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Abstract 

Educational inequalities in all-cause mortality have been observed for decades. However, the 

underlying biological mechanisms are not well known. We aimed to assess the role of DNA 

methylation changes in blood captured by epigenetic clocks in explaining these inequalities.  

Data were from eight prospective population-based cohort studies, representing 13,021 

participants. First, educational inequalities and their portion explained by Horvath DNAmAge, 

Hannum DNAmAge, DNAmPhenoAge, and DNAmGrimAge epigenetic clocks were assessed 

in each cohort via counterfactual-based mediation models, on both absolute (hazard difference) 

and relative (hazard ratio) scales, and by sex. Second, estimates from each cohort were pooled 

through a random effect meta-analysis model. 

Men with low education had an excess mortality from all causes of 57 deaths per 10,000 person-

years (95% confidence interval (CI): 38, 76) compared to their more advantaged counterparts. 

For women, the excess mortality was 4 deaths per 10,000 person-years (95% CI: -11, 19). On 

the relative scale, educational inequalities corresponded to hazard ratios of 1.33 (95% CI: 1.12, 

1.57) for men and 1.15 (95% CI: 0.96, 1.37) for women. DNAmGrimAge accounted for the 

largest proportion, approximately 50%, of the educational inequalities for men, while the 

proportion was negligible for women. Most of this mediation was explained by differential 

effects of unhealthy lifestyles and morbidities of the WHO risk factors for premature mortality.  

These results support DNA methylation-based epigenetic aging as a signature of educational 

inequalities in life expectancy emphasizing the need for policies to address the unequal social 

distribution of these WHO risk factors.  

Keywords: DNA methylation, biomarkers, longevity, social inequalities.  
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Introduction 

Inequalities in mortality by educational attainment have been observed for decades in developed 

countries (1), and in some countries these inequalities are widening (2). The putative causal 

effect of education on mortality has been corroborated by studies of compulsory schooling laws 

(3,4), experimental, and twin studies (4,5). Notably, the review by Galama et al. (4) points to 

consistent sex differences, whereby men experience larger inequalities than women. Three 

broad theoretical frameworks have been suggested to assess potential mechanisms underlying 

the effect of education on health and ultimately mortality. The Fundamental Cause theory (6) 

indicates the role of access to material and non-material resources encompassing income, social 

connections and lifestyle, while the Human Capital theory (7) identifies the skills and abilities 

yielding an increased economic productivity, while the Signaling perspective (8) emphasizes 

the social returns of credentials earned by educational attainment. Many of the ensuing 

mechanisms have been assessed in empirical studies, including unfavorable working conditions 

and economic hardship, decreased psychosocial resources, unhealthy lifestyle, and chronic 

health conditions (4,9–13). Ultimately, these intermediate mechanisms affect various biological 

processes related to health and survival, which have been conceptualized by the framework of 

biological embedding or social-to-biological transition (14,15). Among the proposed biological 

mechanisms, heightened systemic inflammation (16–18), dysregulation of physiological 

systems summarized by allostatic load (19), and elevated epigenetic aging of immune cells (20–

22) have been consistently observed in individuals with lower education in multiple 

populations. Notably, biomarkers of epigenetic aging from blood-derived DNA methylation 

(DNAm) profiles have been consistently associated with lifestyle-related behaviors, 

morbidities, such as diabetes, hypertension, and cancer, and are predictors of mortality (23–26).  

Although plausible from previous observations, the mediating role of epigenetic aging in 

explaining educational inequalities in mortality has been rarely investigated. One study, of older 
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women in the United States of America, found that only a small portion of educational 

inequalities in mortality was explained by epigenetic aging measured through the 

DNAmPhenoAge biomarker (27). However, other epigenetic biomarkers and the path-specific 

contribution of epigenetic ageing independent of unhealthy lifestyles and morbidities have not 

been examined. Thus, the independent mediating role of epigenetic aging in social inequality-

associated mortality has not been fully investigated. 

In this study, we assessed the mediating role of blood DNAm-based epigenetic aging between 

education and all-cause mortality in multiple populations and by sex. Data spanning the social, 

biological, and mortality end-point layers was derived from eight population-based cohort 

studies across seven countries, totalling 13,021 participants, followed on average for 9 years 

from an average baseline age of 64. We measured epigenetic age from blood DNAm, known 

as epigenetic clocks. We considered four epigenetic clock biomarkers, namely Horvath’s and 

Hannum’s DNAmAge, Levine’s DNAmPhenoAge and Lu’s DNAmGrimAge (28), as they 

have been commonly studied in the literature, are associated with both education and all-cause 

mortality in several populations, and capture different aspects of the epigenetic aging processes 

(28). Whether an individual experienced elevated or mitigated epigenetic aging was estimated 

by computing the residuals from a regression of the epigenetic clock on chronological age. 

