
 

 

On some special classes of contact B0-VPG graphs
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ABSTRACT: A graph G is a B0-VPG graph if one can associate a horizontal or 
vertical path on a rectangular grid with each vertex such that two vertices are 
adjacent if and only if the corresponding paths intersect in at least one grid-point. A 
graph G is a contact B0-VPG graph if it is a B0-VPG graph admitting a representation 
with no one-point paths, no two paths crossing, and no two paths sharing an edge 
of the grid. In this paper, we present a minimal forbidden induced subgraph 
characterisation of contact B0-VPG graphs within four special graph classes: chordal 
graphs, tree-cographs, P4-tidy graphs and P5-free graphs. Moreover, we present a 
polynomial-time algorithm for recognising chordal contact B0-VPG graphs.

Introduction

Golumbic et al. introduced in [2] the concept of vertex intersection graphs of paths in a grid (referred to as VPG graphs). 
An undirected graph G = (V , E) is called a VPG graph if one can associate a path in a rectangular grid with each vertex 
such that two vertices are adjacent if and only if the corresponding paths intersect in at least one grid-point. In the seminal
paper on VPG graphs it was shown that this class is equivalent to the earlier defined class of string graphs [14].

Under the perspective of paths in grids, a particular attention was paid to the case where the paths have a limited 
number of bends. An undirected graph G = (V , E) is then called a Bk-VPG graph, for some integer k ≥ 0, if one can associate 
a path with at most k bends in a rectangular grid with each vertex such that two vertices are adjacent if and only if the 
corresponding paths intersect in at least one grid-point. Recognition of VPG graphs is NP-complete by the equivalence 
with string graphs. Moreover Bk-VPG recognition is NP-complete for all k [6].

Since their introduction, Bk-VPG graphs have been studied by many researchers and the community of people working 
on these graph classes or related ones is still growing (see for instance [1,2,5,7–9,15,18]).

In this paper, we are interested in a subclass of Bk-VPG graphs called contact Bk-VPG. A contact Bk-VPG representation 
of G is a VPG representation in which each path has length at least one, at most k bends, and intersecting paths neither 
cross each other nor share an edge of the grid. A graph is a contact Bk-VPG graph if it has a contact Bk-VPG representation.
Here, we will focus on the special case when k = 0, i.e. each path is a horizontal or vertical path in the grid.
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Contact graphs in general (graphs where vertices represent geometric objects which are allowed to touch but not
o cross each other, a natural model arising from real physical objects) have been considered in the past (see for
nstance [10,11,19,20]). In particular, for intersection models of lines in the plane, it is often the case that three lines
ntersecting at a same point is not allowed, but we do not impose such a restriction.

As for many graph classes having not many known full characterisations (for example, a complete list of minimal
orbidden induced subgraphs is not known), their characterisation within well studied graphs classes or with respect to
raph parameters was investigated. In the case of contact Bk-VPG graphs, it was shown in [12] that every planar bipartite
raph is a contact B0-VPG graph. Later, in [7], the authors show that every triangle-free planar graph is a contact B1-VPG

graph. In a recent paper (see [13]), contact Bk-VPG graphs have been investigated from a structural point of view and it
was for instance shown that they do not contain cliques of size 7 and they always contain a vertex of degree at most
6. Moreover, it was shown that they are 6-colourable. Regarding contact B0-VPG graphs, it was shown that they are
4-colourable. Furthermore, 3-colouring and the recognition problem were shown to be NP-complete.

In this paper, our goal is to get a better understanding and knowledge of the underlying structure of contact
B0-VPG graphs. Even though classical graph problems may be difficult to solve in this graph class (see for instance [13]),
better knowledge of its structural properties may lead to good approximation algorithms for these problems. We will
onsider the following four special graph classes: chordal graphs, tree-cographs, P4-tidy graphs and P5-free graphs, and
e will characterise those graphs from these families that are contact B0-VPG. Moreover, we will present a polynomial-
ime algorithm for recognising chordal contact B0-VPG graphs based on our characterisation. For the other graph classes
onsidered here, the characterisation immediately yields a polynomial-time recognition algorithm.
A preliminary version of this paper appears in [4].

Preliminaries

For concepts and notations not defined here we refer the reader to [3]. All graphs in this paper are simple (i.e., without
oops or multiple edges). Let G = (V , E) be a graph. If u, v ∈ V and uv /∈ E, uv is called a nonedge of G. We write G− v for
the subgraph obtained by deleting a vertex v and all the edges incident to v. Similarly, we write G − e for the subgraph
obtained by deleting an edge e without deleting its endpoints.

For each vertex v of G, NG(v) denotes the neighbourhood of v in G and NG[v] denotes the closed neighbourhood,
.e. NG(v) ∪ {v}. For a set A ⊆ V , we denote by N(A) the set of vertices having a neighbour in A, and by N[A] the set
f vertices belonging to A or having a neighbour in A. Two vertices v and w of G are false twins (resp. true twins) if
G(v) = NG(w) (resp. NG[v] = NG[w]).
Given a subset A ⊆ V , G[A] stands for the subgraph of G induced by A, and G \ A denotes the induced subgraph G[V \ A].
e say that a vertex v ∈ V \ A is complete to A if v is adjacent to every vertex of A, and that v is anticomplete to A if v
as no neighbour in A. Similarly, we say that two disjoint sets A, B ⊂ V are complete (resp. anticomplete) to each other if

every vertex in A is complete (resp. anticomplete) to B.
A clique is a set of pairwise adjacent vertices. A vertex v is simplicial, if NG(v) is a clique. A stable set is a set of vertices

no two of which are adjacent. A complete graph is a graph such that all its vertices are adjacent to each other, i.e. a graph
induced by a clique. The complete graph on n vertices is denoted by Kn. In particular, K3 is called a triangle. K−

4 stands for
the graph obtained from K4 by deleting exactly one edge.

The complement graph of G = (V , E) is the graph G = (V , E) such that E = {uv| uv ̸∈ E}. Let G1 = (V1, E1) and
2 = (V2, E2) be two graphs. The disjoint union of G1 and G2, denoted by G1 ∪ G2, is the graph whose vertex set is V1 ∪ V2
nd whose edge set is E1 ∪ E2. The join of G1 and G2, denoted by G1 ∨ G2, is the graph obtained by first taking the disjoint

union of G1 and G2 and then making V1 and V2 complete to each other. Notice that G1 ∪ G2 = G1 ∨ G2.
Given a graph H , we say that G contains no induced H , if G contains no induced subgraph isomorphic to H . If H is a

family of graphs, G is said to be H-free if G contains no induced subgraph isomorphic to some graph belonging to H.
Let G be a class of graphs. A graph belonging to G is called a G-graph. If G ∈ G implies that every induced subgraph of

G is a G-graph, G is said to be hereditary. If G is a hereditary class, a graph H is a minimal forbidden induced subgraph of G,
or more briefly, minimally non-G, if H does not belong to G but every proper induced subgraph of H is a G-graph.

A path is a sequence of vertices v1, . . . , vk such that vi is adjacent to vi+1, for i = 1, . . . , k−1. The vertices v2, . . . , vk−1
are called internal vertices of the path. If there is no edge vivj such that |i − j| ≥ 2, the path is said to be chordless or
induced. A cycle C is a sequence of vertices v1, . . . , vk such that vi is adjacent to vi+1 for i = 1, . . . , k, where indices
are taken modulo k. If there is no edge vivj such that |i − j| ≥ 2, C is said to be chordless or induced. The induced path
(resp. induced cycle) on n vertices is denoted Pn (resp. Cn). A graph is called chordal if it does not contain any chordless
cycle of length at least four. A block graph is a chordal graph which is K−

4 -free.
A graph is bipartite, if its vertex set can be partitioned into two stable sets. If, in addition, the two stable sets are

complete to each other, the graph is called complete bipartite. Kn,m stands for the complete bipartite graph whose vertex
set can be partitioned into two stable sets V1, V2 such that |V1| = n and |V2| = m.

A graph G is connected, if for each pair of vertices u, v there exists a path from u to v. A tree is a connected graph with
no induced cycle. Given a connected graph G = (V , E), the distance between two vertices u, v ∈ V , denoted by dG(u, v), is
the number of edges of a shortest path from u to v. The diameter of G is the maximum distance between two vertices.

An undirected graph G = (V , E) is called a Bk-VPG graph, for some integer k ≥ 0, if one can associate a path with
at most k bends (a bend is a 90 degrees turn of a path at a grid-point) on a rectangular grid with each vertex such that
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Fig. 1. A graph G and a contact B0-VPG representation of it.

Fig. 2. The graph H0 .

two vertices are adjacent if and only if the corresponding paths intersect in at least one grid-point. Such a representation
is called a Bk-VPG representation. The horizontal grid lines will be referred to as rows and denoted by x0, x1, . . . and the
vertical grid lines will be referred to as columns and denoted by y0, y1, . . .. We are interested in a subclass of B0-VPG
raphs called contact B0-VPG. A contact B0-VPG representation R(G) of G is a B0-VPG representation in which each path
n the representation is either a horizontal path or a vertical path on the grid, with length at least one (the length is the
umber of grid-points minus one), such that two vertices are adjacent if and only if the corresponding paths intersect in
t least one grid-point without crossing each other and without sharing an edge of the grid. A graph is a contact B0-VPG
raph if it has a contact B0-VPG representation. For every vertex v, we denote by Pv the corresponding path in R(G) (see

Fig. 1). Consider a clique K in G. A path Pv representing a vertex v ∈ K is called a path of the clique K .
Let us start with an easy but very helpful lemma.

