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In each dimension 4kC 1� 9, we exhibit infinite families of closed manifolds with
fundamental group Z2 for which the moduli space of metrics of nonnegative sectional
curvature has infinitely many path components. Examples of closed manifolds with
finite fundamental group with this property were known before only in dimension 5

and dimensions 4kC 3� 7.

53C20, 58D27, 58J28; 19K56, 53C27, 57R55

1 Introduction

We give examples of closed manifolds of dimension 4k C 1 with k � 2 for which
the moduli spaces of metrics of nonnegative sectional curvature and positive Ricci
curvature have infinitely many path components.

For a closed manifold M, let Rsec�0.M / denote the space of Riemannian metrics
of nonnegative sectional curvature on M endowed with the smooth topology. The
diffeomorphism group Diff.M / acts on Rsec�0.M / by pulling back metrics. The orbit
space Msec�0.M / WD Rsec�0.M /=Diff.M / equipped with the quotient topology is
called the moduli space of metrics of nonnegative sectional curvature on M. The
corresponding notation will be used for the moduli space of metrics satisfying other
curvature bounds.

A basic problem in Riemannian geometry is to determine whether a given manifold
admits a metric with prescribed curvature properties. If this is the case, one may ask
whether the respective moduli space carries some interesting topology. In contrast
to scalar curvature, where surgery techniques are available, little is known about the
topology of moduli spaces of metrics satisfying lower bounds (nonnegative or positive)
on sectional or Ricci curvature.

The first results in this direction are due to Kreck and Stolz [22], who introduced an
invariant for certain .4kC3/–dimensional spin manifolds which is constant on path
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326 Anand Dessai

components of the moduli space of metrics of positive scalar curvature. Kreck and
Stolz used this invariant to show that there exists an Aloff–Wallach space for which
the moduli space of metrics of positive sectional curvature is disconnected. They also
exhibited an infinite family of 7–dimensional Witten manifolds for which the moduli
spaces of metrics of positive Ricci curvature have infinitely many path components [22].
Another more basic invariant to distinguish path components is the relative index of
Gromov and Lawson [20, page 327]. Using these invariants manifolds in dimension
4kC 3� 7 have been found — see Kapovitch, Petrunin and Tuschmann [21], Dessai,
Klaus and Tuschmann [12], Dessai [10] and Goodman [16] — for which the moduli
space Msec�0 has infinitely many path components (see also Wraith [35], Tuschmann
and Wiemeler [28] and Goodman [15] as well as Tuschmann and Wraith [29] for related
results).

Dessai and González-Álvaro [11] used relative �–invariants to show that for every
homotopy RP5 the moduli space Msec�0 has infinitely many path components (see
also Wermelinger [32]). Here we apply �–invariants to prove that manifolds with this
property also exist in all dimensions 4kC 1 with k � 2.

Main theorem In each dimension 4k C 1 � 9, there are infinitely many closed
manifolds Mi , i 2N, with pairwise nonisomorphic integral cohomology for which the
moduli space Msec�0.Mi/ of metrics of nonnegative sectional curvature has infinitely
many path components. The same holds true for the moduli space MRic>0.Mi/ of
metrics of positive Ricci curvature on Mi .

It follows that the corresponding spaces of metrics, Rsec�0.Mi/ and RRic>0.Mi/, also
have infinitely many path components.

In combination with [6, Proposition 2.8] of Belegradek, Kwasik and Schultz, the
theorem implies that for every such manifold the moduli space of complete metrics of
nonnegative sectional curvature on the total space of a real line bundle over Mi has
infinitely many path components.

The manifolds in the theorem above may be described as total spaces of two-stage
iterated fiber bundles over CP1 with fibers CP2k�1 and S1 (see the next section
for definitions and details) and are closely related to the manifolds considered by
Witten [34], Wang and Ziller [31], Kreck and Stolz [22], Kapovitch, Petrunin and
Tuschmann [21] and Dessai, Klaus and Tuschmann [12]. They can also be described
as quotients of the product of round spheres S3 �S4k�1 by a free isometric action
of S1 �Z2. The metrics which represent distinct path components in the respective
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moduli space are obtained as submersion metrics and have nonnegative sectional and
positive Ricci curvature. To distinguish components, we compute relative �–invariants
for these metrics. The construction can also be carried out for k D 1, in which case
one obtains a finite number of 5–dimensional Z2–quotients of S2 �S3. Their moduli
spaces of metrics of nonnegative sectional curvature and positive Ricci curvature also
have infinitely many path components (see [17; 32] and Remark 7.1 for related results).

This paper is structured as follows. In the next section we introduce a family of .4kC1/–
dimensional manifolds with fundamental group Z2 which are total spaces of two-stage
iterated fiber bundles and collect some of their topological properties. In Section 3, we
give a rough diffeomorphism classification for these manifolds. More precisely, we
first study their homotopy type via Postnikov towers and then apply the exact surgery
sequence to show that certain infinite subfamilies belong to only finitely many oriented
diffeomorphism types.

The manifolds come with a submersion metric of nonnegative sectional and positive
Ricci curvature, which, when lifted to the universal cover, extends in a nice way to
an associated disk bundle. They also carry a Spinc–structure and a flat line bundle for
which the relative �–invariant of the corresponding Dirac operator is nontrivial. This is
explained in Sections 4 and 5. Computations for the relative �–invariant via equivariant
index theory are detailed in Section 6. These computations are then used in the final
section to prove the main theorem.

Acknowledgements I would like to thank Ian Hambleton for stimulating discussions
and the referees for their valuable comments. Also, many thanks to David González-
Álvaro for a useful remark on an earlier version of this paper. This work was supported
in part by the SNSF-Project 200021E-172469 and the DFG-Priority programme SPP
2026.

2 A family of .4kC1/–dimensional manifolds

In this section we describe a family of simply connected manifolds of nonnegative
sectional curvature which will be used in the proof of the main theorem. A manifold
in this family is given as the total space of an S1–bundle over the total space of a
projective bundle over CP1, where the bundles depend on three parameters, s; t; c 2 Z

(see Definition 2.3). The case of a trivial projective bundle (the untwisted case) includes
Witten manifolds and was considered in [34; 31; 22].
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The manifolds we are interested in are obtained from certain twisted (ie nontrivial)
projective bundles and are of dimension 4kC 1. The twisting is necessary to obtain
nontrivial relative �–invariants (see Section 6), which will be used to distinguish
components in the moduli space (see Section 7).