Thereafter, we refer to these values as Horvath DNAmAA, Hannum DNAmAA, 

DNAmPhenoAA and DNAmGrimAA, respectively. We calculated the portion of educational 

inequalities in all-cause mortality explained by epigenetic aging biomarkers via a two-step 

analytic approach: i) a counterfactual-based mediation method in each cohort (29), ii) a random 

effect meta-analysis to pool estimates across cohorts.  

Secondly, in this study we assessed the potential path-specific contribution of epigenetic aging 

independent of unhealthy lifestyle factors (current smoking, low physical activity, high alcohol 

intake, and high body mass index (BMI)) and related morbidities (type 2 diabetes and 
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hypertension). We considered these risk factors as additional mediators as they are on the causal 

path from educational attainment to all-cause mortality (9–12,30) and are targets of policies to 

reduce premature mortality burden (30). 

 

Methods 

Study participants’ selection 

Of the 18 cohorts included in LIFEPATH, an international consortium aiming to disentangle 

the biological pathways underlying social inequalities in health (31), only adult cohorts were 

retained for the present study. Of these, we further selected those with available DNAm and 

subsequent mortality follow-up. Based on these criteria, we included participants from three 

cohorts, namely EPIC-IT (N = 1,545 in Italy), MCCS (N = 2,816 in Australia), and TILDA 

(N = 490 in Ireland). We also gathered data from five additional adult cohorts, namely ESTHER 

(N = 1,864 in Germany), KORA (N = 1,727 in Germany), MESA (N = 1,264 in United States 

of America), NICOLA (N = 1,981 in Northern Ireland, United Kingdom), and the Rotterdam 

Study (RS) (N = 1,420 in The Netherlands). Participants were all sub-samples of the 

corresponding cohorts because of available DNAm. A description of these cohorts and of the 

sampling design is presented as Supplementary Material. 

Mediation models, exposure, mediators, and outcome 

The proposed mediation structures underlying our study are represented in Figure 1. We 

designed our mediation modelling to evaluate path-specific mechanisms of educational 

inequalities in all-cause mortality (outcome). We focused on inequalities driven by educational 

attainment (exposure). The first model, depicted in Figure 1A, dissected the educational 

inequalities (total effect of the exposure) into a non-transmitted (direct) effect and a transmitted 

(indirect) effect by blood DNAm-based markers of epigenetic aging (mediator). In the second 

model, depicted in Figure 1B, the indirect effect via epigenetic aging biomarkers was 
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disaggregated into a pathway through unhealthy lifestyle and morbidities (LM), and a pathway 

independent from the latter. This model assumed that epigenetic aging is downstream of LM 

mediators as supported by a recent Mendelian Randomization study (32). By comparing the 

mediated effect via LM and the joint mediated effect via LM and epigenetic aging, we assessed 

whether epigenetic aging provides additional mediation compared to LM only, or whether the 

effect of education on all-cause mortality propagates through a pathway affecting epigenetic 

aging independently of unhealthy lifestyle and morbidities.  

Educational attainment was measured using the participants’ self-reported highest educational 

attainment. Answers were categorized as ‘low education’ for any degree lower than upper 

secondary school and ‘high education’ for attained upper secondary school or above following 

previous work from the Lifepath group (31). In Supplementary Table 1, for each cohort study 

we report the questionnaire labels and their corresponding categorization.  

Epigenetic aging in blood, unhealthy lifestyle and morbidities were included as mediators and 

measured at the same time, which we set as the baseline for mortality follow-up. In 

Supplementary Table 2 we report the years of measurement of exposure and mediators for 

each cohort. The proportion of leukocytes was estimated for each participant according to 

Houseman’s method (33) and was used in sensitivity analyses as an additional mediator. 

Unhealthy lifestyle comprised self-reported current smoking, high alcohol consumption, low 

level of leisure-time physical activity, and high BMI categorized into two or three-level 

variables (see Supplementary Material). Morbidities comprised hypertension (either self-

reported or measured) and diabetes (either self-reported or measured). As highest education is 

generally attained in young adulthood whereas study participants were in their mid or late 

adulthood at baseline (see Supplementary Table 2), the potential for reverse causality was 

minimized.  
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Potential confounders were age at baseline (continuous), sex, and childhood socioeconomic 

conditions (available only in a subset of cohorts and included in a sensitivity analysis). In 

MESA, race/ethnicity was added as a potential confounder. Additionally, sex was modelled as 

an effect modifier, as previous studies have shown sex differences in educational inequalities 

in mortality (4,12,27). The outcome was age-to-death from any cause, with age as the 

underlying timescale.  

Detailed information about education, lifestyle, morbidities, DNAm, and mortality related 

variables in each cohort are reported in Supplementary Material. 

Statistical framework and analysis 

We implemented a two-step approach, whereby in the first stage parameters of interest were 

estimated in each cohort study, and in the second stage the ensuing estimates were pooled 

through a random effect meta-analysis model to consider potential heterogeneities across cohort 

studies. 

