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It is known that the maximum independent set problem is NP-complete for subcubic 
graphs, i.e. graphs of vertex degree at most 3. Moreover, the problem is NP-complete 
for 3-regular Hamiltonian graphs and for H-free subcubic graphs whenever H contains 
a connected component which is not a tree with at most 3 leaves. We show that if every 
connected component of H is a tree with at most 3 leaves and at most 7 vertices, then the 
problem can be solved for H-free subcubic graphs in polynomial time. We also strengthen 
the NP-completeness of the problem on 3-regular Hamiltonian graphs by showing that the 
problem is APX-complete in this class.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a graph, an independent set is a subset of vertices no two of which are adjacent. The maximum independent set 
problem (MaxIS for short) consists in finding in a graph an independent set of maximum cardinality. This problem is 
generally NP-complete [6]. Moreover, it remains NP-complete even under substantial restrictions, for instance, for planar 
graphs or graphs of large girth [12]. On the other hand, for graphs in some particular classes, such as perfect graphs or 
claw-free graphs [11], the problem can be solved in polynomial time. In order to better understand the boundary between 
the NP-complete and polynomially-solvable cases of the problem, in the present paper we study MaxIS restricted to graphs 
of vertex degree at most 3 (also known as subcubic graphs), which is the best possible restriction expressed in terms of 
vertex degree under which the problem remains NP-complete. This restriction can also be expressed in terms of forbidden 
induced subgraphs, in which case the set of excluded graphs consists of 11 minimal graphs containing a vertex of degree 4. 
However, in terms of forbidden induced subgraphs the restriction to subcubic graphs is not best possible, because the 
problem is NP-complete in the class of (K1,4, K3)-free graphs, which is a proper subclass of subcubic graphs. This follows, 
in particular, from the result in [1] that can be stated as follows: if Z is a finite set containing no graph every connected 
component of which is a tree with at most three leaves, then MaxIS is NP-complete in the class of Z -free graphs. In other 
words, for polynomial-time solvability of the problem in a class defined by finitely many forbidden induced subgraphs, we 
must exclude a graph every connected component of which has the form Si, j,k represented in Fig. 1. Whether this condition 
is sufficient for polynomial-time solvability of the problem is a big open question.

✩ A preliminary version of this paper has appeared in the proceedings of IWOCA 2013.
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Fig. 1. Graphs Si, j,k (left) and A5 (right).

Without the restriction on vertex degree, polynomial-time solvability of the problem in classes of Si, j,k-free graphs was 
shown only for very small values of i, j, k. In particular, the problem can be solved for S1,1,1-free (claw-free) graphs 
[11], S1,1,2-free (fork-free) graphs [8], and S0,1,1 + S0,1,1-free (2P3-free) graphs [10]. Recently, Lokshtanov, Vatshelle, and 
Villanger [7] proved that the independence number of an S0,2,2-free (P5-free) graph can be computed in polynomial time 
(thereby solving a long-standing open problem).

With the restriction on vertex degree, we can do much better. In particular, we can solve the problem for Pk-free graphs 
of degree at most d for any k and d, because under this restriction the number of vertices in connected graphs is bounded 
by a function of k and d. More generally, we can solve the problem for S1, j,k-free graphs of bounded degree for any j
and k, because by excluding S1, j,k we exclude large apples (see definition in the end of the introduction), and for graphs of 
bounded degree containing no large apples the problem can be solved in polynomial time, which was recently shown in [9]. 
However, nothing is known about the complexity of the problem in classes of Si, j,k-free graphs of bounded degree where 
all three indices i, j, k are at least 2. To make a progress in this direction, we consider best possible restrictions of this type, 
i.e. we study S2,2,2-free graphs of vertex degree at most 3, and show that the problem is solvable in polynomial time in 
this class. More generally, we show that the problem is polynomial-time solvable in the class of H-free subcubic graphs 
whenever H is a graph every connected component of which is isomorphic to S2,2,2 or to S1, j,k . This result is presented in 
Section 2.

In Section 3, we switch to the classes where the problem is difficult and prove a new result in this area. In particular, 
we show that MaxIS is APX-complete in the class of 3-regular Hamiltonian graphs, which strengthens the NP-completeness 
of the problem in this class.

Section 4 concludes the paper with a number of open problems.
All graphs in this paper are simple, i.e. undirected, without loops and multiple edges. The vertex set and the edge set of 

a graph G are denoted by V (G) and E(G), respectively. For a vertex v ∈ V (G), we denote by N(v) the neighborhood of v , 
i.e., the set of vertices adjacent to v , and by N[v] the closed neighborhood of v , i.e. N[v] = N(v) ∪ {v}. For v, w ∈ V (G), we 
set N[v, w] = N[v] ∪ N[w]. The degree of v is the number of its neighbors, i.e., d(v) = |N(v)|. The subgraph of G induced by 
a set U ⊆ V (G) is obtained from G by deleting the vertices outside of U and is denoted G[U ]. If no induced subgraph of G
is isomorphic to a graph H , then we say that G is H-free. Otherwise we say that G contains H . If G contains H , we denote 
by [H] the subgraph of G induced by the vertices of H and all their neighbors. As usual, by C p we denote a chordless cycle 
of length p. Also, an apple Ap , p ≥ 4, is a graph consisting of a cycle C p and a vertex f which has exactly one neighbor on 
the cycle. We call vertex f the stem of the apple. See Fig. 1 for the apple A5. The size of a maximum independent set in G
is called the independence number of G and is denoted α(G).

