The Journal of Systems & Software 182 (2021) 111069

Contents lists available at ScienceDirect

SOFTWARE

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

RepliComment: Identifying clones in code comments™ R

Check for
Updates

Arianna Blasi ", Nataliia Stulova ¢, Alessandra Gorla®, Oscar Nierstrasz
4 USI Universita della Svizzera italiana, Switzerland

b IMDEA Software Institute, Spain

¢ University of Bern, Switzerland

ARTICLE INFO ABSTRACT

Article history:

Received 23 July 2020

Received in revised form 23 June 2021
Accepted 22 August 2021

Available online 7 September 2021

Code comments are the primary means to document implementation and facilitate program com-
prehension. Thus, their quality should be a primary concern to improve program maintenance. While
much effort has been dedicated to detecting bad smells, such as clones in code, little work has focused
on comments. In this paper we present our solution to detect clones in comments that developers
should fix. RepliComment can automatically analyze Java projects and report instances of copy-and-
paste errors in comments, and can point developers to which comments should be fixed. Moreover, it
can report when clones are signs of poorly written comments. Developers should fix these instances
too in order to improve the quality of the code documentation. Our evaluation of 10 well-known open
source Java projects identified over 11K instances of comment clones, and over 1,300 of them are
potentially critical. We improve on our own previous work Blasi and Gorla (2018), which could only
find 36 issues in the same dataset. Our manual inspection of 412 issues reported by RepliComment
reveals that it achieves a precision of 79% in reporting critical comment clones. The manual inspection
of 200 additional comment clones that RepliComment filters out as being legitimate, could not evince

Keywords:

Code comments
Software quality
Clones

Bad smell

any false negative.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

It is standard practice for developers to document their
projects by means of informal documentation in natural language.
The Javadoc markup language, for instance, is the de-facto stan-
dard to document classes and methods in Java projects. Similar
semi-structured languages are available for other programming
languages. Given that many projects have code comments as the
only documentation to ease program comprehension, their qual-
ity should be of primary concern to improve code maintenance.
The quality of code comments is important also because there
are many techniques that use comments to automate software
engineering tasks, such as generating test cases and synthesizing
code (Goffi et al., 2016; Tan et al., 2012; Zhai et al., 2016; Zhou
et al.,, 2017). Without comments of high quality, the effectiveness
of these techniques cannot be guaranteed.

Our research roadmap is to develop techniques to support
developers in identifying and fixing issues that affect the quality of
comments. As a starting point of our research, we have previously
proposed RepliComment-V1,! a technique to identify and report

™ Editor: Raffaela Mirandola.
* Corresponding author.
E-mail address: arianna.blasi@usi.ch (A. Blasi).

1" We will refer to the original version of RepliComment as RepliComment-V1,
to distinguish it from the improved version we present in this paper.

https://doi.org/10.1016/j.jss.2021.111069

comment clones (Blasi and Gorla, 2018). Our main hypothesis is
that clones in comments may be the result of bad practice, and
just as clones in code, they should be identified and fixed.

Comment clones can highlight various issues: They may be
instances of copy-and-paste errors, and therefore comments may
not match their corresponding implementation. They may simply
provide poor information, which may not be useful to under-
stand the implementation. Our analysis shows that most of the
time comment clones are signs of documentation that could be
improved.

Corazza et al. conducted a manual assessment of the coher-
ence between comments and implementation, and found in-
stances of comment clones (Corazza et al., 2016). Similarly, Ar-
naoudova et al. (2010) found some comment clone practices in
their study about Linguistic Antipatterns in software. They report
that 93% of interviewed developers considered documentation
clones to be a poor or very poor practice. These studies show that
the comment clone problem exists and is relevant for developers.
Moreover, Aghajani et al. (2020) suggest development of NLP-
based techniques to identify cloned content, and suggest fixes
in software documentation as a priority task within the software
engineering community. It is finally worth noting that, in the code
clone detection community, techniques that attempt to detect
code similarity and code clones by means of API documentation
are emerging (Nafi et al., 2019, 2018). For such techniques cloned

0164-1212/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://doi.org/10.1016/j.jss.2021.111069
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111069&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:arianna.blasi@usi.ch
https://doi.org/10.1016/j.jss.2021.111069
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Blasi, N. Stulova, A. Gorla et al.

documentation would be highly deceptive, by falsely identifying
functional similarities. We thus believe that approaches to au-
tomatically detect and fix problematic comment clones would
provide an important service to the community.

We have previously presented RepliComment-V1 (Blasi and
Gorla, 2018), a technique to automatically identify comment
clones that may be symptoms of issues that developers want to
fix. RepliComment-V1 suffers from several limitations. First and
foremost it reports all found comment clones, except for few
cases that trivial heuristics filter out. This causes many legitimate
comment clones to be reported as needing to be fixed, while
they are in fact just false positives. Moreover, RepliComment-V1
cannot pinpoint which comments are the original, correct ones
and which ones are the clones to be fixed. In this paper we
address these limitations. We present:

e new heuristics to filter out most false positives. Specifically,
the new heuristics can accurately filter out 61,459 false posi-
tives, which amounts to +8% more cases that RepliComment
successfully filters out compared to RepliComment-V1 (Blasi
and Gorla, 2018).

e a novel implementation that looks not only for clones in

method comments, but also in field comments.

a parameterized analysis that looks for clones in various

scopes of a Java project: intra-class, inter-class within the

same class hierarchy, and inter-class across the entire
project.

e a new component to classify comment clones by severity.

e a natural language processing technique to analyze the com-
ment clones to pinpoint which comment block should be
fixed.

We use the newly improved RepliComment to analyze the
code base of 10 well-established Java projects. Our evaluation
highlights that even solid and well-known projects contain com-
ment clones. Specifically, we highlight over 11K comment clones,
of which over 1300 are critical and should be analyzed and
fixed by developers with high priority to improve the quality of
documentation. A qualitative analysis on a small sample of the
results show that RepliComment achieves a precision of 79%, and
the clones that RepliComment filters out are true false positives.
Thus RepliComment can be trusted by developers to find and fix
comment clone issues.

The remainder of this paper is structured as follows: Section 2
presents some real examples of comment clones, which may
identify issues, or may be legitimate cases. Section 3 describes
RepliComment and all its internal components to identify, filter
and analyze comment clones. Section 4 presents the results of the
evaluation of our extended technique, and a direct comparison
with Blasi and Gorla (2018). Section 5 discusses some related
work, and Section 6 concludes and discusses the future research
direction of this work.

2. Comment clones

Javadoc is a semi-structured language to document a class,
its declared fields and its methods. Comments related to method
declarations usually have a general description of their function-
ality, and then include specific tags describing each parameter,
the return value and thrown exceptions, in case there are any.

Javadoc comments are often the only documentation available
to understand the offered functionalities and the implementation
details of a Java project. Therefore, their quality is important.
Clones in comments, just as in code, may be a sign of poor
documentation quality, and therefore should be identified and
reported.

The Journal of Systems & Software 182 (2021) 111069

According to the state of the art taxonomy (Roy and Cordy,
2007), code clones can be instances of Type I, i.e., exact copy-and-
paste clones, up to Type IV clones, i.e., semantically equivalent
code snippets. Comment clones can be classified according to the
same taxonomy as follows:

Type I comment clone: The comment of a code element, i.e., a
method, a class or a field, is an exact copy of the comment
of another code element except for whitespace and other
minor formatting variations.

Type Il comment clone: The comment of a code element is an
exact copy of the comment of another code element except
for identifier names.

Type IIl comment clone: The comment of a code element is an
exact copy of the comment of another code element except
for some paragraphs. For instance, the Javadoc comment of
a method has the very same free text of another method,
but the @param, @throws, or @return tag descriptions
differ. Conversely, tag descriptions may be the same, and
Javadoc comments may differ in the free text description
of the method.

Type IV comment clone: The comment of a code element is lex-
ically different, but semantically equivalent to

the comment of another code element.

The fundamental difference with respect to code clones is that
comment clones of any type are not necessarily an issue, and
therefore they should not always be reported. Comment clones
should be reported when they are the result of copy-and-paste
errors, and the copied comment does not match the implemen-
tation of its corresponding code entity. Also, comment clones
may exist because of the poor practice of developers of using
generic, uninformative descriptions for multiple code elements
in the same project. However, comment clones may also exist
for justified reasons, for instance in case of method overloading,
where the general description of the method is meant to be the
same. Such instances of comment clones should not be reported.

RepliComment aims to find problematic Type I and Type III
comment clones affecting methods and fields within the same
class, across classes within the same hierarchy, or across classes
within the whole project. RepliComment does not report Type II
clones since comments differ in identifiers, and therefore likely
document their corresponding piece of software correctly. We
now present some real examples of comment clones that Repli-
Comment can deal with.

A critical comment clone is that of a comment that is copied
from a correctly documented method or field, and erroneously
pasted to another code entity whose functionality differs com-
pletely. One example of this issue exists in the Google Guava
project in release 192:

In this example (see Sample 1), the Javadoc @return tag of
method matchesNoneOf() is a clone of method matchesAllOf(),
offered by the same class CharMatcher. It is easy to see that the
return comment of the second method does not match the se-
mantics of its name, while it does match the semantics of match-
esAIlOf(). This clone is clearly an example of a copy-and-paste
error. It is conceivable that the developers first implemented
method matchesAllOf(), and later implemented matchesNoneOf()
starting from a copy of the first method. The two methods have
a similar purpose, i.e., to filter a collection of elements, however
in the first case the filter returns all elements matching a given
pattern, while in the second case it returns those that do not
match the given pattern.

2 http://google.github.io/guava/releases/19.0/api/docs/com/google/common/
base/CharMatcher.html.

http://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/CharMatcher.html
http://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/CharMatcher.html

A. Blasi, N. Stulova, A. Gorla et al.

1] Ak

2| * @return true if this matcher matches every character in the
3| * sequence, including when the sequence is empty.

