Coloring graphs characterized by a forbidden subgraph ${ }^{\star}$

CrossMark

Petr A. Golovach ${ }^{\mathrm{a}, *}$, Daniël Paulusma ${ }^{\text {b }}$, Bernard Ries ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Informatics, University of Bergen, Norway
${ }^{\mathrm{b}}$ School of Engineering and Computing Sciences, Durham University, United Kingdom
${ }^{\text {c }}$ Laboratoire d'Analyse et Modélisation de Systèmes pour l'Aide à la Decision, Université Paris Dauphine, France

ARTICLE INFO

Article history:

Received 8 June 2012
Received in revised form 13 November 2013
Accepted 5 August 2014
Available online 27 August 2014

Keywords:

Complexity
Algorithms
Graph coloring
Forbidden subgraphs

Abstract

The Coloring problem is to test whether a given graph can be colored with at most k colors for some given k, such that no two adjacent vertices receive the same color. The complexity of this problem on graphs that do not contain some graph H as an induced subgraph is known for each fixed graph H. A natural variant is to forbid a graph H only as a subgraph. We call such graphs strongly H-free and initiate a complexity classification of Coloring for strongly H-free graphs. We show that Coloring is NP-complete for strongly H-free graphs, even for $k=3$, when H contains a cycle, has maximum degree at least 5 , or contains a connected component with two vertices of degree 4 . We also give three conditions on a forest H of maximum degree at most 4 and with at most one vertex of degree 4 in each of its connected components, such that CoLoring is NP-complete for strongly H-free graphs even for $k=3$. Finally, we classify the computational complexity of Coloring on strongly H-free graphs for all fixed graphs H up to seven vertices. In particular, we show that Coloring is polynomial-time solvable when H is a forest that has at most seven vertices and maximum degree at most 4.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graph coloring involves the labeling of the vertices of some given graph by integers called colors such that no two adjacent vertices receive the same color. The corresponding Coloring problem is to decide whether a graph can be colored with at most k colors for some given integer k. Due to the fact that Coloring is NP-complete for any fixed $k \geq 3$ [15], there has been considerable interest in studying its complexity when restricted to certain graph classes. One of the most well-known results in this respect is due to Grötschel, Lovász, and Schrijver [9] who show that Coloring is polynomial-time solvable on perfect graphs. A well-known structural result that is useful for the design of algorithms for special graph classes is Brooks' Theorem (Theorem 5.2.4 in [6]), which states that any connected graph G that is neither complete nor an odd cycle can be colored with at most $\Delta(G)$ colors where $\Delta(G)$ is the maximum degree of G. General motivation, background and related work on coloring problems restricted to special graph classes can be found in several surveys [17,18].

We study the complexity of the Coloring problem restricted to graph classes defined by forbidding a graph H as a (not necessarily induced) subgraph. So far, Coloring has not been studied in the literature as regards to such graph classes. Before we summarize some related results and present our results, we first state the necessary terminology and notations.

[^0]
1.1. Terminology

We consider finite undirected graphs without loops and multiple edges. We refer to the textbook of Diestel [6] for any undefined graph terminology. Let $G=(V, E)$ be a graph. The subgraph of G induced by a subset $U \subseteq V$ is denoted by $G[U]$. The graph $G-u$ is obtained from G by removing vertex u. For a vertex u of G, its open neighborhood is $N(u)=\{v \mid u v \in E\}$, its closed neighborhood is $N[u]=N(u) \cup\{u\}$, and its degree is $d(u)=|N(u)|$. The maximum degree of G is denoted by $\Delta(G)$ and the minimum degree by $\delta(G)$.

The length of a path or a cycle is the number of its edges. The distance $\operatorname{dist}(u, v)$ between two vertices u and v of G is the length of a shortest path between them. The girth $g(G)$ is the length of a shortest cycle in G.

For two graphs F and G, we may write $G \supseteq F$ if G contains F as a subgraph. We say that G is (strongly) H-free for some graph H if G has no subgraph isomorphic to H; note that this is more restrictive than forbidding H as an induced subgraph.

A subdivision of an edge $u v \in E$ is the operation that removes $u v$ and adds a new vertex adjacent to u and v. A graph H is a subdivision of G if H is obtained from G by a sequence of edge subdivisions.

A coloring of G is a mapping $c: V \rightarrow\{1,2, \ldots\}$, such that $c(u) \neq c(v)$ if $u v \in E$. We call $c(u)$ the color of u. A k-coloring of G is a coloring c of G with $1 \leq c(u) \leq k$ for all $u \in V$. If G has a k-coloring, then G is called k-colorable. The chromatic number $\chi(G)$ is the smallest integer k such that G is k-colorable. The k-Coloring problem is to test whether a graph admits a k-coloring for some fixed integer k. If k is in the input, then we call this problem Coloring.

The graphs C_{n}, K_{n}, and P_{n} denote the cycle, complete graph and path on n vertices, respectively.

1.2. Related work

Král', Kratochvíl, Tuza and Woeginger [13] completely determined the computational complexity of Coloring for graph classes characterized by a forbidden induced subgraph and achieved the following dichotomy. Here, $P_{1}+P_{3}$ denotes the disjoint union of P_{1} and P_{3}.

Theorem 1 ([13]). If some fixed graph H is a (not necessarily proper) induced subgraph of P_{4} or of $P_{1}+P_{3}$, then Coloring is polynomial-time solvable on graphs with no induced subgraph isomorphic to H; otherwise it is NP-complete on this graph class.

The complexity classification of the k-Coloring problem for graphs with no induced subgraphs isomorphic to some fixed graph H is still open. For $k=3$, it has been classified for graphs H up to six vertices [3], and for $k=4$ for graphs H up to five vertices [8]. We refer to the latter paper for a survey on the complexity status of k-Coloring for graph classes characterized by a forbidden induced subgraph and to a recent paper of Huang [10], who showed that 5-Coloring is NP-complete for P_{6}-free graphs and that 4-Coloring is NP-complete for P_{7}-free graphs.

1.3. Our results

Recall that a strongly H-free graph denotes a graph with no subgraph isomorphic to some fixed graph H. Forbidding a graph H as an induced subgraph is equivalent to forbidding H as a subgraph if and only if H is a complete graph (a graph with an edge between any two distinct vertices). Hence, Theorem 1 tells us that Coloring is NP-complete for strongly H -free graphs if H is a complete graph on at least three vertices. We extend this result by proving the following two theorems in Sections 2 and 3, respectively; note that the case when H is a complete graph is covered by condition (a) of Theorem 2 . The trees T_{1}, \ldots, T_{6} are displayed in Fig. 1. For an integer $p \geq 0$, the graph T_{2}^{p} is the graph obtained from T_{2} after subdividing the edge st p times; note that $T_{2}^{0}=T_{2}$.

Theorem 2. 3-Coloring (and hence Coloring) is NP-complete for strongly H-free graphs if
(a) H contains a cycle, or
(b) $\Delta(H) \geq 5$, or
(c) H has a connected component with at least two vertices of degree 4, or
(d) H contains a subdivision of the tree T_{1} as a subgraph, or
(e) H contains the tree T_{2}^{p} as a subgraph for some $0 \leq p \leq 9$, or
(f) H contains one of the trees $T_{3}, T_{4}, T_{5}, T_{6}$ as a subgraph.

