain data is not possible or
severely limited. Further approaches include public connectors
between blockchains, blockchains that integrate with others,
and hybrid approaches [30].

Limitations of Prior Work. In conclusion, present solutions
are limited regarding (L1.) homogeneous data access, (L2.)
standardized queries, (L3.) simultaneous access to multiple
blockchains, or (L4.) blockchain data validation. Currently, the
focus is on cross-chain swaps and siloed data analysis rather
than data integration. The proposed query language addresses
these limitations by suggesting a common data model (L1.), a
standardized syntax (L2.), and a processing architecture (L3.)
supporting local nodes (L4.) of multiple blockchains.

III. QUERY LANGUAGE

The two following subsections describe (A.) the data model
and (B.) the syntax and processing architecture of the lan-
guage. Query statements are processed according to the archi-

tecture in subsection (B.), resulting in instances of data model
classes using data provided by APIs of local blockchain nodes.

A. Data Model

The language design is based on a data model integrating the
main data structures and attributes of the OPB introduced in
Section II-B. Based on prior work and existing tools discussed
in Section II-C, classes and attributes of the five OPB have
been identified, generalized, and integrated in a common data
model. Figure 1 lays out the complete data model as UML
class diagram. Table II lists the main model classes grouped
into four packages for representing the chain, block, account,
and transaction concepts of the OPB. For formulating queries,
the syntax is introduced in subsection III-B. Statements are
written in terms of the classes and attributes by specifying the
source data with class and attribute names of the data model.

In the table and data model, the concepts of the OPB are
represented by the following classes. The chain classes repre-
sent one main network and blockchain for Bitcoin, Ethereum,
Cardano, and Solana, by the classes Chain, Network, and
ChainDescriptor of the data model. Additional test networks
with their separate blockchains, e.g. Ropsten and Görli in
Ethereum, are represented by Network and ChainDescriptor.
In Avalanche, the Network class encompasses one primary
network, the first of potentially many subnets, with separate
ChainDescriptor instances for the three P/X/C blockchains.

The Block and BlockDescriptor classes represent blocks
with separate classes for the status of the block, the block
validation through the consensus protocol, and the validators
involved. Conceptually, blocks are described by an ID in the
form of a hash value in all blockchains, with metadata such as
timestamp and a height denoting the block number under the
assumption no changes occur to non-final blocks. For example,

https://bitnodes.io/
https://ethereum.org/en/developers/docs/
https://ethernodes.org/
https://adastat.net/pools/
https://docs.solana.com
https://solanabeach.io/validators/
https://stats.avax.network/dashboard/network-status/

Fig. 1. Data model of the cross-chain query language as UML class diagram.

in Bitcoin, multiple blocks could be found as the successor to
a given block; however, only one block will be included in the
chain while the others will be discarded with orphan status.
In contrast, the same case is handled in Ethereum by keeping
one block in the main chain and keeping the other blocks
at the same level with ommer status. Blocks are not explicitly
finalized in Proof-of-Work chains, allowing for the declaration
of orphan or ommer status for blocks found in parallel to prior
blocks of the chain. However, the probability of existing blocks
being replaced in this way decreases over time since multiple
successive parallel blocks with greater cumulative work are
required. An explicit finalization of blocks, preventing the
occurrence of multiple successors, can be found in more recent
Proof-of-Stake blockchains such as Solana.

Regarding data structure, blocks are linked to one or more
existing blocks of the linkDescriptor attribute of the Block
class, establishing either backward-linked blocks or a graph,
such as a directed acyclic graph (DAG) in the Avalanche
C chain. Blocks either contain transactions directly or are
grouped into time-based slots and epochs for validation pur-
poses with Proof-of-Stake. When appending a block, vali-
dation is carried out for each block or slot, requiring the
participation of validators. In the ValidationDescriptor class,
the creator of a block for Bitcoin and Ethereum provides
validation for a linked block by the hashValue attribute. For
the other Proof-of-Stake blockchains, proposers are recorded
in the corresponding attributes with attestations, referencing
the class ValidatorDescriptor. Each instance references any

TABLE II
DATA MODEL CLASSES SUPPORTING THE CONCEPTS OF THE OPB.