4| %/

5| public boolean matchesAllOf(CharSequence sequence) { ... }

1| Ak

2| * @return true if this matcher matches every character in the
3| * sequence, including when the sequence is empty.

4| =/

5| public boolean matchesNoneOf(CharSequence sequence) { ... }

Sample 1: Comment clone due to copy-and-paste error.

Comment clones may also be examples of poor documenta-
tion that could be improved to offer a better understanding for
developers. See the following example from a non-public class in
the Apache Hadoop project release 2.6.5:

/s

% @return true or false

*/

@InterfaceAudience.Public

@InterfaceStability.Evolving

public synchronized static boolean isLoginKeytabBased() throws

I0Exception
{...}

Vets

% @return true or false

*/

public static boolean isLoginTicketBased() throws IOException {

-}

~ AU WN =

AW N =

Sample 2: Comment clone of poor information.

These two methods offered by class UserGrouplnformation
have exactly the same comment regarding the postcondition.
It states that the methods return either true or false, which
is correct. However, the documentation is uninformative, since
any boolean method obviously returns either true or false. A
more useful documentation should state what the boolean value
represents, e.g.,, whether it is a system component status, or
the result of a conditional check. Such clones are symptoms of
documentation that could be improved, and thus RepliComment
aims to report them as well.

Not all comment clones are necessarily an issue to report to
developers. They may occur for legitimate reasons, such as when
two methods offer the same functionality. The following example
comeBS from class SolrClient of the Apache solr library release
7.1.0°:

frx

2| * Deletes a single document by unique ID

3| x @param collection the Solr collection to delete the document
from

4| x @param id the ID of the document to delete

50 x/

6| public UpdateResponse deleteByld(String collection, String id) { ... }

—

1| A

2| * Deletes a single document by unique ID

3| x @param id the ID of the document to delete

4| x/

5| public UpdateResponse deleteByld(String id) { ... }

Sample 3: Legitimate comment clone due to method overloading.

The clone in this case affects the free text in the Javadoc
comments. Methods deleteByld(), however, are an example of

3 https://lucene.apache.org/solr/7_1_0//solr-solrj/org/apache/solr/client/solrj/
SolrClient.html#deleteByld-java.lang.String-java.lang.String-.

The Journal of Systems & Software 182 (2021) 111069

function overloading. Given that they have similar purposes, it
is legitimate for their method descriptions to be identical. The
difference between these two methods, which lies in their param-
eter lists, is properly documented through the custom @param
tags.

3. RepliComment components

Fig. 1 shows at a high level the main components of Repli-
Comment and its workflow. RepliComment analyzes an entire
Java project, searching for code clones across various scopes.
By default it looks for clones within the same class (i.e., intra-
class), however, upon changing the configuration, it can search
for clones also across all Java classes, either within the same
hierarchy (i.e., intra-hierarchy) or across the whole project (i.e.,
inter-class).

The Parser component (Section 3.1) analyzes the input Java
file and for each method declaration it produces a tuple of the
method signature and corresponding Javadoc comment. Simi-
larly, it produces a tuple for each class field declaration and its
corresponding Javadoc comment. Next, the Clone detector com-
ponent (Section 3.2) takes the tuples produced by the Parser and
uses several simple syntactic heuristics to filter out legitimate
clones, marking the rest as being non-legitimate. Finally, the Clone
analyzer component (Section 3.3) investigates the non-legitimate
comment clones. For each case the Clone analyzer computes the
severity level of the clone and uses this to further categorize
the clone. Both HiGH and MILD severity levels indicate a non-
legitimate comment clone, such as those resulting from copy-
and-paste errors (as in Sample 1), or containing poor information
(as in Sample 2), respectively. A Low severity level can indicate
a legitimate clone (as in Sample 3), or a false positive result
of the analysis, i.e., a case where comments are not actually
clones of one another. We now describe each core component of
RepliComment in more detail.

3.1. Parser

The Parser component of RepliComment takes as input a single
Java file, identifies the list of declared methods and field, and
stores all method signatures and field names. For each method
and field it then identifies the corresponding Javadoc comment
and parses it, extracting the following comment parts, if present:

free text: text in natural language, usually tag-free, typically
present at the beginning of the block comment, providing
a high-level description of the method or of the field.

@param tag: a method comment block describing a single spe-
cific parameter.

@return tag: a method comment block describing the return
value of the method, when not void.

@throws tag: a method comment block describing possible ex-
ceptional behaviors. @exception tags are treated just like
@throws tags.

The Parser is built using the JavaParser library.* It includes a
pre-processing step that cleans each Javadoc paragraph. Specif-
ically, it removes all whitespace as well as HTML code and any
other semantically irrelevant Javadoc tags such as @see and
@link. Such tags are not relevant for RepliComment, since they do
not help in identifying which code identities the comment refers
to, and are therefore discarded. The Parser outputs a list of tuples
of field names and method signatures, and their respective pre-
processed Javadoc comments, where each comment is reduced to
a list of labeled comment parts described above.

4 https://github.com/javaparser/javaparser.

https://lucene.apache.org/solr/7_1_0//solr-solrj/org/apache/solr/client/solrj/SolrClient.html#deleteById-java.lang.String-java.lang.String-
https://lucene.apache.org/solr/7_1_0//solr-solrj/org/apache/solr/client/solrj/SolrClient.html#deleteById-java.lang.String-java.lang.String-
https://github.com/javaparser/javaparser

A. Blasi, N. Stulova, A. Gorla et al.

<comment,
signature>

tuples

RepliComment

Clone
detector

labeled
clones

clone
severity

—

The Journal of Systems & Software 182 (2021) 111069
HIGH

Clone
analyzer
MILD

non-legitimate Low

legitimate

Fig. 1. RepliComment components.

3.2. Clone detector

The Clone detector aims to identify likely comment clones
and distinguish the legitimate and non-legitimate clones. It loops
through all the method and field declarations identified by the
Parser and looks for Type I clones of whole Javadoc comments. It
then proceeds to detect type III clones, i.e., clones of comment
parts across different methods. Indeed, a single comment part
may be cloned while the rest of the comment is not. In particular,
a single comment part may be the free-text summary preceding
the Javadoc tags, a @param tag, the @return tag, or a @throws or
@exception tag.

The Clone detector would thus flag a potential comment clone
if two methods (or fields) use the same comment to describe the
method (or field), either entirely or just in some parts. However,
such a naive check is prone to false positives. Hence, this compo-
nent uses several heuristics to filter out false positives and only
flag real clone suspects. The Clone detector operates in two main
steps:

1. It takes the tuples produced by the Parser (Section 3.1),

and compares each comment block with the same type of
comment blocks of all the other methods withing the same
file or across files, according to the desired scope.
First, it compares whole Javadoc blocks to check whether
there are whole comment clones documenting methods.
This differs from RepliComment-V1 (Blasi and Gorla, 2018),
which never looked for whole comment clones. Then, it
proceeds with the comparison of single comment parts: it
compares each @param tag comment with other @param
comments and so on. For fields, the comment always con-
sists of the free-text part only.

2. When the Clone detector finds that two or more clones of
as Javadoc comment, it checks whether the clone might be
legitimate or non-legitimate. RepliComment never consid-
ers whole Javadoc comment clones to be /egitimate, and we
explain why in Section 3.3.

RepliComment-V1
considered a cloned comment part to be potentially /legiti-
mate if it satisfied any of the following heuristics:

e the clone is found in methods with the same (over-
loaded) names,

e the comment describes the same exception type, or

e the clones affect parameters that have the same name.

RepliComment now additionally employs the following
heuristics:

e An exception comment must consist of at least 4
words and must not match a generic exception de-
scription pattern (recognized via a regex). We have
observed that three words are insufficient to ex-
press the conditions under which an exception is
thrown; furthermore certain generic patterns, such as
“@throws exception for any kind of error”, are common.

e The clone concerns @return tags of methods with the
same, non-primitive return type. This is useful for fil-
tering out APIs with methods that always update the
class instance and return it, for which it is legitimate
to have comments such as “@return a reference to
this”.

e Constructors without parameters are allowed to have
cloned comments, since they can have very generic
comments, according to the official Oracle guide to
writing good Javadoc documentation.”

e Fields with same name in different classes are allowed
to have the same comment.

Finally, clones processed by the heuristics are stored in a csv
report file as tuples with the following items:

the fully qualified name of the class,

the signature of the first method or field,

the signature of the second method or field,

the type of cloned Javadoc comment part (i.e., whole, free-
text, @param, @return or @throws),

e the cloned text, and

e a value indicating if the clone is considered legitimate or
rather non-legitimate by the Clone detector.

The csv report is the input to the next component, which
performs an analysis of the clone suspects to determine their
severity level.

3.3. Clone analyzer

The Clone analyzer (Stulova et al., 2020) takes as input the csv
file produced by the Clone detector and performs an analysis only
on comment clones flagged as non-legitimate. Clones flagged as
legitimate are ignored, trusting the judgment of the heuristics
described in Section 3.2. This way, the heuristics act as a filter on
all the possible cases of comment clones that can be encountered
in a Java project and may contain a high number of false positives.
Since the Clone analyzer needs to perform a careful analysis on
each suspect, the heuristic filter helps to significantly reduce the
computational effort.

Clone analysis algorithm. We now describe how the Clone ana-
lyzer computes its analysis. We present its pseudo-code in algo-
rithm 1, specifically referring to method comments since they
are the most complex to deal with. When dealing with field
names instead of method signatures, the reasoning about simi-
larity thresholds is the same.

