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a b s t r a c t

Given a clustered graph (G, V), that is, a graph G = (V , E) together with a partition
V of its vertex set, the selective coloring problem consists in choosing one vertex per
cluster such that the chromatic number of the subgraph induced by the chosen vertices
is minimum. This problem can be formulated as a covering problem with a 0–1 matrix
M(G, V). Nevertheless, we observe that, given (G, V), it is NP-hard to check if M(G, V) is
conformal (resp. perfect).Wewill give a sufficient condition, checkable in polynomial time,
for M(G, V) to be conformal that becomes also necessary if conformality is required to be
hereditary. Finally, we show that M(G, V) is perfect for every partition V if and only if G
belongs to a superclass of threshold graphs defined with a complex function instead of a
real one.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are finite, simple and loopless. Throughout the paper, we will consider a graph G = (V , E) and a
partition V = {V1, V2, . . . , Vp} of its vertex set into nonempty subsets. We will denote by (G, V) the graph G together with
a partition V of its vertex set and call it a clustered graph. The sets V1, . . . , Vp are called clusters and V is called a clustering
of G.

Let V ′
⊆ V . We denote by G[V ′

] the graph induced by V ′, i.e., the graph obtained from G by deleting the vertices of V −V ′

and all edges incident to at least one vertex of V − V ′. Two sets A, B ⊆ V are said to be complete (resp. anticomplete) to
each other if every vertex in A is adjacent (resp. non-adjacent) to every vertex in B. A clique in a graph G = (V , E) is a set
of pairwise adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G and is denoted by
ω(G). A k-coloring of G is a mapping c : V → {1, . . . , k} such that c(u) ≠ c(v) for all uv ∈ E. The smallest integer k such
that G is k-colorable is called the chromatic number of G and is denoted by χ(G).

A selective k-coloring of (G, V) is a mapping c : V ′
→ {1, . . . , k}, for some V ′

⊆ V with |V ′
∩ Vi| = 1 for all i ∈

{1, . . . , p}, such that c(u) ≠ c(v) for every edge uv of G[V ′
]. The smallest integer k for which a graph G admits a selective

k-coloring with respect to V is called the selective chromatic number of G and is denoted by χsel(G, V). It is obvious to see
that χsel(G, V) ≤ χ(G) for every clustering V of G.

The selective coloring problem, also called partition coloring in the literature, consists in determining the selective
chromatic number of a given clustered graph (G, V). It was introduced in 2000 for its application in network design [1]. Since
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then, several heuristics and exact approaches have been designed to solve it (see for instance [2,3]). Many other interesting
applications of the selective graph coloring problem related for instance to timetabling and dichotomy-based constraint
encoding can be found in [4]. Recently, the selective coloring problem was shown to be NP-hard in paths, cycles and split
graphs even with strong restrictions on the cardinality of the clusters [5].

A graph G = (V , E) is perfect if, for every induced subgraph H of G, we have the min–max relation ω(H) = χ(H). The
characterization of perfect graphs together with polynomial time algorithms to recognize them and to find their clique and
chromatic numbers form the perfect graph theory, see e.g. Schrijver’s book [6].

In this paper, we will study the min–max relation associated with the selective coloring problem. The auxiliary graph
G/V of (G, V) is the graph where each vertex vi in G/V corresponds to a cluster Vi in V , for i = 1, . . . , p, and where two
vertices in G/V are adjacent if and only if the corresponding clusters are complete to each other. First we will observe that
the following two inequalities hold:

ω(G/V) ≤ χ(G/V) ≤ χsel(G, V). (1)

Then we will study the clustered graphs for which one or both inequalities in (1) hold with equality. After showing that it
is NP-hard to decide if a clustered graph satisfies the equality χ(G/V ′) = χsel(G, V ′) for all subclustering V ′

⊆ V , we give
a sufficient condition that can be checked in polynomial time for a clustered graph to have this property. This condition
becomes necessary if the previous property is required to hold for all induced subgraphs. The graph G is selective-perfect if
ω(G/V) = χsel(G, V) for every clustering V . We identify the class of selective-perfect graphs as being a class that we call
i-threshold graphs since it is a superclass of threshold graphs defined with complex numbers in R ∪ {−i, +i} instead of real
ones only. It strictly contains the class of threshold graphs and the class of complete bipartite graphs.