Although the construction involves the parameters s, t and c, the integral cohomology
ring of these manifolds depends up to isomorphism only on s (see Remark 2.5 and [26]).
As in the untwisted case, the manifolds can be described as quotients of S3 �S4k�1

by a free action of S1 (see Lemma 2.6).

We now come to the construction of the aforementioned manifolds. Let 
1 denote the
canonical complex line bundle over CP1 and let pr WS3!S3=S1 be the Hopf fibration,
where S3 is the sphere of unit quaternions. We will always identify CP1 with S3=S1

and identify 
1 with the complex line bundle S3��1
C!S3=S1DCP1 associated to

the Hopf fibration and the standard 1–dimensional representation �1 of S1. Similarly,
we will identify the nth tensor power 
 n

1
with S3��n

C!CP1 for n2Z, where �n.�/

for � 2 S1 acts on C via multiplication with �n. Let �l denote the trivial complex
vector bundle of rank l over CP1. We consider the standard inner product on C and
equip the line bundles above with the induced inner products. For k > 0 fixed and
c 2 Z, let Ec!CP1 denote the direct sum of 
 c

1
and �2k�1.

Next we consider the pullback of the bundles above via the projection pr WS3!S3=S1.
Note that for every c 2 Z there is a canonical trivialization of the complex line bun-
dle pr�.
 c

1
/. Hence, pr�.Ec/!S3 and its associated sphere bundle S.pr�.Ec//!S3

have a canonical trivialization. In the following, we will identify S.pr�.Ec// with
S3 �S4k�1 via the corresponding diffeomorphism.

Let Bc be the total space of the projective bundle associated to Ec ! CP1 and
let q W Bc ! CP1 denote the projection. Under the identification above pr�.Bc/

corresponds to the quotient of S3 �S4k�1 by S1, where S1 acts trivially on S3 and
acts by complex multiplication on S4k�1�C2k . The following lemma follows directly
from the description above. The proof is left to the reader.

Lemma 2.1 Bc is diffeomorphic to the quotient of S3 �S4k�1 by a 2–dimensional
torus T 2, where T 2 acts freely on S3 �S4k�1 by

.�; �/.x;y/ WD .x ���1; .�c
�y1 ��;y2 ��; : : : ;y2k ��//

for .�; �/2T 2, x2S3, y1; : : : ;y2k 2C and yD .y1; : : : ;y2k/2S4k�1�C2k .
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Let u2H 2.Bc IZ/ be the negative of the first Chern class of the canonical complex line
bundle over the projective bundle Bc!CP1 and let v be the generator of H 2.CP1IZ/

defined by v WD �c1.
1/.

The tangent bundle along the fibers of q, denoted by T4, is a complex vector bundle
of rank 2k � 1 over Bc and the tangent bundle TBc is isomorphic to the complex
vector bundle q�.T CP1/˚T4 of rank 2k (see [8]). We equip Bc with the induced
orientation.

Lemma 2.2 Bc is a simply connected closed oriented 4k–dimensional manifold. The
integral cohomology of Bc as an H�.CP1IZ/–module is given by

H�.Bc IZ/Š ZŒu; v�=.v2;u2k
� c �u2k�1

� v/:

In particular , H 2.Bc IZ/Š Zhu; vi. Under this identification

c.TBc/D .1C 2v/ � ..1Cu/2k
� c � v � .1Cu/2k�1/

and c1.TBc/D .�cC 2/ � vC 2k �u.

Proof Using the homotopy long exact sequence, it follows directly that Bc is simply
connected.

By the Leray–Hirsch theorem, H�.Bc IZ/ is generated as a H�.CP1IZ/–module by
u subject to the relation u2k C c1.Ec/ � u

2k�1C � � � C c2k.Ec/ D 0. Since c.Ec/ D

c.
 c
1
/D 1� c � v, this gives the statement on the cohomology of Bc .

The total Chern class of T4 satisfies c.T4/ D
P2k

iD0.1C u/2k�i � ci.Ec/ (see [8,
page 514]). Since TBc Š q�.T CP1/˚T4, the total Chern class c.Bc/ is as stated.

Definition 2.3 Let Ms;t;c be the total space of the principal S1–bundle over Bc with
Euler class equal to e WD suC tv. Let � WMs;t;c! Bc denote the projection.

From now on we will assume that c is odd, k � 2, s and t are nonzero coprime integers,
and s is even.

Lemma 2.4 (1) Ms;t;c is simply connected.

(2) H 2.Ms;t;c IZ/ŠZ, H 2i.Ms;t;c IZ/ŠZs2 is generated by ��.u/i for 4� 2i �

4k � 2 and H 2iC1.Ms;t;c IZ/D 0 for 1� 2i C 1� 4k � 3.

(3) H 4k�1.Ms;t;c IZ/Š Z, H 4k.Ms;t;c IZ/D 0 and H 4kC1.Ms;t;c IZ/Š Z.

(4) H�.Ms;t;c IQ/ŠH�.CP1 �S4k�1IQ/.
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Proof First note that the Euler class e is part of a basis of H 2.Bc IZ/ Š Z2 since
s and t are coprime. Using the Gysin sequence for Ms;t;c ! Bc , one finds that
H 1.Ms;t;c IZ/ D 0 and H 2.Ms;t;c IZ/ Š Z. Hence, �1.Ms;t;c/ vanishes by the
Hurewicz theorem and the universal coefficient theorem.

Next note that the cokernel of Zhv �ul�1;uli
e[
�! Zhv �ul ;ulC1i is cyclic of order s2

and generated by ulC1 for 1� l � 2k � 2. The remaining statements now follow from
Lemma 2.2 and the Gysin sequence.

Remark 2.5 Using Poincaré duality one finds that the isomorphism type of the ring
H�.Ms;t;c IZ/ depends up to finite ambiguity only on s. A closer look shows that
��.f /i generates H 2i.Ms;t;c IZ/, 2� 2i � 4k�2, where f is chosen so that .e; f / is
a basis of H 2.Bc IZ/. It follows that the isomorphism type of the integral cohomology
ring of Ms;t;c is uniquely determined by s.