Lemma 1. Let G be a contact B0-VPG graph. Then the size of a biggest clique in G is at most 4, i.e. G is K5-free.

Proof. Given two adjacent vertices in G, the intersection of their paths in any contact B0-VPG representation is exactly
one grid point. Moreover, it is easy to see that all paths corresponding to vertices in a clique of G must intersect in the
same grid point. Assume there is a clique K of size 5 in G and let P be the point of intersection of the corresponding paths
in the grid. At least two of the paths must be in the same row or the same column, and contain at least one grid edge
intersecting P (a path cannot be only a grid point), a contradiction. □

Remark 2. Let G be a K−

4 -free graph containing an induced cycle C of at least 4 vertices. Then no vertex is adjacent to
3 consecutive vertices of C .

Let G be a contact B0-VPG graph, and K be a clique in G. A vertex v is called an end in a contact B0-VPG representation
of K if the grid point representing the intersection of the paths of K corresponds to an endpoint of Pv .

emark 3. Let G be a contact B0-VPG graph, and K be a clique in G of size four. Then, every vertex in K is an end in any
ontact B0-VPG representation of K .

emma 4. In any contact B0-VPG representation of C4, the union of the paths representing vertices in C must enclose a
ectangle of the grid.

roof. Consider a B0-VPG representation of C4. At least two vertices, say a and b, in C have the same direction. We can
assume that Pa and Pb are both vertical. If a and b are adjacent, then the corresponding paths intersect in a row xi of the
rid. One of them, say Pa, is above xi and the other is below xi. Let c be the vertex adjacent to a and non adjacent to
. Clearly, the path Pc representing c must be also above xi. Similarly, the path representing the vertex d adjacent to b
nd non adjacent to a must be below xi. But then it is impossible for Pc and Pd to intersect. Therefore, a and b are non
djacent. Now, it is clear that Pc and Pd must be both horizontal, otherwise we could repeat the previous argument. If Pa
nd Pb lie in columns yi and yj, then Pc and Pd must contain all points of the grid between yi and yj in their respective
olumns, say xk and xl. Then, these paths enclose the rectangle limited by rows yi, yj and columns xk, xl. □

In what follows, we give a set of graphs that are not contact B0-VPG graphs. We will use this result later to obtain our
haracterisations. Let H0 denote the graph composed of three K4’s that share a common vertex and such that there are
o further edges (see Fig. 2).
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Lemma 5. If G is a contact B0-VPG graph, then G is {K5, K3,3,H0, K−

4 }-free.

Proof. Let G be a contact B0-VPG graph. It immediately follows from Lemma 1 that G is K5-free.
Now consider the graph K3,3. Let C be a cycle of length four in K3,3 induced by the vertices a, b, c, d. If K3,3 is contact

B0-VPG, then, by Lemma 4, in any contact B0-VPG representation of C , the union of the paths representing vertices in C
must enclose a rectangle of the grid. Assume that Pa, Pc are horizontal paths, and Pb, Pd are vertical paths. Now, consider
vertices e and f in K3,3 with e being adjacent to a and c , and f being adjacent to b and d. Each of the paths Pe, Pf must
ntersect opposite paths of the rectangle. Clearly, Pe must be a vertical path and Pf must be a horizontal. If Pe is contained
nside the rectangle, then it is impossible for Pf to intersect Pb, Pd while being inside the rectangle without crossing Pe. So
f must be outside the rectangle, but then it cannot intersect Pe. If Pe lies outside the rectangle, then of course Pf has to
ie outside the rectangle as well, otherwise it cannot intersect Pe. But now it cannot intersect both Pb, Pd without crossing
t least one of them. So we conclude that K3,3 is not B0-VPG.
Now let v, w be two adjacent vertices in G. Then, in any contact B0-VPG representation of G, Pv and Pw intersect at a

grid-point P . Clearly, every common neighbour of v and w must also contain P . Hence, v and w cannot have two common
neighbours that are non-adjacent. So, G is K−

4 -free.
Finally, consider the graph H0 which consists of three cliques of size four, say A, B and C , with a common vertex x.

uppose that H0 is contact B0-VPG. Then, it follows from Remark 3 that every vertex in H0 is an end in any contact B0-VPG
epresentation of H0. In particular, vertex x is an end in any contact B0-VPG representation of A, B and C . In other words,
he grid-point representing the intersection of the paths of each of these three cliques corresponds to an endpoint of Px.
ince these cliques have only vertex x in common, these grid-points are all distinct. But this is a contradiction, since Px
as only two endpoints. So we conclude that H0 is not contact B0-VPG, and hence the result follows. □

hordal graphs

In this section, we will consider chordal graphs and characterise those that are contact B0-VPG. First, let us point out
he following corollary.

orollary 6. A chordal contact B0-VPG graph is a block graph.

This follows directly from Lemma 5 and the definition of block graphs.
The following lemma states an important property of minimal chordal non contact B0-VPG graphs that contain neither

5 nor K−

4 .

emma 7. Let G be a {K5, K−

4 }-free graph. If G is a minimal non contact B0-VPG graph, then every simplicial vertex of G has
egree exactly three.

roof. Since G is K5-free, every clique in G has size at most four. Therefore, every simplicial vertex has degree at most
hree. Let v be a simplicial vertex of G. Assume first that v has degree one and consider a contact B0-VPG representation
f G − v (which exists since G is minimal non contact B0-VPG). Let w be the unique neighbour of v in G. Without loss
f generality, we may assume that the path Pw lies on some row of the grid. Now clearly, we can add one extra column
o the grid between any two consecutive vertices of the grid belonging to Pw and adapt all paths without changing the
ntersections (if the new column is added between column yi and yi+1, we extend all paths containing a grid-edge with
ndpoints in column yi and yi+1 in such a way that they contain the new edges in the same row and between column
i and yi+2 of the new grid, and any other path remains the same). But then we may add a path representing v on this
olumn which only intersects Pw (adding a row to the grid and adapting the paths again, if necessary) and thus, we obtain
contact B0-VPG representation of G, a contradiction. So suppose now that v has degree two, and again consider a contact
0-VPG representation of G− v. Let w1, w2 be the two neighbours of v in G. Then, w1, w2 do not have any other common
eighbour since G is K−

4 -free. Let P be the grid-point corresponding to the intersection of the paths Pw1 and Pw2 . Since
hese paths do not cross and since w1, w2 do not have any other common neighbour (except v), there is at least one
rid-edge having P as one of its endpoints and which is not used by any path of the representation. But then we may
dd a path representing v by using only this particular grid-edge (or adding a row/column to the grid that subdivides this
dge and adapting the paths, if the other endpoint of the grid-edge belongs to a path in the representation). Thus, we
btain a contact B0-VPG representation of G, a contradiction. We conclude therefore that v has degree exactly three. □

Let v be a vertex of a contact B0-VPG graph G. An endpoint of its corresponding path Pv is free in a representation of G,
f Pv does not intersect any other path at that endpoint; v is called internal if no representation of G with a free endpoint
f Pv exists. If in a representation of G a path Pv intersects a path Pw but not at an endpoint of Pw , v is called a middle
eighbour of w.
In the following two lemmas we associate the fact of being or not an internal vertex of G with the contact B0-VPG

epresentation of G.
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Fig. 3. How to split Pu into two paths.

Lemma 8. Let G be a chordal contact B0-VPG graph and let v be a non internal vertex in G. Then, there exists a contact B0-VPG
representation of G in which all the paths representing vertices in G − v lie to the left of a free endpoint of Pv (by considering
Pv as a horizontal path).

Proof. We will do a proof by induction on the number of vertices of G. If there is only one vertex in G the result is trivial.
Suppose G is a graph with at least two vertices. Consider a contact B0-VPG representation of G. Without loss of generality,
we may assume that Pv lies on a row xi between columns yj, yk, j < k, and its right endpoint is free. Such a representation
exists, since v is not internal.

If v is a middle neighbour of another vertex, say u, we do the following. Assume Pu lies on column yj between rows
ℓ and xt , ℓ < t . We split Pu into two paths, Pu1 , Pu2 , such that Pu1 goes from row xi to row xt and Pu2 goes from row xℓ

to row xi (see Fig. 3). We denote the corresponding graph by G∗. If v is not a middle vertex of another vertex, then we
simply set G∗

= G.

Claim. The graph G∗ is chordal.

In the second case, it is trivial. In the first case, suppose G∗ contains a chordless cycle C of length at least 4. Since
G is chordal, C contains at least one of u1, u2. Suppose first it contains both u1 and u2. As they are adjacent in G∗, and
ontracting them into the vertex u yields an induced subgraph of G, it follows that C has length 4. As in the proof of
emma 4, it can be seen that the paths corresponding to two consecutive vertices in a C4 cannot be both vertical. So,
uppose that C contains only one of u1, u2, say u1. Since G is chordal, u2 has to be adjacent to every vertex of C \NG∗ [u1].
ince u1 and u2 cannot have two non-adjacent common neighbours, at least one of the neighbours of u1 in C is not
djacent to u2. Thus, its corresponding path either lies on column yj having its lower endpoint in row xt or lies on some
ow between xi+1 and xt . In either case, this vertex cannot have a common neighbour with u2, a contradiction. ⋄

Now, for every vertex w in NG∗ (v), consider the connected component Cw of G∗
− (NG∗ [v] − w) containing w. Notice

hat Cw is also chordal contact B0-VPG and w is non internal in G∗
− (NG∗ [v] − w). Furthermore, if there are two distinct

ertices w and w′ in NG∗ (v), then Cw and Cw′ are disjoint. By contradiction, suppose that a vertex x is in the intersection
f Cw and Cw′ . Then, there is a path α1 between w and x, and a path α2 between x and w′. First, suppose w and w′ are

non adjacent. Joining both paths we can extract a new induced path α3 between w and w′ which necessarily has length
≥ 3. But then, adding v to α3 forms an induced cycle with length ≥ 4, a contradiction. On the other hand, if w and w′

are adjacent, first remove the edge w and w′. Joining the paths α1 and α2 we can extract an induced path α3 between w

and w′, which necessarily has length ≥ 4, since G is K−

4 -free (see Lemma 5) and, therefore, any vertex adjacent to both
w and w′ must be also adjacent to v, implying that it does not belong to Cw . Adding the edge between w and w′ again,
we obtain an induced cycle with length ≥ 4, a contradiction.