The paper is organized as follows. In Section 2, we give somemore notation, definitions and preliminary results. Section 3
deals with conformality of clustered-graphs. In Section 4 we analyze selective-perfect graphs.

2. Preliminaries

For a vertex v ∈ V , let N(v) denote the set of vertices in G that are adjacent to v, i.e., the neighbors of v and let
N[v] = N(v) ∪ {v}. A stable set in a graph G = (V , E) is a set S ⊆ V of pairwise non-adjacent vertices. As usual Pn (resp. Cn)
denotes the path (resp. the cycle) induced by n vertices. A clique on n vertices will be denoted by Kn. The complement of a
graph G is denoted by G. Let F be a set of graphs, then G is F -free if no induced subgraph of G is isomorphic to a graph in
F . For all graph-theoretical terms not defined here, the reader is referred to [7].

Let A be a set. The characteristic vector xB ∈ {0, 1}A of B ⊆ A has a component

xBa :=


1 if a ∈ B,
0 otherwise

for each a ∈ A. The stable set–vertex matrix M(G) of G = (V , E) is the matrix the rows of which are the transpose (xS)T
of the characteristic vectors xS ∈ {0, 1}V of all maximal stable sets S of G. Note that, for any stable set S and any clique
K , since |S ∩ K | ≤ 1, we have (xS)TxK ≤ 1. Actually a vector x ∈ {0, 1}V is the characteristic vector of a clique if and
only if (xS)Tx ≤ 1 for all stable sets S with |S| = 2. The clique polytope of G is the convex-hull of the vectors xK for all
cliques K of G. So the polyhedron {x ∈ RV

: (xS)Tx ≤ 1 for all stable sets S of size 2, x ≥ 0} contains the polyhedron
{x ∈ RV

: M(G)x ≤ 1, x ≥ 0} which contains the clique polytope of G.
Let M be a 0–1 matrix. The matrix M is perfect if it is the stable set–vertex matrix of a perfect graph. The matrix M is

conformal if it is the stable set–vertex matrix of some graph. For instance, the following matrix is not conformal:

J3 − I3 =

0 1 1
1 0 1
1 1 0


.

Indeed, it should be the stable set–vertex matrix of a graph on three vertices such that every pair of vertices forms a stable
set but the three vertices do not form a stable set; but this is clearly impossible.

Let M be an m × n matrix. A row i is said to be dominated if there exists a row k such that Mij ≤ Mkj for all 1 ≤ j ≤ n,
with 1 ≤ i ≠ k ≤ m.

Theorem 2.1 (Lovász [8]). For a 0–1matrix M without dominated rows, the following statements are equivalent:

(i) M is perfect;
(ii) max{wTx : Mx ≤ 1, x ≥ 0, x integer} = max{wTx : Mx ≤ 1, x ≥ 0} for any 0–1 vector w;
(iii) max{wTx : Mx ≤ 1, x ≥ 0, x integer} = min{yT1 : yTM ≥ wT, y ≥ 0, y integer} for any integer vector w.

A corollary of this theorem is the polyhedral characterization of perfect graphs.

Corollary 2.2 (Chvátal [9]). A graph G is perfect if and only if its clique polytope is equal to {x ∈ RV
: M(G)x ≤ 1, x ≥ 0}.
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Fig. 1. A clustered graph (G, V), on the left, and its auxiliary graph G/V , on the right.

One can recognize if a given matrix M is the stable set–vertex matrix of some graph, i.e., if M is conformal, in a time
polynomial in the size of the matrix (see e.g. [10]). By Theorem 2.3 below, we can decide if the stable set–vertex matrix of a
given graph is perfect or not in time polynomial in the size of the graph.

Theorem 2.3 (Chudnovsky et al. [11]). The problem of deciding whether a graph is perfect or not can be solved in polynomial
time.

Threshold graphs are a subclass of perfect graphs and are defined as follows: a graph G = (V , E) is a threshold graph if
there exists a function w : V → R such that uv ∈ E ⇔ w(u) + w(v) > 0. Threshold graphs are split graphs, i.e., the
vertex set can be partitioned into a stable set S and a clique K as we can take S := {v : w(v) ≤ 0} and K := {v :

w(v) > 0}. Furthermore, if we order the vertices of a threshold graph G as v1, . . . , vn such that w(v1) ≤ · · · ≤ w(vn),
then, first, N(vi) ⊆ N(vi+1), and moreover, the permutation π given by ordering the absolute values |w(vi)| is such that
vivj ∈ E ⇔ (i − j)(π(i) − π(j)) > 0. See [12] for more details on threshold graphs. Chvátal and Hammer [13] showed that
a graph is threshold if and only if neither G nor G contains P4 or C4 as an induced subgraph, which is equivalent to being
{2K2, P4, C4}-free.