In each cohort study, we implemented the counterfactual change of educational attainment from 

high to low, to estimate the portion of educational inequalities in all-cause mortality explained 

by the chosen mediator(s). Within this framework, the educational inequalities in all-cause 

mortality correspond to the total effect of educational attainment, which can be broken down 

into the direct effect – the portion of the inequalities not explained by a mediator –, and the 

indirect effect – the portion of the inequalities explained by a mediator (29). To estimate the 

effects of interest in our study – total and indirect – we used the inverse odds ratio weighting 

(IORW) method (29,34). Under certain identifying conditions (see Supplementary Material), 

IORW enables estimation of indirect and joint indirect effects (e.g., effect of exposure on 

outcome mediated by a bloc of mediators). The latter does not depend on a specific causal order 

among the mediators (35), which is useful in our study because specifying an order among 

unhealthy lifestyle and/or morbidities would require further modeling assumptions. 
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Additionally, contrary to linear path analysis, the IORW method allows estimation of a more 

general class of mediation models including those with mediators and/or outcome measured on 

a non-continuous scale (as in our study) and incorporates the potential interaction between 

exposure and mediator(s). The latter is useful as education and unhealthy lifestyle may interact 

in affecting mortality (36). Mathematical details of the implemented IORW are described in 

Supplementary Material. 

We assessed effects on both the absolute scale (hazard difference) and the relative scale (hazard 

ratio). Both measures are useful in understanding and describing inequalities (37).  

For analyses related to the model in Figure 1A, a chosen epigenetic aging biomarker was the 

only mediator, while for analyses related to the model in Figure 1B, seven mediators were 

considered. As we were interested in the portion of the total effect explained by epigenetic aging 

independent of unhealthy lifestyle and morbidities, we broke down the joint indirect effect by 

the block of seven mediators into two path-specific indirect effects (38). Specifically, we broke 

down the joint indirect effect by LM and epigenetic aging into the indirect effect by the block 

of mediators LM – capturing both pathways education→LM→mortality and 

education→LM→epigenetic aging→mortality –, and the indirect effect by epigenetic aging but 

not LM (see Figure 1B). We implemented a sequential mediation analysis to estimate the latter 

indirect effect as the difference between two joint indirect effects, the first being a joint indirect 

effect by all seven mediators and the second being a joint indirect effect by LM only.  

All analyses were conducted on complete data. For the analyses based on the model in Figure 

1A, we excluded 86 (0.7%) participants with missing information on education or vital status, 

while for the analyses based on the model in Figure 1B, we excluded 771 (5.9%) participants 

for missing information on education, vital status, unhealthy lifestyle, and morbidities. 

Effects on the hazard difference/ratio scale were estimated by implementing a semiparametric 

additive/multiplicative hazard model (see Supplementary Material for more details about the 
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implementation of the IORW method). In sensitivity analyses we evaluated potential deviations 

from the assumption of constant hazard differences and ratios. 

For each cohort, we generated 5,000 bootstrap draws with replacement to derive standard errors 

for the total and indirect effects. 

Finally, we pooled these effects’ estimates via the Hartung-Knapp inverse variance-weighted 

random effect meta-analysis model. Potential variability across cohorts was assessed through 

the inter-cohort variance τ2 and the proportion of inter-cohort variance due to heterogeneity I2, 

which lies between 0 and 100 with higher values corresponding to higher heterogeneity (see 

Supplementary Material). 

To assess the sensitivity of our findings to possible violations of the assumptions underlying 

the identification of the indirect effects, we estimated the indirect effect by epigenetic aging 

biomarkers (Figure 1A) i) when including childhood socioeconomic conditions as a potential 

confounder of the exposure-outcome, exposure-mediator, and mediator-outcome associations; 

ii) for various values of a bias function encoding unmeasured, potentially exposure-induced, 

confounding of the mediator-outcome association (34); and iii) when incorporating a non-

differential measurement error of three years in epigenetic aging biomarkers. To assess the 

sensitivity of our findings to deviations from the assumption of constant hazard 

differences/ratios on age, we estimated the effects by incrementally right censoring survival age 

(that is, simulating the end of follow-up) at 70, 75, 80, and 85 years. Finally, to assess the path-

specific mediation by epigenetic aging biomarkers and not leukocyte composition in blood, we 

ran a sequential mediation analysis based on the model in Supplementary Figure 6. In 

Supplementary Material we provide detailed information about sensitivity analyses and 

childhood socioeconomic conditions. 
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Results 

Characteristics of the populations 

In Table 1, we describe summary statistics for EPIC Italy (EPIC-IT), ESTHER, KORA, MCCS, 

MESA, NICOLA, ROTTERDAM STUDY (RS) and TILDA, separately for men and women. 