2. Polynomial-time results

In this section, we show that the problem is polynomial-time solvable in the class of H-free subcubic graphs whenever 
H is a graph every connected component of which is isomorphic to S2,2,2 or to S1, j,k . We start by solving the problem for 
S2,2,2-free subcubic graphs. To this end, we quote the following result from [9].

Theorem 2.1. For any positive integers d and p, MaxIS is polynomial-time solvable in the class of (A p, Ap+1, . . .)-free graphs with 
maximum vertex degree at most d.

We solve MaxIS for S2,2,2-free subcubic graphs by reducing it to subcubic graphs without large apples.
Throughout the section we let G be an S2,2,2-free subcubic graph and K ≥ 1 a large fixed integer. If G contains no apple 

Ap with p ≥ K , then the problem can be solved for G by Theorem 2.1. Therefore, from now on we assume that G contains 
an induced apple Ap with p ≥ K formed by a chordless cycle C = C p of length p and a stem f . We denote the vertices of 
C by v1, . . . , v p (listed along the cycle) and assume without loss of generality that the only neighbor of f on C is v1 (see 
Fig. 1 for an illustration).

If v1 is the only neighbor of f in G , then the deletion of v1 together with f reduces the independence number of G
by exactly 1. This can be easily seen and also is a special case of a more general reduction described in Section 2.1. The 
deletion of f and v1 destroys the apple Ap . The idea of our algorithm is to destroy all large apples by means of other 
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Fig. 2. Ap + g .

simple reductions that change the independence number by a constant. Before we describe the reductions in Section 2.1, 
let us first characterize the local structure of G in the case when the stem f has a neighbor different from v1.

Lemma 2.2. If f has a neighbor g different from v1, then g has at least one neighbor on C and the neighborhood of g on C is of one of 
the 8 types represented in Fig. 2.

Proof. First observe that g must have a neighbor among {v p−1, v p, v2, v3}, since otherwise we obtain an induced S2,2,2. If 
g has only 1 neighbor on C , then clearly we obtain configuration (1) or (2).

Now assume that g has two neighbors on C . Suppose first that g is adjacent neither to v2 nor to v p . Then g must be 
adjacent to at least one of v p−1, v3. Without loss of generality, we may assume that g is adjacent to v p−1 and denote the 
third neighbor of g by v j . If 2 < j < p − 3, then we clearly obtain an induced S2,2,2 centered at g . Otherwise, we obtain 
configuration (3) or (4).

Now assume g is adjacent to one of v2, v p , say to v p , and again denote the third neighbor of g by v j . If j ∈ {p −2, p −1}, 
then we obtain configuration (5) or (6). If j ∈ {2, 3}, then we obtain configuration (7) or (8). If 3 < j < p −2, then G contains 
an S2,2,2 induced by {v j−2, v j−1, v j, v j+1, v j+2, g, f }. �
2.1. Graph reductions

As we mentioned earlier, the idea of our algorithm is to destroy all large apples by means of reductions that change the 
independence number by a constant. In the present section we describe the main reductions used in our solution.

2.1.1. H-subgraph reduction
Let H be an induced subgraph of G .

Lemma 2.3. If α(H) = α([H]), then α(G − [H]) = α(G) − α(H).

Proof. Since any independent set of G contains at most α([H]) vertices in [H], we know that α(G − [H]) ≥ α(G) − α([H]). 
Now let S be an independent set in G −[H] and A an independent set of size α(H) in H . Then S ∪ A is an independent set 
in G and hence α(G) ≥ α(G − [H]) + α(H). Combining the two inequalities together with α(H) = α([H]), we conclude that 
α(G − [H]) = α(G) − α(H). �

The deletion of [H] in the case when α(H) = α([H]) will be called the H-subgraph reduction. For instance, if a vertex v
has degree 1, then the deletion of v together with its only neighbor is the H-subgraph reduction with H = {v}.

2.1.2. Φ-reduction
Let us denote by Φ the graph represented on the left of Fig. 3. The transformation replacing Φ by Φ ′ as shown in Fig. 3

will be called Φ-reduction.
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Fig. 3. Φ-reduction.

Fig. 4. Induced subgraphs A (left) and B (right).

Lemma 2.4. By applying the Φ-reduction to an S2,2,2-free subcubic graph G, we obtain an S2,2,2-free subcubic graph G ′ such that 
α(G ′) = α(G) − 2.

