A NOTE ON R-EQUITABLE K-COLORINGS OF TREES

Alain HERTZ
Ecole Polytechnique de Montréal and GERAD
Montréal, Canada
alain.hertz@gerad.ca
Bernard RIES
PSL, Université Paris-Dauphine
75775 Paris Cedex 16, France
CNRS, LAMSADE UMR 7243
bernard.ries@dauphine.fr

Received: July 2013 / Accepted: November 2013

Abstract

A graph $G=(V, E)$ is r-equitably k-colorable if there exists a partition of V into k independent sets $V_{1}, V_{2}, \cdots, V_{k}$ such that $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq r$ for all $i, j \in\{1,2, \cdots, k\}$. In this note, we show that if two trees T_{1} and T_{2} of order at least two are r-equitably k-colorable for $r \geq 1$ and $k \geq 3$, then all trees obtained by adding an arbitrary edge between T_{1} and T_{2} are also r-equitably k-colorable.

Keywords: Trees, equitable coloring, independent sets.
MSC: 05C15, 05C69.

1 INTRODUCTION

All graphs in this paper are finite, simple and loopless. Let $G=(V, E)$ be a graph. We denote by $|G|$ its order, i.e, the number of vertices in G. For a vertex $v \in V$, let $N(v)$ denote the set of vertices in G that are adjacent to $v . N(v)$ is called the neighborhood of v and its elements are neighbors of v. The degree of vertex v, denoted by $\operatorname{deg}(v)$, is the number of neighbors of v, i.e., $\operatorname{deg}(v)=|N(v)| . \Delta(G)$ denotes the maximum degree of G, i.e., $\Delta(G)=\max \{\operatorname{deg}(v) \mid v \in V\}$. For a set $V^{\prime} \subseteq V$, we denote by $G-V^{\prime}$ the graph obtained from G by deleting all vertices in V^{\prime} as well as all edges incident to at least one vertex of V^{\prime}.

An independent set in a graph $G=(V, E)$ is a set $S \subseteq V$ of pairwise nonadjacent vertices. The maximum size of an independent set in a graph $G=(V, E)$ is called the independence number of G and denoted by $\alpha(G)$.

A k-coloring c of a graph $G=(V, E)$ is a partition of V into k independent sets which we will denote by $V_{1}(c), V_{2}(c), \cdots, V_{k}(c)$ and refer to as color classes.

The cardinality of a largest color class with respect to a coloring c will be denoted by $M a x_{c}$. A graph G is r-equitably k-colorable, with $r \geq 1$ and $k \geq 2$, if there exists a k-coloring c of G such that $\left|\left|V_{i}(c)\right|-\left|V_{j}(c)\right|\right| \leq r$ for all $i, j \in\{1,2, \cdots, k\}$. Such a coloring is called an r-equitable k-coloring of G. A graph which is 1-equitably k-colorable is simply said to be equitably k-colorable.

The notion of equitable colorability was introduced in [8] and has been studied since then by many authors (see $[2,3,4,5,6,7,9]$). In $[3]$, the authors gave a complete characterization of trees which are equitably k-colorable. This result was then generalized to forests in [2]. More precisely, for a forest $F=(V, E)$, let $\alpha^{*}(F)=\min \{\alpha(F-N[v]) \mid v \in V$ and $\operatorname{deg}(v)=\Delta(F)\}$
Theorem 1.1 ([2]) Suppose $F=(V, E)$ is a forest and $k \geq 3$ is an integer. Then F is equitably k-colorable if and only if $k \geq\left\lceil\frac{|F|+1}{\alpha^{*}(F)+2}\right\rceil$.

This result can easily be generalized to r-equitable k-colorings.
Theorem 1.2 ([1]) Suppose $F=(V, E)$ is a forest and $r \geq 1, k \geq 3$ are two integers. Then F is r-equitably k-colorable if and only if $k \geq\left\lceil\frac{|F|+r}{\alpha^{*}(F)+r+1}\right\rceil$.
Proof: \quad Suppose F is r-equitably k-colorable for $r \geq 1$ and $k \geq 3$. Let v be a vertex in F such that $\operatorname{deg}(v)=\Delta(F)$ and $\alpha(F-N[v])=\alpha^{*}(F)$. Clearly, for such a coloring, there are at most $\alpha^{*}(F)+1$ vertices in the color class that contains v. It follows that all other color classes contain at most $\alpha^{*}(F)+r+1$ vertices. Thus $|F| \leq \alpha^{*}(F)+1+(k-1)\left(\alpha^{*}(F)+r+1\right)=k\left(\alpha^{*}(F)+r+1\right)-r$, and we therefore have $k \geq\left\lceil\frac{|F|+r}{\alpha^{*}(F)+r+1}\right\rceil$.