3. Conformality of cluster matrices

Let (G, V) be a clustered graph with clustering V = {V1, . . . , Vp}. A stable subclustering of (G, V) is a subset V ′
⊆ V of

clusters Vi such that S ∩ Vi ≠ ∅ for some stable set S of G. The stable set S is said to be a stable set corresponding to the stable
subclustering V ′. A set {V ′

1, . . . , V ′

k} of stable subclusterings covers V if V = V ′

1 ∪ · · · ∪ V ′

k.

Remark 3.1. (G, V) admits a selective k-coloring if and only if there exists a set of k stable subclusterings which covers V .

Remark 3.2. Every stable subclustering V ′
⊆ V of (G, V) corresponds to a stable set SV′ of G/V . Moreover, every stable

set SV′ of G/V of size 2 corresponds to a (not necessarily maximal) stable subclustering V ′ of (G, V).

We will note later that a stable set SV′ of G/V of size at least 3 does not necessarily correspond to a stable subclustering
of (G, V) (see the configurations in Fig. 2).

By Remarks 3.1 and 3.2, it follows that χ(G/V) ≤ χsel(G, V). This inequality also follows from the fact that G/V is a
partial subgraph of G[V ′

] for any V ′
⊆ V with |V ′

∩ Vi| = 1 for all i ∈ {1, . . . , p}. Furthermore, since we trivially have
ω(G/V) ≤ χ(G/V), we conclude that the inequalities (1) hold. In what follows, we will show the linear programming
duality between both problems of determining ω(G/V) and χsel(G, V). We would like to mention that the LP relaxation
of [3] strengthens that of our integer formulation for the selective coloring problem.

The stable subclustering–cluster matrixM(G, V) of (G, V), called cluster matrix for short, is the matrix the rows of which
are the transpose (xV′

)T of the characteristic vectors xV′

∈ {0, 1}V of all maximal stable subclusteringsV ′
⊆ V of (G, V). Let

S be the set of maximal stable subclusterings of (G, V). So, each column ofM(G, V) is the characteristic vector ySi ∈ {0, 1}S

of the set Si ⊆ S of all stable subclusterings containing some cluster Vi.
Let us take for instance the clustered graph of Fig. 1. The maximal stable subclusterings are those corresponding to the

stable sets {u, w, y}, {u, x} and {v, x}, hence:

M(G, V) =

1 1 0 1
1 0 1 0
0 1 1 0


and M(G/V) =


1 1 0 1
1 1 1 0


.

(Recall that M(G/V) is the stable set–vertex matrix of the auxiliary graph G/V .) The stable subclustering corresponding to
some maximal stable set of G is not necessarily itself maximal, as shown by the stable set {v, w, y}. Notice that every 0–1
matrix M is the cluster matrix of some clustered graph. Indeed, to build the clustered graph of a given matrix M , start with
an empty clustered graph with as many empty clusters as columns of M; then, for each row of M , create a new stable set S
with one vertex in each cluster corresponding to a 1 in the row and make S complete to V \ S.

Clearly, M(G, V) = M(G/V) if and only if every stable set S in G/V corresponds to a stable subclustering of (G, V). The
matrices M(G, V) and M(G/V) have one column per cluster respectively per vertex. Let C ⊆ V be a subset of clusters and
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observe that, by Remark 3.2, the following three propositions are equivalent: (i) {vi : Vi ∈ C} is a clique of G/V; (ii) The
submatrix of M(G/V) induced by the columns in C has at most one 1 per row; (iii) The submatrix of M(G, V) induced by
the columns in C has at most one 1 per row. It follows that C is a clique of G/V if and only if (xV′

)TxC ≤ 1 for all stable
subclusterings V ′, where xC ∈ {0, 1}V is the characteristic vector of C ⊆ V . In other words, both matrices M(G, V) and
M(G/V) formulate the problem of determining the clique number of G/V since:

ω(G/V) = max{1Tx : x ∈ P1, x integer} = max{1Tx : x ∈ P2, x integer}

with

P1 := {x ∈ RV
: M(G, V)x ≤ 1, x ≥ 0} and P2 := {x ∈ RV

: M(G/V)x ≤ 1, x ≥ 0}.