As we see in line 3 of algorithm 1, the Clone analyzer first
checks whether the clone under analysis is a whole Javadoc
comment clone. Such types of clones need special consideration.
As the official Oracle guide to the Javadoc tool explicitly specifies,

5 https://www.oracle.com/technical-resources/articles/java/javadoc-
tool.html#defaultconstructors.

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html#defaultconstructors
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html#defaultconstructors

A. Blasi, N. Stulova, A. Gorla et al.

Algorithm 1 Clone analyzer

1: [** Given a pair of method signatures and the cloned Javadoc comment, return
the severity score of the clone as a warning */

2: function ANALYZE-COMMENT-CLONES(methodSignature1,
cloned]Javadoc)

methodSignature2,

3 if clonedJavadoc is of type WHOLE_JAVADOC_BLOCK then

4 if 1S-OVERLOADING(methodSignature1, methodSignature2) then
5: REPORT(Please document parameter)

6: WARN(MILD_SEVERITY) & EXIT

7 else

8 REPORT(Not overloading: fix these comments)

9 WARN(HIGH_SEVERITY) & EXIT

10: m1Sim = COMPUTE-SIMILARITY(methodSignature1, clonedJavadoc)
11: m2Sim = COMPUTE-SIMILARITY(methodSignature2, clonedJavadoc)
12: if m1Sim < MIN-THRESHOLD and m2Sim < MIN-THRESHOLD then
13: REPORT(Please fix poor info comment)

14: WARN(MILD_SEVERITY)

15: if m1Sim > 0.50 and m2Sim > 0.50 then

16: REPORT(This looks like a false positive)

17: WARN(LOW_SEVERITY)

18: if | m1Sim - m2Sim| > DIFF-THRESHOLD then

19: REPORT(Please fix method with lowest sim score)

20: WARN(HIGH_SEVERITY)

21: else

22: REPORT(Fix these comments)

23: WARN(HIGH_SEVERITY)

developers should “write summary sentences that distinguish over-
loaded methods from each other”.® Hence, when a whole Javadoc
comment is cloned, RepliComment assumes there is some sort of
issue no matter if the methods are overloaded or not. In other
words, whole Javadoc comment clones are never considered /e-
gitimate by the Clone detector, and are never labeled as Low
severity issue by the Clone analyzer. In case of overloading, the
Clone analyzer flags such an issue as MILD severity, and Repli-
Comment will report the problem suggesting the developer to
correctly document the difference in the parameters. Otherwise,
the Clone analyzer flags the issue as HIGH severity. We assume
that there are major issues to fix if unrelated methods have the
same comment.

In lines 10 and 11 of algorithm 1, the Clone analyzer computes
the similarity scores between the cloned comment and each of
the involved methods (we explain the details of this computation
below). The similarity scores are used to determine whether the
clone is a Low, MILD or HIGH severity issue:

e Both methods can achieve a very low similarity score with
respect to the cloned comment (line 12): the assumption
is that the comment is so generic that it does not docu-
ment well enough either of the methods. We set the MIN-
THRESHOLD value to 0.25, based on empirical evidence that
this value is the best balance to detect correct matches,
while limiting false positives. This is a MILD severity issue,
and the Clone analyzer requires the developer to add more
detail to the comment for those methods.

e Both methods can achieve a very high similarity score with
respect to the cloned comment (line 15): in this case the
comment looks good enough for both. These cases were
not filtered out by the heuristics of the Clone detector in
Section 3.2, but look like false positives nonetheless. Thus,
they are reported to be Low severity issues by the Clone
analyzer.

e If none of the above cases hold, then first we consider
the case where one method achieves a significantly better
similarity score than another. The method that achieves the
highest similarity score is assumed to be the real owner of
the comment, while the other is reported to be the victim of

6 https://www.oracle.com/technical-resources/articles/java/javadoc-
tool.html#doccommentcheckingtool.

The Journal of Systems & Software 182 (2021) 111069

a mistaken copy-paste. We set the DIFF-THRESHOLD value to
0.1, once again due to empirical evidence. If both methods
have very close similarity scores, both comments are re-
ported as needing correction. Comment clones for which the
owner is clearly distinguishable tend to be Type III clones,
such as the one in Sample 2. Indistinguishable comments,
instead, mostly belong to Type I clones, i.e. whole comment
clones. Such comments are not overly generic, but at the
same time, they are not informative enough to highlight the
distinction between two different code elements. This case
is reported as a HIGH severity issue, urging the developer to
fix the wrongly-documented method(s).

We now expand on the description of how a similarity score
between a method and its comment is computed.

Method-comment similarity computation. We take the full method
signature and the part of the method comment marked by Repli-
Comment as a likely clone and compute the similarity between
them based on natural language cues present in each of them.
Our underlying assumption here is that both the comment text
and the identifiers in the signature (method name, parameter
names, type identifiers etc..) are written in the same language.
This allows us to rely on natural language processing (NLP) tech-
niques to extract vocabularies of each entity, and use the similar-
ity of vocabulary-based representations as a proxy for method-
comment similarity.

The first step in the similarity computation is source text
processing. For text in comment parts it means identifying full
period-terminated sentences using the Stanford CoreNLP toolkit
(Manning et al., 2014), in case the comment consists of more than
one sentence. Next, for each sentence we split all source code
identifiers present into their individual constituents and expand
all detected abbreviations. We selected an existing list of com-
mon English abbreviations, and extended it with widely-known
abbreviations used in IT and Java projects. Our custom abbrevia-
tion expansion list can be straightforwardly substituted by other
expansion lists, such as those from the dataset of Newman et al.
(2019). Finally, we reduce each word to its stem, and we filter out
common English stop words using the “Default English stopwords
list”.” After this step we transform the resulting text into a bag-
of-words (BoW) representation. For the method signatures the
pre-processing steps are similar, though in this case we start
directly with identifier splitting.

After we have obtained two bag-of-words representations, we
evaluate their similarity based on the occurrence of common
words, for which we employ the cosine similarity measure. For
a pair of BoWs we consider them to be related if the similarity
measure value is above a threshold of 0.25 (MIN-THRESHOLD value
in the Algorithm 1), on a scale from 0 (no similarity at all) to 1
(exact similarity).

Clone severity computation. After computing the similarity scores,
RepliComment assigns a degree of severity to the issue (Low,
MILD, or HiGH) as described previously. Finally, RepliComment
exports the results of its evaluation to a text (.txt) report file with
a separate entry for each issue category. Each file reports:

1. the record in the csv file of clone suspects

2. the specific Java class the clone is from

3. a description of the issue(s) encountered

4, fix suggestions, which differ depending on the type of
issue:

7 https://www.ranks.nl/stopwords.

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html#doccommentcheckingtool
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html#doccommentcheckingtool
https://www.ranks.nl/stopwords

A. Blasi, N. Stulova, A. Gorla et al.

(a) in the case of a HIGH severity issue, RepliComment
points out which field or method is the one more
related to the cloned comment, suggesting to fix the
documentation of the other field or method
in the case of a MILD severity issue, RepliComment
warns the user that the comment cloned across dif-
ferent fields or methods seems too generic, hence
suggesting to fix each comment by providing more
detail
(c) in the case of a Low severity issue, RepliComment
warns the user of the clone found, but specifies that
she may want to ignore the issue because it is likely
a false positive (legitimate clone)

—
o
—

A portion of the txt file reporting HIGH severity issues looks
like listing 1:

Listing 1: RepliComment Results file example

1| ———— Record #53 file:2020_JavadocClones_log4j.csv ————
In class: org.apache.log4j.1f5.LogRecord

LS}

4| 1) The comment you cloned:"(@return)The LogLevel of this record.”
seems more related to <LogLevel getLevel()> than <Throwable
getThrown()>

(o]

8| It is strongly advised to document method <Throwable getThrown()> with
a different, appropriate comment.

©

11| ———— Record #152 file:2020_JavadocClones_hadoop—hdfs.csv ————
12| In class: org.apache.hadoop.hdfs.util.LightWeightLinkedSet

14| 1) The comment you cloned:"(@return)first element"
15| seems more related to <T pollFirst()> than <List polIN(int n)>

17| It is strongly advised to document method <List polIN(int n)> with
18| a different, appropriate comment.

4. Evaluation

In our evaluation we aim to understand the accuracy of Repli-
Comment in identifying and categorizing comment clone issues.
We also conduct a qualitative analysis of the results to inves-
tigate whether the issues reported as HIGH severity, which are
supposed to be the most worrisome comment clones, are indeed
critical documentation issues that developers should fix. Finally,
we compare the clone issues reported by RepliComment and by a
code clone detection tool to study the correlation between code
and comment clones.

For our empirical evaluation we select and analyze 10 projects
among the most popular and largest repositories on GitHub, as
listed in Table 1. Specifically, in our study we include projects
developed in Java, since RepliComment targets this programming
language, and these projects include a considerable number of
classes documented with Javadoc. We selected these projects
because they belong to different companies and developers (e.g.,
Google, Apache, Eclipse), and thus the study is not biased towards
specific documentation styles.

4.1. Evaluation protocol and research questions

We resort to the official GitHub API® to obtain the source code
of each subject listed in Table 1. For each project repository we
run RepliComment on its source code to identify comment clones
of different severity and category, and then further examine the
results manually to assess their quality.

The manual analysis of the results involves the output of the
Clone detector, as described in Section 3.2, as well as the output
of the Clone analyzer described in Section 3.3, which reports

8 https://developer.github.com/v3/.

The Journal of Systems & Software 182 (2021) 111069

Table 1

Subjects used for the evaluation of RepliComment. For each subject we report
the number of implemented classes, the lines of Java code and the stars on
GitHub as of July 2020.

