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ABSTRACT
Big-data systems have gained significant momentum, and
Apache Spark is becoming a de-facto standard for modern
data analytics. Spark relies on SQL query compilation to op-
timize the execution performance of analytical workloads on
a variety of data sources. Despite its scalable architecture,
Spark’s SQL code generation suffers from significant runtime
overheads related to data access and de-serialization. Such
performance penalty can be significant, especially when ap-
plications operate on human-readable data formats such as
CSV or JSON.

In this paper we present a new approach to query com-
pilation that overcomes these limitations by relying on run-
time profiling and dynamic code generation. Our new SQL
compiler for Spark produces highly-efficient machine code,
leading to speedups of up to 4.4x on the TPC-H benchmark
with textual-form data formats such as CSV or JSON.
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1. INTRODUCTION
Data processing systems such as Apache Spark [47] or

Apache Flink [4] are becoming de-facto standards for dis-
tributed data processing. Their adoption has grown at a
steady rate over the past years in domains such as data an-
alytics, stream processing, and machine learning. Two key
advantages of systems such as Apache Spark over their pre-
decessors (e.g., Hadoop [32]) are the availability of high-level
programming models such as SQL, and the support for a
great variety of input data formats, ranging from plain text
files to very efficient binary formats [39]. The convenience
of SQL together with the ability to execute queries over
raw data (e.g., directly on a JSON file) represent appealing
features for data scientists, who often need to combine ana-
lytical workloads with numerical computing, for example in
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the context of large statistical analyses (expressed in Python
or R). Furthermore, due to the growing popularity of data
lakes [12], the interest in efficient solutions to analyze text-
based data formats such as CSV and JSON is increasing
even further.

At its core, the SQL language support in Spark relies on
a managed language runtime – the Java Virtual Machine
(JVM) – and on query compilation through so-called whole-
stage code generation [7]. Whole-stage code generation in
Spark SQL is inspired by the data-centric produce-consume
model introduced in Hyper [23], which pioneered pipelined
SQL compilation for DBMSs. Compiling SQL to optimize
runtime performance has become common in commercial
DBMSes (e.g., Oracle RDBMS [28], Cloudera Impala [42],
PrestoDB [40], MapDB [38], etc.). Unlike traditional DBM-
Ses, however, Spark SQL compilation does not target a spe-
cific data format (e.g., the columnar memory layout used by
a specific database system), but targets all encoding formats
supported by the platform. In this way, the same compiled
code can be re-used to target multiple data formats such as
CSV or JSON, without having to extend the SQL compiler
back-end for new data formats. Thanks to this approach,
Spark separates data access (i.e., parsing and de-serializing
the input data) from the actual data processing: in a first
step, data is read from its source (e.g., a JSON file); in a
second step, the compiled SQL code is executed over in-
memory data. Such appealing modularity impairs perfor-
mance, since the parsing step has to be executed in library
code, which is not specialized for a specific query, in contrast
to the generated code.

In this paper, we introduce a new approach to SQL query
compilation for Spark that outperforms the state-of-the-art
Spark SQL code generation with significant speedups of up
to 4.4x on CSV and up to 2.6x on JSON data files. Our
SQL code compilation is based on dynamic code genera-
tion, and relies on the intuition that the compiled query
code should leverage static and runtime knowledge available
to Spark as much as possible. Specifically, our SQL code
generation (1) integrates data access (i.e., de-serialization)
with data processing (i.e., query execution), minimizing de-
serialization costs by avoiding unnecessary operations; (2)
makes speculative assumptions on specific data properties
(e.g., on the observed numeric types) to enable efficient “in
situ” data processing, and (3) leverages runtime profiling in-
formation to detect when such speculative assumptions no
longer hold, invalidating relevant compiled code, and gener-
ating new machine code accordingly. We have implemented
our SQL compiler for Spark targeting two popular data for-



# Load the JSON data from a file
data = spark.read.json("orders.json")
# Create a temporary view over the data
data.createOrReplaceTempView("orders")
# Sum order prices
result = spark.sql("""

SELECT SUM(price)
FROM orders
WHERE shipdate

BETWEEN date '1994-01-01'
AND date '1994-12-31'

""")
# print the query result to the console
result.show()
# the result is a valid Python object: can be

used in other computation
doSomethingWith(result)

Figure 1: Example of a Spark Python application
executing a simple SQL statement on JSON data.

mats, namely CSV and JSON. The reason for targeting tex-
tual data formats rather than more efficient binary formats
such as Apache Parquet is their great popularity: the goal of
our work is to show that by combining efficient data access
and speculative runtime optimizations, the performance of
textual data formats can be significantly increased.

This paper makes the following contributions:

* We describe a new SQL compiler for Spark which leads
to speedups of up to 4.4x.

* Our code generation combines data access (i.e., data
de-serialization) with data processing (i.e., the actual
query execution). The generated code relies on the
Truffle [43] framework, which is used to dynamically
generate efficient machine code.

* Our code generation leverages speculative specializa-
tions to implement efficient predicate execution. We
describe how common operations such as string com-
parisons or date range checks can be optimized using
speculative assumptions.

This paper is structured as follows. In Section 2 we in-
troduce code generation in Spark SQL and describe how
code generation is used to optimize SQL query execution.
In Section 3 we provide an overview of our novel compila-
tion approach, detailing its main components. In Section 4
we present a detailed performance evaluation. Section 5 dis-
cusses related work, and Section 6 concludes this paper.

2. BACKGROUND: CODE GENERATION
IN SPARK SQL

Spark SQL [2] allows data scientists to execute SQL queries
on top of Spark. Unlike a traditional DBMS, SQL queries
in Spark are executed by the Java Virtual Machine in a dis-
tributed cluster. To improve execution performance, Spark
compiles SQL statements to executable Java classes, which
are responsible for data loading as well as for the actual
query execution. The generation of Java code plays a focal
role in Spark’s SQL execution pipeline, as it is responsible for
ensuring that the entire analytical workload can efficiently
run in a distributed way, using internal Spark abstractions
such as Resilient Distributed Datasets [46] (RDDs).

An example of a Spark Python application performing
a simple SQL query over a JSON file is depicted in Fig-

class GeneratedBySpark {
public void compute(Data input) {

while (input.hasNext ()) {
// parse the next JSON input data
Row row = input.parseNext ();
// materialize the needed data
UTF8String date =

row.getUTF8String("shipdate");
// 1st date comparison
if (date.compareTo('1994 -01 -01') < 0)

continue;
// 2nd date comparison
if (date.compareTo('1994 -12 -31') > 0)

continue;
// accumulate value 'price ' as result
double price = row.getDouble("price");
accumulate(price);

}
}

}

Figure 2: Java code produced by Spark for the SQL
query of Figure 1.

ure 1. The concise size of the code is a good indicator of
Spark SQL’s convenience for data analytics. Behind the
scenes, Spark SQL (1) reads a potentially very large (and
distributed) JSON file in parallel, (2) converts its content
to an efficient in-memory representation, (3) generates Java
code to perform the actual query execution, and (4) orches-
trates a cluster of computers to send and collect all required
data from and to the Python language runtime executing the
application. Input-data parsing and code generation can af-
fect performance as much as other runtime aspects such as
data-parallel execution, I/O orchestration, workload distri-
bution, etc.

The Java code that Spark generates at runtime for the ex-
ample query is depicted in Figure 21. As the figure shows,
Spark generates Java code to process the input data file
line-by-line. The generated Java code relies on explicit
runtime calls to internal Spark components to execute cer-
tain data-processing tasks. For example, the generated code
calls parseNext() to parse the JSON input data, allocating
one or more Java object for each input element. All such
calls to internal Spark components have the advantage of
not requiring to change the code generation depending on
the input data format: in fact, the generated code in Fig-
ure 1 can execute the query on JSON files, on CSV files, as
well as on any other supported data format for which Spark
has an implementation of parseNext().