Now let R ⊆ S be a subset of stable subclusterings of M(G, V) and observe that: R covers V if and only if the submatrix of
M(G, V) induced by the rows corresponding to the stable subclusterings of R has at least one 1 per column. It follows that
R covers V if and only if (yR)TySi ≥ 1 for every cluster Vi, where yR ∈ {0, 1}S is the characteristic vector of R ⊆ S. Hence by
Remark 3.1, the matrixM(G, V) formulates the problem of determining the selective chromatic number of (G, V) since:

χsel(G, V) = min{yT1 : y ∈ D1, y integer}

with

D1 := {y ∈ RS
: yTM(G, V) ≥ 1T, y ≥ 0}.

Now it immediately follows from linear programming duality that ω(G/V) ≤ χsel(G, V).
Ourmain purpose in this paper is to find good characterizations for having inequalities in (1) holdingwith equality. Given

a subset V ′
⊆ V of clusters, we let (G, V ′) denote the clustered graph obtained from (G, V) by deleting all vertices in Vi for

all Vi ∉ V ′; also,G/V ′ is the subgraph ofG/V induced by the vertices vi such that Vi ∈ V ′. By definition,ω(G/V ′) = χ(G/V ′)
for all V ′

⊆ V if and only if the matrixM(G/V) (resp. the graph G/V) is perfect.
Moreover, one can see from the integer linear programming formulation of the selective coloring problem given above

and Theorem 2.1 (by setting M := M(G, V) and w := yV′

the characteristic vector in {0, 1}V of the subset V ′
⊆ V of

clusters) that ω(G/V ′) = χsel(G, V ′) for all V ′
⊆ V if and only if the matrixM(G, V) is perfect.

One can check if a graph or a matrix is perfect, or if a matrix is conformal but only in time polynomial in the size of the
input. An interesting question is to know whether one can check these properties for the matrixM(G, V) when the input is
the clustered graph (G, V) and not the matrix itself. Let us first investigate how to characterize conformality forM(G, V).

Lemma 3.1. Let G = (V , E) be a graph and let V be a clustering of V . Then, the following statements are equivalent:

(i) M(G, V) is conformal;
(ii) M(G, V) = M(G/V);
(iii) χ(G/V ′) = χsel(G, V ′) for all V ′

⊆ V .

Proof. (i) ⇒ (ii): IfM(G, V) is the stable-set matrix of a graph, then, by Remark 3.2, this graph must be the auxiliary graph
G/V .

(ii) ⇒ (i): This immediately follows from the definitions of conformality and of the auxiliary graph G/V .
(ii) ⇒ (iii): If (iiii) does not hold, there exists V ′

⊆ V such that χsel(G, V ′) > χ(G/V ′). Hence, by the observation above,
there isV ′′

⊆ V ′ which corresponds to a stable set ofG/V ′ but is not a stable subclustering of (G, V ′). ThenV ′′ is contained is
somemaximal stable set ofG/V but it is contained in nomaximal stable subclustering of (G, V). HenceM(G, V) ≠ M(G/V),
contradicting (ii).

(iii) ⇒ (ii): IfM(G, V) ≠ M(G/V), there exists a stable set S in G/V which does not correspond to a stable subclustering
in (G, V). Thus χ(G/V ′) = 1 and χsel(G, V ′) > 1, contradicting (iii). �

It turns out in the following that recognizing neither perfectness nor conformality of M(G, V) having (G, V) as input is
easy.

Selective 1-Coloring
Input: A clustered graph (G, V).
Question: Do we have χsel(G, V) ≤ 1?

It is shown in [5] that Selective 1-Coloring is NP-complete.

Selective-Coloring-Perfect
Input: A clustered graph (G, V).
Question: Is the matrixM(G, V) perfect?

Corollary 3.1. Selective-Coloring-Perfect is NP-hard.

Proof. First note that χsel(G, V) = 1 if and only if ω(G/V ′) = χsel(G, V ′) = 1 for any (nonempty) subclustering V ′
⊆ V .

