
Graph Neural Networks

Operators and Architectures

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Daniele Grattarola

under the supervision of

Prof. Cesare Alippi and Prof. Lorenzo Livi

December 2021

Dissertation Committee

Prof. Fabio Crestani Università della Svizzera italiana, Switzerland
Prof. Luca Gambardella Università della Svizzera italiana, Switzerland
Prof. Plamen Angelov Lancaster University, United Kingdom
Prof. Christos Panayiotou University of Cyprus, Cyprus
Prof. Alessandro Sperduti Università di Padova, Italy

Dissertation accepted on 10 December 2021

Research Advisor Co-Advisor

Prof. Cesare Alippi Prof. Lorenzo Livi

PhD Program Director

The PhD program Director pro tempore

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Daniele Grattarola
Lugano, 10 December 2021

ii

Cells interlinked within cells interlinked
within one stem.

iii

iv

Abstract

This thesis explores the field of graph neural networks, a class of deep learning
models designed to learn representations of graphs.

We organise the work into two parts. In the first part, we focus on the essen-
tial building blocks of graph neural networks. We present three novel operators
for learning graph representations: one graph convolutional layer and two meth-
ods for pooling. We put particular emphasis on the topic of pooling, introducing
a universal and modular framework to describe pooling operators, a taxonomy
to organise the literature, and a set of evaluation criteria to assess an operator’s
performance.

The second part focuses on specific graph neural network architectures and
their applications to cutting-edge problems in dynamical systems and compu-
tational biology. We present three main contributions. First, we introduce an
autoencoder architecture for learning graph representations in non-Euclidean
spaces. We apply our model to the tasks of molecule generation and change
detection in graph sequences. Second, we propose a graph neural network de-
signed to be interpretable, specifically to solve the problem of seizure localisation
in subjects with epilepsy. Finally, we discuss the design of autoregressive models
for sequences of graphs.

v

vi

Acknowledgements

My deepest gratitude goes to my advisor Cesare Alippi, who supported me through-
out these four years and who has taught me many valuable lessons as a scientist
and, more importantly, as a person. I also sincerely thank my co-advisor Lorenzo
Livi for his invaluable guidance and help. I could not have found better mentors,
and I am grateful for having been their student.

In my time at USI, I had the luck and the privilege of working with some of
the most talented and brilliant people I know. I would like to thank my friends
and colleagues Daniele Zambon, Pietro Verzelli, Andrea Cini, Alberto Gasparin,
Elena Di Lascio, Lorenzo Ferretti, Ivan Marsica, Matteo Riva, and Arianna Blasi. I
have learned a lot from them, and I owe them much of what I have accomplished.

A special thanks to Filippo Bianchi, with whom I have had an exceptionally
productive collaboration over the years. He is a precious guide and friend, and I
am grateful to him for the many days spent working together on our papers.

I want to thank, with all my heart, Dr. Taufik Valiante for welcoming me into
the Neuron To Brain laboratory. I have found an important mentor in him, and I
am thankful for the many exceptional conversations we had. During my time in
Toronto, I have learned what it means to relentlessly dedicate oneself to science.
I am honoured to have worked alongside Homeira Moradi, Anett Schumacher,
Azadeh Naderian, Sara Mahallati, Victoria Barkley, David Groppe, Scott Rich,
Gerard O’Leary, Kramay Patel, and all the people of N2B.

A sincere thank you also to the amazing people that I have met at USI, in-
cluding Mariano Panta, Ioannis Mantas, Prof. Limongelli and his group, Vincent
Herrmann, and Ivan Sekulic. For their precious support and patience, I thank
the irreplaceable team of the Dean’s office, Elisa Larghi, Jacinta Vigini, Nadia
Ruggiero, Sabina Brambilla, and Nina Caggiano.

To all the people I have met during these years, too many to name them all:
thank you for being part of my journey.

To Gaia and my family: I owe you everything.

vii

viii

Contents

Contents ix

Figures xv

Tables xix

Nomenclature xxi

1 Introduction 1
1.1 Contributions . 3
1.2 Thesis outline . 6
1.3 Publications . 7

I Operators 9

2 Background 11
2.1 Definitions and notation . 11
2.2 Spectral graph theory . 13

2.2.1 Spectral analysis of the Laplacian 13
2.2.2 Graph Fourier transform and graph convolution 16

2.3 Graph neural networks . 20
2.3.1 Convolutional operators . 22
2.3.2 Pooling operators . 27
2.3.3 Readout operators . 30

3 Convolution: GNNs with ARMA filters 31
3.1 ARMA graph filters . 31
3.2 ARMA1 GNN filter . 33
3.3 ARMAK GNN filter . 35
3.4 Properties and relationship with other approaches 36

ix

x Contents

3.5 Spectral analysis of ARMA GNNs . 37
3.6 Experiments with ARMA GNNs . 40

4 Pooling 47
4.1 Select, reduce, connect . 48

4.1.1 SRC as embedding operations 49
4.1.2 Taxonomy of graph pooling 51

4.2 MinCut pooling . 55
4.2.1 Minimum cut and spectral clustering 56
4.2.2 Spectral clustering with GNNs 58
4.2.3 Pooling and graph coarsening 60
4.2.4 Experiments with MinCut . 62

4.3 Node decimation pooling . 66
4.3.1 Node decimation with maximum cut spectral partitioning 67
4.3.2 Link construction on the coarsened graph 69
4.3.3 Graph sparsification . 70
4.3.4 Analysis and implementation details 71

4.4 Experiments with pooling methods 79
4.4.1 Preserving node attributes . 80
4.4.2 Preserving structure . 82
4.4.3 Preserving task-specific information 84
4.4.4 Discussion . 85

II Architectures 87

5 Adversarial autoencoders with constant-curvature latent manifolds 89
5.1 Background . 90

5.1.1 Adversarial autoencoders . 90
5.1.2 Constant-curvature manifolds 91
5.1.3 Distributions on CCMs . 92

5.2 Adversarial autoencoders on CCMs 92
5.2.1 Method . 93
5.2.2 Related works . 95

5.3 Benchmarks . 96
5.3.1 Semi-supervised image classification 96
5.3.2 Link prediction . 100

5.4 Molecule generation . 103
5.4.1 Setting . 103

xi Contents

5.4.2 Results . 105
5.5 Change detection . 106

5.5.1 Related works . 107
5.5.2 Method . 108
5.5.3 Setting . 112
5.5.4 Seizure detection . 113
5.5.5 Detection of hostile behaviour 115

6 Explainable GNNs: a case study on seizure localisation 123
6.1 Background . 125
6.2 Method . 125

6.2.1 Functional networks . 125
6.2.2 Attention mechanism . 127
6.2.3 Graph neural networks for seizure localisation 129
6.2.4 Localising the seizure onset zone 130

6.3 Results . 131
6.3.1 Data collection and pre-processing 131
6.3.2 Per-patient analysis of the SOZ 132
6.3.3 Results on seizure detection and localisation 134
6.3.4 Comparison with clinical information 137

6.4 Discussion . 138

7 Autoregressive models for graph sequences 141
7.1 Autoregressive models for graphs . 141

7.1.1 Neural graph recurrent autoregressive model 144
7.1.2 Extensions of NGAR . 146

7.2 Experiments with NGAR . 146
7.2.1 Baseline methods . 147
7.2.2 Graph-generating processes 148
7.2.3 Details . 152
7.2.4 Results . 153

8 Conclusion 157
8.1 Summary . 157
8.2 Future work . 158
8.3 Final remarks . 160

xii Contents

Appendices 165

A Experimental details for ARMA GNNs 165
A.1 Node classification . 165
A.2 Graph regression . 166
A.3 Graph classification . 167
A.4 Graph signal classification . 167

B Additional discussion on NDP 169
B.1 Kron reduction in graphs with self-loops 169
B.2 Derivation of the maximum cut upper bound 169
B.3 Relationship with Trevisan’s spectral algorithm 170
B.4 Spectral similarity after sparsification 171

C Experimental details for pooling operators 173
C.1 Experimental Details . 173

C.1.1 Preliminaries . 173
C.1.2 Preserving node attributes . 174
C.1.3 Preserving structure . 175
C.1.4 Preserving task-specific information 176
C.1.5 Memory usage . 177

C.2 Additional results . 177
C.2.1 Preserving node attributes . 177
C.2.2 Preserving structure . 177

D Experimental details for the change detection experiments 183

E Additional experiments and details on seizure localisation 185
E.1 Seizure generator from Benjamin et al. [16] 185
E.2 The Virtual Brain simulator . 186
E.3 GNN training details . 187
E.4 Baseline training details . 189
E.5 Additional results . 189

F Additional details on autoregressive models 195
F.1 Equivalence between (7.1) and (7.12). 195

G Spektral 197

H Hardware and software 199

xiii Contents

Bibliography 201

xiv Contents

Figures

1.1 Schematic view of the research conducted during the doctorate . 4

2.1 Analysis of the spectrum of a graph 15
2.2 Node-level vs. graph-level prediction 22

3.1 The ARMA convolutional layer . 33
3.2 Filter responses for ARMA GNNs and GCN 38
3.3 Different filter types implemented with ARMA GNNs 41
3.4 Training times on PPI . 43

4.1 Schematic view of the SRC framework 47
4.2 Examples of the taxonomy . 54
4.3 Results of the memory usage experiment 54
4.4 MinCut in a GNN architecture . 56
4.5 Schematic view of the MinCut layer 60
4.6 Node clustering with MinCut . 62
4.7 Image segmentation with MinCut . 63
4.8 Comparison of MinCut and DiffPool on Cora 64
4.9 Schematic view of NDP . 66
4.10 Eigenvector analysis . 71
4.11 Comparison between NDP, Trevisan’s spectral algorithm, and a

random cut . 74
4.12 Effect of sparsification on the spectrum 78
4.13 Effect of the sparsification threshold on the spectrum 79
4.14 Reconstructed node attributes in the autoencoder experiment . . . 81
4.15 Graphs pooled with different operators in the autoencoder exper-

iment . 82
4.16 Results on a regular grid when optimising for spectral similarity . 84

5.1 Schematic view of the spherical CCM-AAE 92

xv

xvi Figures

5.2 Membership function for different CCMs 94
5.3 Traversing the latent space of a spherical CCM-AAE (MNIST) . . . 99
5.4 Embeddings produced by the CCM-AAE on MNIST 100
5.5 Comparison between the spherical CCM-AAE and S-VAE 102
5.6 Traversing the latent space of a spherical CCM-AAE (molecules) . 106
5.7 Examples of graphs sampled from NTU RGB+D 118
5.8 Evolution of the accumulator (hostility detection) 121
5.9 Embeddings learned by the AAE with latent ensemble of CCMs

(hostility detection) . 122

6.1 Schematic view of our GNN-based pipeline for seizure detection
and localisation . 124

6.2 Schematic view of the procedure used to generate FNs 128
6.3 Examples of raw iEEG traces for patients 1 and 2 133
6.4 Histograms of the attention scores at seizure onset 139
6.5 Localisation results (averaged rankings) 140

7.1 Schematic view of NGAR . 144
7.2 Temporal evolution of the rotational model 149
7.3 Temporal evolution of PMLDS(10) 150
7.4 Temporal evolution of PMLDS(c), for different values of c 151
7.5 Performance vs. complexity of the models 154
7.6 Comparison of NGAR with baselines on the rotational model . . . 154
7.7 Comparison of NGAR with baselines on PMLDS(c) 155
7.8 NGAR’s predictions on PMLDS(30) 155
7.9 Comparison of randomly selected graphs from PMLDS(30) 155

B.1 Effect of the sparsification threshold on the spectrum (extended) . 171

C.1 Reconstructed node attributes in the autoencoder experiment (ex-
tended) . 178

C.2 Graphs pooled with different operators in the autoencoder exper-
iment (extended) . 179

C.3 Selection matrices computed with different operators in the au-
toencoder experiment (extended) . 180

C.4 Results when optimising for spectral similarity (extended) 182

E.1 Traces from the simulator . 187
E.2 A virtual seizure generated with TVB 188
E.3 Localisation results (averaged rankings, TVB) 188

xvii Figures

E.4 Detection scores over time . 190
E.5 Detection and localisation performance vs. sparsification threshold 191
E.6 Localisation results (averaged rankings, correlation) 191
E.7 Localisation results (averaged rankings, PLV) 192

G.1 The logo of Spektral . 197

xviii Figures

Tables

3.1 Node classification accuracy . 44
3.2 Graph signal classification accuracy 44
3.3 Graph classification accuracy . 46
3.4 Graph regression mean squared error 46

4.1 Pooling methods in the SRC framework 50
4.2 Taxonomy of pooling operators . 53
4.3 Clustering results on citation networks 65
4.4 MSE in the autoencoder experiment 81
4.5 Average quadratic loss in the spectral similarity experiment 83
4.6 Density analysis in the spectral similarity experiment 83
4.7 Accuracy on graph classification . 84

5.1 Accuracy of semi-supervised KNN classification on MNIST 97
5.2 Hyperparameter configuration for MNIST 98
5.3 Results on semi-supervised link-prediction 100
5.4 Results on molecule generation . 105
5.5 Summary of the iEEG datasets . 115
5.6 Results on seizure detection (correlation) 116
5.7 Results on seizure detection (DPLI) 117
5.8 Number of graphs . 119
5.9 Results on hostility detection . 119

6.1 Summary of the patients . 132
6.2 Results for seizure detection . 135
6.3 Localisation performance for patients with a known SOZ (corre-

lation) . 136
6.4 Localisation performance for patients with a known SOZ (PLV) . . 137

7.1 Hyperparameter configuration for NGAR 152

xix

xx Tables

7.2 Results on the rotational model . 153
7.3 Results on PMLDS(c) . 154

A.1 Summary of the node classification datasets 165
A.2 Hyperparameters for node classification 166
A.3 Summary of the graph regression dataset 166
A.4 Hyperparameters for graph regression 167
A.5 Summary of the graph classification datasets 167
A.6 Hyperparameters for graph classification 168
A.7 Summary of the graph signal classification datasets 168
A.8 Hyperparameters for graph signal classification 168

C.1 Statistics of graphs used in the autoencoder and spectral similarity
experiments . 175

C.2 Density analysis in the spectral similarity experiment (extended) . 177

E.1 Configuration for the simulator . 186

Nomenclature

G Graph
V Node set
E Edge set
N Number of nodes (cardinality of the node set)
(i, j) Directed edge from node i to node j
A Adjacency matrix
D Degree matrix
L Laplacian
Ln Normalised Laplacian
N (i) Neighbourhood of node i
X Node attributes matrix
xi Attribute of node i
Dn Size of the node attributes
E Edge attributes tensor
ei j Attribute of edge from node i to node j
De Size of the edge attributes
uk,vk Eigenvectors of a matrix
U Matrix with eigenvectors as columns
Λ Diagonal matrix of eigenvalues
MLP Multi-layer perceptron
A ·B Matrix multiplication
a · b Dot product

xxi

xxii Nomenclature

Chapter 1

Introduction

A fundamental trait of human intelligence is the ability to reason about complex
systems in terms of their atomic components and the relations that exist among
them. Knowledge about these relations can be exploited to perform cognitive
tasks, like causal inference or hierarchical abstraction, and this way of reason-
ing is the cornerstone that allows for combinatorial generalisation—the ability
to construct models of the world from a finite set of building blocks—to emerge.
This idea is so essential that, throughout the fields of science, many social, bi-
ological, economic, and technological phenomena are described as systems of
interacting entities, usually by representing them as graphs. It is therefore an
interesting endeavour to design artificial intelligence (AI) systems that can nat-
urally deal with a relational view of the world, i.e., models with a relational
inductive bias [14].

The idea of interpreting the world as a system with inherent structure, how-
ever, is in stark contrast to the current mainstream trends in AI, which are primar-
ily centred on the paradigm of deep learning [115, 185] and of making little to no
a priori assumptions about the data (the “hand-engineering” vs. “automatic fea-
ture extraction” dichotomy). Indeed, the enormous success and impact of deep
learning across all areas of science—fuelled by an ever-increasing availability of
data and computing resources—is an important signal that we cannot ignore in
the development of general AI. However, the debate on the subject is lively and
ongoing, and several limitations of deep learning-based systems have emerged,
especially concerning their ability for combinatorial generalisation [138, 139].

The field of graph machine learning (GML) arises as a hybrid alternative to
these two paradigms of AI, by combining the ability to learn end-to-end with an
explicit assumption of structure in the data. The main focus of the field, and
the topic of this thesis, is on graph neural networks (GNNs), a class of models de-

1

2

signed to learn representations of graph-structured data through the composition
of differentiable functions, backpropagation, and gradient descent. In particular,
GNN architectures are built from layers that extend and generalise the two core
operations of convolutional neural networks, namely convolution and pooling,
to deal with arbitrary graphs. By doing so, the structure underlying the data
becomes an input of the model along with the data itself.

The research on GNNs dates back to the seminal works of Sperduti and Starita
[198] and Gori et al. [72] between the late 1990s and early 2000s, although the
field has recently undergone rapid growth with GNNs achieving state-of-the-art
results on a broad spectrum of applications including physics [105, 41, 193], rec-
ommendation systems [226], natural language processing [225], chemistry and
biology [54, 58, 60, 67, 62, 96], knowledge graphs [184, 10, 101], computer
vision [147, 195, 167, 168], combinatorial optimisation and reasoning [33], re-
inforcement learning [242], computer networks [175], or even searching for
anti-cancer foods [212], among many others (for more applications of GNNs,
we address the reader to one of many surveys on the topic [230]).

However, despite this rapid growth and the remarkable results achieved by
GNNs, the field of GML is still in its infancy and further research is needed to
fully express the potential of such a groundbreaking class of AI techniques. In
particular, many of the operators typically used to build GNNs are inadequate
for solving more advanced tasks [156], due to their limited expressivity in repre-
senting graphs or convenient-but-limiting design choices. For example, we will
see that the most common class of convolutional operators for GNNs, which are
based on polynomial filters, can be significantly outperformed by more sophis-
ticated kinds of layers (of which we propose one in Chapter 3). Also, some of
the key components of GNNs—chiefly pooling operators—remain poorly under-
stood and scattered throughout a chaotic literature on the subject. Here too, we
will show that some of the pooling operators typically used in GNN architectures
have significant design flaws which must be overcome (and we will propose two
different approaches to do it in Chapter 4).

Additionally, while typical machine learning architectures are effective at
tackling many application scenarios characterised by a regular lattice structure,
their extension to the case of graphs with arbitrary topology remains an open
area of research. As we argue in the next section, moving beyond the “lattice
assumption” and towards a more general setting requires us to rethink the typi-
cal architectures of deep learning under this new light, while also unlocking new
opportunities to solve interesting problems in the domain of graphs.