There were more men in MCCS (61%) and more women in EPIC-IT (60%), whereas in the 

other six cohorts there was a similar proportion of men and women. The average age at baseline 

ranged from 53 years in EPIC-IT to 70 years in MESA. In all cohorts except MESA, TILDA, 

RS (in men) and NICOLA (in women) there were more individuals with low educational 

attainment than high. The average follow-up time ranged from 5 years in NICOLA to 15 years 

in EPIC-IT. Age-standardized mortality rates were higher for men than women, except in EPIC-

IT where they were similar. For women, they ranged from 52 deaths per 10,000 person-years 

in NICOLA to 262 in ESTHER, while for men mortality rates ranged from 100 in NICOLA to 

400 in ESTHER. Higher mortality rates were associated to higher prevalence of low educated 

men and women (Spearman correlation of 0.55 and 0.76, respectively), and not to median year 

of birth. 

Educational inequalities in all-cause mortality explained by epigenetic aging biomarkers 

Results for educational inequalities are described using two different scales: 1) an absolute scale 

via excess deaths per 10,000 person-years from having low education, and 2) a relative scale 

via hazard ratios for low vs high education. 

Men with a low educational attainment had an excess mortality from all causes of 57 deaths per 

10,000 person-years (95% confidence interval (CI): 38, 76) compared with having high 

educational attainment (Figure 2). Women with a low educational attainment had an excess 

mortality from all causes of 4 deaths per 10,000 person-years (95% CI: -11, 19) compared with 

having high educational attainment. Compared to the mortality rates for women across the 

populations (see Table 1), this inequality was small. On the relative scale, total effects 
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corresponded to hazard ratios of 1.33 (95% CI: 1.12, 1.57) and 1.15 (95% CI: 0.96, 1.37), for 

men and women respectively (Figure 3).  

For men, the portion of the inequalities (total effect described above) explained by epigenetic 

aging (indirect effect) was equivalent to 12 excess deaths per 10,000 person-years (95% CI: 7, 

17) for Horvath DNAmAA, 15 (95% CI: 10, 20) for Hannum DNAmAA, 19 (95% CI: 13, 25) 

for DNAmPhenoAA, and 34 (95% CI: 21, 46) for DNAmGrimAA (Figure 2). The latter 

corresponded to 60% of the educational inequalities in mortality (ratio between indirect and 

total effect). Hazard ratios for indirect effects were small for all but DNAmGrimAA, which 

corresponded to 1.13 (95% CI: 1.07, 1.20) (Figure 3). This corresponded to 43% of the 

educational inequalities in mortality on the relative scale. 

For women, the portion of the inequalities explained by epigenetic aging biomarkers 

corresponded to small negative hazard differences and small positive hazard ratios (Figures 2 

and 3).  

Heterogeneity across cohort-specific estimates was low across total and indirect effects. 

Specifically, the τ2 was 0 and the I2 statistics was 0% in most cases (forest plots in 

Supplementary Material). 

Educational inequalities in all-cause mortality explained by unhealthy lifestyle, morbidities, 

and epigenetic aging biomarkers 

For men, the joint indirect effect explained by unhealthy lifestyle, morbidities and epigenetic 

aging biomarkers en bloc (considered all at the same time) was equivalent to 25 excess deaths 

per 10,000 person-years (95% CI: 12, 39) for Horvath DNAmAA, 27 (95% CI: 15, 40) for 

Hannum DNAmAA, 31 (95% CI: 17, 44) for DNAmPhenoAA, and 35 (95% CI: 20, 50) for 

DNAmGrimAA (Table 2). On the relative scale, the correspondent hazard ratios were 1.10 

(95% CI: 1.04, 1.16) for Horvath DNAmAA, 1.11 (95% CI: 1.05, 1.17) for Hannum DNAmAA, 

1.13 (95% CI: 1.07, 1.19) for DNAmPhenoAA, and 1.15 (95% CI: 1.09, 1.21) for 
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DNAmGrimAA (Table 2). Following the model in Figure 1B and the sequential mediation 

approach described in Methods, the estimated path-specific indirect effect by epigenetic aging 

but not unhealthy lifestyle and morbidities was small for all epigenetic aging biomarkers (Table 

2), with DNAmGrimAA having the largest path-specific effect of 8.8 excess deaths per 10,000 

person-years (95% CI: -4.2, 21.7) and a hazard ratio of 1.04 (95% CI: 0.97, 1.12).  

For women, the proportion of the inequalities explained by unhealthy lifestyle, morbidities and 

epigenetic aging biomarkers was small (see Supplementary Table 3), with the largest hazard 

ratio being 1.06 (95% CI: 0.96, 1.17) for DNAmGrimAA. For this reason, we did not run the 

sequential mediation analysis on the data for women. 

Sensitivity analyses 

Total and indirect effect estimates were similar when including childhood socioeconomic 

conditions as a potential confounder of education-mortality, education-epigenetic aging, and 

epigenetic aging-mortality relationships (Supplementary Table 4). When assessing the 

potential bias due to unmeasured confounding (possibly exposure-induced) of the mediator-

outcome association, the indirect effect accounted for by epigenetic aging biomarkers varied by 

small amounts around the estimates reported in main analysis (Supplementary Figure 1 for 

DNAmGrimAA, other biomarkers not shown). This suggested modest bias from unmeasured 

confounding on the estimated indirect effect by epigenetic aging biomarkers.  