Theorem 3. Coloring is polynomial-time solvable for strongly H-free graphs if
(a) H is a forest with $\Delta(H) \leq 3$, such that each connected component has at most one vertex of degree 3, or
(b) H is a forest with $\Delta(H) \leq 4$ and $\left|V_{H}\right| \leq 7$.

Theorems 1-3 tell us that the Coloring problem behaves differently on graphs characterized by forbidding H as an induced subgraph or as a subgraph. As a consequence of Theorems 2 and 3(b) we can classify the Coloring problem on strongly H-free graphs for graphs H up to 7 vertices. The problem is NP-complete if H is not a forest or $\Delta(H) \geq 5$, and polynomial-time solvable otherwise.

Fig. 1. The trees T_{1}, \ldots, T_{6}.

Fig. 2. A diamond with poles x, y and the vertex-diamond operation.

2. The proof of Theorem 2

In the remainder of the paper we write H-free instead of strongly H-free as a shorthand notation. Here is the proof of Theorem 2.
(a) Maffray and Preissmann [16] showed that 3-Coloring is NP-complete for triangle-free graphs. This result has been extended by Kamiński and Lozin [11], who proved that k-Coloring is NP-complete for the class of graphs of girth at least p for any fixed $k \geq 3$ and $p \geq 3$. Suppose that H contains a cycle. Then $g(H)$ is finite. Let $p=g(H)+1$. It remains to observe that any graph of girth at least p does not contain H as a subgraph, and (a) follows.
For the remaining cases, namely cases (b)-(f), we reduce from the 3-Coloring problem restricted to graphs of maximum degree at most 4. It is well known that 3-Coloring is NP-complete for this graph class [7]. It will be readily seen that all our reductions can be carried out in polynomial time.
(b) Let G be a graph with $\Delta(G) \leq 4$. Then G does not contain a graph H with $\Delta(H) \geq 5$ as a subgraph. Hence (b) holds.
(c) Let $G=(V, E)$ be a graph of maximum degree at most 4 . We define a useful graph operation. In order to do this, we need the graph displayed in Fig. 2. It has vertex set $\{x, y, z, t\}$ and edge set $\{x z, x t, y z, y t, z t\}$ and is called a diamond with poles x, y. We observe that in any 3-coloring of a diamond with poles x, y, the vertices x and y are colored alike.

The graph operation that we use is displayed in Fig. 2. For a vertex $u \in V$ with four neighbors v_{1}, \ldots, v_{4}, we do as follows. We delete the edges $u v_{i}$ for $i=1, \ldots, 4$. We then add 4 diamonds with poles x_{i}, y_{i} for $i=1, \ldots, 4$ and identify u with each y_{i}. Finally, we add the edges $v_{i} x_{i}$ for $i=1, \ldots, 4$. We call this operation the vertex-diamond operation. Note that this operation is only defined on vertices of degree 4 . Because any 3-coloring gives the poles of a diamond the same color, the resulting graph is 3 -colorable if and only if G is 3 -colorable. We also observe that this operation when applied on a vertex u increases the distance between u and any other vertex of G by 2 . Moreover, the new vertices added have degree 3 .

To complete the proof of (c), let H be a graph that has a connected component D with at least two vertices of degree 4 . Let α denote the maximum distance between two such vertices in D. Then we apply α vertex-diamond operations on each vertex of degree $4 \mathrm{in} G$. By our previous observations, the resulting graph G^{*} is D-free, and consequently, H-free, and in addition, G^{*} is 3-colorable if and only if G is 3 -colorable. Hence (c) holds.
(d) Let $G=(V, E)$ be a graph of maximum degree at most 4 . We define the following graph operation displayed in Fig. 3. For an edge $x_{0} y_{0} \in E$, we do as follows. We delete the edge $x_{0} y_{0}$ (but we keep the vertices x_{0} and y_{0}) and add vertices $x_{1}, y_{1}, \ldots, x_{\ell}, y_{\ell}$. We then construct diamonds with poles x_{i-1}, x_{i} and y_{i-1}, y_{i} respectively, for $i=1, \ldots, \ell$. Finally, we add the edge $x_{\ell} y_{\ell}$. We call this operation the edge-diamond operation of type ℓ. We let G_{ℓ} be the graph obtained from G after applying an edge-diamond operation of type ℓ on each of its edges. Because any 3-coloring gives the poles of a diamond the same color, G_{ℓ} is 3-colorable for any $\ell \geq 1$ if and only if G is 3-colorable.

To complete the proof of (d), let H be a graph that contains a subdivision of T_{1}, which we will denote by T^{\prime}. Let u, v be the vertices of degree 3 in T^{\prime}. We choose $\ell=\operatorname{dist}_{T^{\prime}}(u, v)$. Then G_{ℓ} is H-free, and (d) holds.
Subcases $p=0$ and $p=1$ of (e) and subcase $H \supseteq T_{5}$ of (f). Let $G=(V, E)$ be a graph of maximum degree at most 4 . We apply one vertex-diamond operation on each vertex of degree 4 in G. This results in a graph G^{*}. We observe that G^{*} is T_{2}^{0}-free,

Fig. 3. The edge-diamond operation.

Fig. 4. The balanced-diamond operation.
T_{2}^{1}-free and T_{5}-free, because every vertex of degree at least 4 in G^{*} is obtained by identifying pole vertices of diamonds. Recall that G^{*} is 3-colorable if and only if G is 3 -colorable. Hence, the subcases $p=0$ and $p=1$ of (e) and the subcase $H \supseteq T_{5}$ of (f) hold.

Remaining eight subcases of (e) and subcase $H \supseteq T_{6}$ of (f). Let $G=(V, E)$ be a graph of maximum degree at most 4 . To complete the proof of (e), let H be a graph that contains T_{2}^{p} as a subgraph for some $2 \leq p \leq 9$. Recall that the graph G_{ℓ} defined in case (d) is 3-colorable if and only if G is 3 -colorable. We choose $\ell=\left\lceil\frac{p-1}{2}\right\rceil$. Then G_{ℓ} is H-free, and the remaining subcases of (e) hold. As an aside, note that for $p \geq 10$, there exists no ℓ such that G_{ℓ} is T_{2}^{p}-free, because for all $\ell \geq 1$ we can "map" the degree- 3 vertex t of T_{2}^{p} on a degree- 4 vertex in G_{ℓ} that corresponds to an original degree- 4 vertex of G. Then we will either find in G_{ℓ} a suitable vertex u that is in diamond or that is a degree- 4 vertex that corresponds to an original degree- 4 vertex of G, such that we can "map" the degree- 4 vertex s of T_{2}^{p} to u in order to obtain a subgraph in G_{ℓ} that is isomorphic to T_{2}^{p}. Hence, the case $p \geq 10$ is still open.

Now let H be a graph that contains T_{6} as a subgraph. We choose $\ell=1$. Then G_{2} is H-free, and the corresponding subcase of (f) holds.
Remaining two subcases of (f). Let $G=(V, E)$ be a graph of maximum degree at most 4 . The last graph operation that we use is displayed in Fig. 4. For a vertex $u \in V$ with four neighbors v_{1}, \ldots, v_{4}, we do as follows. We remove u and add two new vertices u_{1} and u_{2}. We make u_{1} adjacent to v_{1} and v_{2}, whereas we make u_{2} adjacent to v_{3} and v_{4}. Finally, we add two more vertices that together with u_{1} and u_{2} form a diamond, in which u_{1} and u_{2} are the poles. We call this operation the balanceddiamond operation. Note that we only define this operation on vertices of degree 4 (we refer to the paper of Kamiński and Lozin [12] for a more general variant called diamond implementation). Because any 3-coloring gives the poles of a diamond the same color, the resulting graph is 3-colorable if and only if G is 3 -colorable.