A downside of Spark’s modular code generation separating
data de-serialization from data processing is performance.
Specifically, the code in Figure 2 presents two significant
limitations that may impair SQL execution performance:

1. Eager parsing of the input data: each single row is
parsed by a general-purpose de-serializer (e.g., a JSON
parser) that consumes the entire body of the input
data. This is potentially a significant waste of re-
sources, since parsing each single JSON element in a
very large file means allocating temporary, short-lived

1 Note that this is a simplified version; the accumulate op-
eration adds the value price to a local accumulator which
will be sent as input to the next phase that sums up all local
accumulators returned by Spark executors in the cluster.



objects (one object for each JSON value) in the JVM
heap memory space. Short-lived values are not always
needed to execute the entire query: depending on pro-
jectivity and selectivity, limiting parsing to a subset
of the elements may already be enough to filter out
values that are not relevant for the query evaluation.

2. General-purpose predicate evaluation: each predicate
involved in the query execution (i.e., the date range
in our example) has a generic implementation. I.e.,
they do not take into account the specific nature of
the query, and simply rely on calls into the Spark core
runtime library to implement operations such as date
comparisons, etc. As shown in the previous example,
this is a missed optimization opportunity.

As we will discuss in the rest of this paper, generality
in SQL compilation comes at the price of performance. In
contrast, we argue that code generation should be special-
ized as much as possible, taking into account both static
and dynamic information about the executed query. In the
following sections, we will describe how runtime specializa-
tion can be used to implement speculative optimizations to
avoid the aforementioned limitations, leading to significant
performance improvements for data formats such as JSON
and CSV.

3. DYNAMIC SQL QUERY COMPILATION
SQL query compilation in Apache Spark relies on static

code generation: once compiled to Java code, a query is
executed without any further interactions with the query
compiler. In contrast, our approach to SQL compilation is
dynamic: after an initial compilation of the query to ma-
chine code, the compiled query code has the ability to per-
form runtime profiling, and modify the behavior of the query
execution (for example, by re-compiling the machine code
responsible for certain SQL predicate evaluations to a more
efficient version). Static compilation has the main limita-
tion that runtime information cannot be exploited by the
generated code. Conversely, dynamic compilation allows for
more precise optimizations that can take into account any
aspect of a query execution, triggering code optimization
and de-optimization accordingly. This is achieved by means
of the Truffle [43] framework. Truffle is a language imple-
mentation framework enabling the runtime generation of ef-
ficient machine code via runtime specialization and partial
evaluation [13]. The key intuition behind the concept of spe-
cialization is that certain operations can be performed more
efficiently when favorable runtime conditions are met. As an
example, consider the implementation of the lookup opera-
tion in a hash map: general-purpose implementations (e.g.,
in java.util.HashMap) have to take into account aspects
such as the type of keys and values, key collisions, inter-
nal storage size, etc. Conversely, a “specialized” version for,
e.g., a map known to have only numeric keys and a small,
bounded, number of values, could be implemented more ef-
ficiently by specializing lookup operations using a more ef-
ficient hashing function. Although simple and naive, this is
an example of optimizations that are commonly performed
by managed language runtimes, which produce specialized
code for certain language operations (e.g., property reads
in languages such as JavaScript or Python), and execute
such code as long as the specialized operation is not invali-
dated by other runtime events (e.g., a non-numeric key value

being added to our example map). Our new SQL code gen-
eration leverages runtime specialization in two key aspects
of a query evaluation:

1. Data access. Different data formats (e.g., JSON and
CSV) can be de-serialized in different ways. Specializ-
ing the SQL execution code to take into account cer-
tain aspects of the data serialization process can lead
to a more efficient input-data de-serialization.

2. Predicate execution. Each predicate in a SQL state-
ment (e.g., date range in the example of Figure 2)
is not specialized for the specific predicate. Rather,
general-purpose operations such as string or numeric
comparisons are used regardless of the properties of the
data being processed.

As we argue in this paper, applying specialization to these
two operations can lead to significant performance benefits.
In the following subsections we provide a detailed explana-
tion about how such specialized execution can be performed
at runtime in Spark SQL.

3.1 Dynamic Code Generation
Rather than generating static Java classes, our SQL code

generation approach is based on the generation of dynamic
runtime components that have the ability to influence how
code is optimized at runtime, as well as the ability to pro-
file the query execution, de-optimizing and re-optimizing
machine code as needed during query execution. This is
achieved by generating Truffle nodes as the result of SQL
query compilation. Differently from standard Java classes,
Truffle nodes have access to a set of compiler directives [26]
that can be used to instruct the VM’s just in time (JIT)
compiler about runtime properties of the generated machine
code [44]. When executed on the GraalVM [45] language
runtime, the JIT compiler [9] can compile Truffle nodes
to machine code capable of dynamic optimization and de-
optimization. Contrary to static code-generation approaches
such as Spark’s code generation (or similar ones such as
LLVM-based SQL query compilers [23, 5, 22]), generating
Truffle nodes has the advantage that the generated code
has the ability to monitor runtime execution, and optimize
(or de-optimize) machine code when needed, taking into ac-
count runtime information such as, e.g., observed data types
or branch probabilities. This is a key difference compared
to the static SQL compilation based on “data-centric” code
generation [23].

By leveraging Truffle APIs, our SQL query compiler can
generate code that performs speculative optimizations based
on certain runtime assumptions. Such assumptions may rely
on specific runtime properties of the data being processed.
For example, the generated code may assume that all years
in fields of type Date have length of exactly four digits, and
perform date comparisons between two years by compar-
ing only some digits. As soon as a date with a year with
more than four digits is found, the machine code performing
the date comparison can be invalidated and replaced with
generic machine code performing year comparisons on all
possible values. This process is called de-optimization and
can be performed by our generated code for arbitrary run-
time assumptions. Speculative optimizations, their invalida-
tion, and re-compilation to different machine code allow the
generated code to adapt to the properties of the data. An
overview of the overall SQL code generation implemented in
our approach is depicted in Figure 3.



Figure 3: SQL Dynamic Compilation

With our approach, query compilation and execution take
place in the following way:

1. When a new query is submitted to Spark SQL, its
query plan is analyzed, and a set of Truffle nodes that
can execute the given query is generated. An overview
of this process is depicted in Figure 3 (A).

2. When the generated Truffle nodes are executed, they
may rewrite themselves to take into account certain
runtime assumptions. Specifically, they replace them-
selves with a more specialized version that is capable
of executing only a given special-purpose version of an
operation (e.g., predicate evaluation). This is depicted
in Figure 3 (B).

3. During execution, Truffle nodes are compiled to ma-
chine code by the Graal compiler (Figure 3 (C)).

4. If a speculative assumption made during compilation
is invalidated by unexpected runtime events, the com-
piled code is invalidated, de-optimized, and the corre-
sponding Truffle nodes are replaced with generic imple-
mentations that do not rely on the failed runtime as-
sumption. Query execution might re-profile the generic
code to attempt the creation of new optimized code.
This is depicted in Figure 3 (D), where a specialized
Truffle node for a given predicate evaluation is replaced
with a general-purpose one.

By generating Truffle nodes rather than plain Java classes,
we generate code that can specialize for given runtime con-
ditions and generate machine code that is specialized with
respect to such conditions. Since in this work we are opti-
mizing data access operations and predicate execution, our
approach implements the process described above only for
the leaf nodes in the query plan generated by Spark, i.e., a
file-scan operator with projections and pushed-down pred-
icates. Our optimizations change the internal implementa-
tion of the leaf nodes, but they do not alter their interface
(i.e., an iterator of rows). In this way, even if other query
plan operators are not affected by our code generation, and
their generated code is produced using the default Spark
runtime, our generated classes are perfectly integrated in
the whole Spark compilation pipeline. Our code-generator
relies on two different types of Truffle nodes that both con-
tribute to the evaluation of a SQL query, namely (1) nodes
to access and de-serialize data, and (2) nodes to evaluate
predicates. In the following sections we describe how both
node types contribute to query execution in our system.

