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Chapter 1

Introduction

The term“causal inference”refers to the process of drawing conclusions about causal mechanisms

from data. Approaches to causal inference are manifold and include not only experimental

but also a variety of non-experimental methods for evaluating policies and events based on

observational data. By assessing observational data in an appropriate framework, such as the

potential outcomes framework (see for instance Neyman (1923) and Rubin (1974)), experimental

conditions can be mimicked in order to infer the impact of (policy or business) interventions or

events on outcomes of interest. These non-experimental methods of causal inference can provide

the basis for effective policy and business decision making even in contexts where experiments

are infeasible, e.g., for ethical reasons, due to financial constraints, or simply because the matter

under study is too urgent for decision makers to wait for experimental results. In addition to

estimating the overall causal impact of an intervention or event, the field of causal inference also

comprises deeper analyses of the underlying causal mechanisms, as well as the assessment of

interpersonal differences in effects, which in turn allows for the identification of optimal policy

targeting strategies.

This dissertation contributes, on the one hand, to the advancement of causal inference meth-

ods by developing a machine learning-based framework for causal mediation analysis and by

illustrating approaches to inferring causal effects in the context of text data. On the other hand,

it applies methods of causal inference to problems in a variety of disciplines, namely epidemic

policy making, jurisprudence, and marketing, and demonstrates new approaches to addressing

research questions in these areas.

The studies are ordered chronologically, that is, according to the time when the corresponding

projects were initiated. Chapter 2 proposes a framework for conducting causal mediation analysis

based on double machine learning (Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey,

and Robins (2018)). The proposed framework allows for decomposing the causal effect of a

treatment on an outcome of interest into a direct effect as well as an indirect effect operating via

1



an intermediate outcome, while controlling for observed confounders in a data-driven way. The

effect estimates can be shown to be asymptotically normal and n−1/2-consistent under certain

regularity conditions. For illustrative purposes, the framework is applied to decompose the total

effect of health insurance coverage on general health among young adults in the United States

into a direct effect and an indirect effect through routine checkups.

In Chapter 3, we assess the effect of the timing of COVID-19 response measures on COVID-

19-related hospitalization and death rates in Germany and Switzerland. We do so by exploiting

the fact that the epidemic was more advanced in some regions than in others when certain

lockdown measures came into force. We compare hospitalization and death rates across regions

with earlier and later epidemic start dates, finding for both countries that a relatively later

imposition of lockdown measures entails higher cumulative hospitalization and death rates. An

assessment of curfews, as introduced in some German states, provides no evidence that, under the

other lockdown measures already in place, curfews are more effective than the federally imposed

ban on gatherings. This chapter constitutes a contribution to the COVID-19 literature, which

at the early point in the COVID-19 pandemic when our study was published was dominated by

studies simulating and predicting the future evolution of infection curves.

In Chapter 4, I assess the impact of the #MeToo movement on language in court by quan-

tifying judicial opinions from U.S. appeal courts and then applying the Difference-in-Difference

method as well as an event study approach. The opinions are quantified by means of text vector-

ization methods as well as by constructing indicators that measure the extent of victim blaming

in each opinion. While not revealing significant effects of the movement on the quantifiers under

study, this chapter does present approaches to analyzing the arguably most comprehensive data

available: text.

Chapter 5, finally, points out the advantages of causal machine learning over predictive

machine learning in the context of business decision making. Using a retailer’s coupon cam-

paign data as an example, we demonstrate how causal machine learning can leverage obser-

vational data from earlier campaigns to evaluate the effectiveness of coupon campaigns and

determine the optimal coupon distribution strategy in terms of expected overall revenues. For

the coupon campaigns under study, we find that only two out of five coupon categories, namely

coupons applicable to the product categories of drugstore items and other food, show a sig-

nificant purchase-increasing effect. The assessment of group average treatment effects reveals

2



substantial differences in the impact of coupon provision across customer groups, particularly

across customer groups as defined by pre-campaign spending.

3



Chapter 2

Causal Mediation Analysis with Double Machine Learning

with Helmut Farbmacher, Martin Huber, Lukáš Lafférs and Martin Spindler

Abstract: This paper combines causal mediation analysis with double machine learning for a data-driven

control of observed confounders in a high-dimensional setting. The average indirect effect of a binary

treatment and the unmediated direct effect are estimated based on efficient score functions, which are

robust w.r.t. misspecifications of the outcome, mediator, and treatment models. This property is key

for selecting these models by double machine learning, which is combined with data splitting to prevent

overfitting. We demonstrate that the effect estimators are asymptotically normal and n−1/2-consistent

under specific regularity conditions and investigate the finite sample properties of the suggested methods

in a simulation study when considering lasso as machine learner. We also provide an empirical application

to the U.S. National Longitudinal Survey of Youth, assessing the indirect effect of health insurance

coverage on general health operating via routine checkups as mediator, as well as the direct effect.
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2.1 Introduction

Causal mediation analysis aims at decomposing the causal effect of a treatment on an outcome

of interest into an indirect effect operating through a mediator (or intermediate outcome) and a

direct effect comprising any causal mechanisms not operating through that mediator. Even if the

treatment is random, direct and indirect effects are generally not identified by naively controlling

for the mediator without accounting for its likely endogeneity, see Robins and Greenland (1992).

While much of the earlier literature either neglected endogeneity issues or relied on restrictive

linear models, see for instance Cochran (1957), Judd and Kenny (1981), and Baron and Kenny

(1986), more recent contributions consider more general identification approaches using the

potential outcome framework. Some of the numerous examples are Robins and Greenland (1992),

Pearl (2001), Robins (2003), Petersen, Sinisi, and van der Laan (2006), VanderWeele (2009),

Imai, Keele, and Yamamoto (2010), Hong (2010), Albert and Nelson (2011), Imai and Yamamoto

(2013), Tchetgen Tchetgen and Shpitser (2012), Vansteelandt, Bekaert, and Lange (2012), and

Huber (2014). Using the denomination of Pearl (2001), the literature distinguishes between

natural direct and indirect effects, where mediators are set to their potential values ‘naturally’

occurring under a specific treatment assignment, and the controlled direct effect, where the

mediator is set to a ‘prescribed’ value.

The vast majority of identification strategies relies on selection-on-observable-type assump-

tions implying that the treatment and the mediator are conditionally exogenous when control-

ling for observed covariates. Empirical examples in economics and policy evaluation include

Flores and Flores-Lagunes (2009), Heckman, Pinto, and Savelyev (2013), Keele, Tingley, and

Yamamoto (2015), Conti, Heckman, and Pinto (2016), Huber (2015), Huber, Lechner, and

Mellace (2017), Bellani and Bia (2018), Bijwaard and Jones (2018), and Huber, Lechner, and

Strittmatter (2018). Such studies typically rely on the (implicit) assumption that the covariates

to be controlled for can be unambiguously preselected by the researcher, for instance based on

institutional knowledge or theoretical considerations. This assumes away uncertainty related to

model selection w.r.t. covariates to be included and entails incorrect inference under the common

practice of choosing and refining the choice of covariates based on their predictive power.

To improve upon this practice, this paper combines causal mediation analysis based on effi-

cient score functions, see Tchetgen Tchetgen and Shpitser (2012), with double machine learning
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as outlined in Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018)

for a data-driven control of observed confounders to obtain valid inference under specific reg-

ularity conditions. In particular, one important condition is that the number of important

confounders (that make the selection-on-observables assumptions to hold approximately) is not

too large relative to the sample size. However, the set of these important confounders need

not be known a priori and the set of potential confounders can be even larger than the sample

size.1 This is particularly useful in high dimensional data with a vast number of covariates that

could potentially serve as control variables, which can render researcher-based covariate selection

complicated if not infeasible. We demonstrate n−1/2-consistency and asymptotic normality of

the proposed effect estimators under specific regularity conditions by verifying that the general

framework of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018)

for well-behaved double machine learning is satisfied in our context.

Tchetgen Tchetgen and Shpitser (2012) suggest estimating natural direct and indirect effects

based on the efficient score functions of the potential outcomes, which requires plug-in estimates

for the conditional mean outcome, mediator density, and treatment probability. Analogous to

doubly robust estimation of average treatment effects, see Robins, Rotnitzky, and Zhao (1994)

and Robins and Rotnitzky (1995), the resulting estimators are semiparametrically efficient if

all models of the plug-in estimates are correctly specified and remain consistent even if one

model is misspecified. We show that the efficient score function of Tchetgen Tchetgen and

Shpitser (2012) satisfies the so-called Neyman (1959) orthogonality discussed in Chernozhukov,

Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018), which makes the estimation of

direct and indirect effects rather insensitive to (local) estimation errors in the plug-in estimates.

We transform the score function of Tchetgen Tchetgen and Shpitser (2012) by an application

of Bayes’ Law in a way that it avoids the estimation of the conditional mediator density, as

discussed in Zheng and van der Laan (2012) and also adopted by Dı́az and Hejazi (2020), and

show it to be Neyman orthogonal. This appears particularly useful when the mediator is a vector

of variables and/or continuous, making conditional mediator density estimation cumbersome.

Further, we establish the score function required for estimating the controlled direct effect along

with Neyman orthgonality.

1Different from conventional semiparametric methods, the double machine learning framework does not require
the set of potential confounders to be restricted by Donsker conditions, but permits the set to be unbounded and
to grow with the sample size.
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Neyman orthgonality is key for the fruitful application of double machine learning, ensuring

robustness in the estimation of the nuisance parameters which is crucial when applying modern

machine learning methods. Random sample splitting – to estimate the parameters of the plug-in

models in one part of the data, while predicting the score function and estimating the direct

and indirect effects in the other part – avoids overfitting the plug-in models (e.g. by controlling

for too many covariates). It increases the variance by only using part of the data for effect

estimation. This is avoided by cross-fitting which consists of swapping the roles of the data

parts for estimating the plug-in models and the treatment effects to ultimately average over

the effect estimates in either part. When combining efficient score-based effect estimation with

sample splitting, n−1/2-convergence of treatment effect estimation can be obtained under a sub-

stantially slower convergence of n−1/4 for the plug-in estimates, see Chernozhukov, Chetverikov,

Demirer, Duflo, Hansen, Newey, and Robins (2018). Under specific regularity conditions, this

convergence rate can attained by various machine learning algorithms including lasso regression,

see Tibshirani (1996).

We investigate the estimators’ finite sample behaviour based on the score function of Tchet-

gen Tchetgen and Shpitser (2012) and the alternative score suggested in this paper when using

post-lasso regression as machine learner for the plug-in estimates. Furthermore, we apply our

method to data from the National Longitudinal Survey of Youth 1997 (NLSY97) conducted by

the Bureau of Labor Statistics at the U.S. Department of Labor (2019), where a large set of

potential control variables is available. We disentangle the short-term effect of health insurance

coverage on general health into an indirect effect which operates via the incidence of a routine

checkup in the last year and a direct effect covering any other causal mechanisms. While we find

a moderate, though statistically insignificant health-improving direct effect, the indirect effect

is very close to zero. We therefore do not find evidence that health insurance coverage affects

general health through routine checkups in the short run.

We note that basing estimation on efficient score functions is not the only framework satis-

fying the previously mentioned robustness w.r.t. estimation errors in plug-in parameters. This

property is also satisfied by the targeted maximum likelihood estimation (TMLE) framework by

van der Laan and Rubin (2006), see the discussion in Dı́az (2020). TMLE relies on iteratively

updating (or robustifying) an initial estimate of the parameter of interest based on regression

steps that involve models for the plug-in parameters. Zheng and van der Laan (2012) have
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developed an estimation approach for natural direct and indirect effects using TMLE, where the

plug-in parameters might by estimated by machine learners, e.g. the super learner, an ensemble

method suggested by van der Laan, Polley, and Hubbard (2007). This iterative estimation ap-

proach is therefore an alternative to the double machine learning-based approach suggested in

this paper, for which we demonstrate n−1/2-consistency under specific conditions.

This paper proceeds as follows. Section 2.2 introduces the concepts of direct and indirect ef-

fect identification in the potential outcome framework. In Section 2.3, we present the identifying

assumptions and discuss identification based on efficient score functions. Section 2.4 proposes an

estimation procedure based on double machine learning and shows n−1/2-consistency and asymp-

totic normality under specific conditions. Section 2.5 provides a simulation study. Section 2.6

presents an empirical application to data from the NLSY97. Section 2.7 concludes.

2.2 Definition of direct and indirect effects

We aim at decomposing the average treatment effect (ATE) of a binary treatment, denoted by

D, on an outcome of interest, Y , into an indirect effect operating through a discrete mediator,

M , and a direct effect that comprises any causal mechanisms other than throughM . We use the

potential outcome framework, see for instance Rubin (1974), to define the direct and indirect

effects of interest, see also Ten Have, Joffe, Lynch, Brown, Maisto, and Beck (2007) and Albert

(2008) for further examples in the context of mediation. M(d) denotes the potential mediator

under treatment value d ∈ {0, 1}, while Y (d,m) denotes the potential outcome as a function of

both the treatment and some value m of the mediatorM .2 The observed outcome and mediator

correspond to the respective potential variables associated with the actual treatment assignment,

i.e. Y = D·Y (1,M(1))+(1−D)·Y (0,M(0)) andM = D·M(1)+(1−D)·M(0), implying that any

other potential outcomes or mediators are a priori (i.e. without further statistical assumptions)

unknown.

We denote the ATE by ∆ = E[Y (1,M(1))− Y (0,M(0))], which comprises both direct and

indirect effects. To decompose the latter, note that the average direct effect, denoted by θ(d),

equals the difference in mean potential outcomes when switching the treatment while keeping

2Throughout this paper, capital letters denote random variables and small letters specific values of random vari-
ables.
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the potential mediator fixed, which blocks the causal mechanism via M :

θ(d) = E[Y (1,M(d))− Y (0,M(d))], d ∈ {0, 1}. (2.1)

The (average) indirect effect, δ(d), equals the difference in mean potential outcomes when switch-

ing the potential mediator values while keeping the treatment fixed to block the direct effect.

δ(d) = E[Y (d,M(1))− Y (d,M(0))], d ∈ {0, 1}. (2.2)

Robins and Greenland (1992) and Robins (2003) referred to these parameters as pure/total direct

and indirect effects, Flores and Flores-Lagunes (2009) as net and mechanism average treatment

effects, and Pearl (2001) as natural direct and indirect effects, which is the denomination used

in the remainder of this paper.

The ATE is the sum of the natural direct and indirect effects defined upon opposite treatment

states d, which can be easily seen from adding and subtracting the counterfactual outcomes

E[Y (0,M(1))] and E[Y (1,M(0))]:

∆ = E[Y (1,M(1))− Y (0,M(0))]

= E[Y (1,M(1))− Y (0,M(1))] + E[Y (0,M(1))− Y (0,M(0))] = θ(1) + δ(0)

= E[Y (1,M(0))− Y (0,M(0))] + E[Y (1,M(1))− Y (1,M(0))] = θ(0) + δ(1). (2.3)

The distinction between θ(1) and θ(0) as well as δ(1) and δ(0) hints to the possibility of het-

erogeneous effects across treatment states d due to interaction effects between D and M . For

instance, the direct effect of health insurance coverage (D) on general health (Y ) might depend

on whether or not a person underwent routine check-ups (M). We note that a different ap-

proach to dealing with the interaction effects between D and M is a three-way decomposition

of the ATE into the pure direct effect (θ(0)), the pure indirect effect (δ(0)) and the mediated

interaction effect, see VanderWeele (2013).

The so-called controlled direct effect, denoted by γ(m), is a further parameter that received

much attention in the mediation literature. It corresponds to the difference in mean potential
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outcomes when switching the treatment and fixing the mediator at some value m:

γ(m) = E[Y (1,m)− Y (0,m)], for m in the support of M. (2.4)

In contrast to θ(d), which is conditional on the potential mediator value ‘naturally’ realized

for treatment d which may differ across subjects, γ(m) is conditional on enforcing the same

mediator state in the entire population. The two parameters are only equivalent in the absence

of an interaction between D and M . Whether the natural or controlled direct effect is more

relevant depends on the feasibility and desirability to intervene on or prescribe the mediator,

see Pearl (2001) for a discussion of the ‘descriptive’ and ‘prescriptive’ natures of natural and

controlled effects. There is no indirect effect parameter matching the controlled direct effect,

implying that the difference between the total effect and the controlled direct effect does in

general not correspond to the indirect effect, unless there is no interaction between D and M ,

see e.g. Kaufman, MacLehose, and Kaufman (2004).

2.3 Assumptions and identification

Our identification strategy is based on the assumption that confounding of the treatment-

outcome, treatment-mediator, and mediator-outcome relations can be controlled for by con-

ditioning on observed covariates, denoted by X. The latter must not contain variables that are

influenced by the treatment, such that X is typically evaluated prior to treatment assignment.

Figure 2.1 provides a graphical illustration using a directed acyclic graph, with arrows represent-

ing causal effects. Each of D, M , and Y might be causally affected by distinct and statistically

independent sets of unobservables not displayed in Figure 2.1, but none of these unobservables

may jointly affect two or all three elements (D,M, Y ) conditional on X.

Formally, the first assumption invokes conditional independence of the treatment and po-

tential mediators or outcomes given X. This restriction has been referred to as conditional

independence, selection on observables, or exogeneity in the treatment evaluation literature, see

e.g. Imbens (2004). This rules out confounders jointly affecting the treatment on the one hand

and the mediator and/or the outcome on the other hand conditional on X. In non-experimental

data, the plausibility of this assumption critically hinges on the richness of X.
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Figure 2.1: Causal paths under conditional exogeneity given pre-treatment covariates

Assumption 1 (conditional independence of the treatment):

{Y (d′,m),M(d)}⊥D|X = x for all d′, d ∈ {0, 1} and m,x in the support of M,X,

where ‘⊥’ denotes statistical independence.

The second assumption requires the mediator to be conditionally independent of the potential

outcomes given the treatment and the covariates.

Assumption 2 (conditional independence of the mediator):

Y (d′,m)⊥M |D = d,X = x for all d′, d ∈ {0, 1} and m,x in the support of M,X.

Assumption 2 rules out confounders jointly affecting the mediator and the outcome con-

ditional on D and X. If X is pre-treatment (as is common to avoid controlling for variables

potentially affected by the treatment), this implies the absence of post-treatment confounders of

the mediator-outcome relation. Such a restriction needs to be rigorously scrutinized and appears

for instance less plausible if the time window between the measurement of the treatment and

the mediator is large in a world of time-varying variables.

The third assumption imposes common support on the conditional treatment probability

across treatment states.

Assumption 3 (common support):

Pr(D = d|M = m,X = x) > 0 for all d ∈ {0, 1} and m,x in the support of M,X.

The common support assumption, also known as positivity or covariate overlap assump-

tion, restricts the conditional probability to be or not be treated given M,X, henceforth re-

ferred to as propensity score, to be larger than zero. It implies the weaker condition that

Pr(D = d|X = x) > 0 such that the treatment must not be deterministic in X, otherwise no

comparable units in terms of X are available across treatment states. By Bayes’ Law, Assump-
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tion 3 also implies that Pr(M = m|D = d,X = x) > 0 if M is discrete or that the conditional

density of M given D,X is larger than zero if M is continuous. Conditional on X, the mediator

state must not be deterministic in the treatment, otherwise no comparable units in terms of

the treatment are available across mediator states. Assumptions 1 to 3 are standard in the

causal mediation literature, see for instance Imai, Keele, and Yamamoto (2010), Tchetgen Tch-

etgen and Shpitser (2012), Vansteelandt, Bekaert, and Lange (2012), and Huber (2014), or also

Pearl (2001), Petersen, Sinisi, and van der Laan (2006), and Hong (2010), for closely related

restrictions.

We identify the counterfactual E[Y (d,M(1 − d))] based on the following lemma proven by

Tchetgen Tchetgen and Shpitser (2012).

Lemma 1:

Under Assumptions 1-3, the counterfactual E[Y (d,M(1 − d))] is identified by the following

efficient score function:

E[Y (d,M(1− d))] = E[ψd],

with ψd =
I{D = d} · f(M |1− d,X)

pd(X) · f(M |d,X)
· [Y − µ(d,M,X)]

+
I{D = 1− d}
1− pd(X)

·
[
µ(d,M,X)−

∫
m∈M

µ(d,m,X) · f(m|1− d,X) dm
]

+

∫
m∈M

µ(d,m,X) · f(m|1− d,X) dm (2.5)

where f(M |D,X) denotes the conditional density of M given D and X (if M is discrete, this

is a conditional probability and integrals need to be replaced by sums), pd(X) = Pr(D = d|X)

the probability of treatment D = d given X, and µ(D,M,X) = E(Y |D,M,X) the conditional

expectation of outcome Y given D, M , and X.

(2.5) satisfies a multiple robustness property in the sense that estimation remains consistent

even if one out of the three models for the plug-in parameters f(M |D,X), pd(X), and µ(D,M,X)

is misspecified.

To derive an alternative expression for identification, note that by Bayes’ Law,

f(M |1− d,X)

pd(X) · f(M |d,X)
=

(
1− pd(M,X)

)
· f(M |X)

1− pd(X)
· pd(X)

pd(M,X) · f(M |X) · pd(X)

=
1− pd(M,X)

pd(M,X) ·
(
1− pd(X)

)
12



where f(M |X) is the conditional distribution of M given X and pd(X,M) = Pr(D = d|X,M).

Furthermore,

∫
µ(d,m,X) · f(m|1− d,X)dm = E

[
µ(d,M,X)

∣∣∣D = 1− d,X
]
.

As also noticed in Zheng and van der Laan (2012), the counterfactual can as well be identified

based on an alternative multiply robust representation of (2.5) as provided in the following

lemma.

Lemma 2:

Under Assumptions 1-3, the counterfactual E[Y (d,M(1 − d))] is identified by the following

alternative efficient score function:

E[Y (d,M(1− d))] = E[ψ∗
d],

with ψ∗
d =

I{D = d} · (1− pd(M,X))

pd(M,X) · (1− pd(X))
· [Y − µ(d,M,X)]

+
I{D = 1− d}
1− pd(X)

·
[
µ(d,M,X)− E

[
µ(d,M,X)

∣∣∣D = 1− d,X
]]

+ E
[
µ(d,M,X)

∣∣∣D = 1− d,X
]
. (2.6)

Similarly as the approaches based on inverse probability weighting (rather than efficient

scores) in Huber (2014) and Tchetgen Tchetgen (2013), (2.6) avoids conditional mediator den-

sities, which appears attractive if M is continuous and/or multidimensional. On the other

hand, it requires the estimation of an additional parameter, namely the nested conditional mean

E[µ(d,M,X)|D = 1 − d,X], as similarly found in Miles, Shpitser, Kanki, Meloni, and Tchet-

gen Tchetgen (2020), who suggest a multiply robust score function for assessing path-specific

effects. Alternatively to rearranging the score function by Tchetgen Tchetgen and Shpitser

(2012) as outlined above, ratios of conditional densities as for instance appearing in the first

component of (2.5) might be treated as additional nuisance parameter and estimated directly

via density-ratio estimation, see e.g. Sugiyama, Kawanabe, and Chui (2010) for density-ratio

estimation in high-dimensional settings. Such methods based on directly estimating the density

ratio without going through estimating the densities in numerator and denominator separately

are shown in several studies to compare favourably with estimating the densities separately, see

e.g. Kanamori, Suzuki, and Sugiyama (2012).
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Efficient score-based identification of E[Y (d,M(d))] under Y (d,m)⊥{D,M}|X = x (see

Assumptions 1 and 2) has been established in the literature on doubly robust ATE estimation,

see for instance Robins, Rotnitzky, and Zhao (1994) and Hahn (1998):

Lemma 3:

Under Assumptions 1-3, the potential outcome E[Y (d,M(d))] is identified by the following

efficient score function:

E[Y (d,M(d))] = E[αd] with αd =
I{D = d} · [Y − µ(d,X)]

pd(X)
+ µ(d,X) (2.7)

where µ(D,X) = E(Y |D,M(D), X) = E(Y |D,X) is the conditional expectation of outcome Y

given D and X.

For identifying the controlled direct effect, we now assume that M is discrete (while this

need not be the case in the context of natural direct and indirect effects) such that for all m

in the support of M , it must hold that Pr(M = m) > 0. As Assumptions 1 and 2 imply

Y (d,m)⊥{D,M}|X = x, doubly robust identification of the potential outcome E[Y (d,m)],

which is required for the controlled direct effect, follows from replacing I{D = d} and pd(X)

in (2.7) by I{D = d,M = m} = I{M = m} · I{D = d} and Pr(D = d,M = m|X) =

f(m|d,X) · pd(X):

Lemma 4:

Under Assumptions 1-3, the potential outcome E[Y (d,m)] is identified by the following efficient

score function:

E[Y (d,m)] = E[ψdm]

with ψdm =
I{D = d} · I{M = m} · [Y − µ(d,m,X)]

f(m|d,X) · pd(X)
+ µ(d,m,X). (2.8)

2.4 Estimation of the counterfactual with K-fold Cross-Fitting

We subsequently propose an estimation strategy for the counterfactual E[Y (d,M(1− d))] with

d ∈ {0, 1} based on the efficient score function by Tchetgen Tchetgen and Shpitser (2012) pro-

vided in (2.5) and show its n−1/2-consistency under specific regularity conditions. To this end,

let W = {Wi|1 ≤ i ≤ N} with Wi = (Yi,Mi, Di, Xi) for i = 1, . . . , n denote the set of obser-
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vations in an i.i.d. sample of size n. η denotes the plug-in (or nuisance) parameters, i.e. the

conditional mean outcome, mediator density and treatment probability. Their respective esti-

mates are referred to by η̂ = {µ̂(D,M,X), f̂(M |D,X), p̂d(X)} and the true nuisance parameters

by η0 = {µ0(D,M,X), f0(M |D,X), pd0(X)}. Finally, ψd0 = E[Y (d,M(1−d))] denotes the true

counterfactual.

We suggest estimating ψd0 using the following algorithm that combines orthogonal score

estimation with sample splitting and is n−1/2-consistent under conditions outlined further below.

Algorithm 1 (Estimation of E[Y (d,M(1− d))] based on equation (2.5)):

1. Split W in K subsamples. For each subsample k, let nk denote its size, Wk the set of

observations in the sample and WC
k the complement set of all observations not in Wk.

2. For each k, useWC
k to estimate the model parameters of pd(X), f(M |D,X), and µ(D,M,X)

in order to predict these models in Wk, where the predictions are denoted by p̂d
k(X),

f̂k(M |D,X), and µ̂k(D,M,X).

3. For each k, obtain an estimate of the efficient score function (see ψd in (2.5)) for each

observation i in Wk, denoted by ψ̂kd,i :

ψ̂kd,i =
I{Di = d} · f̂k(Mi|1− d,Xi)

p̂kd(Xi) · f̂k(Mi|d,Xi)
· [Yi − µ̂k(d,Mi, Xi)]

+
I{Di = 1− d}
1− p̂kd(Xi)

·
[
µ̂k(d,Mi, Xi)−

∫
m∈M

µ̂k(d,m,Xi) · f̂k(m|1− d,Xi)dm
]

+

∫
m∈M

µ̂k(d,m,Xi) · f̂k(m|1− d,Xi)dm. (2.9)

4. Average the estimated scores ψ̂kd,i over all observations across all K subsamples to ob-

tain an estimate of ψd0 = E[Y (d,M(1 − d))] in the total sample, denoted by ψ̂d =

1/n
∑K

k=1

∑nk
i=1 ψ̂

k
d,i.

Algorithm 1 can be adapted to estimate the counterfactuals required for the controlled direct

effect, see (2.8). To this end, denote by ψdm0 = E[Y (d,m)] the true counterfactual of interest,

which is estimated by replacing ψd and ψd0 by ψdm and ψdm0, respectively, everywhere in

Algorithm 1.

In order to achieve n−1/2-consistency for counterfactual estimation, we make specific as-

sumptions about the prediction qualities of the machine learners for our plug-in estimates of the
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nuisance parameters. Closely following Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,

Newey, and Robins (2018), we to this end introduce some further notation. Let (δn)
∞
n=1 and

(∆n)
∞
n=1 denote sequences of positive constants with limn→∞ δn = 0 and limn→∞∆n = 0. Also,

let c, ϵ, C, f, f and q be positive constants such that q > 2, and let K ≥ 2 be a fixed inte-

ger. Furthermore, for any random vector Z = (Z1, ..., Zl), let ∥Z∥q = max1≤j≤l ∥Zl∥q , where

∥Zl∥q = (E [|Zl|q])1/q. For the sake of easing notation, we assume that n/K is an integer. For

brevity, we omit the dependence of probability PrP (·), expectation EP (·), and norm ∥·∥P,q on

the probability measure P .

Assumption 4 (regularity conditions and quality of plug-in parameter estimates):

For all probability laws P ∈ P, where P is the set of all possible probability laws, the following

conditions hold for the random vector (Y,D,M,X) for d ∈ {0, 1}:

(a) ∥Y ∥q ≤ C and
∥∥E[Y 2|d,M,X]

∥∥
∞ ≤ C2,

(b) Pr(ϵ ≤ pd0(X) ≤ 1− ϵ) = 1,

(c) Pr(f ≤ f(M |D,X) ≤ f) = 1,

(d) ∥Y − µ0(d,M,X)∥2 = E
[
(Y − µ0(d,M,X)))2

]1/2
≥ c

(e) Given a random subset Wk of size n/K, the nuisance parameter estimator η̂0 = η̂0(WC
k )

satisfies the following conditions. With P -probability no less than 1−∆n :

∥η̂0 − η0∥q ≤ C,

∥η̂0 − η0∥2 ≤ δn,

∥p̂d0(X)− 1/2∥∞ ≤ 1/2− ϵ,∥∥∥f̂0(M |D,X)− (f + f)/2
∥∥∥
∞

≤ (f − f)/2,

∥µ̂0(D,M,X)− µ0(D,M,X)∥2 × ∥p̂d0(X)− pd0(X)∥2 ≤ δnn
−1/2,

∥µ̂0(D,M,X)− µ0(D,M,X)∥2 ×
∥∥∥f̂0(M |1−D,X)− f0(M |1−D,X)

∥∥∥
2

≤ δnn
−1/2.

For demonstrating n−1/2-consistency of the proposed estimation strategy for the counterfac-

tual, we heavily draw from Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and

Robins (2018) by showing that our estimation strategy satisfies the requirements for their double
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machine learning framework.

Lemma 5 (Neyman Orthogonality and Linearity):

The following conditions are satisfied: (a) the moment condition E
[
ψd(W, η0, ψd0)

]
= 0 holds,

(b) the score ψd(W, η0, ψd0) is linear in ψd0, (c) the second Gateaux derivative of η 7→ E
[
ψd(W, η̂, ψd0)

]
is continuous, (d) the score function is Neyman orthogonal and (e) singular values ofE[ψad(W ; η0)]

are bounded.

The proof is provided in Appendix 2.B.1.

Then, as e.g. ψd(W, η, ψd0) is smooth in (η, ψd0), the plug-in estimators must converge with

rate n−1/4 in order to achieve n−1/2-convergence for the estimation of ψ̂d. This convergence

rate of n−1/4 is achievable for many commonly used machine learners such as lasso, random

forest, boosting and neural nets. The rates for L2-boosting were, for instance, derived in Luo

and Spindler (2016).

Theorem 1:

Under Assumptions 1-4, it holds for estimating E[Y (d,M(1 − d))], E[Y (d,m)] based on Algo-

rithm 1:

√
n
(
ψ̂d − ψd0

)
→ N(0, σ2ψd

), where σ2ψd
= E[(ψd − ψd0)

2].

√
n
(
ψ̂dm − ψdm0

)
→ N(0, σ2ψdm

), where σ2ψd
= E[(ψd − ψdm0)

2].

The proof is provided in Appendix 2.B.1.

Analogous results follow for the estimation of Λ = E[Y (d,M(d))] when replacing ψ̂d in the

algorithm above by an estimate of score function αd from (2.7),

α̂d =
I{D=d}·(Yi−µ̂k(d,Xi))

p̂d
k(Xi)

+ µ̂k(d,Xi), (2.10)

where µ̂k(d, x) is an estimate of µ(d, x). This approach has been discussed in literature on

ATE estimation based on double machine learning, see for instance Belloni, Chernozhukov,

Fernández-Val, and Hansen (2017) and Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,

Newey, and Robins (2018). Denoting by Λ̂ the estimate of Λ, it follows under Assumptions

1-4 that
√
n
(
Λ̂d − Λd

)
→ N(0, σ2αd

), where σ2αd
= E[(αd − Λd)

2]. Therefore, n−1/2-consistent

estimates of the total as well as the direct and indirect effects are obtained as difference of the

estimated potential outcomes, which we denote by ∆̂, θ̂(d), and δ̂(d). That is, ∆̂ = Λ̂1 − Λ̂0,

θ̂(1) = Λ̂1 − ψ̂0, θ̂(0) = ψ̂1 − Λ̂0, δ̂(1) = Λ̂1 − ψ̂1, and δ̂(0) = ψ̂0 − Λ̂0.
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Naturally, the asymptotic variance of any effect is obtained based on the variance of the

difference in the score functions of the potential outcomes required for the respective effect. For

instance, the asymptotic variance of θ̂(1) is given by V ar(θ̂(1)) = V ar(α1 − ψ0)/n = (σ2α1
+

σ2ψ0
− 2Cov(α1, ψ0))/n.

Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018) show that

under Assumptions 1-4, σ̂2ψd
can be estimated as:

σ̂2ψd
= 1

K

∑K
k=1

[
1/nk

∑nk
i=1 ψd(Wi, η̂

k
0 , ψ̂d)

2
]

(2.11)

The asymptotic variance of αd can be estimated accordingly, with ψd and ψ̂d0 substituted by αd

and Λ̂d0.

We subsequently discuss estimation based on the score function ψ∗
d in expression (2.6). We

note that in this case, we have to estimate the nested nuisance parameter E
[
µ(d,M,X)

∣∣∣D =

1 − d,X
]
, which we henceforth denote by ω(1 − d,X). To avoid overfitting, the models for

µ(d,M,X) and ω(1 − d,X) are estimated in different subsamples. The plug-in estimates for

the conditional mean outcome, the nested conditional mean outcome, mediator density and

treatment probability are referred to by η̂∗ = {µ̂(D,M,X), ω̂(D,X), p̂d(M,X), p̂d(X)} and the

true nuisance parameters by η∗0 = {µ0(D,M,X), ω0(D,X), pd0(M,X), pd0(X)}.

Algorithm 2 (Estimation of E[Y (d,M(1− d))] based on equation (2.6)):

1. Split W in K subsamples. For each subsample k, let nk denote its size, Wk the set of

observations in the sample and WC
k the complement set of all observations not in Wk.

2. For each k, use WC
k to estimate the model parameters of pd(X) and pd(M,X). Split

WC
k into 2 nonoverlapping subsamples, estimate the model parameters of the conditional

mean µ(d,M,X) in one subsample and use it for estimating the nested conditional mean

ω(1− d,X) = E
[
µ(d,M,X)

∣∣∣D = 1− d,X
]
in the other subsample. Predict the nuisance

parameters in Wk, where the predictions are denoted by p̂d
k(X), p̂kd(M,X), µ̂k(D,M,X)

and ω̂(D,X)k.

3. For each k, obtain an estimate of the efficient score function (see ψ∗
d in (2.6)) for each
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observation i in Wk, denoted by ψ̂∗k
d,i :

ψ̂∗k
d,i =

I{Di = d}
(
1− p̂kd(Mi, Xi)

)
p̂kd(Mi, Xi)

(
1− p̂kd(Xi)

) · [Y − µ̂k(d,Mi, Xi)]

+
I{Di = 1− d}
1− p̂kd(Xi)

·
[
µ̂k(d,Mi, Xi)− ω̂(1− d,Xi)

k
]
+ ω̂(1− d,Xi)

k. (2.12)

4. Average the estimated scores ψ̂∗k
d,i over all observations across all K subsamples to ob-

tain an estimate of ψd0 = E[Y (d,M(1 − d))] in the total sample, denoted by ψ̂∗
d =

1
n

∑K
k=1

∑nk
i=1 ψ̂

∗k
d,i.

Also this approach can be shown to be n−1/2-consistent under specific regularity conditions

outlined below.

Assumption 5 (regularity conditions and quality of plug-in parameter estimates)

For all probability laws P ∈ P the following conditions hold for the random vector (Y,D,M,X)

for all d ∈ {0, 1}:

(a) ∥Y ∥q ≤ C and
∥∥E[Y 2|d,M,X]

∥∥
∞ ≤ C2,

(b) Pr(ϵ ≤ pd0(X) ≤ 1− ϵ) = 1,

(c) Pr(ϵ ≤ pd0(M,X) ≤ 1− ϵ) = 1,

(d) ∥Y − µ0(d,M,X)∥2 = E
[
(Y − µ0(d,M,X)))2

]1/2
≥ c

(e) Given a random subset Wk of size n/K, the nuisance parameter estimator η̂∗0 = η̂∗0(WC
k )

satisfies the following conditions. With P -probability no less than 1−∆n :

∥η̂∗0 − η∗0∥q ≤ C,

∥η̂∗0 − η∗0∥2 ≤ δn,

∥p̂d0(X)− 1/2∥∞ ≤ 1/2− ϵ,

∥p̂d0(M,X)− 1/2∥∞ ≤ 1/2− ϵ,

∥µ̂0(D,M,X)− µ0(D,M,X)∥2 × ∥p̂d0(X)− pd0(X)∥2 ≤ δnn
−1/2,

∥µ̂0(D,M,X)− µ0(D,M,X)∥2 × ∥p̂d0(M,X)− pd0(M,X)∥2 ≤ δnn
−1/2,

∥ω̂0(D,X)− ω0(D,X)∥2 × ∥p̂d0(X)− pd0(X)∥2 ≤ δnn
−1/2.
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Theorem 2:

Under Assumptions 1-3 and 5, it holds for estimating E[Y (d,M(1− d))] based on Algorithm 2:

√
n
(
ψ̂∗
d − ψ∗

d0

)
→ N(0, σ2ψ∗

d
), where σ2ψ∗

d
= E[(ψ∗

d − ψ∗
d0)

2].

The proof is provided in Appendix 2.B.2.

2.5 Simulation study

This section provides a simulation study to investigate the finite sample behaviour of the pro-

posed methods based on the following data generating process:

Y = 0.5D + 0.5M + 0.5DM +X ′β + U,

M = I{0.5D +X ′β + V > 0}, D = I{X ′β +W > 0},

X ∼ N(0,Σ), U, V,W ∼ N(0, 1) independently of each other and X.

Outcome Y is a function of the observed variables D,M,X, including an interaction between

the mediator and the treatment, and an unobserved term U . The binary mediator M is a

function of D,X and the unobservable V , while the binary treatment D is determined by X

and the unobservable W . X is a vector of covariates of dimension p, which is drawn from a

multivariate normal distribution with zero mean and covariance matrix Σ. The latter is defined

based on setting the covariance of the ith and jth covariate in X to Σij = 0.5|i−j|.3 Coefficients

β gauge the impact of X on Y , M , and D, respectively, and thus, the strength of confounding.

U, V,W are random and standard normally distributed scalar unobservables. We consider two

sample sizes of n = 1000, 4000 and run 1000 simulations per data generating process.

We investigate the performance of effect estimation based on (i) Theorem 1 using the iden-

tification result in expression (2.5) derived by Tchetgen Tchetgen and Shpitser (2012) as well

as (ii) Theorem 2 using the modified score function in expression (2.6) which avoids conditional

mediator densities. The nuisance parameters are estimated by post-lasso regression based on

the ‘causalweight’ package by Bodory and Huber (2018) for the statistical software ‘R’ (R Core

Team (2020)), in which our estimation procedure is made available, using logit specifications

for pd(X), pd(M,X), and f(M |D,X) and linear specifications for µ(D,M,X) and ω(1− d,X).

3The results presented below are hardly affected when setting Σ to the identity matrix (zero correlation across X).
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The estimation of direct and indirect effects is based on 4-fold cross-fitting. For all methods

investigated, we drop observations whose (products of) estimated conditional probabilities in

the denominator of any potential outcome expression are close to zero, namely smaller than a

trimming threshold of 0.05 (or 5%). Furthermore, we normalize the weights related to the in-

verse propensity scores in our estimators such that they sum up to one within treatment groups,

as for instance advocated in Busso, DiNardo, and McCrary (2009).

In our first simulation design, we set p = 200 and the ith element in the coefficient vector

β to 0.3/i2 for i = 1, ..., p, meaning a quadratic decay of covariate importance in terms of

confounding. This specification implies that the R2 of X when predicting Y amounts to 0.22 in

large samples, while the Nagelkerke (1991) pseudo-R2 of X when predicting D and M by probit

models amounts to 0.10 and 0.13, respectively. The left panel of Table 2.1 reports the results

for either sample size. For n = 1000, double machine learning based on Theorem 2 on average

exhibits a slightly lower absolute bias (‘abias’) and standard deviation (‘sd’) than estimation

based on Theorem 1. The behaviour of both approaches improves when increasing sample size

to n = 4000, as the absolute bias is very close to zero for any effect estimate and standard

deviation is roughly cut by half. Under the larger sample size, differences in terms of root mean

squared error (‘rmse’) between estimation based on Theorems 1 and 2 are very close to zero. By

and large, the results suggest that the estimators converge to the true effects at rate n−1/2.