To complete the proof of (f), let H be a graph that contains T_{3} or T_{4} as a subgraph. We apply the balanced-diamond operation on each vertex of degree 4 in G. The resulting graph G^{\prime} is H-free. Moreover, by our observation, G^{\prime} is 3-colorable if and only if G is 3 -colorable. This concludes the proof of Theorem 2.

3. The proof of Theorem 3

Let G be a graph. A graph H is a minor of G if H can be obtained from a subgraph of G by a sequence of edge contractions, or equivalently, if H can be obtained from G by a sequence of edge deletions, vertex deletions and edge contractions.

We start by proving the following theorem.
Theorem 3(a). Let H be a fixed forest with $\Delta(H) \leq 3$, such that each connected component of H has at most one vertex of degree 3. Then Coloring can be solved in polynomial time for H-free graphs.

Proof. Let H_{1}, \ldots, H_{p} be the connected components of H. By our assumption on H, each H_{i} is either a path or a subdivided star, in which the center vertex has degree 3 . As such, H_{i} is a subgraph of a graph G if and only if H_{i} is a minor of G. Consequently, H is a subgraph of a graph G if and only if H is a minor of G. By a result of Bienstock et al. [2], every graph that does not contain H as a minor has path-width, and consequently treewidth, at most $\left|V_{H}\right|-2$. Because Coloring can be solved in linear time on graphs of bounded treewidth as shown by Arnborg and Proskurowski [1], the result follows.

Theorem 3(a) limits the remaining cases of Theorem 3(b) to those graphs H that are a forest on at most seven vertices and that contain a vertex of degree 4 or two vertices of degree at least 3 . Moreover, our goal is to show polynomial-time solvability for such cases, and a graph is H-free if it is H^{\prime}-free for any subgraph H^{\prime} of H. This narrows down our case analysis to the trees H_{1}, \ldots, H_{5} shown in Fig. 5. We consider each such tree, but we first give some auxiliary results.

Observation 1. Let G be a graph with $\left|V_{G}\right| \geq 2$. Let $u \in V_{G}$ with $d_{G}(u)<k$ for some integer $k \geq 1$. Then G is k-colorable if and only if $G-u$ is k-colorable.

We say that a vertex u of a graph G is universal if $G=G\left[N_{G}[u]\right]$, that is, if u is adjacent to all other vertices of G.

Fig. 5. The trees H_{1}, \ldots, H_{5}.

Observation 2. Let u be a universal vertex of a graph G with $\left|V_{G}\right| \geq 2$. Let $k \geq 2$ be an integer. Then G is k-colorable if and only if $G-u$ is $(k-1)$-colorable.

A vertex u of a connected graph G with at least two vertices is a cut-vertex if $G-u$ is disconnected. A maximal connected subgraph of G with no cut-vertices is called a block of G.

Observation 3. Let G be a connected graph, and let k be a positive integer. Then G is k-colorable if and only if each block of G is k-colorable.

Let (G, k) be an instance of Coloring. We apply the following preprocessing rules exhaustively, which in our context means recursively and as long as possible; in particular, if after the application of some rule we can apply some other rule with a smaller index, then we will do this.

Rule 1. Find all connected components of G and consider each of them.
Rule 2. Check if G is 1 -colorable or 2-colorable. If so, then stop considering G.
Rule 3. If $\left|V_{G}\right| \geq 2, k \geq 3$, and G has a vertex u with $d_{G}(u) \leq 2$, take $(G-u, k)$.
Rule 4. If $\left|V_{G}\right| \geq 2, k \geq 3$, and G has a universal vertex u, take ($G-u, k-1$).
Rule 5. If G is connected, then find all blocks of G and consider each of them.
We obtain the following lemma.

Lemma 1. Let (G, k) be an instance of Coloring with $k \geq 3$. Exhaustively applying Rules $1-5$ takes polynomial time and yields a set I of at most $\left|V_{G}\right|$ instances, such that (G, k) is a yes-instance if and only if every instance of I is a yes-instance. Moreover, each $\left(G^{\prime}, k^{\prime}\right) \in I$ has the following properties:
(i) $\left|V_{G^{\prime}}\right| \leq\left|V_{G}\right|$;
(ii) if $k^{\prime} \geq 3$, then $\delta\left(G^{\prime}\right) \geq 3$;
(iii) if $k^{\prime} \geq 3$, then G^{\prime} has no universal vertices;
(iv) G^{\prime} is 2-connected;
(v) $k^{\prime} \leq k$;
(vi) if G is H-free for some graph H, then G^{\prime} is H-free as well.

Proof. Let (G, k) be an instance of Coloring with $k \geq 3$. We denote the number of vertices of G by n.
We first show that applying Rules 1-5 exhaustively takes polynomial time. Rule 1 takes linear time, because we only have to find the connected components of G. Rule 2 takes linear time, because G is 1 -colorable if and only if G has no edges, and G is 2 -colorable if and only if G is bipartite. Rules 3 and 4 take linear time, because we only need to check the degree of each vertex. Rule 5 takes linear time, because we only need to find the set of blocks of G. Because the size of G decreases after applying Rule 3 or Rule 4, our procedure terminates.

We now show that Rules $1-5$ are correct, that is, applying them yields a set of one or more new instances such that the original instance is a yes-instance of Coloring if and only if each newly created instance is a yes-instance. It is readily seen that G is k-colorable if and only if each connected component of G is k-colorable. Hence, Rule 1 is correct. Clearly, Rule 2 is correct as well. Rule 3 is correct due to Observation 1. Rule 4 is correct due to Observation 2 . Rule 5 is correct due to Observation 3. Hence, our procedure creates a set I of instances, such that (G, k) is a yes-instance if and only if each instance of I is a yes-instance. In particular, we note that (G, k) is a yes-instance if $I=\emptyset$, as in that case G is 2-colorable, and consequently, k-colorable, due to one or more applications of Rule 2.

The number of instances created only increases after applying Rule 1 or Rule 5. Because the total number of blocks of all connected components is at most n, the set I has size at most n.

Let $\left(G^{\prime}, k^{\prime}\right)$ be an instance of I. Then $\left|V_{G^{\prime}}\right| \leq\left|V_{G}\right|$ because we only decreased the size of G. This proves (i). By Rule $3, G^{\prime}$ has minimum degree at least 3 if $k^{\prime} \geq 3$. This proves (ii). By Rule $4, G^{\prime}$ has no universal vertices if $k^{\prime} \geq 3$. This proves (iii). By Rule $5, G^{\prime}$ is 2 -connected. This proves (iv). By our assumption, $k \geq 3$. We have $k^{\prime} \leq k$, because we do not increase k when applying Rules $1-5$. This proves (v). Because we only removed vertices from G, we find that G^{\prime} is a subgraph of G. Hence, if G is H-free for some graph H, then G^{\prime} is H-free. This proves (vi).

Fig. 6. The graphs $F_{1}, F_{2}, F_{3}, F_{4}$.