It follows that χsel(G, V) ≤ 1 if and only if the graph G/V contains no edge (which can be checked in polynomial time) and
the matrix M(G, V) is perfect. �
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F1 F2 F3

Fig. 2. Forbidden configurations F1, F2 and F3 .

Now we conclude from Corollary 3.1 that, given a clustered graph (G, V), deciding whether M(G, V) is conformal is
NP-hard.

Selective-Coloring-Conformal
Input: A clustered graph (G, V).
Question: Is the matrix M(G, V) conformal?

Corollary 3.2. Selective-Coloring-Conformal is NP-hard.

Proof. It follows from Lemma 3.1, that M(G, V) is a perfect matrix if and only if M(G, V) is conformal and G/V is perfect.
On one hand, it is hard to check if M(G, V) is perfect, and on the other hand, by Theorem 2.3, it is easy to check if G/V is
perfect. We conclude that checking ifM(G, V) is conformal is NP-hard. �

Thus it seems unlikely that a good characterization for perfectness or conformality of the cluster matrix M(G, V) is
available. We will establish in the remainder of this section a sufficient condition, based on excluded configurations, for
M(G, V) to be conformal. Moreover we will show that this condition becomes also necessary if we require the equality
M(G, V) = M(G/V) not only to hold for (G, V) but also for all induced subgraphs of G as well with the clustering induced
by V .

IfH is an induced subgraph of Gwith clusteringV , we letVH be the clustering ofH induced by the clusteringV restricted
to the vertex set V (H) of H . Notice that the conformality (resp. perfectness) of the matrix M(G, V) does not imply that the
matrix M(H, VH) is conformal (resp. perfect). To see this, consider again the clustered graph of Fig. 1: if we add a vertex x′

in V3 (with no edge incident to it) then V is the stable subclustering corresponding to the stable set {u, w, x′, y} and hence
M(G, V) = M(G/V) is conformal and perfect.

Now consider Fig. 2. In each of the configurations F1, F2, F3, dashed lines represent non-edges, lines represent edges and
dashed–dotted lines represent possible edges, i.e., the two corresponding verticesmayormaynot be adjacent. The rectangles
represent the clusters of a clustering. We say that the clustered graph (G, V) contains a configuration Fi if (H, VH) = Fi for
some induced subgraph H of G, i ∈ {1, 2, 3}. Notice that in this case,M(H, VH) is isomorphic to J3 − I3.

Theorem 3.3. If the clustered graph (G, V) does not contain any of the configurations F1, F2, F3, then M(G, V) = M(G/V).

Proof. Suppose that the result does not hold. Let (G, V) be a minimal counterexample with V = {V1, . . . , Vp}, i.e., G
does not contain any of the configurations F1, F2, F3 and M(G − v, VG−v) = M(G − v/VG−v) for every vertex v of G but
M(G, V) ≠ M(G/V). It follows that there exists a stable set S of G/V which does not correspond to a stable subclustering of
(G, V). So wemay assume that G/V contains no edge, since wemay remove all the vertices of G not belonging to any cluster
of the stable subclustering corresponding to S. Hence we may assume that (G, V) does not contain any stable subclustering
of size p.

By Remark 3.2, since M(G, V) ≠ M(G/V), it follows that V has at least three different clusters. Suppose first that G has
exactly three clusters, namely V1, V2 and V3. Then there is a non-edge between Vi and Vj, for each pair i, jwith i ≠ j, and no
stable set of size three intersecting V1, V2 and V3. Since G is minimal, there are exactly three non-edges between the three
clusters. But they span either six, five or four vertices, and each case induces either configuration F1, F2 or F3, a contradiction.

Thus we may assume now that G has p clusters, namely V1, . . . , Vp, with p > 3.

Claim 1. |Vi| ≥ 2 for every i ∈ {1, . . . , p}.

Suppose on the contrary andwithout loss of generality that V1 = {v}. SinceG/V contains no edge, it follows that Vi\N(v)
is nonempty for every i ∈ {2, . . . , p}. Since the counterexample is minimal, for each subset I of {2, . . . , p} with |I| = p − 2,
there is a stable subclustering of (G, V) containing V1 and each of the clusters Vi with i ∈ I . In particular, since V1 = {v},
all the vertices of the stable sets corresponding to this stable subclustering are in V \ N(v). Since p > 3, for each pair of
distinct indices i, j in {2, . . . , p}, there is a non-edge between Vi \ N(v) and Vj \ N(v). Finally, there is no stable set S of
G − v intersecting Vi \ N(v) for every i ∈ {2, . . . , p}, otherwise S ∪ {v} would be a stable set of G intersecting each of the
clusters V1, . . . , Vp. On the other hand, there is a stable subclustering intersecting V2, . . . , Vp by theminimality of G, so N[v]

is nonempty. Hence, the subgraph of G obtained by deleting N[v] is a counterexample, a contradiction to the minimality
of G. �
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Claim 2. No vertex in Vi is complete to Vj, for i ≠ j.