3 1.1 Contributions

1.1 Contributions

In light of the context and limitations outlined above, this thesis collects the
author’s contributions to the field of GML along two main directions.

For the first direction, we focus on the design and analysis of new operators
that GNNs use to transform the nodes and edges of a graph. For the second direc-
tion, we focus on the design of novel architectures, i.e., particular arrangements
of operators to solve a given task like classification, forecasting, or generation in
the domain of graphs. Figure 1.1 shows a high-level schematic of the contribu-
tions of the thesis.

Operators Unlike conventional deep learning, the GNN literature is charac-
terised by a rich variety of operators for convolution and pooling. This is due to
the significantly more complex nature of graphs w.r.t. the typical lattice structure
assumed by neural networks, which can be approached from different perspec-
tives ranging from geometrical [27] to more computational methods [14, 65].

However, due to this complexity and variety in the field, a consensus on the
general best practices and operators for GNNs has yet to be reached. In this re-
gard, one objective of this research is to improve over the current state of the art
by designing new general-purpose operators that can produce better represen-
tations of graphs. We also aim to study the existing building blocks of GNNs to
understand their behaviour in practical settings, so that we can provide princi-
pled guidelines on how to best use them.

In pursuit of this research objective, we present novel convolutional and pool-
ing operators for GNNs, which achieve state-of-the-art performance on many dif-
ferent classes of GML tasks. For convolution, we introduce a novel layer based
on rational autoregressive moving-average (ARMA) graph filters and we show
that it achieves better performance than the polynomial filters commonly used
in GNNs [22]. For pooling, we present two techniques inspired by the comple-
mentary problems of finding the minimum and maximum cut on a graph, re-
spectively: MinCut [20] and Node Decimation Pooling (NDP) [21]. MinCut is
a pooling operator that learns how to reduce graphs by optimising, at the same
time, the task loss of the problem at hand and an objective inspired by the min-
imum cut problem. NDP, on the other hand, is a node subsampling technique
that uses as a sampling indicator the highest-frequency eigenvector of the graph
Laplacian, in order to find a subsampling that is as regular as possible for a given
graph.

We place particular emphasis on the topic of graph pooling because, as we
will show, it is a subject that is often discussed in the literature (we identify

4 1.1 Contributions

Convolution Pooling: SRC

Operators

ARMA

Bianchi et al., TPAMI 2021

MinCut NDP

Bianchi et al., ICML 2020

Bianchi et al., TNNLS 2020

Grattarola et al., 2021

Spektral

Grattarola et al., CIM 2020

Zambon et al., IJCNN 2019

Architectures

Non-Euclidean AE
Change detection

Grattarola et al., ASOC 2019

Grattarola et al., TNNLS 2019

Molecule generation

Explainable GNNs Seizure localization Grattarola et al., 2021

Auto-regressive GNNs Graph dynamical systems

Applications

Figure 1.1. Schematic view of the contributions of the thesis. Top: operators.
In green: the convolutional ARMA layer [22]. In orange: our unified framework
for pooling operators (SRC) [79], and our two pooling operators, MinCut [20]
and Node Decimation Pooling (NDP) [21]. Bottom: architectures. In purple:
the constant-curvature manifold adversarial autoencoder (CCM-AAE) and its ap-
plications to molecule generation and change detection [75, 76]. In yellow: our
explainable GNN based on the attention mechanism, designed to localise epilep-
tic seizures in functional brain networks [77]. In blue: autoregressive GNNs to
predict graph dynamical systems [247]. Right: Spektral, the GNN library devel-
oped within this research [74]

5 1.1 Contributions

tens of different operators) while at the same time being poorly understood. In
relation to this, one key contribution of this thesis is to analyse in-depth the lit-
erature on graph pooling and to propose a first unifying and modular framework
to describe pooling operators, as well as proposing a taxonomy of pooling and
a strategy for performance evaluation that goes beyond the typical benchmark-
based approaches found in recent literature [79].

Architectures Since GML is a relatively recent topic in the AI landscape (or,
at least, a topic that has started to draw significant attention only recently), the
best design practices to solve real-world problems with GNNs are still a matter
of ongoing research. An obvious starting point to approach this endeavour is to
look at the neural network architectures typically used in deep learning literature
and to adapt them to the more general case of graphs. While this may appear
trivial at first, the assumption of lattice structure is so pervasive in deep learn-
ing (and, one could argue, generally in science) that removing it leads to many
practical complications. Besides these issues, the domain of graphs enables new
applications that are novel of their own, and require dedicated attention.

In this research, we have focused on three general-purpose GNN architectures
whose extension to the more general case of graphs is an open research direc-
tion. In all our contributions, we develop novel architectures and apply them to
specific application scenarios.

Non-Euclidean autoencoders We introduce an adversarial autoencoder for
graphs that allows us to control the distribution of the embeddings and, cru-
cially, the geometry of the embedding space [75]. In particular, we show that
non-Euclidean manifolds with constant curvature are useful to represent graphs
in many GML tasks. We apply this methodology to two key areas: 1) the gen-
eration of small molecules for de novo drug design [75], and 2) the detection of
changes in temporal graph sequences, with a focus on computer vision and the
detection of epileptic seizures [76].

Explainable GNNs We develop a methodology, based on the attention mech-
anism [210], which allows us to explain the predictions of a GNN [77]. Specif-
ically, we focus on the task of localising the seizure onset zone in subjects with
epilepsy, using functional networks to describe brain states. We use our method-
ology to identify the subject-specific areas of the brain involved in seizure gener-
ation. We show that our method strongly correlates with the analysis of profes-

6 1.2 Thesis outline

sional electroencephalographers, with promising results for real-world deploy-
ment in epilepsy monitoring units.

Autoregressive GNNs We discuss the design of autoregressive (AR) models
for sequences of graphs [247]. We begin by formalising the problem of auto-
regression in graph space. Then, we propose an AR GNN architecture for the
prediction, which uses a GNN to embed the graph sequence in a vector space, a
recurrent neural network to predict the next embedding, and a graph decoder to
obtain the predicted graph.

1.2 Thesis outline

This thesis is structured into two parts, one for each principal direction of re-
search.

In Part I, Operators, we discuss our contributions to the field of GML in terms
of convolutional and pooling operators.

Chapter 2 introduces the notation and key concepts of graph theory that we
use in the thesis, as well as presenting the reader with the relevant background
on GNNs that will be required to understand all other chapters.

In Chapter 3, we present a novel graph convolutional operator based on
ARMA graph filters.

In Chapter 4, we present a unifying framework and taxonomy of graph pool-
ing, two novel pooling methods called MinCut and Node Decimation Pooling,
and an extensive evaluation of several pooling methods from recent literature.

In Part II, Architectures, we discuss three main kinds of architectures and sev-
eral related cutting-edge applications in dynamical systems and computational
biology.

In Chapter 5, we present the constant-curvature manifold adversarial autoen-
coder (CCM-AAE) and apply it to the tasks of molecule generation for de novo
drug design and change detection in sequences of graphs.

Chapter 6 introduces an explainable GNN based on the attention mecha-
nism [210] and presents a case study on the topic of epileptic seizure localisation.

In Chapter 7, we discuss the topic of AR models in the domain of graphs,
giving a formal characterisation of the problem and introducing a GNN for AR
prediction.

Finally, Chapter 8 concludes the thesis and discusses future research direc-
tions.

7 1.3 Publications

The thesis is accompanied by an extensive appendix that reports all hyperpa-
rameters, a description of the datasets, the software and hardware used for the
experiments, additional experiments and discussions, and proofs.

Complementary to our research, we have developed an open-source software
library, called Spektral, for implementing GNNs in the TensorFlow ecosystem.
Spektral has served as a platform for making the contributions presented in this
thesis and, in general, the advances of recent GNN literature available to the
larger scientific community. We present the library in Appendix G.

1.3 Publications

The work presented in this thesis is based on the following papers (listed in
chronological order of publication):

• Daniele Grattarola, Daniele Zambon, Cesare Alippi, and Lorenzo Livi. Change
detection in graph streams by learning graph embeddings on constant-
curvature manifolds. IEEE Transactions on Neural Networks and Learning
Systems, 2019 [76];

• Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Adversarial autoen-
coders with constant-curvature latent manifolds. Applied Soft Computing,
81:105511, 2019 [75];

• Daniele Zambon, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Au-
toregressive models for sequences of graphs. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2019 [247];

• Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clus-
tering with graph neural networks for graph pooling. In International Con-
ference on Machine Learning (ICML), 2020 [20];

• Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi.
Hierarchical representation learning in graph neural networks with node
decimation pooling. IEEE Transactions on Neural Networks and Learning
Systems, 2020 [21];

• Daniele Grattarola, Lorenzo Livi, Cesare Alippi, Richard Wennberg, and
Taufik Valiante. Unsupervised seizure localisation with attention-based
graph neural networks. bioRxiv, 2020 [77];

8 1.3 Publications

• Daniele Grattarola and Cesare Alippi. Graph neural networks in tensor-
flow and keras with spektral. IEEE Computational Intelligence Magazine,
2021 [74];

• Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi.
Graph neural networks with convolutional arma filters. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021 [22];

• Daniele Grattarola, Daniele Zambon, Filippo Maria Bianchi, and Cesare
Alippi. Understanding pooling in graph neural networks. arXiv preprint
arXiv:2110.05292, 2021 [79].

The author has also contributed to the following publications:

• Benjamin Paassen, Daniele Grattarola, Daniele Zambon, Cesare Alippi, and
Barbara Eva Hammer. Graph edit networks. In International Conference on
Learning Representations, 2021 [161]

• Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Learning graph cellular
automata. In Neural Information Processing Systems, 2021 [78]

• Jack B Maguire, Daniele Grattarola, Vikram Khipple Mulligan, Eugene Klyshko,
and Hans Melo. Xenet: Using a new graph convolution to accelerate the
timeline for protein design on quantum computers. PLoS computational
biology, 17(9):e1009037, 2021 [135]

Part I

Operators

9

Chapter 2

Background

This chapter introduces the relevant background to understand the contributions
of the thesis and frame them into the larger context of graph machine learning.

We begin by introducing the basic terminology of graph theory. Then, we
give a brief introduction to the field of spectral graph theory up to the concepts
of graph Fourier transform and graph convolution.

Finally, we present graph neural networks and their fundamental building
blocks: convolutional layers, which learn a node-level representation of the graph;
pooling layers, which reduce the size of the graph; readout layers, which map
the graph to a global vector representation.

2.1 Definitions and notation

We begin this chapter by introducing the necessary concepts and terminology of
graph theory that we will use throughout the thesis.

Graph A graph is a tuple G = (V,E), where V = {1, . . . , N} is the node set of
cardinality |V|= N and E ⊆ V × V is the edge set.

Nodes We indicate nodes with their scalar indices, e.g., node 1 or node i, al-
though the numbering of the node set does not imply an order of the nodes, as
V is usually an unordered set.

Edges We indicate edges as pairs of nodes (i, j). If an edge is directed, the
order of the pair indicates the direction, i.e., edge (i, j) goes from node i to node
j. Otherwise, we consider edges as undirected, so that (i, j) ∈ E ⇐⇒ (j, i) ∈ E .

11

12 2.1 Definitions and notation

Neighbours Given a node, it is often useful to consider the subset of nodes to
which it is connected by an edge, which we call its neighbours. We can represent
this idea with a neighbourhood function N : V → 2V , where 2V indicates the
power set of V, which returns a subset of V such that N (i) = { j | (j, i) ∈ E}. For
directed graphs, we can distinguish between outgoing and incoming neighbours,
depending on whether we consider the target node i to be on the sending (left) or
receiving (right) end of a directed edge. However, in this thesis, we only consider
the case of incoming neighbours.

Attributes We also focus on the general family of attributed graphs in which
each node and, optionally, each edge can have a vector attribute (or feature) as-
sociated with it. For example, in a social network, node attributes could describe
information related to each individual (age, sex, job, height, etc.) while edge at-
tributes could describe the relationship between individuals (friends, coworkers,
year when they met, etc.). We use xi ∈ RDn to indicate the attribute associated
with node i and, similarly, we use ei j ∈ RDe to indicate a vector attribute associ-
ated with edge (i, j).

Adjacency matrix We indicate with A ∈ RN×N the adjacency matrix of the
graph, for which ai j 6= 0 ⇐⇒ (i, j) ∈ E . The entries of the adjacency matrix
can be binary to indicate the presence or absence of edges, or they can take any
value to represent the connection weight between pairs of nodes. For undirected
graphs, the adjacency matrix is symmetric, i.e., ai j = a ji.

Attribute matrices We indicate with X ∈ RN×Dn the matrix that represents all
node attributes of a graph (in this case, an order of the nodes must be chosen,
although the specific order is not important). The matrix of node attributes is
also sometimes referred to as a graph signal, especially when drawing a parallel
between classical signal processing and the theory of signal processing on graphs
that we cover in later sections.

Similarly, although less common, we can represent edge attributes in a tensor
E ∈ RN×N×De (in this case, by convention, if ai j = 0 then the edge attributes
ei j,: = [0, . . . , 0]).

13 2.2 Spectral graph theory

Degree matrix We indicate with D ∈ RN×N the diagonal degree matrix, for
which

di j =







N−1
∑

j=0
ai j if i = j,

0 if i 6= j.
(2.1)

Laplacian matrices Finally, we introduce the notion of Laplacian matrix which,
as we will see in future sections, is directly related to the notion of Laplace op-
erator in differential calculus. If a graph is undirected, i.e., its adjacency matrix
is symmetric, we define the combinatorial Laplacian matrix as L = D − A and
the symmetric normalised Laplacian as Ln = D−1/2LD−1/2. In the case of directed
graphs, equivalent formulations of the combinatorial and normalised Laplacian
exist, although we will not consider them here.

2.2 Spectral graph theory

A common approach to studying graphs and their topology relies on analysing
the characteristic matrices we introduced in the previous section. Specifically, by
studying the eigenvalue decomposition of matrices like the adjacency matrix or
the Laplacian, which encode the topological structure of the graph, we can gain
important knowledge about the graphs and their high-level properties. We refer
to the process of analysing a graph through the spectral analysis of its character-
istic matrices as spectral graph theory.

As we will see, some core concepts commonly found in calculus and machine
learning can be seen as particular cases of a much more general theory that relies
on graphs. This will allow us, in future sections, to define a notion of convolution
on irregular geometrical domains, which we will then use to design convolutional
neural networks for graphs.

In this section, we go over a brief introduction of the key concepts of graph
spectral theory that we will use in the following chapters of the thesis.

2.2.1 Spectral analysis of the Laplacian

Many concepts of spectral graph theory are well-defined irrespective of the spe-
cific characteristic matrix that we use to describe the graph topology. In fact,
most of the results that we will see regarding graph convolutional networks
are well-defined for any choice of matrix, as long as the matrix has the same
structure, or sparsity pattern, of the adjacency matrix. In particular, we refer to

14 2.2 Spectral graph theory

the notion of structure operators to indicate the family of matrices S such that
si j 6= 0 ⇐⇒ ai j 6= 0,∀i 6= j, for which most of graph spectral theory can be
derived.

However, for the scope of this thesis, it will be sufficient to cover a relatively
small subset of graph spectral theory, i.e., only the essential notions up to the idea
of graph convolution. For this reason, throughout this section, we only focus on
the Laplacian as a structure operator.

We start by noting that the Laplacian is a real symmetric positive-semidefinite
matrix and, therefore, admits a full eigendecomposition with N non-negative
real eigenvalues 0 ≤ λ0 ≤ ... ≤ λN−1 and a set of N orthogonal eigenvectors
u0, ...,uN−1. In particular, we can write the Laplacian as

L= UΛU−1 = UΛU> (2.2)

where U ∈ RN×N is the orthogonal matrix having eigenvectors uk as columns
and Λ = diag(λ0, . . . ,λN−1) the diagonal matrix of eigenvalues. Note that each
eigenvector uk is an N -dimensional vector whose entries are associated with the
nodes of the graph, in other words, a graph signal.

The eigenvectors and eigenvalues of the Laplacian are closely related to the
notion of frequency. In particular, we can use a generalised notion of frequency
called local quadratic variation to describe how much the elements of an eigen-
vector (and, in general, any graph signal) vary over all edges of the graph. The
local quadratic variation of an eigenvector is given by:

VL(uk) = u>k Luk =
1
2

∑

(i, j)∈E

Ai j(uk[i]− uk[j])
2 = λk ‖uk‖

2
2 = λk (2.3)

As we see, the local quadratic variation of an eigenvector is its associated
eigenvalue and, for this reason, the eigenvalues of the Laplacian are often re-
ferred to as the frequencies of the graph.

By further studying the spectrum of the graph Laplacian we can remark a few
interesting aspects that are generally useful to analyse a graph.

Remark 1 The algebraic multiplicity of the null eigenvalues indicates the num-
ber of connected components of the graph, i.e., the subgraphs for which
any pair of nodes is connected by at least a path and whose nodes have no
connections to the remaining node of the graph. Since a graph has at least
one connected component, the smallest eigenvalue is always null, λ0 = 0.

Remark 2 Eigenvectors associated with null eigenvalues are constant, i.e., they
have null local quadratic variation.

15 2.2 Spectral graph theory

0 500 1000 1500 2000 2500
k

0

1

2

3

4

5

6

7
k

(a) Eigenvalues of L (b) u0

(c) u1 (d) sign(uN−1)

Figure 2.1. Spectral analysis of the Minnesota road network. We plot the eigen-
vectors of the Laplacian as graph signals, so that the colour intensity of the ith

node is given by uk[i]. (a) The eigenvalues of L. Since the graph has only one
component, there is only one null eigenvalue (marked “X”). (b) The eigenvector
u0, associated with the null eigenvalue λ0, is constant. (c) The eigenvector u1,
associated with the smallest non-zero eigenvalue, changes slowly over the graph.
(d) The eigenvector uN−1, associated with the largest eigenvalue, changes quickly
over the graph (we plot the sign of uN−1 instead of the actual value, to accentuate
the change).

16 2.2 Spectral graph theory

Remark 3 The eigenvectors associated with the smallest and largest non-zero
eigenvalues of the Laplacian are useful indicators to partition the graph
(respectively, to find strongly connected communities and to find the max-
imum cut of the graph). We use this property of the Laplacian extensively
in Chapter 4.

We summarise these remarks in Figure 2.1, using the Minnesota road network
as an example.

2.2.2 Graph Fourier transform and graph convolution

In order to introduce graph convolutional networks, we cover here the essential
notions that allow us to extend the idea of convolution to the domain of graphs.
In particular, we introduce the idea of the graph Fourier transform (GFT) as a
generalisation of the discrete Fourier transform, which we will then apply to
define a generalised convolution in the domain of graphs.