3.1. The cases $H=H_{1}$ and $H=H_{2}$

We first give some extra terminology. Let $G=(V, E)$ be a graph. We let $\omega(G)$ denote the size of a maximum clique in G. The complement of G is the graph \bar{G} with vertex set V, such that any two distinct vertices are adjacent in \bar{G} if and only if they are not adjacent in G. If $\chi(F)=\omega(F)$ for any induced subgraph F of G, then G is called perfect. We will use the Strong Perfect Graph Theorem proved by Chudnovsky et al. [5]. This theorem tells us that a graph is perfect if and only if it does not contain C_{r} or \bar{C}_{r} as an induced subgraph for any odd integer $r \geq 5$.

Lemma 2. Let G be a 2-connected graph with $\delta(G) \geq 3$ that has no universal vertices. If G is H_{1}-free or H_{2}-free, then G is perfect.
Proof. Note that H_{1} and H_{2} are both subgraphs of \bar{C}_{r} for any $r \geq 7$. Moreover, $C_{5}=\overline{C_{5}}$. Then, by the Strong Perfect Graph Theorem [5], we are left to prove that G contains no induced cycle C_{r} for any odd integer $r \geq 5$. To obtain a contradiction, assume that G does contain an induced cycle $C=v_{0} v_{1} \cdots v_{r-1} v_{r-1} v_{0}$ for some odd integer $r \geq 5$.

First suppose that G is H_{1} free. Let $0 \leq i \leq r-1$ and consider the path $v_{i} v_{i+1} \cdots v_{i+3} v_{i+4}$, where the indices are taken modulo r. Since $\delta(G) \geq 3, v_{i+1}$ and v_{i+2} each have at least one neighbor in $V^{\prime}=V \backslash\left\{v_{0}, \ldots, v_{r-1}\right\}$, say v_{i+1} is adjacent to some vertex u and v_{i+2} is adjacent to some vertex v. Because G is H_{1}-free, $u=v$, and moreover, $\left|N\left(v_{i+1}\right) \cap V^{\prime}\right|=\left|N\left(v_{i+2}\right) \cap V^{\prime}\right|=1$. Because $0 \leq i \leq r-1$ was taken arbitrarily, we deduce that the vertices v_{0}, \ldots, v_{r-1} are all adjacent to the same vertex $u \in V^{\prime}$ and to no other vertices in V^{\prime}. Because G is 2-connected, u is not a cut-vertex. Hence, $V^{\prime}=\{u\}$. However, then u is a universal vertex. This is a contradiction.

Now suppose that G is H_{2}-free. By the same arguments and the fact that r is odd, we conclude again that there exists a universal vertex $u \in V^{\prime}$. This is a contradiction.

We are now ready to prove that Coloring is polynomial-time solvable for H_{1}-free and for H_{2}-free graphs. Let G be a graph, and let $k \geq 1$ be an integer. If $k \leq 2$, then Coloring is even polynomial-time solvable for general graphs. Suppose that $k \geq 3$. Then, by Lemma 1 , we may assume without loss of generality that G is 2 -connected, has $\delta(G) \geq 3$ and does not contain any universal vertices. Lemma 2 then tells us that G is perfect. Because Grötschel et al. [9] showed that Coloring is polynomial-time solvable for perfect graphs, our result follows.

3.2. The case $\mathrm{H}=\mathrm{H}_{3}$

We start with showing the following useful lemma that gives an upper bound on the maximum degree of connected H_{3}-free graphs with no universal vertices and with minimum degree at least 3 . We may impose the latter two conditions, because our polynomial-time algorithm for solving CoLoring on H_{3}-free graphs will apply Rules 1-5 exhaustively.

Lemma 3. Let G be a connected H_{3}-free graph with no universal vertices. If $\delta(G) \geq 3$, then $\Delta(G) \leq 4$.
Proof. Let $G=(V, E)$ be an H_{3}-free graph with no universal vertices. Suppose that $\delta(G) \geq 3$. To obtain a contradiction assume that $d_{G}(u) \geq 5$ for some vertex $u \in V$. Because G has no universal vertices and because G is connected, there is a vertex $v \in N_{G}(u)$ such that v has a neighbor $x \in V \backslash N_{G}[u]$. Because $d_{G}(v) \geq \delta(G) \geq 3$, we deduce that v has another neighbor $y \notin\{u, x\}$. Because $d_{G}(u) \geq 5$, we also deduce that u has three neighbors z_{1}, z_{2}, z_{3} neither equal to v nor to y. However, the subgraph of G with vertices $u, v, x, y, z_{1}, z_{2}, z_{3}$ and edges $u z_{1}, u z_{2}, u z_{3}, u v, v x, v y$ is isomorphic to H_{3}. This is a contradiction, because G is H_{3}-free.

We now state some additional terminology. We say that we identify two distinct vertices $u, v \in V_{G}$ if we first remove u, v and then add a new vertex w by making it (only) adjacent to the vertices of $\left(N_{G}(u) \cup N_{G}(v)\right) \backslash\{u, v\}$.

Consider the graphs F_{1}, \ldots, F_{4} shown in Fig. 6. Vertices x_{1}, x_{2} of F_{1}, vertices x_{1}, x_{2}, x_{3} of F_{2} and vertices $x_{1}, x_{2}, y_{1}, y_{2}$ of F_{3} and F_{4} are called the pole vertices of the corresponding graph F_{i}, whereas the other vertices of F_{i} are called center vertices. We say that a graph G properly contains F_{i} for some $1 \leq i \leq 4$ if G contains F_{i} as an induced subgraph, in such a way that center vertices of F_{i} are only adjacent to vertices of F_{i}, that is, the subgraph F_{i} is connected to other vertices of G only via its poles.

Our polynomial-time algorithm for solving Coloring on H_{3}-free graphs will try to apply Rules 1-5 and one additional rule.
Rule 6. If G properly contains F_{i} for some $1 \leq i \leq 4$, then remove the center vertices of F_{i} from G and identify the pole vertices of F_{i} as follows:

- if $i=1$, then identify x_{1} and x_{2};
- if $i=2$, then identify x_{1}, x_{2}, and x_{3};
- if $i=3$ or $i=4$, then identify x_{1} and y_{1}, and also identify x_{2} and y_{2}.

The next lemma shows that we may safely apply Rule 6 on an H_{3}-free graph G with $\delta(G) \geq 3$ and $\Delta(G) \leq 4$.

Lemma 4. Let G be an H_{3}-free graph with $\delta(G) \geq 3$ and $\Delta(G) \leq 4$. Let G^{\prime} be the graph obtained from G after one application of Rule 6. Then G^{\prime} is 3-colorable if and only if G is 3-colorable. Moreover, G^{\prime} is H_{3}-free.

Proof. Let G be an H_{3}-free graph with $\delta(G) \geq 3$ and $\Delta(G) \leq 4$ that properly contains a graph F_{i} for some $1 \leq i \leq 4$. Let G^{\prime} be the graph obtained from G after applying Rule 6 with respect to F_{i}.