Suppose on the contrary and without loss of generality that v ∈ V1 is complete to Vp. By Claim 1, V1 \ {v} is nonempty.
Since V1 is not complete to Vp (recall that G/V contains no edge), it follows that V1 \ {v} is not complete to Vp. Consider
j ∈ {2, . . . , p − 1}. Since p > 3 and by minimality of G, there is a stable subclustering of G containing V1, Vj and Vp. Then
any stable set S corresponding to this stable subclustering intersects in fact V1 \ {v}, Vj and Vp, since v is complete to Vp.
So, the auxiliary graph G − v/VG−v has no edge. Since there is no stable subclustering of (G, V) of size p, there is no stable
subclustering of (G−v, VG−v) of size p neither. Hence, G−v is a counterexample, a contradiction to theminimality of G. �

Now, let v be a vertex in V1. By Claim 1, V1 \ {v} is nonempty, so the auxiliary graph G−v/VG−v has p vertices. Moreover,
by Claim 2, it contains no edge. Since there is no stable subclustering of (G, V) of size p, there is no stable subclustering of
(G − v, VG−v) of size p neither. So, G would not be a minimal counterexample, a contradiction. �

Corollary 3.4. χ(H/VH) = χsel(H, VH), for every induced subgraph H of G, if and only if (G, V) does not contain any of the
configurations F1, F2, F3.

Proof. By noting that M(Fi/VFi) is (1 1 1) and M(Fi, VFi) = J3 − I3 for i ∈ {1, 2, 3}, Theorem 3.3 allows us to conclude that
M(H, VH) = M(H/VH), for every induced subgraph H of G, if and only if (G, V) does not contain any of the configurations
F1, F2, F3. Hence the corollary holds. �

4. Selective-perfect graphs

In this section, we will introduce the notion of perfectness related to selective coloring and give a complete
characterization of selective-perfect graphs. It turns out that these graphs form a class containing both threshold graphs
and complete bipartite graphs.

Definition 4.1. A graph G = (V , E) is selective-perfect if its cluster matrixM(G, V) is perfect for every clustering V .

Thus G = (V , E) is selective-perfect if and only if the two inequalities of (1) hold with equality for every clustering V
of V . In order to characterize selective-perfect graphs, let us introduce i-threshold graphs (where i is the imaginary unit of
complex numbers), a superclass of threshold graphs.

Definition 4.2. A graph G = (V , E) is an i-threshold graph if one can assign a complex number w(v) ∈ R ∪ {−i, +i} to each
vertex v ∈ V such that:

uv ∈ E ⇔ ℜ(w(u) + w(v)) − ℑ(w(u))ℑ(w(v)) > 0.

We remind the reader that if we only allow real weights (w(v) ∈ R, ∀v ∈ V ), we get exactly the definition of threshold
graphs [13]. Concerning i-threshold graphs, we can make the following easy observations.

Observations 4.1. Let G = (V , E) be an i-threshold graph. Let V− = {v ∈ V : w(v) = −i} and V+ = {v ∈ V : w(v) = +i}.

(a) The class of i-threshold graphs is closed under taking induced subgraphs.
(b) G[V− ∪ V+] is a complete bipartite graph with bipartition {V−, V+}.
(c) G[V \ (V− ∪ V+)] is a threshold graph with clique K = {v ∈ V : w(v) > 0} and stable set S = {v ∈ V : w(v) ≤ 0}.
(d) V− ∪ V+ is complete to K and anticomplete to S.

Notice that if V− = ∅ or V+ = ∅, then G is a threshold graph, since all the vertices v in V− ∪ V+ have the same weight,
say w.l.o.g. w(v) = −i, so one can reset w(v) := 0 for v ∈ V− ∪ V+. Recall that if G is a threshold graph, then χ(G) = ω(G),
Furthermore, if G is an i-threshold graph but not a threshold graph (i.e. V−, V+ ≠ ∅), then χ(G) = |K | + 2 = ω(G) (this
easily follows fromObservations (b), (c) and (d)). Hence i-threshold graphs are perfect. Let us now start analyzing the relation
between i-threshold graphs and selective-perfect graphs.