In our second simulation, confounding is increased by setting β to 0.5/i2 for i = 1, ..., p. This

specification implies that the R2 of X when predicting Y amounts to 0.42, while the Nagelkerke

(1991) pseudo-R2 of X when predicting D and M amounts to 0.23 and 0.28, respectively. The

results are displayed in the right panel of Table 2.1. Again, estimation based on Theorem

2 slightly dominates in terms of having a smaller absolute bias and standard deviation, in

particular for n = 1000. However, in other settings, the two methods might compare differently

in terms of finite sample performance. Both methods based on Theorems 1 and 2, respectively,

appear to converge to the true effects at rate n−1/2, and differences in terms of root mean squared

errors are minor for n = 4000.

Appendix 2.A reports the simulation results (namely the absolute bias, standard deviation,

and root mean squared error) for the standard errors obtained by an asymptotic approximation

based on the estimated variance of the score functions. The results suggest that the asymptotic

standard errors decently estimate the actual standard deviation of the point estimators.
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Coefficients given by 0.3/i2 for i = 1, ..., p Coefficients given by 0.5/i2 for i = 1, ..., p
abias sd rmse abias sd rmse true abias sd rmse abias sd rmse true

n=1000 n=4000 n=1000 n=4000

Double machine learning based on Theorem 1

∆̂ 0.01 0.08 0.08 0.00 0.04 0.04 1.02 0.00 0.10 0.10 0.01 0.04 0.05 1.00

θ̂(1) 0.01 0.08 0.08 0.00 0.04 0.04 0.84 0.01 0.09 0.09 0.01 0.04 0.04 0.83

θ̂(0) 0.00 0.08 0.08 0.00 0.04 0.04 0.75 0.00 0.10 0.10 0.01 0.04 0.04 0.75

δ̂(1) 0.00 0.06 0.06 0.00 0.03 0.03 0.27 0.00 0.07 0.07 0.00 0.03 0.03 0.25

δ̂(0) 0.01 0.05 0.05 0.00 0.02 0.02 0.18 0.01 0.05 0.05 0.00 0.02 0.02 0.17
trimmed 17.24 19.19 80.25 237.50

Double machine learning based on Theorem 2

∆̂ 0.01 0.08 0.08 0.00 0.04 0.04 1.02 0.01 0.09 0.09 0.01 0.04 0.04 1.00

θ̂(1) 0.00 0.07 0.07 0.00 0.04 0.04 0.84 0.01 0.08 0.08 0.00 0.04 0.04 0.83

θ̂(0) 0.00 0.08 0.08 0.00 0.04 0.04 0.75 0.00 0.08 0.08 0.00 0.04 0.04 0.75

δ̂(1) 0.00 0.06 0.06 0.00 0.03 0.03 0.27 0.00 0.06 0.06 0.00 0.03 0.03 0.25

δ̂(0) 0.00 0.04 0.04 0.00 0.02 0.02 0.18 0.00 0.04 0.04 0.00 0.02 0.02 0.17
trimmed 1.20 0.11 16.76 25.45

Table 2.1: Simulation results for effect estimates (p = 200). Note: ‘abias’, ‘sd’, and ‘rmse’ denote the absolute
bias, standard deviation and root mean squared error of the respective effect estimate. ‘true’ provides the true
effect. ‘trimmed’ is the average number of trimmed observations per simulation. The propensity score-based
trimming threshold is set to 0.05.

2.6 Application

In this section, we apply our method to data from the National Longitudinal Survey of Youth

1997 (NLSY97), a survey conducted by the Bureau of Labor Statistics at the U.S. Department

of Labor (2019) following a U.S. nationally representative sample of 8,984 individuals born in

the years 1980-84. Since 1997, the participants have been interviewed on a wide range of demo-

graphic, socioeconomic, and health-related topics in a one- to two-year circle. We investigate the

causal effect of health insurance coverage (D) on general health (Y ) and decompose it into an

indirect pathway via the incidence of a regular medical checkup (M) and a direct effect entailing

any other causal mechanisms. Whether or not an individual undergoes routine checkups appears

to be an interesting mediator, as it is likely to be affected by health insurance coverage and may

itself have an impact on the individual’s health, because checkups can help identifying medical

conditions before they get serious to prevent them from affecting a person’s general health state.

The effect of health insurance coverage on self-reported health has been investigated in dif-

ferent countries with no compulsory medical insurance and no publicly provided universal health

coverage, see for example Simon, Soni, and Cawley (2017), Sommers, Maylone, Blendon, Orav,

and Epstein (2017), Baicker, Taubman, Allen, Bernstein, Gruber, Newhouse, Schneider, Wright,
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Zaslavsky, and Finkelstein (2013), Yörük (2016) and Cardella and Depew (2014) for the U.S.

and King, Gakidou, Imai, Lakin, Moore, Nall, Ravishankar, Vargas, Tellez-Rojo, Avila, et al.

(2009) for Mexico). Most of these studies find a significant positive effect of insurance coverage

on self-reported health. The impact of insurance coverage on the utilization of preventive care

measures, particularly routine checkups like cancer, diabetes and cardiovascular screenings, is

also extensively covered in public health literature. Most studies find that health insurance

coverage increases the odds of attending routine checkups. While some contributions include

selected demographic, socioeconomic and health-related control variables to account for the en-

dogeneity of health insurance status (see e.g. Faulkner and Schauffler (1997), Press (2014),

Burstin, Swartz, O’Neil, Orav, and Brennan (1998), Fowler-Brown, Corbie-Smith, Garrett, and

Lurie (2007)), others exploit natural experiments: Simon, Soni, and Cawley (2017) estimate a

difference-in-differences model comparing states which did and did not expand Medicaid to low-

income adults in 2005, while Baicker, Taubman, Allen, Bernstein, Gruber, Newhouse, Schneider,

Wright, Zaslavsky, and Finkelstein (2013) exploit that the state of Oregon expanded Medicaid

based on lottery drawings from a waiting list. The results of both studies suggest that the

Medicaid expansions increased use of certain forms of preventive care. In a study on Mexican

adults, Pagán, Puig, and Soldo (2007) use self-employment and commission pay as instruments

for insurance coverage and also find a more frequent use of some types of preventive care by

individuals with health insurance coverage.

While the bulk of studies investigating checkups focus on one particular type of screening

(rather than general health checkups), see Maciosek, Coffield, Flottemesch, Edwards, and Sol-

berg (2010) for a literature review, several experimental contributions also assess general health

checkups. For instance, Rasmussen, Thomsen, Kilsmark, Hvenegaard, Engberg, Lauritzen, and

Sogaard (2007) conduct an experiment with individuals aged 30 to 49 in Denmark by randomly

offering a set of health screenings, including advice on healthy living and find a significant pos-

itive effect on life expectation. In a study on Japan’s elderly population, Nakanishi, Tatara,

and Fujiwara (1996) find a significantly negative correlation between the rate of attendance at

health check-ups and hospital admission rates. Despite the effects of health insurance coverage

and routine checkups being extensively covered in the public health literature, the indirect effect

of insurance on general health operating via routine checkups as mediator has to the best of our

knowledge not yet been investigated. A further distinction to most previous studies is that we
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consider comparably young individuals with an average age below 30. For this population, the

relative importance of different health screenings might differ from that for other age groups.

We also point out that our application focuses on short-term health effects.

We consider a binary indicator for health insurance coverage, equal to one if an individual

reports to have any kind of health insurance when interviewed in 2006 and zero otherwise. The

outcome, self-reported general health, is obtained from the 2008 interview and measured with

an ordinal variable, taking on the values ‘excellent’, ‘very good’, ‘good’, ‘fair’ and ‘poor’. In

the 2007 interview, participants were asked whether they have gone for routine checkups since

the 2006 interview. This information serves as binary mediator, measured post-treatment but

pre-outcome.

To ensure that the control variables (X) are not influenced by the treatment, they come from

the pre-treatment 2005 and earlier interview rounds. They cover demographic characteristics,

family background and quality of the home environment during youth, education and training,

labour market status, income and work experience, marital status and fertility, household char-

acteristics, received monetary transfers, attitudes and expectations, state of physical and mental

health as well as health-related behaviour regarding e.g. nutrition and physical activity. For

some variables, we only consider measurements from 2005 or from the initial interview round

covering demographics and family related topics. For other variables we include measurements

from both the indiviuals’ youth and 2005 in order to capture their social, emotional and phys-

ical development. Treatment and mediator state in the pre-treatment period (2005) are also

considered as potential control variables. Item non-response in control variables is dealt with by

including missing dummies for each control variable and setting the respective missing values to

zero. In total, we end up with a set of 755 control variables, 593 of which are dummy variables

(incl. 251 dummies for missing values).
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overall D = 1 D = 0 diff p-val M = 1 M = 0 diff p-val
n 7,061 2,335 4,726 3,612 3,449

Female 0.5 0.54 0.41 0.13 0 0.66 0.35 0.31 0
Age 22.5 22.54 22.44 0.1 0 22.54 22.46 0.08 0.02
Ethnicity

Black 0.27 0.25 0.3 -0.04 0 0.32 0.22 0.1 0
Hispanic 0.21 0.19 0.25 -0.06 0 0.21 0.22 -0.01 0.58
Mixed 0.01 0.01 0.01 0 0.35 0.01 0.01 0 0.3
White or Other 0.51 0.55 0.44 0.11 0 0.46 0.55 -0.1 0

Relationship/Marriage
Not Cohabiting 0.62 0.61 0.65 -0.03 0 0.61 0.64 -0.03 0.01
Cohabiting 0.17 0.16 0.18 -0.02 0.01 0.16 0.17 0 0.61
Married 0.18 0.21 0.14 0.07 0 0.2 0.17 0.03 0
Separated/ Widowed 0.02 0.02 0.03 -0.01 0.02 0.02 0.02 0 0.55
Missing 0 0 0 0 0.42 0 0 0 0.92

Urban 0.72 0.75 0.67 0.08 0 0.75 0.7 0.05 0
Missing 0.11 0.08 0.16 -0.08 0 0.09 0.14 -0.05 0

HH Income 4 41,851 47,908 31,433 16475 0 43,338 40,460 2878 0.03
Missing 0.24 0.2 0.31 -0.11 0 0.21 0.26 -0.05 0

HH Size 2.99 3.05 2.89 0.16 0 3.1 2.89 0.21 0
Missing 0.09 0.06 0.14 -0.09 0 0.06 0.11 -0.05 0

HH Members under 18 0.67 0.65 0.69 -0.04 0.13 0.76 0.58 0.18 0
Missing 0.09 0.06 0.14 -0.09 0 0.07 0.11 -0.05 0

Biological Children 0.48 0.47 0.5 -0.02 0.24 0.55 0.42 0.13 0
Highest Grade 11.78 12.61 10.36 2.25 0 12.26 11.33 0.93 0

Missing 0.09 0.06 0.15 -0.09 0 0.07 0.11 -0.05 0
Employment

Employed 0.71 0.73 0.68 0.05 0 0.7 0.72 -0.02 0.11
Unemployed 0.05 0.04 0.07 -0.03 0 0.05 0.06 -0.01 0.24
Out of Labour Force 0.2 0.19 0.23 -0.04 0 0.21 0.2 0 0.7
Military 0.03 0.04 0.01 0.02 0 0.04 0.02 0.02 0
Missing 0 0 0.01 0 0.01 0 0 0 0.59

Working Hours (per week) 24.04 25.35 21.79 3.57 0 24.11 23.98 0.13 0.78
Missing 0.09 0.06 0.14 -0.09 0 0.06 0.11 -0.05 0

Weight (pounds) 152 156 145 11 0 152 152 1 0.72
Missing 0.11 0.08 0.17 -0.09 0 0.09 0.14 -0.05 0

Height (feet) 4.97 5.16 4.64 0.52 0 5.03 4.91 0.12 0
Missing 0.12 0.08 0.18 -0.1 0 0.09 0.14 -0.05 0

Days 5+ drinks (per month) 1.57 1.55 1.62 -0.07 0.44 1.22 1.9 -0.68 0
Missing 0.11 0.08 0.17 -0.09 0 0.09 0.14 -0.05 0

Days of Exercise (per week) 2.37 2.42 2.3 0.11 0.05 2.33 2.41 -0.08 0.15
Missing 0.06 0.05 0.09 -0.05 0 0.05 0.08 -0.03 0

Depressed/ Down
Never 0.3 0.31 0.28 0.03 0 0.29 0.31 -0.02 0.05
Sometimes 0.49 0.52 0.45 0.07 0 0.51 0.47 0.04 0
Mostly 0.09 0.09 0.09 0 0.68 0.1 0.08 0.02 0
Always 0.02 0.02 0.02 -0.01 0.03 0.02 0.02 0 0.41
Missing 0.1 0.07 0.16 -0.09 0 0.08 0.12 -0.04 0

Table 2.2: Descriptive Statistics. Note ‘overall’, ‘D = 1’, ‘D = 0’, ‘M = 1’, ‘M = 0’ report the mean of the
respective variable in the total sample, among treated, among non-treated, among mediated, and among non-
mediated, respectively. ‘diff’ and ‘p-val’ provide the mean difference (across treatment or mediator states) and
the p-value of a two-sample t-test, respectively.

4The HH income variable is the sum of several variables measuring HH income components (different sources & receivers).
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After excluding 1,498 observations with either mediator or treatment status missing, we

remain with 7,486 observations. Table 2.2 presents some descriptive statistics for a selection

of control variables. It shows that the group of individuals with and without health insurance

coverage differ substantially. There are significant differences with respect to most of the control

variables listed in the table. Females are significantly more likely to have health insurance

coverage. Education and household income also show a significant positive correlation with

health insurance coverage while the number of household members for example is negatively

correlated with insurance coverage. Regarding the mediator, we find a similar pattern as for

the treatment. With respect to many of the considered variables, the group of individuals who

went for medical checkup differs substantially from those who did not. Further, we see that the

correlation between many control variables and the treatment appear to have the same sign as

that with the mediator.

In order to assess the direct and indirect effect of health insurance coverage on general health,

we consider estimation based on Theorem 1 and expression (2.5) derived by Tchetgen Tchetgen

and Shpitser (2012) as well as (ii) Theorem 2 and expression (2.6). We estimate the nuisance

parameters and treatment effects in the same way as outlined in Section 2.5 (i.e. post-lasso

regression for modelling the nuisance parameters and 3-fold cross fitting for effect estimation)

after augmenting the set of covariates with 380 selected interaction and higher order terms of

covariates measuring demographic characteristics, health status, and health-related behaviour.

The trimming threshold for discarding observations with too extreme propensity scores is set to

0.02 (2%), such that 777 and 54 observations are dropped when basing estimation on Theorems 1

and 2, respectively. As for the simulations, the propensity score-based weights in our estimators

are normalized such that they sum up to one within treatment groups.

Table 2.3 provides the estimated effects along with the standard error (‘se’) and p-value

(‘p-val’) and also provides the estimated mean potential outcome under non-treatment for com-

parison (‘Ê[Y (0,M(0))]’). The ATEs of health insurance coverage on general health in the year

2008 (columns 2 and 8), estimated based on Theorems 1 or 2, are statistically significant at

the 10% and 5% levels, respectively. As the outcome is measured on an ordinal scale ranging

from ‘excellent’ to ‘poor’, the negative ATEs suggest a short-term health improving effect of

health coverage. The direct effects under treatment (columns 3 and 9) and under non-treatment

These variables are capped but only a total of 11 observations are in critical cap categories
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(columns 4 and 10) mostly have a similar magnitude as the ATEs, even though they are not

statistically significant in 3 out of 4 cases. The indirect effects under treatment (columns 5 and

11) and non-treatment (columns 6 and 12) are generally close to zero and not statistically sig-

nificant in 3 out of 4 cases either. We therefore conclude that in the short run, health insurance

coverage does not seem to importantly affect general health of young adults in the U.S. through

routine checkups.

Estimations based on Theorem 1 Estimations based on Theorem 2

∆̂ θ̂(1) θ̂(0) δ̂(1) δ̂(0) Ê[Y (0,M(0))] ∆̂ θ̂(1) θ̂(0) δ̂(1) δ̂(0) Ê[Y (0,M(0))]

effect -0.05 -0.04 -0.04 -0.01 -0.01 2.27 -0.05 -0.03 -0.05 -0.00 -0.02 2.28

se 0.03 0.03 0.03 0.01 0.01 0.03 0.03 0.03 0.03 0.01 0.01 0.02

p-val 0.10 0.23 0.23 0.49 0.17 0.00 0.04 0.22 0.05 0.88 0.04 0.00

Table 2.3: Total, direct, and indirect effects on general health in 2008. Note: ‘effect’, ‘se’, and ‘p-val’ report the
respective effect estimate, standard error and p-value. Lasso regression is used for the estimation of nuisance
parameters. The propensity score-based trimming threshold is set to 0.02.

2.7 Conclusion

In this paper, we combined causal mediation analysis with double machine learning under

selection-on-observables assumptions which avoids ad hoc pre-selection of control variables.

Thus, this approach appears particularly fruitful in high-dimensional data with many poten-

tial control variables. We proposed estimators for natural direct and indirect effects as well as

the controlled direct effect exploiting efficient score functions, sample splitting, and machine

learning-based plug-in estimates for conditional outcome means, mediator densities, and/or

treatment propensity scores. We demonstrated the n−1/2-consistency and asymptotic normality

of the effect estimators under specific regularity conditions. Furthermore, we investigated the

finite sample behaviour of the proposed estimators in a simulation study and found the per-

formance to be decent in samples with several thousand observations. Finally, we applied our

method to data from the U.S. National Longitudinal Survey of Youth 1997 and found a mod-

erate short-term effect of health insurance coverage on general health, which was, however, not

importantly mediated by routine checkups. The estimators considered in the simulation study

and the application are available in the ‘causalweight’ package for the statistical software ‘R’.
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Appendix

2.A Simulation results for standard errors

Coefficients given by 0.3/i2 for i = 1, ..., p Coefficients given by 0.5/i2 for i = 1, ..., p

abias sd rmse true abias sd rmse true abias sd rmse true abias sd rmse true

n=1000 n=4000 n=1000 n=4000

Double machine learning based on Theorem 1

se(∆̂) 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.04 0.01 0.01 0.01 0.10 0.00 0.00 0.00 0.04

se(θ̂(1)) 0.01 0.01 0.01 0.08 0.00 0.00 0.00 0.04 0.01 0.01 0.01 0.09 0.00 0.00 0.00 0.04

se(θ̂(0)) 0.00 0.01 0.01 0.08 0.00 0.00 0.00 0.04 0.01 0.02 0.02 0.10 0.00 0.00 0.00 0.04

se(δ̂(1)) 0.00 0.01 0.01 0.06 0.00 0.00 0.00 0.03 0.01 0.01 0.02 0.07 0.00 0.00 0.00 0.03

se(δ̂(0)) 0.00 0.01 0.01 0.05 0.00 0.00 0.00 0.02 0.01 0.01 0.01 0.05 0.00 0.00 0.00 0.02

Double machine learning based on Theorem 2

se(∆̂) 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.04 0.00 0.01 0.01 0.09 0.00 0.00 0.00 0.04

se(θ̂(1)) 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.04 0.00 0.01 0.01 0.08 0.00 0.00 0.00 0.04

se(θ̂(0)) 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.04 0.00 0.01 0.01 0.08 0.00 0.00 0.00 0.04

se(δ̂(1)) 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.03 0.00 0.01 0.01 0.06 0.00 0.00 0.00 0.03

se(δ̂(0)) 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.02

Table 2.A.1: Simulation results for standard errors (p = 200). Note: ‘abias’, ‘sd’, and ‘rmse’ denote the absolute
bias, standard deviation and root mean squared error of the respective standard error (‘se’). ‘true’ provides the
true standard deviation.

2.B Proofs

For the proofs of Theorems 1 and 2, it suffices verifying the conditions of Assumptions 3.1 and

3.2 underlying Theorem 3.1 and 3.2 in Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,

Newey, and Robins (2018).

2.B.1 Proof of Theorem 1

We first show that Assumptions 3.1 and 3.2 in Chernozhukov, Chetverikov, Demirer, Duflo,

Hansen, Newey, and Robins (2018) are satisfied for ψd0 = E[Y (d,M(1 − d))] based on (2.5).
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Then, we show that Assumption 3.1 holds for ψdm0 = E[Y (d,m)] based on (2.8), but omit

the proof of the validity of Assumption 3.2, as it follows in a very similar manner as for ψd0.

All bounds hold uniformly over all probability laws P ∈ P, where P is the set of all possible

probability laws, and we omit P for brevity.

Let η = (µ(D,M,X), f(M |D,X), pd(X)) be the vector of nuisance parameters. Also, let

Tn be the set of all η = (µ, f, pd) in a neighbourhood of η0 that is shrinking with increasing n,

consisting of P -square integrable functions µ, f , and pd such that

∥η − η0∥q ≤ C, (2.13)

∥η − η0∥2 ≤ δn,

∥pd(X)− 1/2∥∞ ≤ 1/2− ϵ,∥∥f(M |D,X)− (f + f)/2
∥∥
∞ ≤ (f − f)/2,

∥µ(D,M,X)− µ0(D,M,X)∥2 × ∥pd(X)− pd0(X)∥2 ≤ δnn
−1/2,

∥µ(D,M,X)− µ0(D,M,X)∥2 × ∥f(M |1−D,X)− f0(M |1−D,X)∥2 ≤ δnn
−1/2.

We furthermore replace the sequence (δn)n≥1 by (δ′n)n≥1, where δ
′
n = Cϵmax(δn, n

−1/2),

where Cϵ is sufficiently large constant that only depends on C and ϵ. Let R ≡ f/f stands for

the maximal ratio of densities f(m|d,X).

Counterfactual E[Y (d,M(1− d))]

The score function for the counterfactual ψd0 = E[Y (d,M(1− d))] proposed by Tchetgen Tch-

etgen and Shpitser (2012) is given by the following expression, with W = (Y,M,D,X):

ψd(W, η, ψd0) =
I{D = d} · f(M |1− d,X)

pd(X) · f(M |d,X)
· [Y − µ(d,M,X)]

+
I{D = 1− d}
1− pd(X)

·
[
µ(d,M,X)−

=:ν(1−d,X)︷ ︸︸ ︷∫
m∈M

µ(d,m,X) · f(m|1− d,X)dm
]

+

∫
m∈M

µ(d,m,X) · f(m|1− d,X)dm︸ ︷︷ ︸
=:ν(1−d,X)

− ψd0.

Assumption 3.1: Moment Condition, Linear scores and Neyman orthogonality
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Assumption 3.1(a): Moment Condition:

The moment condition E
[
ψd(W, η0, ψd0)

]
= 0 is satisfied:

E
[
ψd(W, η0, ψd0)

]
= E

[ =E[E[Y−µ0(d,M,X)|D=d,M,X]|D=1−d,X]=0︷ ︸︸ ︷
E

[
I{D = d} · f0(M |1− d,X)

pd0(X) · f0(M |d,X)
· [Y − µ0(d,M,X)]

∣∣∣∣∣X
]]

+ E

[ =E[µ0(d,M,X)−ν0(1−d,X)|D=1−d,X]=0︷ ︸︸ ︷
E

[
I{D = 1− d}
1− pd0(X)

· [µ0(d,M,X)− ν0(1− d,X)]

∣∣∣∣∣X
]]

+ E[ν0(1− d,X)] − ψd0

= ψd0 − ψd0 = 0,

where the first equality follows from the law of iterated expectations. To better see this result,

note that

E

[
I{D = d} · f0(M |1− d,X)

pd0(X) · f0(M |d,X)
· [Y − µ0(d,M,X)]

∣∣∣∣∣X
]

= E

[
I{D = d} · (1− pd0(M,X))

pd0(M,X) · (1− pd0(X))
· [Y − µ0(d,M,X)]

∣∣∣∣∣X
]

= E

[
E

[
I{D = d}
pd0(M,X)

· [Y − µ0(d,M,X)]

∣∣∣∣∣M,X

]
· (1− pd0(M,X))

(1− pd0(X))

∣∣∣∣∣X
]

= E

[
E[Y − µ0(d,M,X)|D = d,M,X] · (1− pd0(M,X))

(1− pd0(X))

∣∣∣∣∣X
]

= E[E[Y − µ0(d,M,X)|D = d,M,X]|D = 1− d,X]

= E[µ0(d,M,X)− µ0(d,M,X)|D = 1− d,X] = 0,
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where the first equality follows from Bayes’ Law, the second from the law of iterated expectations,

the third from basic probability theory, and the fourth from Bayes’ Law. Furthermore,

E

[
I{D = 1− d}
1− pd0(X)

· [µ0(d,M,X)− ν0(1− d,X)]

∣∣∣∣∣X
]

= E

[
E

[
I{D = 1− d}
1− pd0(X)

· [µ0(d,M,X)− ν0(1− d,X)]
∣∣∣M,X

]∣∣∣∣∣X
]

= E

[
[µ0(d,M,X)− ν0(1− d,X)] · 1− pd0(M,X)

1− pd0(X)

∣∣∣∣∣X
]

= E[µ0(d,M,X)− ν0(1− d,X)|D = 1− d,X] = E[µ0(d,M,X)|D = 1− d,X]− ν0(1− d,X)

= ν0(1− d,X)− ν0(1− d,X) = 0,

where the first equality follows from the law of iterated expectations and the third from Bayes’

Law.

Assumption 3.1(b): Linearity:

The score ψd(W, η0, ψd0) is linear in ψd0 as it can be written as: ψd(W, η0, ψd0) = ψad(W, η0) ·

ψd0 + ψbd(W, η0) with ψ
a
d(W, η0) = −1 and

ψb
d(W, η0) =

I{D = d} · f0(M |1− d,X)

pd0(X) · f0(M |d,X)
[Y − µ0(d,M,X)]

+
I{D = 1− d}
1− pd0(X)

[
µ0(d,M,X)− ν0(1− d,X)

]
+ ν0(1− d,X).

Assumption 3.1(c): Continuity:

The expression for the second Gateaux derivative of a map η 7→ E
[
ψd(W, η̂, ψd0)

]
, given in (2.5),

is continuous.

Assumption 3.1(d): Neyman Orthogonality :

For any η ∈ Tn, the Gateaux derivative in the direction η−η0 = (µ(d,M,X)−µ0(d,M,X), f(M |D,X)−

f0(M |D,X), pd(X)− pd0(X)) is given by:
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∂E
[
ψd(W,η, ψd0)

][
η − η0

]

= E

[[
f(M|1−d,X)−f0(M|1−d,X)

]
·f0(M|d,X)−

[
f(M|d,X)−f0(M|d,X)

]
·f0(M|1−d,X)

f2
0 (M|d,X)

·

E[·|X]=E[Y −µ0(d,M,X)|D=d,X]=0︷ ︸︸ ︷
I{D = d}
pd0(X)

·
(
Y − µ0(d,M,X)

) ]

− E

[
I{D = 1− d}
1− pd0(X)︸ ︷︷ ︸
E[·|X]=1

·∂E[ν0(1− d,X)][f(M |1− d,X)− f0(M |1− d,X)]

]
+ ∂E[ν0(1− d,X)][f(M |1− d,X)− f0(M |1− d,X)]

]

︸ ︷︷ ︸
=0

− E

[
I{D = d} · f0(M |1− d,X)

pd0(X) · f0(M |d,X)
·
(
Y − µ0(d,M,X)

)
︸ ︷︷ ︸
E[·|X]=E[E[Y −µ0(d,M,X)|D=d,M,X]|D=1−d,X]=0

·
pd(X)− pd0(X)

pd0(X)

]

+ E

[
I{D = 1− d}
(1− pd0(X))

·
(
µ0(d,M,X)− ν0(1− d,X)

)
︸ ︷︷ ︸
E[·|X]=E[µ0(d,M,X)−ν0(1−d,X)|D=1−d,X]=0

·
pd(X)− pd0(X)

(1− pd0(X))

]

− E

[
I{D = d} · f0(M |1− d,X)

pd0(X) · f0(M |d,X)
·
[
µ(d,M,X)− µ0(d,M,X)

]]
︸ ︷︷ ︸

E[·]=E[E[·|M,X]]=E

[
pd0(M,X)·f0(M|1−d,X)

pd0(X)·f0(M|d,X)
·[µ(d,M,X)−µ0(d,M,X)]

]
(∗)

+ E

[
I{D = 1− d}
1− pd0(X)

·
[
µ(d,M,X)− µ0(d,M,X)

]]
︸ ︷︷ ︸

E[·]=E[E[·|M,X]]=E

[
1−pd0(M,X)

1−pd0(X)
·[µ(d,M,X)−µ0(d,M,X)]

]
(∗∗)

− E

[
I{D = 1− d}
1− pd0(X)

· ∂E[ν0(1− d,X)][µ(d,M,X)− µ0(d,M,X)]︸ ︷︷ ︸
E[·|X]=

1−pd0(X)

1−pd0(X)
·∂E[ν0(1−d,X)][µ(d,M,X)−µ0(d,M,X)]

]
+ ∂E[ν0(1− d,X)][µ(d,M,X)− µ0(d,M,X)]

︸ ︷︷ ︸
=0

,

where terms (∗) and (∗∗) cancel out by Bayes’ Law, pd0(M,X)·f0(M |1−d,X)
pd0(X)·f0(M |d,X) = pd0(M,X)·(1−pd0(M,X))

pd0(M,X)·(1−pd0(X)) =

1−pd0(M,X)
1−pd0(X) . Thus, it follows that:

∂E
[
ψd(W, η0, ψd0)

][
η − η0

]
= 0

proving that the score function is orthogonal.

Assumption 3.1(e): Singular values of E[ψad(W ; η0)] are bounded:

This holds trivially, because ψad(W, η0) = −1.

Assumption 3.2: Score regularity and quality of nuisance parameter estimators

Assumption 3.2(a):
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This assumption follows directly from the regularity conditions (Assumption 4) and the definition

of Tn given in (2.13).

Assumption 3.2(b):

Bounds for mn:

We have

∥µ0(D,M,X)∥q = (E [|µ0(D,M,X)|q])1/q =

 ∑
d∈{0,1}

E [|µ0(d,M,X)|q Pr(D = d|M,X)]

1/q

≥ ϵ1/q

 ∑
d∈{0,1}

E [|µ0(d,M,X)|q]

1/q

≥ ϵ1/q
(

max
d∈{0,1}

E [|µ0(d,M,X)|q]
)1/q

= ϵ1/q max
d∈{0,1}

(E [|µ0(d,M,X)|q])1/q = ϵ1/q max
d∈{0,1}

∥µ0(d,M,X)∥q .

The first equality follows from definition, the second from the law of total probability, the first

inequality from Pr(D = d|M,X) ≥ ϵ. Using the same line of arguments we get that

∥f0(M |D,X)∥q ≥ ϵ1/q max
d∈{0,1}

∥f0(M |d,X)∥q

Also, by Jensen’s inequality ∥µ0(D,M,X)∥q ≤ ∥Y ∥q, such that for any d ∈ {0, 1}:

∥µ0(d,M,X)∥q ≤ C/ϵ1/q, (2.14)

∥f0(M |d,X)∥q ≤ C/ϵ1/q,

because of ∥Y ∥q ≤ C by Assumption 4(a).

Similarly, for any η ∈ Tn we obtain:

∥µ(d,M,X)− µ0(d,M,X)∥q ≤ C/ϵ1/q,

∥f(M |d,X)− f0(M |d,X)∥q ≤ C/ϵ1/q,

due to the definition of Tn given in (2.13).
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Also,

∥ν0(1− d,X)∥q = (E [|ν0(1− d,X)|q])1/q (2.15)

=

(
E

[∣∣∣∣∫
m∈M

µ0(d,m,X) · f0(m|1− d,X)dm

∣∣∣∣q])1/q

≤
(
E

[∫
m∈M

|µ0(d,m,X)|q · f0(m|1− d,X)dm

])1/q

=

(
E

[∫
m∈M

|µ0(d,m,X)|q · f(m|d,X) · f0(m|1− d,X)

f(m|d,X)
dm

])1/q

≤ R1/q

(
E

[∫
m∈M

|µ0(d,m,X)|q · f0(m|d,X)dm

])1/q

= R1/q ∥µ0(d,M,X)∥q ≤ ϵ1/qR1/q ∥µ0(D,M,X)∥q

where we make use of the definition of ν0, Jensen’s inequality, and the boundedness of the ratio

of densities. We therefore obtain ∥ν0(1− d,X)∥q ≤ C/(ϵ1/qR1/q) by inequality (2.14).

This permits bounding the following quantities:

∥µ(d,M,X)∥q ≤ ∥µ(d,M,X)− µ0(d,M,X)∥q + ∥µ0(d,M,X)∥q ≤ 2C/ϵ1/q, (2.16)

∥ν(1− d,X)∥q ≤ ∥ν(1− d,X)− ν0(1− d,X)∥q + ∥ν0(1− d,X)∥q ≤ 2C/(ϵ1/qR1/q),

|ψd0| = |E[ν0(1− d,X)]| ≤ E
[
|ν0(1− d,X)|1

]1/1
= ∥ν0(1− d,X)∥1

≤ ∥ν0(1− d,X)∥2 ≤ ∥Y2∥2 /(ϵ
1/2R1/2)

q>2︷︸︸︷
≤ ∥Y2∥q /(ϵ

1/2R1/2) ≤ C/(ϵ1/2R1/2),

using the triangular inequality, Jensen’s inequality, and properties of statistical lq norms.

Finally, rearranging ψd(W, η, ψd0)

ψd(W, η, ψd0) =
I{D = d} · f0(M |1− d,X)

pd(X) · f0(M |d,X)
· Y︸ ︷︷ ︸

=I1

+

(
I{D = 1− d}
1− pd(X)

− I{D = d} · f0(M |1− d,X)

pd(X) · f0(M |d,X)

)
· µ(d,M,X)︸ ︷︷ ︸

=I2

+

(
1− I{D = 1− d}

1− pd(X)

)
ν(1− d,X)︸ ︷︷ ︸

=I3

−ψd0,
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provides

∥ψd(W, η, ψd0)∥q ≤ ∥I1∥q + ∥I2∥q + ∥I3∥q + ∥ψd0∥q

≤ R

ϵ
∥Y ∥q +

1 +R

ϵ
∥µ(d,M,X)∥q +

+
1− ϵ

ϵ
∥ν(1− d,X)∥q + |ψd0|

≤ C

(
R

ϵ
+

2

ϵ1+1/q

(
1 +R+

1− ϵ

R1/q

)
+

1

ϵ1/2R1/2

)
,

making use of the triangular inequality and inequalities (2.16). This provides the upper bound

on mn in Assumption 3.2(b).

Bound for m′
n:

We note that (
E[|ψad(W, η)|q]

)1/q
= 1,

which provides the upper bound on m′
n in Assumption 3.2(b).

Assumption 3.2(c)

Bound for rn: For any η = (µ, f, pd) we have

∣∣∣E(ψad(W, η)− ψad(W, η0)
)∣∣∣ = |1− 1| = 0 ≤ δ′n,

providing the bound on rn in Assumption 3.2(c).

Bound for r′n:

Using the triangular inequality

∥ψd(W, η, ψd0)− ψd(W, η0, ψd0)∥2 ≤
∥∥∥∥I{D = d} · Y ·

(
f(M |1− d,X)

pd(X)f(M |d,X)
− f0(M |1− d,X)

pd0(X)f0(M |d,X)

)∥∥∥∥
2

+

∥∥∥∥I{D = d} ·
(
µ(d,M,X)f(M |1− d,X)

pd(X)f(M |d,X)
− µ0(d,M,X)f0(M |1− d,X)

pd0(X)f0(M |d,X)

)∥∥∥∥
2

+

∥∥∥∥I{D = 1− d} ·
(
µ(d,M,X)

1− pd(X)
− µ0(d,M,X)

1− pd0(X)

)∥∥∥∥
2

+

∥∥∥∥I{D = 1− d} ·
(
ν(1− d,X)

1− pd(X)
− ν0(1− d,X)

1− pd0(X)

)∥∥∥∥
2

+ ∥ν(1− d,X)− ν0(1− d,X)∥2

≤ δn

(
C ·R2

ϵ2
+
C ·R2

ϵ2

(
1

ϵ1/2
+

C

ϵ1/2

)
+

1

ϵ2

(
1

ϵ1/2
+

C

ϵ1/2

)
+

1

ϵ2

(
1

ϵ1/2R1/2
+

C

R1/2

)
+

1

ϵ1/2R1/2

)
≤ δ′n,

as long as Cϵ in the definition of δ′n is sufficiently large. This gives the bound on r′n in As-
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sumption 3.2(c). In order to show the second to the last inequalities, we provide bounds for

the terms below, where we made use of the facts that ∥µ(d,M,X)− µ0(d,M,X)∥2 ≤ δn/ϵ
1/2,

and ∥ν(1− d,X)− ν0(1− d,X)∥2 ≤ δn/(ϵ
1/2R1/2) using similar steps as in Assumption 3.1(b)

of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018).

For the first term:

∥∥∥∥I{D = d} · Y ·
(
f(M |1− d,X)

pd(X)f(M |d,X)
− f0(M |1− d,X)

pd0(X)f0(M |d,X)

)∥∥∥∥
2

≤ C ·
∥∥∥∥ f(M |1− d,X)

pd(X)f(M |d,X)
− f0(M |1− d,X)

pd0(X)f0(M |d,X)

∥∥∥∥
2

≤ C

ϵ2f2
∥f(M |1− d,X)f0(M |1− d,X)pd0(X)− f(M |1− d,X)f0(M |1− d,X)pd(X)∥2

≤ C · f2

ϵ2f2
∥pd0(X)− pd(X)∥2 ≤ δn

C ·R2

ϵ2
,

where we use
∥∥E[Y 2|d,M,X]

∥∥
∞ ≤ C2 (see our Assumption 4(a)) in the first inequality.

For the second term:

∥∥∥∥I{D = d} ·
(
µ(d,M,X)f(M |1− d,X)

pd(X)f(M |d,X)
− µ0(d,M,X)f0(M |1− d,X)

pd0(X)f0(M |d,X)

)∥∥∥∥
2

≤
∥∥∥∥µ(d,M,X)f(M |1− d,X)

pd(X)f(M |d,X)
− µ0(d,M,X)f0(M |1− d,X)

pd0(X)f0(M |d,X)

∥∥∥∥
2

≤ C

ϵ2f2
∥µ(d,M,X)f(M |1− d,X)f0(M |1− d,X)pd0(X)− µ0(d,M,X)f(M |1− d,X)f0(M |1− d,X)pd(X)∥2

≤ Cf
2

ϵ2f2
∥µ(d,M,X)pd0(X)− µ0(d,M,X)pd(X)∥2

=
C ·R2

ϵ2
∥µ(d,M,X)pd0(X)− µ0(d,M,X)pd(X) + µ0(d,M,X)pd0(X)− µ0(d,M,X)pd0(X)∥2

≤ C ·R2

ϵ2
(
∥pd0(X)(µ(d,M,X)− µ0(d,M,X))∥2 + ∥µ0(d,M,X)(pd0(X)− pd(X))∥2

)
≤ C ·R2

ϵ2
(
∥µ(d,M,X)− µ0(d,M,X)∥2 + C ∥(pd0(X)− pd(X))∥2

)
≤ C ·R2

ϵ2

(
δn

ϵ1/2
+ Cδn

)
= δn

C ·R2

ϵ2

(
1

ϵ1/2
+ C

)

where the fifth inequality follows from E[Y 2|D = d,M,X] ≥ (E[Y |D = d,M,X])2 = µ20(d,M,X)

by conditional Jensen’s inequality and therefore ∥µ0(d,M,X)∥∞ ≤ C2.
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For the third term:

∥∥∥∥I{D = 1− d} ·
(
µ(d,M,X)

1− pd(X)
− µ0(d,M,X)

1− pd0(X)

)∥∥∥∥
2

≤
∥∥∥∥µ(d,M,X)

1− pd(X)
− µ0(d,M,X)

1− pd0(X)

∥∥∥∥
2

≤ 1

ϵ2
∥µ(d,M,X)p1−d,0 − µ0(d,M,X)p1−d∥2

=
1

ϵ2
∥µ(d,M,X)p1−d,0 − µ0(d,M,X)p1−d + µ0(d,M,X)p1−d,0 − µ0(d,M,X)p1−d,0∥2

≤ 1

ϵ2
(
∥p1−d,0(µ(d,M,X)− µ0(d,M,X))∥2 + ∥µ0(d,M,X)(p1−d,0 − p1−d)∥2

)
≤ 1

ϵ2
(
∥µ(d,M,X)− µ0(d,M,X)∥2 + C ∥p1−d,0 − p1−d∥2

)
≤ 1

ϵ2

(
δn

ϵ1/2
+ Cδn

)
= δn

1

ϵ2

(
1

ϵ1/2
+ C

)
.