We first prove that G^{\prime} is 3-colorable if and only if G is 3-colorable. First suppose that G^{\prime} is 3-colorable. Consider a 3coloring of G^{\prime}. We color all vertices in $V \backslash V_{F_{i}}$ by the same colors as in G^{\prime}, the pole vertices of F_{i} are colored by the same color as the vertex obtained from them by the identification. It remains to observe that if $i=1$ or $i=2$, then the neighbors of the two center vertices are colored by one color, and if $i=3$ or $i=4$, then the neighborhood of the unique center vertex is colored by two colors. Hence, we can safely color the center vertices of F_{i}. Now suppose that G is 3-colorable. Because in any 3-coloring of F_{i} the identified vertices are necessarily colored with the same color, G^{\prime} is 3-colorable as well.

Now we show that G^{\prime} is H_{3}-free. To obtain a contradiction, assume that G^{\prime} has a subgraph H isomorphic to H_{3}. Let u be the vertex of degree 4 in H, and let v be the vertex of degree 3. Because G is H_{3}-free, at least one of u, v must be obtained by identifying pole vertices of F_{i}.

First suppose that u is not obtained by identifying pole vertices of F_{i}. Then v must be obtained by identifying pole vertices of F_{i}. Then, in G, we find that u is adjacent to a vertex v^{\prime} that is a pole vertex of F_{i} and that corresponds to v in G^{\prime} by the identification of pole vertices. Moreover, because u has degree 4 in G^{\prime}, we find that u has three other neighbors z_{1}, z_{2}, z_{3} not equal to v^{\prime} in G that are not identified with each other or with v^{\prime} after applying Rule 6 ; one of them may still be a pole vertex in the case that $i=3$ or $i=4$, but then such z_{i} is identified with some vertex of G not in $\left\{v^{\prime}, z_{1}, z_{2}, z_{3}\right\} \backslash\left\{z_{i}\right\}$. Also, z_{1}, z_{2}, z_{3} cannot be center vertices of F_{i}, as center vertices are removed by Rule 6.

Because u is in G^{\prime} and Rule 6 removes center vertices of F_{i}, we find that u is not a center vertex of F_{i}. Because u is not a pole vertex of F_{i} either, this means that $u \in V \backslash V_{F_{i}}$. If $i=1$ or $i=2$, then let w_{1} and w_{2} be the two center vertices of F_{i}. Then the subgraph of G with vertices $u, v^{\prime}, w_{1}, w_{2}, z_{1}, z_{2}, z_{3}$ and edges $u v^{\prime}, u z_{1}, u z_{2}, u z_{3}, v^{\prime} w_{1}, v^{\prime} w_{2}$ is isomorphic to H_{3}. This is a contradiction. Hence, $i=3$ or $i=4$.

Let w be the unique center vertex of F_{i} and assume that $v^{\prime} \in\left\{x_{1}, x_{2}\right\}$. Let $v^{\prime \prime}$ denote the other vertex of $\left\{x_{1}, x_{2}\right\}$. If none of the vertices z_{1}, z_{2}, z_{3} is in $V_{F_{i}}$, then the subgraph of G that has vertices $u, v^{\prime}, v^{\prime \prime}, w, z_{1}, z_{2}, z_{3}$ and edges $u v^{\prime}, u z_{1}, u z_{2}, u z_{3}, v^{\prime} w, v^{\prime} v^{\prime \prime}$ is isomorphic to H_{3}. This is a contradiction. Therefore, one of the vertices z_{1}, z_{2}, z_{3}, say z_{1}, is a pole vertex of F_{i}. Note that z_{2} and z_{3} are not in F_{i}, as we already deduced. We also deduced that z_{1} is not identified with v^{\prime}. Suppose that $z_{1} \in\left\{y_{1}, y_{2}\right\}$. Then again the subgraph of G that has vertices $u, v^{\prime}, v^{\prime \prime}, w, z_{1}, z_{2}, z_{3}$ and edges $u v^{\prime}, u z_{1}, u z_{2}, u z_{3}, v^{\prime} w, v^{\prime} v^{\prime \prime}$ is isomorphic to H_{3}, which is a contradiction. Hence, $z_{1} \in\left\{x_{1}, x_{2}\right\}$. If $z_{1}=x_{1}$, then $v^{\prime}=x_{2}$. Then the subgraph of G with vertices $u, v^{\prime}, w, y_{2}, z_{1}, z_{2}, z_{3}$ and edges $u v^{\prime}, u z_{1}, u z_{2}, u z_{3}, z_{1} w, z_{1} y_{2}$ is isomorphic to H_{3}. If $z_{1}=x_{2}$, then $v^{\prime}=x_{1}$. Then the subgraph of G with vertices $u, v^{\prime}, w, y_{2}, z_{1}, z_{2}, z_{3}$ and edges $u v^{\prime}, u z_{1}, u z_{2}, u z_{3}, v^{\prime} w, v^{\prime} y_{2}$ is isomorphic to H_{3}. Both cases are not possible. We conclude that u must be obtained by identifying pole vertices, namely x_{1} and x_{2} if $i=1, x_{1}, x_{2}, x_{3}$ if $i=2$, and we may assume without loss of generality that u is obtained by identifying x_{1} and y_{1} if $i=3$ or $i=4$.

First suppose that $i=1$. Because $\Delta(G) \leq 4$ and $d_{G^{\prime}}(u)=4$, each pole x_{j} must have two neighbors s_{1}^{j} and s_{2}^{j} in G that are not in F_{1} for $j=1,2$. Because G^{\prime} contains H_{3}, one of the vertices $s_{1}^{1}, s_{2}^{1}, s_{1}^{2}, s_{2}^{2}$, say s_{1}^{1}, has two neighbors t_{1} and t_{2} in G that are not in $V_{F_{1}} \cup\left\{s_{1}^{1}, s_{2}^{1}, s_{1}^{2}, s_{2}^{2}\right\}$. Let w_{1} and w_{2} denote the two center vertices of F_{1}. We find that the subgraph of G with vertices $s_{1}^{1}, s_{2}^{1}, t_{1}, t_{2}, w_{1}, w_{2}, x_{1}$ and edges $x_{1} s_{1}^{1}, x_{1} s_{2}^{1}, x_{1} w_{1}, x_{1} w_{2}, s_{1}^{1} t_{1}, s_{1}^{1} t_{2}$ is isomorphic to H_{3}. This is a contradiction.

Now suppose that $i=2$. Because $\Delta(G) \leq 4$ and $d_{G^{\prime}}(u)=4$, one pole, say x_{1}, has two neighbors s_{1} and s_{2} in G that are not in F_{2}. Let w_{1} and w_{2} denote the two center vertices of F_{2}. We find that the subgraph of G with vertices $s_{1}, s_{2}, w_{1}, w_{2}, x_{1}, x_{2}, x_{3}$ and edges $x_{1} s_{1}, x_{1} s_{2}, x_{1} w_{1}, x_{1} w_{2}, w_{1} x_{2}, w_{1} x_{3}$ is isomorphic to H_{3}. This is a contradiction.

Finally suppose that $i=3$ or $i=4$. Recall that we assume that $u \in V_{H}$ was obtained by identifying x_{1} and y_{1}. Then, because $d_{G^{\prime}}(u)=4$ and $\Delta(G) \leq 4$, we find that $i=3$ and that y_{1} has two neighbors s_{1} and s_{2} in G that are not in F_{3}. Let w denote the center vertex of F_{3}. We find that the subgraph of G with vertices $s_{1}, s_{2}, w, x_{1}, x_{2}, y_{1}, y_{2}$ and edges $y_{1} s_{1}, y_{1} s_{2}, y_{1} y_{2}, y_{1} w, w x_{1}, w x_{2}$ is isomorphic to H_{3}. This is a contradiction. We conclude that u cannot be obtained by identifying pole vertices. This completes the proof of Lemma 4.