Proof. Let S be an independent set in G . Clearly it contains at most two vertices in {a, b, c, d} and at most two vertices in 
{1, 2, 3, 4}. Denote X = S ∩{1, 2, 3, 4}. If the intersection S ∩{a, b, c, d} contains at most one vertex or one of the pairs {a, d}, 
{b, c}, then S − X is an independent set in G ′ of size at least α(G) − 2. If S ∩ {a, b, c, d} = {a, b}, then X contains at most 
one vertex and hence S − (X ∪ {b}) is an independent set in G ′ of size at least α(G) − 2. Therefore, α(G ′) ≥ α(G) − 2.

Now let S ′ be an independent set in G ′ . Then the intersection S ′ ∩ {a, b, c, d} contains at most two vertices. If S ′ ∩
{a, b, c, d} = {a, d}, then S ′ ∪ {2, 3} is an independent set of size α(G ′) + 2 in G . Similarly, if S ′ ∩ {a, b, c, d} contains at most 
one vertex, then G contains an independent set of size at least α(G ′) + 2. Therefore, α(G) ≥ α(G ′) + 2. Combining the two 
inequalities, we conclude that α(G ′) = α(G) − 2.

Now let us show that G ′ is an S2,2,2-free subcubic graph. The fact that G ′ is subcubic is obvious. Assume to the contrary 
that it contains an induced subgraph H isomorphic to S2,2,2. If H contains none of the edges ab and cd, then clearly H is 
also an induced S2,2,2 in G , which is impossible. If S contains both edges ab and cd, then it contains C4 = (a, b, c, d), which 
is impossible either. Therefore, H has exactly one of the two edges, say ab. If vertex b has degree 1 in H , then by replacing 
b by vertex 1 we obtain an induced S2,2,2 in G . By symmetry, a also is not a vertex of degree 1 in H . Therefore, we may 
assume, without loss of generality, that a has degree 3 and b has degree 2 in H . Let us denote by x the only neighbor of b
in H . Then (H − {b, x}) ∪ {1, 2} is an induced S2,2,2 in G . This contradiction completes the proof. �
2.1.3. AB-reduction

The AB-reduction deals with two graphs A and B represented in Fig. 4. We assume that the vertices vi belong to the 
cycle C = C p , and the vertices p j are outside of C .

Lemma 2.5. If G contains an induced subgraph isomorphic to A, then

• either A can be extended to an induced subgraph of G isomorphic to B in which case p j+2 can be deleted without changing α(G)

• or the deletion of N[vi] ∪ N[p j] reduces the independence number by 2.

Proof. Assume first that A can be extended to an induced B (by adding vertex p j+3). Consider an independent set S
containing vertex p j+2. Then S contains neither p j+1 nor p j+3 nor vi+2. If neither p j nor vi belongs to S , then p j+2 can 
be replaced by p j+1 in S . Now assume, without loss of generality, that vi belongs to S . Then vi+1 /∈ S and therefore we may 
assume that vi+3 ∈ S , since otherwise p j+2 can be replaced by vi+2 in S . If p j+3 has one more neighbor x in S (different 
from p j+2), then vertices vi , vi+2, vi+3, p j+1, p j+2, p j+3 and x induce an S2,2,2 in G (because the 3 endpoints are in S and 
the internal vertices have degree 3 in A). Therefore, we conclude that p j+2 is the only neighbor of p j+3 in S , in which case 
p j+2 can be replaced by p j+3 in S . Thus, for any independent S in G containing vertex p j+2, there is an independent set 
of size |S| which does not contain p j+2. Therefore, the deletion of p j+2 does not change the independence number of G .

Now let us assume that A cannot be extended to B . Clearly, every independent set S in G − N[vi, p j] can be extended 
to an independent set of size |S| + 2 in G by adding to S vertices vi and p j . Therefore, α(G) ≥ α(G − N[vi, p j]) + 2.

Conversely, consider an independent set S in G . If it contains at most 2 vertices in N[vi, p j], then by deleting these 
vertices from S we obtain an independent set of size at least |S| − 2 in G − N[ci, p j].

Suppose now that S contains more than 2 vertices in N[vi, p j]. Let us show that in this case it must contain exactly 
three vertices in N[vi, p j], two of which are vi+1 and p j+1. Indeed, N[vi, p j] contains at most 6 vertices: vi−1, vi, vi+1, p j , 
p j+1 and possibly some vertex x. Moreover, if x exists, then it is adjacent to vi−1, since otherwise an S2,2,2 arises induced 
either by vertices x, p j , p j+1, p j+2, vi+2, vi−1, vi (if p j+2 is not adjacent to vi−1) or by vertices p j , vi+1, vi+2, vi+3, 
vi+4, vi−1, p j+2 (if p j+2 is adjacent to vi−1). Therefore, S cannot contain more than three vertices in N[vi, p j], and if it 
contains three vertices, then two of them are vi+1 and p j+1. As a result, S contains neither vi+2 nor p j+2. If each of vi+2
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Fig. 5. Induced subgraphs A∗ (left) and House (right).