For the fourth term:

∥∥∥∥I{D = 1− d} ·
(
ν(1− d,X)

1− pd(X)
− ν0(1− d,X)

1− pd0(X)

)∥∥∥∥
2

≤ 1

ϵ2
(
∥p1−d,0(ν(1− d,X)− ν0(1− d,X))∥2 + ∥ν0(1− d,X)(p1−d,0 − p1−d)∥2

)
≤ 1

ϵ2
(
∥ν(1− d,X)− ν0(1− d,X)∥2 +

C

R1/2
∥p1−d,0 − p1−d∥2

)
≤ 1

ϵ2

(
δn

ϵ1/2R1/2
+

C

R1/2
δn

)
= δn

1

ϵ2

(
1

ϵ1/2R1/2
+

C

R1/2

)
,

where we used Jensen’s inequality similarly to 2.15 in order to get E[ν20(1 − d,X)] ≤ R ·

E[µ20(d,M,X)] and hence∥ν0(1− d,X)∥∞ ≤ C2/R.

Bound on λ′n:

Consider

f(r) := E[ψ(W, η0 + r(η − η0), ψd0)]

We subsequently omit arguments for the sake of brevity and use pd = pd(X), fd = fd(M |d,X), µ =

µ(d,M,X), ν = ν(1− d,X) and similarly pd0, f0d, µ0, ν0.
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For any r ∈ (0, 1) :

∂2f(r)

∂r2
= E

[
2 · I{D = 1− d} (µ− µ0)(pd − pd0)

(1− pd0 + r(pd0 − pd))
2

]
+ E

[
2 · I{D = 1− d} (ν − ν0)(pd − pd0)

(1− pd0 + r(pd0 − pd))
2

]

+ E

[
2 · I{D = d}

(fd − fd0)(f1−d − f1−d,0) (Y − µ0 − r(µ− µ0))

(pd0 + r(pd − pd0)) (fd0 + r(fd − fd0))
2

]

+ E

[
2 · I{D = d}

(pd − pd0)(f1−d − f1−d,0) (Y − µ0 − r(µ− µ0))

(pd0 + r(pd − pd0))
2 (fd0 + r(fd − fd0))

]

+ E

[
2 · I{D = d}

(fd − fd0) (f1−d,0 + r(f1−d − f1−d,0)) (−(µ− µ0))

(pd0 + r(pd − pd0)) (fd0 + r(fd − fd0))
2

]

+ E

[
2 · I{D = d}

(pd − pd0) (f1−d,0 + r(f1−d − f1−d,0)) (−(µ− µ0))

(pd0 + r(pd − pd0))
2 (fd0 + r(fd − fd0))

]

+ E

[
(−2) · I{D = d}

(f1−d − f1−d,0) (µ− µ0)

(pd0 + r(pd − pd0)) (fd0 + r(fd − fd0))

]

+ E

[
2 · I{D = d}

(fd − fd0)
2 (f1−d,0 + r(f1−d − f1−d,0)) (Y − µ0 − r(µ− µ0))

(pd0 + r(pd − pd0)) (fd0 + r(fd − fd0))
3

]

+ E

[
2 · I{D = d}

(fd − fd0)(pd − pd0) (f1−d,0 + r(f1−d − f1−d,0)) (Y − µ0 − r(µ− µ0))

(pd0 + r(pd − pd0))
2 (fd0 + r(fd − fd0))

2

]

+ E

[
2 · I{D = d}

(pd − pd0)
2 (f1−d,0 + r(f1−d − f1−d,0)) (Y − µ0 − r(µ− µ0))

(pd0 + r(pd − pd0))
3 (fd0 + r(fd − fd0))

]

+ E

[
2 · I{D = 1− d} (µ0 − ν0) (pd − pd0)

2

(1− pd0 + r(pd0 − pd))
3

]

+ E

[
2 · I{D = 1− d}(r(µ− µ0)− r(ν − ν0)) (pd − pd0)

2

(1− pd0 + r(pd0 − pd))
3

]

Note that the following inequalities can be shown to hold using similar steps as in Assumption

3.1(b) of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018):

∥µ− µ0∥2 = ∥µ(d,M,X)− µ0(d,M,X)∥2 ≤ ∥µ(D,M,X)− µ0(D,M,X)∥2 /ϵ
1/2 ≤ δn/ϵ

1/2,

∥ν − ν0∥2 = ∥ν(1− d,X)− ν0(1− d,X)∥2 ≤ ∥µ(D,M,X)− µ0(D,M,X)∥2 /ϵ
1/2R1/2 ≤ δn/(ϵ

1/2R1/2),

38



These inequalities together with our Assumption 4 imply

E[Y − µ0(d,M,X)|D = d,M,X] = 0,

|pd − pd0| ≤ 2,

∥µ0∥q ≤ ∥Y ∥q /ϵ
1/q ≤ C/ϵ1/q

∥µ− µ0∥2 × ∥pd − pd0∥2 ≤ δnn
−1/2/ϵ1/2,

∥µ− µ0∥2 × ∥f1−d − f1−d,0∥2 ≤ δnn
−1/2/(ϵR1/2),

for all d ∈ {1, 0} and consequently

∥ν − ν0∥2 × ∥pd − pd0∥2 ≤ δnn
−1/2/(ϵ1/2R1/2).

Putting everything together, we get that for some value C ′′
ϵ that only depends on C and ϵ

∣∣∣∣∂2f(r)∂r2

∣∣∣∣ ≤ C ′′
ϵ δnn

−1/2 ≤ δ′nn
−1/2.

This gives the upper bound on λ′n in Assumption 3.2(c) as long as Cϵ in the definition of δ′n

satisfies Cϵ ≥ C ′′
ϵ . In order to verify that this inequality holds we consider all the terms in ∂2f(r)

∂r2

separately. For the first term we obtain

∣∣∣∣∣E
[
2 · I{D = 1− d} (µ− µ0)(pd − pd0)

(1− pd0 + r(pd0 − pd))
2

]∣∣∣∣∣ ≤ 2

ϵ3

∣∣∣∣∣E
[
(µ− µ0)(pd − pd0)

]∣∣∣∣∣ ≤ 2

ϵ3
δn

ϵ1/2R1/2
n−1/2,

where we made use of the fact that 1 ≥ pd0 + r(pd − pd0) = (1− r)pd0 + rpd ≥ (1− r)ϵ+ rϵ = ϵ,

f ≤ fd0 + r(fd − fd0) ≤ f , and Holder’s inequality. For the third term we obtain

∣∣∣∣∣E
[
2 · I{D = d}

(fd − fd0)(f1−d − f1−d,0) (Y − µ0 − r(µ− µ0))

(pd0 + r(pd − pd0)) (fd0 + r(fd − fd0))
2

]∣∣∣∣∣
≤ 2

ϵf2
(f − f)2

∣∣∣∣∣E
[
I{D = d} (Y − µ0)

]∣∣∣∣∣+ 2

ϵf2

∣∣∣∣∣E
[
I{D = d}(fd − fd0)(f1−d − f1−d,0)r(µ− µ0)

]∣∣∣∣∣
≤ 2

ϵf2
(f − f)

∣∣∣∣∣E
[
1 · (f1−d − f1−d,0)(µ− µ0)

]∣∣∣∣∣ ≤ 2

ϵf2
(f − f)

δn

ϵ1/2
n−1/2.
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And for the second to the last terms, we obtain

∣∣∣∣∣E
[
2 · I{D = 1− d} (µ0 − ν0) (pd − pd0)

2

(1− pd0 + r(pd0 − pd))
3

]∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣E
[ E[E[·|M,X]|X]=0︷ ︸︸ ︷
I{D = 1− d}(µ0 − ν0)

p1−d,0
·

p1−d,0(pd − pd0)
2

(1− pd0 + r(pd0 − pd))
3

]∣∣∣∣∣∣∣∣∣ = 0.

All the remaining terms are bounded similarly.

Assumption 3.2(d):

Finally, we consider

E
[
(ψd(W, η, ψd0))

2
]

= E

[(
I{D = d} · f0(M |1− d,X)

pd(X) · f0(M |d,X)
· (Y − µ0(d,M,X))︸ ︷︷ ︸

=I1

+

(
I{D = 1− d}
1− pd(X)

)
· (µ0(d,M,X)− ν0(1− d,X))︸ ︷︷ ︸

=I2

+ ν0(1− d,X)− ψd0︸ ︷︷ ︸
=I3

)2]

= E[I21 + I22 + I23 ] ≥ E[I21 ]

= E

[(
I{D = d} · f0(M |1− d,X)

pd(X) · f0(M |d,X)

)2

(Y − µ0(d,M,X))2
]

≥
f2

(1− ϵ)f
2E

[
(Y − µ0(d,M,X))2

]
≥ c2

(1− ϵ)R2
> 0,

where the second equality follows from

E
[
I1 · I2

]
= E

[ I{D=d}·I{D=1−d}=0︷ ︸︸ ︷
I{D = d} · f0(M |1− d,X)

pd(X) · f0(M |d,X)

I{D = 1− d}
1− pd(X)

· (Y − µ0(d,M,X)) · (µ0(d,M,X)− ν0(1− d,X))

]
,

E
[
I2 · I3

]
= E

[ E[·|X]=0︷ ︸︸ ︷
I{D = 1− d}
1− pd(X)

· (µ0(d,M,X)− ν0(1− d,X)) ·(ν0(1− d,X)− ψd0)

]
,

E
[
I1 · I3

]
= E

[ E[·|X]=0︷ ︸︸ ︷
I{D = d} · f0(M |1− d,X)

pd(X) · f0(M |d,X)
· (Y − µ0(d,M,X)) ·(ν0(1− d,X)− ψd0)

]
.
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Counterfactual E[Y (d,m)]

The score for the estimation of E[Y (d,m)] based on (2.8) is given by:

E
[
ψdm(W, η, ψdm0)

]
= E

[
I{D = d} · I{M = m} · [Y − µ(d,m,X)]

f(m|d,X) · pd(X)
+ µ(d,m,X)− ψdm0

]
.

Assumption 3.1: Moment Condition, Linear scores and Neyman orthogonality

Assumption 3.1(a): Moment condition:

The moment condition E
[
ψdm(W, η0, ψdm0)

]
= 0 is satisfied:

E
[
ψdm(W, η0, ψdm0)

]
= E

[
I{D = d} · I{M = m} · [Y − µ0(d,m,X)]

f0(m|d,X) · pd0(X)
+ µ0(d,m,X)− ψdm0

]

= E

[ =E[Y−µ0(d,m,X)|d,m,X]=0︷ ︸︸ ︷
E

[
I{D = d} · I{M = m} · [Y − µ0(d,m,X)]

f0(m|d,X) · pd0(X)

∣∣∣∣∣X
]]

+ E
[
µ0(d,m,X)

]
− ψdm0

= ψdm0 − ψdm0 = 0.

Assumption 3.1(b): Linearity:

The score ψdm(W, η0, ψdm0) is linear in ψdm0 as it can be written as: ψdm(W, η0, ψdm0) =

ψad(W, η0) · ψdm0 + ψbd(W, η0) with ψ
a
d(W, η0) = −1 and

ψbd(W, η0) =
I{D = d} · I{M = m} · [Y − µ(d,m,X)]

f(m|d,X) · pd(X)
+ µ(d,m,X)

Assumption 3.1(c): Continuity:

The expression for the second Gateaux derivative of a map η 7→ E
[
ψdm(W, η, ψdm0)

]
, is contin-

uous.

Assumption 3.1(d): Neyman orthogonality :

The Gateaux derivative in the direction η − η0 = (µ(d,M,X) − µ0(d,M,X), f(M |D,X) −
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f0(M |D,X), pd(X)− pd0(X)) is given by:

∂E
[
ψdm(W, η, ψdm0)

][
η − η0

]

=

=0︷ ︸︸ ︷
−E

[
I{D = d} · I{M = m}
f0(m|d,X) · pd0(X)︸ ︷︷ ︸
E[·|X]=

Pr(D=d,M=m|X)
Pr(D=d,M=m|X)

=1

·
[
µ(d,m,X)− µ0(d,m,X)

]]
+ E

[
µ(d,m,X)− µ0(d,m,X)

]

− E

[ E[·|X]=E[Y−µ0(d,m,X)|d,m,X]=0︷ ︸︸ ︷
I{D = d} · I{M = m} · [Y − µ0(d,m,X)]

f0(m|d,X) · pd0(X)
· f(m|d,X)− f0(m|d,X)

f0(m|d,X)

]

− E

[ E[·|X]=E[Y−µ0(d,m,X)|d,m,X]=0︷ ︸︸ ︷
I{D = d} · I{M = m} · [Y − µ0(d,m,X)]

f0(m|d,X) · pd0(X)
· pd(X)− pd0(X)

pd0(X)

]
.

Thus, it follows that:

∂E
[
ψdm(W, η0, ψdm0)

][
η − η0

]
= 0

proving that the score function is orthogonal.

Assumption 3.1(e): Singular values of E[ψad(W ; η0)] are bounded:

This holds trivially, because ψad(W ; η0) = −1.

Assumption 3.2: Score regularity and quality of nuisance parameter estimators

This proof is omitted for the sake of brevity. It follows along similar lines as the proof for

Y (d,M(1− d)) presented in subsection 2.B.1.

This concludes the proof of Theorem 1. □
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2.B.2 Proof of Theorem 2

The alternative score for the counterfactual based on (2.6) is given by:

ψ∗
d(W, η

∗, ψd0) = E

[
I{D = d} · (1− pd(M,X))

pd(M,X) · (1− pd(X))
·
[
Y − µ(d,M,X)

]

+
I{D = 1− d}
1− pd(X)

·

[
µ(d,M,X)−

=:ω(1−d,X)︷ ︸︸ ︷
E
[
µ(d,M,X)

∣∣∣D = 1− d,X
] ]

+

=:ω(1−d,X)︷ ︸︸ ︷
E
[
µ(d,M,X)

∣∣∣D = 1− d,X
] ]

− ψd0

with η∗ = (µ(D,M,X), ω(D,X), pd(M,X), pd(X)).

Let T ∗
n be the set of all η∗ consisting of P -square integrable functions µ(D,M,X), ω(D,X), pd(M,X),

and pd(X) such that

∥η∗ − η∗0∥q ≤ C, (2.17)

∥η∗ − η∗0∥2 ≤ δn,

∥pd(X)− 1/2∥∞ ≤ 1/2− ϵ,

∥pd(M,X)− 1/2∥∞ ≤ 1/2− ϵ,

∥µ(D,M,X)− µ0(D,M,X)∥2 × ∥pd(X)− pd0(X)∥2 ≤ δnn
−1/2,

∥µ(D,M,X)− µ0(D,M,X)∥2 × ∥pd(M,X)− pd0(M,X)∥2 ≤ δnn
−1/2,

∥ω(D,X)− ω0(D,X)∥2 × ∥pd(X)− pd0(X)∥2 ≤ δnn
−1/2.

We replace the sequence (δn)n≥1 by (δ′n)n≥1, where δ′n = Cϵmax(δn, n
−1/2), where Cϵ is a

sufficiently large value that only depends on C and ϵ.

Assumption 3.1: Moment Condition, Linear scores and Neyman orthogonality

Assumption 3.1(a): Moment condition:
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The moment condition E
[
ψ∗
d(W, η

∗
0, ψd0)

]
= 0 is satisfied:

E
[
ψ∗
d(W, η

∗
0, ψd0)

]
= E

[ =E[E[Y−µ0(d,M,X)|D=d,M,X]|D=1−d,X]=0︷ ︸︸ ︷
E

[
I{D = d} · (1− pd0(M,X))

pd0(M,X) · (1− pd0(X))
· [Y − µ0(d,M,X)]

∣∣∣∣∣X
]]

+ E

[ =E[µ0(d,M,X)−ω0(1−d,X)|D=1−d,X]=0︷ ︸︸ ︷
E

[
I{D = 1− d}
1− pd0(X)

· [µ0(d,M,X)− ω0(1− d,X)]

∣∣∣∣∣X
]]

+ E[ω0(1− d,X)] − ψd0

= ψd0 − ψd0 = 0.

To better see this result, note that

E

[
I{D = d} · (1− pd0(M,X))

pd0(M,X) · (1− pd0(X))
· [Y − µ0(d,M,X)]

∣∣∣∣∣X
]

= E

[
E

[
I{D = d}
pd0(M,X)

· [Y − µ0(d,M,X)]

∣∣∣∣∣M,X

]
· (1− pd0(M,X))

(1− pd0(X))

∣∣∣∣∣X
]

= E

[
E[Y − µ0(d,M,X)|D = d,M,X] · (1− pd0(M,X))

(1− pd0(X))

∣∣∣∣∣X
]

= E[E[Y − µ0(d,M,X)|D = d,M,X]|D = 1− d,X]

= E[µ0(d,M,X)− µ0(d,M,X)|D = 1− d,X] = 0,

where the first equality follows from the law of iterated expectations, the second from basic

probability theory, and the third from Bayes’ Law. Furthermore,

E

[
I{D = 1− d}
1− pd0(X)

· [µ0(d,M,X)− ω0(1− d,X)]

∣∣∣∣∣X
]

= E

[
E

[
I{D = 1− d}
1− pd0(X)

· [µ0(d,M,X)− ω0(1− d,X)]
∣∣∣M,X

]∣∣∣∣∣X
]

= E

[
[µ0(d,M,X)− ω0(1− d,X)] · 1− pd0(M,X)

1− pd0(X)

∣∣∣∣∣X
]

= E[µ0(d,M,X)− ω0(1− d,X)|D = 1− d,X] = E[µ0(d,M,X)|D = 1− d,X]− ω0(1− d,X)

= ω0(1− d,X)− ω0(1− d,X) = 0,

where the first equality follows from the law of iterated expectations and the third from Bayes’

Law.
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Assumption 3.1(b):Linearity:

The score ψ∗
d(W, η

∗
0, ψd0) is linear in ψd0 as it can be written as: ψ∗

d(W, η
∗
0, ψd0) = ψad(W,ψd0) ·

ψd0 + ψbd(W, η
∗
0) with ψ

a
d(W, η

∗
0) = −1 and

ψbd(W, η
∗
0) =

I{D = d} · (1− pd0(M,X))

pd0(M,X) · (1− pd0(X))
·
[
Y − µ0(d,M,X)

]
+

I{D = 1− d}
1− pd0(X)

·
[
µ0(d,M,X)− ω0(1− d,X)

]
+ ω0(1− d,X)

Assumption 3.1(c): Continuity:

The expression for the second Gateaux derivative of a map η∗ 7→ E
[
ψ∗
d(W, η

∗, ψd0)
]
is continu-

ous.

Assumption 3.1(d): Neyman orthogonality :

The Gateaux derivative in the direction

η∗−η∗0 = (µd(d,M,X)−µ0(d,M,X), ω(1−d,X)−ω0(1−d,X), pd(M.X)−pd0(M,X), pd(X)−
pd0(X)) is given by:

∂E
[
ψ∗

d(W, η
∗, ψd0)

][
η∗ − η∗0

]

=E

[
−[pd(M,X)− pd0(M,X)]

pd0(M,X)2
·

E[·|X]=E[Y −µ(d,M,X)|D=d,X]· pd0(X)

1−pd0(X)
=0︷ ︸︸ ︷

I{D = d}
1− pd0(X)

·
(
Y − µ(d,M,X)

) ]

+E

[ E[·|X]=E[E[Y −µ0(d,M,X)|D=d,M,X]|D=1−d,X]=0︷ ︸︸ ︷
I{D = d} · (1− pd0(M,X))

pd0(M,X) · (1− pd0(X))
·
(
Y − µ0(d,M,X)

)
·pd(X)− pd0(X)

(1− pd0(X))

]

+E

[
I{D = 1− d}
(1− pd0(X))

·
(
µ0(d,M,X)− ω0(1− d,X)

)
︸ ︷︷ ︸

E[·|X]=E[µ0(d,M,X)−ω0(1−d,X)|D=1−d,X]=0

·pd(X)− pd0(X)

(1− pd0(X))

]

−E

[
I{D = d}
pd0(M,X)︸ ︷︷ ︸
E[·|M,X]=1

· (1− pd0(M,X))

(1− pd0(X))
·
[
µ(d,M,X)− µ0(d,M,X)

]]
+ E

[
I{D = 1− d}
1− pd0(X)︸ ︷︷ ︸

E[·|M,X]=
1−pd0(M,X)

1−pd0(X)

·
[
µ(d,M,X)− µ0(d,M,X)

]]

︸ ︷︷ ︸
=0

−E

[
I{D = 1− d}
1− pd0(X)︸ ︷︷ ︸

E[·|X]=1

·
[
ω(1− d,X)− ω0(1− d,X)

]
+

[
ω(1− d,X)− ω0(1− d,X)

]]

︸ ︷︷ ︸
=0

.
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Thus, it follows that:

∂E
[
ψ∗
d(W, η

∗, ψd0)
][
η∗ − η∗0

]
= 0

proving that the score function is orthogonal.

Assumption 3.1(e): Singular values of E[ψad(W ; η∗0)] are bounded:

This holds trivially, because ψad(W ; η∗0) = −1.

Assumption 3.2: Score regularity and quality of nuisance parameter estimators

Bounds for mn,m
′
n, rn, r

′
n are omitted for the sake of brevity, because their derivations follow

similarly as in the proof for Y (d,M(1− d)) in subsection 2.B.1. However, the proof differs in

establishing the bound on λ′n in 3.2(c) of Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,

Newey, and Robins (2018), as it is based on the regularity conditions in Assumption 5 that

include pd(M,X) and ω(1− d,X).

Bound for λ′n: Consider

f(r) := E[ψ(W, η∗0 + r(η∗ − η∗0), ψd0)]

We subsequently omit arguments for the sake of brevity and use

µ = µ(d,M,X), ω = ω(1− d,X), pd = pd(X), pdm = pd(M,X) and similarly µ0, ω0, pd0, pdm0.
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For any r ∈ (0, 1) :

∂2f(r)

∂r2
= E

[
(−2) · I{D = d} (pdm − pdm0)(pd − pd0) (Y − µ0 − r(µ− µ0))

(pdm0 + r(pdm − pdm0)) (1− pd0 + r(pd0 − pd))
2

]

+ E

[
2 · I{D = d} (pdm − pdm0)

2 (Y − µ0 − r(µ− µ0))

(pdm0 + r(pdm − pdm0))
2 (1− pd0 + r(pd0 − pd))

]

+ E

[
2 · I{D = d} (1− pdm0 + r(pdm0 − pdm)) (pd − pd0)(µ− µ0)

(pdm0 + r(pdm − pdm0)) (1− pd0 + r(pd0 − pd))
2

]

+ E

[
(−2) · I{D = d}(1− pdm0 + r(pdm0 − pdm)) (pdm − pdm0) (Y − µ0 − r(µ− µ0))

(pdm0 + r(pdm − pdm0))
2 (1− pd0 + r(pd0 − pd))

]

+ E

[
(−2) · I{D = d}(pd − pd0)

2 (1− pdm0 + r(pdm0 − pdm)) (Y − µ0 − r(µ− µ0))

(pdm0 + r(pdm − pdm0)) (1− pd0 + r(pd0 − pd))
3

]

+ E

[
(−2) · I{D = d}(pdm − pdm0)(pd − pd0) (1− pdm0 + r(pdm0 − pdm)) (Y − µ0 − r(µ− µ0))

(pdm0 + r(pdm − pdm0))
2 (1− pd0 + r(pd0 − pd))

2

]

+ E

[
(−2) · I{D = d}(pdm − pdm0)

2 (1− pdm0 + r(pdm0 − pdm)) (Y − µ0 − r(µ− µ0))

(pdm0 + r(pdm − pdm0))
3 (1− pd0 + r(pd0 − pd))

]

+ E

[
2 · I{D = d} (pdm − pdm0)(µ− µ0)

(pdm0 + r(pdm − pdm0)) (1− pd0 + r(pd0 − pd))

]

+ E

[
2 · I{D = 1− d} (pd − pd0)

2 (µ0 − ω0)

(1− pd0 + r(pd0 − pd))
3

]
(2.18)

+ E

[
2 · I{D = 1− d}(pd − pd0)

2r ((µ− µ0)− (ω − ω0))

(1− pd0 + r(pd0 − pd))
3

]

+ E

[
2 · I{D = 1− d} (pd − pd0) (µ− µ0)

(1− pd0 + r(pd0 − pd))
2

]
(2.19)

+ E

[
(−2) · I{D = 1− d} (pd − pd0) (ω − ω0)

(1− pd0 + r(pd0 − pd))
2

]

Bounding these twelve terms proceeds similarly as in subsection 2.B.1. In order to bound the

eighth term, we make use of the sixth inequality in 2.17. Similarly, for bounding the tenth and

the twelfth terms we make use of the last inequality in 2.17. Thus, we get that for some C ′′
ϵ

that only depends on C and ϵ

∣∣∣∣∂2f(r)∂r2

∣∣∣∣ ≤ C ′′
ϵ δnn

−1/2 ≤ δ′nn
−1/2.

This provides the upper bound on λ′n in Assumption 3.2(c) of Chernozhukov, Chetverikov,

Demirer, Duflo, Hansen, Newey, and Robins (2018) as long as Cϵ ≥ C ′′
ϵ .
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This concludes the proof of Theorem 2. □
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Chapter 3

Timing Matters: The Impact of Response Measures on

COVID-19-Related Hospitalization and Death Rates in

Germany and Switzerland

with Martin Huber

Abstract: We assess the impact of the timing of lockdown measures implemented in Germany and

Switzerland on cumulative COVID-19-related hospitalization and death rates. Our analysis exploits the

fact that the epidemic was more advanced in some regions than in others when certain lockdown measures

came into force, based on measuring health outcomes relative to the region-specific start of the epidemic

and comparing outcomes across regions with earlier and later start dates. When estimating the effect

of the relative timing of measures, we control for regional characteristics and initial epidemic trends by

linear regression (Germany and Switzerland), doubly robust estimation (Germany), or synthetic controls

(Switzerland). We find for both countries that a relatively later exposure to the measures entails higher

cumulative hospitalization and death rates on region-specific days after the outbreak of the epidemic,

suggesting that an earlier imposition of measures is more effective than a later one. For Germany, we

further evaluate curfews (as introduced in a subset of states) based on cross-regional variation. We do

not find any effects of curfews on top of the federally imposed contact restriction that banned groups of

more than 2 individuals.

Keywords: COVID-19, pandemic, social distancing, lockdown, treatment effect, synthetic control.

JEL classification: I18, I12, H12.
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3.1 Introduction

This paper assesses how the timing of the lockdown measures implemented in Switzerland and

Germany affects the development of cumulative COVID-19-related hospitalization and death

rates. In both countries, the federal governments implemented extensive lockdown measures,

including the closure of non-essential shops, schools, childcare centers, cafes, bars and restau-

rants. In Germany, these measures were further enhanced with a ban on gatherings with more

than two people decided at federal level and curfews implemented in several states. With the

measures in place for some weeks, both countries report a flattening of the COVID-19 epidemic

curve. This alone, however, does not necessarily exclusively reflect the impact of the measures,

but likely also general time trends in the spread of the virus. For this reason, this study aims

to provide evidence about the causal effects of the German and Swiss measures by exploiting

variation (i) in their relative timing due the fact that the epidemic was more advanced in some

regions than in others when certain measures came into force and (ii) across regions due to the

fact that some measures were only introduced in a subset of regions.

A range of studies on the impact of COVID-19 response measures focus on predicting the

development of the pandemic in terms of infections, hospitalizations, or death rates based on

simulating the spread of the virus and calibrating the model as a function of the measures. For

instance, Koo, Cook, Park, Sun, Sun, Lim, Tam, and Dickens (2020) provide a simulation study

on the COVID-19 outbreak in Singapore and model the development of COVID-19 infections

under four potential intervention scenarios. Likewise, Bicher, Rippinger, Urach, Brunmeir, and

Popper (2020) developed an agent-based simulation model to predict the development of infec-

tions under different scenarios of lockdown timing and exit strategies out of the lockdown in

Austria, finding that delaying the lockdown by 1 week would have translated into an increase

of infections by 4 times. Donsimoni, Glawion, Plachter, Weiser, and Wälde (2020) simulate the

effect of lockdown timing and duration on the rate of COVID-19 infections and the expected end

date of the epidemic in Germany. The study suggests that a complete lift of measures on April

20th would have borne the risk of increasing infection rates. The authors further advise to adopt

exit strategies and policies that differ across regions in order to learn about which measures are

most effective for containing the epidemic while reducing social and economic costs.

In contrast to such simulations, in which empirical data serve for calibrating parameters in
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prediction models, a growing literature applies policy evaluation methods as outlined in Imbens

and Wooldridge (2009) to assess the effectiveness of lockdown measures based on variation

across regions and over time. Qiu, Chen, and Shi (2020) for instance investigate the influence

of socioeconomic factors and COVID-19 response measures on transmission dynamics in China,

finding that measures at a local level have a larger impact on the epidemic curve than restricting

population flows between cities. Juranek and Zoutman (2020) use an event study approach to

assess the effect of the lockdown measures of Denmark and Norway on hospitalizations based

on a comparison with Sweden whose measures are comparably lenient. Results suggest that the

peak number of hospitalizations would have more than doubled in Denmark and Norway had

they followed Sweden’s strategy.

Dave, Friedson, Matsuzawa, and Sabia (2020) use a difference-in-differences approach to

evaluate lockdown measures (namely shelter in place orders) in the US by exploiting variation in

responses across states and over time. As a consequence of the measures, they find an important

increase (of 5 -10%) in the rate at which state residents remained in their homes full-time as

well as substantial reductions in cumulative COVID-19 cases (44% after three weeks),1 with

early adopting states with a high population density benefiting most. See also Fowler, Hill,

Obradovich, and Levin (2020) for a related difference-in-differences strategy for the US that

suggests reductions in infections, too, as well as in fatalities. Results in Friedson, McNichols,

Sabia, and Dave (2020), who use a synthetic control approach to analyze the measures’ effec-

tiveness in California, and Dave, Friedson, Matsuzawa, Sabia, and Safford (2020), who evaluate

the impact of the measures implemented in Texas in an event study framework, point in the

same direction. Weber (2020) exploits regional differences in the timing of measures in Germany

finding that school closures, prohibition of mass events, as well as gathering bans and curfews

played a major role in reducing the number of confirmed infections, while border closures and

shut-downs of the service and retail sector did not show a significant effect. Studies on the impact

of face mask requirements in public transport, retailers and public businesses find evidence for

a reduction in the spread of the virus through such requirements, see e.g. Mitze, Kosfeld, Rode,

and Wälde (2020) for a synthetic control study on German data and Chernozhukov, Kasaha, and

Schrimpf (2020), who assess the impact of such requirements in the US within a causal frame-

work that allows for both, direct effects of COVID-19 response measures and indirect effects

1The estimated effect on fatalities is also negative but less precise.
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through behavioral changes.

Askitas, Tatsiramos, and Verheyden (2020) apply an event study design to assess a range

of different response measures across 135 countries and find that canceling public events and

restricting gatherings reduce new infections more effectively than mobility restrictions like in-

ternational travel controls. This is in line with Bonardi, Gallea, Kalanoski, and Lalive (2020)

who consider first difference and AR(1) models based on 184 countries and conclude that lock-

down measures generally reduce confirmed infections and fatalities (and even more so if imposed

rather earlier than later), while border closures do not show important effects. Findings in Ban-

holzer, van Weenen, Kratzwald, Seeliger, Tschernutter, Bottrighi, Cenedese, Salles, Feuerriegel,

and Vach (2020), a study on 20 Western countries in a Bayesian framework, suggest that venue

closures and gathering bans are most effective in reducing infections but also attest a significant

effect of border closures.

Our paper contributes to this growing literature by analyzing COVID-19-related hospital-

izations and death rates across administrative units over time, namely across counties in the

case of Germany and across cantons in the case of Switzerland. We estimate the effect of the

relative timing of lockdown measures based on measuring health outcomes relative to the region-

specific start of the epidemic and comparing outcomes across regions with earlier and later start

dates. The start date is defined as the day on which the confirmed regional infections per 10,000

inhabitants exceed 1 for the first time. In the analysis, we control for regional characteristics

(population size and density, age structure, and GDP per capita), initial trends of the epidemic

(median age of confirmed infections and initial growth rate of confirmed infections), and other

policies selectively introduced prior to the major lockdowns (e.g. a ban on visits to hospitals and

retirement homes in some regions).

Linear regression estimates suggest that for both Switzerland (which also includes the Prin-

cipality of Liechtenstein as data point) and Germany, a relatively later exposure to the measures

entails higher cumulative hospitalization and death rates on sufficiently advanced region-specific

days after the outbreak of the epidemic. This suggests that an earlier imposition of measures

is more effective than a later one w.r.t. our health outcomes, which is in line with findings

in Amuedo-Dorantes, Borra, Garrido, and Sevilla (2020) on the effect of lockdown timing on

COVID-19-related deaths in Spain. For Germany with its substantially larger number of observa-

tions, we also estimate the effect of the relative timing based on doubly robust (DR) estimation,
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see Robins, Rotnitzky, and Zhao (1994) and Robins and Rotnitzky (1995), which is a more

flexible approach than exclusively relying on a linear outcome model. For Switzerland, we also

consider the synthetic control method, see Abadie and Gardeazabal (2003) and Abadie, Dia-

mond, and Hainmueller (2010), to assess for two selected cantons with a relatively late exposure

what their counterfactual outcomes would have been under an earlier exposure. Both the DR

and synthetic control methods corroborate the findings of the linear regression. For Germany

only, we also evaluate the effect of curfews that were introduced by a subset of German states

in addition to the federal lockdown measures and bans of gatherings with more than two indi-

viduals. Exploiting this cross-sectional variation while controlling for observed characteristics,

neither linear regression nor DR estimation suggest that curfews further reduce hospitalizations

and fatalities under the lockdown measures already in place, which is in line with the findings in

Bonardi, Gallea, Kalanoski, and Lalive (2020) and Banholzer, van Weenen, Kratzwald, Seeliger,

Tschernutter, Bottrighi, Cenedese, Salles, Feuerriegel, and Vach (2020). Apart from this assess-

ment of the impact of curfews on COVID-19-related death rates, our analysis does not inform

about the effectiveness of single social distancing measures implemented as part of the lockdown

in Germany and Switzerland. Further, a cost-effectiveness assessment of COVID-19 response

measures, which is certainly of great importance for policy makers, is beyond the scope of this

paper, as the long-run social and economic consequences of the lockdown cannot be credibly

assessed at the current stage.

The remainder of this paper is organized as follows. Section 3.2 provides an overview of the

timeline of COVID-19 measures in Switzerland and Germany. Sections 3.3 and 3.4 describe the

data and econometric methods used in the analyses. Section 3.5 presents and interprets the

results. Section 3.6 concludes.

3.2 Timeline of COVID-19 Response Measures

Both Germany and Switzerland are federal states with competencies in epidemic control partly

belonging to the 26 cantons in Switzerland and the 16 federal states (Länder) in Germany. The

German states themselves are comprised of all in all 401 counties (Kreise) which also have certain

competencies in handling epidemic outbreaks. With competencies fragmented across the federal

governments and sub-federal authorities, not all measures were implemented in all regions and,
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if so, not always at the same time. However, decisions on key COVID-19 response measures

were made at the federal level in both countries.

In Switzerland, the first COVID-19 response measure, a ban of events with more than 1000

visitors, was announced and implemented at the federal level on February 28th when there

were some 25 confirmed COVID-19 cases (0.03 per 10,000 inhabitants) in Switzerland. Several

measures at the cantonal level followed. For instance, many cantons introduced a ban on visits to

retirement homes. Some 2.5 weeks after the first measure was implemented, the Federal Council

decided to close all schools and childcare centers in Switzerland as well as non-essential shops,

cafes, bars, and restaurants on March 16th. In the following, we will refer to these measures

as lockdown measures. At that point in time, the rate of confirmed infections in Switzerland

was at 4.2 per 10,000 inhabitants. The schedule of response measures in the Principality of

Liechtenstein (LI) was similar to that in Switzerland with the lockdown entering into force two

days later. Due to the two countries’ similar schedules of COVID-19 response measures, their

geographic proximity and their economic, cultural and political interconnection, we include LI

as additional data point when investigating the impact of the lockdown measures in Switzerland.

In Germany, first measures at the federal level were implemented between March 9th and

March 12th. On March 8th, when there were some 1000 reported COVID-19 cases (0.12 per

10,000 inhabitants) in Germany, the federal government advised against events with more than

1000 visitors. This recommendation was translated into a ban by most federal states, while

others implemented it as recommendation only. As in Switzerland, schools and childcare centers

in most German states closed on March 16th, the remaining states followed within two days.

The closure of all non-essential retailers, bars and public events of any kind and the restriction of

restaurant opening hours was decided at the federal level on March 16th when the overall rate of

confirmed infections reached 1.1 per 10,000 inhabitants. The states implemented these measures

between March 17th and March 20th. Other than in Switzerland and LI, these measures were

further enhanced later on. On March 22nd, a ban of groups with more than two individuals

was decided at the federal level and several states additionally implemented curfews. Since

April 17th, more and more states have made wearing face masks in shops and public transport

compulsory, resulting in a nationwide requirement to wear masks in public from April 27th

on. Meanwhile, lockdown measures have been lifted gradually in Switzerland and Germany,

with distinct schedules and exit strategies across countries and states. For instance, curfews
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ended in the respective German states around April 27th, with the exception of Bavaria, where

they ended on May 5th. On May 6th, a so-called “emergency mechanism” was put in place in

Germany requiring counties to re-impose lockdown measures locally if the rate of new confirmed

infections over 7 days exceeds 5 per 10,000 inhabitants.

3.3 Data

For Switzerland and LI, data on confirmed COVID-19 infections as well as on COVID-19-

related hospitalizations and deaths are amalgamated by the Swiss Federal Office of Public Health

(FOPH) and made available to the interuniversity research consortium of the Swiss School of

Public Health (www.ssphplus.ch). For each confirmed case, the FOPH gathers information on

the reporting canton, test date, as well as patient’s age and gender from laboratory declarations.

For our analysis, we aggregate the number of confirmed infections, hospitalizations and fatali-

ties by canton and test date, compute the respective cumulative numbers by canton and date,

and complement the data with socio-demographic variables at the cantonal level (and for LI)

from the statistical offices of Switzerland and LI. For each of the 26 Swiss cantons and LI, we

calculate the rate of cumulative confirmed infections, hospitalizations and fatalities per 10,000

inhabitants, as well as the median age of those tested positively for COVID-19 prior to the

lockdown measures in Switzerland and LI. Furthermore, we construct indicators for whether a

canton has introduced certain additional measures not imposed by the federal government along

with variables providing the start date of such canton-level measures as stated in press releases

of the respective cantons.

In Germany, all confirmed infections and deaths are reported to the Robert Koch Institute

(RKI), a federal government agency and research institute for disease control and prevention.

The RKI publishes data on the age group, gender, test date and county of residence of each

validated COVID-19 case reported to the institute. Only for the county of Berlin with 3.6 million

inhabitants, the RKI also reports the urban residential district of confirmed cases. All in all,

there are 401 counties in Germany and 12 residential districts in Berlin. Similar to Switzerland,

we aggregate the data by county (or residential district, respectively) and test date, and compute

cumulative confirmed cases and fatalities by county and date. We complement the data with

socio-demographic variables at the county/district level from the Federal Office of Statistics, the
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statistical offices of the federal states and the statistical office of the city of Berlin. As most

measures in Germany were implemented at the state or even county level and at different points

in time, we generate variables for all measures indicating whether and when they were imposed

in each county.

Figure 3.3.1: Cumulative confirmed infections (solid line), deaths (dotted line) and hospitalizations (dashed line)
per 10,000 inhabitants in Germany and Switzerland.

Figure 3.3.1 provides the cumulative numbers of confirmed COVID-19 infections and COVID-

19-related deaths per 10,000 inhabitants in Germany (left) as well as cumulative numbers of

confirmed infections, hospitalizations and deaths in Switzerland (right). The figure suggests a

flattening of the COVID-19 epidemic curve in both countries after the main COVID-19 measures

have been in place for some weeks, which does, however, not necessarily exclusively reflect the

causal impact of the measures. As a further descriptive statistic, Figure 3.3.2 provides the overall

deaths per 10,000 inhabitants (thus including COVID-19-related mortality) by calendar week

in Germany and Switzerland since January 1st 2020 (provisional data). While the increase in

mortality in March and April can be linked to the COVID-19 epidemic (a finding that also holds

when controlling for the average mortality over 2015-2019), we cannot directly infer how large

the increase would have been with and without the lockdown measures. For this reason, our

analysis aims at shedding light on the causal effect of the measures.
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Figure 3.3.2: Overall deaths per 10,000 inhabitants by calendar week in Switzerland (left) and Germany (right).
Source: federal statistical offices of Switzerland (www.bfs.admin.ch) and Germany (www.destatis.de), retrieval
date: May 6th.

3.4 Econometric Approach

In our analysis, we exploit the fact that the epidemic was more advanced in some regions

than in others when the key control measures came into force. In Switzerland, for instance,

Basel-Stadt had already more than 1 confirmed case per 10,000 inhabitants 12 days before

the federal lockdown measures were implemented, while other cantons such as St. Gallen were

at an earlier stage, reaching 1 confirmed infection per 10,000 inhabitants on the day of the

lockdown. In Germany, the county of Heinsberg recorded more than 1 confirmed infection per

10,000 inhabitants already 19 days before the lockdown. In several other counties this level of

infections was reached only after the lockdown.