Before we can present our polynomial-time algorithm that solves CoLORING for H_{3}-free graphs, we prove one final lemma.

Lemma 5. Let G be an H_{3}-free graph with $\delta(G) \geq 3$ and $\Delta(G) \leq 4$ that does not properly contain any of the graphs F_{1}, \ldots, F_{4}. Then G is 3 -colorable if and only if G is K_{4}-free.

Proof. Let $G=(V, E)$ be an H_{3}-free graph with $\delta(G) \geq 3$ and $\Delta(G) \leq 4$ that does not properly contain any of the graphs F_{1}, \ldots, F_{4}. First suppose that G is 3-colorable. This immediately implies that G is K_{4}-free.

Now suppose that G is K_{4}-free. If $\Delta(G) \leq 3$, then Brooks' Theorem (cf. [6]) tells us that G is 3-colorable unless $G=K_{4}$, which is not the case. Hence, we may assume that G contains at least one vertex of degree 4 . To obtain a contradiction, assume that G is a minimal counter-example, that is, $\chi(G) \geq 4$ and the graph obtained from $G-v$ by removing vertices of degree at most 2 as long as possible is 3 -colorable for all $v \in V$; note that this graph may be empty.

Let u be a vertex of degree 4 in G, and let $N_{G}(u)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. We first show the following four claims.
(a) $G\left[N_{G}(u)\right]$ is C_{3}-free;
(b) $G\left[N_{G}(u)\right]$ contains no vertex of degree 3 ;
(c) $G\left[N_{G}(u)\right]$ is not isomorphic to P_{4};
(d) $G\left[N_{G}(u)\right]$ is not isomorphic to C_{4}.

Claims (a)-(d) can be seen as follows. If $G\left[N_{G}(u)\right]$ contains C_{3} as a subgraph, then $G\left[N_{G}[u]\right]$, and consequently, G contains K_{4} as a subgraph of G. This proves (a). If $G\left[N_{G}(u)\right]$ contains a vertex of degree 3 , then G properly contains F_{2}, as $G\left[N_{G}(u)\right]$ is C_{3}-free due to (a). This proves (b). If $G\left[N_{G}(u)\right]$ is isomorphic to P_{4}, then G properly contains F_{3}. This proves (c). If $G\left[N_{G}(u)\right]$ is isomorphic to C_{4}, then G properly contains F_{4}. This proves (d).

Because G is H_{3}-free, each v_{j} has at most one neighbor in $V \backslash N_{G}[u]$. Because $\delta(G) \geq 3$, this means that $G\left[N_{G}(u)\right]$ contains no isolated vertices. Then, by claims (a)-(d), we find that $G\left[N_{G}(u)\right]$ contains exactly two edges. Moreover, $d_{G}\left(v_{j}\right)=3$ for $j \in\{1, \ldots, 4\}$ as $\delta(G) \geq 3$.

We assume without loss of generality that $v_{1} v_{2}$ and $v_{3} v_{4}$ are edges in G. Let w_{j} be the neighbor of v_{j} in $V \backslash N_{G}[u]$ for $j=1, \ldots, 4$. We note that $w_{1} \neq w_{2}$ and $w_{3} \neq w_{4}$, as otherwise G properly contains F_{1}.

Because G is a minimal counterexample, we find that the graph obtained from $G-u$ by removing vertices of degree at most 2 as long as possible is 3 -colorable. Hence, $G-u$ is 3 -colorable. Let c be an arbitrary 3 -coloring of $G-u$. We show that the following two claims are valid for c up to a permutation of the colors $1,2,3$.
(1) $c\left(v_{1}\right)=c\left(v_{3}\right)=1, c\left(v_{2}\right)=2$ and $c\left(v_{4}\right)=3$;
(2) $c\left(w_{1}\right)=c\left(w_{2}\right)=3$ and $c\left(w_{3}\right)=c\left(w_{4}\right)=2$.

Claims (1) and (2) can be seen as follows. If c uses at most two different colors on v_{1}, \ldots, v_{4}, then we can extend c to a 3-coloring of G, which is not possible as $\chi(G) \geq 4$. Hence, c uses three different colors on v_{1}, \ldots, v_{4}. Then we may assume without loss of generality that $c\left(v_{1}\right)=c\left(v_{3}\right)=1, c\left(v_{2}\right)=2$ and $c\left(v_{4}\right)=3$. This proves (1). We now prove (2). In order to obtain a contradiction, assume that $c\left(w_{1}\right) \neq c\left(w_{2}\right)$. Because $c\left(v_{2}\right)=2$, we find that $c\left(w_{2}\right)=1$ or $c\left(w_{2}\right)=3$. If $c\left(w_{2}\right)=1$, then we change the color of v_{2} into 3 , contradicting (1). Hence, $c\left(w_{2}\right)=3$. Then, as $c\left(v_{1}\right)=1$, we obtain $c\left(w_{1}\right)=2$. However, we can now change the colors of v_{1} and v_{2} into 3 and 1 , respectively, again contradicting (1). We conclude that $c\left(w_{1}\right)=c\left(w_{2}\right)$. Hence, $c\left(w_{1}\right)=c\left(w_{2}\right)=3$. By the same arguments, we find that $c\left(w_{3}\right)=c\left(w_{4}\right)$. Hence, $c\left(w_{3}\right)=c\left(w_{4}\right)=2$. This proves (2).

The facts that $w_{1} \neq w_{2}$ and $w_{3} \neq w_{4}$ together with Claim (2) imply that $w_{1}, w_{2}, w_{3}, w_{4}$ are four distinct vertices. We observe that $d_{G}\left(w_{j}\right)=3$ for $j=1, \ldots, 4$, as otherwise H_{3} is a subgraph of G. See Fig. 7 for an illustration. In this figure we also indicate that w_{1}, w_{2} have neighbors colored with colors 1 and 2 , and that w_{3}, w_{4} have neighbors colored with colors 1 and 3 , as otherwise we could recolor w_{1}, \ldots, w_{4} such that $c\left(w_{1}\right) \neq c\left(w_{2}\right)$ or $c\left(w_{3}\right) \neq c\left(w_{4}\right)$, and hence we would contradict Claim (2). We may also assume without loss of generality that c is chosen in such a way that the set of vertices with color 1 is maximal, that is, each vertex with color 2 or 3 has a neighbor with color 1 .

Consider the subgraph Q of $G-u$ induced by the vertices colored with colors 2 and 3 . We claim that the vertices w_{1} and v_{2} are in the same connected component of Q. To show this, suppose that there is a connected component Q^{\prime} of Q that contains w_{1} but not v_{2}. Then we recolor all vertices of Q^{\prime} colored 2 with color 3 and all vertices of Q^{\prime} colored 3 with color 2 . We obtain a 3 -coloring of $G-u$ such that w_{1} and w_{2} are colored by distinct colors, contradicting Claim (2). Using the same arguments, we conclude that w_{3} and v_{4} are in the same connected component of Q. Now we show that all the vertices $w_{1}, v_{2}, w_{3}, v_{4}$ are in the same connected component of Q. Suppose that there is a connected component Q^{\prime} of Q that contains w_{1}, v_{2} but not w_{3}, v_{4}. Then we recolor all vertices of Q^{\prime} colored 2 with color 3 and all vertices colored 3 with color 2 . We obtain a 3 -coloring of $G-u$ such that $w_{1}, w_{2}, w_{3}, w_{4}$ are colored with the same color, contradicting Claim (2).