Next we consider the smooth 2–connected cover of Bc . Since H 2.Bc IZ/ŠZ2, it can
be described as the total space of a principal T 2–bundle over Bc . We note that the
2–connected cover is unique up to diffeomorphism

Lemma 2.6 (1) The 2–connected cover of Bc is diffeomorphic to S3 �S4k�1.

(2) Ms;t;c is diffeomorphic to a quotient of S3�S4k�1 by a free action of a subgroup
S1 � T 2.

Proof The first statement follows directly from Lemma 2.1. For the second statement
recall that s and t are coprime. Hence, there is a principal S1–bundle S 0! Bc such
that the Euler classes of Ms;t;c ! Bc and S 0 ! Bc generate H 2.Bc IZ/. The two
bundles define a principal T 2–bundle over Bc with 2–connected total space. Hence,
the latter can be identified with S3 �S4k�1 and Ms;t;c is diffeomorphic to a quotient
of S3 �S4k�1 by a free action of S1.

Remarks 2.7 (1) From the homotopy long exact sequence for the fibration

S3
�S4k�1

!Ms;t;c ;

one gets �i.Ms;t;c/Š �i.S
3 �S4k�1/ for i � 3.

(2) The principal T 2–action on the 2–connected cover is not equivalent to the
standard T 2–action on S3 � S4k�1 given by componentwise multiplication
since Bc is not diffeomorphic to CP1 �CP2k�1.
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(3) In [26], the cohomology rings of certain S1–quotients of a product of spheres,
including Ms;t;c , have been computed. The results there can also be used to
prove Lemma 2.4 and Remark 2.5.

3 Diffeomorphism finiteness of Z2–quotients

In this section we show that certain infinite families of Z2–quotients of the mani-
folds Ms;t;c fall into finitely many oriented diffeomorphism types. Throughout this
section, s will be a fixed nonzero even integer.

As before, let Ms;t;c be the total space of the principal S1–bundle over Bc with Euler
class equal to suC tv, where Bc is the total space of the projective bundle associated
to 
 c

1
˚ �2k�1 and assume that k � 2, c is odd, and s and t are coprime. Let L! Bc

denote the complex line bundle which is associated to the principal S1–bundle.

Consider the total space Ms;t;c of the principal S1–bundle over Bc associated to
L˝L! Bc . Note that the Euler class of Ms;t;c! Bc is equal to 2.suC tv/.

By construction, S1 acts (fiberwise) on L, Ms;t;c , L˝L and Ms;t;c . Let � denote
multiplication by �1 2 S1 on the fibers of L! Bc and on the fibers of Ms;t;c! Bc .
Note that the map L!L˝L, v 7! v˝v, is equivariant with respect to the Z2–action
via � on L and the trivial Z2–action on L˝L. By passing to the associated principal
S1–bundles, it follows that Ms;t;c can be identified with Ms;t;c=� and that the quotient
map p WMs;t;c!Ms;t;c is a universal covering map.

Since the action of � on Ms;t;c extends to an action of S1, the fundamental group
�1.Ms;t;c/ D Z2 acts trivially on ��.Ms;t;c/. Hence, Ms;t;c is a simple space. In
addition, H�.Ms;t;c IQ/ Š H�.Ms;t;c IQ/�1.Ms;t;c/ Š H�.Ms;t;c IQ/, which is iso-
morphic to H�.CP1 �S4k�1IQ/ by Lemma 2.4.

We equip Ms;t;c and Ms;t;c with the orientation induced from the orientation of Bc

(see Section 2) and the complex structure of the complex line bundles.

Our aim is to show diffeomorphism finiteness for the family of .4kC1/–dimensional
oriented manifolds Fs WD fMs;t;c j c and t odd and t coprime to sg.

Theorem 3.1 The family Fs contains only finitely many oriented diffeomorphism
types.

Proof We first show homotopy finiteness and then diffeomorphism finiteness.

Algebraic & Geometric Topology, Volume 22 (2022)
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Homotopy finiteness claim We claim that the family Fs belongs to only finitely many
simple homotopy types. Note that this is equivalent to showing finiteness of homotopy
types since �1.Ms;t;c/D Z2 and the Whitehead group of Z2 is trivial.

Since the members of Fs are simple spaces, they can be described by Postnikov
towers which are classified by their respective k–invariants (see for example [33,
Theorem 4.11]). To show the claim it suffices to prove that there are up to homotopy
only finitely many Postnikov towers for the manifolds in this family. Let

Ms;t;c

||
�� ##

)) ++ ,,
� � � // Xl

// Xl�1
// � � � // X1

// X0

be the Postnikov tower of Ms;t;c . Recall that each Xl !Xl�1 is a principal fibration
(with fiber an Eilenberg–Mac Lane space) which can be described as the pullback of
the path fibration

K.�l.Ms;t;c/; l/ ,! �K.�l.Ms;t;c/; l C 1/!K.�l.Ms;t;c/; l C 1/

via a map �lC1 W Xl�1 ! K.�l.Ms;t;c/; l C 1/. Up to homotopy, the fibration is
classified by the homotopy class of �lC1, which corresponds to a class klC1 2

H lC1.Xl�1I�l.Ms;t;c//. As noted before, the Postnikov tower is determined by
its k–invariants kl for l � 1. For showing homotopy finiteness, it therefore suffices to
show finiteness of the possible k–invariants.

By Lemma 2.6, Ms;t;c is a quotient of S3�S4k�1 by a free action of S1. Since Ms;t;c

is simply connected and Ms;t;c is the quotient of a free Z2–action on Ms;t;c , we have
�1.Ms;t;c/ D Z2, �2.Ms;t;c/ Š �2.Ms;t;c/ Š Z and �l.Ms;t;c/ Š �l.S

3 � S4k�1/

for l � 3.

It follows that the stages X�2 of the Postnikov tower of Ms;t;c do not depend, up to
homotopy, on the choice of the parameters. In fact, one has X0 D fptg,

�2 WX0!K.Z2; 2/; k2D0; X1'K.Z2; 1/'RP1;

�3 WX1!K.Z; 3/; k32H 3.RP1IZ/D0; X2'X1�K.Z; 2/'RP1�CP1:

In the following we will consider the stages Xl and partial Postnikov towers up to
homotopy without explicit mention.