To derive the GFT, we start from a keystone observation that allows us to
understand much of the literature on graph neural networks: graph signals are
a generalisation of conventional signals defined on regular domains, like time
series and images.

Although this might be non-trivial to see at first, it can be helpful to think
about images as an example. In images, each pixel is a vector describing the
intensity of red, green, and blue light, similar to the node attributes in attributed
graphs. Further, we can also easily see that the pixels themselves carry little
information of their own and that the way in which pixels are arranged is what
really gives meaning to an image. In a sense, it is as though pixels are arranged
in a particular kind of graph, namely a regular lattice graph, which tells us which
pairs of pixels should be close to each other in order to give meaning to the
image. This applies trivially to the one-dimensional case of time series and can be
generalised to any d-dimensional regular lattice (e.g., the 4-dimensional space-
time lattice).

From this observation, the quest of defining the convolution operation on
graphs becomes a matter of translating the well-known tools of conventional
signal processing to this general domain of graphs. In particular, our goal is to
re-derive convolution in a way that does not assume a regular lattice structure
of the data.

However, the typical intuition of convolution in the “time" domain (here, we
generally talk about the node domain) as an operation based on shifting the sig-
nals cannot be easily applied here, since we lack a native notion of shift on the

17 2.2 Spectral graph theory

graph due to the generally irregular structure and the fact that nodes might not
have a given order (unlike in lattices, where the order of the nodes relative to
their neighbours is given—e.g., up, down, left, or right). Therefore, we have to
look elsewhere, and in particular at the interpretation of convolution as a multi-
plication in the frequency domain.

Without loss of generality, let f [n] and g[n] be two discrete and finite one-
dimensional signals over time, n= 0, . . . , N − 1, and let the Fourier transform of
f [n] be

F{ f }[k] = f̂ [k] =
N−1
∑

n=0

f [n]e−i 2π
N kn, (2.4)

while the inverse Fourier transform is

F−1{ f̂ }[n] = f [n] =
1
N

N−1
∑

k=0

f̂ [k]ei 2π
N kn. (2.5)

Now, let the discrete convolution between f [n] and g[n] be

(f ? g)[n] =
N−1
∑

m=0

f [n−m]g[m]. (2.6)

The convolution theorem states that

f ? g = F−1 {F { f } ·F {g}} , (2.7)

i.e., the effect of convolving the two signals can be obtained by transforming both
signals to their frequency representation in the Fourier domain, then point-wise
multiplying the two transformed signals, and finally re-transforming the result
back to the original domain. Using this major result from signal processing, we
can now introduce the GFT and the graph convolution.

As commented above, we can consider regular lattices as a particular kind of
graph that bridges the conventional regular domains with the arbitrarily struc-
tured graphs we are interested in. Again, without loss of generality, here we look
at one-dimensional lattices, also called path graphs.

The Laplacian of a path is given by:

L=













a01 −a01

...
... −ai,i−1 ai,i−1 + ai,i+1 −ai,i+1 ...

...
−aN−1,N−2 aN−1,N−2













(2.8)

18 2.2 Spectral graph theory

where the only non-zero entries are in the diagonal, subdiagonal and superdiag-
onal of the matrix.

The eigendecomposition of the Laplacian, in this case, can be obtained ana-
lytically as:

uk[n] =



















1, for k = 0

eiπ(k+1)n/N , for odd k, k < N − 1

e−iπkn/N , for even k, k > 0

cos(πn), for odd k, k = N − 1

(2.9)

which are exactly the basis functions used to write the Fourier transform in Equa-
tion (2.4).

The reason for this parallel can be understood by considering that the Fourier
transform was invented as a way of representing a signal in a different basis,
namely a basis of orthogonal eigenfunctions of the Laplace operator. When mov-
ing from a continuous to a discrete domain, the eigenfunctions of the Laplace
operator become the eigenvectors of the Laplacian operator which, as can be
readily seen from the definition, has a similar meaning to its continuous coun-
terpart (i.e., it computes a local divergence of the signal). Given that the path
graph is, as we saw, just a different way of representing the time domain, we
recover the same analytical form of the Fourier eigenbasis in discrete time.

However, this result also tells us something important about the Fourier trans-
form: it can be derived from the Laplacian of a graph, without assuming anything
about its structure. If the graph represents a conventional regular domain, as
we saw above for the path graph representing the temporal lattice, we recover
known results from signal processing. However, the procedure is well defined
for any arbitrary graph:

1. Compute the Laplacian L;

2. Compute eigenvectors uk;

3. Compute the Fourier transform as

f̂ [k] =
N−1
∑

n=0

f [n]uk[n]. (2.10)

In short, we define the GFT of a graph signal as the representation of the
signal in the basis of eigenvectors of the Laplacian. We can extend this principle
to multi-dimensional graph signals (or, as we have called them, node attributes)

19 2.2 Spectral graph theory

and write the GFT of Equation (2.10) in a compact matrix form. Given a graph
signal F ∈ RN×Dn , we write its GFT as:

F̂= U>F. (2.11)

The inverse GFT (iGFT), then, is simply:

F= UF̂ (2.12)

i.e., a map of the transformed signal back to its original basis. Note that Equations
(2.11) and (2.12) are general versions of Equations (2.4) and (2.5).

Crucially, we note that the convolution theorem holds also for the GFT, so
that we can write the convolution between two graph signals F,G ∈ RN×Dn as per
Equation (2.7):

F ?G= U
�

U>F�U>G
�

, (2.13)

where � indicates element-wise multiplication.
From Equation (2.13), we can also define the concept of graph filter. We start

by noting that conventional filtering is typically implemented as a convolution
between the signal of interest and a filter function. Let F,G in Equation (2.13)
be, for simplicity of notation and without loss of generality, one-dimensional
graph signals f,g ∈ RN (i.e., Dn = 1, omitted for simplicity). We can rewrite
Equation (2.13) as:

f ? g= U
�

U>f�U>g
�

(2.14)

= U
�

U>g�U>f
�

(2.15)

= U
�

diag(U>g)U>f
�

(2.16)

= U · diag(U>g) ·U>f. (2.17)

By comparing Equation (2.17) with the eigendecomposition of the Laplacian in
Equation (2.2), i.e., L = UΛU>, and noting that Λ and diag(U>g) are both di-
agonal matrices, we can interpret the effect of a graph filtering operation as an
action on the eigenvalues of the Laplacian:

g(Λ) := diag(U>g). (2.18)

It is also possible to write the action of the filter as an element-wise operation
acting on the individual eigenvalues of the Laplacian, i.e.,

g(λk) =
N−1
∑

n=0

uk[n]g[n]. (2.19)

20 2.3 Graph neural networks

We write the complete filtering operation as:

F ?G= Ug(Λ)U>F, (2.20)

Additionally, if g(λ) is an analytic function, its action on the eigenvalues Λ
can be equivalently written as an action on the entries of the Laplacian itself, i.e.,

g(L) = Ug(Λ)U>. (2.21)

This latter formulation in the domain of nodes is much more efficient since it does
not require computing the full eigendecomposition of L and the multiplication
with U. Putting everything together, for a graph with Laplacian L, we write the
filtering action with graph filter g on a graph signal F as:

F ?G= g(L)F. (2.22)

This duality between node domain and frequency domain will be useful to
design graph filters with a given response in the frequency domain while allowing
us to apply them in the node domain efficiently.

In the following section, we show how to design graph filters that can be
learned with stochastic gradient descent, leading to graph convolutional net-
works and the general family of graph neural networks.

2.3 Graph neural networks

Seminal research on Graph Neural Networks (GNNs) dates back to the works
of Sperduti and Starita [198], Gori et al. [72] and Scarselli et al. [181], whose
goal was to design a neural network that could process graph-structured data.
In the following years, key developments in the field of graph signal process-
ing [73, 173, 141, 159] led to the development of deep learning techniques for
processing geometric data, under the umbrella term geometric deep learning pop-
ularised by the work of Bronstein et al. [27], which eventually led to modern GNN
architectures.

In this section, we introduce GNNs and their fundamental building blocks.
We define a graph neural network as a sequence of differentiable operations

that take as input a graph and return a vector representation of the graph itself
or its nodes. In typical deep learning fashion, we group these operations into lay-
ers that perform one atomic transformation. Specifically, we distinguish among
convolutional layers, pooling layers, and readout layers.

21 2.3 Graph neural networks

Convolutional layers are operators that compute a representation of the node
features of a graph, with the general form:

fconv : G 7→ X′ ∈ RN×D′n . (2.23)

Such transformation can depend on the input graph’s attributes (of both nodes
and edges) and structure. It is also possible to define convolutional operators
that transform the edge attributes of the input graph, although we do not cover
this case here.

Pooling layers are operators that transform a graph with the generic goal of
reducing the number of nodes:

fpool : G 7→ G′, (2.24)

where G′ = (V ′,E ′) and |V ′|< |V|.1

Finally, readout layers compute a vector representation of the input graph
and are similar, in spirit, to the flattening step that one applies after convolution
in a typical CNN. A readout is a function:

fout : G 7→ z ∈ RDout . (2.25)

The composition of such layers into a computational graph is usually referred
to as a GNN architecture or, more simply, a GNN. Since GNNs are composed of
differentiable operations, their parameters can be learned end-to-end with back-
propagation and stochastic gradient descent, like any neural network. Different
kinds of GNNs can be constructed to solve different tasks, with the principal dif-
ference being in the output. We distinguish two main cases.

In node-level learning, the output of the GNN is a representation of the nodes
of the input graph. Examples of node-level learning include classifying the users
of a social network, predicting traffic on different roads, or modelling the trajec-
tory of particles under the effect of gravity. An example of node-level learning in
classical deep learning is the task of image segmentation, in which each pixel is
classified as belonging to a particular object or region. In this case, any pooling
or readout operation must be reversed to ensure that the number of nodes is
preserved, although typically this effect is obtained by not introducing pooling
or readout layers at all.

Alternatively, in graph-level learning, the output of the GNN is a represen-
tation of the graph itself. This is more similar to how classical CNNs are used,

1In Chapter 4, we will comment on some particular cases in which pooling layers undesirably
increase the number of nodes.

22 2.3 Graph neural networks

(a) Node-level: one output per node. (b) Graph-level: one output per graph.

Figure 2.2. Schematic representation of node-level and graph-level prediction.
At the node level, the GNN outputs a prediction for each node. At the graph
level, the GNN outputs a single prediction for the entire graph.

in that the entire graph is seen as the input of the network and the prediction
represents a global description of the input. GNNs for graph-level learning can
combine convolutional and pooling layers arbitrarily, like in CNNs, and the map-
ping of the graph to a vector representation is computed by a readout layer.

Another relevant use of GNNs is the prediction of edges, usually referred to
as link prediction, although this can be framed as a particular case of node-level
prediction (i.e., predicting node representations that are similar for nodes that
should be connected by an edge).

Figure 2.2 shows the difference between the two settings.
Similar to classical deep learning architectures, GNNs have non-linear activa-

tion functions, can be regularised with weight decay, dropout, and batch normal-
isation, and can be used to perform classification or regression tasks depending
on the final activation function and loss used during training.

In the following sections, we introduce more in detail the principal works of
GNN literature, with a focus on convolutional and pooling layers.

2.3.1 Convolutional operators

Convolutional layers are used to learn a representation of the nodes of a graph.
Traditionally, the literature distinguishes between two main approaches to

implement convolutional layer, namely spectral and spatial, although the line
between the two is often blurred and the distinction is primarily due to historical

23 2.3 Graph neural networks

reasons.
Spectral approaches are those methods based on the interpretation of con-

volution as a multiplication in the Fourier domain, which we have introduced
in Section 2.2. Typically, spectral GNNs formulate a filtering operation in the
graph Fourier domain using a filter gθ (λ) with learnable parameters θ . Then,
the parameters of the filter are learned in a data-driven way, usually by gradient
descent.

On the other hand, spatial approaches formulate convolution as an exchange
of information between neighbours, and are usually referred to as message-passing
layers. For each node i, a message-passing layer computes a vector x′i ∈ R

D′n ac-
cording to the following scheme:

x′i = γ
�

xi,� j∈N (i)φ
�

xi,x j,e ji

��

, (2.26)

where φ is called message function, � indicates a permutation-invariant opera-
tion to aggregate the set of messages coming from the neighbourhood N (i) (e.g.,
a sum

∑

or a product
∏

), and γ is and update function that computes the final
node representation.

Purely spectral approaches are seldom used in the literature and, although
motivated by spectral graph theory, the most commonly used spectral layers can
be seen as specific instances of the very general message-passing paradigm.

The first works to introduce neural networks capable of learning node repre-
sentations were those of Sperduti and Starita [198], Gori et al. [72] and Scarselli
et al. [181]. The methods proposed in these works implemented a message-
passing scheme that was recurrently applied until converging to a fixed node
representation. These papers introduced much of the keystone concepts of the
field and are widely regarded as the first papers on GNNs, although the recurrent
formulation was eventually discarded in favour of feed-forward models.

The first purely spectral approach to GNNs was that of Bruna et al. [29], who
proposed to learn a spectral filter gθ (λ) (cf. Section 2.2.2) directly in the Fourier
domain using cubic B-splines. The filter had the form gθ (λ) = Bθ , where B ∈
RN×K is a cubic B-spline basis and θ ∈ RK is a vector of coefficients. This approach
relied on the filtering formulation of Equation (2.20) and was computationally
expensive due to the double product with the eigenvector basis U. Also, the
reliance on U meant that the filter was only valid for the specific graph associated
with the corresponding Laplacian, and could be transferred easily to different
graphs. Finally, the proposed filter was not localised in node space. A graph
filter is said to be K-localised if the action of gθ (L) on a node depends only on
its K-hop neighbours. However, the spectral filtering described above generally

24 2.3 Graph neural networks

resulted in the interaction of all nodes across the graph, contrary to the principle
of local processing of conventional CNNs.

Since the inception of spectral GNNs, however, many approaches have been
proposed to make the filtering operation learnable, efficient, and localised. The
most common implementation of such filters is based on polynomials of the form:

gθ (L) =
K
∑

k=0

θkS
k, (2.27)

where S is any structure operator (cf. Section 2.1) and θ ∈ RK+1 is a vector of
learnable parameters. This formulation based on powers of S ensures that the
filter:

1. Has a constant number of parameters that does not depend on the size of
the graph;

2. Is exactly K-localised [47];

3. Does not rely on computing the GFT explicitly, which makes it efficient to
apply and transferable to different graphs.

Although we have defined the GFT and graph convolution for a generic struc-
ture operator S, the methods found in the literature are usually based on specific
operators (typically the Laplacian or the adjacency matrix).

Defferrard et al. [47] introduced a GNN based on Chebyshev polynomials of a
modified Laplacian matrix, which allowed them to compute the polynomial filter
recursively with a cost of O(K ·|E |). We refer to this model as the Chebyshev GNN.
The Chebyshev GNN transforms the node attributes X ∈ RN×Dn into X′ ∈ RN×D′n

as:

X′ =
K−1
∑

k=0

T(k)W(k) + b(k), (2.28)

where W(k) ∈ RDn×D′n and b(k) ∈ RD′n are learnable parameters and T(k) indicates
the kth term of the Chebyshev polynomial of modified Laplacian L̄:

T(0) = X (2.29)

T(1) = L̄X (2.30)

T(k≥2) = 2 · L̄T(k−1) − T(k−2), (2.31)

The modified Laplacian L̄ is given by:

L̄=
2
λmax

· (I−D−1/2AD−1/2)− I (2.32)

25 2.3 Graph neural networks

which is a simple transformation of L to ensure that its spectrum lies in the inter-
val [−1, 1]. Note that the computation of the Chebyshev polynomial of Equations
(2.29)-(2.31) only requires one multiplication with L̄ at each step, which can be
efficiently implemented as a sparse matrix multiplication with cost O(|E |).

In a later work, Kipf and Welling [106] proposed a simplification of the Cheby-
shev GNN based on a first-order polynomial of the normalised adjacency matrix.
This formulation also replaced the 0-order term of the filter (i.e., the identity ma-
trix L0 = I) by modifying the adjacency matrix to include self-loops, i.e., making
the diagonal of A non-zero, to improve the stability of the filter. Despite creat-
ing some confusion in the nomenclature, this latter model of GNN is called the
Graph Convolutional Network (GCN). The GCN model computes the following
transformation of the node attributes:

X′ = ĀXW+ b (2.33)

where

Ā= D̂−1/2ÂD̂−1/2, (2.34)

Â= A+ I, and D̂ is the degree matrix of Â.
We will discuss properties and limitations of these approaches in Chapter 3.
Besides operators that implement a spectral graph convolution, many other

designs have been proposed to make GNNs more expressive, mostly based on the
message-passing scheme of Equation (2.26). Here we focus only on a few im-
portant aspects and refer the reader to the numerous surveys on GNN literature
for a detailed account of many GNN implementations (e.g., [229]).

As previously noted, the key to the message-passing paradigm is the modu-
lar description of a layer’s action in terms of message, aggregation, and update
functions. For example, the GCN described above can also be seen as a particular
kind of message-passing layer with a learnable linear projection as the message
function and an aggregation function that computes a weighted average based
on the specific reference operator.

In the following, we describe some of the principal message-passing layers
that represent different kinds of computation.

Edge-specific messages with edge attributes First, from Equation (2.26) we
see that message-passing layers can take into account edge attributes, making the
message function φ edge-dependent. There are two main approaches to achieve
this.

26 2.3 Graph neural networks

Simonovsky and Komodakis [195] proposed to compute the parameters of
the message function φ as the output of a kernel-generating network (KGN):

fKGN : ei j 7→W(i, j) ∈ RDn×D′n . (2.35)

The role of the KGN is to map the edge attributes to a matrix of parameters,
which are then used to compute the messages from the neighbours. This ensures
that each message depends on the specific edge attribute between a node and
each neighbour. The overall formulation of the model, called Edge-Conditioned
Convolution (ECC), is:

x′i =W>
(root)xi +

∑

j∈N (i)

fFGN(e j,i)
>x j + b (2.36)

=W>
(root)xi +

∑

j∈N (i)

W>
(j,i)x j + b (2.37)

where W(root) ∈ RDn×D′n is a matrix of parameters for the root node (since, in gen-
eral, we don’t assume self-loops to be present but we still want to use a node’s
current attributes to compute its representation) and b is a bias vector of param-
eters.

An alternative approach to integrating edge attributes into the computed mes-
sages is to concatenate, or otherwise merge, e ji to x j and use the result to com-
pute the messages. A model that follows this approach is the Crystal Convolution
presented by Xie and Grossman [231].