and p j+2 has one more neighbor in S (different from vi+1 and p j+1), then A can be extended to B , which contradicts our 
assumption. Therefore, we may assume without loss of generality that p j+1 is the only neighbor of p j+2 in S . In this case, 
the deletion from N[vi, p j] of the three vertices of S and adding to it vertex p j+2 results in an independent set of size 
|S| − 2 in G − N[vi, p j]. Therefore, α(G − N[vi, p j]) ≥ α(G) − 2. Combining with the inverse inequality, we conclude that 
α(G − N[vi, p j]) = α(G) − 2. �
2.1.4. Other reductions

Two other reductions that will be helpful in the proof are the following.

• The A∗-reduction applies to an induced A∗ (Fig. 5) and consists in deleting vertex p j+2.
• The House-reduction applies to an induced House (Fig. 5) and consists in deleting the vertices of the triangle vi+2, vi+3, 

p j+2.

Lemma 2.6. The A∗-reduction does not change the independence number, and the House-reduction reduces the independence number 
by exactly 1.

Proof. Assume G contains an induced A∗ and let S be an independent set containing p j+2. If S does not contain vi+1, then 
p j+2 can be replaced by vi+2, and if S contains vi+1, then p j+2 can be replaced by p j+1. Therefore, G has an independent 
set of size |S| which does not contain p j+2 and hence the deletion of p j+2 does not change the independence number.

Assume G contains an induced House and let S be a maximum independent set in G . Then obviously at most one vertex 
of the triangle vi+2, vi+3, p j+2 belongs to S . On the other hand, S must contain at least one vertex of this triangle. Indeed, 
if none of the three vertices belong to S , then each of them must have a neighbor in S (else S is not maximum), but 
then both vi+1 and p j+1 belong to S , which is impossible. Therefore, every maximum independent set contains exactly one 
vertex of the triangle, and hence the deletion of the triangle reduces the independence number by exactly 1. �
2.2. Solving the problem

In the subgraph of G induced by the vertices outside of C = C p that have at least one neighbor on C , every vertex has 
degree at most 2 and hence every connected component in this subgraph is either a path or a cycle. Let F be the component 
of this subgraph containing the stem f . In what follows we analyze all possible cases for F and show that in each case the 
apple Ap can be destroyed by means of graph reductions described in Section 2.1 or by some other simple reductions.

Lemma 2.7. If F is a cycle, then Ap can be destroyed by graph reductions that change the independence number by a constant.

Proof. If F is a triangle, then, according to Lemma 2.2, the neighbors of F in C are three consecutive vertices of C . In this 
case, F together with two consecutive vertices of C form a House and hence the deletion of F reduces the independence 
number of G by exactly one.

Assume F is a cycle of length 4 induced by vertices f1, f2, f3, f4. With the help of Lemma 2.2 it is not difficult to 
see that the neighbors of F in C must be consecutive vertices, say vi, . . . , vi+3, and the only possible configuration, up to 
symmetry, is this: vi is a neighbor of f1, vi+1 is a neighbor of f2, vi+2 is a neighbor of f4, vi+3 is a neighbor of f3. In this 
case, the deletion of vertex vi+1 does not change the independence number of G . To show this, consider an independent 
set S containing vertex vi+1. Then S does not contain f2, vi , vi+2. If f4 ∈ S , then f1, f3 /∈ S , in which case vi+1 can be 
replaced by f2 in S . So, assume f4 /∈ S . If f3 /∈ S , then we can assume that vi+3 ∈ S (else vi+1 can be replaced by f3 in S), 
in which case vi+1, vi+3 can be replaced by vi+2, f3. So, assume f3 ∈ S , and hence vi+3 /∈ S . But now vi+1 can be replaced 
by vi+2 in S . This proves that for every independent set S containing vi+1, there is an independent set of the same size 
that does not contain vi+1. Therefore, the deletion of vi+1 does not change the independence number of G .

Assume F is a cycle of length 5 induced by vertices f1, f2, f3, f4, f5. With the help of Lemma 2.2 it is not difficult to 
verify that the neighbors of F in C must be consecutive vertices, say vi, . . . , vi+4, and the only possible configuration, up to 
symmetry, is this: f1 is adjacent to vi , f2 is adjacent to vi+1, f3 is adjacent to vi+3, f4 is adjacent to vi+4, f5 is adjacent 
to vi+2. But then the vertices f2, f3, f4, f5, vi+2, vi+4, vi+5 induce an S2,2,2.

If F is a cycle of length more than 5, then an induced S2,2,2 can be easily found. �
Lemma 2.8. If F is a path with at least 5 vertices, then Ap can be destroyed by graph reductions that change the independence number 
by a constant.
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Proof. Assume F has at least 5 vertices f1, . . . , f5. Denote the neighbor of f3 on C by vi . Assume vi−1 has a neighbor in 
{ f1, f5}, say f1 (up to symmetry). By Lemma 2.2, f2 is adjacent either to vi−2 or vi+1.