For Germany, we investigate the impact of the lockdown measures as well as the curfew on

cumulative deaths per 10,000 inhabitants. For Switzerland and LI, we assess the causal effect of

the lockdown on both cumulative hospitalizations and deaths per 10,000 inhabitants. The idea

is to quantify the epidemic stage of each canton/county when measures were implemented by

defining dates on which the health outcomes are measured relative to the day a canton/county

first reached a certain rate of confirmed infections. For both Germany and Switzerland, we define

the start date of the epidemic as the day when the rate of infections first reached or exceeded

1 infection per 10,000 inhabitants. In Switzerland, for instance, the start date of the epidemic

in Basel-Stadt is on March 5th (late exposure to measures) while in St. Gallen the epidemic
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started on March 16th (early exposure to measures). Appendix 3.A provides the start states for

all Swiss cantons and LI.

Besides their obvious relevance for health care, a further motivation to consider hospitaliza-

tion and death rates as outcomes is that their measurement is likely more robust to differences

in testing strategies across regions than the measurement of confirmed COVID-19 infections.

While the share of infections with mild symptoms being detected ceteris paribus likely rises

with increased testing, the number of hospitalizations and fatalities gives a better estimate of

the severeness of the epidemic in terms of human loss and strains for the health care system.

As both Germany and Switzerland maintain a system of mandatory health insurance and nei-

ther country generally saw their hospitalization capacities exhausted, we would suspect that the

number of COVID-19-related hospitalizations in general mirrors well the number of individuals

infected with COVID-19 that are in need of hospitalization. Nevertheless, a potential concern

in our analysis is that the criteria for hospitalizations might not be uniform across regions. The

same may apply to the measurement of fatalities, i.e. the definition of criteria according to which

a decease is attributed to COVID-19. If such measurement issues in health outcomes are not

systematically associated with the region-specific start date of the epidemic (or more generally,

with the policy interventions considered), they do not bias the results of our analysis. However,

if for instance regions with an earlier start date and a more advanced epidemic systematically

applied more stringent rules for hospital admissions (e.g. to prevent capacity constraints), this

could also entail an underestimation of COVID-19 fatalities due to underreporting deceases at

home. In this case, our analysis of the relative timing of measures presented below would likely

provide a lower bound of the true effect on (capacity-unconstraint) hospitalizations and fatalities.

3.4.1 OLS Approach

We compare the average number of cumulative hospitalizations and fatalities per 10,000 inhab-

itants on canton/county-specific epidemic days across three groups of cantons/counties. These

groups are defined by the canton/county-specific epidemic day when lockdown measures came

into place. For Switzerland and LI, we distinguish the groups of cantons as follows. Cantons

reaching or exceeding 1 confirmed infection per 10,000 inhabitants at most 4 days before the

lockdown measures are exposed to the measures at a relatively early stage of the epidemic and

constitute the reference group (sample size N = 8). Those cantons with at least 1 confirmed
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infection per 10,000 inhabitants between 5 and 8 days before March 16th (or March 18th in the

case of LI) are the intermediate intervention group (N = 11). Those with a canton-specific start

date at least 9 days before March 16th are the late intervention group (N = 8).

For Germany, we proceed analogously and define the treatment groups based on the days

between the county-specific start of the epidemic and the lockdown according to the retail

closures between March 17th and 20th, but with somewhat different time brackets. Counties

with at least 1 confirmed infection per 10,000 inhabitants not earlier than 3 days after the

implementation of lockdown measures make up the reference group. The specified start dates

are later than the lockdown, which may at first glance raise endogeneity concerns. However, any

effect of the measures can materialize in the outcomes only with a substantial time lag of more

than 1.5 weeks (due to incubation time and reporting lags), as also confirmed in our analysis.

Therefore, confirmed infection rates are not yet influenced by the measures even several days

after the lockdown. Yet, we exclude 4 counties having start dates as late as 9 days after the

lockdown or later, leaving us with a reference group of N = 52. The intermediate intervention

group is comprised of all counties with at least 1 confirmed infection per 10,000 inhabitants

between 3 days before and 2 days after the lockdown (N = 275). The late intervention group

consists of counties with at least 1 confirmed infection per 10,000 inhabitants more than 3 days

before the lockdown (N = 81).

We estimate the difference in cumulative death rates, as well as hospitalization rates for

Switzerland and LI, between either of the two treatment groups (intermediate and late interven-

tion group) and the reference group by means of an OLS regression with treatment indicators.

We also control for the following canton-/county-specific covariates: population size and den-

sity, income per capita, age distribution, age structure of positively tested up to the lockdown,

the initial canton-/county-specific growth trend for confirmed cases, and canton-specific bans

on visits in hospitals and retired homes entering into force prior to the lockdown. The large

number of counties in Germany allows us to further control for past mortality by age group, past

mortality rate related to respiratory diseases and hospital capacities (beds/1000 inhabitants).

We also control for state-specific measures entering into force prior to the general lockdown,

like bans of or recommendations against events with more than 1000 visitors, as well as curfews

imposed in some states only a few days after the general lockdown. Appendix 3.B provides

descriptive statistics of the covariates used in the analysis of the German and Swiss measures

59



for the respective total samples as well as separately for the various intervention groups.

Though aiming to control for confounders jointly affecting the region-specific epidemic and

the health outcomes in a comprehensive way, we cannot completely rule out that some impor-

tant characteristics are omitted in our analysis. For instance, we cannot directly control for the

amount of inter-generational interactions, which is according to Bayer and Kuhn (2020) corre-

lated with the ratio of deaths over confirmed cases and could potentially differ across regions.

We, however, point out that the results for the relative timing of measures are quite robust to

(not) controlling for covariates. Since the lockdown measures in Germany and in Switzerland

have been eased starting with April 20th and April 27th, respectively, we evaluate the effect of

the relative timing of measures on the health outcomes in these countries until April 23rd and

April 30th, respectively.

For Germany, we also investigate the impact of curfews, as introduced in some federal states

between March 21st and 23rd on top of the federally imposed contact restriction that banned

groups of more than 2 individuals. The OLS regression contains a binary treatment indicator

for curfews as well as a range of control variables. The latter include the previously mentioned

county-specific characteristics, growth trends and COVID-19 response measures, and in addition

the cumulative confirmed infections and death rates on several days prior to the curfews, in

order to make regions exposed and not exposed to curfews as similar as possible. The OLS

specification is provided in Appendix 3.C, descriptive statistics for counties with and without

curfews in Appendix 3.B.

3.4.2 Doubly Robust Estimation

The larger number of regions in Germany allows us to also consider a more flexible (so-called

semiparametric) evaluation approach based on doubly robust (DR) estimation, see Robins, Rot-

nitzky, and Zhao (1994) and Robins and Rotnitzky (1995). It is based on (i) estimating a logit

model for the treatment probability as a function of the covariates as well as a linear model

for the outcome as a function of the treatment and the covariates and (ii) using the respective

model predictions as plug-in parameters for the estimation of the treatment effects. DR pro-

vides consistent effect estimates if at least one of the plug-in models is correctly specified and

thus relies on less stringent assumptions than OLS. Using the ‘drgee’ package of Zetterqvist and

Sjölander (2015) for the statistical software ‘R’, we apply DR for estimating the average effect
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of a binary intervention separately to subsets of counties consisting of the reference group and

either the intermediate intervention group or the late intervention group.

3.4.3 Synthetic Control Approach

For Switzerland, we complement the regression analysis with a synthetic control approach, a

quantitative case study method suggested in Abadie and Gardeazabal (2003). To this end, we

compare cumulative hospitalization and fatality rates in a specific canton with a late exposure to

the lockdown to the rates of an artificially (or synthetically) created counterfactual canton. This

synthetic canton should be comparable to the original reference canton in terms of covariates

outlined in Section 3.4.1 and pre-treatment health outcomes (measured 2 and 5 days after the

start date), but characterized by an earlier exposure to the lockdown.2 To this end, the synthetic

canton is generated as a weighted average of control cantons with an earlier exposure using the

‘Synth’ package of Abadie, Diamond, and Hainmueller (2011) for the statistical software ‘R’,

where the weights depend on how close their characteristics and pre-treatment outcomes match

the values of the reference canton with the later exposure. The control pool includes all in all

11 cantons that reached 1 confirmed infection per 10,000 inhabitants at most 3 days before the

lockdown.

3.5 Results

3.5.1 Germany

Figure 3.5.1 reports the mean differences in cumulative fatalities per 10,000 inhabitants between

either treatment group and the early intervention group (reference group) per day up to 28 days

after the county-specific start date (solid lines) based on the OLS approach.3 It also includes 90%

confidence intervals (dashed lines). The mean differences in fatality rates between the late and

the early intervention groups (left) remain close to zero during the first 2.5 weeks of the county-

2In contrast to the OLS specification provided in Appendix 3.C, squared variables (i.e. the squares of the population
share aged 65+ and of the median age of confirmed infections prior to the lockdown) are not included. In addition,
the dummy for the number of inhabitants being smaller than 60,000 is replaced by the actual number of inhabitants.

3The motivation for the 28 days window is that we would like to include all (but 4) counties while at the same time
only considering the period when the lockdown measures were fully implemented. As the last county we include
in our evaluation sample saw its start of the epidemic 8 days after the lockdown, the time range considered in
the analysis is limited to this specific window not including any effects of the first easing of lockdown measures
starting with April 20th.
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specific epidemic but show a positive and statistically significant tendency thereafter. The point

estimates suggest that after one month, fatalities per 10,000 inhabitants are reduced by 0.6 cases

under an earlier lockdown. Also the difference in death rates between the intermediate and the

early intervention groups are statistically significant at the 10 percent level, but (expectedly)

smaller in magnitude. Overall, the results suggest that the relative timing of measures had

a perceptible impact on COVID19-related fatalities in Germany. We note that Appendix 3.C

provides the OLS specification with the full list of coefficients on treatments and covariates along

with standard errors 28 days after the start of the epidemic. Concerning the robustness of our

findings, we note that estimations without controlling for observed covariates yield qualitatively

similar results, see Appendix 3.D.

Figure 3.5.1: OLS effects of late (left) and intermediate (right) timing of measures on cumulative deaths per
10,000 inhabitants in Germany.

Figure 3.5.2 reports the estimates of DR, which are generally similar to OLS, though sug-

gesting an even stronger effect of a late timing of lockdown measures on the death rate. The

point estimate suggests that an earlier lockdown reduces fatalities by roughly 1 case per 10,000

one month after the start of the epidemic.

With 27% of the German population living in counties with late lockdown timing, a rough

back-of-the-envelope calculation based on the OLS point estimates suggests that some 1283

COVID-19-related deaths (2080 when using the DR results) could have been prevented in Ger-

many over the first four weeks after lockdown implementation if the counties with late timing

had implemented the lockdown early, meaning no later than 3 days before reaching or exceeding
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the level of 1 confirmed infection per 10,000 inhabitants. If all 275 states with intermediate

lockdown timing had implemented the lockdown early, the death toll could have been further

reduced by some 1816 (1580 based on DR results).

Figure 3.5.2: DR effects of late (left) and intermediate (right) timing of measures on cumulative deaths per 10,000
inhabitants in Germany.

Figure 3.5.3 reports the results of a further OLS regression, in which the treatment indicators

for the intermediate and late intervention groups are replaced by the time lag between the county-

specific start date of the epidemic and the lockdown, in order to (linearly) estimate the effect

of the lag. This can be interpreted as the average effect of waiting an additional day before

implementing the measures. The point estimates suggest that each additional day without

lockdown entails on average 0.04 to 0.05 additional fatalities per 10,000 inhabitants after one

month of the epidemic, even though the confidence intervals are rather wide (but yet do not

include a zero effect). Again, these results are quite robust to not controlling for covariates, see

Appendix 3.D.

Our results also appear interesting with respect to one key element in the German exit strat-

egy, the so-called “emergency mechanism” requiring counties to re-impose lockdown measures

locally if the rate of new confirmed infections over 7 days exceeds 5 per 10,000 inhabitants.

Though the local epidemic start date is based on the cumulative rate of confirmed infections

and the threshold of the German policy is based on the 7-day running infection rate, one may

want to assess the appropriateness of this threshold in the light of our findings about the im-

portance of lockdown timing. In fact, the threshold for re-implementing lockdown measures can
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be regarded as late rather than intermediate or early intervention with respect to our definition,

which seems worth considering given the threat of a second wave. However, the situation during

the early phase of the epidemic is most likely not comparable to that in a later point in time,

where the hope is that larger testing capacities and better policy response lead to an earlier

detection and containment of local COVID-19 outbreaks and that the increased awareness in

the population entails an adoption of social distancing and hygiene measures that sufficiently

slow down the transmission.

Figure 3.5.3: OLS effect of delaying lockdown by one day on deaths per 10,000 inhabitants in Germany.

Furthermore, the left graph in Figure 3.5.4 provides the OLS-based effects of curfews relative

to contact restrictions, i.e. bans of gatherings with more than 2 persons, under all other lockdown

measures already in place. The estimates have a positive sign, which appears counter-intuitive

as curfews are more restrictive than contact restrictions, but are never statistically significantly

different from zero throughout the evaluation window which starts on March 23rd and ends 35

days later. The same finding applies to estimation results based on DR, which are shown in the

right graph of Figure 3.5.4. Therefore, we do not find evidence that curfews are more effective

than banning groups for reducing fatality rates.

3.5.2 Switzerland and Liechtenstein

Figure 3.5.5 reports the OLS estimates of the mean differences in cumulative hospitalizations

(left) and fatalities (right) per 10,000 inhabitants between the late and the early intervention

groups up to 44 days after the start of the canton-specific epidemic (solid line), as well as 90%
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Figure 3.5.4: OLS (left) and DR (right) effects of curfews on deaths per 10,000 inhabitants in Germany.

confidence intervals (dashed lines). See Appendix 3.C for the full OLS specification with the

coefficients on treatments and covariates on the last day of the evaluation window and fatalities

as outcome variable.

We note that the canton of Ticino is excluded from this analysis due to its comparably

strong economic and social ties with Northern Italy (which was particularly severely affected

by the COVID19 crisis), as this could arguably have affected the canton’s hospitalizations and

fatalities. However, our findings are quite similar when including Ticino in the regression, as

well as when not controlling for covariates, see Appendix 3.E.

Figure 3.5.5: Effect of late timing of measures on cumulative hospitalizations (left) and deaths (right) per 10,000
inhabitants in Switzerland.

65



As for Germany, we see no immediate effect of the relative timing of measures on the health

outcomes right after their introduction. However, after about two weeks, there is a positive

tendency in the effect on cumulative hospitalizations that becomes statistically significant at the

10% level about 2.5 weeks after the start of the canton-specific epidemic. The point estimates

suggest that after 1.5 months, cumulative hospitalizations per 10,000 inhabitants increase by

almost 4 cases when introducing the measures later rather than earlier, even though the estimates

are not very precise (i.e. confidence intervals are wide). A qualitatively similar pattern is observed

for the effect on cumulative deaths, which becomes statistically significant after about 3 weeks.

The point estimates suggest an increase of 1 to 2 fatalities per 10,000 inhabitants in the case

of a later lockdown, but precision is again low. Figure 3.5.6 reports the same analysis for a

comparison of the groups with intermediate and early timing. As these two groups are more

similar in terms of the relative timing of the measures, differences are less pronounced and never

statistically significant in all but one case, which might be due to low statistical power related

to the small number of cantons.4

A rough back-of-the-envelope estimation based on these point estimates suggests that some

333 COVID-19-related deaths and some 764 hospitalizations could have been prevented during

the time of the lockdown in Switzerland if the cantons with late timing had implemented the

lockdown at most 4 days after reaching or exceeding the level of 1 confirmed infection per 10,000

inhabitants.

Finally, we report the results of the synthetic control method for two cantons experiencing

the lockdown rather late relative to their start date of the epidemic. Figure 3.5.7 plots the

difference in cumulative hospitalizations (left) and deaths (right) per 10,000 inhabitants on a

daily base after the canton-specific start date between Basel-Stadt, which was on day 12 of the

epidemic when the measures came into force, and its synthetic counterfactual. The latter is

generated from a control group of 11 cantons with an earlier timing (with start dates between

3 days before and 1 day after the lockdown). Dots on the solid line imply that the differences

are statistically significant at the 10% level according to placebo tests in the control group, in

which each of the 11 cantons is considered as (pseudo-)treated in a rotating scheme in order

4For cumulative fatalities, we also run the OLS regression using an alternative data source based on calculations of
the statistics office of the canton of Zurich, available at https://statistik.zh.ch (retrieved on May 15th). We obtain
a comparable pattern. Namely, the late intervention effect turns statistically significant after about 3 weeks with
even somewhat higher point estimates (approaching 3) at the end of the evaluation window. The intermediate
intervention effect is again insignificant.
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Figure 3.5.6: Effect of intermediate timing of measures on cumulative hospitalizations (left) and deaths (right)
per 10,000 inhabitants.

to estimate its (pseudo-)counterfactual based on the remaining 10 cantons. We, however, note

that the estimation of p-values might be imprecise, due to the low number of control cantons

available for the placebo tests.

Again, the relative timing of measures shows no immediate effect on hospitalizations but

the difference becomes statistically significant after roughly 2.5 weeks. The point estimates

suggest that the hospitalization rate in Basel-Stadt could have been reduced by more than 4

hospitalizations if the lockdown measures had been introduced earlier. Similarily, the fatalities

per 10,000 inhabitants could have been reduced by 1 to 2 cases about 1.5 months after the start

of the epidemic. As for the OLS analysis, the exact numbers should, however, be interpreted

with caution, as they are imprecisely estimated and canton-specific factors not considered in the

analysis could play a role as well.

Figure 3.5.8 reports the results for Neuchâtel, another canton with a relatively late timing,

which was on day 10 of the epidemic when the measures came into force. Concerning the effect

of the lockdown timing on hospitalizations, we find a similar pattern as for Basel-Stadt. Albeit

the effect on COVID-19-related fatalities is somewhat less pronounced, it turns statistically

significant in the final periods of the evaluation window.
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Figure 3.5.7: Effect of late timing of measures on cumulative hospitalizations (left) and deaths (right) per 10,000
inhabitants in Basel-Stadt.

Figure 3.5.8: Effect of late timing of measures on cumulative hospitalizations (left) and deaths (right) per 10,000
inhabitants in Neuchâtel.
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3.6 Conclusion

In this paper, we analyzed the impact of lockdown timing on COVID-19 related fatalities and

hospitalizations in Germany and Switzerland. For doing so, we exploited the fact that measures

differed across regions and that the epidemic was more advanced in some regions than in others

when certain measures came into force. Using OLS and doubly robust estimation, we compared

the development of COVID-19-related hospitalization and death rates - two indicators which are

arguably rather robust to regional differences in COVID-19 testing policies - across regions that

have been at different epidemic stages when exposed to the lockdown measures. For Switzerland,

we also applied a synthetic control approach to investigate the impact of the relative timing of the

lockdown in two selected cantons. In addition, we analyzed the impact of curfews as implemented

in some German states on top of the federal ban on gatherings of more than 2 persons based on

a cross-regional comparison.

For both countries, we found an earlier lockdown to be more effective than a later one, as

cumulative hospitalization and fatality rates measured relative to the region-specific start date

of the epidemic were higher in regions with a more advanced spread of COVID-19 when the

measures came into force. In contrast, our results did not provide evidence for curfews being

more effective than bans on gatherings under the other lockdown measures already in place.

69



Appendix

3.A Start Dates of Canton-Specific Epidemics

Canton Start Date

Aargau (AG) 03/16
Appenzell Innerrhoden (AI) 03/13
Appenzell Ausserrhoden (AR) 03/13
Bern (BE) 03/14
Basel-Landschaft (BL) 03/11
Basel-Stadt (BS) 03/05
Fribourg (FR) 03/11
Genève (GE) 03/09
Glarus (GL) 03/12
Graubünden (GR) 03/09
Jura (JU) 03/10
Luzern (LU) 03/16
Neuchâtel (NE) 03/07
Nidwalden (NW) 03/09
Obwalden (OW) 03/11
St. Gallen (SG) 03/16
Schaffhausen (SH) 03/17
Solothurn (SO) 03/16
Schwyz (SZ) 03/12
Thurgau (TG) 03/16
Ticino (TI) 03/05
Uri (UR) 03/17
Vaud (VD) 03/09
Valais (VS) 03/12
Zug (ZG) 03/13
Zürich (ZH) 03/12
Principality of Liechtenstein (LI) 03/09

Table 3.A.1: 2020 dates on which 1 confirmed infection per 10,000 inhabitants was reached in
the Swiss cantons and LI.
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3.B Descriptive Statistics of Covariates

Variable Total Sample Late Timing Intermediate Timing Early Timing Curfew No Curfew

N = 408 N = 81 N = 275 N = 52 N = 149 N = 259

Population 203,103 276,529 197,295 119,444 158,786 228,598

Population Density 671 929 665 301 440 804

Income per Capita (Euro) 37,224 41,686 36,505 34,076 38,325 36,591

Share of Population Aged 65+ 0.222 0.208 0.221 0.244 0.226 0.219

80+ Mortality Rate (per 1000 Inhabitants), 2017 6.52 5.96 6.52 7.36 6.68 6.42

Share of Respiratory-Disease-Related Deaths, 2016 0.07 0.069 0.071 0.067 0.066 0.072

Hospital Beds per 1000 Inhabitants 6.31 6.08 6.25 6.97 6.69 6.09

Share of Confirmed Infections Aged 80+ prior to Lockdown 0.019 0.024 0.018 0.014 0.022 0.017

Initial Growth Trend for Confirmed Cases in Log Points 0.209 0.23 0.234 0.049 0.185 0.224

Ban of events with >1000 Participants 0.917 0.889 0.924 0.923 1 0.869

Curfew 0.365 0.247 0.378 0.481 1 0

Ban of Groups of >5 Persons (prior to Contact Ban/Curfew) 0.223 0.21 0.236 0.173 0 0.351

Permission to Meet with 1 Non-Household-Member 0.711 0.802 0.698 0.635 0.262 0.969

Table 3.B.1: Mean of covariates considered in the estimations using the German data in the total sample, the late
intervention group, the intermediate intervention group and the early intervention group, respectively.

Variable Total Sample Late Timing Intermediate Timing Early Timing

N = 27 N = 8 N = 11 N = 8

Population 315,648 286,649 268,466 409,524

Population Density 503 1,046 278 271

Income per Capita (CHF) 80,404 102,840 73,134 67,964

Share of Population Aged 65+ 0.192 0.193 0.19 0.193

Median Age of Confirmed Infections prior to Lockdown 50.19 49.56 49.09 52.31

Initial Growth Trend of Confirmed Cases in Log Points 0.235 0.239 0.21 0.266

Ban on Visits to Retirement Homes 0.593 0.5 0.727 0.5

Table 3.B.2: Means of covariates considered in the estimations using the Swiss (and LI) data in the total sample,
the late intervention group, the intermediate intervention group, the early intervention group, the group of counties
with curfew and the group of counties without curfew respectively.
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3.C OLS Specifications for Germany and Switzerland

Estimate Standard Error

Intercept -1.1628 0.6661
Intermediate Timing 0.3348 0.1403
Late Timing 0.5729 0.2663
Share of Population Aged 65+ -6.4132 2.8281
Population: 0 - 105,878 0.4388 0.2112
Population: 105,879 - 158,080 0.2848 0.135
Population: 158,081 - 251,534 0.0665 0.0985
Population Density: 0 - 117.3 0.0801 0.1425
Population Density: 117.3 - 206.7 0.1201 0.1454
Population Density: 206.7 - 779.7 0.0613 0.1347
Income per Capita: 0 - 27,934 -0.1437 0.1561
Income per Capita: 27,935 - 33,109 -0.1721 0.1439
Income per Capita: 33,110 - 40,506 0.0568 0.1749
Share of Confirmed Infections Aged 80+ prior to Lockdown 4.4466 2.1463
80+ Mortality Rate (per 1000 Inhabitants), 2017 0.2066 0.091
Share of Respiratory-Disease-Related Deaths, 2016 0.9538 3.7197
Hospital Beds per 1000 Inhabitants -0.0329 0.0184
Initial Growth Trend for Confirmed Cases in Log Points: 0 - 0.14 -0.1188 0.1852
Initial Growth Trend for Confirmed Cases in Log Points: 0.14 - 0.21 -0.089 0.1407
Initial Growth Trend for Confirmed Cases in Log Points: 0.21 - 0.28 -0.0369 0.136
Confirmed Infections per 10,000 Inhabitants on Epidemic Day 4 0.2556 0.0805
Recommendation against Events with >1000 Visitors 0.1594 0.0985
Ban of Events with >1000 Visitors 0.7132 0.141
Curfew 0.2403 0.1111

Table 3.C.1: OLS estimates for Germany 28 days after the start of the county-specific epidemic with fatalities per
10,000 inhabitants as outcome variable.

Estimate Standard Error

Intercept 39.2105 45.0916
Intermediate Timing 0.7961 0.7712
Late Timing 1.7187 0.6681
Share of Population Aged 65+ -337.2691 362.2737
Squared Share of Population Aged 65+ 848.3766 950.0775
Population: 0 - 59,999 -0.5647 1.1326
Population Density 4e-04 4e-04
Income per Capita 0 0
Median Age of Confirmed Infections prior to Lockdown -0.2783 1.308
Squared Median Age of Confirmed Infections 0.003 0.0131
Initial Growth Trend for Confirmed Cases in Log Points 6.3784 8.0649
Confirmed Infections per 10,000 Inhabitants on Epidemic Day 4 0.0172 0.6938
Ban on Visits to Retirement Homes 0.153 0.4966

Table 3.C.2: OLS estimates for Switzerland and LI 44 days after the start of the canton-specific epidemic with
fatalities per 10,000 inhabitants as outcome variable.
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Estimate Standard Error

Intercept -0.5481 0.5532
Curfew 0.089 0.1081
Share of Population Aged 65+ -5.6962 2.9762
Income per Capita: 0 - 27,934 -0.0998 0.1872
Income per Capita: 27,935 - 33,109 -0.0444 0.1598
Income per Capita: 33,110 - 40,506 -0.056 0.1298
Population Density: 0 - 117.3 0.0077 0.1547
Population Density: 117.3 - 206.7 0.1532 0.1558
Population Density: 206.7 - 779.7 0.0388 0.1315
Population: 0 - 105,878 0.1964 0.1917
Population: 105,879 - 158,080 0.1198 0.1565
Population: 158,080 - 251,534 -0.048 0.1067
Share of Confirmed Infections Aged 80+ 0.6616 2.0497
80+ Mortality Rate (per 1000 Inhabitants), 2017 0.2029 0.0692
Share of Respiratory-Disease-Related Deaths, 2016 3.5314 3.6582
Hospital Beds per 1000 Inhabitants -0.0201 0.016
Confirmed Fatalities per 10,000 Inhabitants 10 days before Curfew -4.3731 4.1915
Confirmed Fatalities per 10,000 Inhabitants 5 days before Curfew -2.7013 3.4591
Confirmed Fatalities per 10,000 Inhabitants 4 days before Curfew 1.3937 3.7116
Confirmed Fatalities per 10,000 Inhabitants 3 days before Curfew -2.8829 3.6353
Confirmed Fatalities per 10,000 Inhabitants 2 days before Curfew 5.058 2.5642
Confirmed Fatalities per 10,000 Inhabitants 1 day before Curfew 2.1268 2.1477
Confirmed Cases per 10,000 Inhabitants 25 days before Curfew 2.478 4.2755
Confirmed Cases per 10,000 Inhabitants 20 days before Curfew 0.9095 1.5009
Confirmed Cases per 10,000 Inhabitants 15 days before Curfew 0.0804 0.4324
Confirmed Cases per 10,000 Inhabitants 10 days before Curfew -0.3862 0.2614
Confirmed Cases per 10,000 Inhabitants 5 days before Curfew 0.0339 0.2059
Confirmed Cases per 10,000 Inhabitants 4 days before Curfew -0.3237 0.3682
Confirmed Cases per 10,000 Inhabitants 3 days before Curfew 0.1382 0.3992
Confirmed Cases per 10,000 Inhabitants 2 days before Curfew -0.148 0.2767
Confirmed Cases per 10,000 Inhabitants 1 day before Curfew 0.3193 0.2064
Initial Growth Trend for Confirmed Cases in Log Points 0.0158 0.0264
Recommendation against Events with >1000 Visitors 0.2291 0.075
Ban of Events with >1000 Visitors 0.6488 0.1937
Ban of Groups of >5 Persons (prior to Contact Ban/Curfew) 0.1391 0.1265
Permission to Meet with 1 Non-Household-Member -0.1802 0.1271

Table 3.C.3: OLS estimates for the impact of curfews (compared to contact restrictions) 35 days after the impo-
sition of curfews with fatalities per 10,000 inhabitants as outcome variable.
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3.D Estimations for Germany Without Covariates

Figure 3.D.1: OLS effects of late (left) and intermediate (right) timing of measures on cumulative deaths per
10,000 inhabitants without covariates.

Figure 3.D.2: OLS effect of delaying lockdown by one day on deaths per 10,000 inhabitants in Germany without
covariates.
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3.E Estimations for Switzerland Without Covariates and Including Ti-

cino

Figure 3.E.1: OLS effect of late timing of measures on cumulative hospitalizations (left) and deaths (right) per
10,000 inhabitants without covariates excluding Ticino.

Figure 3.E.2: OLS effect of intermediate timing of measures on cumulative hospitalizations (left) and deaths
(right) per 10,000 inhabitants without covariates excluding Ticino.
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Figure 3.E.3: OLS effect of late timing of measures on cumulative hospitalizations (left) and deaths (right) per
10,000 inhabitants with covariates including Ticino.

Figure 3.E.4: OLS effect of intermediate timing of measures on cumulative hospitalizations (left) and deaths
(right) per 10,000 inhabitants with covariates including Ticino.
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Chapter 4

The Impact of the #MeToo Movement on Language in

Court - A text-based causal inference approach

Abstract: This study assesses the effect of the #MeToo movement on different quantifiers of the 2015-

2020 judicial opinions in sexual violence related cases from 51 U.S. courts. The judicial opinions are

vectorized into bag-of-words and tf-idf vectors in order to study their development over time. Further,

different indicators quantify to what extent the judges use a language that implicitly shifts some blame

from the victim(s) to the perpetrator(s). These indicators measure how the grammatical structure, the

sentiment and the context of sentences mentioning the victim(s) and/or perpetrator(s) change over time.

The causal effect of the #MeToo movement is estimated by means of Difference-in-Differences comparing

the development of the language in opinions on sexual violence and other interpersonal crime related cases

as well as a Panel Event Study approach. The results do not clearly identify a #MeToo-movement-induced

change in the language in court but suggest that the movement may have accelerated the evolution of

court language slightly, causing the effect to materialize with a significant time lag. Additionally, the

study considers potential effect heterogeneity with respect to the judge’s gender and his/her political

affiliation. The study combines causal inference with text quantification methods that are commonly

used for classification as well as with indicators from the fields of sentiment analysis, word embedding

models and grammatical tagging.

Keywords: text analysis, metoo, difference-in-differences, causal effect.

JEL classification: K49, C21, C23.

I have benefited from valuable comments by participants in the PhD seminar at the University of Fribourg, the Brownbag
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4.1 Introduction

After starting as an online campaign against sexual harassment, #MeToo soon evolved into a

movement that led to extensive and sustained media coverage of the prevalence of sexual vio-

lence in society. In the months and years following its emergence, it shaped public discourse and

brought about changes in attitudes and responses to sexual harassment and assault. Several

studies have examined the movement‘s impact on various societal, cultural and political dimen-

sions, such as women’s perception of safety (Ait Bihi Ouali and Graham (2021)), gender norms

in tweets (Moricz (2019)) and the propensity to report a sexual offense (Levy and Mattsson

(2021)). To date, however, no study has examined how the movement influenced treatment of

sexual violence cases and their victims in court.

The present study assesses how the #MeToo movement affected the way sexual offenses

are handled in the U.S. justice system by analyzing the language used in judicial opinions.

It examines the effect of the movement by means of a Difference-in-Differences (DiD) and a

panel data-based event study approach, where the DiD approach compares the development of

language in opinions on sexual offenses to that in opinions on other crimes against persons while

the panel event study approach assesses how the language used by judges changed as a result

of the #Metoo movement. For quantifying the development of language in judicial opinions,

the study develops novel text-based indicators for measuring the amount of victim blaming and

introduces an approach for assessing treatment effects based on context and feature vectors.

Thereby, it contributes to the recently growing literature on text-based causal inference.

The study proceeds as follows. Section 4.2 provides background information on the #MeToo

movement and the U.S. justice system. It reviews the current state of literature on text analysis,

particularly the emerging field of text-based causal inference. Section 4.3 describes the corpus

of judicial opinions examined in this study. The following section, Section 4.4, illustrates how

the judicial opinions are quantified by means of various indicators and text vectorization ap-

proaches. Section 4.5 outlines the identification strategy underlying this paper and discusses the

assumptions necessary to identify the impact of the #MeToo movement using a DiD model and

a panel data-based event study approach. The subsequent section (4.6) summarizes the results

and Section 4.7 concludes.
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4.2 Background

4.2.1 The #MeToo Movement and its societal, cultural and political impact

The phrase“Me Too”was initially coined by social justice activist Tarana Burke who began using

this phrase in 2006 to campaign for the empowerment of sexual violence victims, particularly

among women of color. At the end of 2017, following the public exposure of sexual misconduct

allegations against Hollywood producer Harvey Weinstein, the phrase spread virally through the

hashtag #MeToo (Fileborn and Loney-Howes (2019)).

On October 5th, 2017, The New York Times published an exposé by Kantor and Twohey

(2017) detailing decades of sexual harassment allegations against Harvey Weinstein, followed just

days later by an investigative article in The New Yorker in which many more women accused

Weinstein of sexual harassment and abuse (Farrow (2017)). A few days later, on October 15th,

actress Alyssa Milano tweeted a post encouraging victims of sexual harassment and assault to

come forward by using the hashtag #MeToo in order to raise awareness about the prevalence

of sexual violence in society. The #MeToo hashtag rapidly spread as more and more people

around the world shared their experiences with sexual harassment and assault. On Twitter,

the hashtag was tweeted about 300,000 times on the day after Milano’s post, reached a peak

of 750,000 tweets within 24h and was used on average more than 55,000 times per day during

the year following the initial tweet (Anderson and Toor (2018)). On Facebook, the #MeToo

conversation peaked at 4.7 million participating users within 24 hours, who engaged with over

12 million posts, comments, and reactions (Santiago and Criss (2017)).

The discussion on social media grew into a movement that led to multiple protest marches in

the U.S. and around the globe, resulted in extensive and sustained media coverage of the issues

of sexual harassment and assault, and shaped the public discourse in the months following

October 2017. Caputi, Nobles, and Ayers (2019) estimate that in the first 8 months after

the movement’s emergence, the number of google searches on sexual harassment and assault

exceeded the expected amount by some 86%. According to the Women’s Media Center, the

number of articles on sexual assault and harassment in a sample of 14 leading U.S. newspapers

was more than double the pre-#MeToo average in November 2017 and still exceeded the pre-

#MeToo average by 30% some 10 months after the onset of the movement (Ennis and Wolfe
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(2018)). Time Magazine (2017) named the “Silence Breakers” - victims of sexual harassment or

assault who came forward and thereby started the global dialogue on sexual violence - as its

2017 “Person of the Year”, i.e., as the person or group that most influenced the events of the

year, according to the magazine.

In the months and years after its onset, the #MeToo movement has brought about changes in

attitudes and responses to sexual harassment and assault but also provoked some disillusionment

and backlash. Several surveys among both men and women suggest that many are attempting

to avoid sexually harassing behavior in response to #MeToo and have perceived others to do

so, with this change observed in surveys of workplace behavior as well as behavior in public

or private spaces (Ksenia Keplinger and Barnes (2019); Jackson and Newall (2018); Careerarc

(2020); Greenfield (2018)).

Other surveys, on the other hand, suggest that many employers expect or have experienced

men to become more reluctant towards interactions with female coworkers and subordinates

in response to the sexual-harassment discourse triggered by the #MeToo movement – even

if such interactions are crucial for the woman’s professional advancement (see, e.g., Atwater,

Tringale, Sturm, Taylor, and Braddy (2019); French, Mortensen, and Timming (2021); McGregor

(2019); Bertotti and Maxfield (2018); NBC News and Wall Street Journal (2017)). In addition,

the #MeToo movement has also been blamed to have gone “too far” and it has nurtured the

narrative of false and exaggerated accusations against men, resulting in counter-movements

with the #HimToo as the most prominent example. The hashtag, originally used by male

sexual assault victims, has turned into one for expressing that men are often victims of false

accusations (Dejmanee, Zaher, Samantha, and Papa (2020)).

Furthermore, there are several articles arguing that #MeToo (almost) exclusively benefited

affluent white women while other groups, such as women from lower socioeconomic backgrounds

and women of color, lack the public outreach, support systems and financial security necessary for

generating public attention and dealing with potential backlashes (see, e.g., Fileborn and Loney-

Howes (2019); Kagal, Cowan, and Jawad (2019); Taub (2019)). The criticism of demographic

disparities in victim outreach is also supported by several studies, with Mueller, Wood-Doughty,

Amir, Dredze, and Nobles (2021) finding that a disproportionate number of #MeToo tweets

were authored by white women, and a study on coverage of the movement in The New York

Times revealing an overrepresentation of white victims of sexual violence (Evans (2018)).
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However, the underrepresentation of sexual violence victims from certain demographic groups

does not necessarily translate into a lesser impact of the movement on those groups. Palmer,

Fissel, Hoxmeier, and Williams (2021) assess survey data from a university in the Mid-Atlantic

region finding that the number of black students who disclose unwanted sexual activity increased

between 2017 and 2019, while white students’ disclosure behavior did not change substantially.

Levy and Mattsson (2021) find that the effect of the movement on reporting sexual offenses to

the police is similar across racial, income and educational groups in the U.S. Further, survey

data from the Pew Research Center show that across all demographic groups, the majority of

social media users encountered sexual violence content in the months following the #MeToo

movement (Pew Reasearch Center (2018)).

To sum up, #MeToo elicited both supportive and defensive reactions, and may have influ-

enced some specific groups more than others. However, all these studies agree that the movement

shaped the public debate across demographic groups.

The societal, cultural and political impact of the #MeToo movement has been analyzed ex-

tensively with mixed findings about the movement’s influence. There are studies showing that

the #MeToo movement did not significantly increase self-reported interest in political partici-

pation (Castle, Jenkins, Ortbals, Poloni-Staudinger, and Strachan (2020)), that the portrayal

of male entrepreneurs in Swedish media changed only marginally after the onset of the move-

ment (Jernberg, Lindbäck, and Roos (2020)), that the #MeToo movement caused a significant

increase in the propensity of female dating platform users in South Korea to decline dating re-

quests (Yoon, Choe, Han, and Kim (2020)) and that the #MeToo movement induced a change in

gender norms in Swedish-language tweets (Moricz (2019)). A study by Klar and McCoy (2021)

reveals that support for the #MeToo movement is associated with a stronger belief in the sexual

misconduct allegations against Donald Trump among Democrats but not among Republicans.

Ait Bihi Ouali and Graham (2021) examined how the movement affected women’s perception

of safety by comparing the development of men’s and women’s perceptions of safety in subway

stations of 25 cities around the world with a DiD approach. They found a significant decline in

women’s perceptions of safety after #MeToo, with the effect of the #MeToo movement being

greater the more the country’s mass media covered the movement.

In the study most relevant to the present one, Levy and Mattsson (2021) assess the effect of

the #MeToo movement on the propensity to report a sexual offense to the police. They do so by
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applying a triple-difference approach over time, across 31 OECD countries, and between sexual

and non-sexual offenses. For countries where the #MeToo movement attracted a great deal of

attention, they find that it caused a significant increase of about 10% in the number of reported

sexual offenses during the first six months after the movement began. A DiD analysis comparing

the development of reported sexual and non-sexual crimes in the U.S. reveals a similar long-term

effect for the 15 months following Alyssa Milano’s tweet.

The study further shows that the effect of the movement on the reporting of sexual offenses

was similar across regions and socioeconomic groups in the U.S., but that it did not affect the

reporting of all types of sexual assault equally. Rather, it led to an increase in the number of

reports of rape and fondling while not showing any effect on the number of reports of statutory

rape and sodomy. Then, in an attempt to identify the mechanism responsible for the increase

in reports, the authors assess data from different surveys, which allows them to rule out, among

other things, that the rise in reported crimes in the United States is due to an increase in

the number of sex offenses. Finally, the study assesses the impact of the movement on sexual

offense arrests, finding that the increase in reported sex offenses in the U.S did not bring about

a similar surge in the number of arrests. Rather, the authors estimate that the movement raised

the number of arrests by only about 6%, which they attribute to the fact that the movement

had a stronger effect on cases with a low likelihood of arrest due to being reported more than a

month after they occurred, being milder offenses, and/or lack of sufficient evidence. The study

does not provide any conclusions about the effect of the movement on convictions. The results

of this study will be incorporated into both the identification and design of robustness checks as

described in Section 4.5.