Edge-specific messages without edge attributes In the absence of edge at-
tributes, the message function can still be made edge-specific by computing mes-
sages as a function of both xi and x j. This is the idea behind the very successful
graph attention network (GAT) of Veličković et al. [211]. GAT works by com-
puting a dynamic reference operator using the self-attention mechanism, so that
the aggregation of messages is weighted by a score computed from the node
attributes xi and x j. At its core, GAT computes a simple convolution:

X′ = ĀXW+ b (2.38)

where W ∈ RDn×D′n and b ∈ RD′n are parameters and

āi j =
exp

�

σ
�

θ>[(XW)i ‖ (XW) j]
��

∑

k∈N (i)∪{i}
exp (σ (θ>[(XW)i ‖ (XW)k]))

. (2.39)

27 2.3 Graph neural networks

where θ ∈ R2D′n is a vector of parameters, ‖ indicates concatenation, and σ is an
activation function (in the original paper, a leaky rectified linear unit).

While GAT is certainly the leading approach for computing edge-specific mes-
sages without edge attributes, other possibilities exist like, for example, the Edge-
Conv layer of Wang et al. [215] which computes:

x′i =
∑

j∈N (i)

MLP
�

xi‖x j − xi

�

. (2.40)

We will not venture further into the subject since it is not crucial for the presen-
tation of this thesis.

Graph Isomorphism Networks Finally, we mention a particularly important
model called the Graph Isomorphism Network (GIN), which is motivated by the-
oretical results about the universality of neural networks to represent functions
over sets. A GIN layer implements the following operation:

x′i =MLP
�

(1+ ε) · xi +
∑

j∈N (i)

x j

�

(2.41)

where MLP indicates a multi-layer perceptron and ε is a parameter that can be
set manually or learned (although, in practice, it is often set to 0). Assuming
the universality of MLP, Equation (2.41) can be shown to be as powerful as
the Weisfeiler-Lehman graph isomorphism test in distinguishing a given pair of
graphs.

2.3.2 Pooling operators

Complementary to convolutional layers, pooling operators are a large and diverse
class of techniques used both in GNNs and as stand-alone operators to reduce the
number of nodes in a graph. Pooling layers bring the double benefit of reducing
computational costs and making the graph representation more abstract, similar
to the pooling layer in CNNs.

We generically define a pooling operation as any function that maps a graph
G = (V,E) to a graph G′ = (V ′,E ′) such that |V ′| < |V|. The term coarsening is
also used interchangeably with pooling. A formal definition of pooling operators
is a contribution of this thesis and we will give it in Chapter 4. Here, we limit our
exposition to a high-level description of the many diverse techniques for pooling
that are found in the literature.

Among the early uses of pooling operators found in the seminal GNN liter-
ature, the Graclus algorithm [49] was used by Defferrard et al. [47] and later

28 2.3 Graph neural networks

adopted in other works on GNNs [149, 119, 57]. Graclus (shorthand for “graph
clustering”) is an algorithm that halves the size of the node set by iteratively
collapsing a randomly selected node with its most strongly connected neigh-
bour. The method can be shown to be equivalent to more expensive approaches
based on the eigendecomposition of the adjacency matrix (we describe one such
method in-depth in Chapter 4).

The literature about machine learning for point clouds (a field of computer
vision that models three-dimensional objects as a collection of points in space)
also introduced pooling techniques to generalise the traditional pooling layers
of CNNs. Most notably, Simonovsky and Komodakis [195] adopt the VoxelGrid
algorithm, in which a regular grid is overlaid on a point cloud and all the points
in a voxel are summarised by their centroid. A similar voxel-oriented pooling
is also proposed by Riegler et al. [174]. A different approach for pooling point
clouds is proposed by Qi et al. [168], where the authors create a hierarchical
representation by grouping together points around a given set of centroids, which
are found with a farthest point sampling algorithm. We also mention the more
recent work by Lei et al. [118] which proposes a pooling strategy based on octree
partitioning [144].

Alternatively, many pooling techniques have been proposed based on differ-
ent design principles and requirements. The graph-theoretical analysis proposed
by Loukas [128], Hermsdorff and Gunderson [85], Cai et al. [31], aimed at coars-
ening graphs so that their spectrum is preserved in the pooled graph. In clique
pooling [132], graphs are coarsened by aggregating maximal cliques. All nodes
belonging to a clique are summarised by their maximum or average and become
a new node in the coarsened graph. If a node in one clique shares an edge with
a node in another, the nodes representing the cliques are connected in the new
graph. Bacciu and Di Sotto [7] developed a method based on the non-negative
matrix factorisation (NMF) of the adjacency matrix. After the decomposition, one
of the two factors is used as a soft clustering matrix for coarsening the graph. In
the EigenPooling approach by Ma et al. [133], a graph is first partitioned into
subgraphs using spectral clustering, and each subgraph is mapped to a node in
the pooled graph. Then, the eigenvectors of each subgraph’s Laplacian are used
to define a set of downsampling operators for the node attributes. In Laplacian
pooling (LaPool) [155], nodes characterised by high local quadratic variation (cf.
Equation (2.3)) between their features and those of their neighbours are selected
as leaders, and the remaining nodes are assigned to one cluster using a sparse at-
tention mechanism. When combined with simple low-pass graph filters like GCN,
LaPool yields a band-pass filter that retains the medium frequencies of the graph
signal. Xie et al. [232] propose a procedure that iteratively collapses nodes with

29 2.3 Graph neural networks

high similarity and similar neighbourhoods. This approach is similar to Graclus,
although it accounts for second-order similarity relations between nodes.

The current trend (and state of the art) in graph pooling has seen the ad-
vent of learnable operators that, much like convolutional layers, can dynamically
adapt to a particular task to compute optimal pooling.

The DiffPool operator [237] was among the first attempts to learn a pooling
operator end-to-end. In DiffPool, a GNN is trained to compute a soft clustering
matrix from the node features, which is then used to aggregate the nodes in each
cluster. To ensure convergence to balanced clusters, two additional loss terms
are minimised during training, namely a link prediction loss and an entropy loss.
More recently, Bodnar et al. [23] proposed the Mapper-based PageRank (MPR),
a pooling method based on the Mapper algorithm [197] using PageRank [163]
as a lens function. Other approaches for computing learnable lens functions can
be used, and the authors also show that their Deep Graph Mapper algorithm is a
generalisation of those pooling methods based on a soft clustering, like DiffPool
and LaPool.

However, despite being very effective in practice, methods based on learning
a clustering operation have been criticised for their high memory cost [32]. To
address these limitations, several works have proposed a family of sparse opera-
tors collectively known as Top-K methods. In these approaches, node features are
projected to a scoring vector through a learnable transformation, and the scoring
vector is then used to decide which nodes to keep in the coarsened graph. In their
simplest formulation [88, 32], Top-K approaches are based on a linear projection
to compute the scoring vector. Then, the highest K elements of the scoring vector
identify K nodes to keep in the coarsened graph (hence the name Top-K). An
alternative strategy is proposed by Knyazev et al. [108], where all nodes with a
score above a given threshold are kept. The threshold can be either selected man-
ually or learned end-to-end as a parameter. Finally, Lee et al. [117] propose to
learn the scoring vector with a GCN [106], rather than a linear projection. Ranjan
et al. [171] propose a more complex way of computing the scoring vector called
Adaptive Structure Aware Pooling (ASAP). In ASAP, the graph is clustered using
the Master2Token technique (also introduced in the paper), which for each node
computes a cluster based on a self-attention mechanism. Then, for each cluster,
a custom GNN layer (called Local Extrema Convolution) is used to compute the
scoring vector and a Top-K selection is applied. In a similar spirit of Top-K , but
with a focus on edges instead of nodes, Edge Contraction Pooling [51, 50] learns
to compute a score for the incident edges of each node. Edges are then iteratively
contracted (i.e., their extremes are merged into a single node) according to the
scores.

30 2.3 Graph neural networks

2.3.3 Readout operators

Several readout, or global pooling, methods to reduce graphs to a compact vector
representation have also been proposed in the literature.

Typical operations to compute a graph readout include the sum, product,
average or maximum of the node features, applied column-wise to the matrix of
node attributes so that the typical structure of a readout function is:

fout : RN×Dn → RDn (2.42)

We generally require the readout function to be invariant to node permutations,
so that the representation of a graph does not depend on a specific order of the
nodes.

Besides the simple approaches described above, however, more sophisticated
techniques have been proposed to compute graph readouts. In one of the earliest
works describing GNNs, Scarselli et al. [182] distinguished between supervised
and unsupervised nodes, where the representation of supervised nodes learned by
the GNN was used to predict global properties of the whole graph. We also men-
tion SortPooling [248], which leverages the Weisfeiler-Lehman subtree kernel to
sort node features in a sequence, and the global readout proposed in DEMO-
Net [224], that groups nodes by degree and performs a concatenation of their
sums. More recently, Navarin et al. [151] proposed a universal global pooling
operator based on the results of Zaheer et al. [241].

Li et al. [124] proposed an attention-based readout where each node attribute
is gated with a learnable attention vector before performing a simple global sum.
We finally mention the readouts proposed in the works of Corcoran [39], Atwood
and Towsley [6], Xu et al. [234] and Bai et al. [9].

Chapter 3

Convolution: GNNs with ARMA
filters

This chapter presents the ARMA graph neural network [22], a graph convolu-
tional layer based on a filter with a rational frequency response. The layer is in-
spired by the ARMA graph filter [92], which approximates the desired response
by iterating a recursion. The ARMA GNN is designed to be more expressive than
the typical convolutional layers, which are usually based on polynomial filters.

We show the advanced modelling ability of the ARMA GNN by studying its
effect on real graph signals and comparing it to the effect of a popular polyno-
mial GNN. We also run an extensive suite of benchmarks, achieving state-of-the-
art performance in tasks of node classification, graph signal classification, graph
classification and graph regression.

3.1 ARMA graph filters

The polynomial filters typically used in GNNs (cf. Section 2.3.1) have a finite
impulse response

gθ (λ) =
K
∑

k=0

θkλ
k, (3.1)

which computes a weighted moving average of graph signals on local K-hop
neighbourhoods [206]. As a result, polynomial filters are more prone to overfit-
ting the observed graph frequencies (i.e., the eigenvalues of the Laplacian) when
modelling high-order interactions [92, 206]. This hampers the GNN’s generali-
sation capability, as it becomes sensitive to noise and small changes in the graph
topology. Also, since polynomials are very smooth, they cannot model sharp

31

32 3.1 ARMA graph filters

changes in the frequency response (i.e., how the filter acts on the eigenvalues of
the Laplacian, as per Equation (2.20)) and, after a few convolutions, the node
features become too smoothed over the graph and the initial node information
is lost [122].

To address the limitations of polynomial filters in GNNs, a more versatile class
of filters is found in the family of rational filters, which can model a richer variety
of frequency responses and can account for higher-order neighbourhoods than
polynomial filters with the same number of parameters.

A rational graph filter of order K has the following form, in the node domain:

g(L) =

�

I+
K
∑

k=1

qkL
k

�−1�K−1
∑

k=0

pkL
k

�

(3.2)

where qk and pk are the filter’s coefficients.
Different orders (≤ K) of the numerator and denominator in Equation (3.2)

are trivially obtained by setting some coefficients to 0. Note that, by setting
qk = 0,∀k, we recover a polynomial filter.

The expensive matrix inversion of Equation (3.2) makes rational filters un-
feasible to use in practice, especially for GNNs. To address this issue, in [22], we
propose a particular implementation of rational GNNs inspired by the autoregres-
sive moving-average (ARMA) graph filters introduced by Isufi et al. [92], which
implement a rational impulse response without explicitly computing the matrix
inversion.

Specifically, the effect of a first-order ARMA filter (ARMA1) is obtained by
iterating, until convergence, the following recursion based on the potential ker-
nel [92]:

X(t+1) = aMX(t) + bX, (3.3)

where
M=

1
2
(λmax −λmin)I− L. (3.4)

The recursion in Equation (3.3) is adopted in graph signal processing to apply
a low-pass filter on a graph signal [129, 92], but it is also equivalent to the recur-
rent update used in Label Propagation [249] and Personalised Page Rank [163]
to propagate information on a graph using a random walk with a restart proba-
bility.

Following the derivation of Isufi et al. [92, Theorems 1 and 2], we can anal-
yse the frequency response of an ARMA1 filter from the convergence of Equa-
tion (3.3):

X̄= lim
t→∞

�

(aM)tX(0) + b
t
∑

i=0

(aM)iX

�

. (3.5)

33 3.2 ARMA1 GNN filter

+

Graph Conv Skip 1,2

+

Graph Conv Skip 1,1

+

Graph Conv Skip 1,T

+

Graph Conv Skip K,T

+

Graph Conv Skip K,2

+

Graph Conv Skip K,1

Avg Pool

...

ARMA Graph Conv layer

Figure 3.1. The ARMA convolutional layer.

The eigenvectors of M and L are the same, while the eigenvalues are related
as follows: µm = (λmax − λmin)/2 − λm, where µm and λm represent the mth

eigenvalue of M and L, respectively. Since µm ∈ [−1, 1], for |a|< 1 the first term
of Equation (3.5), (aM)t , goes to zero when t → ∞, regardless of the initial
point X(0). The second term, b

∑t
i=0(aM)i, is a geometric series that converges

to the matrix b(I − aM)−1, with eigenvalues b/(1 − aµm). It follows that the
frequency response of the ARMA1 filter is

gARMA1
(µm) =

b
1− aµm

. (3.6)

By summing K ARMA1 filters, it is possible to recover the analytical form of
the K th order ARMAK filter. The resulting frequency response is:

gARMAK
(µm) =

K
∑

k=1

bk

1− akµm
. (3.7)

3.2 ARMA1 GNN filter

In typical graph signal processing approaches, the filter coefficients a and b in
Equation (3.3) are identified with linear regression to reproduce the desired filter
response, which must be provided a priori by the designer [92].

Here, instead, we consider a machine learning approach that does not require
specifying the target response, but in which the parameters are learned end-to-
end from the data by optimising a task-dependent loss function. Importantly,
we also introduce non-linearities to enhance the representation capability of the
model.

Specifically, we propose to approximate the effect of an ARMA1 filter by iter-
ating the following recursion:

X(t+1) = σ
�

L̄X(t)W+XV
�

, (3.8)

34 3.2 ARMA1 GNN filter

where W and V are learnable parameters matrices, and σ is a non-linearity. We
refer to each step of Equation (3.8) as a Graph Convolutional Skip (GCS) step.
The modified Laplacian matrix L̄ is obtained by setting λmin = 0 and λmax = 2 in
Equation (3.4), which gives L̄= I−L. This is a reasonable simplification since the
spectrum of L lies in [0,2] and the trainable parameters W and V can compensate
for the small offset introduced.

Each step of Equation (3.8) is localised in the node space, as it performs a
filtering operation that depends on local exchanges among neighbouring nodes
and, through the skip connection term X(0)V, also on the initial state X(0). The
computational complexity of each step is linear in the number of edges (both in
time and space) since Equation (3.8) can be efficiently implemented as a sparse
multiplication between L̄ and X(t).

The neural network formulation of an ARMA1 filter, which we refer to as
the ARMA1 GNN filter, is obtained by iterating Equation (3.8) until convergence,
similar to the original recursive formulation of the ARMA1 filter. The convergence
of the iteration is guaranteed by Theorem 1.

Theorem 1. It is sufficient that ‖W‖2 < 1 and that σ(·) is a non-expansive map
for Equation (3.8) to converge to a unique fixed point, regardless of the initial state
X(0).

Proof. Let X(0)a and X(0)b be two different initial states and ‖W‖2 < 1. After ap-
plying Equation (3.8) for t + 1 steps, we obtain states X(t+1)

a and X(t+1)
b . If the

non-linearity σ(·) is a non-expansive map, such as the ReLU function, the fol-
lowing inequality holds:

X(t+1)
a −X(t+1)

b

2
= (3.9)

=

σ
�

L̄X(t)a W+XV
�

−σ
�

L̄X(t)b W+XV
�

2
≤ (3.10)

≤

L̄X(t)a W+XV− L̄X(t)b W−XV

2
= (3.11)

=

L̄X(t)a W− L̄X(t)b W

2
≤ (3.12)

≤

L̄

2 ‖W‖2

X(t)a −X(t)b

2
. (3.13)

If the non-linearity σ(·) is also a squashing function (e.g., sigmoid or hyper-
bolic tangent), then the first inequality in (3.13) is strict.

Since the largest singular value of L̄ is ≤ 1 by definition, it follows that

L̄

2 ‖W‖2 < 1 and, therefore, (3.13) implies that Equation (3.8) is a contraction

35 3.3 ARMAK GNN filter

mapping. The convergence to a unique fixed point and, thus, the inconsequen-
tiality of the initial state follow by the Banach fixed-point theorem [68].

From Theorem 1 it follows that it is possible to choose an arbitrary ε > 0 for
which

∃Tε <∞ s.t.

X(t+1) −X(t)

2 ≤ ε,∀t ≥ Tε. (3.14)

Therefore, we can easily implement a stopping criterion for the iteration, which
is met in finite time.

Then, by using backpropagation through time (BPTT), we can train the learn-
able parameters using conventional gradient descent.

3.3 ARMAK GNN filter

Similar to the original ARMAK filter, the output of the ARMAK GNN filter is ob-
tained by combining the outputs of K ARMA1 GNN filters, which we refer to as
stacks:

X̄=
1
K

K
∑

k=1

X̄(k), (3.15)

where X̄(k) is the output of the kth stack at convergence of Equation (3.8):

X(t+1)
(k) = σ

�

L̄X(t)(k)W(k) +X(k)V(k)
�

(3.16)

X̄(k) = lim
t→∞

X(t)(k) (3.17)

However, each kth stack may require a different and possibly high number
of iterations Tk to converge, depending on the initial state X(0)(k) and the random
initialisation of the parameters W(k),V(k). This makes the implementation of the
ARMAK GNN filter cumbersome because the computational graph is dynamic and
changes every time the weight matrices are updated with gradient descent during
training. Moreover, to train the parameters with BPTT, the neural network must
be unfolded many times if Tk is large, introducing a high computational cost and
leading to the vanishing gradient issue.

One solution is to follow the approach of reservoir computing, where the
weight matrices of each stack are randomly initialised and left untrained [130,
63]. We note that the random weights initialisation guarantees that the K filters
implement different filtering operations. To compensate for the lack of training,
high-dimensional features are exploited to generate rich latent representations
that disentangle the factors of variations in the data [205]. However, randomised

36 3.4 Properties and relationship with other approaches

architectures with high-dimensional feature spaces are memory inefficient and
computationally expensive at inference time.