LetG be an i-threshold graphwith clusteringV = {V1, . . . , Vp} andweight functionw. Also, let V−, V+, K , S be as defined
above. For each cluster Vj ∈ V, j = 1, . . . , p, we define a complex value zj ∈ R ∪ {−i, +i} as follows:

(1) If Vj ∩ S ≠ ∅, set zj := min{w(vℓ) : vℓ ∈ Vj ∩ S} ≤ 0,
(2) else if Vj ∩V− ≠ ∅ and Vj ∩V+ ≠ ∅, set zj := 0,
(3) else if Vj ∩ V+ ≠ ∅, set zj := +i,
(4) else if Vj ∩ V− ≠ ∅, set zj := −i,
(5) else Vj ⊆ K , set zj := min{w(vℓ) : vℓ ∈ Vj} > 0.

Then we obtain the following.

Lemma 4.1. Vj is complete to Vℓ if and only if ℜ(zj + zℓ) − ℑ(zj)ℑ(zℓ) > 0.
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Proof. If Vj satisfies (1) or (2), then it can only be complete to Vℓ if Vℓ satisfies (5); hence the lemma holds in this case. If Vj
satisfies (3), then it can only be complete to Vℓ if Vℓ satisfies (4) or (5); hence the lemma holds in this case. Similarly, it holds
if Vj satisfies (4). Finally, it clearly holds if Vj satisfies (5). �

The following corollary is a consequence of Lemma 4.1.

Corollary 4.1. Let G = (V , E) be an i-threshold graph with clustering V .
(α) The auxiliary graph G/V is i-threshold.
(β) SV′ is a stable set of G/V if and only if V ′ is a stable subclustering of (G, V).
Proof. (α) immediately follows from Lemma 4.1. To see that (β) holds, first assume that SV′ is a stable set of G/V . Notice
that SV′ cannot contain two vertices corresponding to two clusters Vj, Vℓ such that Vj satisfies (3) and Vℓ satisfies (4). So we
may assume without loss of generality that SV′ does not contain any vertex corresponding to a cluster satisfying (4). Let us
now construct a stable set S of (G, V) corresponding to the stable subclustering V ′. Suppose that Vj ∈ V ′. If Vj satisfies (1),
(3) or (5) we select a vertex in Vj with value zj. If Vj satisfies (2), we choose any vertex of Vj with weight +i. This clearly gives
us a stable set S in G. Finally, by Remark 3.2, if V ′ is a stable subclustering of (G, V), then clearly the set of vertices in G/V
corresponding to the clusters of V ′ form a stable set. �

Remark 4.1. If a graph G = (V , E) contains an induced subgraph isomorphic to a graph in {2K2, P4, P2 ∪ P3, 3K2}, then one
can find a clustering V of V such that (G, V) contains one of the configurations F1, F2, F3.

We are now ready to prove the main result of this section.

Theorem 4.2. Let G = (V , E) be a graph. Then the following statements are equivalent:
(i) G is selective-perfect;
(ii) ω(H/VH) = χsel(H, VH) for every induced subgraph H and for every clustering V of G;
(iii) G is {2K2, P4, P2 ∪ P3, 3K2}-free;
(iv) G is an i-threshold graph.
Proof. (i)⇒(ii): Suppose that there exists a clustering V = (V1, . . . , Vp) of V and an induced subgraph H of G such that
χsel(H, VH) ≠ ω(H/VH). For every cluster Vi ∈ V such that Vi ∩ V (H) ≠ ∅, we define V ′

i = Vi ∩ V (H). This gives us a
clustering (V ′

i1
, . . . , V ′

iq) of V (H). Let V ′

iq+1
= V \ V (H) so V ′

= (V ′

i1
, . . . , V ′

iq+1
) is a clustering of V . Now define a weight

vector w for the dual linear programs of Theorem 2.1(iii) as follows: wij = 1 for j = 1, . . . , q and wiq+1 = 0. Thus the
maximum is equal to ω(H/VH) and the minimum is equal to χsel(H, VH), but since χsel(H, VH) ≠ ω(H/VH),M(G, V ′) is
not perfect.