Conversely, let $k \geq\left\lceil\frac{|F|+r}{\alpha^{*}(F)+r+1}\right\rceil$. Consider the forest $F^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ obtained from F by adding $r-1$ new isolated vertices. Then $\left|F^{\prime}\right|=|F|+r-1$ and $\alpha^{*}\left(F^{\prime}\right)=$ $\alpha^{*}(F)+r-1$. Thus $k \geq\left\lceil\frac{|F|+r}{\alpha^{*}(F)+r+1}\right\rceil=\left\lceil\frac{\left|F^{\prime}\right|+1}{\alpha^{*}\left(F^{\prime}\right)+2}\right\rceil$. By Theorem 1.1, F^{\prime} is equitably k-colorable. Restricting the color classes to V gives an r-equitable k-coloring of F.

In this note, we are interested in a different sufficient condition for a tree to be r-equitably k-colorable. More precisely, given a tree $T=(V, E)$ and an edge $e \in E$ such that its removal from T creates two trees T_{1} and T_{2} of order at least two, we show that if both T_{1} and T_{2} are r-equitably k-colorable, for $r \geq 1$ and $k \geq 3$, then T is also r-equitably k-colorable. We also explain why $\left|T_{1}\right|,\left|T_{2}\right| \geq 2$ and $k \geq 3$ are necessary conditions.

2 A SUFFICIENT CONDITION

Consider a tree T and two integers $r \geq 1$ and $k \geq 3$. Let c be an arbitrary r equitable k-coloring of the vertex set of T such that $\left|V_{1}(c)\right| \geq\left|V_{2}(c)\right| \geq \cdots \geq\left|V_{k}(c)\right|$. Then there may be vertices in T which are forced to be colored with color k. Indeed, if for instance T is a star on $(k-1) r+k$ vertices, then the vertex v of degree >1 necessarily belongs to $V_{k}(c)$ and actually $V_{k}(c)=\{v\}$. Furthermore, we have $\left|V_{i}(c)\right|=r+1$ for $i \in\{1,2, \cdots, k-1\}$. It turns out that this is no longer true for colors $1,2, \cdots, k-1$, as shown in the following property.
Lemma 2.1 Consider an r-equitably k-colorable tree T of order at least two, where $r \geq 1$ and $k \geq 3$. Also, let ℓ be any element in $\{1,2, \cdots, k-1\}$. Then, for any vertex u in T, there exists an r-equitable k-coloring c of T with $\left|V_{i}(c)\right| \geq\left|V_{j}(c)\right|$ for all $1 \leq i<j \leq k$ such that $u \notin V_{\ell}(c)$.

Proof: Suppose the lemma is false. We then clearly have $|T| \geq 3$. Let c be an r-equitable k-coloring of T with $\left|V_{i}(c)\right| \geq\left|V_{j}(c)\right|$ for all $1 \leq i<j \leq k$. Among all such colorings we choose one such that, for each $t=1,2, \cdots, k$, there is no r-equitable k-coloring c^{\prime} of T with $\left|V_{i}(c)\right|=\left|V_{i}\left(c^{\prime}\right)\right|$ for $i=1,2, \cdots, t-1$ and $\max _{i=t}^{k}\left\{\left|V_{i}\left(c^{\prime}\right)\right|\right\}<\left|V_{t}(c)\right|$. In other words, $\operatorname{Max}_{c}=\left|V_{1}(c)\right|$ is minimum among all r-equitable k-colorings of $T,\left|V_{2}(c)\right|$ is mininum among all r-equitable k-colorings c^{\prime} of T with $M a x_{c^{\prime}}=M a x_{c}$, and so on.

Let $\ell \in\{1,2, \cdots, k-1\}$ be an integer for which the lemma does not hold. We define $x=1, y=2, z=3$ if $\ell=1$, and $x=\ell-1, y=\ell, z=\ell+1$ if $\ell>1$. Since we assume that the lemma is false, it follows that $u \in V_{\ell}(c)$, which means that $u \in V_{x}(c)$ if $\ell=1$ and $u \in V_{y}(c)$ if $\ell>1$. Then $\left|V_{x}(c)\right|>\left|V_{y}(c)\right|$, otherwise we could assign color x to all vertices in $V_{y}(c)$ and color y to all vertices in $V_{x}(c)$ to obtain an r-equitable k-coloring c^{\prime} with $u \notin V_{\ell}\left(c^{\prime}\right)$, a contradiction. Similarly, we must have $\left|V_{y}(c)\right|>\left|V_{z}(c)\right|$ when $\ell>1$ since otherwise we could assign color y to all vertices in $V_{z}(c)$ and color z to all vertices in $V_{y}(c)$, and thus the lemma would hold.