A second approach, which we consider here, is to drop the requirement of
convergence altogether and fix the number of iterations at a constant value Tk =
T,∀k. Even when T is small, we expect the GNN to learn a large variety of node
representations thanks to the non-linearity and the trainable parameters [169].
In this way, we obtain a GNN that is easy to implement, fast to train and evaluate,
and not affected by stability issues. Also, the constraint ‖W‖2 < 1 of Theorem 1
can be relaxed by adding to the loss function an L2 weight decay regularisation
term.

Due to the limited number of iterations, however, the initial state X(0)(k) now

influences the final representation X(T)(k) of each ARMA1 filter, and so it must be

selected more carefully. A natural choice is to initialise the state with X(0)(k) =
1 ∈ RM×F or with a linear transformation of the node features of the graph, i.e.,
X(0)(k) = XW(0)

(k), where W(0)
(k) ∈ R

Dn×D′n . In our experiments, we adopted the latter
initialisation so that the representation of the layer depends on the node features,
like in conventional GNNs.

To encourage each filter to learn a frequency response different from the oth-
ers, we apply stochastic dropout to the skip connections at every forward pass.
This leads to learning a heterogeneous set of features that, when combined to
form the output of the ARMAK layer, yield powerful and expressive node repre-
sentations.

Figure 3.1 shows the overall structure of the layer.

3.4 Properties and relationship with other approaches

Contrarily to GNNs that compute a purely spectral convolution through the GFT [29],
ARMA GNNs do not explicitly depend on the eigendecomposition of L, making
them robust to perturbations in the underlying graph structure. For this reason,
as formally proven for generic rational filters by Levie et al. [120], the proposed
ARMA filters are transferable, i.e., they can be applied to graphs with different
topology not seen during training.

We note that the recursive formulation with shared parameters in each stack
endows the GNN with a strong regularisation that helps prevent overfitting and
greatly reduces the model complexity, in terms of the number of trainable pa-
rameters. In this regard, the ARMA GNN has similarities with the recurrent neu-
ral networks with residual connections used to process sequential data [227].
Indeed, the ARMA layer can naturally deal with a time-varying topology and

37 3.5 Spectral analysis of ARMA GNNs

graph signals by replacing the constant term X(0) in Equation (3.8) with a time-
dependent input.

We also note that, since the ARMA1 stacks are independent of each other, the
computation of an ARMAK layer can be effectively distributed across K parallel
processing units.

Finally, we discuss the relationship between the proposed ARMA GNN and
CayleyNet, a GNN architecture presented by Levie et al. [119] that also approxi-
mates the effect of a rational filter. Specifically, the filtering operation of a Cayley
polynomial in the node space is:

X̄= w0X+ 2Re

¨

K
∑

k=1

wk(L+ iI)k(L− iI)−k

«

X, (3.18)

where wk are the coefficients of the filter.
To approximate the matrix inversion in Equation (3.18) with a sequence of

differentiable operations, CayleyNet adopts a fixed number T of Jacobi iterations.
In practice, the Jacobi iterations approximate each term (L + iI)(L − iI)−1 as a
polynomial of order T with fixed coefficients. Therefore, the resulting filtering
operation performed by a CayleyNet has the form:

X̄≈ σ

w0X+ 2Re

(

K
∑

k=1

wk

�

T
∑

t=1

L̄t

�k)

X

!

, (3.19)

where L̄ is an operator with the same sparsity pattern of L. We note that Equa-
tions (3.18) and (3.19) slightly simplify the original formulation presented in
the paper, but allow us to understand what type of operation is performed by the
CayleyNet. Specifically, we see that Equation (3.19) implements a polynomial
filter of order KT .

For this reason, CayleyNet shares strong similarities with the Chebyshev GNN
in Equation (2.28), as it uses a (high-order) polynomial to propagate the node
features on the graph for KT hops before applying the non-linearity. On the
other hand, each of the K stacks in the ARMA layer propagates the current node
representations X(t)(k) only for 1 hop and combines them with the initial state X(0)(k)
before applying the non-linearity.

3.5 Spectral analysis of ARMA GNNs

In this section, we show how the proposed ARMA layer can implement filtering
operations with different frequency responses. The filter response of the ARMA

38 3.5 Spectral analysis of ARMA GNNs

500 1000 1500 2000 2500
Graph frequency

0.50

0.25

0.00

0.25

0.50

0.75

1.00 1 GCS
2 GCS

3 GCS
b(1 a) 1

(a) h̃ in the 1st ARMA1 GNN
filter

500 1000 1500 2000 2500
Graph frequency

0.50

0.25

0.00

0.25

0.50

0.75

1.00 1 GCS
2 GCS

3 GCS
b(1 a) 1

(b) h̃ in the 2nd ARMA1 GNN
filter

500 1000 1500 2000 2500
Graph frequency

0.50

0.25

0.00

0.25

0.50

0.75

1.00 1 GCN
2 GCN

3 GCN

(c) h̃ in a GCN stack

0 500 1000 1500 2000 2500
Graph frequency

1.0

0.5

0.0

0.5

1.0 original
1 GCS

2 GCS
3 GCS

(d) Comp. of X and X̄ in the
1st stack

0 500 1000 1500 2000 2500
Graph frequency

1.0

0.5

0.0

0.5

1.0 original
1 GCS

2 GCS
3 GCS

(e) Comp. of X and X̄ in the
2nd stack

0 500 1000 1500 2000 2500
Graph frequency

1.0

0.5

0.0

0.5

1.0 original
1 GCN

2 GCN
3 GCN

(f) Comp. of X and X̄ in a
GCN stack

Figure 3.2. In (a, b), the empirical filter responses of two ARMA1 GNN filters
for T = 1, 2,3; the black lines indicate the analytical response of an ARMA1 filter
with similar parameters. In (c), the empirical response of a GCN with T = 1,2, 3
layers. In (d, e), the original components of the input graph signal X (in black),
and the components of the graph signal X̄ processed by two ARMA1 GNN filters
for T = 1, 2,3 (in colour). In (f), the components of X̄ processed by a GCN with
T = 1,2, 3 layers.

39 3.5 Spectral analysis of ARMA GNNs

filter derived in Section 3.1 cannot be exploited to analyse our GNN formulation,
due to the presence of non-linearities. Therefore, we first recall that a filter
changes the components of a graph signal X on the eigenbasis induced by L (cf.
Section 2.2.2). Let X̄ indicate a filtered graph signal so that:

X̄= Ug(Λ)U>X. (3.20)

By left-multiplying U> in Equation (3.20) we obtain

U>X̄= g(Λ)U>X. (3.21)

We see that the term U>X̄ defines how the original components U>X are changed
by the GNN. Therefore, we can compute numerically the unknown filter response
of the ARMA layer as the ratio between U>X̄ and U>X. We define the empirical
filter response g̃(m) at frequency λm as:

g̃(m) =
Dn

D′n

∑D′n
d=1 umX̄:,d

∑Dn

d=1 umX:,d

, (3.22)

where X:,d , X̄:,d indicate the d th columns of X and X̄.
The empirical filter response allows us to analyse the filtering implemented

by an ARMA layer. We start by comparing the frequency response gARMA1
(µm)

of an ARMA1 filter given by Equation (3.6) with the empirical response g̃k(m)
of the kth stack in an ARMAK GNN filter. To facilitate the interpretation of the
results, we set the number of output features of the GNN filter to D′n = 1 by
letting W = a and V = b1Dn

in Equation (3.8). Note that we are keeping the
notation consistent with Equation (3.3), where a and b are the parameters of
the ARMA1 filter. In the following, we consider the graph and the node features
from the Cora citation network.

Figures 3.2(a, b) show the empirical responses g̃1(m) and g̃2(m) of two dif-
ferent ARMA1 GNN filters, when varying the number of propagation steps T (in-
dicated as “t GCS” in the figures, where GCS refers to Graph Convolutional Skip
step of Equation (3.8)). As T increases, g̃1(m) and g̃2(m) become more similar
to the analytical responses of the ARMA1 filters, depicted as a black line in the
two figures. This supports our claim that g̃(m) can approximate the unknown
response of the GNN filtering operation.

Figure 3.2(d, e) show how the two filters modify the components of X on
the Fourier basis. In particular, we depict in black the components u>mX, m =
1, . . . , M . In colours, we depict the components u>mX̄, which show how much the
filters affect the components associated with each frequency. The responses and

40 3.6 Experiments with ARMA GNNs

the signal components in Figures 3.2(a) and 3.2(d) are obtained for a = 0.99
and b = 0.1, while in Figures 3.2(b) and 3.2(e) for a = 0.7 and b = 0.15.

In Figure 3.2(c), we show the empirical response resulting from a stack of
first-order polynomial GCNs [106]. As also highlighted in recent work [223,
134], the filtering obtained by stacking one or more of such GCNs has the un-
desired effect of symmetrically amplifying the lowest and also the highest fre-
quencies of the spectrum. This is due to their filter response, which is (1− λ)T

in the linear case and can assume negative values when T is odd. The effect is
mitigated by summing γIN to the adjacency matrix, which adds self-loops with
weight γ and shrinks the spectral domain of the graph filter. For high values of
γ, GCN acts more as a low-pass filter that prevents high-frequency oscillations.
This is due to the self-loops that limit the spread of information across the graph
and the communication between neighbours. However, even after adding γIN ,
GCN cuts almost completely the medium frequencies and amplifies the higher
ones, as shown in Figure 3.2(f).

A stack of GCNs lacks flexibility in implementing different filtering operations,
as the only degree of freedom to modify a GCN’s response consists of manually
tuning the hyperparameter γ to shrink the spectrum. On the other hand, different
ARMA1 GNN filters can generate heterogeneous responses, depending on the
value of the trainable parameters in each filter. This is what provides powerful
modelling capability to the proposed ARMA GNN, which can learn a large variety
of filter responses that selectively shrink or amplify the Fourier components of
the graph by combining K ARMA1 layers.

Similarly to an ARMA1 filter, each ARMA1 GNN filter behaves as a low-pass fil-
ter that gradually dampens the Fourier components as their frequency increases.
However, we recall that high-pass and band-pass filters can be obtained as a lin-
ear combination of low-pass filters [158]. To show this behaviour in practice, in
Figure 3.3 we report the empirical filter responses and modified Fourier compo-
nents obtained with two different ARMAK GNN filters, for K = 3.

3.6 Experiments with ARMA GNNs

In this section we report some experimental results to compare the performance
of GNN architectures based on our ARMA layers on four kinds of downstream
tasks: node classification, graph signal classification, graph classification, and
graph regression. Our experiments focus on comparing the proposed ARMA layer
with GNN layers based on polynomial filters, namely Chebyshev GNNs [47] and
GCN [106], and CayleyNet [119] that, like ARMA, is based on rational spec-

41 3.6 Experiments with ARMA GNNs

500 1000 1500 2000 2500
Graph frequency

0.1

0.0

0.1

0.2

0.3

0.4

0.5

h

ARMA3

0 500 1000 1500 2000 2500
Graph frequency

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

original
ARMA3

(a) High-pass filter

500 1000 1500 2000 2500
Graph frequency

0.075

0.100

0.125

0.150

0.175

0.200

0.225

h

ARMA3

0 500 1000 1500 2000 2500
Graph frequency

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

original
ARMA3

(b) Band-pass filter

Figure 3.3. While each ARMA1 GNN filter behaves as a low-pass filter, an ARMA
layer with K = 3 can implement filters of different shapes. The ARMA layer in (a)
implements a high-pass filtering operation that dampens low frequencies. The
ARMA layer in (b) implements a band-pass filtering operation that mostly allows
medium frequencies.

42 3.6 Experiments with ARMA GNNs

tral filters. As additional baselines, we also include Graph Attention Networks
(GAT) [211], GraphSAGE [81], and Graph Isomorphism Networks (GIN) [234].
The comparison with these methods helps frame the proposed ARMA GNN within
the current state of the art.

To ensure a fair and meaningful evaluation, we compare the performance
obtained with a fixed GNN architecture, where we only change the graph con-
volutional layers. In particular, we fixed the GNN capacity (number of hidden
units), used the same splits in each dataset, and the same training and evaluation
procedures. Finally, in all experiments, we used the same order K for polynomial
and rational filters, or a stack of K layers for GCN, GAT, GIN, and GraphSAGE lay-
ers. The details of every dataset considered in the experiments and the optimal
hyperparameters for each model are deferred to Appendix A.

Node classification First, we consider transductive node classification on three
citation networks: Cora, Citeseer, and Pubmed. The input is a single graph de-
scribed by an adjacency matrix A ∈ RN×N , the node features X ∈ RN×Dn , and the
labels yl ∈ RNl of a subset of nodes Vl ⊂ V. The targets are the labels yu ∈ RNu of
the unlabelled nodes V \ Vl . The node features are sparse bag-of-words vectors
representing text documents. The binary undirected edges in A indicate citation
links between documents. The models are trained using 20 labels per document
class and the performance is evaluated as classification accuracy on yu.

Secondly, we perform inductive node classification on the protein-protein in-
teraction (PPI) network dataset. The dataset consists of 20 graphs used for train-
ing, 2 for validation, and 2 for testing. Contrarily to the transductive setting,
the testing graphs (and the associated node features) are not observed during
training. Additionally, each node can belong to more than one class (multi-label
classification).

For the citation networks datasets, we exploit high dropout rates and L2-norm
regularisation to prevent overfitting. Table 3.1 reports the classification accuracy
obtained by a GNN equipped with different graph convolutional layers.

Transductive node classification is a semi-supervised task that demands a sim-
ple model with strong regularisation to avoid overfitting the few labels available.
This is the key to GCN’s success compared to more complex filters, such as the
Chebyshev GNN. Thanks to its flexible formulation, the proposed ARMA layer
can implement the right degree of complexity and performs well on each task.
On the other hand, since the PPI dataset is larger and more labels are available
during training, less regularisation is required and the more complex models are
advantaged. This is reflected by the better performance achieved by Chebyshev

43 3.6 Experiments with ARMA GNNs

Figure 3.4. Training times on the PPI dataset.

filters and CayleyNet, compared to GCN. On PPI, ARMA significantly outperforms
every other model, due to its powerful modelling capability that allows learning
filter responses with different shapes. Since each layer in GAT, GraphSAGE, and
GIN combines the features of a node only with those from its 1st order neighbour-
hood, similarly to a GCN, these architectures need to stack more layers to reach
higher-order neighbourhoods and suffer from the same oversmoothing issue.

We note that the optimal depth T of the ARMA layer reported in Table A.2 is
low in every dataset. We argue that a reason is the small average shortest path in
the graphs (see Table A.1). Indeed, most nodes in the graphs can be reached with
only a few propagation steps, which is not surprising since many real networks
are small-world [218].

Figure 3.4 shows the training times of the GNN model configured with GCN,
Chebyshev, CayleyNet, and ARMA layers. The ARMA layer exploits sparse oper-
ations that are linear in the number of nodes in L and can be trained in a time
comparable to a Chebyshev filter. On the other hand, CayleyNet is slower than
other methods, due to the complex formulation based on the Jacobi iterations
that results in a high order polynomial.

Graph signal classification In this task, D different graph signals Xd ∈ RN×Dn , d =
1, . . . , D, defined on the same graph with adjacency matrix A ∈ RN×N , must be
mapped to labels y1, . . . , yD. We perform these experiments following the same
setting of Defferrard et al. [47] for the MNIST and 20news datasets.

For the MNIST dataset, an 8-NN graph is defined on the 784 pixels of the
MNIST images. To determine if node j belongs to the neighbourhood N (i) of
node i, we compute the Euclidean distance between the 2D coordinates of pixels
i and j and connect each node to its eight closest neighbours. Each graph signal
is a flattened image Xd ∈ R784×1.

44 3.6 Experiments with ARMA GNNs

Table 3.1. Node classification accuracy.

Method Cora Citeseer Pubmed PPI

GAT 83.1 ±0.6 70.9 ±0.6 78.5 ±0.3 81.3 ±0.1

GraphSAGE 73.7 ±1.8 65.9 ±0.9 78.5 ±0.6 70.0 ±0.0

GIN 75.1 ±1.7 63.1 ±2.0 77.1 ±0.7 78.1 ±2.6

GCN 81.5 ±0.4 70.1 ±0.7 79.0 ±0.5 80.8 ±0.1

Chebyshev 79.5 ±1.2 70.1 ±0.8 74.4 ±1.1 86.4 ±0.1

CayleyNet 81.2 ±1.2 67.1 ±2.4 75.6 ±3.6 84.9 ±1.2

ARMA 83.4 ±0.6 72.5 ±0.4 78.9 ±0.3 90.5 ±0.3

Table 3.2. Graph signal classification accuracy.

GNN layer MNIST 20news

GCN 98.48 ± 0.2 65.45 ± 0.2

Chebyshev 99.14 ± 0.1 68.24 ± 0.2

CayleyNet 99.18 ± 0.1 68.84 ± 0.3

ARMA 99.20 ± 0.1 70.02 ± 0.1

Table 3.2 reports the results obtained by using GCN, Chebyshev, CayleyNet,
or ARMA. The results are averaged over ten runs and show that ARMA achieves
a slightly higher accuracy compared to Chebyshev and CayleyNet, while the per-
formance of GCN is significantly lower. Similarly to the PPI experiment, the
larger amount of data allows more powerful architectures to achieve better per-
formance compared to GCN.

The 20news dataset consists of 18,846 documents divided into 20 classes.
Each graph signal is a document represented by a bag-of-words of the 10000 most
frequent words in the corpus, embedded via Word2vec [146]. The underlying
graph of 10000 nodes is a 16-NN graph similar to the MNIST dataset, with the
difference that the node neighbourhoods are computed from the Euclidean dis-
tance between the embeddings vectors rather than the pixel coordinates. Again,
we follow the same experimental setup as Defferrard et al. [47]. The classifica-
tion accuracy reported in Table 3.2 shows that ARMA significantly outperforms
every other model also on this dataset.

For this experiment, we used a particular configuration of the ARMA layer
with K = 1 and T = 1 (see Table A.8), which is equivalent to a GCN with a skip
connection. The skip connection allows weighting differently the contribution

45 3.6 Experiments with ARMA GNNs

of the original node features, compared to the features of the neighbours. It is
important to note that, contrary to other downstream tasks, the 20news graph
is generated from the similarity of word embeddings. Such an artificial graph
always links an embedding vector to its first 16 neighbours. We argue that, for
some words, the links might be not very relevant and using a skip connection
allows weighting them less.