Project Classes LOC Github %
elasticsearch-6.1.1 2906 300k 50k
hadoop-common-2.6.5 1450 180k 11k
vertx-core-3.5.0 461 48k 11k
spring-core-5.0.2 413 36k 38k
hadoop-hdfs-2.6.5 1319 262k 11k
log4j-1.2.17 213 21k 718
guava-19.0 469 70k 38k
rxjava-1.3.5 339 35k 43k
lucene-core-7.2.1 825 103k 4k
solr-7.1.0 501 50k 4k
Total 1665 1105k

the comment clones that deserve the developer’s attention and
classifies them by different severity levels. We analyze the in-
termediate output of the Clone detector to evaluate its ability
to discard legitimate cases and discerning them from comment
clones that deserve further analysis, the non-legitimate cases.
We look into the final output, instead, to evaluate the ability of
RepliComment to correctly classify comment clones.

Note that both outputs contain a high number of comment
clones, as we will show in later sections. For this reason, we
conduct our manual inspection on random samples of cases. To
randomly select a sample to evaluate manually, we grep all the
Record # lines, such as lines 1 and 11 in listing 1, and then shuffle
the desired number via the shuf GNU core utility. Details on
the sizes of our samples follow in the respective answers to the
research questions.

We now outline the research questions of our study.

e RQI: Are comment clones prevalent in popular Java projects?
We perform a quantitative study on all the classes of all the
projects listed in Table 1 to motivate this work. We report
the numbers of HiGH, MILD and Low severity cases that we
find in each subject, and we report the results in Section 4.2.

e RQ2: How accurate is RepliComment at differentiating legiti-

mate and non-legitimate comment clones?
It is essential that RepliComment be able to differentiate
between clones that developers should analyze and fix (non-
legitimate clones), and clones that are /egitimate. We manu-
ally analyze 225 samples of the HigH, MILD and Low severity
cases that RepliComment reports as non-legitimate to assess
whether they are false positives. Moreover, we manually
analyze 200 samples among the cases that RepliComment
flags as legitimate to assess if they are false negatives. We
report the results of this evaluation in Section 4.3.

e RQ3: How effective are the newly-introduced heuristics at fil-
tering our legitimate cases?

RepliComment-V1 (Blasi and Gorla, 2018) did not include
all the heuristics and further improvements that we now
implement. We evaluate how effective they are at reducing
the number of false positives against the RepliComment-V1
implementation, and we present these results in Section 4.4.

e RQ4: How accurate is RepliComment at classifying the severity

of non-legitimate comment clones?
We examine the manually analyzed samples of the previous
research question, focusing on how accurate RepliComment
is at flagging HiGH, MILD and Low severity cases as such. The
results of this evaluation appear in Section 4.5

e RQ5: Can RepliComment correctly identify the cloned vs. the
original comment?

When RepliComment finds an instance of a non-legitimate
comment clone due to a copy-paste error, it reports which

https://developer.github.com/v3/

A. Blasi, N. Stulova, A. Gorla et al.

The Journal of Systems & Software 182 (2021) 111069

Table 2

Quantitative results of the method comment clones reported by RepliComment on each analyzed project.
Project Low MiLD HicH Tot. issues Legit

CcP wC CP wWC CP wWC

elasticsearch 111 0 23 567 30 184 915 2221
HIERARCHY +4 +39 +2 +21 0 +6 +72 +51
INTER-CLASS +924 +28857 +138 +82 +117 4899 +31017 +4323
hadoop-common 100 0 75 173 28 4 380 3859
HIERARCHY +2 +15 0 0 0 +1 +18 +97
INTER-CLASS +64 +84 +569 +17 +55 +6 +795 +2314
vertx-core 33 0 139 53 795 4 1024 17433
HIERARCHY 0 +1 +2 0 0 +3 +6 +378
INTER-CLASS +368 +115 +1636 0 +5579 +13 +7711 +109558
spring-core 46 0 78 83 15 6 228 2089
HIERARCHY +1 0 0 +3 +1 0 +5 +75
INTER-CLASS +192 0 +5 +8 +11 0 +216 +964
hadoop-hdfs 23 0 184 13 7 13 240 1198
HIERARCHY +1 +11 +12 0 +1 +1 +26 +71
INTER-CLASS +19 +608 +1131 +10 +12 +3 +1783 +897
log4j 1 0 3752 437 1 18 4209 16689
HIERARCHY 0 +2 0 0 0 0 +2 +1434
INTER-CLASS +16 +6 +3752 +9 +1 +4 +3788 +18615
guava 75 0 63 215 77 63 493 1122
HIERARCHY +2 +1 +127 +44 0 +4 +178 +79
INTER-CLASS +16 +9 42066 +49 +20 +6 +2166 +4091
rxjava 3558 0 12 15 48 4 3637 11533
HIERARCHY 0 0 0 0 0 0 0 0
INTER-CLASS +2 +3 +13 +12 +5 0 +35 0
lucene-core 25 0 84 65 1 50 225 1062
HIERARCHY +5 +6 +4 0 0 +2 +17 +295
INTER-CLASS +345 +118 +516 +710 +6 +46 +1741 +4268
solr 1 0 3 9 2 2 17 4253
HIERARCHY 0 +1 0 0 0 0 +1 +14
INTER-CLASS 0 0 0 +2 +1 0 +3 +689
Total INTRA-CLASS 3973 0 4413 1630 1004 348 11368 61459
Additional HIERARCHY 15 76 147 68 2 17 325 2494
Additional INTER-CLASS 1946 29800 9826 899 5807 977 49255 145719

comment of the pair is the one that should likely be fixed.

We evaluate how accurate this information is in Section 4.6.
e RQ6: To what extent do comment clones detected by RepliCom-

ment correlate with code clone issues?

We investigate how often RepliComment reports comment

clone issues for methods that are detected as clones by code

clone detection tools, and report our findings in Section 4.7.

The following subsections present our answers to the re-
search questions. Overall, we manually analyze over 500 cases of
comment clones.

4.2. RQ1: Prevalence of comment clones

Table 2 shows the complete quantitative data that RepliCom-
ment outputs for the method comment clone search. We report
the number of comment clones by type of clone (CP — comment
part, WC — whole comment) and severity of the issue (Low,
MiLD or HiGH). For each project, the first row reports the results
of running RepliComment with default scope search (i.e., INTRA-
CLASS); the second row (HIERARCHY) reports the additional clones
with class hierarchy scope; and the last row (INTER-CLASS) the
additional clones with INTER-CLASS search scope.

RepliComment reports a total of 11,368 method comment
clones considered to be potential issues, and discards 61,459
comment clones considered to be legitimate. For the hierarchy
search, RepliComment reports 325 additional potentially harmful
clones, while it flags 2494 additional /egitimate clones. Finally, for
the inter-class search, RepliComment reports 49,255 additional
clones, while 145,719 more clones are labeled as legitimate.

legitimate We can see that the vast majority of the comment
clones are not harmful. The total of 209,672 com-
ment clones labeled as legitimate by the Clone detector
heuristics are not subsequently analyzed by the Clone
analyzer, and therefore are not reported to develop-
ers. 60,948 are left to be analyzed, namely, 23% of the
total reported issues.

Low In the intra-class search, 3973 cases, i.e., 35% of the
11,368 non-legitimate reported issues, are considered
to be Low severity issues, and they all come from
comment part clones.

In hierarchy search, this is the case for 91 cases of 325
(or 28%), 15 for comment part clones and 76 for whole
comment clones.

For inter-class search, 31746 (1946 comment parts,
29,800 whole comments) are Low severity issues over
a total of 49,255 (or 64%).

This means that the Clone analyzer component of
RepliComment thinks all those cases might be false
positives, despite overcoming the filtering heuristics
of the Clone detector (Section 3.2). Thus, RepliCom-
ment is able to prune additional clones thanks to the
analysis phase.

MiLp In the intra-class search, 53% of the 11,368 issues,
consisting of 4413 clones of comment parts, and 1630
clones of whole comments, are considered to be MiLD
severity issues by RepliComment. The same applies in
the hierarchy search in 66%, and in inter-class search
in 22% of the times, respectively.

This means that large proportions of problematic
comment clones are considered to be due to poor

A. Blasi, N. Stulova, A. Gorla et al.

Table 3
Quantitative results of the field comment clones reported by RepliComment on
each analyzed project.

Project Low MILD HiGH Tot. issues Legit

elasticsearch 2 1 0 3 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 0 0 0 +19
hadoop-common 1 21 0 22 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 +1 0 +1 +6
vertx-core 0 0 0 0 0
HIERARCHY 0 0 0 0 0
INTER-CLASS +2 +1 0 +3 +14
spring-core 6 0 0 6 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 0 0 0 +7
hadoop-hdfs 1 3 1 5 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 0 0 0 +4
logdj 0 3 0 3 0
HIERARCHY 0 0 0 0 +2
INTER-CLASS +1 0 0 0 +65
guava 0 0 0 0 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 0 0 0 +6
rxjava 0 0 0 0 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 0 0 0 +3
lucene-core 1 4 0 5 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 4 (0] +4 +10
solr 0 0 0 0 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 0 0 0 0
Total, INTRA-CLASS 11 32 1 44 0
Additional, HIERARCHY 0 0 0 0 +2
Additional, INTER-CLASS +3 +6 0 +9 +134

information quality in the documentation. This is not
surprising to us, as our initial hypothesis was that
code comment clones are mostly due to lack of proper
information rather than oblivious copy-and-paste er-
rors.

HiGH Finally, in the intra-class search, RepliComment re-
ports that 12% of the 11,368 issues, consisting 1,004
cases of clones in comment parts and 348 cases of
whole comment clones, are HIGH severity issues. In
the hierarchy search this happens only for a small
proportion of 6% of cases, and, in the inter-class
search, of 14% of cases. Overall, 8155 cases over a
total of 60,948 analyzed ones (13%) are considered
to be HIGH severity issues. These are the issues that
RepliComment considers to need an urgent fix.