The next stage X3 in the Postnikov tower is determined by the invariant

k4 2H 4.X2I�3.S
3
�S4k�1//ŠH 4.RP1 �CP1IZ/Š Z�Z2 �Z2

Algebraic & Geometric Topology, Volume 22 (2022)
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(recall that k � 2). Using the Gysin sequence, one finds that jH 4.Ms;t;c IZ/j D 4s2.
Since X3 is obtained from Ms;t;c by attaching cells of dimension � 5, the homo-
morphism H 4.X3IZ/! H 4.Ms;t;c IZ/ is injective. Hence, the cohomology group
H 4.X3IZ/ is finite and determined up to finite ambiguity by s. The invariant k4 can be
identified with the transgression of the fundamental class of the fiber in the Leray–Serre
spectral sequence for the fibration X3! X2. It follows that k4 is determined up to
finite ambiguity by s. Hence, X3 is determined up to finite ambiguity by s as well.
For later reference we note that H�3.X3IQ/D 0 since s ¤ 0 (again by applying the
Leray–Serre spectral sequence).

Since �l.S
3 � S4k�1/˝Q D 0 for 3 < l < 4k � 1, it follows by induction that,

for l < 4k � 1, the invariants klC1 for Ms;t;c and its stages Xl are determined, up
to finite ambiguity, by s. Hence, the same holds for the partial Postnikov tower
.X4k�2!X4k�3! � � � !X1!X0/ of Ms;t;c . Again by induction, or by using the
minimal model, one finds that H�3.Xl IQ/D 0 for 2< l < 4k � 1.

By the above, the invariant k4k 2H 4k.X4k�2I�4k�1.Ms;t;c// is also determined up
to finite ambiguity by s. Since �>4k�1.Ms;t;c/˝QD 0 we can argue as before to see
that, for every l � 4k�1, the partial Postnikov tower .Xl!Xl�1!� � �!X1!X0/

of Ms;t;c is also determined up to finite ambiguity by s. Moreover, the construction of
the infinitely many stages Xl for l > 4k C 1, of the Postnikov tower is formal, ie it
depends only on X4kC1 (see [19, page 72]). Hence, the entire tower is determined up
to finite ambiguity by s, and the claim follows.

Diffeomorphism finiteness claim We claim that after restricting to a (simple) ho-
motopy type there are only finitely many oriented diffeomorphism types among the
manifolds Ms;t;c . Let us fix a homotopy type represented by M 2 Fs and consider
the subfamily F 0s WD fMs;t;c 2 Fs jMs;t;c 'M g of manifolds homotopy equivalent
to Ms;t;c . Recall that each Ms;t;c comes with an orientation. To show that the family F 0s
contains only finitely many oriented diffeomorphism types, we apply the surgery exact
sequence [30]

� � � !L4kC2.Z2/! S.M /! ŒM;G=O �! � � � :

Note that H�.M IQ/ Š H�.CP1 � S4k�1IQ/ and the homotopy groups �i.G=O/

of the H–space G=O are finite for i 6� 0 mod 4. Hence, ŒM;G=O � is finite. Since
L4kC2.Z2/D Z2, the smooth structure set S.M / is also finite, and the claim follows.

Algebraic & Geometric Topology, Volume 22 (2022)



334 Anand Dessai

Combining the two claims above, we conclude that for fixed s there are, up to orientation-
preserving diffeomorphism, only finitely many .4kC1/–dimensional manifolds in the
family Fs .

4 Nonnegative sectional and positive Ricci curvature

In this section we consider submersion metrics of nonnegative sectional and positive
Ricci curvature on Ms;t;c and Ms;t;c and extend the latter to the associated disk bundle.

Let .S l ; hS l / denote the round sphere of radius 1 and let hS3�hS4k�1 denote the prod-
uct metric on S3�S4k�1. Recall from Lemma 2.1 that T 2 acts freely and isometrically
on .S3 �S4k�1; hS3 � hS4k�1/ with quotient diffeomorphic to Bc . By Lemma 2.6,
Ms;t;c is diffeomorphic to a quotient of S3 �S4k�1 by an S1–subaction of T 2. Let
Ngs;t;c denote the submersion metric on Ms;t;c , ie .S3 � S4k�1; hS3 � hS4k�1/ !

.Ms;t;c ; Ngs;t;c/ is a Riemannian submersion. We note that Ms;t;c can be identified with
the quotient of S3�S4k�1 by a subgroup of T 2 which is isomorphic to S1�Z2. Let
gs;t;c denote the submersion metric on Ms;t;c . By construction, p W .Ms;t;c ; Ngs;t;c/!

.Ms;t;c ;gs;t;c/ is a Riemannian universal covering.

Lemma 4.1 .Ms;t;c ;gs;t;c/ and .Ms;t;c ; Ngs;t;c/ both have nonnegative sectional and
positive Ricci curvature.

Proof Note that the sectional curvature of .S3 � S4k�1; hS3 � hS4k�1/ is always
nonnegative and vanishes only on mixed planes. It is easy to see that there is, for
any horizontal vector of the Riemannian submersion S3 � S4k�1 ! Ms;t;c (resp.
S3�S4k�1!Ms;t;c), a horizontal plane of positive sectional curvature which contains
this vector. Hence, the statements follow from the Gray–O’Neill formula [18; 25].

Recall that Ms;t;c (resp. Ms;t;c) is a quotient of S3 �S4k�1 by a subgroup H � T 2

which is isomorphic to S1 (resp. S1 �Z2). We remark that the normalizer N of H

in the isometry group of .S3 � S4k�1; hS3 � hS4k�1/ acts with cohomogeneity 1
on Ms;t;c (resp. Ms;t;c) and the metric Ngs;t;c (resp. gs;t;c) is N –invariant.

For the computation of �–invariants in the next sections, we will also need to put a
suitable metric on the disk bundle associated to the principal S1–bundle Ms;t;c! Bc .
Let Ws;t;c WDMs;t;c �S1 D2, where D2 � R2 is the disk of radius 1. We equip D2

with a metric gD2 (a torpedo metric) such that gD2 is S1–invariant, is of product type
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on the annulus fx 2D2 j jxj � 1� �g for a fixed small positive �, and such that gD2

is of positive curvature outside of the annulus. Next we consider the product metric
Ngs;t;c �gD2 on Ms;t;c �D2 and denote by hs;t;c the submersion metric on Ws;t;c with
respect to the quotient map Ms;t;c �D2!Ws;t;c . The next lemma follows directly
from the construction and the Gray–O’Neill formula [18; 25].