By incorporating a non-differential measurement error of three years in epigenetic aging 

biomarkers, the estimated indirect effects for all epigenetic aging biomarkers were similar to, 

and for DNAmGrimAA slightly larger than, those reported from main analyses 

(Supplementary Figures 2 and 3). This suggested no overestimation of indirect effects 

reported from main analyses due to potential measurement error of epigenetic aging.  

When assessing potential age-dependent hazard differences/ratios by repeating the analyses 

with survival ages right censored at 70, 75, 80, and 85 years, educational inequalities in 
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mortality for men on the absolute scale widened (Supplementary Figure 4) while they were 

reduced on the relative scale (Supplementary Figure 5), particularly between ages 70 to 80 

years. The indirect effect explained by DNAmGrimAA was substantial at all ages examined. 

For the other biomarkers, the indirect effect was small up to age 70 years, and slightly increased 

at later ages. The total and indirect effects for women were small at all ages on the absolute 

scale, while on the relative scale they were small by 75 years and increased afterwards 

(especially for the total effect and the indirect effect by DNAmGrimAA). Overall, this was 

consistent with the findings from the main analyses that educational inequalities in mortality 

were larger for men than for women on both scales, that DNAmGrimAA explained a substantial 

portion of those inequalities for men and a small portion on the relative scale for women.  

In the sequential mediation analysis to assess the path-specific effect not mediated by leukocyte 

composition in blood (Supplementary Figure 6), for men the indirect effect explained by 

leukocyte composition in blood was 13 excess deaths per 10,000 person-years (95% CI: 6, 20), 

increasing to 36 (95% CI: 22, 50) when both leukocyte composition in blood and 

DNAmGrimAA were the mediators (Supplementary Table 5). The path-specific indirect 

effect by DNAmGrimAA but not leukocyte composition was quantified as 21 deaths per 10,000 

person-years (95% CI: 8, 33). For epigenetic aging based on the other biomarkers, this 

increment was small. This suggested that the epigenetic aging biomarker DNAmGrimAA 

captured the differential effect of DNAm levels beyond leukocyte composition in blood. 

 

Discussion 

We quantified the contribution of blood DNAm-based epigenetic aging biomarkers in 

explaining educational inequalities in all-cause mortality using data from eight population-

based cohort studies across seven high-income countries with a total of 13,021 participants. We 

found educational inequalities in mortality were larger for men than for women. For men, 
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epigenetic aging as measured by the DNAmGrimAA biomarker explained a substantial portion 

of educational inequalities in mortality on both the hazard difference and ratio scales. The other 

biomarkers explained a smaller portion and were potentially confounded by leukocyte 

composition in blood. Additionally, we found that this mediation by epigenetic aging 

biomarkers was mostly explained by differential effects of unhealthy lifestyle (current smoking, 

high alcohol intake and BMI, low physical activity) and morbidities (hypertension and 

diabetes). For women, educational inequalities in mortality were small on the hazard difference 

scale and mediation by epigenetic aging biomarkers were small on the hazard ratio scale.  

This is the first study to examine the mediating role of biomarkers of epigenetic aging in 

leukocytes underlying educational inequalities in mortality, by integrating social and lifestyle 

exposures, DNAm profiling from blood, and survival follow-up in men and women from 

several populations across Europe, USA and Australia. The observed substantive educational 

inequalities in all-cause mortality for men, whilst smaller for women, were in line with previous 

reports (4,12). Among the possible explanations for sex differences are that men with less 

education are more likely to engage in unhealthy lifestyle behaviors than less educated women 

(39), or that men with less education are more likely to be unemployed than their female 

counterparts (40). Additionally, in a sensitivity analysis we found that educational inequalities 

in mortality widened as a function of age, in line with a previous large European study of 

371,295 participants (41). 

For men, the portion of educational inequalities in all-cause mortality explained by epigenetic 

aging was substantial, particularly for the biomarker DNAmGrimAA, on both the absolute and 

relative scales, and across survival ages from 70 years onwards. Additionally, in sensitivity 

analysis we found that only DNAmGrimAA captured changes in DNAm patterns independently 

of changes in blood cell composition when mediating the effect of education on mortality. Our 

finding is consistent with a recent Mendelian Randomization (MR) study reporting evidence of 
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a causal association between higher educational attainment and reduced DNAmGrimAA (32), 

and with observational studies showing that DNAmGrimAA outperforms other epigenetic 

aging biomarkers in predicting mortality and age-related clinical phenotypes (23,42). We 

nevertheless acknowledge that there is limited MR evidence of a causal link between 

DNAmGrimAA and mortality (32). However, these MR analyses may lack validity as they used 

weak genetic instruments and were not implemented for men and women separately.  