Let first f2 be adjacent to vi+1. Then either f1 is not adjacent to vi−2, in which case the vertices vi−2, . . . , vi+1, f1, f2, f3
induce an A, or f1 is adjacent to vi−2, in which case f4 is adjacent to vi+2 (by Lemma 2.2) and hence the vertices 
vi, . . . , vi+3, f2, f3, f4 induce an A. In either case, we can apply Lemma 2.5.

Suppose now that f2 is adjacent to vi−2. Then f1 is not adjacent to vi+1, since otherwise f4 is adjacent to vi+2 (by 
Lemma 2.2), in which case the vertices vi+1, . . . , vi+4, f1, f3, f4 induce an S2,2,2. As a result, vertices vi−2, . . . , vi+1, f1, f2, 
f3 induce an A and we can apply Lemma 2.5.

The above discussion shows that vi−1 has no neighbor in { f1, f5}. By symmetry, vi+1 has no neighbor in { f1, f5}. Then 
each of vi−1 and vi+1 has a neighbor in { f2, f4}, since otherwise f1, . . . , f5, vi together with vi−1 or with vi+1 induce an 
S2,2,2. Up to symmetry, we may assume that vi−1 is adjacent to f2, while vi+1 is adjacent to f4.

If f1 is adjacent to vi−2 or f5 is adjacent to vi+2, then an induced Φ arises, in which case we can apply the Φ-reduction. 
Therefore, we can assume that f1 is adjacent to vi−3, while f5 is adjacent to vi+3.

We may assume that vertex vi−2 has no neighbor x different from vi−3, vi−1, since otherwise x must be adjacent to 
f1 (else vertices x, vi−2, vi−1, vi, vi+1, f1, f2 induce an S2,2,2), in which case vi−3, . . . , vi, x, f1, f2 induce an A and we 
can apply the AB-reduction. Similarly, we may assume that vertex f1 has no neighbor x different from vi−3, f2. But then 
d( f1) = d(vi−2) = 2 and we can apply the H-subgraph reduction with H = {vi−2, f1}. �
Lemma 2.9. If F is a path with 4 vertices, then Ap can be destroyed by graph reductions that change the independence number by a 
constant.

Proof. Let F be a path ( f1, f2, f3, f4). Without loss of generality we assume that f2 is adjacent to vi and f3 to v j with 
j > i. By Lemma 2.2, j = i + 1 or j = i + 2.

Case (a): j = i + 1. Assume f1 is adjacent to vi+2. Then vertices vi, vi+1, vi+2, vi+3, f1, f2, f3 induce either the graph A
(if f1 is not adjacent to vi+3) or the graph A∗ (if f1 is adjacent to vi+3), in which case we can apply either Lemma 2.5 or 
Lemma 2.6. Therefore, we may assume that f1 is not adjacent to vi+2, and by symmetry, f4 is not adjacent to vi−1. Then 
by Lemma 2.2, f1 must have a neighbor in {vi−2, vi−1} and f4 must have a neighbor in {vi+2, vi+3}.

Assume that f4 is adjacent to vi+3. If vi+2 has a neighbor x outside of the cycle C , then x is not adjacent to f4
(else F has more than 4 vertices) and hence vi−1, vi, vi+1, vi+2, x, f3, f4 induce an S2,2,2. Therefore, the degree of vi+2
in G is 2. Similarly, the degree of f4 in G is two. But now we can apply the H-subgraph reduction with H = {vi+2, f4}. 
This allows us to assume that f4 is not adjacent to vi+3, and by symmetry, f1 is not adjacent to vi−2. But then f1 is 
adjacent to vi−1 and f4 is adjacent to vi+2, in which case we can apply the Φ-reduction to the subgraph of G induced by 
vi−1, vi, vi+1, vi+2, f1, f2, f3, f4.

Case (b): j = i + 2. If f1 or f4 is adjacent to vi+1, then an induced graph A arises, in which case we can apply 
Lemma 2.5. Then f1 must be adjacent to vi−1, since otherwise it adjacent to vi−2 (by Lemma 2.2), in which case ver-
tices vi−2, f1, f2, f3, f4, vi, vi+1 induce an S2,2,2. By symmetry, f4 is adjacent to vi+3.

If f1 is adjacent to vi−2, then we can apply the House-reduction to the subgraph of G induced by vi−2, vi−1, vi, f1, f2, 
and if f1 is adjacent to vi−3, then vertices vi−3, f1, f2, f3, f4, vi, vi+1 induce an S2,2,2. Therefore, we may assume by 
Lemma 2.2 that f1 has degree 2 in G . By symmetry, f4 has degree 2. Also, to avoid an induced S2,2,2, we conclude that 
vi+1 has degree 2. But now we apply the H-subgraph reduction with H = { f1, vi, vi+2, f4}, which reduces the independence 
number of G by 4. �
Lemma 2.10. If F is a path with 3 vertices, then Ap can be destroyed by graph reductions that change the independence number by a 
constant.