We observe that $d_{Q}\left(w_{1}\right)=d_{Q}\left(v_{2}\right)=d_{Q}\left(w_{3}\right)=d_{Q}\left(v_{4}\right)=1$. Then, because $w_{1}, v_{2}, w_{3}, v_{4}$ belong to the same connected component of Q, we find that Q contains a vertex x with $d_{Q}(x) \geq 3$.

Let y_{1}, \ldots, y_{r} denote the neighbors of x in Q for some $r \geq 3$. Because y_{1}, \ldots, y_{r} are colored with the same color, they are pairwise non-adjacent. Because $\Delta(G) \leq 4$, we find that $r \leq 4$. First suppose that $r=4$. Because $d_{G}\left(y_{1}\right) \geq 3$ as $\delta(G) \geq 3$ and y_{1}, \ldots, y_{4} are pairwise non-adjacent, y_{1} has at least two neighbors in $V \backslash N_{G}[x]$. However, then G contains H_{3} as a subgraph. This is a contradiction. Now suppose that $r=3$. Recall that the set of vertices with color 1 is maximal. Hence x is adjacent to a vertex z with color 1 . Because G is H_{3}-free and $d_{G}\left(y_{i}\right) \geq 3$ for $i=1,2$, 3 , we find that z is adjacent to y_{1}, y_{2}, y_{3}. However, since $\Delta(G) \leq 4$, this means that $G\left[N_{G}[z]\right]$ is isomorphic to F_{2}. Consequently, G properly contains F_{2}. This contradiction completes the proof of Lemma 5.

We are now ready to prove that Coloring can be solved in polynomial time for H_{3}-free graphs. Let G be an H_{3}-free graph on n vertices, and let $k \geq 1$ be an integer.
Case 1. $k \leq 2$.
Then Coloring can be solved in polynomial time even for general graphs.

Case 2. $k \geq 3$.

By Lemma 1, we may assume without loss of generality that $\delta(G) \geq 3$ and that G contains no universal vertices. By Lemma 3 we find that $\Delta(G) \leq 4$. Because G has no universal vertices, $G \neq K_{5}$. Then applying Brooks' Theorem (cf. [6]) yields that G is 4 -colorable.

Fig. 7. The structure of the graph G. We note that neighbors of w_{1}, \ldots, w_{4} not equal to v_{1}, \ldots, v_{4} may not be distinct.
Case 2a. $k \geq 4$.
Then (G, k) is a yes-answer.
Case 2b. $k=3$.
We apply Rule 6 exhaustively. This takes polynomial time, because each application of Rule 6 takes linear time and reduces the size of G. In order to maintain the properties of having minimum degree at least 3 and containing no universal vertices, we first apply Rules 1-5 exhaustively before another application of Rule 6 . Afterward, by Lemmas 1 and 4, we have found in polynomial time a (possibly empty) set g of at most n graphs, such that G is 3 -colorable if and only if each graph in g is 3 -colorable. Moreover, each $G^{\prime} \in \mathcal{g}$ is H_{3}-free, has minimum degree at least 3, contains no universal vertices, and in addition, does not properly contain any of the graphs F_{1}, \ldots, F_{4}. Then, by Lemma 3 , each $G^{\prime} \in \mathcal{G}$ has $\Delta\left(G^{\prime}\right) \leq 4$. As a consequence, we may apply Lemma 5 . This lemma tells us that a graph $G^{\prime} \in \mathcal{g}$ is 3-colorable if and only if it does not contain K_{4} as a subgraph. As we can check the latter condition in polynomial time and $|g| \leq n$, that is, we have at most n graphs to check, also the last step of our algorithm runs in polynomial time.

3.3. The cases $H=H_{4}$ and $H=H_{5}$

For these cases we replace Rule 4 by a new rule. Let $G=(V, E)$ be a graph and k be an integer.
Rule 4*. If $k \geq 3$ and $V \backslash N_{G}[u]$ is an independent set for some $u \in V$, take $\left(G\left[N_{G}(u)\right], k-1\right)$.
The next lemma shows that Rule 4 is correct.
Lemma 6. Let $k \geq 2$ be an integer, and let u be a vertex of a graph $G=(V, E)$ such that $V \backslash N_{G}[u]$ is an independent set. Then G is k-colorable if and only if $G\left[N_{G}(u)\right]$ is $(k-1)$-colorable.
Proof. First suppose that G is k-colorable. Let c be a k-coloring of G. Then the vertices of $N_{G}(u)$ are colored with at most $k-1$ colors, which are different from $c(u)$. Hence, $G\left[N_{G}(u)\right]$ is $(k-1)$-colorable. Now suppose that $G\left[N_{G}(u)\right]$ is ($k-1$)-colorable. Then we extend this coloring to a k-coloring of G by coloring $V \backslash N_{G}(u)$ with a new color.

We will also need the following lemma.
Lemma 7. Let $G=(V, E)$ be a 2-connected graph with $\delta(G) \geq 3$ such that $V \backslash N_{G}[u]$ contains at least two adjacent vertices for all $u \in V$. If G is H_{4}-free or H_{5}-free, then $\Delta(G) \leq 3$.
Proof. Let $G=(V, E)$ be a 2-connected graph with $\delta(G) \geq 3$ such that $V \backslash N_{G}[u]$ contains at least two adjacent vertices for all $u \in V$. Assume that G has a vertex u with $d_{G}(u) \geq 4$. We will show that G contains a subgraph isomorphic to H_{4} and a subgraph isomorphic to H_{5}.

By our assumption, $V \backslash N_{G}[u]$ contains two adjacent vertices v and w. We choose v and w so that at least one of them, say v, is adjacent to a vertex $z_{1} \in N_{G}(u)$. Because $d_{G}(u) \geq 4$, we find that $N_{G}(u)$ contains at least three other vertices, which we denote by z_{2}, z_{3} and z_{4}. Then the subgraph of G with vertices $u, v, w, z_{1}, z_{2}, z_{3}, z_{4}$ and edges $u z_{1}, u z_{2}, u z_{3}, u z_{4}, z_{1} v, v w$ is isomorphic to H_{4}. Because G is 2-connected, G contains a path P from w to u that neither uses v nor z_{1}. Let v^{\prime} be the vertex of P that is in $V \backslash N_{G}[u]$ and that is adjacent to a neighbor of u, say to z_{2}. Then the subgraph of G with vertices $u, v, v^{\prime}, z_{1}, z_{2}, z_{3}, z_{4}$ and edges $u z_{1}, u z_{2}, u z_{3}, u z_{4}, z_{1} v, z_{2} v^{\prime}$ is isomorphic to H_{5}.
We are now ready to prove that Coloring can be solved in polynomial time for H_{4}-free graphs and for H_{5}-free graphs. Let $G=(V, E)$ be a graph, and let $k \geq 1$ be an integer. If $k \leq 2$, then Coloring can be solved in polynomial time even for general graphs. Now suppose that $k \geq 3$. Lemma 6 shows that Rule 4^{*} is correct. Moreover, an application of Rule 4^{*} takes linear time and reduces the number of vertices of G by at least one. Hence, we can replace Rule 4 by Rule 4^{*} in Lemma 1. Due to this, we may assume without loss of generality that G is 2 -connected and has $\delta(G) \geq 3$, and moreover, that $V \backslash N_{G}[u]$ contains at least two adjacent vertices for all $u \in V$. Then Lemma 7 tells us that $\Delta(G) \leq 3$. By using Brooks' Theorem (cf. [6]) we find that G is 3 -colorable, unless $G=K_{4}$. Hence, (G, k) is a yes-answer when $k \geq 4$, whereas (G, k) is a yes-answer when $k=3$ if and only if $G \neq K_{4}$.