3.2 Specializing Data Access (Spark-SDA)
As Figure 2 shows, the code generated by Spark SQL per-

forms a runtime call to a general-purpose data de-serializer
for each entry in the input dataset. In the case of a line-

delimited JSON file, this corresponds to a call to a JSON
parser for each input line (i.e., input.parseNext() in Fig-
ure 2). Using a general-purpose de-serializer corresponds
to a potential performance limitation due to the increased
data scan and memory pressure costs. To overcome these
inefficiencies our SQL compiler replaces the general-purpose
parser used by Spark with multiple specialized parsers that
are aware of the underlying format. As shown in Figure 4,
our approach achieves a tight integration of data access op-
erations with data processing, replacing the Spark general-
purpose parser with Truffle nodes that can perform incre-
mental and selective parsing of the input data. With such
an approach, the code generated by our SQL compiler can
avoid unnecessary conversion steps by directly de-serializing
only the required subset of fields from raw input bytes to
their equivalent Java types. Moreover, the generated code
can parse input data incrementally and only if needed by
the query, i.e., it is able to discard an entire row before fully
parsing it, when it finds the first field which does not pass
the query predicate. From now on, we call this optimization
as Specialized Data Access (Spark-SDA).

Generating machine code that performs not only query
evaluation but also input data de-serialization can be consid-
ered as an enabling factor, as it allows for further speculative
optimizations during predicate evaluation, as we will further
discuss in Section 3.3. In the following subsections we de-
scribe how our SQL code generator creates Truffle nodes
that are capable of such incremental lazy parsing.

3.2.1 Specialized Speculative Data De-serialization
We have implemented specialized Truffle nodes capable

of parsing CSV and JSON line-delimited files. Our CSV-
parsing approach is based on the intuition that the compiled
SQL code should parse only the values that are needed, and
should parse them incrementally, that is, lazily rather than
eagerly. In particular, the order in which fields are read
during query evaluation should follow the order in which
the data is actually consumed.

By specializing a CSV de-serializer for a specific query,
the code-generation not only has access to the subset of the
fields that will be processed by the query; it also has access
to the order in which each value will be read during query
evaluation. This information is not used by the Spark SQL
code generator, but can be exploited to optimize query exe-
cution even further by avoiding parsing values that are not
needed by the query. By re-ordering the evaluation of query
predicates where possible, the parsing operation can be ex-
ecuted in a single step, instead of converting the byte array
into a single Java String object and then into a String ar-
ray, as Spark currently does. As an example, consider the
CSV input data shown in Figure 5. To execute the example



Figure 4: Comparison between original Spark (left) and Spark-SDA (right).

query of Figure 1, the main loop body of the code generated
with our approach consists of (1) skipping the value of the
irrelevant field id, (2) storing the position of the field price

so that it can be retrieved later (if the predicate passes), (3)
evaluating the predicate on field shipdate, and (4) materi-
alizing the value of field price.

The same optimization can be applied in the context of
JSON de-serialization. However, values in JSON are not
necessarily always declared in the same order, and it is pos-
sible for a given value to appear in different positions in
two different JSON objects. As a consequence, data de-
serialization also needs to take into account such potential
different ordering of key-value pairs.

In this scenario, access to JSON data can be optimized
by the generated code using a speculative approach. Specif-
ically, the SQL processing code can be created based on
the assumption that most of the input JSON objects will
match a given JSON structure; if successful, the parsing op-
eration can be performed with higher performance; if not,
a general-purpose JSON parser is used to carry out a full
JSON parsing operation. Such speculative de-serialization
can be performed efficiently, generating optimized machine
code assuming that all JSON objects have the same struc-
ture; if the assumption does not hold for one input JSON
object (i.e., its fields do not match the expected order) the
generated machine code is de-optimized.

|id:num|price:decimal|shipdate:date|.other fields.|

|1 |9.95 |1933-03-01 |..............|

Figure 5: Example input value and schema for the
CSV values in the example.

3.2.2 Parsing Nodes Generation
With specialized data access, the machine code responsi-

ble for query execution will parse input data incrementally
and only when needed for query execution, our SQL com-
piler generates a set of specialized Truffle nodes capable of
various parsing operations. Such data de-serializers corre-
spond to four main operations, each of which is implemented
with a dedicated Truffle node:

* Skip nodes: Skips a data value without performing any
data conversion.

* Lazy data-access nodes: Stores the initial position of a
field and its length in integer variables to retrieve the
value in the future.

* Data-materialization nodes: Materializes a field value
by creating a string object from the original byte ar-
ray, using positions computed during lazy-data-access
operation.

* Predicate: Evaluates a given predicate.

Each generated Truffle node can be considered a basic op-
eration contributing to SQL query evaluation. Algorithm 1
shows the procedures implemented in Spark-SDA that, given
a query-plan leaf and the underlying data schema, generates

Truffle nodes with both data-parsing and data-processing
operations. This algorithm is implemented by our code-
generator for both CSV and JSON data sources. The only
difference is that for JSON we have to manage the case
where the speculative assumption does not hold, i.e., an
input row does not match the expected schema. More pre-
cisely, our code generator for JSON data sources implements
the following variations:

* The source code generated by our Spark-SDA algo-
rithm is wrapped in a new Truffle node.

* We invoke the original Spark code generator and the
generated source code is wrapped in a second Truffle
node.

* Truffle nodes for lazy data-access and skip operations
are extended by generating a matching function which
checks that the current field matches the expected one.

* If the matching function fails, the speculatively com-
piled node is de-optimized and replaced with the gen-
eral node containing the code generated by Spark.

Algorithm 1 Code-generation Algorithm

procedure CodeGen(Projections, Predicates, Schema)
F ← set of projected and filtered fields
n← max

f∈F
(Schema.index(f))

for i← 0, n do
f ← Schema.fields[i]
if f /∈ F then

emitCode(skip)
else

emitCode(lazy-data-access(f))
P ← PredicatesAtIndex(i)
for all p ∈ P do

PredicateCodeGen(p)
end for

end if
end for
for all f ∈ F do

emitCode(data-materialization(f))
end for

end procedure

procedure PredicateCodeGen(predicate)
for all f ∈ fields(predicate) do

emitCode(data-materialization(f))
end for
emitCode(spark-codegen(predicate))

end procedure

Since data-materialization nodes may be emitted multi-
ple times for the same field (e.g., if a field is involved in
more than one predicate), our code generator emits the node
code only once for each field, subsequent calls simply return
the empty string. Note that we left the procedure Predi-
catesAtIndex undefined, our approach is to evaluate each



// skip irrelevant field 'id'
skip()
// store position of column 'price '
pos_price = lazyAccess ()
// read 'shipdate '
pos_shipdate = lazyAccess ()
shipdate = materialize(pos_shipdate)
// check predicate
if (shipdate.compareTo('1994 -01 -01') < 0)

continue;
if (shipdate.compareTo('1994 -12 -31') > 0)

continue;
// all good: save the result
price = materialize(pos_price)
accumulate(price);

Figure 6: Pseudo-code produced by Spark-SDA for
the query in Figure 1.

predicate as soon as possible, i.e., just after all fields in-
volved in a predicate have been scanned by the parser. Our
approach relies on the intuition that parsing is the most
expensive operation, so evaluating a predicate as soon as
all fields are available reduces the time spent on data pars-
ing. The current implementation of PredicatesAtIndex
returns the sequence of predicates which can be executed
at a given field position, i.e., a predicate p is contained in
PredicatesAtIndex(i) if and only if:

max
f∈fields(p)

(Schema.index(f)) = i

However, the predicate evaluation order used by our ap-
proach may not be the best one, i.e., it may be more effi-
cient to postpone the evaluation of a predicate after another
one, which involves a field with higher position. Changing
the predicate evaluation order with our approach requires
only to change the procedure PredicatesAtIndex so that
it takes into account an alternative order. Such alternative
predicate evaluation orders could be provided, e.g., manu-
ally by the user or automatically by a cost-based optimizer
which takes into account the cost of reading raw data.