We define F as the subgraph of T induced by $V_{x}(c) \cup V_{y}(c) \cup V_{z}(c)$. If F is disconnected, we add some edges to make F become a tree T^{\prime} such that no two adjacent vertices have the same color with respect to c; otherwise we set $T^{\prime}=F$. Let V^{\prime} denote the vertex set of T^{\prime}. Moreover, for $q=y$ or z, we denote $\bar{q}=y+z-q$. This implies that $\bar{q}=z$ if $q=y$ and $\bar{q}=y$ if $q=z$. We start by proving the following two claims.

Claim 1: There exists no r-equitable 3 -coloring c^{\prime} of T^{\prime} (using colors x, y, z) with $c^{\prime}(u)=c(u),\left|V_{x}\left(c^{\prime}\right)\right|=\left|V_{x}(c)\right|-1,\left|V_{q}\left(c^{\prime}\right)\right|=\left|V_{q}(c)\right|+1$ and $\left|V_{\bar{q}}\left(c^{\prime}\right)\right|=\left|V_{\bar{q}}(c)\right|$ for $q=y$ or z.

Indeed, if such a coloring c^{\prime} exists, then the assumption on c implies $\left|V_{q}\left(c^{\prime}\right)\right|=$ $\left|V_{x}(c)\right|>\left|V_{x}\left(c^{\prime}\right)\right|$. Now we can obtain an r-equitable k-coloring c^{*} of T by letting $V_{x}\left(c^{*}\right)=V_{q}\left(c^{\prime}\right), V_{q}\left(c^{*}\right)=V_{x}\left(c^{\prime}\right)$, and $V_{i}\left(c^{*}\right)=V_{i}\left(c^{\prime}\right)$ if $i \neq x, q$. We distinguish two cases:

- If $\ell=1$, we have $\left|V_{1}\left(c^{*}\right)\right|>\max _{i=2}^{k}\left\{\left|V_{i}\left(c^{*}\right)\right|\right\}$ and $u \notin V_{1}\left(c^{*}\right)$.
- If $\ell>1$, we have $q=y$ since otherwise $\left|V_{z}\left(c^{\prime}\right)\right|=\left|V_{z}(c)\right|+1=\left|V_{x}(c)\right|$ which contradicts $\left|V_{x}(c)\right|>\left|V_{y}(c)\right|>\left|V_{z}(c)\right|$. Then $\left|V_{1}\left(c^{*}\right)\right| \geq \cdots \geq\left|V_{\ell-1}\left(c^{*}\right)\right|>$ $\left|V_{\ell}\left(c^{*}\right)\right| \geq\left|V_{\ell+1}\left(c^{*}\right)\right| \geq \cdots \geq\left|V_{k}\left(c^{*}\right)\right|$ and $u \in V_{\ell-1}\left(c^{*}\right)$.
Thus, in both cases, c^{*} is an r-equitable k-coloring of T such that $\left|V_{i}\left(c^{*}\right)\right| \geq\left|V_{j}\left(c^{*}\right)\right|$ for all $1 \leq i<j \leq k$ and $u \notin V_{\ell}\left(c^{*}\right)$, a contradiction.

Claim 2: No leaf of T^{\prime}, except possibly u, is in $V_{x}(c)$.
Indeed, assume T^{\prime} has a leaf $v \neq u$ in $V_{x}(c)$ and let w be its unique neighbor in T^{\prime}. We can change the color of v from x to $\overline{c(w)}$ to obtain an r-equitable 3coloring c^{\prime} of T^{\prime} with $c^{\prime}(u)=c(u),\left|V_{x}\left(c^{\prime}\right)\right|=\left|V_{x}(c)\right|-1,\left|V_{\overline{c(w)}}\left(c^{\prime}\right)\right|=\left|V_{\overline{c(w)}}(c)\right|+1$ and $\left|V_{c(w)}\left(c^{\prime}\right)\right|=\left|V_{c(w)}(c)\right|$, contradicting Claim 1.