4. Conclusions

We classified the complexity of Coloring restricted to strongly H-free graphs for all graphs H up to seven vertices. We also identified an infinite number of polynomial-time solvable and NP-complete cases. The only open cases left are when
H is a forest on at least eight vertices that does not satisfy the conditions of Theorem 2 (for instance, we may assume that each connected component of H has at most one vertex of degree 4). However, the exact borderline between tractability and hardness is not clear. Even determining the computational complexity of Coloring restricted to strongly H-free graphs for some graphs H on eight vertices, such as the 8-vertex trees that contain the graph H_{3}, seems to be a difficult task.

As our current proof techniques are rather diverse, a more unifying approach may be required in order to complete the computational complexity classification of Coloring for strongly H-free graphs. Also the fact that Coloring (and even the more general problem Precoloring Extension [4]) is polynomial-time solvable for graphs of maximum degree at most 3 makes the problem harder to classify for strongly H-free graphs than some other decision problems that are NP-complete for graphs of maximum degree at most 3 . To illustrate this, we consider the Independent Set problem, which is the problem of deciding whether a graph has an independent set of at least k vertices for some given integer k. It is well known that Independent Set is already NP-complete for graphs of maximum degree at most 3 [7]. This allows us to use a well-known and simple edge-replacing gadget in order to prove that Independent Set is NP-complete on strongly H -free graphs for almost all graphs H.

Proposition 1. Let H be a graph. Then Independent Set is polynomial-time solvable for strongly H-free graph if H is a forest with $\Delta(H) \leq 3$, each connected component of which contains at most one vertex of degree 3 . In all other cases, Independent Set is NP-complete for strongly H-free graphs.

Proof. First suppose that H is a forest with $\Delta(H) \leq 3$, each connected component of which contains at most one vertex of degree 3. We apply exactly the same arguments as we used in the proof of Theorem 3(a) in order to show that Independent Set is polynomial-time solvable on strongly H-free graphs.

Now suppose that H contains at least one connected component that contains either a vertex of degree at least 4 or two vertices of degree 3 or a cycle. Recall that Independent Set is NP-complete on graphs of maximum degree at most 3 [7]. Hence, Independent Set is NP-complete on strongly H-free graphs if H contains a vertex of degree at least 4 . Due to this, we are left with the case when H is a graph with $\Delta(H) \leq 3$ that contains either two vertices of degree 3 or a cycle.

If Independent Set is NP-complete for a graph class g, then it remains NP-complete on the graph class obtained by subdividing each edge of each graph of g exactly twice (the subdivision of an edge $u v$ in a graph replaces $u v$ by two new edges $u w$ and $w v$ for some new vertex w). Hence, Independent Set is NP-complete on graphs of maximum degree at most 3 that have girth at least g for any fixed $g \geq 3$ (the girth of a graph is the length of a shortest induced cycle in the graph) such that any two vertices of degree 3 are of distance at least h for any fixed $h \geq 1$. As a consequence, Independent Set is NP-complete for strongly H-free graphs.

We note that, just as the complexity classification of k-CoLORING (see Section 1.2), also the complexity classification of Independent Set is wide open when H is forbidden as an induced subgraph, and that so far only partial results have obtained; very recently, Lokshtanov, Vatshelle, and Villanger [14] solved a long-standing open problem by showing that Independent SET is polynomial-time solvable on P_{5}-free graphs.

Acknowledgments

We thank the two anonymous referees for their useful comments that helped us to improve the presentation of our paper.

References

[1] S. Arnborg, A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math. 23 (1989) 11-24.
[2] D. Bienstock, N. Robertson, P.D. Seymour, R. Thomas, Quickly excluding a forest, J. Combin. Theory Ser. B 52 (1991) $274-283$.
[3] H.J. Broersma, P.A. Golovach, D. Paulusma, J. Song, Updating the complexity status of coloring graphs without a fixed induced linear forest, Theoret. Comput. Sci. 414 (2012) 9-19.
[4] M. Chlebík, J. Chlebíková, Hard coloring problems in low degree planar bipartite graphs, Discrete Appl. Math. 154 (2006) $1960-1965$.
[5] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. of Math. 164 (2006) 51-229.
[6] R. Diestel, Graph Theory, 4th ed., in: Graduate Texts in Mathematics, vol. 173, Springer, 2012.
[7] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP-complete graph problems, Theoret. Comput. Sci. 1 (1976) $237-267$.
[8] P.A. Golovach, D. Paulusma, J. Song, 4-coloring H-free graphs when H is small, Discrete Appl. Math. 161 (2013) 140-150.
[9] M. Grötschel, L. Lovász, A. Schrijver, Polynomial algorithms for perfect graphs, Ann. Discrete Math. 21 (1984) 325-356. Topics on Perfect Graphs.
[10] S. Huang, Improved complexity results on k-coloring P_{t}-free graphs, in: Proc. MFCS 2013, in: LNCS, vol. 8087, 2013, pp. 551-558.
[11] M. Kamiński, V.V. Lozin, Coloring edges and vertices of graphs without short or long cycles, Contrib. Discrete Math. 2 (2007) 61-66.
[12] M. Kamiński, V.V. Lozin, Vertex 3-colorability of claw-free graphs, Algorithmic Oper. Res. 2 (2007) 15-21.
[13] D. Král', J. Kratochvíl, Zs. Tuza, G.J. Woeginger, Complexity of coloring graphs without forbidden induced subgraphs, in: Proceedings of WG 2001, in: LNCS, vol. 2204, 2001, pp. 254-262.
[14] D. Lokshtanov, M. Vatshelle, Y. Villanger, Independent set in P5-free graphs in polynomial time, in: Proceedings of SODA, SIAM, 2014, pp. $570-581$.
[15] L. Lovász, Coverings and coloring of hypergraphs, in: Proceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Utilitas Math., Winnipeg, Man., 1973, pp. 3-12.
[16] F. Maffray, M. Preissmann, On the NP-completeness of the k-colorability problem for triangle-free graphs, Discrete Math. 162 (1996) $313-317$.
[17] B. Randerath, I. Schiermeyer, Vertex colouring and forbidden subgraphs-a survey, Graphs Combin. 20 (2004) 1-40.
[18] Zs. Tuza, Graph colorings with local restrictions-a survey, Discuss. Math. Graph Theory 17 (1997) 161-228.

[^0]: this paper was supported by EPSRC (EP/G043434/1) and the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 267959. The results of this paper have appeared in the proceedings of MFCS 2012.

 * Corresponding author. Tel.: +47 55584385.

 E-mail addresses: Petr.Golovach@ii.uib.no (P.A. Golovach), daniel.paulusma@durham.ac.uk (D. Paulusma), bernard.ries@dauphine.fr (B. Ries).