As an example, consider two predicates p1 and p2, where
p1 involves only the field at position i and p2 involves the
field at position j (with i < j). With our approach p1 is
evaluated once the parser reaches the i-th field and p2 once
it reaches the j-th field. Depending on the cost of eval-
uating such predicates, their selectivities, and the cost of
performing a scanning operation from the i-th field to the j-
th field, it may be more efficient to postpone the evaluation
of p1 after p2. To postpone the evaluation of p1 after p2 the
procedure PredicatesAtIndex should return an empty se-
quence given index i and [p2, p1] given index j. With such
different return values of PredicatesAtIndex, our code-
generator would generate the expected code without further
modifications, that is: the generated code would first store
the position of the i-th field, then scan until the j-th field,
evaluate p2 and, if p2 passes, evaluate p1.

The pseudo-code generated using our Spark-SDA opti-
mization for the query in Figure 1 can be found in Figure 6,
where the main loop body of the same query is depicted.

3.3 Specializing Predicates (Spark-SP)
Our SQL code generation produces Truffle nodes that spe-

cialize themselves based on runtime assumptions. By gen-

erating Truffle nodes that can perform selective parsing on
raw data, the Truffle nodes responsible for predicate evalu-
ation can perform aggressive speculative optimizations that
can be used to evaluate predicates operating on raw data in
most cases. Consider the code that executes the date range
check shown in Figure 6. This code corresponds to the eval-
uation of the SQL predicate ‘1994-01-01’ <= shipdate <=

‘1994-12-31’ from the query in Figure 1. The code gener-
ated by Spark SQL suffers from the following inefficiencies:

1. Data materialization: once the value for shipdate has
been parsed from the input data (CSV or JSON), the
corresponding value is converted from a sequence of
bytes to a heap-allocated Java object. This operation
introduces extra conversion overhead as well as one
more memory copy. Moreover, allocating many ob-
jects with a short life-time (i.e., the processing time of
a single tuple) may put the JVM’s garbage collector
under pressure.

2. Comparisons: once converted to a Java value, the com-
parison between the input value and the expected con-
stant is performed using the general comparison opera-
tor. This operation is efficient as long as the data type
is a primitive Java type, but may introduce runtime
overhead for Spark data types such as UTF8String.

The basic principle of specialization can be applied to the
evaluation of predicates as well. Specifically, predicate eval-
uation can be performed more efficiently by leveraging the
static information available at SQL compilation time, com-
bined with runtime information on the actual observed data
types. In this example, such information includes the data
type (i.e., date in this case) and the expected operations to
be performed (i.e., a date range check in our example).

The constant information can be leveraged by the SQL
compiler to perform the predicate execution more efficiently
by specializing the generated code for the actual predicate
to be evaluated, and by performing the expected operation
directly on the raw input data. That is, the compiler can
generate machine code capable of performing the date com-
parison (1) without allocating new objects nor pushing prim-
itives on the stack, and (2) evaluating each condition (i.e.,
‘1994-01-01’ <= shipdate <= ‘1994-12-31’) on the raw
input byte array. Such an optimized comparison can be ex-
ecuted in a single pass in most cases, but may not always
be successful, and might fail for certain values observed at
runtime (e.g., a date field may not match the expected date
format). Therefore, the compiler shall generate code that
checks for a given condition speculatively, i.e., under a given
assumption, and falls back to a default implementation at
runtime, if the assumption does not hold for a certain value.

In our Spark SQL compiler, we have implemented spe-
cialized predicate evaluation for a number of common SQL
operations, ranging from numeric comparisons to date com-
parisons, to string equality and inclusion. In particular, we
implemented a specialized version of all the predicates that
Spark can push down to data sources [35]:

* Relational operators (<, ≤, >, ≥, =, 6=) for numerical,
date and string datatypes.

* String operators: set inclusion and variant of SQL
LIKE operator:

– startsWith (column LIKE "constant%")

– endsWith (column LIKE "%constant")

– contains (column LIKE "%constant%")



skip()
pos_price = lazyAccess ()
pos_shipdate = lazyAccess ()
// check predicate and get next cursor position
cursor = dateRangePredicate(pos_shipdate)
if(cursor == -1) continue;
price = materialize(pos_price)
accumulate(price);

Figure 7: Pseudo-code produced by Spark-SP for
the query in Figure 1.

All specializations are implemented in presence of statically
known literal values, we implemented relational comparisons
between two variable values (i.e., columns) only for the date
datatype. Note that a predicate which involves expressions
among literal values is considered a literal value, too, e.g.,
a predicate like t.a = ’0.’ + ’07’ is statically evaluated
by the Catalyst optimizer [8] and once pushed down appears
as t.a = ’0.07’.

To extend our SQL compiler with the Spark-SP optimiza-
tion we used the code-generation Algorithm 1, with the fol-
lowing variations in the procedure PredicateCodeGen:

* We generate a Truffle node that can evaluate the pred-
icate on the raw data with optimistic assumptions.

* We generate a second Truffle node that evaluates the
predicate using the procedure PredicateCodeGen
shown in Algorithm 1 (i.e., such node contains our
data-materialization operations and the generic pred-
icate evaluation code generated by Spark).

* If the optimistic assumptions hold, we execute the
predicate with the first node, returning the index of
the next field if the predicate passes or a sentinel value
(i.e., -1) if the predicate does not pass.

* Otherwise, the speculative node is de-optimized and
replaced with a general-purpose one.

The pseudo-code generated using our Spark-SP optimiza-
tion for the query in Figure 1 can be found in Figure 7,
where the main loop body of the same query is depicted.

In the following sections we detail the Truffle nodes used
by our code generation for the most notable predicates.

3.3.1 Numeric Comparisons
The general idea behind leveraging specialization for SQL

predicate evaluation is that a fast-path condition should be
checked without incurring the runtime overheads associated
with the slow-path (i.e., the original, generic, predicate eval-
uation): if most of the rows do not pass the predicate evalua-
tion, an efficient fast-path can result in significant speedups.
For numeric data types, such a fast-path approach could be
implemented by specializing the predicate code taking into
account the constant values in a query.

For integer fields (both int and long) we speculatively as-
sume that the character sequence does not start with zero
(i.e., the integer is not left-padded), so that we can imple-
ment a length-based comparison. For decimal fields we spec-
ulatively assume that the number of decimal digits respects
the given format.

3.3.2 String and Date Comparisons
Like with numeric comparisons, string and date predi-

cates can be implemented by means of runtime specializa-

// condition: 1994 -01 -01 <= date <= 1994 -12 -31
// input: int from (initial field position)
const lower = byte[] {'1', '9', '9', '4', '-',

'0', '1', '-', '0', '1'};
const upper = byte[] {'1', '9', '9', '4', '-',

'1', '2', '-', '3', '1'};
boolean sameLength = data[from +10]== DELIMITER;
boolean fastPath = sameLength

&& data[from +4] == '-'
&& data[from +6] == '-';

if (fastPath) {
for(int i=0; i < upper.length; i++) {

if (data[i+from] < lower[i]) return -1;
// the predicate does not pass
if (data[i+from] > upper[i]) return -1;
// the predicate does not pass

}
return from + 11; // next cursor position

} else {
// unexpected format: full comparison
return slowPath(data);

}

Figure 8: Pseudo-code for predicate 1994-01-01 <=

shipdate <= 1994-12-31.

tion based on the constant values in the SQL query. Simi-
larly to numeric predicates, the code produced by our SQL
code generation is composed of a specialized fast-path op-
eration that takes into account the specific constant values
of a given query (e.g., a constant date) and a slow-path to
be used whenever the fast-path cannot be executed with
confidence. In the context of date and string comparisons,
the operators that our code generation can specialize are es-
sentially string comparisons, string subset scans, and date
comparisons. An example of specialized code for the lat-
ter is depicted in Figure 8 where a date literal is compared
against constant values in our running example of a SQL
query. As the figure shows, the fast-path is implemented by
first checking that the input data has the same (expected)
length; if successful, the entire date can be compared using
a byte-by-byte comparison rather than allocating the actual
date object on the JVM heap. As the figure shows, for date
fields we speculatively assume that the date respects the
given format (or the default one, i.e., yyyy-MM-dd).