Table 3 shows all clones that RepliComment reports for field
comment clones. Since field comments have no tags, there is no
distinction between comment parts and whole comment clones.

In the intra-class search, RepliComment reports a total of 44
field comment clones considered to be potential issues, while
none is considered legitimate right away. In the hierarchy search,
RepliComment reports no additional potentially harmful clones,
while it flags only 2 additional /egitimate clones. Finally, in the
inter-class search, RepliComment reports 9 additional problem-
atic clones, while it labels 134 additional ones as legitimate. The
overall number of potential issues is 53:

Low A total of 14 issues, hence 26% of the total, are considered
of Low severity.

The Journal of Systems & Software 182 (2021) 111069

MILD Most of the issues, i.e., 38 (72% of the total), are considered
to be of MILD severity, hence providing poor information.

HiGH Only a single issue is considered to be a HIGH severity one,
and it is detected through an intra-class search.

Given the results of this experiment, we conclude that com-
ment clones are prevalent even in popular Java projects. The
results of the search with different scopes seem to show that
RepliComment should better be used either with INTRA-CLASS or
HIERARCHY scopes, as looking for comment clones with INTER-
CLASS scope reports too many method comment clones to be
analyzed by developers, despite the ability of RepliComment to
filter out many legitimate cases.

4.3. RQ2: Accuracy of RepliComment at differentiating legitimate
and non-legitimate clones

We manually analyze some samples of the clones that Repli-
Comment identifies as legitimate or not to establish the rate of
false positives and false negatives. We first present the results
regarding method comments, separating clones of comment parts
and whole comment clones. We then proceed with the results of
field comments.

4.3.1. Method comment clones

False positives. We manually inspect all the entries in Table 2
to ensure a fair sampling, and we remove duplicates to ensure
that sampling catches the largest variety of comments. For this
purpose, we consider a case to be a duplicate if the comment is
exactly the same, but affects multiple method instances. This is
likely to happen when developers write generic @throws com-
ments such as “on error” for all the documented exceptions, for
instance. Note that we draw this distinction for manual analysis,
but in reality comment clones affecting multiple methods should
all be addressed by developers.

Table 4 lists the unique comment clone instances after dupli-
cates removal, reporting comment part clones and whole com-
ment clones separately.

We sample entries of Table 4 by selecting at least 10% of the
cases for each category (Low, MILD, HiGH for intra-class, hierarchy
and inter-class search). We sample 225 issues for intra-class, 63
for hierarchy, and 124 for inter-class search, for a total of 412
issues.

Regarding intra-class search, we find:

e For comment parts, we have 50 MILD issues and 30 HIGH
issues. We disagree on a total of 33 issues, 26 MILD and
7 HiGH. In particular, all 7 HiGH issues are false positives,
so such clones are actually legitimate. Among the 26 MiLD
cases, 22 of them are false positives (the rest should have
been considered HiGH severity issues). Thus RepliComment
produces 29 false positives for clones of comment parts.

e For whole comment clones, we have 70 MILD issues and
25 HiGH issues. We disagree on a total of 12 issues, 10
MiLp and 2 HicH, and all of them are false positives. A
common reason why whole clones of comments can still be
considered legitimate is that an API class is not supported
anymore, and its method documentation states so (advising
to avoid using the method and pointing to another class,
etc.).

e In conclusion, RepliComment reports 45 false positives for a
total of 175 samples for intra-class search, which suggests a
precision of 74% of RepliComment in intra-class search.

Regarding hierarchy search, we have:

e For comment parts, we never disagree with RepliComment in
the additional sampled 17 issues (15 MILD and 2 HIGH ones).

A. Blasi, N. Stulova, A. Gorla et al.

Table 4
Clones of comment parts and whole comments after duplicate removal.

The Journal of Systems & Software 182 (2021) 111069

Project Comment part clones Whole comment clones
Low-CP Mild-CP High-CP Total Low-WC Mild-WC High-WC Total

elasticsearch 111 15 6 132 0 377 103 480
HIERARCHY +4 +2 0 +6 +7 +2 +6 +15
INTER-CLASS +461 +119 +33 +613 +2 +10 +503 +515
hadoop-common 34 34 13 81 0 0 0 0
HIERARCHY +2 0 0 +2 +15 0 +1 +16
INTER-CLASS +64 +221 +24 +309 +84 +3 +6 +93
vertx-core 27 15 14 56 0 13 6 19
HIERARCHY 0 +2 0 +2 +1 0 +3 +4
INTER-CLASS +368 +13 +2 +383 +3 0 +1 +4
spring-core 46 20 12 78 0 46 20 66
HIERARCHY +1 0 +1 +2 0 +3 0 +3
INTER-CLASS +36 +5 +11 +52 0 +8 0 +8
hadoop-hdfs 23 28 7 58 0 13 11 24
HIERARCHY +1 +12 +1 +14 +11 0 +1 +12
INTER-CLASS +19 +895 +12 +926 +6 +10 +3 +19
log4j 1 1 1 3 0 15 3 18
HIERARCHY 0 0 0 0 +2 0 0 +2
INTER-CLASS +16 +1 +1 +18 +6 +9 +4 +19
guava 57 24 9 90 0 132 48 180
HIERARCHY +2 +127 0 +129 +1 +1 +4 +6
INTER-CLASS +16 +7 +9 +32 +9 +39 +6 +54
rxjava 23 7 3 33 0 15 2 17
HIERARCHY 0 0 0 0 0 0 0 0
INTER-CLASS +2 +13 +5 +20 +3 +1 0 +4
lucene-core 25 21 1 47 0 65 24 89
HIERARCHY +5 +4 0 +9 +6 +2 0 +8
INTER-CLASS +345 +516 +6 +867 +25 +6 +16 +47
solr 1 3 2 6 0 9 2 11
HIERARCHY 0 0 0 0 +1 0 0 +1
INTER-CLASS 0 0 +1 +1 0 +2 0 +2
Total INTRA-CLASS 1690 2105 174 3969 182 781 773 1736
Additional HIERARCHY 15 147 2 164 44 8 15 395
Additional INTER-CLASS 1327 1790 104 3221 138 88 539 7207

e For whole comment clones, we never disagree on the assess-
ment made on 10 MiLD, while we do disagree for 11 HIGH
ones.

e In conclusion, RepliComment achieves a precision of 71% for
hierarchy search.

Listing 2 show an example of a HiGH-severity comment part
clone found while exploring a class hierarchy. The same clone
was found during an intra-class search (see listing 1): Bad clones
existing in one class may be replicated in its subclasses, thus
perpetuating the issue.

Listing 2: Hierarchy high-severity issue (RepliComment report)

1| ———— Record #4 file:2020_JavadocClones_h_hadoop—hdfs.csv ————
2| In class: org.apache.hadoop.hdfs.util.LightWeightLinkedSet
3| And its superclass: org.apache.hadoop.hdfs.util.LightWeightHashSet

5| 1) The comment you cloned:"(@return)first element”
6| seems more related to <T pollFirst()> than <List polIN(int n)>

Finally, for inter-class search, we have that:

e For comment parts, we disagree with 4 RepliComment as-
sessments over a total of 31 (16 MiLD and 15 HiGH).

e For whole comment clones, we disagree with 2 assessments
over a total of the 65 (10 MiLD and 55 HIGH) issues sampled.

e In conclusion, RepliComment reports 6 false positives over
a total of 96 issues, achieving a precision of 94%.

As an example, consider Listing 3. The interesting fact is that
the two different classes across which the whole comment was
cloned are not in the same hierarchy, and in general have little in
common: they do not even belong exactly to the same package.

Listing 3: Inter-class high-severity issue (RepliComment report)

1| ———— Record #6 file:2020_JavadocClones_cf_hadoop—hdfs.csv ————
2| In class: org.apache.hadoop.hdfs.tools.offlineEditsViewer.XmlEditsVisitor
3| And class:

4| org.apache.hadoop.hdfs.tools.offlinelmageViewer.TextWriterImageVisitor

6| You cloned the whole comment for methods
7| < XmlEditsVisitor(OutputStream out)> and
8| < TextWriterlmageVisitor(String filename, boolean printToScreen)>

10| The comment you cloned:"(Whole)Create a processor that writes to the

11| file named and may or may not also output to the screen, as specified.

12| @param Name of file to write output to @param Mirror output to screen?"
13| seems more related to <TextWriterImageVisitor(String filename, boolean
14| printToScreen)> than <XmlEditsVisitor(OutputStream out)>

False negatives. Our heuristics could wrongly flag as legitimate
some clones that actually represent real issues. Cases marked as
legitimate are filtered out in the first phase, i.e., they are not
analyzed further. Thus, in the case of a false negative, the issue
would never be revealed. It is hence important to check that false
negatives are not pervasive.

RepliComment marks as legitimate the comment clones re-
ported in Table 2. We do not distinguish between comment parts
and whole comments because a whole comment clone can never
be considered legitimate.

We randomly sample 20 cases for each project and each type
of search. If the total number is less than 20 then we analyze all
cases. We manually analyze each of the 572 comment clones to
check whether it should indeed be considered to be legitimate
(ie., we agree with RepliComment heuristics) or non-legitimate
(ie., it is a false negative).

Table 5 shows that we disagree with the classification as
legitimate in two comment clones over 572 randomly selected

A. Blasi, N. Stulova, A. Gorla et al.

Table 5
Total of clones considered legitimate by the heuristics.