Despite the vast number of studies on the societal, cultural and political impact of the

#MeToo movement, there is, to the best of my knowledge, not yet a quantitative study on the

impact of the #MeToo movement on the justice system. Yet this is certainly interesting, as the

movement has created new unofficial reporting pathways for victims who choose not to address

a crime through the official legal process for reasons such as potential retraumatization in court

and low likelihood of conviction. The #MeToo movement has thereby exposed some difficult

issues in the justice system’s handling of sexual violence cases. It is now to be examined whether

and to what extent the movement has brought about a change in the way cases of sexual violence

are addressed in court and how the justice systems deals with victims.
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4.2.2 Victim Blaming

Besides raising awareness about the prevalence of sexual harassment and assault in society,

the #MeToo movement has also fueled discussions about the acceptance of rape myths. For

this reason, the judicial opinions under examination in this study are assessed specifically with

respect to the reinforcement of rape myths and victim blaming.

The term “rape myths” refers to stereotypical and inaccurate beliefs about sexual assaults

that are prevalent in society. They are often used to shift the blame for a sexual assault from the

perpetrator to the victim and to downplay the seriousness of the incident. Rape myths do not

necessarily have to be explicitly expressed, but can also be reinforced through rhetorical devices

or the mention of specific details when describing sexual assault. For example, studies show

that sexual violence reports that focus on external circumstances and the victim’s behavior can

increase the likelihood of readers to accept rape myths and view the victim as partly responsible

for the assault (see, e.g., Bohner (2001), Franiuk, Seefelt, Cepress, and Vandello (2008) and

McCoy (2004)).

Victim blaming and reinforcement of rape myths can be found in a variety of contexts, albeit

with varying degrees of explicitness. While often more bluntly expressed in social media and

other informal contexts (see, e.g., Suvarna, Bhalla, Kumar, and Bhardwaj (2020) and Suvarna

and Bhalla (2020) for studies on identification of victim-blaming language in informal contexts),

victim blaming and reinforcement of rape myths are also present in traditional media (see, e.g.,

Sacks, Ackerman, and Shlosberg (2018), Northcutt Bohmert, Allison, and Ducate (2019) and

Franiuk, Seefelt, Cepress, and Vandello (2008)) as well as in the justice system. In court, general

victim rights and sexual assault-specific rules, such as rape shield laws, prohibit to some extent

explicit blaming, stigmatization and stereotyping. Yet, several studies based on testimonies from

various actors, such as victims, barristers, sex crime investigators and independent observers,

suggest that victim blaming and rape myths are still prevalent in courts (see, e.g., Temkin,

Gray, and Barrett (2018), Spencer, Dodge, Ricciardelli, and Ballucci (2018), Smith and Skinner

(2012), Temkin (2000)). While it is often the defense that brings up rape myths for strategical

reasons, some judges tend not to intervene and sometimes even take up the argument (Temkin,

Gray, and Barrett (2018), Ehrlich (2012)). In addition, many judges tend to employ terminology

of affection and consensual sex in cases where the perpetrator is familiar to the victim (Ehrlich
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(2012)).

4.2.3 The U.S. Justice System

The legal documents examined in this paper are judicial opinions from 51 U.S. state and federal

appellate courts. Appellate courts review legal cases that have already been heard in a lower

court (trial court) after one of the parties appeals the trial court’s decision. In civil cases, both

parties have the right to appeal the trial court’s decision while rulings in criminal cases can only

be appealed by the defendant in most states. To appeal a decision, the appealing party (the

appellant) must file a brief, i.e., a written argument setting forth the facts and arguing why the

trial court’s decision was erroneous, to which the other party (the appellee) must respond with

an appellee’s brief.

The appellate court does not usually admit new evidence or witnesses; it may rule solely on

the basis of the written briefs or after hearing oral arguments. The appellate court often issues

what is called a judicial opinion, i.e., a written decision outlining the court’s reasoning; it is

usually written by a single judge and reviewed by the other judges on the panel. In cases where

one judge does not agree with the majority opinion, she may issue a dissenting opinion; judges

who disagree with the reasoning of the majority opinion but do agree with the result may issue

a concurring opinion. In some cases, the appellate judges issue an unsigned opinion called a per

curiam opinion (American Bar Association (2019)).

The U.S. legal system is based on common law, meaning judges not only apply the laws

formulated by legislatures but also take into account how these laws were interpreted in previous

comparable cases, with the court decisions on those cases referred to as precedents. A common

law system can therefore constantly - without the intervention of legislators - produce new

doctrines and let others die out. For this to happen, judges need only adapt to newly emerging

circumstances and fill possible gaps in the legislation by interpreting the law accordingly and

creating precedents (Harper (2016)). The U.S. judicial system does not consider all opinions

to be potential precedents, but distinguishes between precedential opinions, which are opinions

that the authoring court believes have sufficient precedential value and are therefore published

so that others may cite them as precedents, and nonprecedential opinions, which are written

primarily for the parties involved in the case and may be cited by others only as persuasive

rather than binding authority.
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4.2.4 Text-Based Causal Inference

While there are several socio-economic and legal studies on text classification based on Natu-

ral Language Processing (NLP) and also some NLP-based analyses on language development,

literature on text-based causal inference is scarce. The social science literature on text clas-

sification ranges from studies on differences in the linguistic style between posts in different

online communities (Khalid and Srinivasan (2020)) and between comments on #MeToo articles

in different news outlets (Rho, Mark, and Mazmanian (2018)) to studies that develop classifiers

for political speeches in order to predict the speaker’s ideology (Yu, Kaufmann, and Diermeier

(2008)) or identify his/her sentiment towards the topic discussed in the speech (Abercrombie and

Batista-Navarro (2018)). In the legal domain, Hausladen, Schubert, and Ash (2020) developed

a document classifier for judicial opinions from U.S. circuit courts that classifies the opinions

according to the predicted ideological direction (conservative vs. liberal) of the decision. In

addition, there are several studies on classifying legal documents by topic (see, e.g., Undavia,

Meyers, and Ortega (2018), Filtz, Kirrane, Polleres, and Wohlgenannt (2019) and Alekseev,

Katasev, Kirillov, Khassianov, and Zuev (2019)).

The evolution of language over time has been analyzed using quantifiers for the context

in which words are used (see, e.g., Kulkarni, Al-Rfou, Perozzi, and Skiena (2015), Hamilton,

Leskovec, and Jurafsky (2016) and Frermann and Lapata (2016)) as well as based on indicators

for the sentiment of that context (see, e.g., Jatowt and Duh (2014) and Hellrich, Buechel,

and Hahn (2018)). Nguyen and Rose (2011) analyze how new members in a medical forum

gradually adapt their language to the forum’s linguistic standards during their first year of

forum participation. They quantify the language in posts by using indicators that measure lexical

features of posts, such as the number of colloquial words used and the number of words belonging

to various psychological, topical and linguistic categories as identified by the Linguistic Inquiry

and Word Count (LIWC) tool. Studies on language development either construct indicators to

assess their development over time or they rely on vectorizing words or language features and

calculating the distance between the resulting vectors in different periods of time.

Literature on text-based causal inference has emerged only in recent years. For one, there

are some studies that integrate NLP elements into causal inference, such as some recent studies

on text-based confounding adjustment (see Keith, Jensen, and O’Connor (2020) for a review).
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Roberts, Stewart, and Nielsen (2020) for example develop a framework for estimating treatment

effects which combines text-based matching and confounding adjustment based on text. They

apply this framework to control for and match based on the content of publications in order to

estimate how a scholar’s gender affects the number of citations of his/her publications. Other

studies that rely on text-based confounding adjustment include those by Sallin (2021) and Veitch,

Sridhar, and Blei (2020). Mozer, Miratrix, Kaufman, and Anastasopoulos (2020) and Field,

Park, and Tsvetkov (2020) propose a text matching approach based on distance metrics rather

than text classification. Wood-Doughty, Shpitser, and Dredze (2018) integrate text classifiers

into causal inference in order to tackle problems with missing data and measurement error.

Other studies use text as treatment or outcome. Ornaghi, Ash, and Chen (2019) analyze

how a judge’s score on an indicator of gender-stereotyped language affects his/her decisions

on women’s rights’ issues. Tan, Lee, and Pang (2014) assess how wording in tweets affects

the number of re-tweets. To do so, they apply Bag-of-Words (BoW) vectorization in order to

identify words that in-/decrease re-tweet propensity and quantify wording by means of different

indicators of tweet features such as sentiment, lexical distinctiveness and readability. Similarly,

Deshpande, Li, and Kuleshov (2022), Pryzant, Card, Jurafsky, Veitch, and Sridhar (2020), Wang

and Culotta (2019), Fong and Grimmer (2016) and Feuerriegel, Heitzmann, and Neumann (2015)

evaluate how to estimate causal effects of wording, semantics and lexical choices in texts.

Egami, Fong, Grimmer, Roberts, and Stewart (2018) developed a sample splitting framework

for estimating treatment effects with text as outcome, building on the classification of outcome

texts based on a model trained in the training sample. Sobolev (2018) assesses how troll activity

that promotes a pro-government agenda on Russian social media affects the evolution of online

discussions using a regression discontinuity approach. To do so, he models the development of

conversations on social media as changes in the mixture of topics with topics identified through

NLP-based classification. Other examples of studies with texts as an outcome include a study

by Chandrasekharan, Pavalanathan, Srinivasan, Glynn, Eisenstein, and Gilbert (2017) on how

Reddit’s 2015 anti-harassment policy affected the usage of hate speech, as well as an analysis

by Pavalanathan, Han, and Eisenstein (2018) on the effect of tagging articles as not written in

a “neutral point of view” on the development of lexical patterns in the labeled articles.

Among the studies on text-based causal inference with text as the outcome, there is, to

my knowledge, no study yet using a panel event study approach, and so far only one study
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that applies a DiD approach, namely the study by Chandrasekharan, Pavalanathan, Srinivasan,

Glynn, Eisenstein, and Gilbert (2017) on the effects of Reddit’s anti-harassment policy on hate

speech use. This study compares the development of an indicator that measures the frequency

of terms typically associated with hate speech posts between individuals who were members in

a group where the anti-harassment policy was violated and those who were not. Hate speech-

related terms are identified from conversations in groups that were banned in the context of the

introduction of the 2015 anti-harassment policy.

4.3 Text Data

The judicial opinions used in this study were obtained from CourtListener, an archive of court

data operated by The Free Law Project (2020). The CourtListener database collects judicial

opinions issued by state and federal courts from various sources. The body of opinions for

this study is restricted to precedential opinions from state and federal appelate courts, i.e.,

opinions that the authoring court believes have sufficient precedential value and are therefore

made public so that they can be cited as precedents. The reason for this choice is that the corpus

of precedential opinions available in the CourtListener database is complete for the available

courts, unlike that of non-precedential opinions, i.e., by restricting the sample to precedential

opinions, no selection problems arise. In addition, precedents reflect developments in courts

and case law. Since precedents are part of the body of law, they contribute to the continuous

development of the legal system.

4.3.1 The Body of Judicial Opinions

The body of judicial opinions examined in this paper includes opinions from 51 appelate courts.

Most judicial opinions of appellate courts have a similar structure. They usually begin with a

summary of the trial court’s ruling, followed by the arguments of the defense and the prosecution

that were presented and admitted before the trial court, as well as the appellate brief filed by the

defense. They typically conclude with reasoning and the decision of the appellate judges. Thus,

the opinions reflect the atmosphere during the trial court hearing and the appeal proceedings,

as well as the attitude of the defense and the judges towards the victim.

To single out the opinions on sexual offenses and those on other crimes against persons from
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the full body of precedential opinions available in the CourtListener Database, I take advantage

of the fact that the appelate court opinions have a similar structure. The opinions usually

begin with an introduction that specifies the offense(s) for which the offender was convicted in

trial court and can therefore be reliably classified based on term search in the introduction. To

distinguish opinions on sexual-violence related cases and those on other cases of interpersonal

crimes, I rely on regular-expression-based (regex-based)1 search of the legal terms for such

crimes2 in the introduction of the respective opinion.

As the headers of the opinions differ between courts, their divisions and even the judges

who author the opinions, the introductions cannot be reliably identified based on regex rules.

Therefore, the first third of each opinion but no more than 5,000 characters are defined as

the introduction. The introductions of all opinions available at CourtListener are searched for

matches to legal terms related to sexual violence; the remaining opinions are then searched

for matches to other interpersonal-violence related legal terms. While certainly not adequate

to accurately classifying opinions into crime categories, the identification procedure described

above ensures that opinions are selected into the sample based on the same rules throughout the

observation period. Focusing on the introduction of opinions prevents erroneously classifying

opinions to one of the two groups when an opinion mentions crimes from a party’s past.

Using the regex procedure described above, I can identify 43,088 opinions on crimes against

persons published between January 2015 and November 2020, including 15,312 on sexual offenses

and 27,781 on non-sexual offenses against persons. The number of opinions per court is provided

in Table 4.A.1.

4.4 Text Quantification

In order to assess the impact of the #MeToo movement on language in court, the judicial

opinions need to be quantified. In this section, I outline the different approaches I use to do so,

1A regular expressions is a string of characters that is used to specify a search pattern. Regular expressions have a
syntax that allows to match a set of different character strings. To identify the term“sexual assault”, for example,
a regular expression can be constructed that matches that exact term, its plural as well as the same term but
with more than one space between “sexual” and “assault”, with a line or page break between both words or with
either of the two words capitalized

2The legal terms for sexual offenses differ strongly across U.S. states (see https://apps.rainn.org/policy/#report-
generator for state-specific terms and definitions); therefore, different state-specific sets of legal terms are
used. The legal terms for offenses of interpersonal violence are more homogeneous across the states; conse-
quently, the same set of terms is used for all courts where the legal terms are obtained from the following site:
https://www.criminaldefenselawyer.com/topics/crimes-against-persons)
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where the quantifiers described in Section 4.4.1 aim at quantifying the amount of victim blaming

in each opinion, while the text vectorization methods outlined in Section 4.4.2 are later used to

capture the general evolution of language in judicial opinions.

4.4.1 Victim Blaming Indicators

To quantify the extent of victim blaming in judicial opinions, three indicators are constructed

based solely on sentences in which the victim or perpetrator is named. These indicators aim

at capturing the extent to which opinions contain wording that implicitly shifts some blame

from the perpetrator onto the victim, where such wording may come from the defense, the

prosecution, or the judges involved in the case.

In the appelate court opinions, the victim is often referred to by his/her name or by the

term “victim”. The appealing party, i.e., the person found guilty in trial court, is usually

called the “appellant” or by his/her name, but may also be referred to as the “petitioner”.

As the victims’ and the appellants’ names are not clearly identifiable, only sentences containing

the words “victim”, “appellant” and “petitioner” as well as inflected forms of these words are

considered in the construction of the indicators.

The Semantic Role of Victim: Subject vs. Object

The first victim-blaming indicator captures the semantic structure of the sentences in which the

victim is mentioned. The reason for this is that various studies from the field of psychology show

that grammatical structure can, on the one hand, provide information about how the author

perceives a fact and, on the other hand, influence the perception of the recipients. Niemi and

Young (2016) asked participants in an experiment on Amazon’s Mechanical Turk (MTurk) to

read fictional reports of rape in which either the victim or the perpetrator was the subject of

some 75% of the sentences. Participants who read reports in which the victim was primarily

the grammatical subject were more likely to shift some responsibility for the assault to the

victim. These findings are in line with a study by Strickland, Fisher, Keil, and Knobe (2014) in

which study participants were asked to judge the intentionality of the grammatical object and

subject in a set of sentences that were ambiguous in terms of intentionality. Study participants

attributed significantly more intentionality to the grammatical subject than to the object.

The above findings also apply to sentences and texts written in passive voice. In an ex-

periment by Bohner (2001), study participants were asked to describe an uncommented video
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showing a rape scene and to complete a questionnaire measuring rape myth acceptance. The

study reveals that describing the scene primarily in the passive voice (with the victim as the

subject) is positively correlated with attributing responsibility to the victim. Henley, Miller, and

Beazley (1995) confronted study participants with fabricated news reports on violence against

women written in either active or passive voice. They found that males but not females rated

the perpetrator’s responsibility higher after reading reports in the active voice.

These findings suggest developing a victim-blaming indicator that captures the semantic role

of the victim in judicial opinions. I construct an indicator that measures the relative frequency

of sentences in which the victim functions as grammatical subject, where the semantic roles of

all words are identified using the Python package spacy.

Sentiment Orientation

The second indicator aims to capture the sentiment orientation of sentences mentioning the

perpetrator. Jatowt and Duh (2014) developed such an indicator based on SentiWordNet, a

database with information on word sentiments. The English SentiWordNet 3.0 contains more

than 100,000 words, each of which is assigned sentiment scores for positivity and negativity.

Since many words have different meanings/senses depending on the context in which they are

used, the SentiWordNet dataset contains a separate entry for each meaning of a word. The

different word meanings are ranked according to how frequently the word is used with the

different meanings.

Jatowt and Duh (2014) propose to calculate sentiment scores for a word of interest as the

average of the positivity or negativity scores of all context words (the words surrounding the

word of interest). As the meaning of the context words is not identifiable without deeper content

analyzes, they take the weighted average of the scores for all meanings of each context word,

with the weights calculated based on the meaning ranks from the SentiWordNet dataset.

To assess the sentiment orientation of sentences in which the perpetrator is named, I de-

termine the negativity score as suggested by Jatowt and Duh (2014). I consider the words

that are at most five words away from the mention of the perpetrator and occur in the same

sentence. The reason for focussing on the context words surrounding the mention of the perpe-

trator is that positively connotated context words of the victim may not point at the absence

of victim-blaming language, as, e.g., comments on the victim’s clothing or attitude towards the

perpetrator are common examples of rape myth reinforcement.
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Word Embedding

In a third approach to identifying the effect of the #MeToo movement on the use of victim-

blaming language, the development of the context in which the words “victim” and “appel-

lant”/“petitioner” appear is assessed by means of Word2Vec, a neural network-based word em-

bedding method. Word2Vec is a method for vectorizing words in such a way that each word

vector of predefined length captures the context in which the represented word usually appears,

and thereby its semantic and syntactic properties. There are two approaches to learning the

vector representation for each word in a text corpus. In the Common Bag of Words (CBOW)

approach, the Word2Vec neural net takes context words (the words surrounding the unknown

target word in a sentence) as input and returns probabilities for each word in the model vo-

cabulary to appear in the given context. In the Skip-Gram approach, the neural network takes

single words as inputs and predicts their context. In both approaches, the inputs are passed

through a hidden layer that is constantly updated in order to optimize the returned prediction

probabilities. Once the model is trained, the context vectors can be extracted from the hidden

layer (Mikolov, Sutskever, Chen, Corrado, and Dean (2013)).

The judicial opinions are first decomposed into sentences. In a second step, these sentences

are tokenized and lemmatized, i.e., they are split into individual words which are then converted

to their base form using Python’s nltk package. These preprocessed sentences are fed into the

Word2Vec algorithm. Since the analysis aims to compare the development of the embedding of

the words “victim” and “complainant”/“appellant” in opinions on sexual and non-sexual crimes,

the Word2Vec model is trained for each quarter and crime group separately. In order to make the

Word2Vec models comparable, they are aligned using Compass Aligned Distributional Embed-

dings (CADE). As suggested by Jatowt and Duh (2014), I calculate the cosine similarity between

the vectors of the first quarter of 2015 (for the words “victim” and “complainant”/“appelant”)

and those for each other quarter, both for the group of opinions on sexual offenses and the group

of non-sexual offenses, in order to be able to assess the development of the word embedding

vectors.

Since the word embedding approach only identifies one vector per time period and group, this

approach only allows for estimating the effect of the #MeToo movement, but not the uncertainty

of the estimate, i.e., the standard errors.
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4.4.2 Text vectorization

For the analysis of the linguistic development in the judicial opinions, the opinions are vectorized

by means of the Bag of Words (BoW) and the term frequency - inverse document frequency (tf-

idf) models, both of which are frequently used for text classification. The resulting vectors are

then used to quantify the development of the language in court over time, as described further

below.

Before applying any of the two vectorization methods to the set of judicial opinions, all

opinions are cleared of so-called stop words, i.e., function words with ambiguous meaning such

as determiners (e.g., “the”, “a”, “another”), coordinating conjunctions (e.g., “but”, “yet”, “so”)

and prepositions (e.g., “in”, “under”, “before”). For doing so, I use the predefined set of such stop

words provided in the nltk package. Further, the words remaining in the corpus are tokenized

and lemmatized, also by use of the nltk package. Through pre-processing, each judicial opinion

is reduced to a corpus of lowercased words that have lexical meaning and are set to their base

form.

The described pre-processing of text documents is widely used in the literatur on topic

extraction and text classification. It aims to reduce the dimensionality of the feature space

and to increase efficiency. Some studies on stop word removal in text classification, however,

suggest that its impact is small (see, e.g., HaCohen-Kerner, Miller, and Yigal (2020) and Uysal

and Gunal (2014)); some studies in the field of sentiment classification even suggest that stop

word removal might negatively impact classification accuracy (Ghag and Shah (2015), Kharde,

Sonawane, et al. (2016)). For this reason, I only remove stop words for text vectorization but

not for calculating the victim blaming indicators.

The Bag of Words Approach

The Bag of Words (BoW) model is a representation of text that converts text documents into

fixed-length vectors, where each vector represents the relative frequencies of words in one doc-

ument. The set of unique words occuring in the corpus of all text documents to be analyzed,

hereafter referred to as the model vocabulary, determines the length of the vectors representing

the text documents. Formally, the model can be described as follows: Each dimension of the

vector vBoWd representing text document d corresponds to one word w from the model vocabu-

lary W . Vector element vBoWd,w thus describes the relative frequency of word w in document d,
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i.e., the number of appearances of word w in document d divided by the total number of words

in document d. Applied to the corpus of judicial opinions, each vector vBoWd represents one

judicial opinion d.

There are a number of words in judicial opinions, such as “court”, “trial” or “judge”, that

are not included in the list of stop words, but nevertheless appear in almost all opinions and

do not provide any insight into the evolution of the language used in court. To place greater

emphasis on salient words that may reflect linguistic developments in court opinions, I not only

determine the BoW representation of opinions based on the entire vocabulary, but also construct

a second set of BoW vectors based only on a vocabulary that includes words that occur in less

than 95% of all cases. This alternate BoW approach will in the following be referred to as

reduced-corpus BoW. The tf-idf model described in the next section goes in a similar direction

as this reduced-corpus BoW, since both aim at reducing the influence of very frequently used

words in the vector representations of judicial opinions.

The Term Frequency - Inverse Document Frequency Approach

The tf-idf model represents text documents as fixed-length vectors just as the BoW model, only

that the vector elements of the tf-idf vectors vtfidfd,w are computed as the relative frequency of

word w in document d multiplied by the logarithmically scaled inverse proportion of documents

in the corpus that contain word w. The vector element vtfidfd,w can be calculated as

vtfidfd,w = wfd,w × log(
N

dfw
),

where wfd,w denotes the relative frequency of word w in document d, N the number of

documents in the corpus and dfd the number of documents containing word w. Thus, the tf-idf

vector element vtfidfd,w is comparably small if the corresponding word w occurs in (almost) every

document, such as “court” or “judge”, and large if the word w appears in document d but is not

contained in multiple other documents. This way, the words that are characteristic of one or a

set of document(s) are given a higher weight.

When applied to the corpus of judicial opinions without further text processing, the tf-idf

model yields the problem that names of persons, places and organizations that naturally only

occur in one or a small set of opinion(s) are given particularly large weights, even though they

are not relevant to the documents’ content. To circumvent this, I apply the Stanford PoS Tagger,

a probabilistic conditional log-linear model that - based on lexical features of words as well as

the context in which they appear - tags each word in a text as corresponding to a grammatical
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category such as verb, noun, proper name, etc. This way, I identify and exclude those words

that correspond to names of persons, places and organizations before removing stop words,

lemmatizing the texts and finally applying the tf-idf model.

Assessing the Development of Text Vectors over Time

The high-dimensional vectors determined with the three approaches outlined above are then

projected using principal component analysis (PCA) in order to reduce the dimensionality and

thereby the computational complexity, while preserving as much of the variance of the original

text vectors as possible. Since the dimensionality reduction is applied over time to all text vectors

together, the resulting vectors are suitable for computing similarity between the opinions they

represent. Jatowt and Duh (2014) take a similar approach to evaluate the evolution of word

context vectors over time.

The data is reduced to as many principal components as needed to capture 90% of the

variation in the original opinion vector dataset. The resulting reduced vectors have 64 (BoW),

65 (reduced corpus BoW) and 36 (tf-idf) dimensions respectively. Studies on text classification

usually reduce the data to only 1-5 dimensions to avoid capturing noise. The goal of the present

study, however, is not to classify texts, but rather to detect even minor changes in the language

used in judicial opinions. These minor changes may indicate, for example, a change in the

treatment of victims in court, while in the context of the thematic classification of the comments,

they may be considered noise.

After this data reduction step, I average the vectors of all opinions from the first half of

2015 for each court separately and calculate the distance between these 2015 average vectors

and all other opinion vectors of the corresponding court (from opinions published between July

2015 and November 2020) in order to quantify each opinion by its distance from the average of

the first half of 2015. To do this, I choose the L1 distance metric (also known as Manhattan

distance) as proposed by Aggarwal, Hinneburg, and Keim (2001). They show that for data of

20 dimensions and more the L1 metric is the best distance measure in terms of contrasting two

points. Other distance measures as well as other dimensionality choices will also be considered

as part of the robustness checks.
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4.5 Identification

This section first outlines how I attempt to disentangle the impact of #MeToo on the text

quantifiers described above from other potential external influences on court language. The

estimation strategy based on the DiD and panel event study approach is discussed further below

in Section 4.5.2.

The purpose of this study is to assess the impact of the #MeToo movement on language

in court when dealing with cases of sexual violence. The outcome, courtroom language, is

expected to reflect changes in the treatment of sexual offenses and their victims, as well as in

the atmosphere at such trials, that are not due to directly measurable, exogenously imposed

reforms, but rather to changes in the attitudes of the parties involved. Language in judicial

opinions can shift as the parties involved in a trial change the way they describe sex offenses

and how they address victim and offender, where these changes may be both a conscious or

unconscious expression of attitudinal shifts. Judges may also change to more conscientiously

apply rules of court, codes of conduct and rape shield statutes, with rape shield statutes being

laws designed to protect victims of sexual offenses by, for example, prohibiting evidence relating

to the victim’s past sexual behavior. Moreover, as the U.S. legal system is a common law system,

judges may begin to interpret other laws differently, providing the impetus for new doctrines.

Such changes in the interpretation of law are most visible in precedential opinions and are likely

to be reflected in the language used in those opinions. All of these changes in the way cases of

sexual offenses and their victims are handled in court due to changing attitudes are not directly

measurable, but rather must be gleaned from written opinions.

By examining various indicators that quantify the extent of victim blaming in court, I place

particular attention on how the #MeToo movement has affected the treatment of victims in

court. Just as with the more general language quantifiers, victim blaming indicators can capture

both conscious and unconscious manifestations of attitudinal shifts, with the semantic indicator

likely capturing primarily unconscious change, while the other two indicators of victim blaming

capture both types of attitudinal shifts. The #MeToo movement may be defined as the collective

action of sexual violence victims who used the phrase and hashtag “Me Too” for publicizing

their experiences of sexual harassment and assault in order to point out the prevalence of sexual

violence in society.
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4.5.1 Disentangling the Effect of #MeToo on Language in Court from External Factors

A major difficulty of estimating the effect of the #MeToo movement is disentangling the move-

ment’s impact from other external influences that may induce changes in the language used in

judicial opinions on sex offense cases.

One such confounding influcence could be legislative reforms. The language in court is likely

to be affected by reforms that, for example, bring about changes in how certain crimes are

sanctioned, what evidence is admitted in court, or what role parties and witnesses may take

in the court process. Since this study aims at estimating the effect of the #MeToo movement

on court language and victim treatment, rather than on legislative reforms, such reforms would

bias the treatment effect estimate.

To the best of my knowledge, and as noted by Levy and Mattsson (2021), there have been

no major legislative changes on crimes against persons (neither on sexual nor on non-sexual

offenses) in the United States during the years under study. There are only some states that

have enacted laws prohibiting the use of non-disclosure agreements which prevent victims of

sexual harassment or assault from speaking out. It is unlikely that this legislative change had a

direct effect on the language used in sexual offense lawsuits, as such non-disclosure agreements

while designed to prevent sexual harassment charges, have no bearing on what victims say in

court when a crime is tried. The prohibition of non-disclosure agreements, however, may have

increased the number of sexual offense reports, as victims may have come forward who would

have been prevented from speaking out in the absence of these laws. This issue of changes in

the number of reported cases of sexual violence is discussed further below.

Then, some states have introduced policies on workplace harassment such as implementation

of anti-harassment trainings and laws requiring transparency about sexual harassment investiga-

tions (Johnson, Sekaran, and Gombar (2020), National Conference on State Legislature (2019),

Myers (2020)). Since these policies only address how employers should handle sexual harass-

ment, and not how harassment should be handled once it is litigated in court, these policies are

also unlikely to have any effect on the language in courts. Other than these changes, there were

no other major changes in state legislation on interpersonal crimes between 2015 and 2020. I

can therefore rule out the possibility that the changes in language are due to legislative reforms.

Another source of potential bias in the effect estimates are other exogenous changes in
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the judges’ attitudes toward sexual harassment and assault cases. Such exogenous changes in

attitudes may result from other sexual harassment or assault scandals, other movements, or even

the release of a book or film that addresses sexual violence. All of these events could potentially

draw public attention to the issue of sexual violence and lead to a change in attitudes toward

sexual violence cases and their victims. These concerns can be mitigated by looking at search

history, traditional media and social media data from the United States. All of these data

show that at no other time during the period studied was as much attention drawn to sexual

harassment and assault as in the weeks following the onset of the #MeToo movement.

The #MeToo movement was very effective in raising awareness about the prevalence of

sexual violence. About 65% of social media users report having regularly encountered at least

some content related to sexual harassment or assault on social media platforms in the months

following the start of the #MeToo movement, with little difference across demographic groups

(Anderson and Toor (2018)). The observation that a large share of society has been confronted

with the issue of sexual violence is also reflected in Google search data. Following Caputi,

Nobles, and Ayers (2019) and Levy and Mattsson (2021), I look at how often the terms ”sexual

assault” and “sexual harassment” were searched for on Google in the United States during the

study period. Figure 4.5.1 shows that public interest in these topics has never been higher

than at the start of the #MeToo movement. Additionally, Figure 4.5.1 also shows how often

these terms were searched for on Google News, with a similarly pointed peak of searches in

October 2017. The onset of the movement also saw a sharp increase in the number of articles in

traditional media covering sexual harassment and assault, as shown both in an analysis of four

major U.S. newspapers conducted by Levy and Mattsson (2021) and in a study published by

the Women’s Media Center (Ennis and Wolfe (2018)). The fact that the topic of sexual violence

has been given great prominence in both traditional media and social media, and that all socio-

economic groups have been reached, it is very likely that judges have also been confronted with

the #MeToo movement and may have been influenced in their attitudes.

Another issue with identifying the treatment effect is that it is not possible to separate

the effect of the #MeToo movement itself from the impact of the sexual assault scandal that

triggered it, i.e., the effect of the social media attention to sexual violence and that of the

revelations about Harvey Weinstein and about other prominent cases in the immediate aftermath

of the Weinstein scandal. However, the caveat that any potential impact of the movement on
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Figure 4.5.1: Searches on Google and Google News in relation to the highest point in the period January 2015
to November 2020. The vertical lines indicate when the sexual harassment/assault allegations against stand-up
comedian Bill Cosby, former U.S. President Donald Trump and Fox News CEO Roger Ailes became public.

attitudes and language can be attributed to the Weinstein scandal can be partially debunked.

During the study period, there were many other sexual assault or harassment scandals involving

many men with similar or even higher profile than Harvey Weinstein, none of which attracted

nearly as much public attention to the issue of sexual harassment and assault as the #MeToo

movement. Following Levy and Mattsson (2021), Figure 4.5.1 indicates the timing of three

exemplary scandals involving prominent men that did not lead to a comparable increase of

search interest as did the #MeToo movement. I argue, therefore, that changes in attitudes

and language are unlikely to be due to the Weinstein sexual assault scandal itself because, in

the absence of a #MeToo movement, the scandal would likely have attracted no more public

attention than the other prominent cases.

Finally, identifying the causal effect of #MeToo on language in court entails a third major

issue, namely, that the composition of sexual offense cases heard in court may have changed as

the #MeToo movement led to an increase in the reporting of such crimes. Levy and Mattsson

(2021) show that the #MeToo movement has brought about an increase in reports of sexual

offenses, which in turn induced a slight, albeit statistically significant, rise in arrests related to
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sexual offenses, where arrests are defined as cases in which the suspect is taken into custody or

summoned to court. Some of these additional arrests (that arguably would not have happened

in absence of the #MeToo movement) may have resulted in convictions, some of which in turn

may have been appealed and thus become part of the sample. Similarly, there may be cases in

my sample that went to trial only because of the prohibition on non-disclosure agreements that

some states enacted in response to #MeToo.

Although the increase in cases in itself is not problematic for identifying the effect of #MeToo

on language in court, it may have led to changes in the composition of sex offenses addressed in

the judicial opinions in the sample. This, in turn, would be troublesome, as such compositional

changes would likely result in language shifts that cannot be attributed to a change in how a

given case is treated in court. I must therefore disentangle the direct effect of the movement

on court language from the indirect effect mediated through compositional changes in the set of

sexual opinions.

However, concerns about #MeToo-induced compositional changes in my sample can be de-

bunked to some extent as the increase in reports of sexual offenses triggered by the movement is

unlikely to have caused many additional cases in the set of appelate court opinions under study.

For one, the findings by Levy and Mattsson (2021) suggest that the set of additional sexual

offense reports includes a disproportionate number of comparatively lighter crimes or cases with

less pressing evidence. Based on survey data, the authors argue that the movement encouraged

sexual offense reports through changing the victims’ perception of the severity of the experienced

sexual offense. In addition, the authors note that the movement had a particularly strong effect

on the reporting of cases that occured at least one month before being brought to the police,

i.e., in cases that are more difficult to prove in court. In both cases, i.e., low severity sexual

offenses and cases without pressing evidence, it is unlikely that there will be a criminal trial and

thus that they may end up in an appeals court and in my sample.

The argument that most MeToo-induced reports will not end up in my sample can also be

substantiated by looking at the authors’ results on the types of sexual offenses for which the

number of reports has increased. They show that the increase in reports of sexual offenses and

resulting arrests/summonses is mainly driven by an increase in sexual harassment reports, which

very seldom result in criminal trials. The estimated effect of #MeToo on the number of sexual

assault reports is substantially smaller but still statistically significant for two of four sexual
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assault subcategories, namely rape and fondling. Compared to cases of sexual harassment,

arrest/summonses related to these two categories of sexual assault are more likely to result in

criminal proceedings, which in turn can lead to compositional changes in my sample and must

be considered when assessing the movement’s impact on court language.

2015 2016 2017 2018 2019 2020

Share of Sexual Offense Opinions 0.361 0.356 0.353 0.353 0.357 0.352
(0.503) (0.646) (0.865) (0.888) (0.275)

Composition of Sexual Offenses:
Sexual Assault 0.834 0.815** 0.786 0.817 0.824 0.827*

(0.932) (0.015) (0.644) (0.773) (0.098)
Sexual Assault on a Minor/Child 0.028 0.028 0.028 0.032 0.026 0.036

(0.745) (0.26) (0.502) (0.506) (0.345)
Statutory Sexual Assault 0.134 0.151 0.148 0.141 0.134 0.155

(0.982) (0.616) (0.977) (0.42) (0.731)
Sodomy 0.091 0.114 0.102 0.084 0.103 0.113

(0.034) (0.316) (0.964) (0.639) (0.361)
Fondling 0.306 0.315 0.325 0.339 0.32 0.338

(0.483) (0.533) (0.241) (0.49) (0.454)
Sexual Harassment 0.002 0.006 0.007 0.006 0.004 0.006

(0.57) (0.405) (0.553) (0.846) (0.438)

# Opinions (Total) 6474 7685 7111 7223 7883 6713
# Sexual Offense Opinions 2333 2737 2510 2548 2812 2367

Table 4.5.1: Shares of sexual-violence related opinions that deal with different crime types (by year), as well as the
p-value for the differance between the 2015 share and the share in the respective year (with court fixed effects).
Note: For 2016-2020, the year y is defined as November y-1 to October y in order to have a clear cut at the onset
of the #MeToo movement in November 2017; the year 2015 only consists of the months January-October 2015.
Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

A look at Table 4.5.1 reveals that the share of sexual offense opinions across the sample is

constant over time, with 35-36% of opinions relating to sexual offenses each year. The table also

reports the share of sexual offense opinions that address different sexual offenses, categorizing

opinions by which sexual offense-related terms could be identified in the opinion’s introduction,

i.e., one opinion may be counted in more than one category. To draw on the results of Levy

and Mattsson (2021) for robustness checks, the terms identified in the introductions are grouped

into six categories of sex offenses similar to those defined by the FBI National Incident-Based

Reporting System, which Levy and Mattsson (2021) also rely on. In addition to the five cat-

egories that match those used in the above study I also included a subcategory of the broad

category of sexual assault, namely sexual assault of children and minors, to examine whether
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an increase in reports from a particular group may have been offset by a decrease in reports

from another group. The table indicates that the composition of sexual offense cases does not

show any substantial shifts over time, with none of the sexual offense types having a constantly

in- or decreasing share over time, also when particularly looking at the years 2017 to 2019 for

which Levy and Mattsson (2021) find a significant increase in reports. The table also reports

the p-values for the difference proportion of each category of sexual offense in 2015 and the pro-

portion in every other year, controlling for court fixed effects. The p-values indicate that there

are no statistically significant differences between the years under study. When not controlling

for court fixed effect, a few of these differences are moderately statistically significant, both

before and after the #MeToo movement, suggesting that the slight intertemporal differences in

the composition are attributable to general variations in the number of opinions per court and

differences across courts in the composition of opinions. I can therefore conclude that if #MeToo

induced compositional changes in the composition of sexual offense opinions in the sample, they

are small and not statistically significant.

4.5.2 Empirical Strategy

The effect of the #MeToo movement on the language at court is assessed by means of a DiD

approach and an event study approach both of which are outlined further below. To account for

the fact that the process between the initial trial court hearing and the publication of a judicial

opinion from an appelate court often takes several months, sometimes years, I particularly look

at the effect of the #MeToo on court opinions published at least one year after the movement

began; that is, while the estimates for the year following the movement’s onset are also reported,

a stronger emphasis is put on subsequent years, particularly November 2018 through April 2020,

when the Covid-19 pandemic hit the United States. While appeals must be filed promptly after

publication of the trial court’s decision (usually within 30 days), the process in appeal courts

often takes considerably longer: the U.S. Courts of Appeals report the median disposition time,

i.e., the time between the filing of an appeal and the appelate cour’s decision, to be 8.6 months

for 2015.3 Thus, opinions published at least one year after the movement’s onset are likely

to contain closing arguments, trial court judgements, appellee and appelant briefs, as well as

appelate court reasoning and decisions written after the #MeToo movement began. However, as

3see https://www.uscourts.gov/news/2016/12/20/just-facts-us-courts-appeals
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trial court proceedings can also last for many months or even years, opinions on cases with such

lengthy trial court proceedings may also contain citations from or references to early trial court

hearings that took place before #MeToo. However, the fact that the opinions may include parts

of hearings from before #MeToo should be taken into account when interpreting the estimated

effect, as this could lead to an underestimation of the movement’s impact on language in the

courts.

Difference-in-Differences Approach

I apply a DiD approach both with two and multiple time periods in order to identify the Average

Treatment Effect on the Treated (ATET) (see, e.g., Snow (1856), Card and Krueger (1994) and

Acemoglu and Angrist (2001)). The sample consists of all judicial opinions on cases that can

be classified as “crimes against persons”. Opinions classified as treating sexual crimes form the

treatment group, i.e., the set of opinions that are affected by the #MeToo movement, while

opinions on other crimes against persons serve as control group. One advantage of choosing

the sample of “crimes against persons” is that all crimes against persons involve a victim and a

perpetrator, which is important for detecting victim-blaming language. Further, the comparison

of sexual offenses and other crimes against persons is also common in the literature on victim

blaming and rape-myth acceptance (see, e.g., Reich, Pegel, and Johnson (2021), Bieneck and

Krahé (2011) and Levy and Mattsson (2021))).

In order to identify the ATET of the #MeToo movement using a DiD approach, certain

assumptions must hold. For simplicity, I will discuss these assumptions for the simple case of

two time periods, but the discussion is easily transferable to the multiple time period approach.

The common support assumption states that for each post-treatment observation from the

treatment group, there must be comparable observations in the other three groups, i.e., the pre-

treatment observations from the treatment and the control group, as well as the post-treatment

observations from the control group. Translated to the present study, there must be opinions in

these three groups that are comparable to post-treatment opinions on sexual offenses in terms

of court and judge characteristics. This assumption is likely to hold because I only consider

judicial opinions from courts that handle both sexual offense cases and cases of other crimes

against persons. Further, judges are usually assigned their cases randomly, which is why the

characteristics of judges in all 4 groups should be similar.