Like the example in the previous section, the code gener-
ated for this specific predicate evaluation can be considered
a partially evaluated version of a general-purpose date com-
parison operation that is specialized for the input date range
defined in a given SQL query. Like in the previous example,
our code generation leverages Truffle nodes: whenever the
fast-path condition is invalidated (e.g., a date with a year
with more than four characters is found) the Truffle node is
invalidated and replaced with the default, general-purpose
date comparison operation of Spark.

3.4 Integration in Spark SQL
Our implementation does not require any modification to

the Spark source code. Indeed, our code generation is an
external plug-in that can be integrated into any unmodified
Spark runtime. Our implementation relies on the exper-
imental Spark SQL API [34], which allows developers to
customize the query planning phase.

While working on the implementation of our SQL com-
piler, we noticed that Spark splits the BETWEEN operator



into a conjunction of two predicates (namely, less-than and
greater-than). We consider this approach another missing
optimization opportunity, which we overcome within our
Spark-SP optimization. To this end, our implementation an-
alyzes all pushed-down predicates; whenever it finds a con-
junction of predicates in the form X < c AND c < Y (where
c is a column and both X and Y are constant values), our
compiler merges both conditions into a single predicate. In
this way, during the byte-by-byte comparison implemented
within the predicate fast-paths, we are able to execute both
predicates in a single pass, as shown in Figure 8.

Although we implemented our optimizations in Spark,
since they affect the plan leaf nodes for data access and
pushed-down predicate execution, the same approach can
be implemented with other data processing systems based
on SQL-compilation to Java bytecode which allow users to
execute queries on raw data files (e.g., Apache Flink).

4. PERFORMANCE EVALUATION
In this section we evaluate the performance of our new

SQL compiler for Spark using the TPC-H benchmark [41],
comparing our approach against an unmodified Spark SQL
runtime [7]. We evaluated our optimizations in two differ-
ent settings, namely, on a single multicore machine and on
a distributed cluster. The evaluation on a single machine
has the goal of assessing the performance of our SQL code
generation in isolation from I/O effects, evaluating the per-
formance of our compilation techniques in an ideal scenario,
i.e., where computation is CPU-bound. To this end, we
run Spark in “local-mode”, using a small dataset that fits
entirely in the machine’s main memory, and we selectively
disable speculative predicate compilation (i.e., Spark-SP) to
highlight the performance impact of the different optimiza-
tions presented in Section 3. The evaluation on a distributed
cluster has the goal of demonstrating the performance of
our SQL compiler in a realistic Spark configuration, to show
that even in the presence of I/O pressure, our new SQL
compiler achieves significant speedups. Moreover, to better
characterize the performance benefits of our optimizations
we evaluated them with micro-benchmarks and we analyzed
the memory pressure and the Spark file-reader performance.

In the following subsections we first introduce the con-
figurations of the single multicore machine and the cluster
used for our experiments, then we compare the results of
our approach against an unmodified Spark runtime, report-
ing speedup factors of the end-to-end execution time for each
query in the TPC-H benchmark. Finally, we evaluate our
optimizations with micro-benchmarks and we show the re-
sults of the analyses on the memory pressure and the Spark
file reader.

4.1 Experimental Configuration
Software configuration. The operating system is a 64-

bit Ubuntu 16.04 on both the single machine and the cluster
nodes. The baseline for our experiment is an unmodified
Spark SQL 2.4.0 runtime with input data generated by the
original TPC-H dbgen [41] tool. Moreover, each benchmark
is executed using the GraalVM EE 1.0.0-rc13 Java Virtual
Machine. Each experiment is executed 10 times; in the fig-
ures we present the arithmetic mean of the 10 measurements
as well as 95% confidence intervals (error bars), or the re-
lated speedup factors, evaluated on the arithmetic mean.

The JVM for our benchmarks is GraalVM. This is moti-
vated by the fact that our SQL compiler relies on the Truf-

fle framework and on the Graal compiler (both included in
GraalVM) for efficient compilation to machine code. The
Graal compiler offers performance comparable to C2, i.e.,
the default optimizing compiler in the HotSpot JVM. To
ensure that GraalVM (i.e., the baseline used in our ex-
periments) has performance comparable to that of popular
JVMs used in real-world Spark deployments, we executed
the TPC-H benchmark running an unmodified Spark SQL
runtime on both GraalVM and HotSpot (Oracle Java JDK,
version jdk1.8.0 192). The results depicted in Figure 9 show
that both VMs have equivalent performance, therefore en-
suring that all the speedup factors that we report are ob-
tained against a realistic, high-performance baseline.

Figure 9: TPC-H performance. Comparison be-
tween HotSpot’s C2 and GraalVM’s Graal JIT.

Single machine configuration. The multicore machine
we use in the first setting has 128 GB of RAM and two Intel
Xeon E5-2680, each of them with 8 cores (@2.7GHz). To be
sure the data fits in main memory, we use a dataset of scale
factor 30 (30 GB dataset of raw data) for CSV benchmarking
and scale factor 10 (27 GB dataset of raw data) for JSON
benchmarking.

Cluster configuration. We have executed all cluster
experiments on a block of 8 nodes in the Data Center Ob-
servatory (DCO) [11]. Each node has 128 GB of RAM and
two AMD Opteron(TM) Processor 6212, each of them with
8 cores (@2.6GHz). All datasets are stored in Hadoop File
System (HDFS) [32] version 3.1.2, among 7 slave nodes,
since we reserve one node as the Spark master node. For
the cluster configuration, we use a dataset of scale factor 300
(300 GB dataset of raw data) for CSV benchmarking and
scale factor 100 (270 GB dataset of raw data) for JSON
benchmarking. The benchmark is executed using a Spark
YARN [33] master node and 7 slave nodes, which are the
same machines that run HDFS, such that Spark can take
advantage of the node-local [36] data locality.

4.2 TPC-H - Single Machine
We evaluate the performance of our new code-generation

approach on the well-established industry-standard TPC-H
benchmark suite, using the CSV and JSON data formats.
The goal of our experimental evaluation is to show how our
code-generation technique affects the performance of end-
to-end query execution times.

As discussed, our code generation benefits from two differ-
ent techniques, namely Spark-SDA and Spark-SP. Depend-
ing on the query workload, the impact of the two techniques
can be different. With the goal of precisely assessing the im-
pact of each individual technique excluding other potential
aspects (especially I/O) we first evaluate our SQL compiler
on a single machine. To this end, we first measure the perfor-
mance of end-to-end query execution time with Spark-SDA
alone, and then we enable Spark-SP. Since the Spark-SP
optimization is implemented on top of Spark-SDA, it is not



Figure 10: Query execution performance on a single
multicore machine. CSV dataset (SF-30).

Figure 11: Query execution performance on a single
multicore machine. JSON dataset (SF-10).

possible to evaluate it in isolation. Then, we evaluate the
combined optimizations on a cluster, to show the speedup
obtained by our approach in a more realistic configuration,
running Spark on a cluster with a bigger dataset.