Project Agree (legit) Disagree (non-legit) Precision
elasticsearch-6.1.1 20 0 100%
HIERARCHY 20 0 1007%
INTER-CLASS 20 0 100%
hadoop-common-2.6.5 20 0 100%
HIERARCHY 20 0 1007%
INTER-CLASS 20 0 100%
vertx-core-3.5.0 20 0 100%
HIERARCHY 19 1 95%
INTER-CLASS 20 0 100%
spring-core-5.0.2 20 0 100%
HIERARCHY 20 0 100%
INTER-CLASS 20 0 1007%
hadoop-hdfs-2.6.5 19 1 95%
HIERARCHY 20 0 100%
INTER-CLASS 20 0 1007%
log4j-1.2.17 20 0 100%
HIERARCHY 20 0 100%
INTER-CLASS 20 0 100%
guava-19.0 20 0 100%
HIERARCHY 20 0 100%
INTER-CLASS 20 0 100%
rxjava-1.3.5 20 0 100%
HIERARCHY- - - -
INTER-CLASS 20 0 100%
lucene-core-7.2.1 20 0 100%
HIERARCHY 20 0 100%
INTER-CLASS 20 0 100%
solr-7.1.0 20 0 100%
HIERARCHY 14 0 100%
INTER-CLASS 20 0 100%
Total 572 2 99.7%

in total. This means that we find only two false negatives in our
random sampling. In particular, one is a case of a very generic
exception comment that RepliComment’s heuristics miss. The
second is the case of parameters documented with the same
name (for which a comment clone is tolerated), having however,
different non-primitive types.

4.3.2. Field comments

False positives. Since RepliComment reports a relatively low
number of issues for field comments, namely 38 MiLD and only
one HIGH, we analyze them all. Most of the MILD severity is-
sues, namely 21, are all from hadoop-common. These clones
would probably be considered legitimate by developers, since
the comment states: “This constant is accessible by subclasses
for historical purposes. If you don’t know what it means then
you don’t need it”. Hence, we consider these instances to be
false positives. We also flag as false positives 3 instances from
hadoop-common: in this case, field names are not parsable cor-
rectly due to multiple words being merged into a single one
(e.g., DFS_DATATRANSFER_SERVER_VARIABLEWHITELIST_FILE).
We agree with the remaining 14 MILD ones, as well as with the
single HIGH severity issue (see Listing 4). This suggests a precision
of 39%.

Listing 4: Only high-severity issue existing for field clones
(RepliComment report)

2| ———— Record #7 file:2020_JavadocClones_fields_hadoop—hdfs.csv ————
3| In class: org.apache.hadoop.hdfs.shortcircuit.ShortCircuitCache

6| 1) The comment you cloned:"(Field)The executor service that runs the
7| cacheCleaner."
8| seems more related to <cleanerExecutor> than <releaserExecutor>
Listing 4 shows the only HiGH-severity issue RepliComment
finds when exploring field clones, along with its assessment. The
clone exists within the same class.

10

The Journal of Systems & Software 182 (2021) 111069

Table 6
Samples of clones marked as non-legitimate before and after new heuristics
application.

Project

New heuristics

29%
9%

6%

10%
17%
20%
31%
24%
18%
0.5%

16%

0ld heuristics

49%
10%
35%
17%

9%
20%
31%
38%
19%
16%
24%

elasticsearch-6.1.1
hadoop-common-2.6.5
vertx-core-3.5.0
spring-core-5.0.2
hadoop-hdfs-2.6.5
log4j-1.2.17
guava-19.0
rxjava-1.3.5
lucene-core-7.2.1
solr-7.1.0

Average

False negatives. We sample 20 instances from the 136 total /egit-
imate field-level clones, and we confirm that we do agree with
all of RepliComment’s assessments.

This analysis shows that RepliComment’s heuristics can be
trusted to filter out many legitimate comment clones, and the rate
of false positives is acceptable for practical use.

4.4. RQ3: Improvement of Heuristics over RepliComment-V1

We assess how well new heuristics implemented in the clone
detector filter out further false positives in RepliComment com-
pared to RepliComment-V1. To compare the effectiveness of
the heuristics, we take the intersection of comment clones that
RepliComment-V1 and RepliComment identify, and we compare
their classification results. Table 6 presents the percentage of
clones that RepliComment-V1 and RepliComment report as non-
legitimate. The ability to report fewer issues is positive given the
fact that in Section 4.3 we assessed that heuristics do not cause
false negatives. The table highlights the following results:

e In half of the projects (marked in bold font) the decrease of
clones marked as non-legitimate by the heuristics is signifi-
cant, going from a minimum reduction of —7% (spring-core-
5.0.2) to a maximum of —29% (vertx-core-3.5.0);

e In four projects the reduction was close to non-existent,
which means that some false positives are potentially re-
tained, but no new ones are introduced;

e In only one project (hadoop-common-2.6.5) did the number
of clones marked as non-legitimate increase by +8% instead
of diminishing, potentially leading to an increase in the
number of false positives.

4.5. RQ4: Accuracy of RepliComment at Classifying legitimate Com-
ment Clones

We manually evaluate RepliComment’s assessment for each
entry in the samples to determine its accuracy at classifying HiGH,
MiLD and Low clones. Results report if our manual evaluation
agrees or disagrees with RepliComment’s assessment. If we dis-
agree, it means that RepliComment assigns the wrong category
to one case, for example reporting it as a MILD severity when it
is actually a Low one. Conversely, if we agree it means we would
assign the same level of severity to the case.

Method-level analysis. Overall, we manually inspect and assess
412 reported issues. Table 7 reports the analysis for clones of
comment parts. Results show that:

e RepliComment is very effective at classifying both Low
(>80%) and HIGH (>70%) severity issues in all kinds of
search (intra-class, hierarchy, inter-class). This means Repli-
Comment can highlight the most critical clones (copy-paste
issues) that developers should focus on.

A. Blasi, N. Stulova, A. Gorla et al.

Table 7
Manual analysis of RepliComment assessment for clones of Javadoc parts
(summary, @param, @return or @throws).

Category Sample Agree Disagree Precision
INTRA-CLASS Low-CP 50 42 8 84%
Mild-CP 50 24 26 48%
High-CP 30 23 7 77%
HIERARCHY Low-CP 15 15 0 100%
Mild-CP 15 15 0 100%
High-CP 2 2 0 100%
INTER-CLASS Low-CP 14 14 0 100%
Mild-CP 16 16 0 100%
High-CP 15 11 4 73%
Total 207 162 45

Average precision 87%

Table 8
Manual analysis of RepliComment assessment for whole Javadoc clones.
Category Sample Agree Disagree Precision
INTRA-CLASS Low-WC 0 0 0 0%
Mild-WC 70 60 10 86%
High-wC 25 23 2 92%
HIERARCHY Low-WC 10 10 0 100%
Mild-WC 10 10 0 100%
High-wC 11 0 11 0%
INTER-CLASS Low-WC 14 14 0 100%
Mild-WC 10 10 0 100%
High-wC 55 53 2 96%
Total 205 180 25

Average precision 75%

e On the other hand, RepliComment often fails at identifying
MILD severity issues as such, since RepliComment analysis
fails nearly half of the times during intra-class search. We
carefully analyzed the wrong classifications to give an ex-
planation to this discrepancy: it appears to be a problem
of linguistic semantics. RepliComment, in the current im-
plementation, is neither aware of synonyms nor particular
developer jargon. For example, our manual analysis reveals
that oftentimes developers refer to a primitive parameter
(being it int, long, char, etc.) generically as “the value”.
RepliComment’s bag of words representations do not map
such an expression to any portion of the method signature,
since typically parameters have a specific name and type
that differ from “value”. Hence, the analysis concludes that
the cloned comment does not relate enough either to the
first method or to the second one, maybe because it is too
generic. Unfortunately such cases are false positives (Low
severity). By tackling synonyms correctly, RepliComment
would not report as an issue most of the wrongly classified
cases.

Table 8 reports the analysis for clones of whole comments:

Precision of RepliComment in classifying both MiLD and HIGH
severity issues in all kinds of search for whole comment clones
tends to be very high (~90%), except for hierarchy search. In gen-
eral, if a whole comment is copied for an overloaded method, it
most likely means that the developer simply forgot to document
the difference in the parameters, which would be a MILD severity
issue. On the other hand, if a whole comment is copied across
methods that are not overloaded, something is likely to be off.
We report a particular example of this in Listing 5:

Listing 5: RepliComment HIGH severity whole comment clone
example
1\ ———— Record #519 file:2020_JavadocClones_elastic.csv ————

11

The Journal of Systems & Software 182 (2021) 111069

In class: org.elasticsearch.common.collect.i mmutableOpenMap
1) You cloned the whole comment for methods

<Iterator keysIt()> and

<Iterator valueslt()>

b wN

This is not an overloading case. Check the differences among the two
methods and document them.

(ool]

10
11
12

2) The comment you cloned:"(Whole)Returns a direct iterator over the
keys."

seems more related to <Iterator keysIt()> than <Iterator valueslt()>

As for the hierarchy search, RepliComment misclassifies con-
structor comments. Overall, it reports a low number of HiGH
severity issues, but unfortunately they all look like false posi-
tives. To properly tackle constructor comments, more advanced
assessments may be needed.

Field-level analysis. We analyze 14 Low-severity issues, 38 MILD-
severity issues and only one HiGH-severity issue. We consider
correct all Low-severity issues, which include 11 clones identified
during intra-class search, and 3 additional clones identified dur-
ing inter-class search. Regarding MILD-severity issues, we believe
24 are wrongly classified, since they should probably be labeled
as Low. We consider correct the only HiGH-severity issue coming
from an intra-class analysis of hadoop-hdfs. This yields a precision
of 100% for Low and HiGH severity issues, and of 39% for MILD
severity issues.

The results of this experiment show that RepliComment is
effective at differentiating comment clones, so developers can
effectively focus on the most critical ones first.

4.6. RQ5: Ability to identify cloned and original comments

The ultimate goal of RepliComment is to support developers
in pointing out which comment to fix, when the clone is due to
a copy-and-paste error. In this section we evaluate how good
RepliComment is at distinguishing the original and the cloned
comment.