Finally, considering the case in which G∗
= G, it is clear that Cw has at least one vertex less than G, namely v; otherwise,

if u was split, the size of G∗ is one more than the size of G, but then at least two vertices are removed in Cw , namely v

and one between u1 and u2 (since there is only one vertex in NG∗ [v] that we are not removing).
Then, by induction, there exists a contact B0-VPG representation of Cw , for each such w, with all the paths lying to

the left of one free endpoint of Pw . Now, we replace the initial representation of Cw by the new one (the one where all
the paths lie to the left of one free endpoint of Pw) by rotating it such that Pw has its free endpoint on the grid-point
corresponding to the intersection of Pw and Pv , and belongs to the same side as in the old representation. Notice that we
may need to extend the path Pv to the right before doing the replacement of these new representations to assure that
they do not overlap. Therefore, by extending if necessary the path Pv a little more to the right, we obtain a contact B0-VPG
representation of G∗ in which all the paths lie to the left of one free endpoint of Pv (see Fig. 4). In case Pu was split into
Pu1 and Pu2 , we now glue these two paths together again. □

Lemma 9. Let G be a chordal contact B0-VPG graph. A vertex v in G is internal if and only if in every contact B0-VPG
representation of G, each endpoint of the path Pv either corresponds to the intersection of a representation of K4 or intersects
a path Pw , which represents an internal vertex w, but not at an endpoint of Pw .
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Fig. 4. Figure illustrating Lemma 8.

Fig. 5. Figure illustrating Lemma 9.

roof. The if part is trivial. Assume now that v is an internal vertex of G and consider an arbitrary contact B0-VPG
epresentation of G. Let P be an endpoint of the path Pv and K the maximal clique corresponding to all the paths containing
he point P . Notice that clearly v is an end in K by definition of K . First, suppose there is a vertex w in K which is not an
nd. Then, it follows from Remark 3 that the size of K is at most three. Without loss of generality, we may assume that
v lies on some row and Pw on some column. If w is an internal vertex, we are done. So we may assume now that w is
ot an internal vertex in G. Consider G \ (K \ {w}), and let Cw be the connected component of G \ (K \ {w}) containing w.

Notice that w is not an internal vertex in Cw either. By Lemma 8, there exists a contact B0-VPG representation of Cw with
all the paths lying to the left of a free endpoint of Pw . Now, replace the old representation of Cw by the new one such that
corresponds to the free endpoint of Pw in the representation of Cw (it might be necessary to refine – by adding rows
nd/or columns – the grid to ensure that there are no unwanted intersections) and Pw uses the same column as before.
inally, if K had size three, say it contains some vertex u in addition to v and w, then we proceed as follows. Similar

to the above, there exists a contact B0-VPG representation of Cu, the connected component of G \ (K \ {u}) containing
u, with all the paths lying to the left of a free endpoint of Pu, since u is clearly not internal in Cu. We then replace the
ld representation of Cu by the new one such that the endpoint of Pu that intersected Pw previously corresponds to the
rid-point P and Pu lies on the same column as Pw (again, we may have to refine the grid). This clearly gives us a contact
0-VPG representation of G. But now we may extend Pv such that it strictly contains the grid-point P and thus, Pv has a
ree endpoint, a contradiction (see Fig. 5). So w must be an internal vertex.

Now, assume that all vertices in K are ends. If |K | = 4, we are done. So we may assume that |K | ≤ 3. Hence, there is
t least one grid-edge containing P , which is not used by any paths of the representation. Without loss of generality, we
ay assume that this grid-edge belongs to some row xi. If Pv is horizontal, we may extend it such that it strictly contains
. But then v is not internal anymore, a contradiction. If Pv is vertical, then we may extend Pw , where w ∈ K is such that
w is a horizontal path. But now we are again in the first case discussed above. □

In other words, Lemma 9 tells us that a vertex v is an internal vertex in a chordal contact B0-VPG graph if and only if
e are in one of the following situations:

• v is the intersection of two cliques of size four (we say that v is of type 1);
• v belongs to exactly one clique of size four and in every contact B0-VPG representation, v is a middle neighbour of

some internal vertex (we say that v is of type 2);
• v does not belong to any clique of size four and in every contact B0-VPG representation, v is a middle neighbour of

two internal vertices (we say that v is of type 3).

Notice that two internal vertices of type 1 cannot be adjacent (except when they belong to a same K4). Furthermore,
n internal vertex of type 1 cannot be the middle-neighbour of some other vertex.
Let T be the family of graphs containing H0 (see Fig. 2) as well as all graphs that can be partitioned into a nontrivial

ree T of maximum degree at most three and the disjoint union of triangles, in such a way that each triangle is complete
0



Fig. 6. An example of a graph in T .

to a vertex v of T0 and anticomplete to T0 − {v}, every leaf v of T0 is complete to exactly two triangles, every vertex v

of degree two in T0 is complete to exactly one triangle, and vertices of degree three in T0 have no neighbours outside T0
(see Fig. 6).

Notice that all graphs in T are chordal. We denote by B(T ) the base tree of T in T .

Lemma 10. The graphs in T are not contact B0-VPG.

Proof. By Lemma 5, the graph H0 is not contact B0-VPG. Consider now a graph T ∈ T , T ̸= H0. Suppose that T is contact
B0-VPG. Consider an arbitrary contact B0-VPG representation of T . Consider the base tree B(T ) and direct an edge uv of
it from u to v if the path Pv contains an endpoint of the path Pu (this way some edges might be directed both ways). If
a vertex v has degree dB(v) in B(T ), then by definition of the family T , v belongs to 3 − dB(v) K4’s in T . Notice that Pv

spends one endpoint in each of these K4’s. Thus, any vertex v in B(T ) has at most 2 − (3 − dB(v)) = dB(v) − 1 outgoing
edges. This implies that the sum of out-degrees in B(T ) is at most

∑
v∈B(T )(dB(v) − 1) = n − 2, where n is the number of

vertices in B(T ). But this is clearly impossible since there are n − 1 edges in B(T ) and all edges are directed. □

We will show now how to construct new graphs in T from others.

Lemma 11.

(i) Given T ∈ T and v ∈ B(T ) such that v belongs to at least one K4, say K , then the graph T ′ constructed by removing the
other vertices in K (different from v) and adding one vertex w to B(T ), belonging to two copies of K4 (sharing vertex w),
and adjacent to v, belongs to T .

(ii) Given T1, T2 ∈ T , v1 ∈ B(T1) and v2 ∈ B(T2) such that v1 and v2 belong to at least one K4 each, say K1 and K2, then the
graph T ′ constructed by removing the other vertices in K1 and K2 (different from v1 and v2) and adding one vertex w to
B(T1) ∪ B(T2), belonging to a K4, and adjacent to both v1 and v2, belongs to T .

Proof.

(i) In this case we have B(T ′) = B(T ) ∪ {w}. It is clear that every vertex in B(T ′) has degree 3 or less, since we only
changed the degree of v, which is one less, and the degree of w is one (only adjacent to v in B(T ′)). Moreover, w is a
leaf in B(T ′) and, by construction, it belongs to two copies of K4 (sharing vertex w). Finally, notice that v has degree
1 or 2 in B(T ) since vertices of degree 3 in B(T ) does not belong to any K4. If v is a leaf in B(T ), then v is a degree
2 vertex in B(T ′) and, since we removed the other vertices in K , it belongs to only one K4 in T ′. Otherwise, v has
degree 2 in B(T ) and therefore, it has degree 3 in B(T ′) and does not belong to any K4 in T ′. Thus, T ′

∈ T .
(ii) In this case we have B(T ′) = B(T1) ∪ B(T2) ∪ {w}. The proof follows in the same manner as the previous item. □

For the next lemma we need to consider an orientation of some edges related to a contact B0-VPG representation of G,
given by the following rule. If v, w ∈ G and v is a middle neighbour of w, then we give the orientation from v to w. Let
Cv be the reachable vertices starting from v, including v. Notice that if v is internal, Cv = {v} if and only if v is of type 1.
Also notice that Cv is independent of the representation for internal vertices. As a consequence of the previous lemma,
we can prove the following.

Lemma 12. Let G be a chordal contact B0-VPG graph. If a vertex v in G is internal, the graph G′ constructed by adding a K4,
say K , containing v to G contains an induced subgraph T ∈ T . Moreover, B(T ) = Cv .