Chain classes Block classes Account classes Transaction classes

Bitcoin chain Blocks of transactions - Values (Bitcoin), UTXO
Ethereum chain Blocks of transactions Data storage, balances Values (Ether),

data incl. tokens
Cardano chain Epochs, slots with Addresses, data Values, assets,

blocks for transactions data, UTXO
Solana chain Epochs, slots for transactions Data storage Data incl. tokens
Avalanche P/X/C chain P/X: transaction DAG P/X: - X: values, assets, UTXO

C: blocks of transactions C: Data storage, balances C: Data incl. tokens

number of appointed validators attesting the correctness of
the block by means of their vote and signature. In this
way, the concept of multiple groups of validators performing
attestations is represented. When storing the transaction of a
DAG, one or more transactions in a block can be linked to one
or more transactions from a preceding block, indicated by the
linkedBlockedDescriptor attribute in Block and the dagSupport
attribute in BlockDescriptor that are set true in this case.

Accounts are a concept present in Ethereum, Solana, and
Avalanche. Blocks contain accounts for the storage of assets,
tokens, or data used for smart contracts. Notably, data might be
used for the representation of assets or tokens directly, such
as in Solana. Each account is described by an ID with the
concept of an address being present in all blockchains. In an
account, the storage of assets or tokens can refer to custom
assets, such as in Cardano, or tokens represented by data in
the general case. For tokens, token standards such as ERC-20
in Ethereum are represented by Token class attributes. Storing
data uses binary large objects or key-value stores, utilized in
hash-based mapping data structures.

Transaction concepts in Bitcoin and Cardano differ due to
the lack of accounts in these blockchains. For this reason,
transactions contain a reference to unspent transaction outputs
(UTXOs) of previous transactions. In this model, a UTXO
is included together with the transferred value and a script
describing locking conditions or containing data. While the
inclusion of data is implicit in Bitcoin, Cardano explicitly
supports data in transactions and its storage linked to an ad-
dress for smart contract functionality. In the case of Ethereum,
Solana, and the Avalanche C chain, transactions are stored for
the transfer of values, data, assets, or tokens between accounts.
In the Avalanche X chain, the transfer of native assets is
supported through the UTXO concept. In the data model,
the attributes of Transaction and TransactionDescriptor allow
for transfers between addresses by utilization of the attributes
corresponding to the aforementioned concepts.

B. Language Syntax and Processing Architecture
The language syntax is based on established concepts of

data query languages, in particular the Structured Query
Language (SQL). On the one hand, the syntax of SQL and
similar languages allow the representation of queries in a
formalized way through relational algebra. On the other hand,
queries and their articulation are accessible to domain experts

without detailed knowledge of the underlying concepts. The
SQL syntax is centered around the SELECT-FROM-WHERE
block (SFW block). Based on English-language commands,
the SELECT clause will perform a projection in the underly-
ing relational model, semantically corresponding to columns,
followed by the source of the relations in the FROM clause
and the selection of tuples using conditions in the WHERE
clause. In the relational model, set operations, and notably the
Cartesian product, are the basis for all queries. For a cross-
chain data language, these concepts are applied as follows.

Query Requirements. The syntax of query statements con-
sists of query (Q), source (S), and filter (F) clauses:

Q Query attributes are any attributes of the data model
classes. Each attribute must be specified together with
its class, determining one column of the query result for
each source.

S Sources specify blockchains and networks, optionally
together with blocks, transactions, and accounts with
assets, tokens, and data. In terms of the data model,
each source must be specified by the attribute values
of the identifying attributes of the Chain, Network, and
ChainDescriptor classes. Optionally, an additional class,
attribute, and attribute value of an identifying attribute
from the classes Block, Transaction, Account, Asset,
Token, or Data can be specified.

F Filters are optional conditions filtering the query results
by query attributes and sources. Each filter must be spec-
ified by a filter function for comparisons with two inputs
using query attributes. On the result values from the query
attributes, specified filters are applied in sequence.