Let $\operatorname{vec} T$ be the oriented rooted tree obtained from T^{\prime} by orienting the edges from root u to the leaves. Let us partition the vertices in $V_{x}(c)$ into subsets U_{1}, \cdots, U_{p} such that $U_{q}(q=1,2, \cdots, p)$ contains all vertices in $V_{x}(c)$ having no successor in $V_{x}(c)-\bigcup_{j=1}^{q-1} U_{j}$. For a vertex $v \in U_{1}$, let $L(v)$ denote the set of leaves in $\operatorname{vec} T$ having v as predecessor.

If $|L(v)|=1$ for some $v \in U_{1}$, then let $P=v \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{a}$ denote the path from v to the leaf s_{a} in $L(v)$. If $v=u$ (and hence $\ell=1$ since $u \in V_{x}(c)$) then T^{\prime} is a chain with only one vertex in $V_{x}(c)$, which means that $V_{y}(c)=V_{z}(c)=\emptyset$ since $\left|V_{x}(c)\right|>\left|V_{y}(c)\right| \geq\left|V_{z}(c)\right|$. Thus T^{\prime} has only one vertex, namely u, and since $u \in V_{1}(c)$ this implies that T has only one vertex, a contradiction. Hence $v \neq u$. Let w be the predecessor of v in vec T :

- if $c(w)=c\left(s_{1}\right)$, we change the color of v to $\overline{c(w)}$ to obtain an r-equitable 3 -coloring c^{\prime} of T^{\prime} with $c^{\prime}(u)=c(u),\left|V_{x}\left(c^{\prime}\right)\right|=\left|V_{x}(c)\right|-1,\left|V_{\overline{c(w)}}\left(c^{\prime}\right)\right|=$ $\left|V_{\overline{c(w)}}(c)\right|+1$ and $\left|V_{c(w)}\left(c^{\prime}\right)\right|=\left|V_{c(w)}(c)\right|$, contradicting Claim 1;
- if $c(w) \neq c\left(s_{1}\right)$, we assign color $c\left(s_{1}\right)$ to v, color $c\left(s_{j+1}\right)$ to $s_{j}(j=1,2, \ldots, a-1)$, and color x to s_{a}; we obtain an r-equitable 3 -coloring c^{\prime} of T^{\prime} with $\left|V_{i}\left(c^{\prime}\right)\right|=$ $\left|V_{i}(c)\right|(i=x, y, z), c^{\prime}(u)=c(u)$ and a leaf $s_{a} \in V_{x}\left(c^{\prime}\right)$. But this contradicts Claim 2.
We therefore conclude that $|L(v)| \geq 2$ for all $v \in U_{1}$. By denoting $W_{1}=\bigcup_{v \in U_{1}} L(v)$, we get $\left|W_{1}\right| \geq 2\left|U_{1}\right|$. For each set U_{q}, with $q>1$, we will now construct a set W_{q} containing vertices in $V_{y}(c) \cup V_{z}(c)$ that are successors of vertices in U_{q} but not successors of vertices in U_{q-1}. So let v be any vertex in $U_{q}(q>1)$. If v has at least 2 immediate successors in $\operatorname{vec} T$, we add two of them to W_{q}. If v has a unique immediate successor in $\operatorname{vec} T$, then let $P=v \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{a} \rightarrow v^{\prime}$ denote a path from v to a vertex $v^{\prime} \in U_{q-1}$. If $a>1$, we add s_{1} and s_{2} to W_{q}. If $a=1$ and s_{1} has an immediate successor $w \notin V_{x}(c)$, then we add s_{1} and w to W_{q}. Assume now that $a=1$ and all the immediate successors of s_{1} are in $V_{x}(c)$. We will prove that such a case is not possible.
- If $v \neq u$, then v has a predecessor w in vec T. We must have $c(w)=\overline{c\left(s_{1}\right)}$, otherwise we could assign color $\overline{c\left(s_{1}\right)}$ to v to obtain an r-equitable 3-coloring c^{\prime} of T^{\prime} with $c^{\prime}(u)=c(u),\left|V_{x}\left(c^{\prime}\right)\right|=\left|V_{x}(c)\right|-1,\left|V_{\overline{c\left(s_{1}\right)}}\left(c^{\prime}\right)\right|=\left|V_{\overline{c\left(s_{1}\right)}}(c)\right|+1$ and $\left|V_{c\left(s_{1}\right)}\left(c^{\prime}\right)\right|=\left|V_{c\left(s_{1}\right)}(c)\right|$, contradicting Claim 1. But now we can assign color $c\left(s_{1}\right)$ to v and assign color $\overline{c\left(s_{1}\right)}$ to s_{1} to obtain an r-equitable 3 -coloring c^{\prime} of T^{\prime} with $c^{\prime}(u)=c(u),\left|V_{x}\left(c^{\prime}\right)\right|=\left|V_{x}(c)\right|-1,\left|V_{\overline{c\left(s_{1}\right)}}\left(c^{\prime}\right)\right|=\left|V_{\overline{c\left(s_{1}\right)}}(c)\right|+1$ and $\left|V_{c\left(s_{1}\right)}\left(c^{\prime}\right)\right|=\left|V_{c\left(s_{1}\right)}(c)\right|$, contradicting Claim 1.
- If $v=u$, then $\ell=1$ since $u \in V_{x}(c)$. By assigning color $c\left(s_{1}\right)$ to u and color $\overline{c\left(s_{1}\right)}$ to s_{1}, we obtain an r-equitable 3-coloring c^{\prime} of T^{\prime} with $\left|V_{x}\left(c^{\prime}\right)\right|=$ $\left|V_{x}(c)\right|-1,\left|V_{\overline{c\left(s_{1}\right)}}\left(c^{\prime}\right)\right|=\left|V_{\overline{c\left(s_{1}\right)}}(c)\right|+1$ and $\left|V_{c\left(s_{1}\right)}\left(c^{\prime}\right)\right|=\left|V_{c\left(s_{1}\right)}(c)\right|$. It follows from the assumptions on c that $\left|V_{\overline{c\left(s_{1}\right)}}\left(c^{\prime}\right)\right|=\left|V_{x}(c)\right|>\left|V_{c\left(s_{1}\right)}(c)\right|=\left|V_{c\left(s_{1}\right)}\left(c^{\prime}\right)\right|$. Thus the lemma would hold, a contradiction.
In summary, we have $\left|W_{q}\right| \geq 2\left|U_{q}\right|$. Since all sets W_{q} are disjoint, we have