4.6.1. Method-level analysis

Intra-class clones. To answer this question, we examine Repli-
Comment’s assessment for the same 30 entries of HIGH-CP in
Table 7, and the 25 HiGH-WC entries in Table 8.

e For HIGH-CP, we exclude the seven entries for which we
disagree, since according to our manual inspection they are
not real copy-paste issues. Our manual analysis confirms the
correctness of RepliComment in pointing out the comment
that was cloned for all the remaining 23 cases out of 30.
Thus, the tool correctly suggests to the developer which
method needs a documentation fix with a precision of 77%.

e Similarly, for HIGH-WC, we exclude the two entries for
which we disagree. Our manual analysis reveals that we are
unsure about three suggestions out of 23, and we do not
agree with one out of 23 because we can infer that the two
methods are actually equivalent in behavior (RepliComment
in such a case should suggest that each of the methods is
similarly related to the comment, meaning that neither of
them appears better than the other). We completely agree
with the suggestions for the remaining 19 out of 23 cases,
which yields a precision of 83% in suggesting the right fix to
the developer.

Hierarchy clones. We examine RepliComment’s assessment for
the two entries of HIGH-CP in Table 7 and the eleven HIGH-WC
entries in Table 8.

e For HIGH-CP, we do agree with both RepliComment’s picks.
It is interesting to note that one is an example already found
via intra-class analysis of hadoop-hdfs, which was replicated
in the hierarchy.

A. Blasi, N. Stulova, A. Gorla et al.

o We exclude HIGH-WC, since we disagreed with all of their
assessments.

Inter-class clones. We examine RepliComment’s assessment for
the 15 entries of HIGH-CP in Table 7 and the 55 HIGH-WC entries
in Table 8.

e For HIGH-CP, we exclude the four instances for which we
disagree with RepliComment. We do agree with all the
remaining ones. Interesting examples of such clones can be
found in Section 2.

e Similarly, for HIGH-WC, we exclude two instances. As for the
remaining 53 ones, it is worth noting that 49 of them seem
to arise from the same elastic patterns of documentation. For
example, the developers tend to write comments like “Sets
the minimum score below which docs will be filtered out” both
for actual setter methods and methods which are not actu-
ally setters, or at least, methods which perform some extra
operations beside setting a value. Hence, RepliComment is
justified in picking the setter method as the right owner of
the comment. That said, those are probably voluntary habits
accepted by the project’s developers, and not actual copy-
and-paste slips. Excluding such instances, we are left with
four, which do look like oblivious copy-and-paste mistakes
and for which we agree with RepliComment’s pick.

Field-level analysis. As for field-level analysis, we only have a
single instance of HIGH severity issue, for which we confirm the
assessment of RepliComment.

This experiment confirms that RepliComment can actually
support developers in highlighting which comments are the orig-
inal ones and which ones are copied, and therefore should be
fixed.

4.7. RQ6: Correlation with code clones

Comment clones may be the result of copy-and-paste practice
on entire method implementations. If this was the case, comment
clones would appear only when their corresponding method im-
plementations are clones as well. To understand if this is the
case, we compare clone issues reported by RepliComment and by
NiCad 2.6 code clone detector (Cordy and Roy, 2011). We follow
this comparison protocol for each of the projects:

o We extract class-qualified signatures of methods for which
RepliComment reports HIGH severity issues in Javadoc com-
ments for both comment parts and whole comments in all
three analysis modes (within the same file, within the class
hierarchy, and across all classes of the project);

e We extract class-qualified signatures of methods which

NiCad reports as type Ill (near-miss blind renamed) clones

with first over 70% and then only with exactly 100% simi-

larity using the default configuration (clones sized between

10 and 2500 LOC, the near-miss difference threshold set to

at most 30% different lines); We use the default code clone

similarity threshold of NiCad clone detector as a baseline
in our experiments. The difference of 30% is already quite
liberal in the context of code clones, and previous studies on
human judgment of code clones suggest that it is not trivial
to agree on when a clone becomes a legitimate method with

just a similar structure (Kapser et al., 2006).

We pipe GNU core utilities sort and comm to sort outputs

of both tools and compare them line by line, respectively.

Additionally, we collect the statistics of how many methods
reported as code clones by NiCad have Javadoc comments. Table 9
presents such data both for exact and non-exact code clones.

We can see from the statistics collected that code clones seem
to be fairly well-documented, with a minimum percentage of

12

The Journal of Systems & Software 182 (2021) 111069

Table 9

Code clones statistics.
Project Code clones exact Code clones 70%+ similar

All Commented Matching All Commented Matching

elasticsearch-6.1.1 153 43 (28%) O 1248 193 (15%) 29
hadoop-common-2.6.5 155 95 (61%) O 1047 364 (34%) O
vertx-core-3.5.0 23 6(28%) O 202 56 (27%) O
spring-core-5.0.2 22 17 (77%) O 143 89 (62%) O
hadoop-hdfs-2.6.5 422 389 (92%) O 5764 2093 (36%) 0
log4j-1.2.17 18 10 (55%) O 90 40 (44%) 0
guava-19.0 84 37 (44%) 0 417 224 (53%) 3
rxjava-1.3.5 35 10 (28%) 2 332 102 (30%) 2
lucene-core-7.2.1 73 24 (32%) 3 592 175 (29%) 3
solr-7.1.0 129 25(19%) O 528 84 (16%) O

commented methods of 15% in elasticsearch and a maximum
percentage of 92% in hadoop-hdfs. The remaining eight projects
can be further split into two groups, where in the first group
the rate of documented code clones is around 30%, and in the
other group this rate is closer to 60%. However, across the 10
projects we have detected only a few cases for which both Repli-
Comment and NiCad tools reported clone issues in the same
methods. RepliComment reported whole comment clones in the
same file, the first clone tuple consisting of two methods in the
rxjava project, and the second clone tuple of three methods in
the lucene project, where both clone tuples consist of exact code
clones (code similarity 100%). Additionally, when lowering code
clone similarity threshold to 70% RepliComment and NiCad report
matching issues in two additional projects: in the elasticsearch
project 29 code clones distributed over 7 different clone classes
with in-class similarity varying from 70% to 91% are also reported
by RepliComment as methods with inter-class whole comment
clones, and in the guava project 3 code clones distributed over
1 clone class with in-class similarity of 72% are also reported by
RepliComment as methods with intra-class comment part clones.

Our findings indicate that critical comment clones issues can-
not necessarily be well-detected by code clone detection tools,
as in most cases the clones in comments were considered to be
legitimate by RepliComment.

5. Related work

The works by Oumaziz et al. (2017) and Luciv et al. (2018)
study what we call /egitimate clones to encourage smart doc-
umentation reuse. Despite the different scope of these works
compared to RepliComment, some of their findings are relevant
for our research as well. In particular, Luciv et al. (2018) highlight
that exact documentation clones are by far the most common,
and that near-duplicate detection techniques still carry many
false positives.

Considerable work on clone detection focuses on code clones
(Roy and Cordy, 2007). Typically, code clone detection techniques
remove comments and whitespace from the source code to elimi-
nate spurious information (Kamiya et al., 2002; Krinke, 2007; Roy
and Cordy, 2007). Indeed, considering comments while searching
for code clones could lead to missing some relevant code clones
that differ only in their comment descriptions. The work by
Marcus et al. is an exception to this practice (Marcus and Maletic,
2011). Their code clone detection technique actually performs
better with comments, since comments carry relevant informa-
tion, as the authors themselves acknowledge. Marcus et al. how-
ever, do not report comment clones per se, as RepliComment
does. Mayrand et al. also recognize the value of code comments,
since metrics such as code volume identify similar layouts (i.e.,
possible code clones) inside the source code, and comments help
in this respect (Mayrand et al., 1996). Nonetheless, the aim of
our work is different from general code clone detection. The

A. Blasi, N. Stulova, A. Gorla et al.

Javadoc clones that RepliComment reports typically belong nei-
ther to similar nor equal method implementations. The problem
we tackle is actually the opposite: two methods, with prop-
erly different implementations, may erroneously have the same
comment because it was copied and pasted from another method.

Our long term aim is to address low quality documentation
issues, and some previous work exists. Steidl et al. have some pur-
poses in common with our work (Steidl et al., 2013). They study
techniques to assess the coherence between comments and code.
They compare the lexical similarity of comments and code to
verify if the same terms are used, with an edit distance of 2. Their
work could identify some copy-paste issues. However, most of the
legitimate clones we found in our experiment would be wrongly
reported as non-legitimate by their technique. We believe this
problem can be addressed more precisely, for example, via a
more comprehensive semantic analysis. Khamis et al. developed
JavadocMiner (Khamis et al, 2010), a tool that assesses the
overall quality of Javadoc comments. They measure comment
quality using classical NLP metrics (such as the readability index).
However their main purpose is to verify that the Javadoc standard
is correctly used, e.g., a @param tags comment should start with
the name of the documented parameter. Another relevant work
on comment quality by Zhong and Su (2013) focuses on detecting
syntax errors and broken code names. These techniques nicely
complement RepliComment.

6. Conclusions and future work

The purpose of our work is to help developers to identify and
fix issues in code documentation. We started working in this
direction by focusing on comment clones. We have implemented
RepliComment, a prototype to automate the identification and
classification of source comment clones that may be worthy of
attention.

As future work we foresee many tasks. First and foremost,
we aim to introduce new heuristics to better classify comment
clones. Secondly, we plan to further automate the analysis af-
ter the classification of a comment clone. In the presence of
copy-paste issues, for instance, we could not only automatically
identify which method is the source, and thus which comment
should be fixed by developers, but also improve the precision of
our report, and present the cloned part to a developer with a
concrete fix suggestion.