Lemma 4.2 The metric hs;t;c extends Ngs;t;c to an S1–invariant metric on Ws;t;c of
nonnegative sectional and positive scalar curvature which is of product type near the
boundary.

5 Spinc–structures and Dirac operators

In this section we introduce suitable Spinc–structures and corresponding Dirac operators
on .Ms;t;c ;gs;t;c/, on its universal cover and on the associated disk bundle. These will
be used to compute �–invariants in the next section. For background information on
and references for Spinc–manifolds and Dirac operators, we refer to [2; 3; 23; 11].

We begin by defining the relevant Spinc–structures. Recall that � denotes the projection
Ms;t;c ! Bc . In the following we will also denote the projections Ws;t;c ! Bc and
Ms;t;c! Bc by � . Also we will suppress the parameters s, t and c in the notation for
Spinc–structures and Dirac operators.

Recall that � acts freely by multiplication with �1 2 S1 on the fibers of Ms;t;c! Bc

and that the quotient can be identified with Ms;t;c . Let � also denote the action by �1

on the fibers of the disk bundle Ws;t;c! Bc .

The action of Z2 D fid; �g on Ms;t;c and Ws;t;c lifts via differentials to the respective
oriented orthonormal frame bundles.

Lemma 5.1 .Ws;t;c ; hs;t;c/ has a unique Spin–structure.

Proof Recall that c and t are odd and s is even. Since T Ws;t;c Š �
�.TBc ˚L/,

c1.TBc/ D .�c C 2/ � v C 2k � u and c1.L/ D suC tv (see Section 2), the mani-
fold Ws;t;c is spin. Moreover, the Spin–structure on .Ws;t;c ; hs;t;c/ is unique since
H 1.Ws;t;c IZ2/D 0.

We note that the induced structure on the boundary is the unique Spin–structure on
.Ms;t;c ; Ngs;t;c/ since �1.Ms;t;c/D 0. Note, however, that Ms;t;c is not spin but does
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admit a Spinc–structure, as will be explained below. It also carries a twisted Spin–
structure in the sense of [9].

Let PSO.W /!Ws;t;c be the principal bundle of oriented orthonormal frames and let
PSpin.W /! PSO.W / be the covering map defining the Spin–structure. Its restriction
to a fiber of PSpin.W /!Ws;t;c can be identified (noncanonically) with the nontrivial
covering � W Spin.4kC 2/! SO.4kC 2/.

The fixed-point manifold of the �–action on Ws;t;c is the zero section Bc , which is of
codimension 2. Hence, the involution � is of odd type and the Z2–action on PSO.W /

does not lift to the Spin–structure (see [1, page 487]). However, as we will see below,
the Z2–action does lift to a suitable Spinc–structure.

Let PU.1/.W /!Ws;t;c be the trivial principal U.1/–bundle and consider the two-fold
covering map PU.1/.W /! PU.1/.W / for which the restriction to a fiber is given by
the nontrivial two-fold covering . � /2 W U.1/! U.1/, � 7! �2.

Let Z2 act by multiplication with ˙1 on U.1/. The Z2–actions on Ws;t;c and U.1/

define a Z2–action on PU.1/.W /. Note that this Z2–action does not lift in the two-fold
covering PU.1/.W /! PU.1/.W /.

Let PSpinc.W /!Ws;t;c denote the Spinc–structure associated to the Spin–structure
on Ws;t;c .

Lemma 5.2 The Z2–actions on PSO.W / and PU.1/.W / lift to a Z2–action on
PSpinc.W /.

Proof By definition, PSpinc.W / is the extension of PSpin.W / with respect to the
inclusion

Spin.4kC 2/ ,! .Spin.4kC 2/�U.1//=f˙.1; 1/g D Spinc.4kC 2/:

Moreover, there is a Spinc.4kC2/–equivariant bundle map

PSpinc.W /! PSO.n/.W /�PU.1/.W /

with respect to the homomorphism Spinc.4k C 2/
��. � /2
���! SO.4k C 2/�U.1/ (here

PSO.n/.W /�PU.1/.W / denotes the fiberwise product of PSO.n/.W / and PU.1/.W /).

Recall that the Z2–actions on PSO.W / and PU.1/.W / do not lift as Z2–actions in
the coverings PSpin.W /! PSO.W / and PU.1/.W /! PU.1/.W /. In both cases the
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induced action on the total spaces is by an effective action of Z4. Note, however, that
the diagonal action of Z4 on PSpinc.W / has Z2 � Z4 as ineffective kernel. Hence,
the Z2–action on PSO.W / � PU.1/.W / lifts as a Z2–action to the Spinc–structure
PSpinc.W /!Ws;t;c .

Recall that the Z2–actions on .Ws;t;c ; hs;t;c/ and on the trivial principal U.1/–bundle
PU.1/.W /! Ws;t;c are of product form near the boundary of Ws;t;c . We fix a flat
unitary Z2–equivariant connection rc.W / on PU.1/.W /!Ws;t;c which is constant
in the normal direction near the boundary of Ws;t;c .

Next we describe the relevant Dirac operators on Ws;t;c and its boundary. Let S.Ws;t;c/

denote the spinor bundle for the Spinc–structure on Ws;t;c defined before. The Levi-
Civita connection of .Ws;t;c ; hs;t;c/ together with the connection rc.W / determine a
connection r.W / on S.Ws;t;c/. Let DW be the associated Spinc Dirac operator, ie
DW is the composition

�.S.Ws;t;c//!�.S.Ws;t;c/˝T �Ws;t;c/!�.S.Ws;t;c/˝T Ws;t;c/!�.S.Ws;t;c//;

where the first map is the connection r.W /, the second map uses the isomorphism
given by the metric hs;t;c and the last map is induced from Clifford multiplication (see
[23, D.9]).

Since Ws;t;c is of even dimension, the spinor bundle S.Ws;t;c/ splits as a direct sum
SC.Ws;t;c/˚S�.Ws;t;c/ and the operator DW restricts to an operator

DW
C
W �.SC.Ws;t;c//! �.S�.Ws;t;c//:

The Spinc–structure on Ws;t;c induces a Spinc–structure on the boundary. Let P !