Similarly to the node classification datasets, the average shortest path in the
20news graph is low (see Table A.7). On the other hand, the MNIST graph has a
much larger diameter, due to its regular structure with very localised connectivity.
This could explain why the optimal depth T of the ARMA layer is larger for
MNIST than for any other task (see Table A.8), as several steps are necessary to
mix the node features on the graph.

Graph classification In this task, the d th datum is a graph represented by a pair
{Ad ,Xd}, d = 1, . . . D, where Ad ∈ RNd×Nd is an adjacency matrix with Ni nodes,
and Xd ∈ RNi×Dn are the node features. Each sample must be classified with a
label yi. We test the models on five different datasets. We use node degree,
clustering coefficients, and node labels as additional node features. We compute
the model performance with nested 10-fold cross-validation, using 10% of the
training set in each fold for early stopping. Table 3.3 reports the average accu-
racy and also includes the results obtained by using GAT, GraphSAGE, and GIN as
convolutional layers. The GNN equipped with the proposed ARMA layer achieves
the highest mean accuracy compared to the polynomial filters (Chebyshev and
GCN). Compared to CayleyNet, which is also based on a rational filter imple-
mentation, ARMA achieves not only a higher mean accuracy but also a lower
standard deviation. These empirical results indicate that our implementation is
robust and confirm the transferability of the proposed ARMA layer, discussed in
Section 3.5.

Graph regression This task is similar to graph classification, with the differ-
ence that the target output yi is now a real value, rather than a discrete class
label. We consider the QM9 chemical database [170], which contains more than
130,000 molecular graphs. The nodes represent heavy atoms and the undirected
edges the atomic bonds between them. Nodes have discrete attributes indicating
one of four possible elements. The regression task consists of predicting a given
chemical property of a molecule given its graph representation. As for graph
classification, we evaluate the performance on the 80-10-10 train-validation-test
splits of the nested 10-folds. We report in Table 3.4 the mean squared error

46 3.6 Experiments with ARMA GNNs

Table 3.3. Graph classification accuracy.

Method Enzymes Proteins D&D MUTAG BHard

GAT 51.7±4.3 72.3±3.1 70.9±4.0 87.3±5.3 30.1±0.7

GraphSAGE 60.3±7.1 70.2±3.9 73.6±4.1 85.7±4.7 71.8±1.0

GIN 45.7±7.7 71.4±4.5 71.2±5.4 86.3±9.1 72.1±1.1

GCN 53.0±5.3 71.0±2.7 74.7±3.8 85.7±6.6 71.9±1.2

Chebyshev 57.9±2.6 72.1±3.5 73.7±3.7 82.6±5.2 71.3±1.2

CayleyNet 43.1±10.7 65.6±5.7 70.3±11.6 87.8±10.0 70.7±2.4

ARMA 60.6±7.2 73.7±3.4 77.6±2.7 91.5±4.2 74.1±0.5

Table 3.4. Graph regression mean squared error.

Property GCN Chebyshev CayleyNet ARMA

mu 0.445±0.007 0.433±0.003 0.442±0.009 0.394±0.005

alpha 0.141±0.016 0.171±0.008 0.118±0.005 0.098±0.005

HOMO 0.371±0.030 0.391±0.012 0.336±0.007 0.326±0.010

LUMO 0.584±0.051 0.528±0.005 0.679±0.148 0.508±0.011

gap 0.650±0.070 0.565±0.015 0.758±0.106 0.552±0.013

R2 0.132±0.005 0.294±0.022 0.185±0.043 0.119±0.019

ZPVE 0.349±0.022 0.358±0.001 0.555±0.174 0.338±0.001

U0_atom 0.064±0.003 0.126±0.017 1.493±1.414 0.053±0.004

Cv 0.192±0.012 0.215±0.010 0.184±0.009 0.163±0.007

(MSE) averaged over ten independent runs, relative to the prediction of 9 molec-
ular properties. We see that each model achieves a very low standard deviation.
One reason is the large amount of training data, which allows the GNN to learn
a configuration that generalises well. Contrarily to the previous tasks, here there
is no clear winner among GCN, Chebyshev, and CayleyNet, since each of them
performs better than the others on some tasks. On the other hand, ARMA always
achieves the lowest MSE in predicting each molecular property.

Chapter 4

Pooling

While the techniques for graph convolution have been largely studied and works
like those of Gilmer et al. [65] and Battaglia et al. [14] have introduced general
frameworks to unify the existing literature, less attention has been devoted to
pooling layers. Only a few recent works have attempted to systematically analyse
the effect of pooling in GNNs [108, 145] and, notably, a unifying formulation
of pooling operators is still missing in GNN literature. In order to address these
issues, this chapter contains several contributions to the subject of graph pooling.

In Section 4.1, we introduce a universal and modular framework to describe
pooling operators [79]. We propose that, despite the diversity of operators found
in the literature, all methods can be expressed as the composition of three func-
tions: selection, reduction and connection. From this idea, we also derive a tax-
onomy of pooling operators based on four main axes: dense or sparse, trainable
or non-trainable, fixed or adaptive, and hierarchical or global.

In Sections 4.2 and 4.3, we propose two new hierarchical methods for pooling
graphs. The first, called MinCut [20], is a trainable, dense, and fixed operator
designed to coarsen a graph according to its minimum cut partition. The second,

SEL S=
¦

, ,
©

RED

CON

V ′ = { , , }

E ′ =
¦

,
©

x′k← RED(Sk,G)

e′kl ← CON(Sk,Sl ,G)

Figure 4.1. Schematic view of the SRC framework.

47

48 4.1 Select, reduce, connect

called Node Decimation Pooling [21], is a non-trainable, sparse, and adaptive
method that performs a regular subsampling of the nodes. The method is based
on using the highest-frequency eigenvector of the graph Laplacian as a sampling
indicator, and is equivalent to finding the maximum cut of the graph.

Finally, in Section 4.4, we propose three ways of evaluating the performance
of a graph pooling operator, moving beyond the simple benchmark-oriented ap-
proaches often found in the literature. We design experiments to test whether an
operator is able to preserve 1) the node attributes, 2) the structure, and 3) the
task-specific information. We compare different methods across the taxonomy
and discuss guidelines and best practices for choosing an operator in practice.

4.1 Select, reduce, connect

Let a graph pooling operator be loosely defined as any function POOL that maps
a graph G = (V,E) to a new pooled graph G′ = (V ′,E ′), with the generic goal of
reducing the number of nodes from N = |V| to K = |V ′|< N . To understand and
study graph pooling methods, it is useful to isolate the main operations that all
methods must perform, regardless of their specific implementation. We identify
three such operations: selection, reduction and connection (SRC); see Figure 4.1.
With selection, the operator computes K subsets of nodes, each associated with
one node of the output G′; we refer to them as supernodes. With reduction, the
operator aggregates the node attributes in each supernode to obtain the node at-
tributes of G′. Finally, the connection step computes edges among the K reduced
nodes.

The SRC operations allow us to easily describe pooling methods, as done in
Table 4.1. Accordingly, we define a pooling operator as any function

POOL : G 7→ G′ = (V ′,E ′) (4.1)

written as the composition of

S = {Sk}k=1:K = SEL(G);
︸ ︷︷ ︸

Selection

V ′ = {RED(G,Sk)}k=1:K ;
︸ ︷︷ ︸

Reduction

E ′ = {CON(G,Sk,Sl)}k,l=1:K .
︸ ︷︷ ︸

Connection

(4.2)

We explain the meaning of each operation in the following paragraphs.

Select The selection function SEL maps the nodes of the input graph to the
nodes of the pooled one. The role of SEL is crucial as it determines the number

49 4.1 Select, reduce, connect

of nodes in the output graph and what information from the input will be carried
over to the output. A selection consists of assigning the N input nodes to K sets
S1, . . . ,SK ⊆ X , called supernodes: SEL : G 7→ S = {S1, . . . ,SK}. Each supernode
is a set

Sk = {(i, si) | i ∈ V, si ∈ R, si > 0} , (4.3)

whose element (i, si) indicates that node i of the input graph is mapped to the
kth node of the pooled graph. The value si is a membership score of node i w.r.t.
supernode k, i.e., how much node i contributes to Sk. In general, a node can be
assigned to zero, one, or multiple supernodes, with different scores.

Reduce The reduction function computes the node attributes of graph G′ by
aggregating the node attributes of G selected in each supernode Sk. A reduction
consists of applying a function RED to each supernode Sk to produce the kth node
attribute x′k of G′: RED : G,Sk 7→ x′k ∈ R

Dn .

Connect The connection function determines, for each pair of supernodes Sk,Sl ,
the presence or absence of an edge between the corresponding nodes k and l in
the pooled graph. The function also computes the attributes to be assigned to
new edges and reads: CON : G,Sk,Sl 7→ e′kl ∈ R

De . We assume that the space of
edge attributes contains a null attribute encoding the absence of an edge and
that the edge set of a graph only contains non-null edges.

The reason why both RED and CON are defined as functions of graph G is that
their output can depend on the full topology of the input graph in non-trivial
ways. For example, pooling methods based on graph spectral theory often con-
nect the nodes of G′ based on the spectrum of the original graph G. However, we
notice that several pooling operators implement both RED and CON as functions
of the supernodes only.

Given our definition of pooling operators as a combination of the SRC func-
tions, we show in Table 4.1 how to express several pooling methods proposed
in recent literature under the SRC formalism. We observe that the selection is
commonly computed as a matrix S ∈ RN×K , where Sik indicates the membership
score of node i to supernode k, and Sik = 0 means that node i is not assigned to
supernode k.

4.1.1 SRC as embedding operations

Since the three SRC functions are essentially node- and graph-embedding op-
erations, we can rely on well-established theory (e.g., see [180]) to study the

50 4.1 Select, reduce, connect

Table 4.1. Pooling methods in the SRC framework. GNN indicates a stack of one
or more message-passing layers, MLP is a multi-layer perceptron, L is the nor-
malised graph Laplacian, β is a regularisation vector (see [155]), D is the degree
matrix, umax is the eigenvector of the Laplacian associated with the largest eigen-
value, i is a vector of indices, Ai,i selects the rows and columns of A according to
i.

Method Select Reduce Connect

DiffPool [237] S= GNN1(A,X) (w/ auxiliary loss) X′ = S> ·GNN2(A,X) A′ = S>AS

MinCut [20] S=MLP(X) (w/ auxiliary loss) X′ = S>X A′ = S>AS

NMF [7] Factorise: A=WH → S= H> X′ = S>X A′ = S>AS

LaPool [155]











V= ‖LX‖d ;

i= {i | Vi > V j,∀ j ∈N (i)}

S= SparseMax
�

β
XX>i
‖X‖‖Xi‖

�

X′ = S>X A′ = S>AS

Graclus [49] Sk =
¦

xi,x j | ArgMax j

�Ai j

Dii
+

Ai j

D j j

�

©

X′ = S>X METIS [97]

NDP [21] i= {i | umax ,i > 0} X′ = Xi Kron r. [53]

Top-K [88] y= Xp
‖p‖ ; i= topK(y) X′ = (X�σ(y))i; A′ = Ai,i

SAGPool [117] y= GNN(A,X); i= topK(y) X′ = (X�σ(y))i; A′ = Ai,i

51 4.1 Select, reduce, connect

expressive power of pooling operators when formulated under the SRC frame-
work.

Consider a graph space defined on compact node and edge attribute sets
RDn ,RDe , and let K(G) represent the number of nodes of G′ = POOL(G), where
K(G) ≤ K̄ for all G and for some finite K̄ ∈ N, K̄ > 0. By representing the out-
put of the selection function as a matrix S ∈ RN×K̄ , we can then interpret SEL as
permutation-equivariant node embedding operation xi 7→ Si,:, from the space of
node attributes to the space of supernodes assignments RK̄ where we assumed,
without loss of generality, that Sik = 0 for all k > K(G) (this is necessary to en-
sure that any number of nodes K(G) can be computed by POOL). Now, let GSk

indicate an augmentation of G such that its node features are XSk
= X‖S:,k, where

‖ indicates concatenation, and similarly G(Sk ,Sl) is defined by X(Sk ,Sl) = X‖S:,k‖S:,l .
It is immediate to see that the augmented graphs are an equivalent way of repre-
senting the inputs of RED and CON, which can then be seen as graph-embedding
operations of the form:

RED : GSk
7→ x′k; CON : G(Sk ,Sl) 7→ e′kl . (4.4)

An interesting consequence of this interpretation of SRC is that by implement-
ing SEL as a universal equivariant network [98], and RED and CON as universal
invariant ones [140], the resulting operator is a universal approximator for any
arbitrary choice of pooling with continuous SEL, RED and CON.

4.1.2 Taxonomy of graph pooling

The SRC framework is a general template to describe pooling operators and it
allows us to characterise the different families of pooling methods found in the
literature. We propose the following taxonomy of pooling operators based on
four distinguishing characteristics and we show in Table 4.2 how existing pooling
methods fit into this taxonomy.

Trainability A primary distinction among pooling operators is whether SEL,
RED, and CON are learned end-to-end as part of the overall GNN architecture.
In this case, we say that a method is trainable, i.e., the operator has parameters
which are learned by optimising a task-driven loss function, while in all other
cases we say that methods are non-trainable. This distinction is important be-
cause, while non-trainable methods are often used as stand-alone algorithms for
graph coarsening, trainable methods were specifically designed for GNNs and
are a novel research topic of their own.

52 4.1 Select, reduce, connect

Generally, non-trainable methods are useful when there is strong prior infor-
mation about the desired behaviour of pooling (e.g., preserving connectivity [49]
or filtering out some particular graph frequencies [155]). These prior assump-
tions are usually grounded on graph-theoretical properties and are useful when
few data are available, since they do not increase the overall number of parame-
ters and introduce no additional optimisation objectives when training the GNN.
A well-known example of non-trainable pooling is the conventional grid pooling
of CNNs, which pools spatially localised groups of pixels. On the other hand,
trainable methods are more flexible and make fewer assumptions about the de-
sired result. Therefore, they are useful in problems where the best pooling strat-
egy is not known a priori. However, note that it is possible to integrate priors
about the desired pooling behaviour also in trainable methods. These additional
assumptions usually act as a regularisation.

Density of the supernodes A second axis of the taxonomy is concerned with
the size of supernodes and the consequent cost of computing the selection func-
tion. We define the density of a pooling operator as the expected value E [|Sk|/N]
of the ratio between the cardinality of a supernode Sk and the number of nodes in
G. We say that a method is dense if SEL generates supernodes Sk whose cardinal-
ity isΘ(N), and sparse if supernodes have constant cardinality O(1).1 Figure 4.2a
shows an example of sparse and dense selection.

This distinction is key, since sparse methods require much less computational
resources, especially memory, which is a significant bottleneck even in modern
GPUs. This makes them scale better to large graphs. However, as we will show in
Section 4.4, sparse selection is a harder operation to learn than dense selection
and may result in unexpected behaviours.

Adaptability of K It is also possible to distinguish pooling methods according
to the number of nodes K of the pooled graph. If K is constant and independent
from the input graph size, we say that a pooling method is fixed. In this case,
K is a hyperparameter of the pooling operator and the output graph will always
have K nodes. For example, K can be the number of output features of a neural
network used to compute cluster assignments [20, 237]. On the other hand,
if the number of supernodes is a function K(G) of the input graph we say that
the method is adaptive. In many cases, K(G) is a function of N (e.g., the ratio

1Intermediate situations—e.g., Θ(log N)—are also possible, although here we focus on the
two limit cases of Θ(N) and O(1).

53 4.1 Select, reduce, connect

Table 4.2. Taxonomy of pooling operators. Methods are divided in trainable or
non-trainable (T / nT), dense or sparse (D / S), fixed or adaptive (F / A), and
hierarchical or global (H / G).

Method T nT D S F A H G

DiffPool [237], MinCut [20] 3 3 3 3

Top-K methods [88, 32, 117, 108, 171], Edge Contract. [50] 3 3 3 3

Coates and Ng [37], Voxelization-based [195, 174, 168, 118] 3 3 3 3

NMF [7], EigenPooling [133], LaPool [155], Clique [132] 3 3 3 3

Xie et al. [232], MPR [23] 3 3 3 3

Graclus [49], NDP [21], Pooling in CNNs 3 3 3 3

[124, 213, 151] 3 3 3 3

[248, 224, 39, 6, 234, 9] 3 3 3 3

Scarselli et al. [182] 3 3 3 3

N/2), but K(G) could also depend on the input graph in a more complex way
(e.g., [155, 108]).

Adaptive pooling methods can compute graphs that have a size proportional
to that of the input. On the other hand, all the coarsened graphs generated by
fixed methods will have the same size. This can lead to situations where K > N
for some graphs, causing them to be upscaled by pooling, rather than coarsened.
Figure 4.2b compares fixed and adaptive pooling and shows an example (2nd

row) where fixed pooling upscales the graph. For data with a wide or skewed
distribution of the number of nodes, the values commonly chosen for K in fixed
methods, like the average number of nodes in the training set, may cause small
graphs to be upscaled and big graphs to be excessively shrunk. Therefore, if the
relative graph size is important for solving a particular task, adaptive methods
should be preferred.

Hierarchy A distinction often found in the literature is that between “regular”
and global pooling, which is evident to the point where global pooling is usually
referred to as a separate operation called readout (cf. Section 2.3.3). Here we
show that this distinction can be formalised with the SRC framework. Specifi-
cally, a graph readout is a pooling method that reduces a graph to a single node
discarding all topological information, i.e., it is fixed with K = 1. Also, the con-
nection function is a constant map to the empty set. On the other hand, we
indicate all other methods as hierarchical pooling operators.

54 4.1 Select, reduce, connect

(a) (b)

Figure 4.2. (a) Sparse supernodes have a constant cardinality (|Sk| = 1) while
dense supernodes scale with the size of the graph. Hierarchical methods reduce
the graph gradually, while global methods always return one node. (b) Fixed
methods return the same number of nodes (K = 3) while adaptive methods
return graphs of size proportional to the input.

DiffPool MinCUT SAGPool TopK

10k

20k

30k

Figure 4.3. Maximum number of nodes that can be processed by dense (in green)
and sparse (in blue) methods.

55 4.2 MinCut pooling

Discussion The main differences among pooling methods are in the selection
function, while much less variety is found in the reduction and connection func-
tions. A majority of methods (e.g., [195, 168, 7, 132, 133, 155]—cf. Table 4.2)
have adaptive K , with a dense and non-trainable selection. Adaptive methods
are the most commonly found in the literature, although fixed pooling opera-
tors are currently the state of the art [237, 20]. We also note that, to the best
of our knowledge, there are no pooling operators that are trainable, dense, and
adaptive, which could be an interesting research topic in the near future.