Then, the no anticipation assumption states that the treatment may not have any effect
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on the outcome in pre-treatment periods, which would have been the case if judges and other

actors in court had anticipated the movement and changed their behavior accordingly before

the movement went viral. This assumption is also likely to hold as the #MeToo movement

was launched immediately after the sexual assault allegations against Harvey Weinstein came

to light, and to an extent that no one anticipated.

The third assumption, finally, is the common trend assumption. It states that in absence

of the treatment, outcomes in the treatment and control group would follow a parallel trend,

or in other words, that the gap between the outcome in the two groups would be constant over

time. This assumption is supported by the fact that between 2015 and 2020, there have not

been any major legal change in either area, i.e., that of sexual offenses and other crimes against

persons, that is likely to affect procedures and language at court (see Section 4.5.1). In addition,

all crimes against persons are relatively “old” crimes, i.e., crimes that are unlikely to change

in nature and have long been considered crimes, so there is no need to continually re-interpret

the corresponding laws (unlike, e.g., cyber crimes). The above discussion suggests that, in the

absence of external interferences, the language of judicial opinions would evolve at a similar pace

for all types of crimes against persons.

However, this argumentation for the common trend can be criticized in that recent decades

have seen a trend toward more gender-sensitive language in parts of society, which is likely to

have a greater impact on language related to sexual offenses than on language related to other

crimes against persons. If this trend toward more gender-sensitive language is also perceptible in

court, the parallel trend assumption may be violated, as then the language in opinions on sexual

offenses would generally, i.e., even in absence of the #MeToo movement, evolve more rapidly

than that in other opinions. Further, other feminist developments in society over the past few

decades may have encouraged judges to re-interpret the law on sex offenses more frequently than

that on other offenses, even if it was not for the #MeToo movement. Both these issues would

lead to a violation of the parallel trend assumption and certainly suggest interpreting the results

from the DiD approach with some reservation. However, the parallel trend assumption can and

will be tested by means of placebo tests, in order to rule out serious violations of the common

trend assumption.

Another potential source of bias would be changes in the composition of the sample. With

Table 4.5.1 not showing any significant changes in the composition of opinions on sexual of-
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fenses over time, and particularly between 2017 and 2019, I can rule out the possibility that

the movement caused substantial changes in the composition of opinions regarding categories of

sexual offenses. To check for robustness of my estimates against the small changes in the sam-

ple composition regarding courts, the DiD analysis is complemented by an Inverse Probability

Weighting (IPW) DiD approach (Abadie (2005)), in which I weight all control observations and

the pre-movement sexual offense opinions to have the same distribution of courts as the group of

post-treatment sexual offense opinions. 4 Further, I conduct a second robustness check, building

on the results of Levy and Mattsson (2021). The authors show that the #MeToo movement only

affected the reporting of some types of sexual offenses, while others, namely sodomy and rape,

were not affected. I therefore re-run my analyses, considering only opinions on sexual offenses

where the number of reports was not affected by the #MeToo movement.

However, there may still be #MeToo-induced shifts in the composition of cases that cannot

be controlled for: the composition of offenses of a given type could still change in terms of the

strength of the evidence and/or the severity of the offense. This would be the case if the #MeToo

movement had led to an increase in trial court cases involving sexual offenses and, at the same

time, a decrease in the proportion of convicted offenders who appeal their convictions. In this

case, the proportion of appeal cases with inconclusive evidence may have increased, which could

have accelerated the development of language in the sex offense sample and thus biased upward

the estimated effects of movement on language development, i.e., the effect estimates from the

text vectorization approaches. In contrast, the estimates for the impact of the movement on

the use of victim-blaming language would in this scenario constitute lower bounds of the actual

decline in the use of such language, since the more reasons there are to doubt the credibility of

the victim or the seriousness of the incident, the more likely it is that victim-blaming language

will be used.

In the DiD approach, I control for court fixed effects, since the court- or state-specific laws and

rules, as well as the terminology therein, are likely to differ. In addition, I control for the word

count to account for the fact that there are some very short and formal opinions in the sample

that have little or no flexibility in how they are written. However, I also report the estimates

for when no controls are included. The reported standard errors are heterogeneity-robust and

4IPW based on offense categories would be problematic in that the offense categories of the control and treatment
groups do not overlap by design.
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clustered at the court level (Zeileis (2004), Bertrand, Duflo, and Mullainathan (2004)).

Event Study Approach

I complement the DiD analysis with a simple event study approach, in which I assess the de-

velopment of the text quantifiers before and after the #MeToo movement in a panel setting.

In doing so, I attempt to address the problem that the set of opinions on non-sexual offenses

may represent an imperfect control group, e.g., because of generally faster evolving language

in opinions on sexual offenses. In the event study approach, I examine the judge-specific de-

velopments in the text quantifiers and victim blaming language indicators before and after the

onset of the #MeToo movement and intentionally chose not to include opinions on non-sexual

offenses as control observations, as this part of the study aims to deal with possible criticism of

the choice of control group. Thus, the purpose of this event study application is not to identify

the causal effect of the movement, but rather to observe whether there was a shift in the overall

development of language in sex offense cases and the use of victim-blaming language from before

to after the movement.

To apply the event study approach, I took advantage of the fact that for 9 courts, accounting

for roughly 30 % of the opinions in my sample, the names of the judge who wrote the opinion is

provided in the CourtListener database. For the remaining sexual offense opinions, I obtained

the judge’s name based on a semi-automatic approach, i.e., by formulating court-specific regex-

rules to identify the authoring judge, which I then checked manually based on the context from

which they were drawn. In cases where more than one judge is named as the author of an opinion,

the name mentioned first is selected as the authoring judge, as is the case in the CourtListener

database. Opinions written per curiam, i.e., in the name of the court rather than the judge(s),

as well as opinions in which no author is named are excluded from the sample in the event study

setting (they account for less than 1% of sexual offense opinions).

The names of the so identified judges are cleaned up, i.e., spellings of the same name and

title in opinions of the same court are aligned. Of course, the entire process of identifying the

authoring judge has many potential sources of error. For one thing, there could be two judges

with the same name in the same court whose opinions will be attributed to one and the same

individual. Second, when an opinion is authored by more than one judge, the order in which the

judges are named does not necessarily say anything about the writing share of the judges, thus

the judge named first and selected by me is not necessarily the primary author. It can be stated,
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however, that in the vast majority of opinions one single judge is named as the author and

opinions with more than one authoring judge are the exception. Finally, both, the judge names

identified by CourtListener and those identified by me may occasionally be incorrect. However,

since there is no reason to believe that the number of erroneous judge names is time-dependent,

this solely affects the estimation by introducing some additional noise, but does not lead to a

systematic bias in the estimators.

I identify 1382 judges, who, on average, publish roughly 11 sexual opinions during the ob-

servation period, with the median number of opinions being 4, i.e., there are a few judges who

authored a large amount of opinions (up to 184 opinions) while many others only published a

handful opinions during the study period. For each judge in the sample, I calculate the six-

month average of each text quantifier and victim blaming indictator5 to obtain a panel data

structure with one or no observation per individual and time period. To avoid losing too many

observations, I do not exclude all observations for which data is missing in any time period,

but keep all judges who published at least one observation before the onset of the #MeToo

movement and at least one observation a year or more after the start of the movement. Then, I

apply a Fixed Effects (FE) approach while weighting the observations by the number of opinions

they were calculated from. Through weighting the observations, I account for the fact that the

judges differ greatly in how many sex offense opinions they publish per six-month period, which

makes some judges much more important for the development of language in court than others.

Although some information is lost by averaging the observations per judge and 6-month pe-

riod, the panel approach might eliminate some of the noise typical of text analyses by increasing

the amount of text per observation. On the other hand, however, it requires me to exclude

several observations from the sample (3843 opinions authored by 785 judges) because I do not

have observations from either before or after MeToo for the authoring judges. By excluding

judges who, for whatever reason, do not frequently publish precedential opinions on sex offenses,

important information may be lost. Further, this panel approach captures only part of the evo-

lution of language in court. Changes due to retirement or dismissal, and replacement of judges

are obviously not captured in this panel approach.

5The 6-month text quantifiers are calculated as the 6-month means of the judge’s opinions from the respective
court’s opinion vectors in H1-2015, expressed relative to the median distance. The 6-month victim blaming
indicator is calculated as the sum of mentions of the victim as the subject of a sentence divided by the total
number of mentions of the victim in each 6-month period.
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4.5.3 Assessing Effect Heterogeneity

Finally, I also assess whether there is evidence of effect heterogeneity with respect to a judge’s

gender or political affiliation, as well as with regard to the political orientation of the state in

which a court is located. This is because different studies on victim blaming and rape myths

acceptance show that females are less likely to accept rape myths that shift the blame for an

assault upon the victim (e.g., Pinciotti and Orcutt (2021), Russell and Hand (2017), Davies,

Rogers, and Whitelegg (2009), Schneider, Mori, Lambert, and Wong (2009)). Boux (2016) finds

that this is particularly true for female Democrats.

Most studies in which participants were confronted with a sexual assault scenario found that

men were more likely than women to blame the victim and show signs of rape myth acceptance,

while other studies found no significant effect of gender on the likelihood of victim blaming

(see Gravelin, Biernat, and Bucher (2019), Grubb and Turner (2012) and Suarez and Gadalla

(2010) for reviews). Other research shows that study participants with politically conservative

views are more likely to (partially) blame the victim for a sexual assault (Anderson, Cooper,

and Okamura (1997), Lambert and Raichle (2000)). For the judicial context, Boux (2016) finds

that female Democratic judges are less likely to use rape myths than male judges (regardless of

political affiliation), while her results show no significant difference between female Republican

judges and male judges.

In addition to the differences in victim blaming and rape myth acceptance noted above,

there is also evidence that the perception of and reaction to the #MeToo movement differ

across genders and political camps. Castle, Jenkins, Ortbals, Poloni-Staudinger, and Strachan

(2020) found in a poll that Democrats were more likely than Republicans to say they were aware

of the movement and mobilized by it. An analysis of the members of Congress’ communications

on their public Facebook pages reveals that in the wake of the #MeToo movement, far more

female than male members addressed the issue of sexual violence in their posts, with this pattern

evident in both political parties (Anderson and Toor (2018)).

In light of these findings, it is interesting to assess whether judges’ language in court is affected

differently by the #MeToo movement depending on their gender and political affiliation. The

research cited above suggests that female and/or politically liberal judges were more receptive

to the #MeToo movement and more willing to change their behavior. Then again, these judges
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Figure 4.6.1: Kernel-smoothed plot of victim blaming indicators, with the solid line representing sexual offense
opinions and the dotted line representing the control group. Curves were smoothed using the default settings
of the sm.regression function in R. The semantics indicator measures mentions of the victim as a subject as a
percentage of total mentions, and the sentiment indicator measures the negativity score of the context words of
mentions of the offender, ranging from 0 to 100, with the words being more negative the higher the score.

may have been more cautious in their choice of words prior to the movement and may have

already avoided language that implied victim blaming, leaving them little room for change

toward language that attributed less blame to the victim.

The analysis of treatment effect heterogeneity by judge characteristics is restricted to courts

for which the names of the authoring judge is available on CourtListener. Information on

the judges’ gender and political affiliation is obtained from ballotpedia, an online encyclopedia

on American politics and elections. Ballotpedia only provides the political affiliation of some

judges. To determe the political affiliation of the other judges, I draw on the party for which the

judge ran in the judicial election or the political affiliation of the politician who appointed the

judge, depending on the process used to select judges. For about 21% of the judges no political

affiliation can be determined. To assess effect heterogeneity with respect to a state’s political

orientation, I categorize as predominantly Democratic (Republican) those states that were won

by the Democratic (Republican) party in at least three of the four 2008-20 presidential elections.

Opinions from swing states and courts at the supra-state level are excluded for this analysis.

4.6 Results

4.6.1 Victim Blaming Indicators

Figure 4.6.1 shows the development of the victim blaming indicators in opinions on sexual of-

fenses and on other crimes against persons. Neither plot suggests any substantial differences
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Share of Victim as Subject Negativity of Offender Context

sex cr. x post -0.687 -0.079
(1.087) (0.056)

sex cr. x ’19 -0.446 0.002
(1.088) (0.064)

sex cr. x ’20 -0.872 -0.087
(1.340) (0.057)

sex cr. x H1-’19 -1.214 0.000
(1.528) (0.062)

sex cr. x H2-’19 0.273 0.003
(1.144) (0.117)

sex cr. x H1-’20 -1.155 -0.107
(1.407) (0.098)

sex cr. x H2-’20 -0.621 -0.069
(1.587) (0.098)

post X X
year FE X X
half-year FE X X
court FE X X X X X X
# words X X X X X X

Table 4.6.1: DiD estimates of effect heterogeneity for victim blaming indicators. Significance levels: * p<0.1, **
p<0.05, *** p<0.01.

between the development of these two indicators in the treatment and the control group. Fur-

ther, the DiD estimates provided in Table 4.6.1 do not indicate a significant impact of the

#MeToo movement on either of the two indicators. The DiD estimates for the semantics indica-

tor suggest a slight, but not statistically significant, #MeToo-induced decline in the number of

victim mentions as a grammatical subject and hence a decline in victim blaming. The estimates

for the sentiment indicator are also not statistically significant and even indicate, contrary to

the research hypothesis, a decrease in the use of words with negative connotations in the context

of mentions of the perpetrator. Likewise, the event study approach (see Figure 4.6.2) shows no

substantial changes in either of the two victim blaming indicators.

While assessing the impact of the #MeToo movement on the victim blaming indicators

does not yield significant results, the plot on the development of the semantics estimator is

nevertheless interesting. It shows that the use of the victim as grammatical subject is generally

substantially higher in opinions on sexual assault cases than in cases on other crimes against

persons. Given that several studies indicate higher prevalence of victim blaming in sexual assault

cases than in cases on other crimes against persons (see Section 4.2.2) and that the indicator

is constructed based on scientific findings (see Section 4.4.1), it seems reasonable to explore
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Figure 4.6.2: Event study estimates for the evolution of the victim blaming indicators in sexual offense opions.
The gray lines indicate the 90 percent confidence interval around the estimates.

whether this indicator may be useful for measuring the extent of victim blaming in judicial

opinions - as long as the purpose is to classify opinions or quantify the status quo rather than

measure changes over time. The sentiment indicator, on the other hand, seems to vary little

both over time and crime types. It generally takes very low values, which may be because judges

deliberately avoid sentiment-charged language. It therefore does not seem appropriate for use

in the context of court opinions and may be better suited for contexts with more colloquial

language such as social media.

The results of the robustness checks for the DiD with victim blaming indicators are provided

in Appendix 4.B. Given that no significant effects on either indicator can be identified using the

DiD approach, the fact that the placebo test does not indicate a violation of the parallel trend

assumption is not particularly informative. For the sentiment indicator, both the IPW estimates

as well as the DiD estimates based on sodomy and rape cases only indicate a significant decrease

in negatively connoted words in the context of mentions of the perpetrator. In the case of the

semantics indicator, both estimates have different signs and are not statistically significant.

The effect heterogeneity estimates obtained using the DiD and event study approach, re-

spectively, can be found in Appendices 4.C and 4.D. For the semantics indicator, the estimates

suggest a larger decline in mentions of the victim as subject among female and Democratic

judges as well as in predominately Democratic states, although again the differences are not

statistically significant. The DiD estimates for the sentiment indicator imply a greater decline

in the use of words with negative connotations among females and no difference in the effect of

#MeToo on this indicator between Democrates and Republicans. The event study approach, on

the other hand, suggests that Democrates have increased their use of negatively connoted words

110



Figure 4.6.3: Development of the word2vec representation of the word “victim”, with the solid line representing
sexual offense opinions and the dotted line representing the control group.

when compared to the development of this indicator among Republicans.

Finally, Figure 4.6.3 displays the development of the word2vec representation of the word

“victim” in both the control and treatment group. Contrary to the research hypothesis, the

context in which victim is mentioned does not evolve faster for opinions on sexual offenses than

for those on other crimes against persons. Again, this approach may be better suited to contexts

with more flexible and rapidly evolving language.

4.6.2 Text Vectorization

Figure 4.6.4 illustrates the evolution of the BoW6 and the tf-idf text quantifiers in opinions

on sexual offenses and on other crimes against persons. Both charts suggest that language in

opinions on sexual offenses evolves more rapidly than that in opinions on other crimes against

persons between the onset of the movement and 2019. However, the graphs also indicate that

there may be problems with the parallel trend assumption. Moreover, the BoW graph shows a

narrowing of the distance between the opinion vectors and their H1-2015 average in 2016 and

2017, as well as in 2020, which could be due to changes in the composition of courts, but also

to other unobservable factors, which in turn would be critical for identifying the causal effect 7.

The DiD estimates for the text vectorization-based opinion quantifiers can be found in Table

4.6.2. The results point at a slight #MeToo-induced change in courtroom language, which

6The reduced sample BoW quantifier evolves similarly to the BoW quantifier in both groups, which is why it is
not shown here.

7The use of other smoothing methods and smaller bandwidths yields similar curves. Thus, it does not seem to be
an (over-)smoothing issue.

111



Figure 4.6.4: Kernel-smoothed plot of the distance of text vectors from their H1 2015 average, with the solid line
representing sexual offense opinions and the dotted line representing the control group.

however materializes with a substantial time lag. The estimates suggest that the language in

sexual offense opinions deviates more quickly from the 2015 average than in opinions on other

cases of crimes against persons. The DiD estimate for the second half of 2020 is statistically

insignificant for all three text quantifiers and numerically small for the two BoW quantifiers,

indicating that the langugage change in sexual offense opinions is not likely due to the COVID-19

crisis.

The event study estimates in Figure 4.6.5 show a decrease in the distance to the H1-2015

average in 2016 that is similar to, though less pronounced than, that observed in Figure 4.6.4.

Further, the event study estimates do not indicate a stronger deviation of language from the

H1-2015 average in the years after #MeToo than in the years before #MeToo, suggesting that

the effect estimated with the DiD approach may be attributable to changes in case composition

or personnel rather than changes in judges’ attitudes.

The results of the robustness checks are presented in Appendix 4.B. While the placebo tests

do not reveal a significant violation of the common trend assumption, they do not allow me

to rule out such a violation, especially because the estimated effects of the placebo treatment

on the (reduced sample) BoW quantifiers are positive, just like the observed effect in the main

DiD analysis. I therefore also estimated the effect of placebo treatments at other points in

time during the pre-#MeToo period, all of which turned out to be statistically insignificant,

with some of them having a positive and others a negative sign. The fact that the IPW-based

DiD and the reduced sample DiD estimate positive effects for all quantifiers, some of which
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BoW Reduced Sample BoW tf-idf

sex cr. x post 0.815* 0.700 1.665
(0.469) (0.511) (1.562)

sex cr. x ’19 0.629 0.269 1.338
(0.535) (0.507) (1.732)

sex cr. x ’20 0.919** 1.165** 1.106*
(0.454) (0.496) (0.646)

sex cr. x H1-’19 0.658 0.474 0.940
(0.715) (0.718) (1.835)

sex cr. x H2-’19 0.603 0.079 1.716
(0.563) (0.564) (1.813)

sex cr. x H1-’20 1.461 1.806* 0.281
(0.905) (0.955) (0.966)

sex cr. x H2-’20 0.317 0.459 1.958
(0.692) (0.670) (1.312)

post X X X
year FE X X X
half-year FE X X X
court FE X X X X X X X X X
# words X X X X X X X X X

Table 4.6.2: DiD estimates for text vectorization-based opinion quantifiers. Significance levels: * p<0.1, **
p<0.05, *** p<0.01.

are statistically significant, support the finding that the #MeToo movement has caused a slight

increase in language development in sexual assault opinions, with the IPW results ruling out that

the observed effect in the main analysis is due to changes in the composition of courts, while the

latter rules out that it is due to an increase of reports of sexual offenses. When considering these

results in conjunction with the event study results, one possible explanation for the observed

slight linguistic change in sexual offense opinions is the change in judicial appointments toward

judges with more progressive views on sex offenses. However, given the numerically small effect

estimates, the noise in these quantifiers, and the fact that the effect does not appear until two

years after the movement began, it is difficult to attribute the observed effect to the #MeToo

movement.

A look at the effect heterogeneity estimates in Appendix 4.D and 4.C does not give a clear

picture. While the DiD estimates for the (reduced sample) BoW suggest a faster evolution of

language in opinions written by females and Democrates, the event study plots point to a similar

evolution of language in opinions written by female and male or Democratic and Republican

judges, respectively. For the tf-idf approach, the DiD estimates suggest that the language of

female and Democratic judges evolves less rapidly than that of their counterparts.
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Figure 4.6.5: Event study estimates for the evolution of the text vectorization-based opinion quantifiers. The
gray lines indicate the 90 percent confidence interval around the estimates.

4.7 Conclusion

In this study, I quantified judicial opinions by means of different indicators and text vectoriza-

tion methods to assess how the #MeToo movement has affected the evolution of language in

sexual assault opinions and whether it has led to a decrease in victim blaming in such cases.

Although I do not obtain statistically significant estimates for the impact of the movement on

most quantifiers, with a few exceptions of mildly statistically significant estimates, the point

estimates suggest a faster evolution of language in sexual assault opinions as well as a decline in

victim blaming. The reasons for not obtaining statistically significant results may be manifold.

For one, the language in judicial opinions is generally not very flexible, i.e., there is regulation

on what different parties are allowed to say in court and the structure of court opinions, partic-

ularly in certain paragraphs, is highly formalized. Therefore, any treatment should be expected

to have a smaller effect on language in court opinions than on language in any other more flexible

text body. Moreover, the text vectorization methods in particular, but also the victim blaming

indicators, capture a lot of noise, leading to large standard errors in the estimators.
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Despite not revealing strong statistically significant effects, the study may be a valuable

contribution to the growing literature on text-based causal inference: for one, I have developed

indicators that can be useful proxies for victim blaming and may be used as a treatment, outcome

or control, as long as their purpose is either to measure the status quo rather than development

over time, or they are applied to a text body with more flexible language. Then, I have also

introduced an approach to quantifying language development in a body of text that is based

on text vectorization methods originally designed for categorization and clustering purposes.

This enables the use of text vectorization methods in the context of DiD analyses or panel

data methods. Again, this approach may be useful for assessing text bodies with more flexible

language, analyzing larger text bodies, or evaluating longer-term effects of a treatment in a panel

setting.
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Appendix

4.A Descriptives

Court # Non-sexual Offenses # Sexual Offenses

Appellate Court of Illinois 668 192

Army Court of Criminal Appeals 10 46

California Court of Appeal 912 361

Commonwealth Court of Pennsylvania 247 114

Connecticut Appellate Court 436 164

Court of Appeals for the D.C. Circuit 60 24

Court of Appeals for the Eighth Circuit 349 194

Court of Appeals for the Eleventh Circuit 179 64

Court of Appeals for the Federal Circuit 14 3

Court of Appeals for the Fifth Circuit 259 108

Court of Appeals for the First Circuit 147 70

Court of Appeals for the Fourth Circuit 167 61

Court of Appeals for the Ninth Circuit 242 98

Court of Appeals for the Second Circuit 115 44

Court of Appeals for the Seventh Circuit 367 134

Court of Appeals for the Sixth Circuit 188 95

Court of Appeals for the Tenth Circuit 137 51

Court of Appeals for the Third Circuit 98 36

Court of Appeals of Alaska 47 31

Court of Appeals of Arizona 43 31

Court of Appeals of Arkansas 192 156

Court of Appeals of Georgia 403 375

Court of Appeals of Iowa 1244 680

Court of Appeals of Kansas 48 47

Court of Appeals of Minnesota 1 19

Court of Appeals of Mississippi 426 197

Court # Non-sexual Offenses # Sexual Offenses

Court of Appeals of North Carolina 274 147

Court of Appeals of Tennessee 121 85

Court of Appeals of Texas 4082 2576

Court of Appeals of Virginia 92 39

Court of Appeals of Washington 204 137

Court of Criminal Appeals of Tennessee 1949 797

Court of Criminal Appeals of Texas 252 120

District Court of Appeal of Florida 1123 324

District Court, District of Columbia 366 133

District of Columbia Court of Appeals 154 34

Idaho Court of Appeals 48 42

Indiana Court of Appeals 1781 1146

Massachusetts Appeals Court 45 98

Michigan Court of Appeals 85 67

Missouri Court of Appeals 354 285

Navy-Marine Corps Court of Criminal Appeals 76 252

Nebraska Court of Appeals 99 113

New Jersey Superior Court 65 35

New Mexico Court of Appeals 60 33

New York Court of Appeals 93 40

Ohio Court of Appeals 3283 2091

Superior Court of Delaware 159 36

Superior Court of Pennsylvania 5995 3246

United States Air Force Court of Criminal Appeals 3 28

United States Court of Federal Claims 19 8

Table 4.A.1: Number of opinions per court.
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4.B DiD: Robustness Checks

4.B.1 Victim Blaming Indicators

Victim as Subject Neg. of Offender Context
(1) (2) (3) (1) (2) (3)

sex cr. x placebo -0.716 -0.012
(0.810) (0.066)

sex cr. x post -0.939 -0.100*
(0.926) (0.058)

sex cr. x post 1.399 -0.093**
(1.564) (0.042)

post X X X X X X
court FE X X X X X X
# words X X X X X X

Table 4.B.1: Robustness tests: (1) DiD was performed using only pretreatment observations and a placebo
treatment in the middle of the pretreatment period; (2) DiD with IPW based on court distribution, performed for
the entire sample using the didweight function from the causalweight package in the statistical software R (R
Core Team (2022)); and (3) DiD performed only for the sample of sodomy and sexual assault cases. Significance
levels: * p<0.1, ** p<0.05, *** p<0.01.

4.B.2 Text Vectorization

BoW Reduced Sample BoW tf-idf
(1) (2) (3) (1) (2) (3) (1) (2) (3)

sex cr. x placebo 0.220 0.166 -0.941
(0.584) (0.675) (0.831)

sex cr. x post 0.535 0.442 1.697**
(0.424) (0.438) (0.821)

sex cr. x post 0.806 0.836* 4.148*
(0.534) (0.505) (2.254)

post X X X X X X X X X
court FE X X X X X X X X X
# words X X X X X X X X X

Table 4.B.2: Robustness tests: (1) DiD was performed using only pretreatment observations and a placebo
treatment in the middle of the pretreatment period; (2) DiD with IPW based on court distribution, performed
for the entire sample using the didweight function from the causalweight package in R; and (3) DiD performed
only for the sample of sodomy and sexual assault cases. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
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4.C DiD: Effect Heterogeneity

4.C.1 Victim Blaming Indicators

Victim as Subject Neg. of Offender Context

female x sexual x post -1.103 -0.236
(3.329) (0.394)

dem. judge x sexual x post -2.099 -0.015
(3.729) (0.225)

dem. state x sexual x post -0.276 -0.106
(2.967) (0.162)

post X X X X X X
court FE X X X X X X
# words X X X X X X

Table 4.C.1: DiD estimates of effect heterogeneity for victim blaming indicators. Significance levels: * p<0.1, **
p<0.05, *** p<0.01.

4.C.2 Text Vectorization

BoW Reduced Sample BoW tf-idf

female x sexual x post 0.891 1.170 -1.740
(1.171) (1.194) (2.207)

dem. judge x sexual x post 0.340 0.764 -4.144
(1.938) (2.145) (2.993)

dem. state x sexual x post 0.357 -0.152 2.169
(1.335) (1.207) (1.841)

post X X X X X X X X X
court FE X X X X X X X X X
# words X X X X X X X X X

Table 4.C.2: DiD estimates of effect heterogeneity for text vectorization-based opinion quantifiers. Significance
levels: * p<0.1, ** p<0.05, *** p<0.01.
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4.D Event Study Approach: Effect Heterogeneity

4.D.1 By Gender

Figure 4.D.1: Event study estimates of the difference in indicator development of female vs. male judges. The
black line represents the FE estimates for the interaction terms of 6-month period identifiers and a dummy
variable indicating whether a judge is female. The gray lines indicate the 90 percent confidence interval around
the estimates.
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4.D.2 By Political Affiliation

Figure 4.D.2: Event study estimates of the difference in indicator development of Democratic vs. Republican
judges. The black line represents the FE estimates for the interaction terms of 6-month period identifiers and a
dummy variable indicating whether a judge is affiliated with the Democratic party. The gray lines indicate the
90 percent confidence interval around the estimates.
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Chapter 5

How causal machine learning can leverage marketing

strategies: Assessing and improving the performance of a

coupon campaign

with Martin Huber

Abstract: We apply causal machine learning algorithms to assess the causal effect of a marketing inter-

vention, namely a coupon campaign, on the sales of a retailer. Besides assessing the average impacts of

different types of coupons, we also investigate the heterogeneity of causal effects across different subgroups

of customers, e.g., between clients with relatively high vs. low prior purchases. Finally, we use optimal

policy learning to determine (in a data-driven way) which customer groups should be targeted by the

coupon campaign in order to maximize the marketing intervention’s effectiveness in terms of sales. We

find that only two out of the five coupon categories examined, namely coupons applicable to the product

categories of drugstore items and other food, have a statistically significant positive effect on retailer sales.

The assessment of group average treatment effects reveals substantial differences in the impact of coupon

provision across customer groups, particularly across customer groups as defined by prior purchases at

the store, with drugstore coupons being particularly effective among customers with high prior purchases

and other food coupons among customers with low prior purchases. Our study provides a use case for

the application of causal machine learning in business analytics to evaluate the causal impact of specific

firm policies (like marketing campaigns) for decision support.

Keywords: causal machine learning, coupon campaign, marketing.

JEL classification: M30, C21.

This article is published as working paper on arXiv.



5.1 Introduction

Over the last two decades, the amount of customer data available to marketers has increased

dramatically with new data types such as social media, clickstream, search query and supermar-

ket scanner data on the rise. The increasing availability of customer Big Data has spawned a

new stream of literature on machine learning (ML) methods and tools in the field of business

and marketing. The ML literature on designing marketing campaigns ranges from research on

modeling customer behavior (e.g. Xia, Chatterjee, and May (2019), Hu, Dang, and Chinta-

gunta (2019)), price sensitivity (e.g. Arevalillo (2021)) and purchase decisions (e.g. Donnelly,

Ruiz, Blei, and Athey (2021)) to studies on the development of personalized product recom-

mendation systems (e.g. Ramzan, Bajwa, Jamil, Amin, Ramzan, Mirza, and Sarwar (2019),

Anitha and Kalaiarasu (2021)), customer churn management (e.g. Gordini and Veglio (2017))

and acquisition of new customers (e.g.Luk, Choy, and Lam (2019)).

A common feature of these studies is that they are based on predictive ML, i.e., on identifying

patterns of variables in the data in order to use them for predicting an outcome of interest (e.g.,

sales). This is done by training predictive models in one part of the data and determining the

best performing model (with the smallest possible prediction error) in the other part of the data.

Under some commonly used ML algorithms, the identified model serves as a black box, i.e., it

is based on functions that are too complex for any human to understand (as in so-called deep

learning), while in other cases, the model has an explicit (and thus comprehensible) structure. In

any case, however, such predictive ML models generally do not provide insights into the causal

effects of specific variables or interventions (such as a marketing campaign) on the outcome

of interest. Thus, predictive ML, although appropriate for making educated guesses about

outcomes based on certain patterns observed in the data, is not well suited for determining and

comparing the effectiveness of possible courses of action, which would be relevant for decision

support, e.g. for optimally designing a marketing campaign.1

1To predict an outcome of interest based on predictor variables, ML aims at minimizing the prediction error by
optimally trading off prediction bias and variance. When multiple variables capture the same relevant predictive
feature, i.e., are correlated with that feature, ML algorithms may identify some of these variables as relevant
predictors while attaching little importance to others, regardless of the variables’ causal effect on the outcome.
For instance, variables that do not directly or only modestly affect the outcome may enter the prediction model
as relevant predictors, simply because they are correlated with other variables that actually affect the outcome.
For this reason, it may happen that these other variables play little or no role in the predictive model, even
though they have a causal impact on the outcome, simply because they provide little additional information for
the prediction. Therefore, predictive ML is generally not suitable for the causal analysis of ‘what if’ questions,

122



To improve on the shortcomings of predictive ML in evaluating the impact of implement-

ing vs. not implementing a specific intervention, a fast growing literature in econometrics and

statistics has been developing so-called causal ML algorithms. In this paper, we demonstrate

the application of such methods in the context of business analytics for decision support, that

is, for evaluating a marketing intervention. More precisely, we make use of the so-called causal

forest approach by Athey, Tibshirani, and Wager (2019) to assess the causal effect of mar-

keting campaigns, in which customers were provided coupons for different product types, on

customers’ purchasing behavior, i.e. the difference in their expected behavior with and without

being targeted by a coupon campaign. While predictive ML algorithms are not able to isolate

the causal effects of coupons on customers’ purchasing behavior from the influence of background

characteristics (e.g. socio-economic characteristics and price sensitivity) which jointly influence

coupon reception and purchasing behavior, the causal forest approach can do so under certain

assumptions.

One crucial condition is that all variables that jointly affect coupon reception and purchasing

behavior are observed in the data and can thus be controlled for. This condition is known as

selection-on-observables or unconfoundedness assumption. Under further conditions on the qual-

ity of the ML models estimated as part of the causal forest approach for predicting purchasing

behavior and coupon reception as a function of the observed variables, the causal forest approach

permits evaluating the mean impact of the coupons on all customers, as well as across specific

subgroups or customer segments (e.g. different age groups). Our results suggest, for instance,

a positive overall effect of coupons for drugstore items. For coupons applicable to ready-to-eat

food as well as meat and seafood, on the other hand, we do not find a statistically significant

overall effect. An analysis of the effect of drugstore coupons across different customer subgroups

reveals that these coupons particularly affect customers with high pre-campaign spending as

well as low- to middle-income customers.

Furthermore, we apply optimal policy learning based on ML as proposed by Athey and

Wager (2021), in order to learn from the data which customer segments should be optimally

targeted by coupon campaigns such that the overall (or net after cost) effect is maximized. In

contrast to predictive ML, optimal policy learning allows, under certain conditions, identifying

the coupon provision policy which is most effective in terms of its impact on sales. This is done

such as how a change in a coupon campaign strategy will affect customer behavior.

123



by first assessing the expected effects in different customer segments and then selecting those

segments as target groups in which the effects are sufficiently high. The estimated optimal policy

for coupons applicable to meat and seafood, for instance, suggests that such coupons should be

issued to low-income customers whose pre-campaign spending did not exceed a certain level,

to middle-to-high-income customers aged 46 years or older who purchased something from the

store in the period prior to the campaign, as well as to middle-to-high-income households with

at least five members who did not purchase anything from the store in the pre-campaign period.

The paper proceeds as follows: Section 5.2 outlines the current state of quantitative research

in the marketing literature and motivates the application of causal ML methods in the field of

marketing. Section 5.3 introduces and describes the retailer’s sales data to be analyzed. Section

5.4 defines the causal effects of interest based on so-called counterfactual reasoning, discusses the

conditions required for applying causal ML (such as the selection-on-observables assumption)

and describes the algorithms for causal analysis and optimal policy learning. Section 5.6 provides

the results of the evaluation of the retailer’s coupon campaigns as well as the optimal coupon

allocation. Section 5.7 concludes.

5.2 Motivation

The evaluation of the causal impact of discount campaigns plays a significant role in the earlier

marketing literature from the ‘pre-Big-Data era’, see e.g. Inman and McAlister (1994), Raju,

Dhar, and Morrison (1994), Leone and Srinivasan (1996) and Krishna and Zhang (1999) for

studies on causal effects of coupon provision. However, the last two decades have seen a surge of

predictive ML applications in business analytics, which appear to increasingly dominate causal

analysis in marketing as well. In a keyword-search-based literature review, Mariani, Perez-

Vega, and Wirtz (2021) find that the number of publications on predictive ML and Artificial

Intelligence (AI) in marketing, consumer research and psychology has grown exponentially in

the past decade (2010-21). The systematic literature reviews by Mustak, Salminen, Plé, and

Wirtz (2021) and Ma and Sun (2020) paint a similar picture, with the latter stating that the

rise of ML in marketing began with applications of support vector machines, a specific type of

ML algorithm. This was then followed by studies that introduced text analysis, topic modelling

and reinforcement learning into marketing research, as well as by marketing applications of
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deep learning, and network embedding. Questions about the impact of marketing campaigns,

the influence of certain external factors on the success of a campaign and the heterogeneity of

campaign effects across customer segments appeared to become of comparatively less importance

(see e.g. Hair Jr and Sarstedt (2021), Ma and Sun (2020)), even though most recently, the

marketing literature saw first applications of causal ML alogithms (such as causal trees).

The following sections summarize the current state of research on discount campaigns using

causal inference (Section 5.2.1) and predictive ML (Section 5.2.2). This serves as the basis for

motivating the use of causal ML to evaluate and optimize discount campaigns and to approach

various other marketing and business decisions in Section 5.2.3.

5.2.1 Causal Inference in Marketing

A number of studies assess the causal effects of specific marketing campaigns on consumer

response to the campaigns. These studies typically rely on (field) experiments or traditional

methods for causal inference based on observational data. In the latter case, researchers must

assume that all variables that jointly affect the intervention and purchasing behavior are observed

in the data and can thus be controlled for. Rubin and Waterman (2006) apply propensity

score matching to evaluate the effect of marketing interventions aimed at physicians in order

to promote the prescription of a ‘lifestyle’ drug. They also rank the physicians according to

their estimated expected individual-level effects, which in turn can be used to derive a tailored

marketing strategy. Reimers and Xie (2019) assess the effect of e-coupon provision on alcohol

sales by means of a difference-in-differences approach, exploiting the fact that the restaurants in

their sample issued e-coupons at different points in time. See also Xing, Zou, Yin, Wang, and Li

(2020), Halvorsen, Koutsopoulos, Lau, Au, and Zhao (2016) and Zhang, Dai, Dong, Qi, Zhang,

Liu, and Liu (2017) for further examples of observational and experimental studies examining

the effect of coupon provision or other discount campaigns on consumer behavior.

Other contributions analyze the heterogeneity of marketing effects across customer charac-

teristics and the circumstances under which customers are targeted by coupon and other promo-

tional campaigns. Among them, Gopalakrishnan and Park (2021) investigate whether high- and

low-consumption customers, as defined by their purchasing behavior during the 12 months prior

to the experiment, differ in their responsiveness to coupon campaigns. Andrews, Luo, Fang,

and Ghose (2016) study whether the level of occupancy (or crowdedness) of a subway affects
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passengers’ response to mobile advertising campaigns and find a statistically significant positive

association. Based on a field experiment, Spiekermann, Rothensee, and Klafft (2011) conclude

that proximity to the location for which coupons are distributed influences coupon redemption,

and that this association is much more pronounced in the city center than in suburban areas.

Furthermore, several studies evaluate how certain configurations of coupons, such as face

value, distribution method and expiry date, affect consumer behavior. The experimental studies

by Zheng, Chen, Zhang, and Che (2021) and Biswas, Bhowmick, Guha, and Grewal (2013)

assess how the size of discounts affects consumers’ perceptions of product quality and purchase

intentions. Leone and Srinivasan (1996) use supermarket scanner data to analyze the effect of

coupon face value on sales and profits, while Anderson and Simester (2004) study the long-

term effects of discount size on the purchasing behavior of new and established customers in an

experimental setting. Other contributions as e.g. Gopalakrishnan and Park (2021), Jia, Yang,

Lu, and Park (2018), Choi and Coulter (2012), Krishna and Zhang (1999) and Inman and

McAlister (1994) analyze how further aspects of coupon and discount campaign design affect

consumer behavior.

5.2.2 Predictive ML in Marketing

In recent years, many studies have focused on ML-based prediction of coupon redemption and

associated sales. They use ML algorithms to model customer behavior as a function of cus-

tomers’ previous transactions, their response to past coupon/discount campaigns and their socio-

economic characteristics in order to predict the likelihood of customers to redeem coupons or

take up discounts and make purchases.

Pusztová and Babič (2020) and He and Jiang (2017) compare the performance of different

ML-based classification algorithms in predicting coupon redemption in digital marketing cam-

paigns. The first study concludes that so-called Support Vector Machines provide the most

accurate predictions, while the latter study shows that the gradient boosting framework ‘XG-

Boost’ performs best. Greenstein-Messica, Rokach, and Shabtai (2017) introduce an algorithm

that combines co-clustering and random forest classification to predict redemption of mobile

restaurant coupons based on demographic and contextual variables such as the consumer’s dis-

tance to the restaurant relative to the size of the coupon discount. Ren, Cao, Xu, et al. (2021)

developped a two-stage model for estimating the probability of coupon redemption, consisting
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of a first stage in which customers are clustered based on their past purchase and redemption

behavior, followed by a second stage of fitting prediction models for the different customer clus-

ters. Furthermore, several studies such as Koehn, Lessmann, and Schaal (2020), Xiao, Li, Xu,

Zhao, Yang, Lang, and Wang (2021) and Zheng, Chen, Zhang, and Che (2021) predict customer

behavior in the context of coupon or other discount campaigns by means of several ML methods.