Proof. We will prove this by induction in the number of vertices in Cv . By Lemma 9, v must be of type 1, 2 or 3. As noted
before, the base case is when v is of type 1. But then v is the intersection of three cliques of size 4 in G′, namely K and
the two cliques in which v is an end; and thus, G′ contains T = H . Therefore B(T ) = {v} = C .
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Now, if v is of type 2, v is a middle neighbour of exactly one other internal vertex w. Therefore Cv = Cw ∪ {v}. Define
w as the induced subgraph of the connected component of G − v containing w. Notice that w is still internal in Gw

since v is a middle neighbour of w in G. Then, adding a K ′
= K4 containing w to Gw we obtain a T1 ∈ T induced in Gw

(and, therefore, also induced in G) with B(T1) = Cw , by inductive hypothesis applied to w in Gw . By Lemma 11 (i), we can
construct T ∈ T by removing the other vertices in K ′ (different from w) and adding the vertex v (in G) to B(T1), which
belongs to two copies of K4 (one is K and the other is the one in which v is an end), and is adjacent to w. Then, T is an
induced subgraph of G and we have B(T ) = Cw ∪ {v} = Cv . Finally, if v is of type 3, v is a middle neighbour of exactly
two other internal vertices w1 and w2. The proof continues in the same manner as before, applying inductive hypothesis
to the corresponding Gw1 and Gw2 and then using the second item of Lemma 11. □

Using Lemmas 7–12, we are able to prove the following theorem, which provides a minimal forbidden induced
subgraph characterisation of chordal contact B0-VPG graphs.

Theorem 13. Let G be a chordal graph. Let F = T ∪ {K5, K−

4 }. Then, G is a contact B0-VPG graph if and only if G is F-free.

Proof. Suppose that G is a chordal contact B0-VPG graph. It follows from Lemmas 5 and 10 that G is T -free and contains
neither a K−

4 nor a K5.
Conversely, suppose now that G is chordal and F-free. By contradiction, suppose that G is not contact B0-VPG and

assume furthermore that G is a minimal non contact B0-VPG graph. Let v be a simplicial vertex of G (v exists since G
is chordal). By Lemma 7, it follows that v has degree three. Consider a contact B0-VPG representation of G − v and let
K = {v1, v2, v3} be the set of neighbours of v in G. Since G is K−

4 -free, it follows that any two neighbours of v cannot have
a common neighbour which is not in K . First suppose that all the vertices in K are ends in the representation of G − v.
Thus, there exists a grid-edge not used by any path and which has one endpoint corresponding to the intersection of the
paths Pv1 , Pv2 , Pv3 . But now we may add the path Pv using exactly this grid-edge (we may have to add a row/column to
the grid that subdivides this grid-edge and adapt the paths, if the other endpoint of the grid-edge belongs to a path in
the representation). Hence, we obtain a contact B0-VPG representation of G, a contradiction.

Thus, we may assume now that there exists a vertex in K which is not an end, say v1. Notice that v1 must be an internal
vertex. If not, there is a contact B0-VPG representation of G− v in which v1 has a free end. Then, using similar arguments
as in the proof of Lemma 9, we may obtain a representation of G − v in which all vertices of K are ends. As described
previously, we can add Pv to obtain a contact B0-VPG representation of G, a contradiction. Now, consider the graph G−K .
This graph is clearly chordal contact B0-VPG as being an induced subgraph of G−v. Then, by Lemma 12, adding the clique
K ∪ {v} (containing the internal vertex v) to G − K (which gives the graph G) contains an induced subgraph T ∈ T , a
contradiction. □

Interval graphs form a subclass of chordal graphs. They are defined as being chordal graphs not containing any
asteroidal triple, i.e. not containing three pairwise non-adjacent vertices such that there exists a path between any two of
them avoiding the neighbourhood of the third one. Clearly, any graph in T for which the base tree has maximum degree
three contains an asteroidal triple. On the other hand, H0 and every graph in T obtained from a base tree of maximum
degree at most two are clearly interval graphs. Denote by T ′ the family consisting of H0 and the graphs of T whose base
tree has maximum degree at most two. We obtain the following corollary which provides a minimal forbidden induced
subgraph characterisation of contact B0-VPG graphs restricted to interval graphs.

Corollary 14. Let G be an interval graph and F ′
= T ′

∪{K5, K−

4 }. Then, G is a contact B0-VPG graph if and only if G is F ′-free.

Recognition algorithm

In this section, we will provide a polynomial-time recognition algorithm for chordal contact B0-VPG graphs which is
ased on the characterisation given in Section 3. This algorithm takes a chordal graph as input and returns YES if the

graph is contact B0-VPG and, if not, it returns NO as well as a forbidden induced subgraph. The main loop (step 7) will
try to find a graph T ∈ T , T ̸= H0. For this purpose, some vertices will be marked and some edges will be directed and
coloured. At the beginning all vertices are unmarked and all edges are undirected and uncoloured. We will first give the
pseudo-code of our algorithm and then explain the different steps.

Input: a chordal graph G = (V , E);

utput: YES, if G is contact B0-VPG; NO and a forbidden induced subgraph, if G is not contact B0-VPG.

1. list all maximal cliques in G;
2. if some edge belongs to two maximal cliques, return NO and K−

4 ;
3. if a maximal clique contains at least five vertices, return NO and K5;
4. label the vertices such that l(v) = number of K4’s that v belongs to;
5. if for some vertex v, l(v) ≥ 3, return NO and H0;
6. if l(v) ≤ 1 ∀v ∈ V \ {w} and l(w) ≤ 2, return YES;
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Fig. 7. An example of a possible running of the algorithm. The vertices marked in the algorithm are numbered in the order of the marking process.
The vertex labelled R corresponds to the root of the tree in the forbidden structure, given in step 8 (whose other vertices are marked as 3 and 4).

7. while there exists an unmarked vertex v with 2 − l(v) outgoing arcs incident to it, do

7.1 mark v as internal;
7.2 direct the edges that are currently undirected, uncoloured, not belonging to a K4, and incident to v towards

v;
7.3 for any two incoming arcs wv, w′v such that ww′

∈ E, colour ww′;

8. if there exists some vertex v with more than 2 − l(v) outgoing arcs, return NO and find T ∈ T by running BFS
starting with v, following the outgoing arcs, and adding for each vertex the corresponding K4’s that it belongs to;
else return YES.

An example of a possible running of the algorithm is illustrated in Fig. 7.
Steps 1–5 can clearly be done in polynomial time (see for example [16] for listing all maximal cliques in a chordal

raph). Furthermore, it is obvious to see how to find the forbidden induced subgraph in steps 2, 3 and 5. Notice that if the
lgorithm has not returned NO after step 5, we know that G is {K−

4 , K5,H0}-free. So we are left with checking whether
G contains some graph T ∈ T , T ̸= H0. Since each graph T ∈ T contains at least two vertices belonging to two K4’s, it
ollows that if at most one vertex has label 2, G is T -free (step 6), and thus we conclude by Theorem 13 that G is contact
0-VPG.
During step 7, we detect those vertices in G that, in case G is contact B0-VPG, must be internal vertices (and mark

hem as such) and those vertices w that are middle neighbours of internal vertices v (we direct the edges wv from w to
). Furthermore, we colour those edges whose endpoints are middle neighbours of a same internal vertex.
Consider a vertex v with 2− l(v) outgoing arcs. If a vertex v has l(v) = 2, then, in case G is contact B0-VPG, v must be

an internal vertex (see Lemma 9). This implies that any neighbour of v, which does not belong to a same K4 as v, must
e a middle neighbour of v. If l(v) = 1, this means that v belongs to one K4 and is a middle neighbour of some internal
ertex. Thus, by Lemma 9 we know that v is internal. Similarly, if l(v) = 0, this means that v is a middle neighbour of
wo distinct internal vertices. Again, by Lemma 9 we conclude that v is internal. Clearly, step 7 can be run in polynomial
time.

So we are left with step 8, i.e., we need to show that G is contact B0-VPG if and only if there exists no vertex with
more than 2 − l(v) outgoing arcs. First notice that only vertices marked as internal have incoming arcs. Furthermore,
notice that every maximal clique of size three containing an internal vertex has two directed edges of the form wv, w′v
and the third edge is coloured, where v is the first of the three vertices that was marked as internal. This is because the
graph is K−

4 -free and the edges of a K4 are neither directed nor coloured.

Lemma 15. Every vertex marked as internal in step 7 has either label 2 or is the root of a directed induced tree (directed from
the root to the leaves) where the root w has degree 2− l(w) and every other vertex v has degree 3− l(v) in that tree, namely
one incoming arc and 2 − l(v) outgoing arcs.

Proof. By induction in the number of iterations in step 7. In the first iteration, no edge has been directed. Therefore,
any vertex marked as internal must have label 2, having zero outgoing edges. Now assume the result is true for any
vertex marked before the nth iteration. Let v be the vertex marked in the nth iteration. If l(v) = 2 we are done. Suppose
l(v) = 1. Then, there is an outgoing edge from v to a vertex w. Since only vertices marked as internal have incoming
arcs, w must be internal. Now, by inductive hypothesis (w was marked in a previous iteration), the result is true for w.
If l(w) = 2, v is the root of the tree consisting of the two vertices v and w, where v has degree 2 − l(v) = 1 and w has
degree 3 − l(w) = 1 (one incoming arc). Otherwise, w is the root of a tree T ′ satisfying the hypothesis of the lemma, but
then the tree T constructed from T ′ by adding v with an outgoing edge to w also clearly satisfies the hypothesis. In a
similar manner can be constructed the tree in the case l(v) = 0. Finally, let us show that the tree is necessarily induced.
Suppose there is an edge not in the tree that joins two vertices of the tree. Since the graph is a block graph, the vertices
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in the resulting cycle induce a clique, so in particular there is a triangle formed by two edges of the tree and an edge
not in the tree. But, as observed above, in every triangle of G having two directed edges, the edges point to the same
vertex (and the third edge is coloured, not directed). Since no vertex in the tree has in-degree more than one, this is
impossible. □

Based on the lemma, it is clear now that if a vertex has more than 2 − l(v) outgoing arcs, then that vertex is the root
of a directed induced tree (directed from the root to the leaves), where every vertex v has degree 3 − l(v), i.e., a tree
that is the base tree B(T ) of a graph T ∈ T . Indeed, notice that every vertex v in a base tree has degree 3 − l(v). The fact
that tree is induced can be proved the same way as above. This base tree can be found by a breadth-first search from a
vertex having out-degree at least 3− l(v), using the directed edges. Thanks to the labels, representing the number of K4’s
a vertex belongs to, it is then possible to extend the B(T ) to an induced subgraph T ∈ T . This can clearly be implemented
to run in polynomial time.