Grammar. According to these requirements, Listing 1 par-
tially shows the syntax definition8. In the grammar excerpt,
the query statement syntax is described using the W3C variant
of the Extended Backus Naur Form (EBNF) [31]. The query,
source, and filter clauses specify projections, source data, and
selections, respectively. In each clause, the specification of
multiple values entails processing multiple result sets, in the
case of SourceSpec for triggering the retrieval of data from
multiple blockchains. Additionally, sources specify a chain,
network, and chain descriptor with an optional block, transac-
tion, or account according to the data model and requirements.

8Complete grammar: https://github.com/fhaer/CCQL/tree/main/grammar

https://github.com/fhaer/CCQL/tree/main/grammar

CCQL Application

Query ProcessingLocal
Nodes

Parser Component

Source
Clause

Network,
Chain Data

Block, TX,
Account Data

for each
Attribute

for each
SourceSpec

Data Model

instantiate
classes

[…]

call API

call API

Avala
nche

Card
ano

Query Attribute
Clause

for each
AttrSpec

Data Model
Class

Result Table

append
column

append
row

read all
instances

Data Model
Object

for each
instance

Filter
Clause

filter
row

Filter
Function

for each
ClassFilter

CCQL Query
Statement

Statement
Clauses

EBNF Grammar
Specification

derive parser rules

Blockchain
Platforms

Blockchain
Networks

Ether
eum

parse

process process

process

Fig. 2. Architecture for processing queries within an application.

Accounts storing assets, tokens, or data are accessed by the
respective classes shown in the data model. The source and
filter specifications are further detailed with the full EBNF
grammar specification in the implementation.

1 QueryStatement ::=
2 QueryAttrClause
3 SourceClause
4 FilterClause? ";"
5 QueryAttrClause ::=
6 ’Q ’ AttrSpec (’, ’ AttrSpec)*
7 SourceClause ::=
8 ’S ’ SourceSpec (’, ’ SourceSpec)*
9 FilterClause ::=

10 ’F ’ FilterSpec (’, ’ FilterSpec)*
11 AttrSpec ::=
12 CCQLClass ’.’ AttrName
13 SourceSpec ::=
14 BlockchainI ’:’ NetI ’:’ ChainDescI
15 (’:’ (BlockI | TxI | AccI))?
16 FilterSpec ::=
17 CCQLClass ’.’ AttrName ComparisonFunction IValue

Listing 1. EBNF excerpt. Attr: Attribute, Spec: Specification, Val: Value,
Desc: Descriptor, I: Instance, Net: Network, Tx: Transaction, Acc: Account.

Processing Architecture. The processing of queries within
the architecture is described in Figure 2. In an application
connected to local nodes of blockchain platforms, query
statements are issued to the parser component. After building
the clauses, the query processing component first iterates
the source clause, issuing for each SourceSpec and for each
attribute API calls to the blockchain nodes. According to the
classes and attributes, instances are created in the data model.
Second, the query clause iterates each AttrSpec by selecting
the corresponding classes from the model and producing
columns in the result table. For the objects of the classes,
rows are appended. Third, the filter clause applies each filter
function. Finally, the result table contains the query result.

IV. EVALUATION OF FEASIBILITY

The aim of this section is a demonstration of feasibility
for the query language, its data model, and the processing

architecture. For this purpose, an implementation compatible
to the introduced OBP has been developed, consisting of a
formal language grammar and a prototype application9. The
grammar is realized with the Eclipse Modeling Framework
and Xtext10 to establish an external domain-specific language
(DSL) based on it. In principle, the grammar is implementation
independent and might be re-used in further applications.
The language is implemented in a prototype command-line
application together with the data model according to the
proposed architecture, involving node access to the selected
OPB for query execution. The prototype is written in Python
3.9 and utilizes the web3.py library for OPB access11.

A. Software Setup

Setting up the application involved the following blockchain
nodes with a configuration that fully validates all blocks:

• Bitcoin node: Bitcoin Core, version 22.012. Initial data
synchronization completed after 4 days.

• Ethereum node: go ethereum (geth13), version 1.10.510
with tracing and indexing of all transactions, and pruning
of ancient block data. Initial data synchronization com-
pleted after approximately 12 weeks.

• Cardano node: Cardano node, version 1.3414. Initial data
synchronization completed after approximately 2 days.

• Avalanche node: AvalancheGo, version 1.7715. Initial data
synchronization completed after approximately 4 days.