In addition, we found that the potential path-specific contribution of epigenetic aging to the 

mortality excess rate, independent of unhealthy lifestyle and morbidities, was small. This result 

supported the likelihood that the examined epigenetic aging biomarkers captured most of the 

biological embedding of unfavourable exposures (unhealthy lifestyles and/or morbidities) 

attendant on lower education, eventually leading to an increased mortality rate. As unhealthy 

lifestyle and morbidities are the target of policies promoted by the WHO to reduce the burden 

of premature mortality, our finding strenghtens the case for those policies and suggest they 

could additionally mitigate social inequalities in epigenetic aging, and eventually mortality 

(12). The small residual path-specific effect associated with epigenetic aging only, especially 

for biomarker DNAmGrimAA, might be attributed to unmeasured mediators such as those 

related to employment conditions or psychosocial resources, or to unmeasured unhealthy 

lifestyle factors such as poor quality diet. However, as lifestyle behaviours are known to cluster 

(43), our assessement of the joint mediation by four other unhealthy lifestyle factors potentially 

encompasses mediation by poor diet. Additionally, as DNAmGrimAA was calibrated on 

smoking pack years (23) among other phenotypes, the residual path-specific effect could be due 

to the inability of the smoking intermediate variable examined to capture mediation by smoking 

intensity. Finally, since the estimate for DNAmGrimAA had limited precision with confidence 

intervals ranging from -4 to 19 excess deaths per 10,000 person-years and from 0.98 to 1.13 
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(hazard ratio), future studies with larger sample sizes and more detailed lifestyle-related 

mediators are required to validate our results. 

For women, the portion of educational inequalities in all-cause mortality explained by 

epigenetic aging biomarkers was small and negative on the absolute scale, and small and 

positive on the relative scale. These apparently contrasting results could be related to statistical 

constraints with disaggregating a small hazard difference into direct and indirect portions and 

the available sample size. On the other hand, as educational inequalities on the hazard ratio 

scale were not small, the negligible mediation on the relative scale may either suggest that 

educational inequalities in mortality in women get embedded mostly through alternative 

biological mechanisms – not involving changes in epigenetic aging based on DNAm in blood 

(44) –, or point to unaccounted potential heterogeneity by age at menopause, which has been 

shown to affect epigenetic aging biomarkers (45). Alternatively, it may suggest that the 

epigenetic clock biomarkers should be calibrated separately for men and women to improve 

estimation of individual epigenetic age considering sex differences in aging (46).  

Our work has limitations. Our findings may not be generalized to non-White populations as 

most participants were White and may suffer from differential mortality attrition as participants 

were 64 years old on average. We did not assess the potential moderating effect of country as 

we had mostly one cohort per country in our meta-analysis. Future studies running a different 

statistical multi-cohort approach or gathering a larger number of cohorts per country are needed 

to address this (47). The mediators – DNAm, lifestyle, and morbidities – were measured at a 

single time point, providing only a snapshot of the aging process. Measuring a mediator only 

once may bias its contribution (48), so there is a need for future research to assess repeated 

measurements of DNAm in large samples of population-based cohorts. Finally, although 

education is usually completed years before the occurrence of chronic diseases and morbidities, 

the lack of longitudinal data from early life does not allow us to exclude reverse causality.  
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Unmeasured confounding may have biased our estimates. However, we implemented several 

sensitivity analyses for potentially unmeasured confounding that supported our main findings. 

Additionally, we implemented a sensitivity analysis to accommodate potential measurement 

error affecting epigenetic aging biomarkers, and this analysis supported our main findings.  

We modelled educational attainment with two levels, potentially limiting our ability to capture 

the entire education-related social stratification process, which may underestimate the effects 

on all-cause mortality. We postulated a hypothetical intervention on educational attainment to 

assess educational inequalities in mortality. However, we did not define how such an 

intervention could be implemented for policies. Aiming to raise educational attainment by 

increasing compulsory schooling or subsidizing secondary school may still have imperfect 

compliance and unpredictable effects on mortality. Therefore, our results cannot be interpreted 

as causal effect estimates of specific interventions aiming to reduce mortality by increasing 

educational attainment. Despite this, the effect estimates in the present study were robust and 

support DNAm-based biomarkers of epigenetic aging in leukocytes as surrogate endpoints to 

assess social inequalities in life expectancy. We acknowledge that our results provide 

suggestive empirical evidence but do not provide definitive evidence, as with observational data 

we could not ascertain whether the differential changes in DNAm captured by the biomarkers 

had an active or passive role in driving mortality (18). Future experimental and longitudinal 

studies in both animals and humans are needed to enable more robust causal claims about the 

role of DNAm in immune cells (49).  

A major strength of this study was the use of a counterfactual mediation framework addressing 

issues that may ensue from traditional linear methods as the difference or product mediation 

methods. Specifically, IORW provides unbiased estimates when mediators are categorical, 

when there is an interaction between exposure and mediator(s), or when parameters are non-

collapsible as for the Cox survival model. Additionally, IORW offers a sensitivity analysis to 
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assess the impact of potentially unmeasured confounding of the mediator-outcome relationship 

(34). Lastly, IORW is parsimonious as it does not require specification of a model for the joint 

conditional density of mediators when estimating indirect effects by a block of mediators. 