We could employ natural language analysis on the cloned
comment and their corresponding method signatures, and report
the mismatching cases. There are various techniques in the state
of the art to assess document similarities, such as Word Em-
bedding (Kusner et al., 2015). We could compare the semantics
of method names to the semantics of their corresponding com-
ments. We would report as likely to fix the comment clones for
which the method name is less similar to the comment.

The analysis for “poor information” clones could benefit from
additional metrics. There exist various metrics to assess text char-
acteristics, such as its complexity, its quality, and the quantity of
information it describes. We could integrate these metrics into
RepliComment to improve its ability to classify comment clones.

Last but not least, we would like RepliComment to be properly
integrated into an IDE to automatically notify developers while
they write code, and flag corresponding comments with warning
messages such as “This comment seems to belong to method X,
and not to method Y. Verify this clone and correct the comment
for method Y if necessary”, or “This comment includes generic
information. Please provide a better description”.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

13

The Journal of Systems & Software 182 (2021) 111069

Acknowledgments

This work is primarily supported by the Swiss National Science
Foundation in the context of the project SNF-200021_178742
“ASTERIX: Automatic System TEsting of inteRactive software ap-
plications”. Oscar Nierstrasz gratefully acknowledges the financial
support of the Swiss National Science Foundation for the project
“Agile Software Assistance” (SNSF project No. 200020-181973).

References

Aghajani, E., Nagy, C.,, Linares-Vasquez, M., Moreno, L., Bavota, G., Lanza, M,
Shepherd, D.C., 2020. Software documentation: The practitioners’ perspec-
tive. In: ICSE 2020: Proceedings of the 42nd International Conference on
Software Engineering, Seoul, Republic of Korea/Virtual.

Arnaoudova, V., Eshkevari, L., Oliveto, R., Gueheneuc, Y.-G., Antoniol, G., 2010.
Physical and conceptual identifier dispersion: Measures and relation to fault
proneness. In: ICSM 2010: 26th IEEE International Conference on Software
Maintenance, Timisoara, Romania, pp. 1-5.

Blasi, A., Gorla, A., 2018. RepliComment: Identifying clones in code comments.
In: ICPC 2018: Proceedings of the 26th IEEE International Conference on
Program Comprehension, Gothenburg, Sweden, pp. 320-323.

Corazza, A., Maggio, V., Scanniello, G., 2016. Coherence of comments and method
implementations: a dataset and an empirical investigation. SQJ 1-27.

Cordy, J.R., Roy, C.K,, 2011. The NiCad clone detector. In: ICPC 2011: Proceedings
of the 19th IEEE International Conference on Program Comprehension,
Kingston, ON, Canada, pp. 219-220.

Goffi, A., Gorla, A. Ernst, M.D., Pezzé, M., 2016. Automatic generation of
oracles for exceptional behaviors. In: ISSTA 2016: Proceedings of the 2016
International Symposium on Software Testing and Analysis, Saarbriicken,
Germany, pp. 213-224. http://dx.doi.org/10.1145/2931037.2931061.

Kamiya, T., Kusumoto, S., Inoue, K., 2002. CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE TSE 28 (7),
654-670. http://dx.doi.org/10.1109/TSE.2002.1019480.

Kapser, C., Anderson, P., Godfrey, M.W., Koschke, R., Rieger, M., Rysselberghe, F.V.,
Weil$ gerber, P., 2006. Subjectivity in clone judgment: Can we ever agree? In:
Koschke, R., Merlo, E., Walenstein, A. (Eds.), Duplication, Redundancy, and
Similarity in Software, 23.07. - 26.07.2006. In: Dagstuhl Seminar Proceed-
ings, vol. 06301, Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl, Germany.

Khamis, N., Witte, R, Rilling, J., 2010. Automatic quality assessment of source
code comments: the JavadocMiner. In: NLDB 2010: 15th International
Conference on Natural Language & Information Systems, Cardiff, UK, pp.
68-79.

Krinke, J., 2007. A study of consistent and inconsistent changes to code clones. In:
WCRE 2007: 14th Working Conference on Reverse Engineering, Vancouver,
BC, Canada, pp. 170-178. http://dx.doi.org/10.1109/WCRE.2007.7.

Kusner, MJ., Sun, Y., Kolkin, N.I., Weinberger, K.Q., 2015. From word embeddings
to document distances. In: ICML 2015: Proceedings of the 32nd International
Conference on Machine Learning, Lille, France, pp. 957-966.

Luciv, D.V., Koznov, D.V., Chernishev, G.A., Terekhov, A.N., Romanovsky, K.Y.,
Grigoriev, D.A., 2018. Detecting near duplicates in software documentation.
Program. Comput. Softw. 44 (5), 335-343.

Manning, C.D., Surdeanu, M., Bauer,]., Finkel,]., Bethard, S.J., McClosky, D., 2014.
The Stanford CoreNLP natural language processing toolkit. In: ACL 2014:
The 52nd Annual Meeting of the Association for Computational Linguistics,
Baltimore, USA, pp. 55-60.

Marcus, A., Maletic, J.I, 2011. Identification of high-level concept clones in
source code. In: ASE 2011: Proceedings of the 26th Annual International
Conference on Automated Software Engineering, Lawrence, KS, USA, pp.
107-114. http://dx.doi.org/10.1109/ASE.2001.989796.

Mayrand, J., Leblanc, C, Merlo, EM. 1996. Experiment on the automatic
detection of function clones in a software system using metrics. In: ICSM
'96: Proceedings of the International Conference on Software Maintenance,
Monterey, CA, USA, http://dx.doi.org/10.1109/ICSM.1996.565012.

Nafi, KW, Kar, T.S., Roy, B., Roy, CK,, Schneider, K.A., 2019. CLCDSA: Cross lan-
guage code clone detection using syntactical features and APl documentation.
In: ASE 2019: Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering, San Diego, California, USA, pp. 1026-1037.

Nafi, KW., Roy, B., Roy, CK. Schneider, KA., 2018. CroLSim: Cross language
software similarity detector using APl documentation. In: SCAM 2018:
Proceedings of the 18th International Working Conference on Soource Code
Analysis and Manipulation, Madrid, ICSME, pp. 139-148.

Newman, C., Decker, M.J., AlSuhaibani, R.S., Peruma, A., Kaushik, D., Hill, E., 2019.
An open dataset of abbreviations and expansions. In: ICSME 2019: 35th IEEE
International Conference on Software Maintenance and Evolution, Cleveland,
OH, USA, pp. 280-280.

http://refhub.elsevier.com/S0164-1212(21)00166-7/sb4
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb4
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb4
http://dx.doi.org/10.1145/2931037.2931061
http://dx.doi.org/10.1109/TSE.2002.1019480
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb8
http://dx.doi.org/10.1109/WCRE.2007.7
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb12
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb12
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb12
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb12
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb12
http://dx.doi.org/10.1109/ASE.2001.989796
http://dx.doi.org/10.1109/ICSM.1996.565012

A. Blasi, N. Stulova, A. Gorla et al.

Oumaziz, M.A., Charpentier, A., Falleri, J.-R.,, Blanc, X., 2017. Documentation
reuse: Hot or not? an empirical study. In: ICSR 2017: 16th International
Conference on Software Reuse, Salvador, Brazil, pp. 12-27.

Roy, C.K.,, Cordy, J.R., 2007. A Survey on Software Clone Detection Research. Tech.
Rep. 2007-541, Queen’s University, School of Computing.

Steidl, D., Hummel, B., Juergens, E., 2013. Quality analysis of source code com-
ments. In: ICPC 2013: Proceedings of the 21st IEEE International Conference
on Program Comprehension, San Francisco, CA, USA, pp. 83-92.

Stulova, N., Blasi, A., Gorla, A., Nierstrasz, 0., 2020. Towards detecting inconsis-
tent comments in java source code automatically. In: 20th IEEE International
Working Conference on Source Code Analysis and Manipulation, SCAM 2020.
pp. 65-69.

14

The Journal of Systems & Software 182 (2021) 111069

Tan, S.H., Marinov, D., Tan, L., Leavens, G.T., 2012. @tComment: Testing Javadoc
comments to detect comment-code inconsistencies. In: ICST 2012: 5th
International Conference on Software Testing, Verification and Validation,
Montreal, Canada, pp. 260-269.

Zhai, J., Huang, J., Ma, S., Zhang, X,, Tan, L., Zhao, J., Qin, F., 2016. Automatic
model generation from documentation for Java API functions. In: ICSE 2016:
Proceedings of the 38th International Conference on Software Engineering,
Austin, TX, USA, pp. 380-391.

Zhong, H., Su, Z, 2013. Detecting api documentation errors. In: OOPSLA
2013: Object-Oriented Programming Systems, Languages, and Applications,
Indianapolis, IN, USA, pp. 803-816.

Zhou, Y., Gu, R, Chen, T., Huang, Z., Panichella, S., Gall, H., 2017. Analyzing
APIs documentation and code to detect directive defects. In: ICSE 2017:
Proceedings of the 39th International Conference on Software Engineering,
Buenos Aires, Argentina, pp. 27-37.

http://refhub.elsevier.com/S0164-1212(21)00166-7/sb20
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb20
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb20
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00166-7/sb22

	RepliComment: Identifying clones in code comments
	Introduction
	Comment clones
	RepliComment components
	Parser
	Clone detector
	Clone analyzer

	Evaluation
	Evaluation protocol and research questions
	RQ1: Prevalence of comment clones
	RQ2: Accuracy of RepliComment at differentiating legitimate and non-legitimate clones
	Method comment clones
	Field comments

	RQ3: Improvement of Heuristics over RepliComment-V1
	RQ4: Accuracy of RepliComment at Classifying legitimate Comment Clones
	RQ5: Ability to identify cloned and original comments
	Method-level analysis

	RQ6: Correlation with code clones

	Related work
	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References