Ms;t;c denote the corresponding principal Spinc–bundle. The restriction of SC.Ws;t;c/

and DW
C to the boundary can be identified with the spinor bundle S.Ms;t;c/ and the

Spinc Dirac operator

DM W �.S.Ms;t;c//! �.S.Ms;t;c//

on .Ms;t;c ; Ngs;t;c/, which is defined with respect to P !Ms;t;c and the restriction rc

of the connection rc.W / to the principal U.1/–bundle (see [3])

PU.1/ WD PU.1/.W /jMs;t;c
!Ms;t;c :

Consider the orthogonal projection of �.SC.Ws;t;c/jMs;t;c
/ D �.S.Ms;t;c// onto

the space spanned by the eigenfunctions of DM for nonnegative eigenvalues. Fol-
lowing Atiyah, Patodi and Singer, we impose the APS boundary condition, ie we
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restrict to sections � 2 �.SC.Ws;t;c// for which �jMs;t;c
is in the kernel of the pro-

jection. After imposing this condition, the operator DW
C has finite-dimensional

kernel and will be denoted by DC
W

. Similarly, the formal adjoint of DW
C (de-

fined via bundle metrics) subject to the adjoint APS boundary condition has finite-
dimensional kernel and will be denoted by .DC

W
/�. The index of DC

W
is defined

as ind DC
W
WD dim ker DC

W
� dim ker.DC

W
/� 2 Z (see [3] for details). Note that by

construction the operators DC
W

, .DC
W
/� and DM are Z2–equivariant. For later reference

we point out the following crucial lemma:

Lemma 5.3 The operators DC
W

, .DC
W
/� and DM are injective. In particular , we have

ind DC
W
D 0.

Proof Since hs;t;c and Ngs;t;c are of positive scalar curvature and all relevant connections
are flat, the statements follow from the argument of Schrödinger and Lichnerowicz
[27; 24; 23].

Note that the objects on Ws;t;c considered above, when restricted to the boundary Ms;t;c ,
induce corresponding objects on Ms;t;c by passing to the quotient with respect to the
Z2–action. For example, the quotient of .Ms;t;c ; Ngs;t;c/ by the free isometric Z2–action
can be identified with .Ms;t;c ;gs;t;c/ and the same is true for the respective principal
bundles of oriented orthonormal frames and the Levi-Civita connections.

Similarly, the Z2–quotient of the principal U.1/–bundle PU.1/!Ms;t;c with its flat
connectionrc and the quotient of the Spinc–structure P!Ms;t;c can be identified with
a principal U.1/–bundle PU.1/!Ms;t;c with flat connection rc and a Spinc–structure
P !Ms;t;c on Ms;t;c , respectively.

Since the generator of Z2 acts by .�;�1/ on PU.1/ D Ms;t;c � U.1/, the bundle
PU.1/ ! Ms;t;c can be identified with Ms;t;c �Z2

U.1/ ! Ms;t;c . This bundle is
nontrivial. In fact, its first Chern class is of order 2 and generates the kernel of
p� WH 2.Ms;t;c IZ/!H 2.Ms;t;c IZ/.

Let S.Ms;t;c/ denote the spinor bundle associated to the Spinc–structure on Ms;t;c and
let

DM W �.S.Ms;t;c//! �.S.Ms;t;c//

denote the associated Spinc Dirac operator. It follows from the construction that DM

lifts to the Z2–equivariant Spinc Dirac operator DM with respect to the covering map
p WMs;t;c!Ms;t;c .
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6 Computation of �–invariants

In this section we will compute relative �–invariants for the Spinc Dirac operator
DM on Ms;t;c twisted with the nontrivial complex 1–dimensional representation of
�1.Ms;t;c/. These computations will be used in the next section to prove the main
theorem. Alternatively, one could use a twisted Spin–structure of Ms;t;c and compute
�–invariants of associated Dirac operators along the lines of [9, Section 2].

The idea to use relative �–invariants to distinguish components of moduli spaces goes
back to Atiyah, Patodi and Singer, who explained this for positive scalar curvature
metrics on spin manifolds in [4]. They also pointed out the possibility to extend
this idea to certain Spinc–manifolds. For background information on �–invariants of
Spinc–manifolds, we also refer to [11].

Recall that �1.Ms;t;c/ D Z2 and p W Ms;t;c ! Ms;t;c is a universal covering. Let
˛ W �1.Ms;t;c/! U.1/ denote the nontrivial homomorphism and let ˛ also denote the
associated complex line bundle Ms;t;c �˛C!Ms;t;c . We fix a flat unitary connection
on ˛. Let DM;˛ denote the Spinc Dirac operator DM twisted with ˛.

Next consider the �–invariants �.Ms;t;c/ and �˛.Ms;t;c/ of DM and DM;˛, respec-
tively. Recall that �.Ms;t;c/ (resp. �˛.Ms;t;c/) is given by the value at z D 0 of the
meromorphic extension of the series

P
� sign.�/=j�jz for z 2 C with Re.z/� 0 to

the complex plane, where the sum is taken over all nonzero eigenvalues � of DM

(resp. DM;˛) (see [3] for background information on �–invariants).

Definition 6.1 The relative �–invariant z�˛.Ms;t;c/ is defined by

z�˛.Ms;t;c/ WD �˛.Ms;t;c/� �.Ms;t;c/:

Recall from Section 5 that DM lifts to the Z2–equivariant Spinc Dirac operator DM .
The �–invariant of DM refines to a Z2–equivariant invariant with values denoted by
�.Ms;t;c/g for g 2 Z2 D f1; �g. As pointed out in [13, Theorem 3.4], the �–invariants
for Ms;t;c can be computed from equivariant �–invariants for Ms;t;c . In our situation
this relation is given by

�˛.Ms;t;c/D
1
2
.�.Ms;t;c/1 ��˛.1/C�.Ms;t;c/� ��˛.�//D

1
2
.�.Ms;t;c/��.Ms;t;c/� /

and

�.Ms;t;c/D�e.Ms;t;c/D
1
2
.�.Ms;t;c/1�1C�.Ms;t;c/� �1/D

1
2
.�.Ms;t;c/C�.Ms;t;c/� /;
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where �˛ is the character of ˛ and e W �1.Ms;t;c/! U.1/ denotes the trivial represen-
tation. This gives, for the relative �–invariant,

z�˛.Ms;t;c/D �˛.Ms;t;c/� �.Ms;t;c/D��.Ms;t;c/� :

Next we consider the Z2–action on the disk bundle Ws;t;c over Bc and the equivariant
Spinc Dirac operator DC

W
which was defined in Section 5. Since � acts by �1 on the

fibers of Ws;t;c , the fixed-point manifold can be identified with Bc . Let a.Bc/.�/ be
the local datum of the Lefschetz fixed-point formula for the Z2–equivariant operator
DC

W
at Bc evaluated at � 2 Z2, as described in [5] (see also [11]).