Notably, we evaluated mediators en bloc to assess the potential path-specific contribution of 

epigenetic aging independent of unhealthy lifestyle and morbidities. This joint mediation is 

advantageous as 1) there is no need for additional modeling assumptions to specify a causal 

order among mediators, specifically a directionality between and within unhealthy lifestyle 

factors and/or morbidities; and 2) is robust to unmeasured potential confounding of mediator-

mediator relationships (35).  

Additional strengths were the inclusion of multiple populations to make empirical evidence 

stronger, and the two-step approach for estimating effects in each cohort first, and then pooling 

these via a random effect meta-analysis. This approach allowed the effect of potential 

confounders to be different in each cohort, without the need of parametrizing it (47). 

Additionally, this approach was useful to consider potential inter-cohort differences determined 

by geography, period, or other. Indeed, various community-level characteristics may have 

affected mortality rates and education levels, and ultimately the effects of interest (50). 

However, our results presented a negligible degree of heterogeneity, suggesting country and 

cohort differences in mortality rate and birth years did not affect our findings. Finally, we 

estimated effects of education on all-cause mortality on both absolute and relative scales, 

thereby providing a complete description of inequalities.  

In conclusion, we have provided empirical evidence about the substantial role of blood DNAm-

based epigenetic aging biomarkers in explaining educational inequalities in all-cause mortality 

for men. Whether epigenetic aging acts as a biomarker of longevity or as a causal molecular 

mechanism of healthy aging remains an open question. Importantly, our results further 

suggested that differential effects of unhealthy lifestyle and morbidities determine this 
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epigenetic embedding of unfavorable educational exposures ultimately leading to increased 

mortality rates. It would be a step too far to suggest that designing policies only around such 

downstream pathways would be the most effective way to reduce social inequalities in 

premature mortality and population health, when in reality whole systems/whole population 

life-course approaches will be required (30,31). 
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Table 1. Characteristics of participants (N=13,021).  

Study Participants 
N (%) 

Age at 
baseline 
Mean 
(SD)  

High/Low education 
N (%) 

Death  
N (%) 

Follow-up 
years  

Mean (SD) 

Mortality 
rate 

EPIC-IT 
Men 
Women 

 
607 (40) 
917 (60) 

 
53.7 (6.7) 
52.9 (7.6) 

 
231 (38) / 376 (62) 
255 (28) / 662 (72) 

 
135 (22) 
147 (16) 

 
14.9 (4.4) 
15.3 (3.5) 

 
151.2 
160.6 

ESTHER 
Men 
Women 

 
870 (48) 
944 (52) 

 
62.7 (6.6) 
62.2 (6.7) 

 
129 (15) / 741 (85) 
53 (6) / 891 (94) 

 
410 (47) 
318 (34) 

 
12.4 (4.9) 
13.8 (4.1) 

 
400.5 
263.3 

KORA 
Men 
Women 

 
840 (49) 
882 (51) 

 
61.3 (8.9) 
60.7 (8.8) 

 
210 (25) / 627 (75) 
127 (14) / 755 (86) 

 
90 (11) 
56 (6) 

 
8.4 (1.7) 
8.7 (1.2) 

 
119.6 
89.3 

MCCS 
Men 
Women 

 
1719 (61) 
1093 (39) 

 
69.2 (7.8) 
67.7 (8.7) 

 
619 (36) / 1100 (64) 
314 (29) / 779 (71) 

 
756 (44) 
333 (30) 

 
12.6 (5.9) 
13.9 (5.6) 

 
248.9 
171.6 

MESA 
Men 
Women 

 
612 (49) 
648 (51) 

 
69.7 (9.3) 
69.5 (9.4) 

 
528 (86) / 84 (14)  
546 (84) / 102 (16)  

 
79 (13) 
58 (9) 

 
6.4 (1.4) 
6.5 (1.2) 

 
95.6 
65.7 

NICOLA 
Men 
Women 

 
963 (49) 
1017 (51) 

 
65.7 (9.4) 
63.5 (9.3) 

 
460 (48) / 503 (52)   
555 (55) / 462 (45) 

 
65 (7) 
31 (3) 

 
4.9 (0.9) 
5.1 (0.7) 

 
99.8 
52.0 

RS 
Men 
Women 

 
622 (44) 
798 (56) 

 
63.6 (8.1) 
64.0 (8.0) 

 
418 (67) / 205 (33) 
314 (39) / 484 (61) 

 
79 (13) 
48 (6) 

 
5.9 (2.2) 
5.8 (2.0) 

 
231.5 
100.9 

TILDA 
Men 
Women 

 
244 (50) 
245 (50) 

 
61.9 (8.1) 
62.1 (8.4) 

 
148 (61) / 96 (39)   
141 (58) / 104 (42)  

 
24 (10) 
11 (5) 