5.2.3 Causal ML in Marketing

Under certain conditions like the selection-on-observables assumption, implying that all variables

that jointly affect the intervention and purchasing behavior are observed in the data and can thus

be controlled for, causal ML methods allow for the evaluation of causal effects of coupon/discount

campaigns as well as effect heterogeneity across customer segments. In contrast to more tradi-

tional methods of causal inference, they can leverage the full amount of information available

to marketers, which may be large in the era of ‘Big Data’. That is, causal ML can address

research questions such as those described in Section 5.2.1 based on high-dimensional observa-

tional data containing a large set of background variables that could serve as control variables.

Examples include socio-economic characteristics of customers, geographic or time-related infor-

mation, weather, economic circumstances, and many more. Causal ML is based on combining

causal inference approaches with ML algorithms for data-driven selection of control variables

when estimating causal effects and/or their heterogeneity across customer segments.

The rise of predictive ML has prompted e.g. Anderson (2008), Lycett (2013) and Erevelles,

Fukawa, and Swayne (2016) to argue that theory-based causal inference has lost some of its

relevance for business decisions in light of the large datasets and sophisticated predictive ML

methods available to marketers today. However, these views were soon challenged in several

studies that emphasize the importance of causal reasoning and risks of basing decisions based

solely on correlations, see e.g. Cowls and Schroeder (2015) and Golder and Macy (2014). In

more recent years, a growing number of contributions have further stressed the importance of

integrating ML and causal inference, see e.g. Hair Jr and Sarstedt (2021). Among them, Hün-

ermund, Kaminski, and Schmitt (2021), who investigate the use of causal methods in business

analytics by combining qualitative interviews and quantitative surveys among data scientists and

managers in a mixed-methods research design. They document an ongoing shift in corporate

decision making away from an exclusive focus on predictive ML and towards the use of causal
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methods, based on both observational and experimental data.

Yet, to date, applications of causal ML to marketing research appear to be relatively scarce,

with the exception of large tech companies operating in the field of social media or online

commerce. To the best of our knowledge, there are virtually no studies that evaluate the causal

effect of coupon campaigns on customer behavior using causal ML, as we do in this paper.

Smith, Seiler, and Aggarwal (2021) use predictive ML for deriving optimal coupon targeting

strategies and estimate the profits that would accrue under those strategies out of sample, i.e.

in parts of the data not used for deriving the strategies. The profits are estimated based on

the potential outcomes framework, which is also the basis of causal ML. However, the study by

Smith, Seiler, and Aggarwal (2021) is conceptually different from ours in that it uses the potential

outcomes framework to compare coupon targeting strategies inferred from different predictive

ML algorithms, while we apply an algorithm based on the potential outcomes framework (namely

the optimal policy learning approach of Athey and Wager (2021)) to derive a coupon targeting

strategy.

One study in the field of marketing which does consider causal ML is Gordon, Moakler,

and Zettelmeyer (2022). They assess the performance of so-called Double Machine Learning

(DML), see Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018),

and propensity score matching, see Rosenbaum and Rubin (1983), for estimating the causal

effect of conversion ads on Facebook. Such ads aim to increase online activity like page visits,

sales and views on an external website. For their analysis, the authors take advantage of the fact

that Facebook offers businesses the opportunity to assess their ad campaigns by means of ran-

domized experiments. Gordon, Moakler, and Zettelmeyer (2022) compare the effect estimates

based on DML and propensity score matching with those from the experiments, finding that

DML outperforms propensity score matching, but that both approaches overestimate the effect

substantially. This highlights the importance of observing and appropriately controlling for all

factors jointly affecting the intervention and customer behavior when causally assessing mar-

keting interventions. Also, Huber, Meier, and Wallimann (2021) consider DML when analyzing

observational data to investigate whether discounted tickets induce Swiss railway customers to

reschedule their journeys, e.g. to shift demand away from peak hours.

Narang, Shankar, and Narayanan (2019) apply causal forests, the causal ML framework

developed by Wager and Athey (2018) and Athey, Tibshirani, and Wager (2019) also used in
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this study (see Section 5.5), to assess the heterogeneity across shoppers in how mobile app

failures affect the frequency, volume, and monetary value of their purchases. Guo, Sriram, and

Manchanda (2021) assess the effect of a law requiring pharmaceutical firms to disclose their

marketing payments to physicians on the firms’ payments to physicians using a Difference-in-

Differences approach and assess expected individual-level effect heterogeneity by means of causal

forests. Zhang and Luo (2021) incorporate causal forests in their study on modelling restaurant

survival as a function of photos posted on social networks. They find that the total volume of

user-generated content and the extent to which user photos are rated as helpful have a significant

positive effect on the likelihood of restaurant survival. Another study from the broader field of

marketing that uses causal ML is Cagala, Glogowsky, Rincke, and Strittmatter (2021). The

authors apply causal ML to determine the strategy for distributing gifts among potential donors

to a fundraising campaign that maximizes expected net donations. They find that the identified

optimal targeting rule outperforms different non-targeted gift distribution rules, even when the

optimal targeting rule is estimated based only on publicly available geographic information or

on data from a previous fundraising campaign conducted in a similar sample.

In the following, we will use coupon promotions as a running example to highlight the merits

of causal ML in business analytics and marketing research. In the context of coupon campaign-

ing strategies, marketers are arguably interested not only in predicting customer behavior, but

also in measuring the causal effects of alternative campaigns on customer behavior. Such ef-

fects correspond to the difference in the customers’ (average) behavior when being vs. not being

addressed by a particular campaign. Intuitively, this requires comparing a customer’s observed

behavior under the actual assigned coupon with the potential (and not directly observed) behav-

ior that would have occurred had coupon provision been different from that actually observed,

an approach commonly referred to as counterfactual reasoning. Such a causal assessment is

necessary for determining whether and to which extent a campaign is effective in altering cus-

tomer behavior and for understanding how customer behavior would change if coupons were

distributed differently.

In a predictive ML model, however, the predictive power of coupon provision on customer

behavior generally does not correspond to such a causal effect, because it is affected by so-

called regularization bias, i.e., a bias that arises in the context of ML algorithms shrinking the

importance of certain predictors in order to reduce the variance of the prediction and thereby
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improve the overall predictive performance. Regularization bias may occur, for instance, when

coupon provision is strongly correlated with other (good) predictors (such as previous purchases)

and/or when its effect on consumer behavior is comparably small, so that coupon provision has

little predictive value. A further issue is selection bias, meaning that coupons may pick up

the effects of other variables whose importance has been shrunk by the ML algorithm. The

implementation of coupon campaigns should be based on estimations of causal effects that avoid

regularization and selection bias, as is the case with causal ML algorithms such as DML and

causal forests.

The necessity of estimating the causal effect of coupon campaigns, rather than merely pre-

dicting customer behavior, can be illustrated by means of a simple example. Suppose a retailer

estimates a model to predict sales based on observational data from a previous coupon campaign

in which (in an attempt to re-activate dormant customers) coupons were distributed primarily

among customers who had not been in the store for a while, rather than among frequent shop-

pers. The estimated predictive model might indicate a negative association between coupon

provision and sales, since the coupon campaign is likely to re-activate only some inactive cus-

tomers, so that the (formerly) inactive customers on average purchase less than the frequent

shoppers. The true effect of receiving a coupon, however, might actually be positive. A positive

effect implies that when comparing two groups of (formerly) inactive customers with compara-

ble background characteristics (like willingness to buy), where the first receives coupons while

the second does not, the average purchases of the first group are higher. The predictive model

therefore confuses (or confounds) the causal effect of the coupon campaign with that of being a

dormant vs. a frequent shopper, thus incorrectly pointing to a negative effect.

In a second scenario, the retailer decides to issue coupons in the store. This way, frequent

shoppers are regularly provided with coupons, while dormant customers rarely if ever receive

any. A predictive model now detects a positive relationship between the provision of coupons

and sales, although the actual effect of providing coupons could be negative, namely if frequent

customers use the coupons for products they would have bought anyway. If the campaigns were

evaluated using predictive methods and the results were misinterpreted as causal, marketers

would come to the conclusion that the first campaign was ineffective while the second was effec-

tive. Causal methods, on the other hand, enable marketers under certain conditions to control

for such biases, in our example due to differences in purchasing behavior between frequent and
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dormant customers, and to consistently estimate the effect of coupon campaigns. Further, these

methods can also be applied to assess effect heterogeneity and identify an optimal coupon distri-

bution scheme (or policy) that targets those customers whose average purchases are sufficiently

responsive to receiving a coupon.

In causal studies on discounts, the impact of providing coupons is typically assessed either

based on random experiments or observational data from previous campaigns, controlling for

observed characteristics or covariates that are likely to be associated with both coupon provision

and consumer behavior. Conventional, i.e., non-ML-based, causal inference methods require the

researcher or analyst to manually select covariates based on theoretical considerations, domain

knowledge, intuition and/or previous empirical findings. Examples for such covariates in the

context of campaign evaluations include past purchasing behavior, exposure to previous cam-

paigns, and socio-economic characteristics such as age, gender, or income. Manual selection of

covariates entails the risk of omitting important control variables and may even be practically

infeasible in Big Data contexts with a very large set of potential covariates (e.g., collected from

online platforms), including unstructured data containing, e.g., text or clickstreams. Further-

more, conventional causal inference methods require the researcher to specify how, i.e., through

which functional form (like, e.g., a linear model), the selected covariates are associated with

coupon provision and purchasing behavior. Causal ML methods, in contrast, permit taking ad-

vantage of the full amount of information in the data to detect relevant covariates (which have

an important influence on coupon provision and consumer behavior) in a data-driven way and

control for them, as well as to flexibly estimate the functional form of statistical associations.

Still, the observational data have to meet certain conditions, as described in Section 5.4.2.

The argument for counterfactual reasoning made further above also applies to efforts of

optimizing the distribution of coupons across segments of customers, i.e., optimal policy learning,

as discussed, e.g., in Manski (2004), Hirano and Porter (2009), Stoye (2009), and Kitagawa and

Tetenov (2018). Basing optimization on predictive ML models, as advocated in several studies on

predicting coupon redemption (e.g. Koehn, Lessmann, and Schaal (2020), Ren, Cao, Xu, et al.

(2021), Greenstein-Messica, Rokach, and Shabtai (2017)), ignores the fact that predictive models

do generally not provide information on causal effects and their heterogeneity across different

customer segments. Causal ML-based policy learning as suggested by Athey and Wager (2021),

on the other hand, is a causal ML approach to inferring allocation schemes which ensure that
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those customers for whom sufficiently large effects can be expected are targeted by the campaign.

In our empirical application, we demonstrate how causal ML methods can help evaluate coupon

campaigns and support marketing-related decision making. We analyze customer data from

a retail store and first evaluate the average effect of providing customers with a coupon (of a

certain type) on the monetary value of their purchases. In a second step, we demonstrate how

optimal policy learning can be used for detecting customer segments that should or should not

be targeted by coupon campaigns to maximize the effectiveness of these campaigns.

5.3 Data

In our empirical application, we analyze sales data on coupon campaigns of a retailer, which are

available on the data science platform Kaggle (2019) under the denomination ‘Predicting Coupon

Redemption’. The dataset contains information on socio-economic characteristics of retail store

customers, the coupons they have received during the campaigns as well as on their coupon

redemption and purchasing behavior. The retail store ran several campaigns issuing coupons

with discounts for certain products, with some coupons being applicable to individual products

only and others to a range of products. In each of the 18 partially time-overlapping campaigns

falling into the time span covered by the dataset, the store distributed 1 to 208 different coupon

types each applicable to up to 12,000 products, most of which belong to the same product

category. The coupons were distributed in such a way that each customer received 0 to 37

different coupons per campaign with the composition of this set of coupons varying between the

recipients. Apart from the information on provided coupons, the dataset contains details on all

purchases made by each registered customer between January 2012 and July 2013, including the

date of the transaction, the redeemed coupons, the product type of each purchased product and

the price paid.

For our analysis, we group the coupons into five broad categories mirroring the products

they can be used for. More concisely, we distinguish between coupons applicable for ready-to-

eat food items, meat and seafood, other food, drugstore items and other non-food products2.

2The coupons of each category are applicable to the following product categories defined by the retailer: (a)
ready-to-eat food coupons: ‘Bakery’, ‘Restaurant’, ‘Prepared Food’, ‘Dairy, Juices & Snacks’, (b) meat and
seafood coupons: ‘Meat’, ‘Packaged Meat’, ‘Seafood’, (c) coupons applicable to other food: ‘Grocery’, ‘Salads’,
‘Vegetables (cut)’, ‘Natural Products’, (d) drugstore coupons: ‘Pharmaceutical’, ‘Skin & Hair Care’, and (e)
coupons applicable to other non-food products: ‘Flowers & Plants’, ‘Garden’, ‘Travel’, ‘Miscellaneous’
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One could arguably also be interested in more fine-grained coupon categories or in a paricular

coupon or discount type rather than in our broader coupon categories, which would, however,

require a larger dataset to obtain satisfactory statistical power. Due to the temporal overlap of

campaign periods, we need to redefine them such that each of the resulting artificially generated

campaign periods coincides with the validity period of a given set of coupons. That is, all

coupons which are valid in some artificial campaign period are valid during the entire period.

By doing so, we can fully attribute changes in purchasing behavior from one artificial campaign

period to another to the coupons valid in the respective periods. From now on, the 33 newly

defined artificial campaign periods will simply be referred to as campaign periods. To account

for differences in the duration of campaign periods, we consider the average per-day expenditures

per customer and campaign period as our outcome of interest. For estimating the causal effect

of coupon provision on the buying behavior, we pool the customer-specific purchases across

campaign periods, yielding 33 observations per customer.

Table 5.3.1 provides some descriptive statistics for our data, namely on observed customer

characteristics, the share of coupons redeemed and daily in-store spending (descriptive statis-

tics on the composition of daily expenditures by product type are provided in Table 5.A.3 in

the appendix). The table reports the mean of these variables in the total sample of 50,624

observations, as well as among observations that received a coupon and among those that did

not. Further, it contains the mean difference in these variables between coupon receivers and

non-receivers, as well as the p-value of a two-sample t-test. In some 30% of the observations,

customers received at least one coupon. Furthermore, customers who received a coupon had on

average higher expenditures in the retail store than customers who did not, suggesting that the

retailer did not target its previous campaigns to re-activate dormant customers. We also see that

the retailer does not have information on the socio-economic characteristics of all customers in

the registry, but only for about half of them, as the corresponding variable values are unknown

for many observations (see the coding ‘unknown’). Such a high rate of non-response in measur-

ing variables can entail selection bias when estimating the effects of interest. For this reason,

we will conduct several robustness checks in the empirical analysis to follow further below (see

Section 5.6.5). The descriptive statistics also reveal that some socio-economic characteristics as

well as their observability are correlated with the reception of coupons. For example, customers

aged 70 years or older are less likely to be targeted by a coupon campaign. The main difference
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variable Overall Coupon Receivers Non-Receivers Diff p-val
N 50,624 15,327 35,297

daily expenditures 202 245 184 61 0
age:

18-25 0.028 0.031 0.027 0 0.02
26-35 0.082 0.102 0.074 0.03 0
36-45 0.118 0.141 0.108 0.03 0
46-55 0.171 0.191 0.163 0.03 0
56-70 0.037 0.045 0.034 0.01 0
70+ 0.043 0.039 0.045 -0.01 0
unknown 0.52 0.451 0.55 -0.1 0

family size:
1 0.157 0.171 0.15 0.02 0
2 0.192 0.213 0.182 0.03 0
3 0.066 0.079 0.06 0.02 0
4 0.03 0.04 0.026 0.01 0
5+ 0.036 0.047 0.031 0.02 0
unknown 0.52 0.451 0.55 -0.1 0

marital status:
married 0.2 0.234 0.186 0.05 0
unmarried 0.072 0.084 0.067 0.02 0
unknown 0.728 0.682 0.747 -0.07 0

dwelling type:
rented 0.026 0.033 0.023 0.01 0
owned 0.454 0.516 0.428 0.09 0
unknown 0.52 0.451 0.55 -0.1 0

income group:
1 0.037 0.042 0.035 0.01 0
2 0.043 0.051 0.04 0.01 0
3 0.044 0.049 0.042 0.01 0
4 0.104 0.113 0.1 0.01 0
5 0.118 0.137 0.11 0.03 0
6 0.056 0.061 0.053 0.01 0
7 0.02 0.023 0.019 0 0.01
8 0.023 0.03 0.021 0.01 0
9 0.018 0.024 0.016 0.01 0
10 0.006 0.006 0.006 0 0.89
11 0.003 0.003 0.003 0 0.43
12 0.006 0.01 0.005 0 0
unknown 0.52 0.451 0.55 -0.1 0

coupons redeemed 0.030

Table 5.3.1: Mean of the variables in the total sample (’Overall‘), among coupon receivers and non-receivers as
well as the mean difference across treatment states and the p-value of a two-sample t-test.
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in the likelihood of receiving a coupon seems to be between customers whose socioeconomic

characteristics are not available and those whose characteristics are known, with the former less

likely to receive a coupon.

As is noted in several studies (e.g. Danaher, Smith, Ranasinghe, and Danaher (2015),

Spiekermann, Rothensee, and Klafft (2011)) coupon redemption rates are typically low, not

exceeding 1 to 3% on average. This is also the case in our data, as only in 3% of the observations

of coupon recipients did they actually redeem a coupon. However, as mentioned further above,

coupons may not only influence customer behavior when redeemed, but may also serve as an

advertising tool which attracts customers to the store even without them redeeming the coupon.

5.4 Identification

5.4.1 Causal Effect

We are interested in estimating the causal effect of a specific intervention, commonly referred to

as ‘treatment’ in causal analysis and henceforth denoted byD, on an outcome of interest, denoted

by Y .3 In our context, D reflects the reception or non-reception of coupons and Y the purchasing

behavior, measured as the average per-day expenditures during the coupon validity period.

In the simplest treatment definition, D is binary and takes the value 1 when the respective

customer is provided with a coupon and 0 if this is not the case. Mathematically speaking, the

value d which treatment D can take satisfies d ∈ {0, 1}. The set of observations with d = 1 is

commonly referred to as the treatment group, those for which d = 0 are called control group.

Our subsequent discussion of causal effects and the statistical assumptions required for their

measurement will focus on this binary treatment case for the sake of simplicity. However, our

empirical analysis will also separately consider the effects of receiving coupons for five product

categories, by running separate estimations for the comparison of each category to not receiving

any coupons. This implies that the assumptions introduced in Section 5.4.2 need to hold for

each of these categories. For discussions of multi-valued treatments, see e.g. Imbens (2000) and

Lechner (2001).

For defining the causal effect of coupon provision, we rely on the potential outcome framework

3Throughout this paper, capital letters denote random variables and small letters specific values of random vari-
ables.
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pioneered by Neyman (1923) and Rubin (1974). Let Y (d) denote the potential (rather than

observed) outcome under a specific treatment value d ∈ {0, 1}. That is, Y (1) corresponds to a

customer’s potential purchasing behavior if she received a coupon, while Y (0) is the behavior

without a coupon. The causal effect of the coupon thus corresponds to the difference in the

purchasing behavior with and without coupon, Y (1)−Y (0), but can unfortunately not be directly

assessed for any customer. This is due to the impossibility of observing customers at the same

point in time under two mutually exclusive coupon assignments (1 vs. 0), which is known as the

‘fundamental problem of causal inference’, see Holland (1986). This follows from the fact that

the outcome Y which is observed in the data corresponds to the potential purchasing behavior

under the coupon assignment actually received, namely Y = Y (1) for those receiving a coupon

(d = 1), and Y (0) = Y for those who do not (d = 0). For coupon recipients, however, Y (0)

cannot be observed in the data, while for customers without a coupon Y (1) remains unknown.

Even though causal effects are fundamentally unidentifiable at the individual level, we may,

under the assumptions outlined further below, evaluate them at more aggregate levels, i.e.,

based on groups of treated and nontreated individuals. One causal parameter which is typically

of crucial interest is the average causal effect, also known as average treatment effect (ATE),

i.e., the average effect of coupon assignment D on purchasing behavior Y among the total of

customers. Formally, the ATE, which we henceforth denote by ∆, corresponds to the difference

in the average potential outcomes Y (1) and Y (0):

∆ = E[Y (1)− Y (0)], (5.1)

where ‘E[...]′ stands for ‘expectation’, which is simply the average in the population.

5.4.2 Identifying Assumptions

In order to identify the ATE defined in the previous section, we need to impose several identify-

ing assumptions, which are outlined in this section. We note that in the subsequent discussion,

‘⊥’ stands for statistical independence. Further, X denotes the set of covariates that should not

be affected by treatment D and therefore be observed before or at, but not after, treatment.

Assumption 1 (conditional independence of the treatment):

Y (d)⊥D|X for all d ∈ {0, 1}. Assumption 1 states that the treatment is conditionally indepen-
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dent of the outcome when controlling for the covariates, and is known as ‘selection on observ-

ables’, ‘unconfoundedness’ or ‘ignorable treatment assignment’, see e.g. Rosenbaum and Rubin

(1983). The assumption implies that there are no unobservables jointly affecting the treatment

assignment and the outcomes conditional on the covariates. This condition is satisfied if the

coupons are quasi-randomly distributed among observations with the same values in X. The

retailer may therefore base the distributing of coupons on customer or market characteristics

observed in the data, however, not on unobserved characteristics that affect purchasing behavior

even after controlling for the observed ones.

We control for the variables in Table 5.3.1, period fixed effects, the customers’ average daily

pre-campaign spending by product category, as well as for the coupons she received and redeemed

in the period prior to the campaign. When evaluating the effect of specific coupon categories, we

also include dummies that indicate whether a customer received coupons from another category

at the moment of treatment assignment. This is because the availability of other coupons

influences purchase behavior and is likely to be correlated with the probability of receiving

coupons of the category under study. The reason for including period fixed effects is that there

is no information available on holidays or weekdays on which the store is closed or has shortened

opening hours, that is, circumstances that may affect purchasing behavior. Also, the retailer

is likely to distribute coupons differently across campaign periods. Including pre-campaign

expenditures allows controlling for general differences in purchasing behavior between customers

that might be correlated with the likelihood of receiving coupons, since the retailer presumably

bases decisions about whom to allocate which coupon(s) on past purchasing behavior.

The covariates considered in our estimation are similar to those included in studies on the

effect of coupon campaigns that rely on traditional causal inference approaches, see, e.g., Xing,

Zou, Yin, Wang, and Li (2020) and Hsieh, Shimizutani, and Hori (2010), both of which control

for some demographic characteristics as well as for a proxy for the customers’ economic situation

and their purchasing behavior before the coupon campaign under study. Unlike the methods used

in these studies, however, the causal ML approach we apply in this study allows covariates to

enter into the estimation in a flexible, possibly non-linear way, and does not require pre-selection

of variables based on theoretical considerations.

Studies on predicting coupon redemption by means of ML mostly rely exclusively on observ-

able customer behavior and coupon characteristics as predictors of coupon redemption while not
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including socio-demographic characteristics of customers, see, e.g., Greenstein-Messica, Rokach,

and Shabtai (2017) use and He and Jiang (2017).

In their study on the performance of causal ML in evaluating Facebook ads, Gordon, Moakler,

and Zettelmeyer (2022) include users’ gender, age and household size but - unlike our data -

their data lack information on users’ economic situation, such as their income, employment

status, or wealth. They also use several Facebook-specific covariates measuring users’ activity

on Facebook (likes, posts, type of device used and interests explicitely expressed on Facebook).

Furthermore, they take into account users’ response to earlier ads from other companies, which is

comparable to the covariates on pre-campaign purchasing behavior, coupon reception and coupon

redemption considered in our analysis. Despite the large differences in the amount of information

available in the Facebook study and our analysis, we cannot conclude that the set of covariates

in our estimation is insufficient. For one, the algorithms used by Facebook to determine the

target audience for ad placement are far more complex and information-hungry than a retailer’s

coupon strategy; and Facebook users’ decision about whether or not to respond to a Facebook

ad is likely to be complex and dependent on several of the characteristics considered in the

algorithm (which is why they are considered in Facebook’s ad placement algorithm). In order

to successfully apply causal ML methods, the authors of the Facebook study had to take into

account all the information that is incorporated in Facebook’s ad placement algorithms, just as

we need to consider the information based on which the retailer distributed its coupons, namely

the information available in the customer database.

Assumption 2 (common support):

0 < Pr(D = 1|X) < 1.

Assumption 2 states that the conditional probability of being treated givenX, in the following

referred to as the treatment propensity score, is larger than zero and smaller than one. This so-

called common support condition implies that for all values the covariates might take, customers

have a non-zero chance of being treated and a non-zero chance of not being treated. While this

assumption is imposed w.r.t. to the total of a (large) population, meaning that both treated and

non-treated customers exist conditional on X, we can and should also verify it in the data. In

our sample, common support appears to be satisfied, as there exist no combinations of covariate

values for which either only customers with coupons (of a certain category) or no coupons exist.

Appendix 5.B shows the distribution of the estimated propensity scores for receiving coupons
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(of a particular type) among recipients and non-recipients of that particular coupon(s). The

distributions overlap (although the overlap is partially thin), i.e., for each observation in one

group, observations can be found in the other group that are comparable with respect to the

propensity score.

Another condition that needs to be satisfied is the so-called Stable Unit Treatment Value As-

sumption (SUTVA), see, e.g., Rubin (1980). In our context, SUTVA rules out that the coupons

provided to one individual affect the potential outcome of another individual. The assumption

that there are no inter-personal spillover effects of coupon campaigns may be problematic in

our setting. Customers receiving coupons may induce their peers to make purchases by, for in-

stance, telling peers about the products they bought when redeeming the coupon or by visiting

the store together with peers. On the other hand, customers with coupons may also redeem

their coupons to buy the coupon-discounted products not only for themselves but also for their

peers, thereby reducing the purchases made by their peers. Such scenarios appear particularly

likely when there are several members of the same household in the customer base. There is

ongoing research on how to deal with such SUTVA violations under certain assumptions like

the observability of groups affected by spillovers, see e.g. Sobel (2006), Hong and Raudenbush

(2006), Hudgens and Halloran (2008) Tchetgen and VanderWeele (2012), Aronow and Samii

(2017), Huber and Steinmayr (2021) and Qu, Xiong, Liu, and Imbens (2021). However, in our

dataset, the relationships between customers are not observable, meaning the data does not

allow accounting for possible spillovers of providing coupons to one customer on the outcomes

of other customers. If such spillovers existed in our case, they could entail an under- or overes-

timation of the effect of coupons on purchasing behavior, depending on whether the spillovers

occur primarily through treated customers inducing non-treated peers to make purchases or

through treated customers redeeming coupons to purchase products for their peers, with the

former entailing an overestimation of the outcome under non-treatment and the latter leading

to an underestimation.

SUTVA also requires that for every individual in the population, there is a single potential

outcome value associated with each treatment state, meaning that there are no different versions

of the coupons leading to different potential outcomes. In many empirical applications, it appears

likely that at least some aspects of SUTVA are violated, and for this reason, there exist several

relaxations of this assumption. In our case, the requirement that there be no different treatment
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versions is particularly problematic given that we group different coupons into broader categories.

The treatment of being provided with coupon(s) from one category comprises the receipt of

different coupons, each applicable to a distinct set of products from the respective product

category. If a customer is not equally interested in all products belonging to that product

category, the customer may only redeem a coupon and/or change her purchasing behavior if the

coupon is applicable to certain products. For this reason, we are in a setting where there are

different treatment versions, each possibly associated with a different potential outcome.

VanderWeele and Hernan (2013) relax the original SUTVA by allowing for the existence of

different unobservable versions of the treatment as long as there are no different versions of

non-treatment and the treatment versions are assigned randomly conditional on the covariates

X. This permits assessing the average effects of certain bundles of coupons (rather than specific

coupons as under the original SUTVA) vs. not receiving any coupons. Indeed, the assumption

that there is only one version of non-treatment is satisfied in our analysis of the effect of receiving

some vs. no coupons, under the assumption that the marketer has not run any undocumented

discount campaigns during the study period. Furthermore, when assessing the effects of coupons

applicable to specific product categories, we control for all other coupons that each customer

received at treatment assignment, which in turn creates non-treatment states that are necessarily

equal after controlling for other coupons. Table 5.3.1 and the tables in Appendix 5.A show that

the coupons were distributed under consideration of the covariates in the customer registry. We

must now assume that the propensity of receiving a coupon (version) differs only depending on

observed characteristics, but not on characteristics that are not available to us. This issue can

be easily circumvent in practice as long as the information on customers available to marketing

campaign planners is also available to those evaluating the campaign.

We note that our assumptions do not rule out inter-temporal spillover effects on customers’

purchasing behavior, since in our main analysis we only examine the (short-term) effect of coupon

provision on purchasing behavior during the validity period of the coupon rather than longer-

term coupon-induced behavioral shifts. Individuals may, therefore, advance their purchases

towards campaign periods in which they receive coupons applicable to the products they are

interested in. By including pre-campaign coupon reception and redemption as control variables,

we aim at accounting for the fact that previous coupons may influence customer behavior in the

outcome period.
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In order to get an impression of the extent to which coupons induce inter-temporal spillover

effects and, on the other hand, longer-term increases in customer retention, we also assess the

effect of coupon provision in campaign period t on daily expenditures in subsequent periods,

namely in t + 1 and t + 2. It should, however, be noted that the estimated effect is the total

effect of coupon reception on purchasing behavior in these subsequent periods, that is, it does not

only capture the longer-term coupon-induced change in purchases at the store (net of spillovers

from advancing purchases in periods in which the customer has applicable coupons). Rather, it

also captures how coupon provision in t affects purchasing behavior in t + 1 and t + 2 through

changing the likelihood of coupon reception in these later periods (e.g., because the customer

redeems coupons in t or the coupons incentivize her to increase her purchases in t). Disentangling

the direct effect of coupon provision on purchasing behavior in subsequent periods from the

indirect effect mediated via increasing the likelihood of coupon provision in these later periods

would require estimating dynamic treatment effects of treatment sequences, such as the sequence

of coupon reception in t and non-reception in t+1 (see Bodory, Huber, and Lafférs (2020) for an

approach to estimating dynamic treatment effects by means of DML). Further, some coupons

valid in t may still be valid in t+1 and even t+2. The estimated effect of coupon provision in t

on purchasing behavior in later periods therefore also partially captures the treatment effect of

coupons during their validity period. A look at the data shows that the likelihood of having a

valid coupon in t+1 or t+2 is highly correlated with that of having a coupon in t (conditional on

X), be it due to the effect of coupons on re-provision or because the validity period of coupons

exceeds that of the artificially created campaign periods. Part of the estimated longer-term effect

is therefore likely attributable to the indirect effect of coupon provision in t on daily expenditures

in t + 1 and t + 2, via increasing the probability that the customer has valid coupons in these

subsequent periods.

5.5 Causal Machine Learning

In the following, let i ∈ {1, ...., n} be an index for the n = 1, 582 customers in the dataset and

t ∈ {1, ..., T} with T = 32 an index for the campaign period. Then, {Yi,t, Di,t, Xi,t} denote the

outcome, the treatment and the covariates, respectively, for individual i in campaign period t.

Treatment Di,t is a binary indicator measuring exposure to a coupon campaign (of a specific
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type) and Yi,t denotes the outcome, defined as average per-day expenditures of customer i in

period t. The covariates Xi,t, all measured prior to or at the time of treatment assignment,

include socio-economic variables (see Table 5.3.1), the average daily spending by product type

in the period prior to the campaign t−1, and variables that measure both whether the customer

received coupons in t − 1 and whether he/she redeemed any. For estimating the effect of a

particular coupon type, Xi,t also contains variables on what other coupon types were provided

to the customer in t; in addition, it includes information not only about whether the customer

received coupons in t− 1, but also about what type of coupons.

Under the identifying assumptions outlined in Section 5.4.2, the ATE ∆ defined in equation

(5.1) corresponds to θ:

θ = E[µ(D = 1, X)− µ(D = 0, X)] (5.2)

where µ(D = d,X) denotes the conditional mean outcome given treatment state D = d and

covariates X. As long as the function µ is of known functional form and X is low-dimensional,

we can estimate µ̂(D,X) by regressing Y on D and X and then determine the ATE according to

equation (5.2). However, the amount of customer data available to marketers is often extensive,

and the functional form of relationships between observable customer characteristics and pur-

chasing behavior is often unknown and complex. It may, therefore, in many cases be preferable

to use an approach that integrates ML algorithms into the estimation of the causal effect to

take advantage of the functional flexibility and the ability to deal with high-dimensional data

inherent in ML algorithms. Put simply, ML algorithms are used to estimate models for predict-

ing Y as a function of D and X (µ(D,X)) and for predicting the probability of being treated

conditional on X, which is commonly referred to as the propensity score p(X) = Pr(D = 1|X).

These predictions are then integrated into the estimation of the treatment effects.

We assess the causal effect of receiving coupons (of a certain category) on average per-day

spending using causal forests, a causal ML method developed by Wager and Athey (2018) that

draws on the ML technique of random forests. While the causal forest framework primarily aims

at estimating treatment effect heterogeneity, i.e., how the effect of coupons is distributed across

different clients and time periods (see Section 5.5.1), the estimated causal forests can also be used

to estimate the ATE of coupon provision (see Sections 5.5.2). Both the causal forest algorithm

for assessing treatment effect heterogeneity and the estimation procedure used for determining

142



the ATE rely on combining effect estimation on so-called Neyman (1959)-orthogonal scores with

sample splitting. The purpose of orthogonalization is to ensure the robustness of the estimation

of causal effects to regularization bias which accrues when using ML to estimate µ(D,X) and

p(X), in the following referred to as plug-in parameters η = (µD(X), p(X)). Sample splitting,

on the other hand, aims to avoid overfitting in the estimation of treatment effects. In Section

5.5.3, we outline how the estimated causal forest can be utilized for determining the treatment

effect in different customer segments as defined by selected covariates. Section 5.5.4, finally,

shows how to use the estimated causal forest to determine which customers should optimally be

targeted with the different coupon campaigns.

5.5.1 Treatment Effect Heterogeneity

The causal forest approach by Wager and Athey (2018) is a modified version of the random forest

aimed at determining splitting rules that maximize the heterogeneity of treatment effects in the

resulting subsamples. The causal forest provides individualized treatment effect estimates for

every observation in the sample as a function of its covariates X, which are commonly referred

to as Conditional Average Treatment Effects (CATEs), and thereby gives an impression of the

heterogeneity in the effect of coupon provision across customers and campaign periods.

Causal forests are built from so-called causal trees just as random forests are built from

regression/classification trees. In order to generate a causal forest, the algorithm repeatedly

(2,000 times in our case) draws random samples with 50% of the observations in the dataset. In

each random sample, it estimates a causal tree as follows: first, a randomly selected subset of

min(
√
k+20, k) covariates is chosen, which in our case amounts for 30 of our k = 93 covariates.

The algorithm then utilizes these covariates for splitting the sample into two subsamples such

that the CATEs in the two resulting subsamples are as heterogeneous as possible. More precisely,

the algorithm determines both the covariate and the value at which the sample should be split

(e.g. age< 25 vs. age≥ 25) to maximize effect heterogeneity. Intuitively, the algorithms considers

all possible splits on values of the 30 covariates to find the optimal split in terms of effect

heterogeneity. The subsamples obtained from this splitting rule are commonly referred to as

nodes. These nodes are further split into a larger number of nodes following the same procedure

until some stopping rule is reached, e.g., that no further splits are made if they would entail

nodes with less than 5 treated or 5 control observations. The causal forest is finally obtained by
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averaging over the splitting structure of all 2000 causal trees.

The CATE in the subsamples resulting from each potential split is estimated by means of an

approach proposed by Robinson (1988) that allows estimating the CATE with
√
n consistency.

The approach builds on first predicting the plug-in parameters η = (µD(X), p(X)), where the

plug-in parameters can be estimated using any predictive ML algorithm as long as the plug-in

estimates converge with a convergence rate faster than n−1/4, and then using the predicted plug-

in parameters for estimating the CATE. In our case, the plug-in parameters are predicted by

means of regression forests with out-of-bag prediction.4 In a second step, the algorithm calculates

the residuals Yi,t−µ̂Di,t(Xi,t) and Di,t−p̂(Xi,t) for all observations i, t in the random sample used

for learning the causal tree. In order to determine the split that maximizes effect heterogeneity

in the resulting subsamples, the algorithm regresses Yi,t − µ̂Di,t(Xi,t) on Di,t − p̂(Xi,t) in each

subsample. That is, for every potential node, the algorithm estimates the following function,

where θ̂(X) denotes the estimated CATE:5

Y − µ̂D(X) = (D − p̂(X))θ̂(X). (5.3)

By comparing the estimated CATEs in all potential nodes, the algorithm determines the splitting

rule for which the estimated CATEs differ most between the two resulting subsamples. The

approach of first predicting the plug-in parameters and then incorporating them into effect

estimation ensures that causal effect estimation is more robust to slight approximation errors in

the plug-in parameter estimates, which may arise from regularization biases, i.e., from neglecting

less important covariates in the splitting procedure.

Furthermore, the causal forest algorithm addresses another source of bias, namely overfitting,

i.e., fitting the effect heterogeneity model too strongly to the particularities of the data, such

that the procedure picks up not only the actual differences of causal effects across covariates, but

4First, the data set is split into two subsamples, each of which is used to learn regression forests for predicting
µD(X) and p(X), respectively. Then, in both subsamples, the plug-in parameters are estimated using the forests
learnt in the respective other subsample. The final estimate of the plug-in parameters is obtained by averaging
over the estimates from both samples.

5For computational efficiency, the splitting rules are not determined by estimating the CATEs in all possible
subsamples. Rather, the algorithm approximates the between-node effect heterogeneity generated through every
potential split by means of a gradient for each observation. Then, the algorithm involves several conditions for
formulating splitting rules that aim at avoiding imbalance in the size of the nodes. Explaining these rules in
detail would go beyond the scope of this discussion. The manual to the grf package, however, provides all the
details (see Athey, Friedberg, Hadad, Hirshberg, Miner, Sverdrup, Tibshirani, Wager, and Wright (2022)). In our
application, we keep all options of the causal_forest function at their default values.
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also random noise. In order to prevent such overfitting bias, the random sample used for learning

a causal tree is itself randomly split into two subsamples, one for building the tree by following

the procedure mentioned above, while the other one is used for estimating the treatment effect

in every node of the learnt causal tree. That is, by following the splitting rules learnt in the first

subsample, the algorithm populates the nodes of the estimated tree with the observations from

the second subsample and calculates the CATE in each node based on the observations that fall

into the respective node. Trees that are estimated based on this sample splitting procedure are

commonly referred to as ‘honest’ trees (because they avoid overfitting).

Through averaging over 2000 causal trees, the causal forest provides the final estimates of

the CATEs θ̂(X), i.e., estimations of individualized treatment effects for every point in X.

To account for the issue that the behavior of one and the same customer is in general not

independent across different campaign periods we cluster standard errors at the customer level.

The estimation is performed in the statistical software R (R Core Team (2022)) by means of the

causal_forest function provided in the grf package by Athey, Friedberg, Hadad, Hirshberg,

Miner, Sverdrup, Tibshirani, Wager, and Wright (2022).

5.5.2 Average Treatment Effect

The estimated causal forest can further be used to identify the ATE of coupon provision and thus

to assess the overall effectiveness of the coupons (and that of selected coupon types). Athey and

Wager (2019) propose to estimate the ATE by means of a modified version of the Augmented

Inverse Probability Weighting (AIPW) estimator, a doubly robust estimator proposed by Robins,

Rotnitzky, and Zhao (1995), that is based on weighting the observations by the inverse of their

estimated propensity score. This weighting of observations makes the treatment and the control

group comparable in terms of their propensity scores and hence the distribution of relevant

covariates X (for more information on the AIPW estimator see e.g. Glynn and Quinn (2010)).

Double robustness is achieved by estimating the ATE via an orthogonalized function, i.e., the

predicted plug-in parameters are included in the estimation such that small estimation errors

in either predictor result in an overall negligible error and hence do not introduce bias in the

estimation of the ATE. The formula used for estimating the ATE is as follows:
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Θ̂ =
1

NT

∑
i∈N,t∈T

Γi,t (5.4)

with Γi,t = θ̂(Xi,t) +
Di,t − p̂(Xi,t)

p̂(Xi,t)(1− p̂(Xi,t))

(
Yi,t − µ̂(Xi,t)−

(
Di,t − p̂(Xi,t)

)
θ̂(Xi,t)

)

where the plug-in parameters θ̂(X), p̂(X) and µ̂(X) for the doubly robust score Γi,t are ob-

tained from the estimated causal forest. As mentioned above, p̂(X) and µ̂(X) are predicted by

means of regression forests with out-of-bag prediction while θ̂(X) is determined using honest

trees, i.e., the plug-in estimators for observation (i, t) are computed based on models learnt

in samples that do not contain observation (i, t). This makes the AIPW-based ATE estima-

tor robust to regularization bias. Thus, similarly to how the CATE is estimated for building

causal trees, the modified AIPW estimator by Athey and Wager (2019) combines orthogonal-

ization and out-of-sample prediction in order to address the two sources of bias, overfitting and

regularization.