To finish the proof that our algorithm is correct, it remains to show that if G contains an induced subgraph in T , then
the algorithm will find a vertex with at least 3− l(v) outgoing arcs. This, along with Theorem 13, says that if the algorithm
outputs YES then the graph is contact B0-VPG (given that the detection of K5, K−

4 and H0 is clear). Recall that we know
that G is a block graph after step 2. Notice that if a block of size 2 in a graph of T is replaced by a block of size 4, we
obtain either H0 or a smaller graph in T as an induced subgraph. Moreover, adding an edge to a graph of T in such a way
that now contains a triangle, then we obtain a smaller induced graph in T . Let G be a block graph with no induced K5 or
H0. By the remark above, if G contains a graph in T as induced subgraph, then G contains one, say T , such that no edge
of the base tree B(T ) is contained in a K4 in G, and no triangle of G contains two edges of B(T ). So, all the edges of B(T )
are candidates to be directed or coloured.

In fact, by step 7 of the algorithm, every vertex of B(T ) is eventually marked as internal, and every edge incident with
it is either directed or coloured, unless the algorithm ends with answer NO before. Notice that by the remark about the
maximal cliques of size three and the fact that no triangle of G contains two edges of B(T ), if an edge vw of B(T ) is coloured,
then both v and w have an outgoing arc not belonging to B(T ). So, in order to obtain a lower bound on the out-degrees
of the vertices of B(T ) in G, we can consider only the arcs of B(T ) and we can consider the coloured edges as bidirected
edges. With an argument similar to the one in the proof of Lemma 10, at least one vertex has out-degree at least 3− l(v).

Tree-cographs

In this section, we present a minimal forbidden induced subgraph characterisation for contact B0-VPG graphs within
he class of tree-cographs.

Tree-cographs [24] are a generalisation of cographs, i.e. P4-free graphs. They are defined recursively as follows: trees
re tree-cographs; the disjoint union of tree-cographs is a tree-cograph; and the complement of a tree-cograph is also a
ree-cograph.

It follows from the definition that every tree-cograph is either a tree, or the complement of a tree, or the disjoint union
f tree-cographs, or the join of tree-cographs. Let us start with the following two trivial facts.

act 16. Every tree is a contact B0-VPG graph.

act 17. The disjoint union of contact B0-VPG graphs is contact B0-VPG.

Now let us consider the complement of trees. We obtain the following.

emma 18. Let T be a tree. Then T is contact B0-VPG if and only if it is {K5, K−

4 }-free.

Proof. If T is contact B0-VPG, then it follows from Lemma 5 that T is {K5, K−

4 }-free.
Suppose now that T is {K5, K−

4 }-free, then T has stability number at most 4. In particular, it has at most four leaves.
ince it does not have co-(K4-e)’s either, we conclude that T is either a star with at most 4 leaves, a P4 or a P5. Hence, T
s either a K4 ∪ K1, a P4 or P5. Clearly, all these graphs are contact B0-VPG. □

Using the previous results, we are able to obtain the following characterisation of tree-cographs that are contact
0-VPG.

heorem 19. Let G be a tree-cograph. Then G is contact B0-VPG if and only if G is {K5, K3,3,H0, K−

4 }-free.

roof. If G is contact B0-VPG, then it follows from Lemma 5 that G is {K5, K3,3,H0, K−

4 }-free.
Suppose now that G is a {K5, K3,3,H0, K−

4 }-free tree cograph on n vertices. We will do a proof by induction on the
number of vertices of G. Let us assume the theorem holds for graphs of less than n vertices. If G is a tree, the complement of
a tree or the disjoint union of tree-cographs, then the result holds by Facts 16, 17, Lemma 18 and the induction hypothesis.
So we may assume now that G is the join of two tree-cographs, say G ,G .
1 2
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Fig. 8. A graph G with G1 with a most two triangles and G2 = K1 , and a contact B0-VPG representation of G.

Since G is K−

4 -free, both G1 and G2 are P3-free, i.e., they are the disjoint union of cliques. Furthermore, since G is K5-free,
t follows that ω(G1) + ω(G2) ≤ 4 and, in particular, none of G1,G2 contains a K4.

First suppose that one of G1,G2, say G1, contains a triangle. Then G2 contains no K2. But since G is K−

4 -free, G2 contains
o 2K1 either. So G2 is the trivial graph. Now, since G is H0-free, G1 contains at most two triangles. But then G is clearly
ontact B0-VPG. We show in Fig. 8 how to represent the join of the trivial graph and a graph consisting in the disjoint
nion of at most two triangles, an arbitrary number of edges and isolated vertices as a contact B0-VPG graph.
Next suppose that ω(G1) = ω(G2) = 2. Since G is K−

4 -free, neither G1 nor G2 contains 2K1. So G = K4, and hence it is
ontact B0-VPG.
Suppose now ω(G1) = 2 and ω(G2) = 1. Since G is K−

4 -free, G2 contains no 2K1, so G2 is the trivial graph and hence
learly contact B0-VPG.
Finally, consider the case when ω(G1) = ω(G2) = 1. Since G is K3,3-free, it follows that G is either the star K1,n−1 or

he complete bipartite graph K2,n−2. Thus again, G is clearly contact B0-VPG. □

From the proofs of the previous results, the following fact can be deduced.

orollary 20. Every contact B0-VPG tree-cograph is the disjoint union of trees, P5’s, and contact B0-VPG cographs.

P4-Tidy graphs

Let G be a graph and let A be a vertex set that induces a P4 in G. A vertex v of G is said to be a partner of A if G[A∪{v}]

ontains at least two induced P4’s. The graph G is called P4-tidy, if each vertex set A inducing a P4 in G has at most one
artner [17]. The class of P4-tidy graphs is an extension of the class of cographs, i.e. P4-free graphs, and it contains many
ther graph classes defined by bounding the number of P4’s according to different criteria; e.g., P4-sparse graphs [21],

P4-lite graphs [22], and P4-extendible graphs [23].
A spider [21] is a graph whose vertex set can be partitioned into three sets S, C , and R, where S = {s1, . . . , sk} (k ≥ 2)

is a stable set; C = {c1, . . . , ck} is a clique; si is adjacent to cj if and only if i = j (a thin spider), or si is adjacent to cj if
nd only if i ̸= j (a thick spider); R is allowed to be empty and if it is not, then all the vertices in R are adjacent to all
he vertices in C and non-adjacent to all the vertices in S. The triple (S, C, R) is called the spider partition. By think(H) and
hickk(H) we respectively denote the thin spider and the thick spider with |C | = |S| = k and H the subgraph induced
by R. If R is an empty set we denote them by think and thickk, respectively. Clearly, the complement of a thin spider is a
hick spider, and vice versa. A fat spider is obtained from a spider by adding a true or false twin of a vertex v ∈ S ∪ C .
he following theorem characterises P4-tidy graphs.

heorem 21 ([17]). Let G be a P4-tidy graph with at least two vertices. Then, exactly one of the following conditions holds:

1. G is disconnected.
2. G is disconnected.
3. G is isomorphic to P5, P5, C5, a spider, or a fat spider.

This allows us to obtain the following characterisation of contact B0-VPG P4-tidy graphs.
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Fig. 9. Representation of a thin spider (C, S, R) with |C | = 4 and R empty.

Fig. 10. G is a fat spider arising from the thin spider (C, S, R).

heorem 22. Let G be a P4-tidy graph. Then G is contact B0-VPG if and only if G is {K5, K3,3,H0, K−

4 }-free.

roof. If G is a contact B0-VPG graph, then it follows from Lemma 5 that G is {K5, K3,3,H0, K−

4 }-free.
Suppose that G is a {K5, K3,3,H0, K−

4 }-free P4-tidy graph on n vertices. We will do a proof by induction on the number
of vertices of G. Let us assume the theorem holds for graphs of less than n vertices. It follows from Theorem 21 that G is
i) either disconnected; (ii) or G is disconnected; (iii) or G is isomorphic to P5, P5, C5, a spider, or a fat spider.

If G is disconnected, G is the union of P4-tidy graphs. Thus the result holds by Fact 17 and the induction hypothesis.
If G is disconnected, it follows that G is the join of two P4-tidy graphs, say G1,G2. Then we do exactly the same case

analysis as in the proof of Theorem 19.
Now suppose that G is a spider with partition (C, S, R). Since G is K−

4 -free, G is necessarily a thin spider. Furthermore,
since G is K5-free, we have |C | ≤ 4. If |C | = 4, then R must be empty. If |C | = 3, then |R| ≤ 1 because G is {K5, K−

4 }-free.
If |C | = 2, then, for the same reasons, |R| ≤ 2 and if |R| = 2, then R induces K2. Notice that for all these cases, the graph
obtained is an induced subgraph of the graph corresponding to the case |C | = 4 and R = ∅. We provide a contact B0-VPG
representation of that case in Fig. 9.

Suppose now that G is a fat spider arising from the thin spider with partition (C, S, R). Since G is K−

4 -free, it does not
arise from adding a true twin to a vertex of C . For the same reason, if |C | ≥ 3, G does not arise from adding a false twin
to a vertex of C , and if |C | = 2, we may add a false twin of a vertex of C only if R is empty. We provide a contact B0-VPG
representation for each of these remaining cases in Fig. 10.