$$
\left|V_{y}(c)\right|+\left|V_{z}(c)\right| \geq \sum_{q=1}^{p}\left|W_{q}\right| \geq \sum_{q=1}^{p} 2\left|U_{q}\right|=2\left|V_{x}(c)\right| .
$$

Hence $\left|V_{y}(c)\right|$ or $\left|V_{z}(c)\right|$ is larger than or equal to $\left|V_{x}(c)\right|$, a contradiction.
Lemma 2.1 allows us to show our main result.
Theorem 2.2 Let T_{1} and T_{2} be two trees or order at least two. If both T_{1} and T_{2} are r-equitably k-colorable for $r \geq 1$ and $k \geq 3$, then a tree T obtained by adding an arbitrary edge between T_{1} and T_{2} is also r-equitably k-colorable.

Proof: Consider an r-equitable k-coloring c of T_{1} and an r-equitable k-coloring c^{\prime} of T_{2} such that $\left|V_{i}(c)\right| \geq\left|V_{j}(c)\right|$ and $\left|V_{i}\left(c^{\prime}\right)\right| \geq\left|V_{j}\left(c^{\prime}\right)\right|$ for all $1 \leq i<j \leq k$. Let u be a vertex in T_{1} and v a vertex in T_{2}, and let T be the tree obtained by adding an edge which joins u and v. According to Lemma 2.1, we may assume that $v \notin V_{1}\left(c^{\prime}\right)$. Hence $v \in V_{k-\ell+1}\left(c^{\prime}\right)$ for some $\ell \in\{1,2, \cdots, k-1\}$ and it follows from Lemma 2.1 that we may assume that $u \notin V_{\ell}(c)$. We can therefore construct a k-coloring c^{*} of T such that $V_{i}\left(c^{*}\right)=V_{i}(c) \cup V_{k-i+1}\left(c^{\prime}\right), i=1,2, \cdots, k$. For $i>j$, we have :

$$
\begin{aligned}
\left|V_{i}\left(c^{*}\right)\right|-\left|V_{j}\left(c^{*}\right)\right| & =\left|V_{i}(c)\right|+\left|V_{k-i+1}\left(c^{\prime}\right)\right|-\left(\left|V_{j}(c)\right|+\left|V_{k-j+1}\left(c^{\prime}\right)\right|\right) \\
& =\left(\left|V_{i}(c)\right|-\left|V_{j}(c)\right|\right)+\left(\left|V_{k-i+1}\left(c^{\prime}\right)\right|-\left|V_{k-j+1}\left(c^{\prime}\right)\right|\right) .
\end{aligned}
$$