The causal-forest based approach for estimating the ATE described above ensures that the

ATE can be estimated with
√
n-consistency, i.e., the estimated ATE converges to the true ATE

with a convergence rate of 1/
√
n, provided that the ML steps satisfy specific regularity condi-

tions (like n−1/4-consistency). A look at equation (5.4) reveals that values of p̂(Xi,t) that are

either close to zero or close to one can yield large weights for the respective observations, result-

ing in unstable performance of the estimator. This issue is commonly addressed by trimming

the dataset, i.e., discarding observations with an estimated propensity score that is below or

above certain values. A commonly used trimming rule is to remove observations with estimated

propensity scores larger than 0.99 or smaller than 0.01, an approach we also employ in this

study.

In our application, we estimate the ATE using the average_treatment_effect function

provided in the grf package for R by Athey, Friedberg, Hadad, Hirshberg, Miner, Sverdrup,

Tibshirani, Wager, and Wright (2022), with standard errors clustered at the customer level.
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5.5.3 Group Average Treatment Effects

In order to assess the impact of coupon provision in different customer groups, we also estimate

selected Group Average Treatment Effects (GATEs), that is, the average treatment effects in

different subgroups as defined by age, income, family size and pre-campaign expenditures, re-

spectively. The variables used to distinguish these subgroups are the age group and family size

variables as defined in the original dataset, a variable for average daily expenditures that di-

vides the sample into four subgroups of similar size, and a variable measuring income in broader

categories, each of which combines two of the more fine-grained income groups in the original

variable. We estimate a linear model of the doubly robust scores Γ̂i,t (see equation (5.4)) as

a function of one of the variables that indicate which subgroup each client belongs to, see Se-

menova and Chernozhukov (2021) for more details. This approach also allows us to assess effect

heterogeneity in customer segments defined by more than one variable, by regressing the Ney-

man (1959)-orthogonal scores Γ̂i,t on several identifiers (or dummy variables) for belonging to a

specific subgroup defined in terms of covariate values (e.g. an indicator for being younger female

or elderly male customer). We estimate the GATEs by means of the best_linear_projection

function provided in the grf-package.

5.5.4 Optimal Policy Learning

The optimal policy learning approach by Athey and Wager (2021) goes one step further, in the

sense that it does not only estimate the effect of coupon provision in predefined customer groups.

Rather, it exploits the heterogeneity in coupon effects to determine the coupon distribution

rule that maximizes the overall effect of the coupon campaign. Based on observed covariates,

the coupon distribution rule distinguishes customer segments that are likely to increase their

purchasing behavior upon receiving a coupon from those customer groups not anticipated to

respond positively to the campaign. More formally, the algorithm considers specific decision (or

policy) rules for whether a coupon should be offered to a customer as a function of the covariate

values in X, e.g., the customer’s age. Let us denote by π(X) such a decision rule, which could,

for instance, impose that only elderly, but not younger, customers obtain a coupon.

Mathematically speaking, the rule maps a customer’s observed characteristics to the binary

treatment decision of whether or not to target the customer through the coupon campaign:
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π : X → 0, 1. Optimal policy learning consists of learning the optimal rule among an assumably

limited set of implementable candidate policies, where we use Π to denote this set. For instance,

another possible rule of how to distribute coupons (in addition to the age-based rule) could be

to offer them only to customers with a high volume of previous purchases. Then, both the age-

and purchase-dependent rule would enter the set of feasible coupon policies provided in Π.

For learning the optimal coupon policy, the algorithm of Athey and Wager (2021) use the

doubly robust scores Γ̂i,t (see equation (5.4)). These individual- and time-specific treatment

effect estimates are plugged into the following objective function, which aims at maximizing the

effectiveness of the coupon campaign by selecting the policy rule with the highest average effect

among all policies π that are available in the set Π:

π∗ = argmax

{
1

NT

∑
i∈1,...,N

∑
t∈1,...,T

(2π(Xi,t)− 1)Γ̂i,t : π ∈ Π

}
(5.5)

The optimal policy learning approach does not require defining a priori the policies to be consid-

ered, but only the number of customer segments between which coupon allocation can differ and

the set of covariates that can be considered for determining these customer segments. Thus, the

approach identifies the optimal coupon policy in a data-driven way. To determine the optimal

coupon distribution strategy, i.e., the one that maximizes the objective function in (5.5), the al-

gorithm applies a tree-based approach that considers all possible covariate-defined sample splits

for generating the customer segmentation (according to the pre-defined number of segments) and

all possible coupon assignment strategies within these segments. The resulting coupon distribu-

tion rule can be represented as a decision (or policy) tree, i.e., a tree-shaped graph indicating at

which values of which covariate the sample is split and which of the resulting customer segments

shall receive coupons.

We estimate decision trees of depth 3, implying that we distinguish 8 customer segments

for defining the optimal distribution of coupons by means of the policytree package for R by

Sverdrup, Kanodia, Zhou, Athey, and Wager (2020). For determining the customer segments,

we use all the customer characteristics available in the dataset, i.e., age and income group,

family size, marital status, and dwelling type. We redefine these variables by setting all missing

values to -1, which allows us to omit the variables indicating which observations are missing.

Then, we also include the customers’ pre-campaign purchasing behavior. Since the algorithm
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performs a sample split at every possible value of each covariate, i.e., at each observed value,

continuous variables can cause performance issues by driving up the number of sample splits.

We, therefore, round the pre-campaign average daily expenditures to round values, namely to

the nearest 100 for values between 0 and 1,000 and to the nearest 200 for values between 1,000

and 2,000. Further, we group all 157 observations with average daily expenditures of 2,000 or

more into one category and include dummies that indicate whether a customer purchased items

from the different product categories in the period prior to the campaign. This way, we still

capture pre-campaign differences in purchasing behavior well, while substantially reducing the

number of sample splits that need to be performed.

5.6 Empirical Results

5.6.1 Treatment Effect Heterogeneity

Figure 5.6.1 shows the distribution of the individualized treatment effects (CATEs) as estimated

by means of the causal forest algorithm outlined in Section 5.5.1. We can see that the treatment

effect of being provided with any coupon is positive for the vast majority of observations and,

except for some outliers, ranges between -100 and 200 monetary units. Similarly, provision of

drugstore coupons and coupons applicable to other food have a positive effect for the majority

of observations. The distribution of coupons applicable to ready-to-eat food as well as meat

and seafood, however, seem to be rather centered around zero, with the estimated effect being

positive for about half of the observations and negative for the other half. For coupons applicable

to other non-food prodcuts, we can even observe a negative effect on daily expenditures for the

majority of observations. The plots suggest greater heterogeneity in the treatment effects of the

individual coupon categories than when all coupons are analyzed together. It appears that the

effects of the different coupon categories cancel each other out to some extent when combined in

one analysis, implying that the different coupon categories should best be analyzed separately.

The differences in CATEs as revealed by the causal forest approach suggest not just assessing

the ATE, as is done in Section 5.6.2. Rather, it also invites to analyze how the effect of coupons

(of certain categories) differs between customer groups as defined by covariates X (Section 5.6.3)

and to learn an optimal coupon distribution scheme that maximizes the expected ATE of coupon

provision (Section 5.6.4).
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Figure 5.6.1: Distribution of CATE by coupon type.
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5.6.2 The Causal Effect of Receiving Coupons

Table 5.6.1 shows the estimated ATE of receiving any coupon on daily expenditures in the cam-

paign period, as well as that of receiving coupons from each of the five coupon categories, based

on the AIPW approach outlined in Section 5.5.2. The results show that receiving any coupon

has a positive and statistically significant effect on daily expenditures during the campaign pe-

riod. Providing a customer with a coupon increases her expected daily expenditures by some 63

monetary units. The effect estimates for the different coupon categories provide a more nuanced

picture. Provision of coupons for drugstore items and other food has a statistically significant

positive effect on daily spending during the campaign period. Receiving coupons that belong

to these categories increases expected average daily expenditures during the validity period by

some 60 and 75 monetary units, respectively. Handing out coupons applicable to other non-food

products, on the other hand, is estimated to decrease a customer’s expected average daily ex-

penditures by some 27 monetary units, with this results also being statistically significant. The

estimated ATE of providing coupons from the other two categories has no statistically signif-

icant effect on the customers’ expected daily spending during the campaign period, with the

estimated effects being slightly negative. A possible explanation for the insignificant or signif-

icantly negative effect of these latter three coupon types is that the receipt of such coupons

may not incentivize people to buy, but that such coupons are mainly used for products that the

coupon recipient would have purchased anyway.

Coef. Standard Error Sign. Level

ATE: receiving any coupon 63.26 4.553 ***

ATE: receiving coupon for ready-to-eat food -2.90 8.118
ATE: receiving coupon for meat/seafood -1.42 6.045
ATE: receiving coupon for other food 74.74 13.559 ***
ATE: receiving coupon for drugstore items 60.07 6.521 ***
ATE: receiving coupon for other non-food items -26.77 6.949 ***

Table 5.6.1: ATE of receiving any coupon as well as the ATEs of receiving coupons applicable to specific product
categories, each with standard error and significance level. Significance levels: . p<0.1, * p<0.05, ** p<0.01, ***
p<0.001.

As discussed in Section 5.4.2, coupon provision may, on the one hand, have longer-term

positive effects on purchasing behavior by increasing customer loyalty, and on the other hand,

bring about inter-temporal spillovers by inducing customers to advance their purchases to periods
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when they have coupons applicable to them. We therefore also take a look at the overall effect

of coupon reception in t on daily expenditures in the following campaign period (t+ 1) and the

period thereafter (t+2) (see Table 5.6.2). The results suggest that the effect of coupon provision

on daily expendidtures is sustainable, i.e., coupon provision in t not only has a short-term effect

on purchases in t, but also has a statistically significant, albeit smaller, effect on purchases in

subsequent periods. This may be due to a coupon-induced increase in customer retention (but

also to indirect effects, see the discussion in Section 5.4.2).

The longer-term effect of drugstore and other food coupons is also positive and statistically

significant, with drugstore coupons showing an even larger effect on purchasing behavior in

both post-treatment periods than in the short term. Coupons applicable to other non-food

products, that in the short run have a statistically significant negative effect, show a statistically

signifificant positive effect on daily spending in the subsequent periods. One possible explanation

for this finding is that, while in the short run these coupons were only redeemed for the purchase

of products that would have also been purchased without the coupons, in the longer term they

may have increased customer loyalty.

The estimated effect of meat and seafood coupons on expenditures in t+ 1 and t+ 2 is not

statistically significant, while that of ready-to-eat food coupons is even significantly negative

for the outcome in t + 1, which may indicate spillover effects that are not offset by positive

expenditure-increasing effects. For ready-to-eat food and meat/seafood coupons, we can there-

fore conclude that they do not seem to be an effective marketing tool for increasing customer

spending, neither in the short nor in the longer run.

Effect in t+ 1 Effect in t+ 2
coef. s.e. sign. coef. s.e. sign.

ATE: receiving any coupon 39.82 3.279 *** 34.56 3.87 ***

ATE: ready-to-eat food coupons -28.70 6.113 *** 4.18 8.908
ATE: meat/seafood coupons 6.71 6.171 1.13 6.244
ATE: other food coupons 52.79 11.506 *** 2.46 7.345
ATE: drugstore coupons 88.39 5.711 *** 82.78 5.681 ***
ATE: other non-food coupons 28.03 6.204 *** 11.64 6.017 .

Table 5.6.2: ATE on daily expenditures in period after coupon campaign (t+1) and the period thereafter (t+2),
each with standard error and significance level. Significance levels: . p<0.1, * p<0.05, ** p<0.01, *** p<0.001.

In the following, we will again focus on the short-term effect of coupon provision in t on
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daily expenditures in t. The next section examines effect heterogeneity with regard to selected

customer characteristics. This is because the provision of coupons could significantly increase

spending of certain customer groups, despite not having a statistically significant effect on the

overall customer base. Similarly, providing coupons applicable to drugstore or other food could

have a significant impact on purchasing behavior only among certain subgroups of customers.

5.6.3 Group Average Treatment Effects

In this section, we assess how the provision of coupons affects different customer groups, based on

the approach discussed in Section 5.5.3. We illustrate how the effect of providing coupons differs

depending on the customers’ age, income, family size and pre-campaign expenditures. Further,

we also examine the GATEs of those coupon categories with a highly statistically significant

ATE, i.e., drugstore coupons and coupons applicable to other food.

Figure 5.6.2 shows the GATEs of receiving any coupon by age, income, family size and pre-

campaign expenditures, respectively. The graphs show that providing coupons has a positive

effect on purchasing behavior in every customer group that is statistically significant in most

subgroups. The effect of providing coupons tends to be particularly large among customers from

smaller households and among those who made either no or large purchases in the period prior

to the campaign.

The GATE charts in Figure 5.6.3 show that in almost all subgroups considered, the provi-

sion of coupons for other food has a positive, and in many cases statistically significant, effect

on daily spending. The most pronounced differences in GATEs can be found among customer

subgroups defined by average daily spending prior to the campaign period. The effect of these

food coupons tends to be high and statistically significant for previously inactive customers,

while it is much smaller, though still statistically significant, for customers with high pre-period

spending. This may suggest that coupons for other food have the potential to reactivate dor-

mant customers. This hypothesis is also supported by the fact that the provision of coupons

applicable to other food has a relatively large statistically significant6 effect among customers

for whom information on socio-economic characteristics is not available. Customers for whom no

information is available may be more likely to have low loyalty/retention to the store and to be

6the small confidence interval around this GATE estimator can be explained with the large number of observations
for which no information on socio-economic characteristics is available
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Figure 5.6.2: GATEs of receiving any coupon with 95% confidence interval.
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Figure 5.6.3: GATEs of coupons applicable to other food items with 95% confidence interval.
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rather inactive customers who can be reactivated by providing them with other food coupons.

From these results, we can deduce the hypothesis that coupons applicable to other food are

efficient for inactive and non-frequent customers, while they have less impact on the purchasing

behavior of frequent shoppers.

Figure 5.6.4 shows that providing drugstore coupons has a positive effect on daily spending

for almost all subgroups considered, and that the effect is statistically significant in most cases.

Again, the largest difference can be found in the GATE estimates by pre-campaign spending. The

effect of drugstore coupons on average per-day expenditures is larger the higher the customer’s

pre-campaign spending, which is the reverse pattern of what we find for coupons applicable to

other food. This suggests that other food coupons are more efficient at reactivating dormant

customers and drugstore coupons at retaining frequent shoppers. The GATE plots for the other

three coupon categories can be found in Appendix 5.C.

While ML-based estimation of ATEs and GATEs is an excellent tool for evaluating the

effect of coupon campaigns, it is not necessarily most appropriate for deriving strategies for

later coupon campaigns. For this purpose, the optimal policy learning framework by Athey

and Wager (2021) is arguably superior as it determines which customer groups to provide with

coupons in order to maximize the ATE.

5.6.4 The Optimal Distribution of Coupons

Figure 5.6.5 shows the optimal distribution rules (or policies) for each coupon category as iden-

tified based on the optimal policy learning approach outlined in Section 5.5.4. The optimal

distribution rule for ready-to-eat food coupons (decision tree (a)) suggests providing ready-to-

eat food coupons to customers with no drugstore purchases in the pre-campaign period if their

marital status is unknown7 and their age is unknown or they are not older than 26, or if their

marital status is known and they live in a household of no more than three members. The

retailer should further provide ready-to-eat food coupons to customers who purchased drugstore

products in the pre-period if their income is in one of the lowest four income groups or unknown,

or if their age is unknown and their average daily purchases in the pre-period were less than 50

7Please note that for family size, marital status, age group and income group the value -1 denotes that information
about these variables is unavailable, see also the description of the methodology in Section 5.5.4
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Figure 5.6.4: GATEs of drugstore coupons with 95% confidence interval.
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monetary units8.

The optimal distribution rule for drugstore coupons (decision tree (d)) proposes providing

drugstore coupons to those customers with unkown, low, or middle incomes if their daily pre-

campaign expenditures did not exceed 600 monetary units. Customers belonging to the high-

income group should receive drugstore coupons if their average in-store spending did not exceed

300 monetary units per day in the period before the campaign. In addition, customers whose

pre-campaign expenditures exceeded 600 monetary units per day should only be provided with

drugstore coupons if they did not purchase any other non-food products in the pre-campaign

period and do not belong to the high-income group, or if they purchased non-food products and

are either 18-26 years old or of unknown age.

(a) (b)

(c) (d)

(e)

Figure 5.6.5: Depth-3 trees for coupons applicable to (a) ready-to-eat food, (b) meat and seafood, (c) other food,
(d) drugstore products as well as (e) other non-food products.

8Please note that daily expenditures are rounded for creating policy trees. All customers with daily expenditures
below 50 monetary units fulfil the condition ‘Daily Expenditure Preperiod <= 0’
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The distribution rules paint a similar picture as the GATE estimates in Section 5.6.1 about

which customer groups are likely to be positively impacted by the provision of certain coupon

types. In contrast to the assessment of effect heterogeneity across pre-specified broad categories

in Section 5.6.1, the optimal policy learning algorithm finds the covariate values at which the

sample should optimally be split in order to maximize the ATE and defines groups of coupon

recipients and non-recipients based on multiple covariates.

The other decision trees can be interpreted accordingly. A look at the covariates used for

sample splitting in those other decision trees shows that each observed customer characteristic

is used for distribution rules of at least one coupon type.

5.6.5 Robustness Checks

As described in Section 5.3, our dataset contains a large number of observations with missing

socio-economic information. To investigate the robustness of our results with respect to these

missing values, we performed the entire analysis on a reduced dataset containing only observa-

tions of customers whose socio-economic background is known, i.e., on a dataset with 13,792

observations of the purchasing behavior of n = 431 individuals. The estimated ATEs can be

found in Table 5.6.3. They are close to the ATE estimates from the full dataset, although the

standard errors are of course considerably larger - due to the much smaller number of observa-

tions.

Coef. Standard Error Sign. Level

ATE: receiving any coupon 41.63 8.024 ***

ATE: receiving coupon for ready-to-eat food -6.50 10.618
ATE: receiving coupon for meat and seafood -26.94 9.374 **
ATE: receiving coupon for other food 96.72 22.897 ***
ATE: receiving coupon for drugstore items 41.12 9.493 ***
ATE: receiving coupon for other non-food items -22.72 9.568 *

Table 5.6.3: ATE of receiving any coupon as well as the ATEs of receiving coupons applicable to specific product
categories in the reduced dataset (without observations with missing socio-economic information), each with
standard error and significance level. Significance levels: . p<0.1, * p<0.05, ** p<0.01, *** p<0.001.

The GATE and policy tree plots are provided in Appendix 5.D. The GATE plots show similar

patterns in how different customer groups are affected by each coupon type, although of course

they are not exactly identical with the GATEs estimated in the full sample. The policy tree

plots show that the splitting rules are based on a similar set of variables with similar cutting
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Effect in t+ 1 Effect in t+ 2
coef. s.e. sign. coef. s.e. sign.

ATE: receiving any coupon 24.29 7.609 ** 20.20 8.545 *

ATE: ready-to-eat food coupons -19.31 9.878 . -26.22 9.586 **
ATE: meat/seafood coupons -7.90 10.305 -8.56 11.434
ATE: other food coupons 54.77 14.86 *** -4.28 15.827
ATE: drugstore coupons 68.69 8.398 *** 47.31 11.723 ***
ATE: other non-food coupons 10.33 7.235 6.96 10.275

Table 5.6.4: ATE on daily expenditures in period after each coupon campaign (t + 1) and the period thereafter
(t + 2), estimated in the reduced dataset (without observations with missing socio-economic information), each
with standard error and significance level. Significance levels: . p<0.1, * p<0.05, ** p<0.01, *** p<0.001.

points as those estimated in the full dataset. These results suggest that the large number of

observations with missing socio-economic information does not introduce systematic bias into

the estimation of the treatment effects and the optimal coupon distribution scheme.

5.7 Conclusion

This paper presented different causal ML methods with multiple application possibilities in

marketing research and business development. The application of these methods to evaluate a

retailer’s coupon campaign and optimize the distribution of coupons illustrated their potential

in identifying the ATE of coupon provision, effect heterogeneity, as well as optimal coupon

distribution rules.

For instance, we found that only coupons belonging to two out of five categories, namely those

applicable to drugstore and other food, have a positive and statistically significant overall effect

on purchases, while receiving coupons for other non-food products actually significantly reduces

customers’ daily spending. Additionally, we were able to pinpoint different customer subgroups

whose purchasing behavior can be influenced particularly strongly through provision of certain

types of coupons and who should therefore be optimally addressed with the corresponding coupon

campaigns. This information would enable the retailer to optimally target her coupon campaigns,

i.e., such that the overall effect is maximized.

The proposed causal ML methods can further be applied to evaluate and optimize a variety

of other marketing and business strategies, requiring only observational data from the context

of previous campaigns or business decisions, and utilizing all available (Big) data, whether

structured or unstructured. Other potential applications for the proposed causal ML methods
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are the evaluation and optimization of targetable (online) marketing campaigns, loyalty programs

and campaigns for dealing with customer attrition, but also the assessment of different employee

benefit plans, designs of job postings, or in-house training programs. The potential use cases of

causal ML in business and marketing are manifold.
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Appendix

5.A Descriptive Statistics

ready-to-eat food coupons meat/seafood coupons other food coupons
variable received not received received not received received not received

daily expenditures 237 257 234 264.37 241 335
age: 18-25 0.03 0.032 0.029 0.034 0.031 0.033

26-35 0.101 0.103 0.092 0.12 0.099 0.159
36-45 0.14 0.143 0.138 0.147 0.142 0.132
46-55 0.191 0.192 0.191 0.192 0.191 0.208
56-70 0.051 0.036 0.044 0.047 0.046 0.029
70+ 0.042 0.034 0.042 0.032 0.04 0.021
unknown 0.444 0.461 0.463 0.427 0.452 0.418

family size: 1 0.174 0.167 0.173 0.169 0.172 0.164
2 0.222 0.199 0.214 0.212 0.215 0.175
3 0.079 0.078 0.077 0.083 0.078 0.092
4 0.036 0.045 0.034 0.05 0.038 0.073
5+ 0.044 0.05 0.039 0.06 0.045 0.078
unknown 0.444 0.461 0.463 0.427 0.452 0.418

marital status: married 0.239 0.227 0.227 0.246 0.235 0.207
unmarried 0.082 0.088 0.081 0.09 0.084 0.097
unknown 0.679 0.686 0.691 0.664 0.681 0.696

dwelling type: rented 0.031 0.036 0.029 0.041 0.032 0.06
owned 0.525 0.503 0.507 0.532 0.516 0.521
unknown 0.444 0.461 0.463 0.427 0.452 0.418

income group: 1 0.045 0.038 0.041 0.044 0.043 0.022
2 0.049 0.054 0.049 0.053 0.05 0.057
3 0.052 0.044 0.048 0.05 0.049 0.041
4 0.115 0.11 0.109 0.121 0.111 0.164
5 0.14 0.133 0.138 0.135 0.137 0.14
6 0.059 0.066 0.061 0.063 0.062 0.052
7 0.023 0.023 0.025 0.02 0.023 0.016
8 0.028 0.033 0.025 0.038 0.03 0.038
9 0.024 0.024 0.021 0.029 0.023 0.043
10 0.008 0.003 0.006 0.008 0.006 0.008
11 0.003 0.003 0.003 0.002 0.003 0
12 0.011 0.008 0.01 0.01 0.01 0
unknown 0.444 0.461 0.463 0.427 0.452 0.418

coupons redeemed 0.037 0.018 0.036 0.018 0.031 0.006

Table 5.A.1: Mean of the variables among the treated who received a coupon of a certain category and of those
who did not
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drugstore coupons other non-food coupons
variable received not received received not received

daily expenditures 243 272 246 243.54
age: 18-25 0.031 0.033 0.036 0.028

26-35 0.104 0.07 0.107 0.099
36-45 0.143 0.117 0.149 0.137
46-55 0.191 0.198 0.2 0.187
56-70 0.046 0.035 0.047 0.044
70+ 0.039 0.033 0.04 0.038
unknown 0.447 0.514 0.422 0.466

family size: 1 0.172 0.162 0.177 0.168
2 0.215 0.176 0.224 0.207
3 0.079 0.076 0.079 0.079
4 0.04 0.031 0.043 0.038
5+ 0.047 0.04 0.055 0.042
unknown 0.447 0.514 0.422 0.466

marital status: married 0.236 0.205 0.257 0.221
unmarried 0.085 0.074 0.075 0.09
unknown 0.68 0.721 0.668 0.689

dwelling type: rented 0.033 0.047 0.032 0.034
owned 0.521 0.438 0.547 0.499
unknown 0.447 0.514 0.422 0.466

income group: 1 0.041 0.05 0.055 0.035
2 0.051 0.047 0.05 0.051
3 0.05 0.037 0.046 0.051
4 0.114 0.1 0.115 0.112
5 0.139 0.114 0.149 0.131
6 0.062 0.057 0.065 0.059
7 0.023 0.018 0.022 0.023
8 0.031 0.017 0.031 0.029
9 0.024 0.027 0.022 0.025
10 0.006 0.006 0.008 0.005
11 0.003 0.005 0.003 0.003
12 0.01 0.008 0.01 0.009
unknown 0.447 0.514 0.422 0.466

coupons redeemed 0.031 0.005 0.043 0.022

Table 5.A.2: Mean of the variables among the treated who received a coupon of a certain category and of those
who did not
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variable Overall Coupon Receivers Non-Receivers Diff p-val
N 50,624 15,327 35,297

By Brand Type:
Established Brands 221 255 206 48 0
Local Brands 59.17 74.01 52.73 21.28 0
By Product Type:
Alcohol 0.657 0.975 0.519 0.46 0
Bakery 78.79 85.1 76.05 9.05 0
Dairy, Juices & Snacks 4.72 6.08 4.13 1.96 0
Flowers & Plants 0.699 0.846 0.635 0.21 0.02
Fuel 94.35 107.2 88.77 18.42 0
Garden 1.93 2.61 1.63 0.98 0
Grocery 114 136 105 31 0
Meat 82.04 88.45 79.25 9.2 0
Miscellaneous 4.7 5.47 4.37 1.1 0
Natural Products 6 7.11 5.51 1.6 0
Packaged Meat 87.86 95.4 84.59 10.81 0
Pharmaceutical 31.8 38.88 28.72 10.16 0
Prepared Food 2.48 3.05 2.24 0.81 0
Restaurant 76.08 81.94 73.54 8.41 0
Salads 1.71 2.16 1.52 0.64 0
Seafood 1.86 2.08 1.76 0.32 0.01
Skin & Hair Care 76.94 82.95 74.32 8.63 0
Travel 1.7 2.14 1.5 0.64 0
Vegetables (cut) 0.017 0.026 0.014 0.01 0.03

Table 5.A.3: Mean of daily expenditures by brand and product type in the total sample (’Overall‘), among coupon
receivers and non-receivers as well as the mean difference across treatment states and the p-value of a two-sample
t-test.
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5.B Propensity Score Distribution

(a) (b)

(c) (d)

Figure 5.B.1: Distribution of propensity scores of receiving any coupon among observations that received (a) any
coupon and (b) no coupon, as well as that of the propensity scores of receiving ready-to-eat food coupons among
observations that (c) did and (d) did not received ready-to-eat food coupons. The plots are produced with the
logspline command in R with the lower and upper bounds of the support of the propensity scores are set to 0
and 1.
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(a) (b)

(c) (d)

Figure 5.B.2: Distribution of propensity scores of receiving meat/seafood coupons among observations that (c)
did and (d) did not received meat/seafood coupons, as well as that of the propensity scores of receiving other food
coupons among observations that (c) did and (d) did not received other food coupons. The plots are produced
with the logspline command in R with the lower and upper bounds of the support of the propensity scores are
set to 0 and 1.
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(a) (b)

(c) (d)

Figure 5.B.3: Distribution of propensity scores of receiving drugstore coupons among observations that (c) did
and (d) did not received drugstore coupons, as well as that of the propensity scores of receiving other non-food
coupons among observations that (c) did and (d) did not received other non-food coupons. The plots are produced
with the logspline command in R with the lower and upper bounds of the support of the propensity scores are
set to 0 and 1.
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5.C GATE Estimates for Coupons Applicable to Plants, Drugstore Items

and Other Products

Figure 5.C.1: GATEs of ready-to-eat food coupons with 95% confidence interval.
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Figure 5.C.2: GATEs of meat/seafood coupons with 95% confidence interval.
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Figure 5.C.3: GATEs of coupons applicable to other non-food products with 95% confidence interval.
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5.D Robustness Checks

5.D.1 Reduced Dataset: GATE Estimates

Figure 5.D.1: GATEs of receiving any coupon with 95% confidence interval, estimated in reduced dataset.
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Figure 5.D.2: GATEs of ready-to-eat food coupons with 95% confidence interval, estimated in reduced dataset.
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Figure 5.D.3: GATEs of meat and seafood coupons with 95% confidence interval, estimated in reduced dataset.

173



Figure 5.D.4: GATEs of coupons applicable to other food items with 95% confidence interval, estimated in reduced
dataset.
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Figure 5.D.5: GATEs of drugstore coupons with 95% confidence interval, estimated in reduced dataset.
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Figure 5.D.6: GATEs of coupons applicable to other non-food items with 95% confidence interval, estimated in
reduced dataset.
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5.D.2 Reduced Dataset: Policy Trees

(a) (b)

(c) (d)

(e)

Figure 5.D.7: Depth-3 trees for coupons applicable to (a) ready-to-eat food, (b) meat and seafood, (c) other food,
(d) drugstore products and (e) other non-food products, estimated in reduced dataset.

177



Bibliography

Abadie, A. (2005): “Semiparametric Difference-in-Differences Estimators,”Review of Economic

Studies, 72, 1–19.

Abadie, A., A. Diamond, and J. Hainmueller (2010): “Synthetic Control Methods for

Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program,”

Journal of the American Statistical Association, 105, 493–505,.

Abadie, A., A. J. Diamond, and J. Hainmueller (2011): “Synth: An R Package for Syn-

thetic Control Methods in Comparative Case Studies,” Journal of Statistical Software, 42,

1–17.

Abadie, A., and J. Gardeazabal (2003): “The Economic Costs of Conflict: A Case Study

of the Basque Country,”American Economic Review, 93, 1–22.

Abercrombie, G., and R. T. Batista-Navarro (2018): “‘Aye’or ‘no’? Speech-level senti-

ment analysis of Hansard UK parliamentary debate transcripts,” in Proceedings of the Eleventh

International Conference on Language Resources and Evaluation (LREC 2018).

Acemoglu, D., and J. D. Angrist (2001): “Consequences of employment protection? The

case of the Americans with Disabilities Act,” Journal of Political Economy, 109(5), 915–957.

Aggarwal, C. C., A. Hinneburg, and D. A. Keim (2001): “On the surprising behavior of

distance metrics in high dimensional space,” in International conference on database theory,

pp. 420–434. Springer.

Ait Bihi Ouali, L., and D. J. Graham (2021): “The impact of the MeToo scandal on women’s

perceptions of security,”Transportation research part A: policy and practice, 147, 269–283.

Albert, J. M. (2008): “Mediation analysis via potential outcomes models,” Statistics in

Medicine, 27, 1282–1304.

Albert, J. M., and S. Nelson (2011): “Generalized causal mediation analysis,” Biometrics,

67, 1028–1038.

178



Alekseev, A., A. Katasev, A. Kirillov, A. Khassianov, and D. Zuev (2019): “Prototype

of Classifier for the Decision Support System of Legal Documents.,” in SSI, pp. 328–335.

American Bar Association (2019): “How Courts Works,”

https://www.americanbar.org/groups/public education/resources/law related education

network/how courts work/appeals/. Retrieved August 15, 2021.

Amuedo-Dorantes, C., C. Borra, N. R. Garrido, and A. Sevilla (2020): “Timing is

Everything when Fighting a Pandemic: COVID-19 Mortality in Spain,” IZA Discussion Paper

Series.

Anderson, C. (2008): “The end of theory: The data deluge makes the scientific method

obsolete,”Wired magazine, 16(7), 16–07.

Anderson, E. T., and D. I. Simester (2004): “Long-run effects of promotion depth on new

versus established customers: three field studies,”Marketing Science, 23(1), 4–20.

Anderson, K. B., H. Cooper, and L. Okamura (1997): “Individual differences and attitudes

toward rape: A meta-analytic review,”Personality and Social Psychology Bulletin, 23(3), 295–

315.

Anderson, M., and S. Toor (2018): “How social media users have discussed sexual harass-

ment since #MeToo went viral,”Pew Research Center. url: https://www.pewresearch.org/fact-

tank/2018/10/11/how-social-media-users-have-discussed-sexual-harassment-since-metoo-

went-viral/.

Andrews, M., X. Luo, Z. Fang, and A. Ghose (2016): “Mobile ad effectiveness: Hyper-

contextual targeting with crowdedness,”Marketing Science, 35(2), 218–233.

Anitha, J., and M. Kalaiarasu (2021): “Optimized machine learning based collaborative

filtering (OMLCF) recommendation system in e-commerce,” Journal of Ambient Intelligence

and Humanized Computing, 12(6), 6387–6398.

Arevalillo, J. M. (2021): “Ensemble learning from model based trees with application to

differential price sensitivity assessment,” Information Sciences, 557, 16–33.

179



Aronow, P. M., and C. Samii (2017): “Estimating average causal effects under general inter-

ference, with application to a social network experiment,” The Annals of Applied Statistics,

11, 1912–1947.

Askitas, N., K. Tatsiramos, and B. Verheyden (2020): “Lockdown Strategies, Mobility

Patterns and COVID-19,” IZA Discussion Paper No. 13293.

Athey, S., R. Friedberg, V. Hadad, D. Hirshberg, L. Miner, E. Sverdrup, J. Tib-

shirani, S. Wager, and M. Wright (2022): “generalized random forests (grf 2.1.0),”

https://grf-labs.github.io/grf/index.html.

Athey, S., J. Tibshirani, and S. Wager (2019): “Generalized random forests,” The Annals

of Statistics, 47, 1148–1178.

Athey, S., and S. Wager (2019): “Estimating treatment effects with causal forests: An

application,”Observational Studies, 5(2), 37–51.

(2021): “Policy learning with observational data,” Econometrica, 89(1), 133–161.

Atwater, L. E., A. M. Tringale, R. E. Sturm, S. N. Taylor, and P. W. Braddy

(2019): “Looking Ahead: How What We Know About Sexual Harassment Now Informs Us of

the Future,”Organizational Dynamics, 48(4), 100677.

Baicker, K., S. L. Taubman, H. L. Allen, M. Bernstein, J. H. Gruber, J. P. New-

house, E. C. Schneider, B. J. Wright, A. M. Zaslavsky, and A. N. Finkelstein

(2013): “The Oregon experiment—effects of Medicaid on clinical outcomes,” New England

Journal of Medicine, 368(18), 1713–1722.

Banholzer, N., E. van Weenen, B. Kratzwald, A. Seeliger, D. Tschernutter,

P. Bottrighi, A. Cenedese, J. P. Salles, S. Feuerriegel, and W. Vach (2020):

“Estimating the impact of non-pharmaceutical interventions on documented infections with

COVID-19: A cross-country analysis,”medRxiv.

Baron, R. M., and D. A. Kenny (1986): “The Moderator-Mediator Variable Distinction in

Social Psychological Research: Conceptual, Strategic, and Statistical Considerations,”Journal

of Personality and Social Psychology, 51, 1173–1182.

180



Bayer, C., and M. Kuhn (2020): “Intergenerational Ties and Case Fatality Rates: A Cross-

Country Analysis,” IZA Discussion Paper Series.

Bellani, L., and M. Bia (2018): “The long-run effect of childhood poverty and the mediat-

ing role of education,” forthcoming in the Journal of the Royal Statistical Society: Series A

(Statistics in Society).

Belloni, A., V. Chernozhukov, I. Fernández-Val, and C. Hansen (2017): “Program

Evaluation and Causal Inference with High-Dimensional Data,” Econometrica, 85, 233–298.

Bertotti, C., and D. Maxfield (2018): “Most People Are Supportive of #MeToo. But Will

Workplaces Actually Change?,”Harvard Business Review, July 10, 2018.

Bertrand, M., E. Duflo, and S. Mullainathan (2004): “How much should we trust

differences-in-differences estimates?,”The Quarterly journal of economics, 119(1), 249–275.

Bicher, M. R., C. Rippinger, C. Urach, D. Brunmeir, and N. Popper (2020): “Agent-

Based Simulation for Evaluation of Contact-Tracing Policies Against the Spread of SARS-

CoV-2,”medRxiv.
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Mitze, T., R. Kosfeld, J. Rode, and K. Wälde (2020): “Face Masks Considerably Reduce

COVID-19 Cases in Germany: A Synthetic Control Method Approach,” .

Moricz, S. (2019): “Using Artificial Intelligence to Recapture Norms: Did# metoo Change

Gender Norms in Sweden?,” arXiv preprint arXiv:1903.00690.

Mozer, R., L. Miratrix, A. R. Kaufman, and L. J. Anastasopoulos (2020): “Match-

ing with text data: An experimental evaluation of methods for matching documents and of

measuring match quality,” Political Analysis, 28(4), 445–468.

Mueller, A., Z. Wood-Doughty, S. Amir, M. Dredze, and A. L. Nobles (2021): “De-

mographic representation and collective storytelling in the me too Twitter hashtag activism

movement,” Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1–28.

Mustak, M., J. Salminen, L. Plé, and J. Wirtz (2021): “Artificial intelligence in marketing:

Topic modeling, scientometric analysis, and research agenda,” Journal of Business Research,

124, 389–404.

Myers, J. (2020): “The Policy Implications of Social Movement: How #MeToo can bring

change,” Sociological Viewpoints, 34(1), 138–156.

Nagelkerke, N. J. D. (1991): “A note on a general definition of the coefficient of determina-

tion,”Biometrika, 78, 691–692.

Nakanishi, N., K. Tatara, and H. Fujiwara (1996): “Do preventive health services reduce

eventual demand for medical care?,” Social Science & Medicine, 43(6), 999–1005.

Narang, U., V. Shankar, and S. Narayanan (2019): “The Impact of Mobile App Failures

on Purchases in Online and Offline Channels,” Discussion paper, Working Paper.

194



National Conference on State Legislature (2019): “Sexual Harassment Policies

in State Legislatures,” https://www.ncsl.org/research/about-state-legislatures/2018-legislative-

sexual-harassment-legislation.aspx. Retrieved August 15, 2021.

NBC News and Wall Street Journal (2017): “Study #17409, Question 22d,” .

Neyman, J. (1923): “On the Application of Probability Theory to Agricultural Experiments.

Essay on Principles.,” Statistical Science, Reprint, 5, 463–480.

(1959): “Optimal asymptotic tests of composite hypotheses,”Probability and statsitics,

pp. 213–234.

Nguyen, D., and C. Rose (2011): “Language use as a reflection of socialization in online

communities,” in Proceedings of the Workshop on Language in Social Media (LSM 2011), pp.

76–85.

Niemi, L., and L. Young (2016): “When and why we see victims as responsible: The impact

of ideology on attitudes toward victims,” Personality and social psychology bulletin, 42(9),

1227–1242.

Northcutt Bohmert, M., K. Allison, and C. Ducate (2019): ““A rape was reported”:

construction of crime in a university newspaper,” Feminist Media Studies, 19(6), 873–889.

Ornaghi, A., E. Ash, and D. L. Chen (2019): “Stereotypes in High-Stakes Decisions: Evi-

dence from US Circuit Courts,”Center for Law & Economics Working Paper Series, 2.

Pagán, J. A., A. Puig, and B. J. Soldo (2007): “Health insurance coverage and the use of

preventive services by Mexican adults,”Health Economics, 16(12), 1359–1369.

Palmer, J. E., E. R. Fissel, J. Hoxmeier, and E. Williams (2021): “# MeToo for whom?

Sexual assault disclosures before and after# MeToo,” American journal of criminal justice,

46(1), 68–106.

Pavalanathan, U., X. Han, and J. Eisenstein (2018): “Mind Your POV: Convergence

of Articles and Editors Towards Wikipedia’s Neutrality Norm,” Proceedings of the ACM on

Human-Computer Interaction, 2(CSCW), 1–23.

195



Pearl, J. (2001): “Direct and indirect effects,” in Proceedings of the Seventeenth Conference

on Uncertainty in Artificial Intelligence, pp. 411–420, San Francisco. Morgan Kaufman.

Petersen, M. L., S. E. Sinisi, and M. J. van der Laan (2006): “Estimation of Direct

Causal Effects,” Epidemiology, 17, 276–284.

Pew Reasearch Center (2018): “American Trends Panel - Wave 35, May 29 – July 11, 2018,”

https://www.pewresearch.org/internet/dataset/american-trends-panel-wave-35/.

Pinciotti, C. M., and H. K. Orcutt (2021): “Understanding gender differences in rape

victim blaming: The power of social influence and just world beliefs,” Journal of interpersonal

violence, 36(1-2), 255–275.

Press, R. (2014): “Insurance Coverage and Preventive Care Among Adults,” .

Pryzant, R., D. Card, D. Jurafsky, V. Veitch, and D. Sridhar (2020): “Causal effects

of linguistic properties,” arXiv preprint arXiv:2010.12919.
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