Finally, it is easy to see that P , P , and C are all contact B -VPG graphs. □
5 5 5 0
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For P4-tidy graphs a linear time recognition algorithm is known [17]. Using the decomposition properties of the class,
the characterisation of the possible cases in the proof of Theorem 19 for graphs with disconnected complement, and the
ossible cases in the proof of Theorem 22 for spiders and fat spiders, we can obtain a linear-time algorithm to determine
hether a P4-tidy graph is contact B0-VPG. Moreover, we can output a minimal forbidden induced subgraph in the case
he answer is no.

5-Free contact B0-VPG graphs

In this section, we will present a characterisation of P5-free contact B0-VPG graphs. Notice that every Pk-free graph,
ith 1 ≤ k ≤ 2, is clearly contact B0-VPG. Moreover, a P3-free graph G is a disjoint union of cliques, therefore G is contact
0-VPG if and only if G is K5-free.
Concerning P4-free graphs, we have the following corollary of Theorem 19 or Theorem 22, since P4-free graphs form

subclass of tree-cographs and P4-tidy graphs.

heorem 23. Let G be a P4-free graph. Then G is contact B0-VPG if and only if G is {K5, K3,3,H0, K−

4 }-free.

Thus, the next graph class to consider is the class of P5-free graphs. As we will see, the characterisation of P5-free
ontact B0-VPG graphs is much more complex than the characterisation of Pk-free graphs, k ≤ 4. Consider a P5-free graph
. If G is chordal, we obtain a characterisation using Theorem 13. Hence, we may assume that G is non chordal. Since G
s P5-free it follows that G contains an induced cycle of length ℓ ∈ {4, 5}. In what follows, we will first analyse the case
hen G contains an induced cycle of length four, but no induced cycle of length five.

emma 24. Let G be a non chordal {P5, C5, K3,3, K−

4 }-free graph. Then, there exists an induced cycle C of length four in G
uch that N[C] = G.

roof. Since G is not chordal but {P5, C5}-free, it follows that Gmust contain an induced cycle of length four. Let C0 be such
cycle induced by the vertices v1, v2, v3, v4. If N[C0] = G, we are done. Suppose there exists a vertex v at distance two of
0. So we may assume, without loss of generality, that there is a vertex a adjacent to v1 and v. It follows from Remark 2
hat a must be non-adjacent to at least one of v2, v4. Without loss of generality, we may assume that a is non-adjacent
o v4. But then a must be adjacent to v3, otherwise v, a, v1, v4, v3 induce a P5, a contradiction. Thus, by Remark 2, a is
on-adjacent to v2.
Now, consider the cycle C1 induced by the vertices a, v1, v2, v3. If N[C1] = G, we are done. Suppose there is a vertex w

t distance two of C1. Notice that v, a, v1, v4 induce a P4. Thus, w cannot be adjacent to any of v, v4 otherwise we obtain
P5 or a C5, a contradiction. Hence, there exists a vertex b ̸= v, v4 adjacent to w and to some vertex in C1. If b is adjacent
o exactly one vertex in C1 or to exactly two consecutive vertices in C1, we clearly obtain a P5, a contradiction. Thus, it
ollows from Remark 2, that b is adjacent to two nonconsecutive vertices in C1. We distinguish two cases:

(a) b is adjacent to a and v2. Then b must be adjacent to v4, otherwise w, b, a, v1, v4 induce a P5, a contradiction. But
now v1, v3, b, a, v2, v4 induce a K3,3, a contradiction.

(b) b is adjacent to v1 and v3. Then b must be adjacent to v, otherwise w, b, v1, a, v induce a P5, a contradiction. Now
consider the cycle C induced by a, v1, b, v3. We claim that N[C] = G. Suppose there is a vertex z at distance two of C .
Then, following the same reasoning as above, z cannot be adjacent to any of v4, v, w, v2, since otherwise we obtain
a P5 or C5, a contradiction. Thus, as before for vertex b, there exists a vertex c adjacent to z and to two non-adjacent
vertices of C . If c is adjacent to v1 and v3, then c must also be adjacent to v, otherwise z, c, v3, a, v induce a P5. But
now v1, v3, v, a, b, c induce a K3,3, a contradiction. Using the same arguments, we can show that if c is adjacent to
a, b, then it must be adjacent to v2, and again we obtain an induced K3,3, a contradiction. Thus z does not exist and
hence, G = N[C]. □

We will define now the following family of graphs. Start with a cycle C induced by the vertices a1, b1, a2, b2. Add two
possibly empty) stable sets Sa, Sb, such that every vertex in Sa is adjacent to a1, a2 (but not to b1, b2), every vertex in
b is adjacent to b1, b2 (but not to a1, a2) and Sa is anticomplete to Sb. Furthermore, add two (possibly empty) sets Ka,
b such that Ka (resp. Kb) is complete to {a1} (resp. {b1}) and anticomplete to {a2, b1, b2} (resp. {a1, a2, b2}). Also, every
ertex in Ka (resp. Kb) is a simplicial vertex of degree at most three and Ka (resp. Kb) is anticomplete to Sa ∪ Sb ∪ Kb
resp. Sa ∪ Sb ∪Ka). Finally, add a (possibly empty) set Kab of vertices forming a clique of size at most two that is complete
o {a1, b1} and anticomplete to the rest of the graph. Moreover, neither of a1, b1 can belong to three cliques of size four
nd only a1 may belong to two cliques of size four not containing any vertices from Kab. There are no other edges in the
raph. Let us denote by W1 the family of graphs described here before (see Fig. 11 for an example).
Let B1, B2 and B3 be the graphs shown in Fig. 12. Finally, let W = W1 ∪ {B1, B2, B3}.

emma 25. Let G be a non chordal {P5, C5, K5, K3,3,H0,GP2 , C6, K−

4 }-free graph. Then G ∈ W .
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Fig. 11. (a) An example of a graph from the family W1 . (b) The corresponding contact B0-VPG representation.

Fig. 12. (a) The graphs B1 , B2 and B3 . (b) A contact B0-VPG representation of B3 .

Proof. Let G be a non chordal {P5, C5, K5, K3,3,H0,GP2 , C6, K−

4 }-free graph. It follows from Lemma 24 that there exists an
induced cycle C of length four in G such that N[C] = G. Let C be induced by vertices a1, b1, a2, b2. Let Sa (resp. Sb) be the
set of vertices adjacent to a1, a2 but not b1, b2 (resp. to b1, b2 but not a1, a2). Notice that Sa (resp. Sb) must be a stable
set since G is K−

4 -free. Furthermore, Sa is anticomplete to Sb. Indeed, if a vertex v ∈ Sa is adjacent to some vertex w ∈ Sb
then a1, a2, w, b1, b2, v induce a K3,3, a contradiction.

Now, suppose there is a vertex v in G adjacent to only one vertex in C . Without loss of generality, we may assume
that v is adjacent to a1. Then, it is not possible to have a vertex w ̸= v in G adjacent only to a2 in C , since the vertices
v, a1, b1, a2, w would induce a P5 (in case v and w are non-adjacent) or a C5 (in case v and w are adjacent). Therefore,
if there is a vertex w ̸= v adjacent to only one vertex in C and different from a1, then we may assume, without loss of
generality, that it is adjacent to b1. Let Ka (resp. Kb) be the set of vertices adjacent to only a1 (resp. b1). If there is a vertex
v ∈ Ka adjacent to a vertex w ∈ Kb, then v, w, b1, a2, b2 induce a P5, a contradiction. Hence Ka is anticomplete to Kb.

Let us now show that all the vertices in Ka are simplicial. Indeed, suppose that v ∈ Ka is not simplicial. Then, there
exists w, u ∈ N(v) such that u, w are non-adjacent. It follows from the above that u, w ∈ Ka. But then, v, w, u, a1 induce
a K−

4 , a contradiction. By symmetry, all vertices in Kb are simplicial as well. We will distinguish two cases.
First assume now that G is P5-free. Thus every vertex not in C is adjacent to exactly 1 vertex in C , since G is K−

4 -free.
e claim that Sa is anticomplete to Ka. Indeed, if a vertex v ∈ Sa is adjacent to some vertex w ∈ Ka, then a1, b1, a2, v, w

nduce a P5, a contradiction. Similarly, Sb is anticomplete to Kb. Next, suppose that some vertex v ∈ Sa is adjacent to some
vertex w ∈ Kb. If Sb is non empty, then for any vertex u ∈ Sb we obtain a P5 induced by b2, u, b1, w, v, a contradiction.
Thus, Sb is empty. Then, we may redefine our cycle C by taking the vertices a1, b1, a2, v. Notice that this cycle also verifies
N[C] = G. Now, w ∈ Sb (where Sb is now the set of vertices adjacent to b1, v but not to a1, a2) and b2 ∈ Sa. We can proceed
similarly if Sa is empty and there are adjacent vertices in Sb and Ka. Now, since Sb ̸= ∅, Sa (resp. Sb) is anticomplete to
b (resp. Ka). Since G is K5-free, it follows that the degree of the simplicial vertices is at most three. Finally, since G is

{H0,GP2}-free, it follows that only a1 can belong to two cliques of size four and neither of a1, b1 can belong to three cliques
of size four. Hence, G ∈ W .
1
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Now, suppose that G contains a P5 induced by the cycle C and a vertex v adjacent to a1 and b1. First, assume there
re no other vertices in G adjacent to two consecutive vertices in C . Notice that v cannot be adjacent to any vertex in
a ∪ Sb ∪ Ka ∪ Kb, since G is K−