Our code-generation approach affects the so-called “phys-
ical operations” of a query, i.e., the leaves of the query plan
generated by Spark (i.e., file scans with filter, and projec-
tion operations). As a consequence, we expect the impact of
our novel code generation to be more significant on queries
whose execution plan does not involve many joins or com-
plex aggregations. Furthermore, executing Spark on a clus-
ter, joins and aggregations involve “shuffle” operations, i.e.,
operations that require the communication of partial results
among executor instances. Intuitively, queries that involve
many shuffle operations are much more subject to I/O pres-
sure, and the data transfer cost is often non-negligible [24].

Since it is well-known that shuffle operations are often one
of the major bottlenecks in Spark SQL, the TPC-H queries
have been categorized [6] by the amount of data transferred
during the shuffle operations:

* shuffle-heavy: queries composed of many joins or ag-
gregations require much network I/O to share partial
results among the cluster nodes during computation.
Queries 5, 7, 8, 9, 18, 21 are representative for this
category.

* shuffle-light: conversely, queries with few joins or ag-
gregations are more computation-intensive. Queries 1,
4, 6, 12, 13, 14, 15, 19, 22 are representative for this
category.

Not surprisingly, our code-generation approach achieves
better performance on queries that belong to the shuffle-
light category, since network I/O is not a bottleneck.

For each benchmark, we present the results collected us-
ing both the CSV and the JSON data formats. Obtained
individual speedups are depicted in Figure 10 for the CSV
dataset, and in Figure 11 for the JSON dataset.

4.2.1 Spark-SDA Evaluation
The most important factor that impacts the speedup of

Spark-SDA is predicate selectivity (since a low selectivity
allows us to discard many rows, avoiding unnecessary de-
serialization steps) and the position of filtered fields (i.e., if

filters are applied to the initial columns of the CSV file, our
approach can skip much more computation steps).

The figures show the following notable properties of our
code generation:

* Shuffle-light queries with very low selectivity (i.e., 6,
12, 14, 15, 19) achieve speedups ranging from 3.55x
(Q12) to 6.15x (Q6).

* Most of remaining shuffle-light queries (i.e., 1, 4, 22)
achieve speedups ranging from 2.25x (Q22) to 3.6x
(Q1).

* Overall, the lower speedup of Spark-SDA is 1.58x on
CSV and 1.34x for JSON, and the average speedup
is 2.8x for CSV and 2.31x for JSON.

As the benchmark shows, specialized data access leads
to significant speedups with shuffle-light queries; this is ex-
pected, and suggests that queries where de-serialization is
the major bottleneck benefit most from our Spark-SDA op-
timization.

4.2.2 Spark-SP Evaluation
The most important factor that impacts the speedup of

Spark-SP is the data types involved in the predicates. In
particular, predicates accessing date fields are often the
most expensive ones. Another important factor is the time
spent during the input tokenization, which is the reason
for the different contribution of Spark-SP w.r.t. Spark-SDA
alone for CSV and JSON, since evaluating the predicates
on raw CSV or JSON data have intuitively the same cost
(i.e., both of them are byte arrays containing UTF8-encoded
strings). Indeed, accessing a JSON dataset involves roughly
twice the number of tokenization operations (i.e., by access-
ing JSON data, not only the values have to be tokenized,
but also the object keys).

The figures show the following notable properties of our
code generation:

* Queries that involve predicates on date fields (i.e., 1, 6,
12, 14, 15, 20) benefit most from our approach, achiev-
ing a speedup up to 8.45x (Q6) compared to the base-
line and up to 1.69x compared to Spark-SDA alone.

* Average speedup is 3.34x for CSV and 2.53x for JSON.

Since many queries have no pushed-down predicate on
the largest table (e.g., queries 2, 5, 8, 9, 11, 16, 17, 18,
21, 22) they do not benefit from the Spark-SP optimization,
which is the reason of the small average speedup improve-
ment (3.35x) compared to the one obtained with Spark-SDA
alone (2.8x). Furthermore, another important reason for
such a small improvement is that when our optimizations
are enabled the Spark file reader quickly becomes the query-
execution bottleneck. Indeed, our experiments show that
excluding the common time spent within the file reader, the
speedup executing Q6 is 11.34x for Spark-SDA and 25.3x
for Spark-SP, this analysis is explained in details in the next
section.

4.3 TPC-H - Cluster
With the goal of showing the impact of our optimiza-

tions on a realistic Spark deployment, we have also evaluated
our SQL code generator on a distributed cluster. The per-
formance numbers for the TPC-H benchmark are depicted
in Figures 12 and 13. As the figures show, the obtained
speedups by executing Spark on a cluster are lower com-
pared to the ones obtained on a single machine. This is ex-
pected, since our approach does not optimize the distributed



Figure 12: Query execution performance on an 8-
nodes Spark cluster. CSV dataset (SF-300).

Figure 13: Query execution performance on an 8-
nodes Spark cluster. JSON dataset (SF-100).

operations, but the leaves of query execution plans. Even if
the speedups on a cluster are lower, they are still significant.
Indeed, our SQL compiler obtains a speedup of up to 4.6x
for CSV and 2.6x for JSON, whilst the average speedups are
1.93x for CSV and 1.6x for JSON.

4.4 Micro-Benchmarks
In this section we discuss a set of microbenchmarks we

have designed to better highlight the impact of our code
generation to query execution performance. All the micro-
benchmarks discussed in this section are evaluated executing
Spark with a single thread, to allow for fine-grained measure-
ments of the performance of the generated code.

4.4.1 Experiment 1: Predicates Field Position
As discussed in Section 4.2.1, our code generation leads to

better performance when predicates are evaluated on fields
with lower index position. Conversely, when a field is lo-
cated at the end of an input data row, the performance gain
deriving from selective parsing is reduced, as the parser still
has to scan the entire data. To highlight the performance
impact of field positions on a query evaluation, we created
a microbenchmark based on the TPC-H table lineitem, us-
ing the CSV dataset of scale factor 1. In this microbench-
mark we created 16 copies of the table, each having the
l shipdate field at a different position. Then, we have eval-
uated the following query on all generated tables:

SELECT COUNT(*) FROM lineitem

WHERE l_shipdate < date ’1990-01-01’

Since the query produces an empty result, the experiment
measures reading and predicate time. Figure 14 shows the
speedups obtained by our code generation for each gener-
ated table. As the figure shows, our code generation leads
to higher speedups when the field is found at the first po-
sitions (i.e., 4.92x for Spark-SDA and 8.97x for Spark-SP).
This is expected, as the greater the field position, the tok-
enization and fields skipping overhead increases. Moreover,
we believe that by integrating a parser like Mison [20] with
our approach we would not suffer from such penality, since
by using Mison we would be able to “jump” to the field value

without performing a scanner-based tokenization and fields
skipping. However, as discussed in Section 5, integrating
Mison with our approach would require to address practical
challenges that we consider beyond the scope of this work,
and that are related to the invocation of SIMD instructions
from Java.

Figure 14: Execution performance, sensibility to
field position. Single thread, CSV dataset (SF-1).

4.4.2 Experiment 2: Double vs Decimal Datatypes
As discussed in Section 4.2.2, the performance benefits

of Spark-SP may vary depending on the datatypes involved
in a predicate evaluation. In particular, Spark-SP provides
better performance if the datatype is not converted to a Java
primitive type by Spark, as the generated code may avoid
object allocations and expensive comparison operations al-
together. To highlight the impact of datatypes on predicate
evaluation, we have created a version of TPC-H query 6
that uses decimal types and we have compared the Spark
performance for the query against the default TPC-H query
6, which uses double values. For this micro-benchmark we
used the CSV dataset with scale factor 10. Table 1 shows the
query execution times of query 6 and the speedups obtained
with our approach with both datatypes. As the table shows,
execution times of both original Spark and Spark-SDA are
much higher when using the decimal datatype, increasing
from 178s to 236s with original Spark and from 28s to 46s
with Spark-SDA, and the speedup factor of Spark-SDA over
original Spark decreases from 6.36x to 5.13x. This is ex-
pected, since Spark-SDA uses the same conversion and com-
parison functions as original Spark, and the evaluation of
such functions can easily became a bottleneck. On the other
hand, Spark-SP does not suffer from such slowdowns, since
most of the rows do not pass the predicates, only the few
decimal values comprised in the rows which pass the predi-
cate are actually converted. Indeed, using decimal datatype
the query execution time with Spark-SP only increases from
20s to 21s, and its speedup compared to original Spark in-
creases from 8.9x to 11.23x. This result highlights that spe-
cializing the generated code for a given data type leads to
increased performance gains on top of more efficient data
de-serialization.