(ii)⇒(iii): This follows from Corollary 3.4 and Remark 4.1.
(iii)⇒(iv): Let G be {2K2, P4, P2 ∪ P3, 3K2}-free. If G is C4-free, then G is a threshold graph and thus (iv) holds. So we may

assume now that G contains an induced 4-cycle. Let C be such an induced 4-cycle with vertex set {v1, v2, v3, v4} and edge
set {v1v2, v2v3, v3v4, v4v1}. Clearly, since G is {P4, P2 ∪ P3}-free, it follows that no vertex in V \ V (C) is adjacent to either
exactly one vertex of C , or exactly three vertices of C , or exactly two consecutive vertices in C . Thus every vertex in V \V (C)
having at least one neighbor in C must be adjacent to either all the vertices of C or to exactly two non-consecutive vertices
in C .

Let V1234 be the set of vertices adjacent to all the vertices of C and let V13 (resp. V24) be the set of vertices adjacent to v1, v3
(resp. v2, v4) and non-adjacent to v2, v4 (resp. v1, v3). Since G is 3K2-free, it follows that G[V1234] is a clique. Now consider
a vertex v ∈ V13. We claim that N(v2) = N(v). Suppose by contradiction that the claim does not hold. Thus there exists a
vertexw such that v is adjacent tow and v2 is non-adjacent tow (the case when v2 is adjacent tow and v is non-adjacent to
w can be handled similarly). Since G is P4-free it follows thatw must be adjacent to both v1 and v3 (otherwise G[w, v, v1, v2]

(resp. G[w, v, v3, v2]) is isomorphic to P4). But now G[v, w, v1, v3, v4] is isomorphic to P2 ∪ P3, a contradiction. Thus w is
adjacent to v4. But now G[v1, v2, v3, v4, w] is isomorphic to P2 ∪ P3, a contradiction. Thus we conclude that N(v2) = N(v)
for every vertex v ∈ V13. By symmetry it follows thatN(v3) = N(v) for every vertex v ∈ V24. Hence V13∪V24∪{v1, v2, v3, v4}

induce a complete bipartite graph. We setW = V13 ∪ V24 ∪ {v1, v2, v3, v4} and U = V \ W .
Now consider the graph G[U \ V1234]. If G[U \ V1234] contains an edge, say xy, then G[x, y, v1, v2] is isomorphic to 2K2, a

contradiction. Thus G[U \ V1234] is a stable set. We conclude that G[U] is a threshold graph with clique K = V1234 and stable
sets S = U \ V1234.

(iv)⇒(i): This follows from Corollary 4.1 and the fact that i-threshold graphs are perfect. �

Theorem 4.2 and Corollary 4.1 imply the following.

Corollary 4.3. Let G = (V , E) be a graph. Then it can be decided in polynomial-time whether G is selective-perfect, and if G is
selective-perfect, one can determine a selective χsel(G, V)-coloring in polynomial time, for any clustering V of V .
Proof. It immediately follows from Theorem 4.2 that it can be decided in polynomial-time whether G is selective-perfect.
Now, given a selective-perfect graph G and a clustering V of its vertex set, we obtain a χsel(G, V)-coloring as follows. We
construct the auxiliary graph G/V which, by Corollary 4.1, is an i-threshold graph. Clearly we can obtain an optimal coloring
of G/V in polynomial time. Finally by choosing in each cluster Vj a vertex v with w(v) = zj and coloring it with the same
color as Vj in G/V , we obtain an optimal selective-coloring of (G, V). �
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5. Conclusion

Weshowed that the superclass of threshold graphs obtained by allowing theweight function to take values inR∪{−i, +i}
instead of R only, namely the i-threshold graphs, plays an important role within a generalization of the graph coloring
problem, namely the selective graph coloring problem.

As future work, the class of complex threshold graphs defined as in Definition 4.2 but with the weight taking values in the
whole complex set C instead of R ∪ {−i, +i} only, could be investigated. Notice that this graph class is also closed under
taking induced subgraphs, but it seems to be a quite large graph class. For instance, it contains 2K2 and even C5 (take value
sets {2 − i, 2 − i, 1 − 4i, −3 + i} and {10, −9 + 3i, −11 + 7i, −11 − 7i, −9 − 3i}, respectively) and thus it is not perfect
anymore.
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