4 -free. Moreover, Sa is anticomplete to Ka. Indeed, if w ∈ Ka is adjacent to u ∈ Sa, then
, u, a2, b1, v induce a P5, a contradiction. The same applies to Kb and Sb. Finally, we may assume that Ka (resp. Kb) is
nticomplete to Sb (resp. Sa) by using the same arguments as above and redefining the cycle C if necessary. Hence, G
elongs to W1.
Next, assume there is another vertex in G (in addition to v) adjacent to two consecutive vertices in C . Notice that

a1 and b2 (resp. a2 and b1) cannot have a common vertex since G is P5-free. If there is another vertex w adjacent to
a1 and b1, but there is no vertex adjacent to a2 and b2, then w must be adjacent to v, otherwise a1, b1, v, w induce
a K−

4 , a contradiction. Also, a1 (resp. b1) cannot belong to two cliques of size four whose vertices belong to Ka ∪ {a1}
resp. Kb ∪{b1}), since G is H0-free. Thus, G belongs to W1, since G is K5-free and thus no further vertex is adjacent to both
a1 and b1. Finally, suppose there is a vertex w adjacent to a2 and b2. First notice that v and w are non-adjacent, otherwise
v, w, a1, b1, a2, b2 induce a C6, a contradiction. We claim that all the sets Sa, Sb, Ka and Kb must be empty. Indeed, if u ∈ Sa,
hen u is non-adjacent to w, since G is K−

4 -free. But then w, a2, u, a1, v induce a P5, a contradiction. Thus, Sa = ∅ and by
ymmetry we also conclude that Sb = ∅. Now suppose u ∈ Ka. Then the vertices u, a1, b1, a2 and w induce a P5 (if u, w
re non-adjacent) or a C5 (if u, w are adjacent). Hence Ka = ∅ and by symmetry Kb = ∅. If there are no more vertices,
is isomorphic to B1. If there are more vertices in G, then by using the same arguments as before, these vertices have

o be common neighbours of a1 and b1, or a2 and b2. But then G is necessarily isomorphic to either B2 or B3, since G is
K5, C6, K−

4 }-free (the same arguments as before apply again).
Finally assume that the P5 contained in G is not induced by the cycle C together with some vertex v adjacent to two

consecutive vertices in C . The only possibility is that the house is induced by a1, b1, a2, u, w, with u ∈ Sa and w ∈ Ka
(resp. a1, b1, b2, u, w, with u ∈ Sb and w ∈ Kb). But then, we may redefine our cycle C by taking the vertices a1, b1, a2, u
(resp.a1, b1, b2, u). Clearly this new cycle C also verifies that N[C] = G. Thus, we can apply the same arguments as before
and show that G ∈ W . □

Lemma 26. Every graph in W is contact B0-VPG.

Proof. Let G be a graph in W1. We construct a contact B0-VPG representation of G as follows. First represent the main
cycle C induced by a1, b1, a2, b2: Pa1 is a horizontal path lying on row xi; Pa2 is a horizontal path lying on row xj, j < i; Pb1
is a vertical path lying on column yk; Pb2 is a vertical path lying on column yℓ, with ℓ > k + |Sa|; furthermore, we make
sure that b1 and b2 are middle-neighbours of a1 and a2 is a middle neighbour of b1 and b2; finally the paths Pb1 and Pb2
use column yk respectively yℓ down to row xt with t + |Sb| < j. Now, each vertex in Sa can be represented by a vertical
path on some column yr , with k < r < ℓ, and every vertex in Sb can be represented by a horizontal path on some row u
with t < u < j. First assume that Kab = ∅. Since Pa1 has both endpoints free, one can easily represent two cliques of size
four, in case a1 belongs to such cliques and similarly, since Pb1 has one endpoint free, one can easily represent one clique
of size four, in case b1 belongs to such a clique. All other vertices in Ka or Kb can clearly be represented by extending
enough the paths Pa1 and Pb1 .

Now, assume that Kab = {v}. Then, given a contact B0-VPG representation of G − v as described before, we can easily
obtain a contact B0-VPG representation of G as follows: we add a path Pv lying on column yk between some row xq and
row xi, with i < q.

Next, assume that Kab = {v, v′
}. Thus, a1 belongs to at most one clique of size four in G − {v, v′

} (the vertices of that
clique belong to Ka, except for a1). We obtain a contact B0-VPG representation as follows. Start with a contact B0-VPG
representation of G− v′ as described above. Make sure that all vertices in Ka are represented by paths intersecting Pa1 to
the right of column yℓ (this is clearly always possible, since a1 belongs to at most one clique of size four whose vertices
(except for a1) belong to Ka). Finally, if necessary, reduce Pa1 such that its left endpoint corresponds to the grid point
(xi, yk) (this is possible since Pa1 does not intersect any path to the left of that grid point anymore). Now add Pw as a
horizontal path on row xi with its right endpoint corresponding to the grid point (xi, yk).

Finally, if G is one of the graphs B1, B2 or B3, then G is clearly contact B0-VPG as can be seen in Fig. 12(b). Notice that
B1, B2 are induced subgraphs of B3. □

From the lemmas above, we conclude the following.

Corollary 27. Let G be a non chordal {P5, C5, K5, K3,3,H,GP2 , C6, K−

4 }-free graph. Then G is contact B0-VPG.

Let us now focus on P5-free graphs containing an induced cycle of length five.

Lemma 28. Let G be a {P5, K−

4 }-free graph. Let C be an induced cycle of length five in G such that no vertex is adjacent to exactly
three non consecutive vertices in C. Then, N[C] = G and every vertex v ∈ N(C) is adjacent to exactly two non-consecutive
vertices in C.

Proof. Let C be induced by v1, . . . , v5 and let v be a vertex in N(C). It follows from Remark 2 that v cannot be adjacent to
three consecutive vertices in C . If v is adjacent to exactly one vertex or to two consecutive vertices in C , then we clearly
obtain a P , a contradiction. Thus, v has exactly two non consecutive neighbours in C .
5
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Fig. 13. (a) An example of a graph in L2 . (b) The corresponding contact B0-VPG representation.

Fig. 14. The graphs G1 , G2 , G3 and G4 .

Now assume that there exists a vertex u which is at distance two of C . Thus, there is a vertex w ∈ N(C) adjacent to
u and to two non consecutive vertices in C , say v1, v3. But then, v, w, v1, u5, v4 induce a P5, a contradiction. Therefore
N[C] = G. □

Let K ∗

3,3 be the graph obtained by subdividing exactly one edge in the graph K3,3. We will now define several families
of graphs. Start with a cycle C of length five induced by the vertices a, v, b, c, w. Add two (possibly empty) stable sets Sv ,
Sw such that Sv is complete to {a, b}, Sw is complete to {a, c} and Sv is anticomplete to Sw . There are no other edges. Let
us denote by L1 the family of graphs described here before.

Let G ∈ L1 and let G′ be the graph obtained from G by adding a vertex u adjacent to a, b and c . Furthermore, add a
(possible empty) set Ku, such that Ku is complete to {u} and anticomplete to V (C) ∪ Sv ∪ Sw . Also, every vertex in Ku is
a simplicial vertex of degree at most three. Moreover, u can belong to only one clique of size four. There are no other
edges. Let us denote by L2 the family of graphs described here before (see Fig. 13(a) for an example).

Next, consider a graph G′ in L2 with Sv = Sw = ∅ and u not belonging to any clique of size four. Add a vertex z
adjacent to v, w and u. There are no other edges. Let us denote by L3 the family of graphs obtained that way and let
L = L1 ∪ L2 ∪ L3.

Finally, let G1, G2, G3 and G4 be the graphs shown in Fig. 14.

Lemma 29. Let G be a {P5, K5, K ∗

3,3, C6,G1,G2,G3,G4, K−

4 }-free graph and assume G contains a cycle of length five. Then
∈ L.

roof. Let C be an induced cycle of length five with vertices a, v, b, c, w. Clearly, no vertex in N(C) is adjacent to exactly
one vertex in C or to two consecutive vertices in C , since G is P5-free. Consider first the vertices adjacent to two non-
consecutive vertices in C . For any two vertices u, z that are adjacent to the same two non-consecutive vertices in C , we
have that u and z are non-adjacent otherwise we obtain K−

4 , a contradiction. Suppose that there exist vertices u, z such
hat they have distinct neighbours in C , say u is adjacent to a and b, and z is adjacent to v and c . If u, z are adjacent, then
together with the vertices of C , they induce a K ∗

3,3, a contradiction. If u, z are non-adjacent, then u, a, v, z, c induce a P5,
a contradiction. Thus, we may assume now, without loss of generality, that every vertex adjacent to two nonconsecutive
vertices in C is either adjacent to both a and b or adjacent to both a an c . Let Sv (resp. Sw) be the set of vertices not in C
adjacent to a, b (and not to v, c, w) (resp. a, c (and not to b, v, w)). It follows from the above that Sv and Sw are stable sets.
inally, if there is a vertex u ∈ Sv adjacent to some vertex z ∈ Sw , then we obtain G2, a contradiction. So Sv is anticomplete

to Sw .
First assume that there exists no vertex in G that is adjacent to three non-consecutive vertices in C . It immediately

ollows from Lemma 28 that G = N[C] and that every vertex not in C is adjacent to two non-consecutive vertices in C .
hus, G ∈ L1.
Now, suppose that there exists a vertex u adjacent to three non-consecutive vertices in C , say a, b and c . We will first

how that there cannot be another vertex adjacent to three non-consecutive vertices. If there is another vertex z adjacent
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Fig. 15. A graph in L3 and the corresponding contact B0-VPG representation.

o a, b and c , then u and z must be adjacent otherwise u, z, c, b induce a K−

4 , a contradiction. But now the vertices a, u,
z and b induce a K−

4 , again a contradiction. Now, suppose z is adjacent to v, b and w. Then, z and u are non-adjacent,
since otherwise u, z, b, c induce a K−

4 , a contradiction. But now, the vertices of C together with u and z induce G3, a
contradiction as well. By symmetry, we conclude that z cannot be adjacent to v, w and c. Finally, if z is adjacent to a, v
and c , the vertices a, v, z, u, b and c induce a C6 if z and u are non-adjacent, a contradiction. But if z and u are adjacent,
then u, z, b, c induce a K−

4 , again a contradiction. By symmetry, z cannot be adjacent to a, w and b. Hence, we conclude
that u is the unique vertex adjacent to three non-consecutive vertices in C .