Table 1: Q6 execution performance, comparing dou-
ble and decimal datatype. Single Thread (SF-10)

Implementation
Time

(double)
Speedup
(double)

Time
(decimal)

Speedup
(decimal)

CSV 178s - 236s -
CSV-SDA 28s 6.36x 46s 5.13x
CSV-SP 20s 8.9x 21s 11.23x



4.4.3 Analysis 1: Memory Pressure
A reduced number of intermediate allocations should have

a positive impact on the JVM’s garbage collector. We evalu-
ated the memory behavior of our code generation by collect-
ing memory usage statistics using the Java Flight Recorder
sampling profiler [25] during the execution of TPC-H query 6
with the CSV dataset of scale factor 10, running Spark with
a single thread. Table 2 shows the number of Thread Local
Area Buffer (TLAB) allocations2, together with the total
size of allocated objects, the number of garbage collector
invocations and the total time spent during garbage collec-
tion. As the table shows, our approach greatly reduces the
memory pressure. Indeed, original Spark allocated 111 GB
in the Java memory heap, Spark-SDA reduces the allocated
size to 13 GB, i.e., 8.5x less allocation size, and Spark-SP
reduces the allocated size to only 600 MB, i.e., 22x less allo-
cated size than Spark-SDA and 189x less allocated size than
original Spark. We consider such reduced memory pressure
an important result in a system like Spark, since it is known
that in distributed data processing systems careful memory
management is crucial [1].

Table 2: Query 6 - Memory Pressure. Single thread
(SF-10), Java Memory Heap 60GB
Implementation # TLABs Size # GC GC Time
CSV 12 943 111 GB 255 1 235ms
CSV-SDA 603 13 GB 12 75ms
CSV-SP 122 600 MB 3 34ms

4.4.4 Analysis 2: File Reader Performance
As discussed in Section 4.1, for our microbenchmarks we

have used a dataset size which fits in main memory, so that
the operating system can cache the dataset content. Even
with such configuration, we noticed that the file reader used
by Spark (i.e., HadoopFileLineReader) became the major
bottleneck when our optimizations were enabled. Conse-
quently, we analyzed the file reader performances, compar-
ing the total query execution time with the time spent within
the file reader, and we evaluated the speedup factor of our
approach after removing reading time, which does not vary
depending on the implementation, since we have not opti-
mized the file reader. With this analysis we executed Spark
with a single thread, executing TPC-H query 6 on a dataset
of scale factor 10 for both CSV and JSON sources.

As shown in Table 3, from our analysis it emerges that the
query execution time is 178s for CSV and 237s for JSON,
and the time spent within the HadoopFileLineReader class
is 13.5s for CSV (7.6% of total execution time) and 33s
(13.9% of total execution time) for JSON. With Spark-SDA
enabled the total execution times are 28s for CSV and 54s for
JSON, the percentage of time spent within the file reader
is 48.3% for CSV and 61.1% for JSON, and the speedup
factors of the execution time without file reading time are
11.34x for CSV and 9.71x for JSON. With both Spark-SDA
and Spark-SP enabled, the total execution times are 20s for
CSV and 44s for JSON, the percentage of time spent within
the file reader is 67.5% for CSV and 75% for JSON, and the
speedup factors of the execution time without file reading
time are 25.3x for CSV and 18.54x for JSON.

2TLAB is a memory area where new objects are allocated.
Once a TLAB is full, the thread gets a new one. Therefore,
the smaller the number of allocations, the better for the
VM’s Garbage collector.

Such analysis clearly shows that our optimizations push
the bottleneck from data parsing to file reading, even in case
the file has been cached by the operative system.

Table 3: Q6 execution performance, analysis of time
spent in file reader class. Single Thread (SF-10)

Implementation Time Speedup Reader
Time
w/o

Reader

Speedup
w/o

Reader
CSV 178s - 7.6% 164.5s -
CSV-SDA 28s 6.36x 48.3% 14.5s 11.34x
CSV-SP 20s 8.9x 67.5% 6.5s 25.3x
JSON 237s - 13.9% 204s -
JSON-SDA 54s 4.39x 61.1% 21s 9.71x
JSON-SP 44s 5.39x 75% 11s 18.54x

5. RELATED WORK
SQL query compilation in Spark plays a crucial role from a

performance perspective, and dates back to the introduction
of “whole-stage code generation” in Spark 2.0. To the best of
our knowledge, no existing SQL code generation technique
for Spark or comparable Big data systems relies on special-
ization, speculative optimizations, dynamic code generation
and runtime de-optimization.

Flare [10] is another example of alternative SQL compi-
lation in Spark. Based on the code-generation framework
Lightweight Modular Staging [30], Flare can achieve impres-
sive speedups, but -unlike our approach- it was specifically
designed to operate on a single, shared-memory, multicore
machine, and cannot execute Spark applications in a dis-
tributed cluster. Unlike our approach, Flare is a complete
replacement of the Spark execution model, which avoids en-
tirely network communication and the fault-tolerance. More-
over, certain Spark applications (e.g., those relying on user-
defined functions) cannot be executed on Flare. Conversely,
as discussed in Section 3.4 our code generation integrates di-
rectly with an unmodified Spark runtime, and can be used
in all Spark execution modes (i.e., local mode, standalone,
Yarn and Mesos clusters). Moreover, our new SQL compiler
is completely transparent to the user, and does not impose
any restriction on the applications that can be executed.
Outside of the realm of Spark, SQL compilation is becom-
ing pervasive in modern data processing systems, including
several DBMSs [18]. One relevant example is ViDa [16],
a query engine that allows one to execute queries on data
lakes of raw data (e.g. CSV files). Similarly to our approach,
ViDa integrates a specialized CSV de-serializer within the
generated code, to reduce the parsing overhead by scan-
ning tokens selectively and executing predicates as soon as
the relevant column has been read. Besides ViDa, many
other compilation techniques have been proposed, including
JIT compilation from a bytecode format to dynamically-
generated LLVM code snippets (e.g., in SQLite [17]) and an
adaptive query execution system that dynamically switches
from interpretation to compilation [19].

Differently from Flare, ViDa, and other “data-centric”
SQL compilers, our code-generation approach relies on spec-
ulative dynamic optimization (and runtime de-optimization
when speculative assumptions no longer hold). This is a fun-
damental difference in our compilation approach, and allows
our compiler to aggressively optimize predicate execution,
and to “replace” optimizations with less-specialized machine
code when speculative assumptions no longer hold. On the



contrary, the code generated for a SQL query in Flare, ViDa,
and other systems is static C/LLVM code which is not dy-
namically de-optimized and re-compiled to account for the
failures of speculative optimizations.

Adaptive Query Execution [37] is a framework developed
by the Intel and Baidu big-data teams. Adaptive execution
decreases the effort involved in tuning SQL query param-
eters and improves the execution performance by choosing
a better execution plan and parallelism at runtime. Simi-
lar frameworks have been proposed in the literature (e.g.,
DynO [15], Rios [21]) to address the same problem, focusing
on adaptively changing the join implementation during the
query execution. Adaptive execution, DynO, and Rios im-
plement adaptivity by updating the query plan at runtime,
such approach requires to re-execute the full SQL static com-
pilation pipeline (i.e., Java source generation and compila-
tion to Java bytecode), incurring in non-negligible overhead.
On the other hand, our approach implements adaptivity by
meaning of dynamic recompilation and it completely avoid
to re-generate sources and bytecode, since it de-optimizes
and recompiles the existing bytecode.