The index formula for manifolds with boundary [3] refines in the presence of sym-
metries and gives a relation between equivariant �–invariants, local data and certain
representations attached to the index of DC

W
and the kernel of DM (see [13] for details).

In our situation one obtains:

Proposition 6.2 z�˛.Ms;t;c/D�2a.Bc/.�/:

Proof As a warm-up we first consider the nonequivariant APS index formula for DC
W

,
which takes the form (see [3, Theorem 3.10 and Section 4])

ind DC
W
D

�Z
Ws;t;c

ec1=2 yA.Ws;t;c ; hs;t;c/

�
�

1
2
.dim h.Ms;t;c ; Ngs;t;c/C �.Ms;t;c//;

where c1 denotes the first Chern form of rc.W /, yA.Ws;t;c ; hs;t;c/ represents the
yA–series evaluated on the Pontryagin forms pi.Ws;t;c ; hs;t;c/ and h.Ms;t;c ; Ngs;t;c/

is the kernel of DM . Since rc.W / is flat, c1 vanishes. Since .Ws;t;c ; hs;t;c/ and
.Ms;t;c ; Ngs;t;c/ are of positive scalar curvature, ind DC

W
and h.Ms;t;c ; Ngs;t;c/ both vanish

(see Lemma 5.3).

Next we consider the index of the Z2–equivariant operator DC
W

. The index evaluated
at � can be expressed by the formula above after making the following replacements (see
[13, Theorem 1.2] for details): First, dim h.Ms;t;c ; Ngs;t;c/ is replaced by the character
of the Z2–representation given by the kernel of DM evaluated at � . We denote this
value by h� . Next, �.Ms;t;c/ is replaced by �.Ms;t;c/� . Finally, the integral is replaced
by the local datum a.Bc/.�/. Hence, one has

ind DC
W
.�/D a.Bc/.�/�

1
2
.h� C �.Ms;t;c/� /:

Since .Ws;t;c ; hs;t;c/ and .Ms;t;c ; Ngs;t;c/ are of positive scalar curvature, the represen-
tations which are used to define ind DC

W
.�/ and h� are all 0–dimensional and trivial
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(see Lemma 5.3). Hence, ind DC
W
.�/ and h� both vanish and

z�˛.Ms;t;c/D��.Ms;t;c/� D�2a.Bc/.�/:

We proceed to describe the local datum a.Bc/.�/ (see [5, Section 3] for the general
discussion). Let f˙x1; : : : ;˙x2kg denote the formal roots of TBc and let y be the
Euler class of the oriented normal bundle �Bc

of Bc �Ws;t;c . Let c1 denote now the
first Chern class of the Spinc Dirac operator DC

W
. Then the local datum evaluated at �

is given by

a.Bc/.�/D � �

Z
Bc

ec1=2 � yA.Bc/ �
1

i � ey=2C i � e�y=2
;

where yA.Bc/ D
Q2k

jD1 xj=.e
xj =2 � e�xj =2/ and � 2 f˙ig depends on the lift of the

Z2–action to the Spinc–structure. We will not discuss this ambiguity further since it will
not affect the results on moduli spaces stated in the main theorem. The class c1 vanishes
since the bundle PU.1/.W / is trivial. Note that y D suC tv since �Bc

is isomorphic
to the complex line bundle associated to the principal S1–bundle � WMs;t;c! Bc (see
Definition 2.3). Hence,

a.Bc/.�/D˙

Z
Bc

yA.Bc/ �
1

e.suCtv/=2C e�.suCtv/=2
:

Next recall from Lemma 2.2 that TBc has a complex structure and the total Chern
class of TBc is given by

c.TBc/D .1C2v/�..1Cu/2k
�c �v �.1Cu/2k�1/D .1C2v/�.1Cu/2k�1

�.1Cu�c �v/:

Hence, one obtains the local term a.Bc/.�/ up to sign by integrating

(1)
2v

ev�e�v
�

�
u

eu=2�e�u=2

�2k�1

�
u�cv

e.u�cv/=2�e�.u�cv/=2
�

1

e.suCtv/=2Ce�.suCtv/=2

over Bc . Note that the integral is given by evaluating the cohomological expression
on the fundamental class of Bc , which, by Lemma 2.2, amounts to computing the
coefficient of u2k�1 � v in (1). In the following, k and c will be fixed.

Proposition 6.3 For almost all s ¤ 0 with s even , a.Bc/.�/ is a nonzero polynomial
in t of degree 1.

The proposition as stated is sufficient for our purposes. It is likely that the statement
is true for all s ¤ 0. We leave it to the interested reader to prove the more general
statement.
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Proof For a fixed odd integer c, let A 2QŒs; t � denote the polynomial obtained by
integrating the expression in (1) over Bc . To prove the proposition we first note that
the factor in (1) involving t is equal to

1

esu=2C e�su=2
�

�
1�

tv

2
�

esu=2� e�su=2

esu=2C e�su=2

�
since v2 D 0 by Lemma 2.2.