Now we will distinguish several cases, depending on which vertices u is adjacent to. First, assume that u is adjacent
to a, b and c , and that Sv ∪ Sw is non empty. Notice that u cannot be adjacent to any vertex in Sv ∪ Sw , since G is K−

4 -free.
It follows from Remark 2 and the fact that G is P5-free that any vertex in G not belonging to V (C) ∪ Sv ∪ Sw ∪ {u} has to
be adjacent to u and anticomplete to V (C)∪ Sv ∪ Sw . Let Ku = N(u) \V (C) be the set of these vertices and consider z ∈ Ku.
Then z is simplicial. Indeed, if z is not simplicial, it follows that there exist vertices z ′, z ′′

∈ Ku ∩ N(z) such that z ′, z ′′ are
non-adjacent. But then z, z ′, z ′′, u induce K−

4 , a contradiction. Furthermore, since G is K5-free, it follows that every vertex
z ∈ Ku has degree at most three. Finally, notice that u can only belong to at most one clique of size four, since G is G1-free.
Thus, we conclude that G ∈ L2.

Notice that if Sv = Sw = ∅, we can relabel the vertices in C such that u is adjacent to a, b and c , and we obtain a graph
in L2 as before. Thus, we may assume, without loss of generality, that there is a vertex z ∈ Sv . Now, we will consider
different cases:

• If u is adjacent to v, b and w, or if u is adjacent to a, v and c , then we obtain G2 (notice that z and u cannot be
adjacent since the graph is K−

4 -free),a contradiction.
• If u is adjacent to a, b and w, then Sw = ∅, otherwise a, v, b, c, u, w, t , where t ∈ Sw , induce G2 a contradiction. Now,

we can relabel the vertices in C such that u is adjacent to a, b and c , without changing Sv , and we obtain a graph in
L2 as before.

• If u is adjacent to v, c and w, and z is non-adjacent to u, then z, a, v, u, c induce a P5, a contradiction. So z and u must
be adjacent. Notice again that Sw = ∅. Indeed, if t ∈ Sw , then t, a, v, b, u, c, w induce G2, a contradiction. Moreover,
|Sv| = 1: if z ′

∈ Sv , z ̸= z ′, then z ′ must be adjacent to u as well, but now v, z, z ′, a, b, u induce a K3,3, a contradiction.
So we can relabel the vertices in C such that u is adjacent to a, b, c. With this new labelling, Sv = Sw = ∅ and z is
adjacent to v, w and u. Clearly, any vertex not belonging to V (C) ∪ {u, z} has to be adjacent to u, since G is P5-free.
Let Ku be the set of these vertices. Using the same arguments than above, one can show that every vertex in Ku is
simplicial and have degree at most three since the graph is K5-free. Finally, u cannot belong to a clique of size four,
since G is G4-free. So we conclude that G ∈ L3. □

Lemma 30. Every graph in L is contact B0-VPG.

Proof. Let G ∈ L1. We construct a contact B0-VPG representation of G as follows. Vertex b is represented by a path Pb
lying on column yj between rows xk and xt , with t > k + |Sv|; vertex c is represented by a path Pc lying on column yj
between rows xt and xℓ, with ℓ > t + |Sw|; vertex a is represented by a path Pa lying on column yi, i < j, between rows
xk and xℓ; vertex v is represented by a path Pv lying on row xk between rows yi and yj and vertex w is represented by a
path Pw lying on row xℓ between rows yi and yj. Now each vertex in Sv is represented by a path between columns yi and
yj lying on one of the |Sv| rows between xk and xt , and each vertex in Sw is represented by a path between columns yi
and yj lying on one of the |Sw| rows between xt and xℓ.

If G ∈ L2, consider a representation of G − (Ku ∪ {u}) as described above. Now, it is possible to add Pu on row xt , such
that b and c are middle-neighbours of u, and u is a middle-neighbour of a. If u belongs to one clique of size four, then it
is possible to represent this clique using the right endpoint of Pu. All the other vertices of Ku can easily be represented by
eventually extending the path Pu to the right.

Finally, if G ∈ L3, consider the contact B0-VPG representation of the graph shown in Fig. 15. Clearly, it is possible to
add the paths representing the vertices of Ku, since u does not belong to any clique of size four. □

Lemma 31. The graphs K ∗ , C ,G ,G ,G ,G are not contact B -VPG.
3,3 6 1 2 3 4 0



t
a
p
a

i
o

r
a
b

t
i

r
f
w
e
v

T

G
I
B

g
i

f
c
s

A

2

R

Proof. Consider the graph K3,3 with vertices a, c, e on one side of the bipartition and b, d, f on the other side. Assume
hat the edge ef is subdivided to obtain K ∗

3,3. Consider the cycle induced by the vertices a, b, c, d. Following the same
pproach as in Lemma 5, we may assume that Pa, Pc are horizontal paths, Pb, Pd are vertical paths and Pe is a horizontal
ath lying inside the rectangle, and Pf is a vertical path lying outside the rectangle. But now it is clearly impossible to
dd a path intersecting Pe and Pf without intersecting any other path. Thus, K ∗

3,3 is not B0-VPG.
Next consider the graph C6 with vertex set a, b, c, d, v, w such that a, b, c, d induce a cycle of length four, v is a common

vertex of a and b, w is a common neighbour of c and d, and v is adjacent to w. If C6 is contact B0-VPG, then we may assume
that in a contact B0-VPG representation, the paths Pa, Pc are horizontal and the paths Pb, Pd are vertical. Since b, c, v, w

nduce a cycle of length four, we conclude from the above that Pv has to be horizontal. But since a, d, v, w induce a cycle
f length four as well, we also conclude that Pv has to be vertical, a contradiction. Hence, C6 is not B0-VPG.
Suppose now that the graph G1 is contact B0-VPG. Without loss of generality, we may assume that Pu lies on some

ow xi. Since u belongs to two cliques of size four, it follows from Remark 3 that both endpoints of Pu are not free. Thus,
, b and c are middle neighbours of u, i.e. Pa, Pb, Pc are necessarily vertical paths. Thus, Pv, Pw must be horizontal paths,
ut this is impossible since no two paths can cross. We conclude that G1 is not contact B0-VPG.
Using similar arguments, we conclude that if G4 is contact B0-VPG, then b, c have to be middle neighbours of u, u has

o be a middle neighbour of a and Pv, Pw have to be horizontal paths. But now it is clearly impossible to add Pz such that
t intersects Pv, Pw, Pu without crossing any path. Hence, G4 is not contact B0-VPG.

Finally, consider the graphs G2,G3 and suppose that they are contact B0-VPG. First consider a contact B0-VPG
epresentation of G2 − v (resp. G3 − v). Since t is adjacent to three non-consecutive vertices of a induced cycle of length
ive, we may assume, without loss of generality, that we have the following configuration: Pa, Pc, Pz are horizontal paths
ith Pa, Pz lying on a same row; Pb, Pw are vertical paths; Pt is a vertical path with one endpoint corresponding to the
ndpoints of Pa, Pz that intersect; t is a middle neighbour of c . But now it is clearly impossible to add a path representing
ertex v, since it has to intersect Pa and Pb. Therefore, G2,G3 are not contact B0-VPG. □

We are now ready to prove the main result of this section.

heorem 32. Let G be a P5-free graph. Let G = {K5,H0,GP2 , K3,3, K ∗

3,3, C6,G1,G2,G3,G4, K−

4 }. Then G is contact B0-VPG if
and only if G is G-free.

Proof. For the only if part, we use Theorem 13, Lemmas 5 and 31.
Suppose now that G is a P5-free graph which is also G-free. If G is chordal, the result follows from Theorem 13, since
is F-free (indeed, the graphs in F different from H0 and GP2 contain an induced P5). Now, assume that G is not chordal.

f G is C5-free, by Corollary 27, G is contact B0-VPG. Similarly, if G contains a C5, by Lemmas 29 and 30, G is also contact
0-VPG. □

Conclusions and future work

In this paper, we considered some special graph classes, namely chordal graphs, tree-cographs, P4-tidy graphs and
P5-free graphs. We gave a characterisation by minimal forbidden induced subgraphs of those graphs from these families
that are contact B0-VPG. Moreover, we presented a polynomial-time algorithm for recognising chordal contact B0-VPG
raphs based on our characterisation. Notice that for the other graph classes considered here, the characterisation
mmediately yields a polynomial-time recognition algorithm.

In order to get a better understanding of the structure of general contact B0-VPG graphs, one way could be to find
urther characterisations by forbidden induced subgraphs of contact B0-VPG graphs within other interesting classes. Since
lassical graph problems are difficult in contact B0-VPG graphs (see for instance [13]), these further insights in their
tructure may lead to good approximation algorithms for these problems.
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