Proof. Assume F is a path ( f1, f2, f3). Without loss of generality let f2 be adjacent to v1. Since G is S2,2,2-free, each of f1
and f3 must have at least one neighbor in {v p−1, v p, v2, v3}. Denote L = {v p−1, v p} and R = {v2, v3}.

Case (a): f1 and f3 have both a neighbor in R. Due to the symmetry, we may assume without loss of generality that f1 is 
adjacent to v2, while f3 is adjacent to v3. Then we may further assume that f1 is adjacent to v4, since otherwise vertices 
v1, v2, v3, v4, f1, f2, f3 induced either an A (if f3 is not adjacent to v4) or an A∗ (if f3 is adjacent to v4), in which case 
we can apply either Lemma 2.5 or Lemma 2.6. But now the deletion of f3 does not change the independence number of G . 
Indeed, let S be an independent set containing f3. If f1 ∈ S , then f3 can be replaced by v3. If f1 /∈ S , then we can assume 
that v1 ∈ S (else f3 can be replaced by f2), in which case f3, v1 can be replaced by f2, v2.

The above discussion allows us to assume, without loss of generality, that f1 has no neighbor in R , while f3 has no 
neighbor in L.

Case (b): f3 is adjacent to v3 . Then we may assume that f3 is not adjacent to v2, since otherwise we can apply the 
House-reduction to the subgraph of G induced by v1, v2, v3, f3, f2. Let us show that in this case

• the degree of v2 is 2. Assume to the contrary v2 has a third neighbor x. Then x is not adjacent to v p−1, 
since otherwise G contains an S2,2,2 induced either by v p−1, x, v2, v1, f2, v3, v4 (if x is not adjacent to v4) or 
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by v p−2, v p−1, x, v2, v1, v4, v5 (if x is adjacent to v4). This implies that x is adjacent to v p , since otherwise 
x, v2, v1, f2, f3, v p, v p−1 induce an S2,2,2. As a result, f1 is adjacent to v p−1. Due to the degree restriction, x may 
have at most one neighbor in {v p−3, v p−2, v4, v5}. By symmetry, we may assume without loss of generality that x has 
no neighbor in {v4, v5}. Also, f3 has no neighbor in {v4, v5}, since otherwise this neighbor together with v p−1, f1, f2, 
f3, v1, v2 would induce an S2,2,2. But now x, v2, v3, v4, v5, f3, f2 induce an S2,2,2. This contradiction completes the 
proof of the claim.

If f3 also has degree two, then we can apply the H-subgraph reduction with H = {v3, f3}. Therefore, may assume that f3
has one more neighbor, which must be, by Lemma 2.2, either v4 or v5. If f3 is adjacent to f5, then f1, f2, f3, v5, v6, 
v3, v2 induce an S2,2,2. Therefore, f3 is adjacent to v4. But now v3 can be deleted without changing the independence 
number. Indeed, let S be an independent set containing v3. If S does not contain v1, then v3 can be replaced by v2, and if 
S contains v1, then v1, v3 can be replaced by v2, f3.

Cases (a) and (b) reduce the analysis to the situation when f1 is adjacent to v p and non-adjacent to v p−1, while f3
is adjacent to v2 and non-adjacent to v3. If f3 is adjacent to v4, then vertices v p , v1, v2, v3, v4, f1, f2, f3 induce the 
graph Φ , in which case we can apply Lemma 2.4. Therefore, we can assume by Lemma 2.2 that the degree of f3 is 2, and 
similarly the degree of f1 is 2. But now we can apply the H-subgraph reduction with H = { f1, v1, f3}, which reduces the 
independence number of G by 3. �
Lemma 2.11. If F is a path with 2 vertices, then Ap can be destroyed by graph reductions that change the independence number by a 
constant.

Proof. If F is a path with 2 vertices, we deal with the eight cases represented in Fig. 2. It is easy to see that in cases 
(1) and (7), every maximum independent set must contain exactly one of f , g and thus by deleting f , g we reduce the 
independence number by exactly 1.

In case (5), the deletion of f , g also reduces the independence number by exactly 1. Indeed, let S be a maximum 
independent set containing neither f nor g . Since S is maximum it must contain v1, v p−2 and hence it does not contain 
v p, v p−1. But then (S \ {v1}) ∪ {v p, f } is an independent set larger than S , contradicting the choice of S . Therefore, every 
maximum independent set contains exactly one of f and g and hence α(G − { f , g}) = α(G) − 1.