Since $V_{j}(c) \geq\left|V_{i}(c)\right|$ and $\left|V_{k-j+1}\left(c^{\prime}\right)\right| \leq\left|V_{k-i+1}\left(c^{\prime}\right)\right|$, we have :

- $\left|V_{i}\left(c^{*}\right)\right|-\left|V_{j}\left(c^{*}\right)\right| \geq\left|V_{i}(c)\right|-\left|V_{j}(c)\right| \geq-r$;
- $\left|V_{i}\left(c^{*}\right)\right|-\left|V_{j}\left(c^{*}\right)\right| \leq\left|V_{k-i+1}\left(c^{\prime}\right)\right|-\left|V_{k-j+1}\left(c^{\prime}\right)\right| \leq r$.

This proves that the considered k-coloring c^{*} of T is r-equitable.
Note that the condition $k \geq 3$ in Theorem 2.2 is necessary. Indeed, if both T_{1} and T_{2} are isomorphic to a star on 3 vertices (with u being the vertex of degree two in T_{1} and v a leaf in T_{2}) then clearly T_{1} and T_{2} are 1-equitably 2 -colorable. But by adding an edge which joins u and v, we obtain a tree T which is not 1-equitably 2-colorable.

Note also that the condition in Theorem 2.2 on the number of vertices in each tree is necessary. Indeed, if T_{1} is an r-equitably k-colorable tree for some $k \geq 3$ and $r \geq 1$, and if T_{2} contains a single vertex v, then the tree T^{\prime} obtained by adding an edge which joins v and a vertex u of T_{1} is possibly not r-equitably k-colorable. For example, if u is the vertex of degree four in the star T_{1} on five vertices, and if we add a neighbor v (the single vertex in T_{2}) to u, we obtain a star T^{\prime} on six vertices. While T_{1} and T_{2} are clearly 1-equitably 3 -colorable, T^{\prime} is not 1 -equitably 3 -colorable. It is however not difficult to prove that if T is an r-equitably k-colorable tree for some $k \geq 2$ and $r \geq 1$, then the tree T^{\prime} obtained by adding a new vertex v and making it adjacent to some vertex u of T is $(r+1)$-equitably k-colorable. Indeed, given an r-equitable k-coloring c of T, we can extend it to a k-coloring c^{\prime} of T^{\prime} by assigning any color $j \neq c(u)$ to v with $j \in\{1,2, \cdots, k\}$. If $\left|V_{j}(c)\right| \geq\left|V_{i}(c)\right|$ for all $i \neq j$, then c^{\prime} is $(r+1)$-equitable, otherwise c^{\prime} is r-equitable.

ACKNOWLEDGEMENT

This note was written while the first author was visiting LAMSADE at the Université Paris-Dauphine and while the second author was visiting GERAD and Ecole Polytechnique de Montréal. The support of both institutions is gratefully acknowledged.

REFERENCES

[1] Private communication, (2012).
[2] Chang, G. J., "A note on equitable colorings of forests", European Journal of Combinatorics 30 (2009) 809-812.
[3] Chen, B.-L., Lih, K.-W., "Equitable coloring of trees", Journal of Combinatorial Theory Series B 61 (1994) 83-87.
[4] Kierste ad,H.A., Kostochka, A.V., "Equitable versus nearly equitable coloring and the Chen-Lih-Wu conjecture", Combinatorica 30(2) (2010) 201216.
[5] Kierstead, H.A., Kostochka, A.V., Mydlarz, M., Szemerédi, E., "A fast algorihtm for equitable coloring", Combinatorica 30(2) (2010) 217-224.
[6] Kostochka, A.V., Nakprasit ,K., Pemmaraju S.V., "On equitable coloring of d-degenerate graphs", SIAM J. Discrete Math. 19(1) (2005) 83-95.
[7] Luo,R., SÉréni, J.-S., Stephens, D. C., Xu,G., "Equitable coloring of sparse planar graphs", SIAM J. Discrete Math. 24(4) (2010) 1572-1583.
[8] Meyer, W., "Equitable coloring", Amer. Math. Monthly 80 (1973), 920-922.
[9] Zhang,X., Wu, J.-L., "On equitable and equitable list colorings of seriesparallel graphs", Discrete Mathematics 311 (2011), 800-803.