 
7.2 (2.0) 
7.2 (1.9) 

 
145.3 
68.2 

For each cohort study, values for men and women are reported on top and bottom rows, 

respectively. Mean (standard deviation, SD) age at baseline and length of follow-up are reported 

in years. Mortality rates per 10,000 person-years are standardized using total person-years by 

5-year strata of age at baseline. Characteristics are for participants with complete data on 

education and mortality. EPIC-IT (European Investigation into Cancer and Nutrition - Italy); 

ESTHER (Epidemiological investigations of the chances of preventing, recognizing early and 

optimally treating chronic diseases in an elderly population); KORA (Cooperative Health 

Research in the Augsburg Region); MCCS (Melbourne Collaborative Cohort Study); MESA 

(Multi-Ethnic Study of Atherosclerosis); NICOLA (Northern Ireland Cohort for the 

Longitudinal Study of Ageing); RS (Rotterdam Study); TILDA (The Irish Longitudinal Study 

on Ageing).  
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Table 2. Mediation by unhealthy lifestyle, morbidities, and epigenetic aging in men.  

Effects Hazard difference 

(95% CI) 

Hazard ratio 

(95% CI) 

Total effect 55 (35, 74) 1.32 (1.11, 1.56) 

Indirect effect by LM  26 (14, 37) 1.10 (1.05, 1.16) 

Indirect effect by LM + Horvath DNAmAA 

Indirect effect by Horvath DNAmAA but not LM 

25 (12, 39) 

-0.8 (-13.6, 11.9) 

1.10 (1.04, 1.16) 

1.00 (0.93, 1.07) 

Indirect effect by LM + Hannum DNAmAA 

Indirect effect by Hannum DNAmAA but not LM 

27 (15, 40) 

1.5 (-11.2, 14.3) 

1.11 (1.05, 1.17) 

1.01 (0.94, 1.08) 

Indirect effect by LM + DNAmPhenoAA  

Indirect effect by DNAmPhenoAA but not LM 

31 (17, 44) 

4.7 (-8.3, 17.6) 

1.13 (1.07, 1.19) 

1.02 (0.95, 1.10) 

Indirect effect by LM + DNAmGrimAA  

Indirect effect by DNAmGrimAA but not LM 

35 (20, 50) 

8.8 (-4.2, 21.7) 

1.15 (1.09, 1.21) 

1.04 (0.97, 1.12) 

Absolute (hazard difference per 10,000 person-years) and relative (hazard ratio) size of total 

effect of low (vs high) educational attainment on all-cause mortality, and of indirect effects by 

unhealthy lifestyle and morbidities (LM) and epigenetic aging biomarkers (Horvath DNAmAA, 

Hannum DNAmAA, DNAmPhenoAA, and DNAmGrimAA). All effects are pooled estimates 

of single cohort’s effects through an inverse variance-weighted meta-analysis model. The total 

number of participants/deaths across cohorts was 6,156 / 1,586. 
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Figure legends 

  

 

Figure 1. Mediation models. For the sake of simplicity, we do not include confounders (age 

and sex). Highest educational attainment represents the exposure and all-cause mortality the 

outcome. A) Adulthood DNA methylation-based epigenetic aging in blood was the investigated 

mediator. B) Adulthood unhealthy lifestyle (low physical activity, high alcohol intake, current 

smoking, and high BMI), morbidities (diabetes and hypertension), and epigenetic aging in 

blood were the mediators. Unhealthy lifestyle and morbidities were considered mediators en 

bloc (considered all at the same time). In the hypothesized mediation model, unhealthy lifestyle 

and morbidities influence epigenetic ageing (not vice versa). 

 

 

Figure 2. Educational inequalities and mediation by epigenetic aging biomarkers on the 

absolute scale. Hazard difference per 10,000 person-years and 95% confidence intervals (CI) 

are for the total effect of low (vs high) educational attainment on all-cause mortality, and for 

indirect effect by epigenetic aging biomarkers (Horvath DNAmAA, Hannum DNAmAA, 

DNAmPhenoAA, and DNAmGrimAA). All effects are pooled estimates of single cohort’s 

hazard differences (absolute scale) through an inverse variance-weighted meta-analysis model. 

The total number of participants/deaths across cohorts was 6,477 / 1,638 for men and 6,544 / 

1,002 for women. 
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Figure 3. Educational inequalities and mediation by epigenetic aging biomarkers on the 

relative scale. Hazard ratios (HRs) and 95% confidence intervals (CI) are for the total effect of 

low (vs high) educational attainment on all-cause mortality, and for indirect effects by 

epigenetic aging biomarkers (Horvath DNAmAA, Hannum DNAmAA, DNAmPhenoAA, and 

DNAmGrimAA). All effects are pooled estimates of single cohort’s hazard ratios (relative 

scale) through an inverse variance-weighted meta-analysis model. The total number of 

participants/deaths across cohorts was 6,477 / 1,638 for men and 6,544 / 1,002 for women. 