In case (2), the deletion of the set X = {v p−1, v p, v1, f , g} reduces the independence number of the graph by exactly 2. 
Indeed, any independent set of G contains at most two vertices in X , and hence α(G − X) ≥ α(G) − 2. Assume now that S
is a maximum independent set in G − X . If v2 /∈ S , then S ∪ {v1, g} is an independent set in G of size α(G − X) + 2. Now 
assume v2 ∈ S . By symmetry, v p−2 ∈ S . Assume v p has a neighbor x in S . Then x is adjacent neither to v p−2 nor to v2, as all 
three vertices belong to S . Also, x cannot be adjacent to both v p−3 and v3, since otherwise an induced S2,2,2 can be easily 
found. But if x is not adjacent, say, to v3, then x, v p, v1, v2, v3, f , g induce an S2,2,2. This contradiction shows that v p has 
no neighbors in S . Therefore, S ∪ {v p, f } is an independent set in G of size α(G − X) + 2, and hence α(G) ≥ α(G − X) + 2. 
Combining the two inequalities, we conclude that α(G − X) = α(G) − 2.

In case (3), we may delete g without changing the independence number, because in any independent set S containing 
g , vertex g can be replaced either by v p−1 (if S does not contain v p ) or by f (if S contains v p ). In case (6), we apply the 
House-reduction.

In cases (4) and (8), we find another large apple A′ whose stem f ′ belongs to a path F ′ with at least 3 vertices. In case 
(4), A′ is induced by the cycle v1, . . . , v p−3, g, f with stem f ′ = v p−1, and in case (8) the apple is induced by the cycle 
v3, . . . , v p, g with stem f ′ = v1. In both cases, the situation can be handled by one of the previous lemmas. �
Theorem 2.12. Let H be a graph every connected component of which is isomorphic either to S2,2,2 or to S1, j,k. MaxIS can be solved 
for H-free graphs of maximum vertex degree at most 3 in polynomial time.

Proof. First, we show how to solve the problem in the case when H = S2,2,2. Let G = (V , E) be an S2,2,2-free subcubic 
graph and let K be a large fixed constant. We start by checking if G contains an apple A p with p ≥ K . To this end, we 
detect every induced S1,k,k with k = K/2, which can be done in time nK . If G is S1,k,k-free, then it is obviously Ap-free for 
each p ≥ K . Assume a copy of S1,k,k has been detected and let x, y be the two vertices of this copy at distance k from the 
center of S1,k,k . We delete from G all vertices of V (S1,k,k) − {x, y} and all their neighbors, except x and y, and determine if 
in the resulting graph there is a path connecting x to y. It is not difficult to see that this procedure can be implemented in 
polynomial time.

Assume G contains an induced apple Ap with p ≥ K . If the stem of the apple has degree 1 in G , we delete it together 
with its only neighbor, which destroys the apple and reduces the independence number of G by exactly one. If the stem 
has degree more than 1, we apply one of the lemmas of Section 2.2 to destroy Ap and reduce the independence number 
of G . It is not difficult to see that all the reductions used in the lemmas can be implemented in polynomial time.

Thus in polynomial time we reduce the problem to a graph G ′ which does not contain any apple Ap with p ≥ K , and 
then we find a maximum independent set in G ′ with the help of Theorem 2.1. This also shows that in polynomial time 
we can compute α(G), since we know the difference between α(G) and α(G ′). To find a maximum independent set in G , 
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we take an arbitrary vertex v ∈ V (G). If α(G − v) = α(G), then there is a maximum independent set in G that does not 
contain v and hence v ignored (deleted). Otherwise, v belongs to every maximum independent set in G and hence it must 
be included in the solution. Therefore, in polynomial time we can find a maximum independent set in G . This completes 
the proof of the theorem in the case when H = S2,2,2.

By Theorem 2.1 we also know how to solve the problem in the case when H = S1, j,k . Now we assume that H contains 
s > 1 connected components. Denote by S any of the components of H and let H ′ be the graph obtained from H by 
deleting S . Consider an H-free graph G . If G does not contain a copy of S , the problem can be solved for G by the first 
part of the proof. So, assume G contains a copy of S . By deleting from G the vertices of [S] we obtain a graph G ′ which 
is H ′-free and hence the problem can be solved for G ′ by induction on s. The number of vertices in [S] is bounded by a 
constant independent of |V (G)| (since |V (S)| < |V (H)| and every vertex of S has at most three neighbors in G), and hence 
the problem can be solved for G in polynomial time as well, which can be easily seen by induction on the number of 
vertices in [S]. �
3. APX-completeness of MAXIS in 3-regular Hamiltonian graphs

In [5], it was shown that MaxIS is NP-complete in 3-regular Hamiltonian graphs, even if the graph is planar. On the 
other hand, the problem admits a polynomial-time approximation scheme (PTAS) in this class, because it admits a PTAS for 
general planar graphs (see [2]). In the present section, we prove that without the planarity condition, MaxIS does not admit 
a PTAS for 3-regular Hamiltonian graphs, i.e. the problem is APX-complete in this class.

Theorem 3.1. MaxIS is APX-complete in 3-regular Hamiltonian graphs.