The synchronizations were made on a PC with a AMD
3700X CPU, 32 GB RAM, and Samsung 980 Pro NVMe
SSD, behind a 1 Gbit/s fiber internet connection. After the

9Available at https://github.com/fhaer/CCQL/tree/main
10https://www.eclipse.org/Xtext
11https://web3py.readthedocs.io/en/stable/
12https://bitcoin.org/de/download
13https://geth.ethereum.org/downloads/
14https://github.com/input-output-hk/cardano-node
15https://github.com/ava-labs/avalanchego/releases

https://github.com/fhaer/CCQL/tree/main
https://www.eclipse.org/Xtext
https://web3py.readthedocs.io/en/stable/
https://bitcoin.org/de/download
https://geth.ethereum.org/downloads/
https://github.com/input-output-hk/cardano-node
https://github.com/ava-labs/avalanchego/releases

Fig. 3. Query example 1.

Fig. 4. Query example 2.

synchronizations, nodes and data were transferred to a typical
end-user device, a laptop with AMD 5700U CPU, 16 GB
RAM, and SK Hynix BC711 NVMe SSD. Both machines were
running Ubuntu 21.10.

In order to demonstrate feasibility, query statements were
evaluated with the prototype, as discussed in the following
section. Each statement was executed on the laptop device,
with local data retrieval from the blockchain node software
according to the processing architecture. Given the local and
fully-validating configuration of the node software, query
results can be produced without network access. Query per-
formance, therefore, does not depend on network latency and
is limited only by local CPU and IO performance.

B. Prototype Operation

The architecture of the prototype is represented in Figure 2
and generally explained in Section III-B, Processing Architec-
ture. In the following, two example queries are discussed.

The common task of locating transactions in a block is
shown in Figure 3. The query attributes specify Block and
BlockDescriptor (BlockDesc) classes with attributes of the
block ID, Height, Timestamp, and transactions. Ethereum, its
main network, chain 1, and block follow as source clause.
Finally, a filter with a timestamp is applied. In the query
results, data model classes and attributes such as Block.id and
Block.height can be seen with their corresponding values, e.g.
0xfb2e[...] and 14505661, respectively.

With similar classes and attributes, the second exam-
ple in Figure 4 shows a query common in a cross-chain
swap scenario, retrieving transaction data from Ethereum and
Avalanche. The query results show the attributes prefixed by
the number of the source with instance-level data from the data
model with corresponding values, with blocks and transaction
identifiers as hexadecimal hash values.

C. Discussion

The prototype implements homogeneous data access to
OPB, e.g. retrieving asset and data transfers from multiple
blockchains. According to the grammar, data access is stan-
dardized and allows for statements involving one or more
blockchains. For utilizing blockchain properties in a meaning-
ful way, running blockchain nodes locally is required, involv-
ing substantial time and cost for initial synchronizations. The
data model architecture follows a data integration approach,
where data can be stored according to today’s major OPB
by populating relevant classes. In contrast, an approach of
multiple individual data models alone would not address the
problem at hand. General limitations of the prototype in its
current stage are limited support for advanced concepts of the
OPB, e.g. the calculation of transaction fees involving further
utility tokens is outside the model. In terms of functionality,
the queries with filters are limited in the prototype, only
allowing for inner joins and equality comparisons.

V. CONCLUSION

In this paper, a cross-chain query language grammar, data
model, and processing architecture are introduced for homoge-
neous data access across multiple blockchains. The approach
supports homogeneous data access, standardization of queries,
addressing of multiple blockchains in individual queries, and
local validation of blockchain data. Prior research only covered
these aspects partially. The feasibility of the approach could be
positively evaluated with a prototype, despite functional lim-
itations present in the implementation. In principle, software
applications can utilize such an integrated approach for storing
data on open and permissionless blockchains, independent of
their implementation and openly available. Future research will
further evaluate and extend the language design, data model,
and architecture toward execution capabilities.

REFERENCES

[1] M. Belotti, N. Bozic, G. Pujolle, and S. Secci, “A Vademecum on
Blockchain Technologies: When, Which, and How,” IEEE Commu-
nications Surveys & Tutorials, vol. 21, no. 4, pp. 3796–3838, 2019,
10.1109/COMST.2019.2928178.