Considering density and adaptability, we see that the memory cost of a pool-
ing operator can range from O(1) (sparse and fixed) to O(N 2) (dense and adap-
tive). This is especially relevant for trainable methods, which usually need to fit
into memory-bound computational units like GPUs and TPUs. Figure 4.3 shows
the maximum number of nodes that can be processed by some representative
pooling methods, without causing a GPU-out-of-memory exception (we provide
details in Appendix C). As expected, sparse methods can pool graphs up to four
times bigger than dense ones.

Having introduced a general framework for describing pooling operators, in the
following sections we will present our further contributions to the topic of pool-
ing operators for GNNs, namely two pooling techniques called MinCut and Node
Decimation.

4.2 MinCut pooling

The contents of this section were adapted from “Spectral clustering with graph neural networks for

graph pooling,” Bianchi et al. [20].

Spectral clustering (SC) is a well-known clustering technique that uses the low-
frequency eigenvectors of the Laplacian to find strongly connected communities
on a graph. SC has been used to perform pooling in GNNs [29, 47] although 1)
the approaches based on this technique cannot explicitly account for the node at-
tributes and, 2) the eigendecomposition of the Laplacian is a non-differentiable
and expensive operation, making it unpractical to use in large or complex archi-
tectures.

In this section, we present a clustering technique that addresses these limita-
tions of SC. Specifically, we formulate a continuous relaxation of the normalised
minimum cut problem and train a GNN to compute cluster assignments by opti-
mising this objective. Our approach learns the solution found by SC while also

56 4.2 MinCut pooling

Message-passing MinCutPool Message-passing

Figure 4.4. A deep GNN architecture alternating message-passing and the Min-
Cut layer.

accounting explicitly for the node features to identify clusters. At the same time,
our GNN-based implementation is differentiable and does not require comput-
ing the expensive eigendecomposition of the Laplacian, since it exploits spatially
localised graph convolutions that are fast to compute.

Using the proposed clustering method to compute the selection function (cf.
Section 4.1), we derive a trainable pooling operator called MinCut, which com-
bines the flexibility of trainable operators with the inductive biases of non-trainable
methods (in this case, SC). The parameters in a MinCut layer are learned by min-
imising the minimum cut objective, which can be jointly optimised alongside a
task-specific loss. In the latter case, the minimum cut loss acts as a regularisa-
tion term, which prevents unwanted solutions, and the GNN can find the opti-
mal trade-off between task-specific and clustering objectives. Because they are
fully differentiable, MinCut layers can be stacked at different depths of a GNN to
obtain a hierarchical representation and the overall architecture can be trained
end-to-end (Figure 4.4).

In the following sections, we first introduce the minimum cut problem and
its relation to SC, and then we present the proposed MinCut layer. We conclude
this section with some experiments designed to test the performance of MinCut
on some clustering tasks. We will show additional experimental analysis with
the MinCut layer in Section 4.4.

4.2.1 Minimum cut and spectral clustering

Given a graph G = (V,E) with adjacency matrix A, the K-way normalised min-
imum cut problem is the task of partitioning V in K disjoint subsets of nodes

57 4.2 MinCut pooling

Vk, k = 1, . . . , K , by removing the minimum volume of edges. The problem is
equivalent to maximising

1
K

K
∑

k=1

∑

i, j∈Vk
ai, j

∑

i∈Vk , j∈V\Vk
ai, j

, (4.5)

where the numerator counts the edge volume within each cluster, and the de-
nominator counts the edges between the nodes in a cluster and the rest of the
graph [192]. Let C ∈ {0,1}N×K be a cluster assignment matrix, so that ci j = 1
if node i belongs to cluster j, and 0 otherwise. The problem can be expressed
as [48]:

maximise
1
K

K
∑

k=1

C>:,kAC:,k

C>:,kDC:,k

,

s.t. C ∈ {0, 1}N×K , C1K = 1N

(4.6)

where C:,k is the kth column of C. Since problem (4.6) is NP-hard, it is recast
in a relaxed continuous formulation that can be solved in polynomial time and
guarantees a near-optimal solution [201]:

ArgMax
Q∈RN×K

1
K

K
∑

k=1

Q>k AQk

s.t. Q= D
1
2 C(C>DC)−

1
2 , Q>Q= IK .

(4.7)

While problem (4.7) is still non-convex, there exists an optimal solution Q∗ =
UKO, where UK ∈ RN×K contains the eigenvectors of A corresponding to the K
smallest eigenvalues, and O ∈ RK×K is an orthogonal transformation [90].

SC obtains the cluster assignments by applying K-means clustering to the
rows of Q∗ [214]. One of the main limitations of SC lies in the computation of
the spectrum of A to obtain Q∗, which has a memory complexity of O(N 2) and
a computational complexity of O(N 3). This prevents its applicability to large
datasets.

To deal with the scalability issues of SC, the constrained optimisation in (4.7)
can be solved by gradient descent algorithms that refine the solution by iterat-
ing operations whose individual complexity is O(N 2), or even O(N) [82]. These
algorithms search the solution on the manifold induced by the orthogonality con-
straint on the columns of Q, by performing gradient updates along the geodesics [220,
38]. Alternative approaches rely on QR factorisation to constrain the space of fea-
sible solutions [42], and alleviate the cost O(N 3) of the factorisation by ensuring
that orthogonality holds only on one mini-batch at a time [189]. Dhillon et al.

58 4.2 MinCut pooling

[49] discuss the equivalence between graph clustering objectives and the kernel
k-means algorithm, and their Graclus algorithm is a popular model-free method
for hierarchical pooling in GNNs [47].

To learn a model that finds an approximate SC solution also for out-of-sample
graphs, several works propose to use neural networks. Tian et al. [204] train an
autoencoder to map the ith row of the Laplacian to the ith components of the first
K eigenvectors. Yi et al. [236] define an orthogonality constraint to learn spec-
tral embeddings as a volumetric reparametrisation of a precomputed Laplacian
eigenbasis. Finally, Shaham et al. [189] propose a loss function to cluster generic
data and process out-of-sample data at inference time. While these approaches
learn to embed data in the Laplacian eigenspace of the given graph, they rely on
non-differentiable operations to compute the cluster assignments and, therefore,
are not suitable to perform pooling in a GNN trained end-to-end.

4.2.2 Spectral clustering with GNNs

We propose a GNN-based approach that addresses the aforementioned limita-
tions of SC algorithms. Our method clusters the nodes according to the graph
topology, i.e., by assuming that nodes in the same cluster should be strongly con-
nected, and to the node features, i.e., by assuming that nodes in the same cluster
should have similar features. Our method assumes that node features represent
a good initialisation for computing the cluster assignments. This is a realistic as-
sumption due to the homophily property of many real-world networks [143]. Ad-
ditionally, even in disassortative networks (i.e., networks where dissimilar nodes
are likely to be connected [153]), the features of nodes in strongly connected
communities tend to become similar due to the smoothing effect of convolution.

Let X′ be the matrix of node representations yielded by one or more convolu-
tional layers. We compute a cluster assignment of the nodes using a multi-layer
perceptron (MLP) with softmax activation in the output layer, which maps each
node feature x′i into the ith row of a soft cluster assignment matrix S:

X′ = GNN(X,A;ΘGNN)

S=MLP(X′;ΘMLP),
(4.8)

where ΘGNN and ΘMLP are trainable parameters. The softmax activation of the
MLP guarantees that si j ∈ [0, 1] and enforces the constraints S1K = 1N inherited
from the optimisation problem in (4.6). We note that it is possible to add a
temperature parameter to the softmax activation of the MLP to control how much
Si,: should be close to a one-hot vector, i.e., the level of fuzziness in the cluster
assignments.

59 4.2 MinCut pooling

The parameters ΘGNN and ΘMLP are jointly optimised by minimising an un-
supervised loss function Lu composed of two terms, which approximates the re-
laxed formulation of the minimum cut problem:

Lu = Lc +Lo = −
Tr(S>AS)
Tr(S>DS)

︸ ︷︷ ︸

Lc

+

S>S
‖S>S‖F

−
IKp
K

F
︸ ︷︷ ︸

Lo

, (4.9)

where ‖ · ‖F indicates the Frobenius norm and D is the degree matrix of A.
The cut loss Lc evaluates the cut given by the soft cluster assignment S and is

bounded by −1 ≤ Lc ≤ 0. Minimising Lc encourages strongly connected nodes
to be clustered together, since the inner product 〈Si,:,S j,:〉 increases when ai, j

is large. Lc has a single maximum, reached when the numerator Tr(S>AS) =
1
K

∑K
k=1 S>:,kAS:,k = 0. This occurs if, for each pair of connected nodes (i.e., ai, j >

0), the cluster assignments are orthogonal (i.e., 〈Si,:,S j,:〉 = 0). Lc reaches its
minimum, −1, when Tr(S>AS) = Tr(S>DS). This occurs when, in a graph with
K disconnected components, the cluster assignments are equal for all the nodes
in the same component and orthogonal to the cluster assignments of nodes in
different components. However, Lc is a non-convex function and its minimisa-
tion can lead to unwanted solutions. For example, given a connected graph, a
trivial—yet optimal—solution is the one that assigns all nodes to the same clus-
ter. As a consequence of the continuous relaxation, another bad minimum occurs
when the cluster assignments are all uniform, that is, all nodes are equally as-
signed to all clusters. This problem is exacerbated by the convolutions, whose
smoothing effect makes the node features more uniform.

To penalise the bad minima of Lc, the orthogonality loss term Lo encourages
the cluster assignments to be orthogonal and the clusters to be of similar size.
Since the two matrices in Lo have unit norm, it is easy to see that 0 ≤ Lo ≤
2. Therefore, Lo is commensurable to Lc and the two terms can be summed
without rescaling them (see Figure 4.8 for an example). IK can be interpreted
as a rescaled clustering matrix IK = Ŝ>Ŝ, where Ŝ assigns exactly N/K points to
each cluster. The value of the Frobenius norm between clustering matrices is not
biased by differences in the size of the clusters [114] and, thus, can be used to
optimise intra-cluster variance.

While traditional SC requires computing the spectral decomposition for every
new sample, here the cluster assignments are computed by a neural network that
learns a mapping from the node feature space to the clusters assignment space.
Since the neural network parameters are independent of the graph size, and since
the convolutions in the GNN are localised in the node space and independent
from the spectrum of the Laplacian, the proposed clustering approach generalises

60 4.2 MinCut pooling

Figure 4.5. Schema of the MinCut layer.

to unseen graphs at inference time. This also gives the opportunity of training
our network on small graphs and then using it to cluster larger ones.

4.2.3 Pooling and graph coarsening

The methodology proposed in Section 4.2.2 is a general technique that can be
used to solve clustering tasks on any data represented by graphs. In this section,
we show how to use it to perform pooling in GNNs and we introduce the MinCut
layer, which uses the cluster assignment matrix S in Equation (4.8) as a selection
operator (cf. Section 4.1). Figure 4.5 depicts a scheme of the MinCut layer.

The reduction and connection are computed, respectively, as:

X′ = S>X (4.10)

A′ = S>AS, (4.11)

i.e., the reduction is a feature-wise weighted sum of the node attributes in each
supernode and the connection is a weighted sum of the edges connecting two
supernodes. The implementation of MinCut in the SRC framework is summarised
in Table 4.1.

Note that A′ is the matrix whose trace is maximised in Lc (Equation (4.9)).
Therefore, A′ will be a diagonal-dominant matrix that describes a graph with
self-loops much stronger than any other connection. Since very strong self-loops
hamper the propagation across adjacent nodes in the convolutions following the
pooling layer, we compute the new adjacency matrix A′ by zeroing the diagonal

61 4.2 MinCut pooling

and applying degree normalisation

Â← A′ − IK �A′; (4.12)

A′← D̂−
1
2 ÂD̂−

1
2 . (4.13)

where D̂ is the degree matrix of Â.
Because our GNN-based implementation of SC is fully differentiable, MinCut

layers can be used to build deep GNNs that hierarchically coarsen the graph
representation. The parameters of each MinCut layer can then be learned end-
to-end, by jointly optimising Lu along with any supervised loss for a particular
downstream task. Contrarily to SC methods that search for feasible solutions only
within the space of orthogonal matrices, Lo only introduces a soft constraint that
can be partially violated during the learning procedure. This allows the GNN to
find the best trade-off between Lu and the supervised loss and makes it possible
to handle graphs with intrinsically imbalanced clusters. Since Lc is non-convex,
the violation of the orthogonality constraint could compromise the convergence
to the global optimum of the minimum cut objective. However, we note that:

1. Since MinCut computes the supernode assignments from node features that
become similar due to convolutional operations, the supernodes are likely
to contain nodes that are both strongly connected and with similar features,
reducing the risk of finding an unwanted solution;

2. The bad minima of Lc lead to discarding most of the information from the
input graph and, therefore, optimising the task-specific loss encourages the
GNN to avoid them;

3. Since the minimum cut objective acts mostly as a regularisation term, a
solution that is sub-optimal for (4.7) could instead be preferable for the
supervised downstream task;

To support these comments, we show in Section 4.2.4 that MinCut never yields
unwanted solutions in practice and consistently achieves good performance on
a variety of tasks.

Computational complexity The space complexity of the MinCut layer is O(NK),
as it depends on the dimension of the cluster assignment matrix S ∈ RN×K . The
computational complexity is dominated by the numerator in the term Lc, and
is O(N 2K + NK2) = O(NK(K + N)). Since A is usually sparse, we can exploit
operations for sparse tensors and reduce the complexity of the first matrix mul-
tiplication to O(|E |K). Since the sparse multiplication yields a dense matrix, the
second multiplication still costs O(NK2) and the total cost is O(K(|E |+ NK)).

62 4.2 MinCut pooling

(a) SC (b) DiffPool (c) MinCut

(d) SC (e) DiffPool (f) MinCut

Figure 4.6. Node clustering on a community network (K=6) and on a grid graph
(K=5).

4.2.4 Experiments with MinCut

In this section, we evaluate the performance of MinCut as a clustering technique
(we perform a more in-depth analysis of pooling operators for GNNs in Sec-
tion 4.4). We implement a one-layer GNN followed by a single-layer MLP to
compute S, and train the overall architecture by minimising Lu. For compari-
son, we configure a similar architecture based on DiffPool where we optimise
the auxiliary DiffPool losses (cf. Section 2.3.2 and Table 4.1) without any addi-
tional supervised loss. We also consider the clusters found by the conventional
non-trainable SC. In the results, our approach is always indicated as MinCut for
simplicity, although this experiment only focuses on the clustering results (i.e.,
the selection) and does not involve the reduction and connection steps. A similar
consideration holds for DiffPool.

63 4.2 MinCut pooling

(a) Original image (b) Oversegmentation (c) Region Adjacency Graph

(d) SC (e) DiffPool (K = 4) (f) MinCut (K = 4)

Figure 4.7. Image segmentation by clustering the nodes of the Region Adjacency
Graph.

Clustering on synthetic networks We consider two simple graphs: the first is
a network with six communities and the second is a regular grid. The adjacency
matrix A is binary and the features X are the 2-dimensional node coordinates.
Figure 4.6 depicts the node partitions generated by SC (a, d), DiffPool (b, e),
and MinCut (c, f). MinCut generates accurate and balanced partitions, demon-
strating that the cluster assignment matrix S is well-formed. In particular, we
note that, because it uses node features, MinCut computes a different clustering
than SC and achieves an overall better performance. On the other hand, DiffPool
assigns some nodes to the wrong community in the first example and produces
an unbalanced partition of the grid.

Image segmentation Given an image, we build a region adjacency graph [207]
using as nodes the regions generated by an over-segmentation procedure [56].
The SC technique used in this example is the recursive normalised cut [192],
which recursively clusters the nodes until convergence. For MinCut and DiffPool,
node features consist of the average and total colour in each over-segmented
region. We set the number of desired clusters to K = 4. The results in Figure 4.7
show that MinCut yields a precise and intuitive segmentation. On the other hand,
SC and DiffPool aggregate wrong regions and, also, SC finds too many segments.

64 4.2 MinCut pooling

(a) DiffPool

(b) MinCut

Figure 4.8. Unsupervised losses and NMI of DiffPool and MinCut on Cora.

65 4.2 MinCut pooling

Table 4.3. NMI and CS obtained by clustering the nodes on citation networks
over 10 different runs. The number of clusters K is equal to the number of node
classes.

Dataset K Spectral clustering DiffPool MinCut

NMI CS NMI CS NMI CS
Cora 7 0.025 ± 0.014 0.126 ± 0.042 0.315 ± 0.005 0.309 ± 0.005 0.404 ± 0.018 0.392 ± 0.018

Citeseer 6 0.014 ± 0.003 0.033 ± 0.000 0.139 ± 0.016 0.153 ± 0.020 0.287 ± 0.047 0.283 ± 0.046

Pubmed 3 0.182 ± 0.000 0.261 ± 0.000 0.079 ± 0.001 0.085 ± 0.001 0.200 ± 0.020 0.197 ± 0.019

Clustering on citation networks We cluster the nodes of three citation net-
works: Cora, Citeseer, and Pubmed. The nodes are documents represented by
sparse bag-of-words feature vectors and the binary undirected edges indicate ci-
tation links between documents. Each node is labelled with the document class,
which we use as ground truth for the clusters. To evaluate the partitions gener-
ated by each method, we check the agreement between the cluster assignments
and the true labels. Table 4.3 reports the Completeness Score

CS(ỹ,y) = 1−
H(ỹ|y)
H(ỹ)

(4.14)

and the Normalised Mutual Information

NMI(ỹ,y) =
H(ỹ)−H(ỹ|y)
p

H(ỹ)−H(y)
, (4.15)

where y indicates the true labels, ỹ are the predicted cluster assignments, and
H(·) is the entropy.

Once again, our GNN architecture performs better than SC, which does not
account explicitly for the node features when generating the clusters. MinCut
also outperforms DiffPool since the minimisation of the unsupervised loss in Diff-
Pool fails to converge to a good solution. A pathological behaviour in DiffPool
is revealed by Figure 4.8, which depicts the evolution of the NMI scores as the
unsupervised losses in DiffPool and MinCut are minimised in training (note how
the NMI of DiffPool eventually decreases). From Figure 4.8, it is also possible
to see the interaction between the cut loss and the orthogonality loss in our ap-
proach. In particular, the cut loss does not converge to its minimum (Lc = −1),
corresponding to one of the unwanted solutions discussed in Section 4.2.2. In-
stead, MinCut learns the optimal trade-off between Lc and Lo and achieves a
better and more stable clustering performance than DiffPool.