Since a well-known major bottleneck of modern Big data
systems is data de-serialization, several systems have fo-
cused on the problem of fast JSON de-serialization in Spark.
Mison [20] is an example of such systems. It is based on the
idea that predicates and projections can be “pushed down”
to JSON parsing, an intuition that is shared with our code
generation. Specifically, Mison relies on a positional index
for the dataset values and on speculating over the value po-
sitions, and uses SIMD instruction to vectorize scanning op-
erations. In contrast to our approach, Mison does not gener-
ate specialized code for the parser based on static knowledge
(i.e., the data schema). The limitation of our approach com-
pared with Mison is that our parser is subject to the position
of queried fields, as discussed in Section 4.4.1. On the other
hand, Mison approach is to speculate over the expected po-
sition of a field in the input byte array, rather than on the
JSON object schema, like our approach. We believe that
integrating Mison with our approach can help reduce the
sensibility of our parser to the field positions.

Theoretically, Spark-SP optimization could be synergistic
with Mison, i.e., we could invoke the Mison parser for each
queried field and execute our speculative predicates on its
result. Furthermore, after the training phase performed in
Mison to generate the positional index ends, we could in-
voke a de-optimization and recompilation to inline the eval-
uated index, improving the generated machine code. The
main challenge with such approach is that Mison requires
SIMD instructions, and it is known that directly invoking
them from Java is a challenging problem [31]. Mison imple-
mentation relies on the Java Native Interface (JNI) [27] to
invoke the statically compiled Mison library from the JVM.
Since it is known that JNI introduces an high overhead [14],
Mison performs such invocation for each input file, instead
of for each tuple, in that way the JNI overhead is allevi-
ated. Unfortunately, such approach is not compatible with
our optimizations, since the whole data access operation is
performed within the Mison library.

Another relevant approach based on predicate push-down
is Sparser [29]. The idea behind Sparser is to execute a
pre-filtering phase over raw data which can drop rows that
surely do not match certain SQL predicates. Generally, such
a pre-filtering phase is not completely accurate, since if a

row passes the pre-filtering it may still be dropped later by
the actual filters. Hence, using Sparser, such a pre-filtering
phase may avoid to parse a subset of data rows which is
known not to pass a specific predicate. This idea is similar to
our fast paths described in Section 3, but instead of integrat-
ing the pre-filtering phase within the Spark code generation,
Sparser delegates it to a non-specialized (external) system.
Furthermore, Sparser can apply its pre-filtering phase only
to a small subset of SQL predicates, namely the exact string
match, string inclusion, null checks, and their composition
with logical AND and OR operators. Conversely, as dis-
cussed in Section 3.3, our Spark-SP optimization supports
more complex predicates, like numerical and date compar-
ison and range inclusion. Since Sparser introduces a pre-
filtering phase and then uses an unmodified Spark runtime
to execute the query on the filtered data, it can be easily
integrated with our approach to obtain combined benefits.

Outside of the realm of SQL processing, FAD.js [3] is
a runtime for Node.js that can parse JSON objects incre-
mentally, leading to significant performance improvements.
With our techniques, FAD.js shares the idea that data should
be parsed only when needed. However, our approach is inte-
grated within the SQL compilation of Spark SQL, whereas
FAD.js is a runtime library for Node.js.

6. CONCLUSION
In this paper we introduced a new dynamic SQL compiler

for Apache Spark. Our novel approach to SQL compila-
tion relies on the intuition that data de-serialization and
predicate evaluation should be specialized according to the
input data format and other static or dynamic aspects of a
SQL query. To this end, we have introduced two optimiza-
tion techniques, namely Spark-SDA and Spark-SP, and we
have evaluated them on Spark SQL workloads using CSV
and JSON input data. Spark-SDA relies on the idea that
input data de-serialization should be performed incremen-
tally, leveraging parsing “steps” that are specialized for the
given input data format. Spark-SP relies on the idea that
a speculative “fast-path” predicate check can be performed
very efficiently, without performing conversions to Java data
types. Our novel SQL compiler outperforms the state-of-
the-art Spark SQL compiler in most of the TPC-H queries,
with speedups up to 4.4x for CSV and 2.6x for JSON on a
distributed Spark cluster.

In future work, we plan to expand our novel code gener-
ation for Spark SQL to target Parquet and other columnar
data formats. To this end, we will investigate how to extend
our SQL compiler to invoke data-parallel SIMD instructions
such as AVX2 and AVX-512 directly from Java, without in-
curring in the JNI overhead. By doing so, we would also be
able to integrate existing SIMD-based components with our
optimizations.
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Representation for Speculative Optimizations in a
Dynamic Compiler. In VMIL, pages 1–10, 2013.

[10] G. M. Essertel, R. Y. Tahboub, J. M. Decker, K. J.
Brown, K. Olukotun, and T. Rompf. Flare:
Optimizing Apache Spark with Native Compilation
for Scale-up Architectures and Medium-size Data. In
OSDI, pages 799–815, 2018.

[11] ETH DCO. Welcome - Data Center Observatory —
ETH Zurich, 2019. https://wiki.dco.ethz.ch/.

[12] H. Fang. Managing data lakes in big data era: What’s
a data lake and why has it became popular in data
management ecosystem. In CYBER, pages 820–824,
2015.

[13] Y. Futamura. Partial Computation of Programs.
RIMS Symposia on Software Science and Engineering,
1983.

[14] N. A. Halli, H.-P. Charles, and J.-F. Méhaut.
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G. Duboscq, C. Humer, G. Richards, D. Simon, and
M. Wolczko. One VM to Rule Them All. In Onward!,
pages 187–204, 2013.

[46] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient Distributed Datasets: A
Fault-tolerant Abstraction for In-memory Cluster
Computing. In NSDI, pages 2–2, 2012.

[47] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster Computing
with Working Sets. In HotCloud, pages 10–10, 2010.

https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/ExperimentalMethods.html#extraOptimizations()
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/sql/ExperimentalMethods.html#extraOptimizations()
https://github.com/apache/spark/blob/v2.4.0/sql/core/src/main/scala/org/apache/spark/sql/sources/filters.scala
https://github.com/apache/spark/blob/v2.4.0/sql/core/src/main/scala/org/apache/spark/sql/sources/filters.scala
https://github.com/apache/spark/blob/v2.4.0/sql/core/src/main/scala/org/apache/spark/sql/sources/filters.scala
https://spark.apache.org/docs/latest/tuning.html#data-locality
https://spark.apache.org/docs/latest/tuning.html#data-locality
https://databricks.com/session/spark-sql-adaptive-execution-unleashes-the-power-of-cluster-in-large-scale
https://databricks.com/session/spark-sql-adaptive-execution-unleashes-the-power-of-cluster-in-large-scale
https://databricks.com/session/spark-sql-adaptive-execution-unleashes-the-power-of-cluster-in-large-scale
http://www.mapdb.org/
https://parquet.apache.org/
http://prestodb.github.io/
http://www.tpc.org/tpch/

	Introduction
	Background: Code Generation  in Spark SQL
	Dynamic SQL Query Compilation
	Dynamic Code Generation
	Specializing Data Access (Spark-SDA)
	Specialized Speculative Data De-serialization
	Parsing Nodes Generation

	Specializing Predicates (Spark-SP)
	Numeric Comparisons
	String and Date Comparisons

	Integration in Spark SQL

	Performance Evaluation
	Experimental Configuration
	TPC-H - Single Machine
	Spark-SDA Evaluation
	Spark-SP Evaluation

	TPC-H - Cluster
	Micro-Benchmarks
	Experiment 1: Predicates Field Position
	Experiment 2: Double vs Decimal Datatypes
	Analysis 1: Memory Pressure
	Analysis 2: File Reader Performance


	Related Work
	Conclusion
	Acknowledgments
	References