[2] A. M. Antonopoulos and G. Wood, Mastering Ethereum: Building Smart
Contracts and DApps. O’Reilly Media, 2019.

[3] A. Narayanan and J. Clark, “Bitcoin’s academic pedigree,” Communi-
cations of the ACM, vol. 60, no. 12, pp. 36–45, 2017, 10.1145/3132259.

[4] I. Weber and M. Staples, “Programmable money: Next-generation con-
ditional payments using blockchain,” in 11th International Conference
on Cloud Computing and Services Science - CLOSER,, INSTICC.
SciTePress, 2021, pp. 7–14, 10.5220/0010535800070014.

[5] F. Härer and H.-G. Fill, “Decentralized attestation and distribution of
information using blockchains and multi-protocol storage,” IEEE Access,
vol. 10, pp. 18 035–18 054, 2022, 10.1109/ACCESS.2022.3150356.

[6] A. Olivé, “The Conceptual Schema of Ethereum,” in Conceptual Mod-
eling, G. Dobbie, U. Frank, G. Kappel, S. W. Liddle, and H. C. Mayr,
Eds. Cham: Springer International Publishing, 2020, pp. 418–428,
10.1007/978-3-030-62522-1_31.

[7] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “Ethereum
query language,” in 1st International Workshop on Emerging
Trends in Software Engineering for Blockchain. ACM, 2018,
10.1145/3194113.3194114.

[8] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Tech.
Rep., 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[9] ——, “Bitcoin - A software-based online payment system,” 2009.
[Online]. Available: https://sourceforge.net/p/bitcoin/news/

[10] J. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin Backbone Pro-
tocol: Analysis and Applications,” in EUROCRYPT 2015. Springer,
2015, 10.1007/978-3-662-46803-6.

[11] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum, Tech. Rep., 2022. [Online]. Available: https:
//ethereum.github.io/yellowpaper/paper.pdf

[12] V. Buterin, “Ethereum: A Next-Generation Smart Contract and
Decentralized Application Platform,” Tech. Rep., 2014. [Online].
Available: https://ethereum.org/en/whitepaper/

[13] J. Ladleif and M. Weske, “A Unifying Model of Legal Smart Contracts,”
in Conceptual Modeling. Cham: Springer International Publishing,
2019, pp. 323–337, 10.1007/978-3-030-33223-5_27.

[14] M. K. Shrivas, T. Y. Dean, and S. S. Brunda, “The Disruptive Blockchain
Security Threats and Threat Categorization,” in 2020 First International
Conference on Power, Control and Computing Technologies (ICPC2T).
Raipur, India: IEEE, 2020, 10.1109/ICPC2T48082.2020.9071475.

[15] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang,
and D. Mohaisen, “Exploring the Attack Surface of Blockchain: A
Comprehensive Survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, 2020, 10.1109/COMST.2020.2975999.

[16] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
Provably Secure Proof-of-Stake Blockchain Protocol,” Tech. Rep. 889,
2016. [Online]. Available: https://eprint.iacr.org/2016/889

[17] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scalable
and Probabilistic Leaderless BFT Consensus through Metastability,”
arXiv:1906.08936 [cs], 2020, 10.48550/arXiv.1906.08936.

[18] A. Yakovenko, “Solana: A new architecture for a high
performance blockchain v0.8.14,” Solana, Tech. Rep., 2018.
[Online]. Available: https://github.com/solana-labs/whitepaper/blob/
master/solana-whitepaper-en.pdf

[19] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine Agreements for Cryptocurrencies,” in 26th Sympo-
sium on Operating Systems Principles, ser. SOSP ’17. ACM, 2017,
10.1145/3132747.3132757.

[20] Ethereum, “Proof-of-stake (PoS),” 2022. [Online]. Available: https:
//ethereum.org/en/developers/docs/consensus-mechanisms/pos/

[21] A. Hayward, “Solana Blames ‘Denial of Service Attack’ for Last
Week’s Downtime,” 2021. [Online]. Available: https://decrypt.co/81375/
solana-blames-denial-of-service-attack-for-last-weeks-downtime

[22] A. M. Antonopoulos, R. Pickhardt, and O. Osuntokun, Mastering the
Lightning Network. O’Reilly Media, 2021.