Proof. Our proof will be done using an approximation preserving reduction from the maximum 2-satisfiability problem 
with variables appearing each exactly 3 times (Max2Sat-3 for short). An instance I = (C, X) of Max2Sat-3 consists of a 
collection C = (C1, . . . , Cm) of clauses over the set X = {x1, . . . , xn} of Boolean variables, such that each clause C j contains 
exactly 2 literals and each variable appears exactly 3 times (without loss of generality, we may assume that each variable 
appears one time positively and twice negatively). The goal is to find a truth assignment f satisfying a maximum number 
of clauses. Max2Sat-3 has been shown to be APX-complete in [3,4].

From an instance I = (C, X) of Max2Sat-3, we build a 3-regular Hamiltonian graph G , instance of MaxIS, as follows:

• For every variable xi , i = 1, . . . , n, appearing positively in clause Ci2 and negatively in clauses Ci1 , Ci3 , we construct a 
path Ti = (V i, Ei) with V i = {vi(i1), vi(i2), vi(i3)} and Ei = {vi(i1)vi(i2), vi(i2)vi(i3)}.

• For i = 1, . . . , n, Ti is connected to Ti+1 (modulo n) using the graph Fi (see Fig. 6) by adding the edges vi(i3)a(i) and 
b(i)vi+1((i + 1)1) (see Fig. 7).

• Finally, if a clause Ck contains variables xi and x j , then we add an edge vi(c)v j(d) where c ∈ {i1, i2, i3} and 
d ∈ { j1, j2, j3} according to their appearance in I .

The resulting graph G is clearly 3-regular and can be constructed in polynomial time. Furthermore, G contains a Hamil-
tonian cycle C . Indeed, C is obtained by starting at any vertex vi(i1), visiting the vertices of Ti , then traversing Fi visiting 
in order a(i), a1(i), a2(i), b2(i), b1(i), b(i) and finally going to vi+1((i + 1)1) and repeating the same procedure until we end 
up at vertex vi(i1) again.

Let f ∗ be a truth assignment of I = (C, X) satisfying p = optMax2Sat-3(I) clauses. Let Ck1 , . . . , Ckp be the clauses that are 
satisfied by f ∗ . For each satisfied clause Ck�

, let vi� (g(k�)) be a vertex corresponding to the variable xi� satisfying Ck�
.

We set S = {a1(i), b2(i) : i = 1, . . . , n} ∪ {vi� (g(k�)) : � = 1, . . . , p}. Clearly, S is an independent set of G because f ∗ is a 
truth assignment and we select exactly one vertex per satisfied clause. Furthermore, |S| = p + 2n. Thus,

α(G) ≥ optMax2Sat-3(I) + 2n. (1)

Conversely, let S be an independent set in G . Since any independent set contains at most 2 vertices in each Fi , we 
conclude that the set S ′ = S \ (

⋃n
i=1 Fi) has size at least |S| − 2n. By construction of G , for every vertex vi(c) ∈ S ′ , there 

exists an edge [vi(c), v j(d)] in G corresponding to the unique clause Ck . Hence, the mapping f defined by f (xi) = true if 
vi(i2) ∈ S ′ and f (xi) = false otherwise, is a truth assignment of I = (C, X) satisfying at least |S ′| clauses (because S ′ is an 
independent set). Thus,

val( f ) ≥ |S| − 2n. (2)

Using (1) and (2), we deduce that α(G) = optMax2Sat-3(I) + 2n. It is well-known that any optimal assignment satisfies 
at least half of the clauses (since in each pair containing an assignment and its complement the better assignment must 
satisfy at least half of the clauses), therefore optMax2Sat-3(I) ≥ m

2 . Also, since we deal with Max2Sat-3, 2m = 3n. As a result, 
we conclude that

α(G) ≤ 11
optMax2Sat-3(I).
3
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Fig. 6. The gadget variable Ti and the dummy gadget Fi .

Fig. 7. How the paths Ti are connected using the graphs Fi .

Finally,

optMax2Sat-3(I) − val( f ) ≤ α(G) − |S|.
The last two inequalities show that our reduction is an L-reduction and hence it preserves approximation schemes [13]. �
4. Conclusion

Unless P = N P , MaxIS can be solved in polynomial time for H-free subcubic graphs only if every connected component 
of H has the form Si, j,k represented in Fig. 1. Whether this condition is sufficient for polynomial-time solvability of the 
problem is a challenging open question. In this paper, we contributed to this topic by solving the problem in the case when 
every connected component of H is isomorphic either to S2,2,2 or to S1, j,k . Our proof also shows that, in order to answer 
the above question, one can restrict to H-free subcubic graphs where H is connected. In other words, one can consider 
Si, j,k-free, or more generally, Sk,k,k-free subcubic graphs. We believe that the answer is positive for all values of k and hope 
that our solution for k = 2 can base a foundation for algorithms for larger values of k.
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