Hence, A is a polynomial in t of degree � 1, say A D A0 �A1 � t with Ai 2 QŒs�.
Moreover, by looking at the other factors of (1), we see that A1 is given by integrating

2v

ev � e�v
�

�
u

eu=2� e�u=2

�2k�1

�
u� cv

e.u�cv/=2� e�.u�cv/=2
�

1

esu=2C e�su=2
�

�
v

2
�
esu=2� e�su=2

esu=2C e�su=2

�

over Bc . Since v2 D 0, we get

A1 D

Z
Bc

�
u

eu=2� e�u=2

�2k�1

�
u

eu=2� e�u=2
�

1

esu=2C e�su=2
�

esu=2� e�su=2

esu=2C e�su=2
�
v

2
:

Using Lemma 2.2 again, it follows that A1 is equal to the coefficient of u2k�1 in the
formal power series

�
u

eu=2� e�u=2

�2k

�
esu=2� e�su=2

2.esu=2C e�su=2/2
2QŒs�ŒŒu��:

Note that A1 is an odd polynomial in s of degree � 2k � 1, which can be written as a
residue,

A1 D ResuD0

��
1

eu=2� e�u=2

�2k

�
esu=2� e�su=2

2.esu=2C e�su=2/2

�
:

Using the substitution w WD 2 � sinh
�

1
2
u
�
D eu=2� e�u=2 D uC � � � , one finds that

A1 D ReswD0

1

w2k
�

sinh
�

1
2
su
�

.2 cosh
�

1
2
su
�
/2
�

1

cosh
�

1
2
u
� :

To show that the polynomial A1 2QŒs� is nonzero, we will compute its value for s D 2

with the help of the addition theorems for sinh and cosh:
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ReswD0

1

w2k
�

sinh
�
2 � 1

2
u
�

.2 cosh
�
2 � 1

2
u
�
/2
�

1

cosh
�

1
2
u
�

D ReswD0

1

w2k
�
2 sinh

�
1
2
u
�
� cosh

�
1
2
u
�

4.1C 2 sinh2
�

1
2
u
�
/2
�

1

cosh
�

1
2
u
�

D ReswD0

1

w2k
�

w

4
�
1C 1

2
w2
�2

D coefficient of w2k�2 in
1
4�

1C 1
2
w2
�2

¤ 0:

Hence, A1 is a nonzero polynomial in s. This shows that A1 does not vanish for almost
all even integers s. It follows that a.Bc/.�/ D ˙A is a nonzero polynomial in t of
degree 1 for almost all even integers s.

7 Proof of the main theorem

The proof of the main theorem follows from the previous results by an argument similar
to the one in [11]. We will focus on the statement on Msec�0; the statement for MRic>0

is analogous and easier. The main steps are the following (see [11, Section 6] for more
details).

As before we will assume that c is odd, k � 2, s and t are nonzero coprime integers,
and s is even. In the following we will fix c and k and choose s > 0 such that the local
datum a.Bc/.�/ is a nonzero polynomial in t of degree 1. By Proposition 6.3, there
are infinitely many choices for such s and, by Lemma 2.4, different choices for s lead
to different manifolds Ms;t;c , which can be distinguished by their integral cohomology.
We will fix a choice for s.

By Theorem 3.1, the family Fc;sDfMs;t;c j t coprime to sg of .4kC1/–dimensional ori-
ented manifolds belongs to finitely many oriented diffeomorphism types. Let us choose
a sequence t0< t1< t2< � � � such that each Ms;tl ;c for l � 0 is diffeomorphic to Ms;t0;c

as an oriented manifold and such that the relative �–invariants z�˛.Ms;tl ;c/ for l 2N are
pairwise distinct (see Propositions 6.2 and 6.3). An orientation-preserving diffeomor-
phism Ms;t0;c!Ms;tl ;c may not preserve the topological Spinc–structures. However,
since Ms;tl ;c has only finitely many (namely two) topological Spinc–structures with
trivial first Chern class, we may assume, after passing to a subsequence, again denoted
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by Ms;tl ;c , that all manifolds in this sequence are diffeomorphic by diffeomorphisms
preserving the topological Spinc–structures. Let M WDMs;t0;c and let Fl WM!Ms;tl ;c

be such a diffeomorphism.

Let gl WD F�
l
.gs;tl ;c/, where gs;tl ;c is the submersion metric of nonnegative sectional

and positive Ricci curvature on Ms;t;c from Section 4. Since �–invariants are preserved
under pullback, we conclude that the relative �–invariants of the Spinc–manifold M

with respect to gl for l 2N are pairwise distinct.

Let D denote the subgroup of diffeomorphisms of M which preserve its topological
Spinc–structure. Note that D has finite index in the full diffeomorphism group Diff.M /.
Hence, it suffices to show that the elements Œgl � 2 Rsec�0.M /=D for l 2 N defined
by gl represent infinitely many path components.

We argue by contradiction. Suppose there is a path z
 W Œ0; 1�!Rsec�0.M /=D connect-
ing Œgl � to Œgl 0 � with l ¤ l 0. By Ebin’s slice theorem [14], this path can be lifted to a
continuous path 
 in Rsec�0.M / with 
 .0/D gl and 
 .1/Dˆ�.gl 0/ for some ˆ 2D.
Since �–invariants are preserved under pullback, it follows that the relative �–invariants
of the Spinc–manifold M with respect to 
 .0/D gl and 
 .1/Dˆ�.gl 0/ are distinct.

The path 
 may be deformed inside of Rscal>0.M / to a path y
 with the same endpoints
as 
 and whose interior points lie in RRic>0.M / (this can be done via Ricci flow
using [7]). Since the relative �–invariant is constant on path components of Rscal>0.M /

(see [4, page 417; 11, Proposition 3.3]), we get a contradiction.

Hence, the classes Œgl � for l 2 N represent infinitely many pairwise distinct path
components of Rsec�0.M /=D. Since D has finite index in Diff.M /, the same holds
for the moduli space Msec�0.M /. As explained in the beginning, we can argue in
this way for infinitely many choices of s. Hence, we obtain infinitely many manifolds
Mi WDMsi ;ti ;c , indexed by i 2N, which can be distinguished by their integral coho-
mology, such that for each i 2N the moduli space Msec�0.Mi/ has infinitely many
path components. This completes the proof of the first statement of the main theorem.
An analogous argument gives the statement for MRic>0.

Remark 7.1 For k D 1, the manifolds Ms;t;c given in Definition 2.3 can be shown to
be diffeomorphic to S2�S3 (for c odd, s even, and s and t coprime). The Z2–quotients
Ms;t;c can be described as total spaces of S1–principal bundles over BcŠCP2]�CP2

and fall into finitely many diffeomorphism types. Their moduli spaces of metrics of
nonnegative sectional curvature and positive Ricci curvature also have infinitely many
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path components (see also the recent work of Goodman and Wermelinger [17; 32] on
such moduli spaces for the class of all orientable nonspin Z2–quotients of S2 �S3).
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