[23] B. Pillai, K. Biswas, and V. Muthukkumarasamy, “Cross-chain interoper-
ability among blockchain-based systems using transactions,” The Knowl-
edge Engineering Review, vol. 35, 2020, 10.1017/S0269888920000314.

[24] N. Shadab, F. Houshmand, and M. Lesani, “Cross-chain Transactions,”
in 2020 IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC). IEEE, 2020, 10.1109/ICBC48266.2020.9169477.

[25] M. Herlihy, “Atomic Cross-Chain Swaps,” in 2018 ACM Symposium on
Principles of Distributed Computing. Egham United Kingdom: ACM,
2018, pp. 245–254, 10.1145/3212734.3212736.

[26] V. Zakhary, D. Agrawal, and A. El Abbadi, “Atomic commitment across
blockchains,” Proceedings of the VLDB Endowment, vol. 13, no. 9, pp.
1319–1331, 2020, 10.14778/3397230.3397231.

[27] M. Bartoletti, S. Lande, L. Pompianu, and A. Bracciali, “A general
framework for blockchain analytics,” in 1st Workshop on Scalable and
Resilient Infrastructures for Distributed Ledgers, ser. SERIAL ’17. New
York, NY, USA: ACM, 2017, pp. 1–6, 10.1145/3152824.3152831.

[28] G. Camozzi, F. Härer, and H.-G. Fill, “Multidimensional Analysis of
Blockchain Data Using an ETL-based Approach,” in Wirtschaftsinfor-
matik 2022 Proceedings, 2022.

[29] I. Liiv, “Exploration with Structured Query Language,” in Data Science
Techniques for Cryptocurrency Blockchains, ser. Behaviormetrics:
Quantitative Approaches to Human Behavior. Springer, 2021.
[Online]. Available: http://doi.org/10.1007/978-981-16-2418-6_2

[30] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A Sur-
vey on Blockchain Interoperability: Past, Present, and Future Trends,”
arXiv:2005.14282 [cs], 2021, 10.48550/arXiv.2005.14282.

[31] W3C, “Blindfold Grammars,” 2001. [Online]. Available: https:
//www.w3.org/2001/06/blindfold/grammar

https://doi.org/10.1109/COMST.2019.2928178
https://doi.org/10.1145/3132259
https://doi.org/10.5220/0010535800070014
https://doi.org/10.1109/ACCESS.2022.3150356
https://doi.org/10.1007/978-3-030-62522-1_31
https://doi.org/10.1145/3194113.3194114
https://bitcoin.org/bitcoin.pdf
https://sourceforge.net/p/bitcoin/news/
https://doi.org/10.1007/978-3-662-46803-6
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.org/en/whitepaper/
https://doi.org/10.1007/978-3-030-33223-5_27
https://doi.org/10.1109/ICPC2T48082.2020.9071475
https://doi.org/10.1109/COMST.2020.2975999
https://eprint.iacr.org/2016/889
https://doi.org/10.48550/arXiv.1906.08936
https://github.com/solana-labs/whitepaper/blob/master/solana-whitepaper-en.pdf
https://github.com/solana-labs/whitepaper/blob/master/solana-whitepaper-en.pdf
https://doi.org/10.1145/3132747.3132757
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://decrypt.co/81375/solana-blames-denial-of-service-attack-for-last-weeks-downtime
https://decrypt.co/81375/solana-blames-denial-of-service-attack-for-last-weeks-downtime
https://doi.org/10.1017/S0269888920000314
https://doi.org/10.1109/ICBC48266.2020.9169477
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.14778/3397230.3397231
https://doi.org/10.1145/3152824.3152831
http://doi.org/10.1007/978-981-16-2418-6_2
https://doi.org/10.48550/arXiv.2005.14282
https://www.w3.org/2001/06/blindfold/grammar
https://www.w3.org/2001/06/blindfold/grammar

	Introduction
	Foundations and Related Work
	Blockchains
	Open and Permissionless Blockchains
	Blockchain Interoperability

	Query Language
	Data Model
	Language Syntax and Processing Architecture

	Evaluation of Feasibility
	Software Setup
	Prototype Operation
	Discussion

	Conclusion
	References