66 4.3 Node decimation pooling

a b

g

k

f

j

c

h i

n

p

m

o

e

c

l


−


+

ℝ
0

cut

a

g

c

h

n

l

a

g

c

h

n

l

Edges with high weight
Edges with small weight

Links constructionNodes decimation Graph sparsification

(keep)(discard)

Figure 4.9. Schematic view of node decimation pooling. First, the nodes are
partitioned into two sets according to a maximum cut objective and then they are
decimated by dropping one of the two sets (V−). Then, a coarsened Laplacian
is built by connecting the remaining nodes with a graph reduction procedure.
Finally, the edges with low weights in the new adjacency matrix are dropped to
make the resulting graph more sparse.

4.3 Node decimation pooling

The contents of this section were adapted from “Hierarchical representation learning in graph neural

networks with node decimation pooling,” Bianchi et al. [21].

As an alternative approach to the MinCut operator, in this section we present a
non-trainable, sparse and adaptive pooling method called Node Decimation Pool-
ing (NDP).

The idea behind the method is to subsample the nodes of a graph in a way
that is as regular as possible, i.e., so that as few adjacent nodes as possible are
kept in the reduced graph. The rationale is that connected nodes exchange infor-
mation during convolutional operations and, as a result, their features become
similar and redundant. Therefore, subsampling is an effective way to reduce this
redundancy.

The proposed NDP operator consists of a sparse selection based on the idea
of node decimation followed by a two-step connection:

1. Connect the selected nodes with a link construction procedure;

2. Sparsify the adjacency matrix resulting from the coarsened Laplacian, so
that only strong connections are kept, i.e., those edges whose weight is
associated to an entry of the adjacency matrix above a given threshold ε.

We propose a simple and efficient spectral algorithm that partitions the graph
nodes in two sets by optimising a maximum cut objective. From this partition, we
identify which nodes to keep and which to discard. Then, to preserve the original

67 4.3 Node decimation pooling

topological structure of the graph, the two-step connection function that connects
the subsampled nodes (which likely will have become disconnected after the
subsampling) in a way that resembles the original graph’s topology. The three
main steps (decimation, link construction, and sparsification) are depicted in
Figure 4.9.

Note that, under the SRC framework, the sparse selection assigns each node
in the chosen partition to a supernode. In other words, each supernode contains
exactly one node and there are as many supernodes as nodes in the partition.
Consequently, the reduction function in this case simply returns the single node
in each supernode. This is a general pattern that applies to every pooling method
based on subsampling, which is the case here.

The proposed method is completely unsupervised and the coarsened graphs
are pre-computed before training the GNN. In the following sections, we describe
the three main steps of NDP and analyse the relation of NDP with the maximum
cut problem.

4.3.1 Node decimation with maximum cut spectral partition-
ing

The proposed node decimation procedure is the closest possible approximation of
a regular subsampling in the case of an irregular graph and identifies a partition
of the nodes so that each subset contains approximately half of the nodes and
the nodes in each subset are as little connected as possible.

The partition of the vertices, i.e., the cut, that maximises the volume of edges
whose endpoints are on opposite sides of the partition is the solution of the maxi-
mum cut problem [164]. The maximum cut objective is expressed by the integer
quadratic problem

max
z

∑

i, j∈V

ai j(1− ziz j) s.t. zi ∈ {−1, 1}, (4.16)

where z is the vector containing the optimisation variables zi for i = 1, . . . , N in-
dicating to which side of the bi-partition the node i is assigned to. Problem (4.16)
is NP-hard and heuristics must be considered to solve it. The heuristic that gives
the best-known maximum cut approximation in polynomial time is the Goemans-
Williamson algorithm, which is based on the Semi-Definite Programming (SDP)
relaxation [69]. Solving SDP is cumbersome and requires specific optimisation
programs that scale poorly on large graphs. Therefore, we propose a simple al-
gorithm based on graph spectral theory.

68 4.3 Node decimation pooling

First, we rewrite the objective function (4.16) as a quadratic form of the graph
Laplacian:

∑

i, j

ai j(1− ziz j) =
∑

i, j

ai j

�

z2
i + z2

j

2
− ziz j

�

=
1
2

∑

i

�

∑

j

ai j

�

z2
i +

1
2

∑

j

�

∑

i

ai j

�

z2
j −

∑

i, j

ai jziz j

=
1
2

∑

i

diiz
2
i +

1
2

∑

j

d j jz
2
j − z>Az

= z>Dz− z>Az= z>Lz

(4.17)

where D is the degree matrix (cf. Section 2.1).
Then, we consider a continuous relaxation of the integer problem (4.16) by

letting the discrete partition vector z assume continuous values, contained in a
vector c:

max
c

c>Lc, s.t. c ∈ RN and ‖c‖2 = 1. (4.18)

Equation (4.18) can be solved by considering the Lagrangian c>Lc+λc>c to
find the maximum of c>Lc under constraint ‖c‖2 = 1. By setting the gradient
of the Lagrangian to zero, we recover the eigenvalue equation Lc+ λc = 0. All
the eigenvalues of L are non-negative and, by restricting the space of feasible
solutions to vectors of unit norm, the trivial solution c∗ =∞ is excluded. In
particular, if ‖c‖2 = 1, c>Lc is a Rayleigh quotient and reaches its maximum
λmax (the largest eigenvalue of L) when c∗ corresponds to umax, the eigenvector
associated with λmax (cf. Equation (2.3)).

Since the components of umax are real, we apply a rounding procedure to
find a discrete solution. Specifically, we are looking for a partition z∗ ∈ Z, where
Z = {−1,1}N is the set of all feasible cuts so that z∗ is the closest to c∗. This
amounts to solving the problem:

z∗ = ArgMin
z∈Z

‖c∗ − z‖2, (4.19)

with the optimum given by

z∗i =

¨

1, c∗i ≥ 0,

−1, c∗i < 0.
(4.20)

By means of the rounding procedure in Equation (4.20), the nodes in V are
partitioned in two sets, V+ and V− = V \ V+, such that

V+ = {i ∈ V | umax[i]≥ 0}. (4.21)

69 4.3 Node decimation pooling

In the NDP algorithm we always drop the nodes in V−, i.e., the nodes associated
with a negative value in umax. However, it would be equivalent to drop the nodes
in V+. The node decimation procedure offers two important advantages:

1. Since |V+| ≈ |V−|, it removes approximately half of the nodes when ap-
plied;

2. The eigenvector umax can be quickly computed with the power method [19].

There exists an analogy between the proposed spectral algorithm for parti-
tioning the graph nodes and spectral clustering [214]. However, as we saw in
Section 4.2.1, spectral clustering solves the minimum cut problem [192], which
is somehow orthogonal to the maximum cut problem considered here. In par-
ticular, spectral clustering identifies K ≥ 2 clusters of densely connected nodes
by cutting the smallest volume of edges in the graph, while our algorithm cuts
the largest volume of edges yielding two sets of nodes, V+ and V−, that cover
the original graph in a similar way. Moreover, spectral clustering partitions the
nodes in K clusters based on the values of the eigenvectors associated with the
K ≥ 1 smallest eigenvalues, while our algorithm partitions the nodes in two sets
based only on the last eigenvector umax.

4.3.2 Link construction on the coarsened graph

After dropping nodes in V− and all their incident edges, the resulting graph is
likely to be disconnected. Therefore, we use a link construction procedure to
obtain a connected graph supported by the nodes in V+. Specifically, we adopt
the Kron reduction [53] to generate a new Laplacian L′, which is computed as the
Schur complement of L w.r.t. the nodes in V−. In detail, the reduced Laplacian
L′ is

L′ = L \ LV−,V− = LV+,V+ − LV+,V−L
−1
V−,V−LV−,V+ (4.22)

where LV+,V− identifies a sub-matrix of L with rows corresponding to the nodes
in V+ and columns corresponding to the nodes in V−. All other matrices are
constructed in a similar way.

It is possible to show that LV−,V− is always invertible if the associated adja-
cency matrix A is irreducible. We note that A is irreducible when the graph is
not disconnected (i.e., has a single component), a property that holds when the
algebraic multiplicity of the eigenvalue λmin = 0 is 1.

Let us consider the case where A has no self-loops (aii = 0,∀i). The Laplacian
is by definition a weakly diagonally dominant matrix, since Lii =

∑N
j=1, j 6=i |Li j| for

all i ∈ V. If A is irreducible, then L is also irreducible. This implies that the strict

70 4.3 Node decimation pooling

inequality Lii >
∑n

j=1, j 6=i |Li j| holds for at least one vertex i ∈ V−. It follows that
the Kron-reduced Laplacian LV−,V− is also irreducible, diagonally dominant, and
has at least one row with a strictly positive row sum. Hence, LV−,V− is invertible, as
proven by Horn and Johnson [89, Corollary 6.2.27]. When A contains self-loops,
the existence of the inverse of LV−,V− is still guaranteed through a small work-
around, which is discussed in Appendix B.1. Finally, if the graph is disconnected
then A is reducible (i.e., it can be expressed in an upper-triangular block form by
simultaneous row/column permutations); in this case, the Kron reduction can
be computed using the generalised inverse L†

V−,V− and the solution corresponds
to a generalised Schur complement of L.

L′ in Equation (4.22) is a well-defined Laplacian where two nodes are con-
nected if and only if there is a path between them in L (connectivity preservation
property). Also, L′ does not introduce self-loops and guarantees the preserva-
tion of resistance distance [194]. Finally, Kron reduction guarantees spectral
interlacing between the original Laplacian L ∈ RN×N and the new coarsened one
L′ ∈ RK×K , with K ≤ N . Specifically, we have λi ≥ λ′i ≥ λN−K+i, ∀i = 1, . . . , K ,
where λi and λ′i are the eigenvalues of L and L′, respectively.

The adjacency matrix of the new coarsened graph is recovered from the coars-
ened Laplacian:

A′ =

−L′ + diag({
K
∑

j=1, j 6=i

L′i j}
K
i=1)

!

. (4.23)

We note that A′ does not contain self-loops; we refer to Appendix B.1 for a
discussion on how to handle the case with self-loops in the original adjacency
matrix.

To obtain a multi-resolution view of a graph, we can compute a pyramid of
coarsened Laplacians by recursively applying node decimation followed by Kron
reduction. At the end of the procedure, we derive the corresponding pyramid
of adjacency matrices A= {A(0),A(1), . . . ,A(l), . . . } from the associated coarsened
Laplacians.

4.3.3 Graph sparsification

Due to the connectivity preservation property, by repeatedly applying Kron reduc-
tion the graph eventually becomes fully connected. This implies a high compu-
tational burden in deeper layers of a GNN, since the complexity of convolutional
operations depends on the number of edges.

To address this issue, it is possible to apply the spectral sparsification algo-
rithm proposed by Batson et al. [13] to obtain a sparser graph. However, we

71 4.3 Node decimation pooling

0.2 0.0 0.2
0

50

Histogram of vmax

0.2 0.0 0.2
0

20
Histogram of vs

max

0 100 200 300
Node i (degree sorted)

0.5

0.0

v m
ax

(i)

0 100 200 300
Node i (degree sorted)

0.2

0.0

vs m
ax

(i)
Figure 4.10. (Left) distribution and values assumed by umax. (Right) distribution
and values assumed by vmax. The entries of the eigenvectors are sorted by node
degree. A Stochastic Block Model graph was used in this example.

found that this procedure leads to numerical instability and poor convergence
during the learning phase. Therefore, to limit the number of edges with non-
zero weights we propose a sparsification procedure that removes from the ad-
jacency matrix of the coarsened graph the edges whose weight is below a small
user-defined threshold ε:

a(l)i j ←

¨

0, if |a(l)i j | ≤ ε
a(l)i j , otherwise.

(4.24)

4.3.4 Analysis and implementation details

Numerical precision in eigendecomposition The entries of umax associated
with low-degree nodes usually have values so small that their signs may be
flipped due to numerical errors. To address this issue, we instead consider the
symmetric normalised Laplacian Ln = D−1/2LD−1/2 (cf. Section 2.1) and consider
its eigendecomposition with eigenvectors vk and eigenvalues µk. The partition
obtained by using vmax, i.e., the eigenvector Ln associated with the maximum
eigenvalue µmax, is analytically the same to the one obtained in Equation (4.21)
with umax. Indeed, since vmax = D−1/2umax, the values of the two eigenvectors are
rescaled by positive numbers and, therefore, the sign of their components is the
same. However, a positive effect of the degree normalisation is that the values

72 4.3 Node decimation pooling

in vmax associated with low-degree nodes are amplified.
Figure 4.10 compares the values in the eigenvectors umax and vmax, computed

from the same graph. Since many values in umax are concentrated around zero,
partitioning the nodes according to the sign of the entries in umax gives numeri-
cally unstable results. On the other hand, since the values in vmax are distributed
more evenly, the nodes can be partitioned more precisely.

Note that, even if the indexes of V+ are identified from the normalised Lapla-
cian Ln, the Kron reduction is still performed on the Laplacian L. In Appendix B.2,
we report numerical differences in the size of the cut obtained when using umax

or vmax.

Evaluation of the approximate maximum cut solution Since computing the
optimal maximum cut solution is NP-hard, it is generally not possible to evaluate
the quality of the cut found by the proposed spectral method (cf. Section 4.3.1)
in terms of discrepancy from the maximum cut.

Let MaxCut indicate the value of the maximum cut. To assess the quality of
a solution we consider the following bounds:

0.5≤
MaxCut
|E |

≤
µmax

2
≤ 1. (4.25)

The value µmax/2 is an upper-bound of MaxCut/|E |, where µmax is the largest
eigenvalue of Ln and |E |=

∑

i, j ai j. The lower-bound 0.5 is given by the random
cut, which uniformly assigns the nodes to the two sides of the partition.2 The
derivation of the upper bound is in Appendix B.2.

To quantify the size of a cut induced by a partition vector z, such as the one
in (4.20), we introduce the function

0≤ γ(z) =
z>Lz

2
∑

i, j ai j
≤

MaxCut
|E |

, (4.26)

which measures the proportion of edges cut by z. Note that γ(·) depends also on
L, but we keep it implicit to simplify the notation.

Let us now consider the best- and worst-case scenarios. The best case is the
bipartite graph, where the maximum cut is known and it cuts all the graph edges.
The partition z found by our spectral algorithm on bipartite graphs is optimal,
i.e., γ(z) = MaxCut/|E | = 1. In graphs that are almost bipartite or, in general,
that have very sparse and regular edges, a large percentage of edges can be cut

2A random cut z is, on average, at least 0.5 of the optimal cut z∗: E[|z|] =
∑

(i, j)∈E E[ziz j] =
∑

(i, j)∈E Pr[(i, j) ∈ z] = |E|
2 ≥

|z∗|
2

73 4.3 Node decimation pooling

if the nodes are partitioned correctly. Indeed, for these graphs, the maximum
cut is usually large and is closer to the upper bound in Equation (4.25). On the
other hand, in very dense graphs the maximum cut is smaller, as well as the gap
between the upper- and lower-bound in (4.25). Notably, the worst-case scenario
is a complete graph where it is not possible to cut more than half of the edges,
i.e., MaxCut = 0.5. We note that in graphs made of a sparse regular part that
is weakly connected to a large dense part, the gaps in Equation (4.25) can be
arbitrarily large.

The proposed spectral algorithm is not designed to handle very dense graphs;
an intuitive explanation is that vmax can be interpreted as the graph signal with
the highest possible frequency, since its sign changes as often as possible between
adjacent nodes. While such oscillation in the sign is possible on bipartite graphs,
for complete graphs it is not possible to find a signal that assumes an opposite
sign on neighbouring nodes, because all nodes are connected with each other.
Remarkably, the solution of Equation (4.20) found by the spectral algorithm on
very dense graphs can be worse than the random cut. A theoretical result found
by Trevisan [208] states that a spectral algorithm, like the one we propose, is
guaranteed to yield a cut larger than the random partition only when µmax ≥
2(1−τ) = 1.891 (see Appendix B.3 for details).

To illustrate how the size of the cut found by the spectral algorithm changes
between the best- and worst-case scenarios, we randomly add edges to a bipartite
graph until it becomes complete. Figure 4.11 illustrates how the size of the cut
γ(z) induced by the spectral partition z changes as more edges are added and the
original structure of the graph is corrupted (blue line). The figure also reports
the size of the random cut (orange line) and the maximum cut upper bound
from Equation (4.26) (green line). The black line indicates the threshold found
by Trevisan [208], i.e., the value of µ2

max/2 below which the spectral cut is no
longer guaranteed to be larger than the random cut. The graph used to generate
the figure is a regular grid; however, similar results hold for other families of
random graphs and are reported in the supplementary material.

Figure 4.11 shows that the spectral algorithm finds a better-than-random cut
even when µmax/2< 1−τ (i.e., when the result of Trevisan [208] does not hold),
and only approaches the size of the random cut when the edge density is very
high (70%-80%).

Importantly, when the size of the spectral partition becomes smaller than the
random partition, the upper-bound µmax/2 ≈ 0.5, meaning that the random cut
is very close to the maximum cut. To obtain a cut that is always at least as good
as the random cut, we first compute the partition z as in Equation (4.20) and
evaluate its size γ(z): if γ(z)< 0.5, we return a random partition instead.

74 4.3 Node decimation pooling

0.03 0.13 0.22 0.32 0.42 0.51 0.61 0.71 0.8 0.9 1.0
Edge density

0.0

0.2

0.4

0.6

0.8

1.0

spectral cut random cut s
max /2 1

Figure 4.11. Blue line: fraction of edges cut by the partition given by the spectral
algorithm. Orange line: fraction of edges removed by a random cut. Green line:
the maximum cut upper bound as a function of the largest eigenvalue µmax of the
symmetric normalised Laplacian. Black line: the threshold from [208] indicating
the value of µmax/2 below which one should switch to the random cut to obtain
a solution guaranteed to be ≥ 0.53·MaxCut. The x-axis indicates the density of
the graph connectivity, which increases by randomly adding edges.

We conclude by noting that, due to the smoothing effect of convolution, the
nodes belonging to densely connected graph components are likely to have very
similar representations computed by the GNN; it is, therefore, not important
which of these nodes are dropped by a random cut. The random cut in these cases
not only is optimal in terms of the maximum cut objective, but it also introduces
randomness that provides robustness when training the GNN model.

Pseudo-code The procedure for generating the pyramid of coarsened adja-
cency matrices A and the selection matrices is reported in Algorithm 1. L is a list
of positive integers indicating the levels in the pyramid of coarsened Laplacians
that we want to compute. For instance, given levels L= [1,3, 5] for a graph of N
nodes, the algorithm will return the coarsened graphs with approximately N/2,
N/8, and N/32 nodes (in general, N/2li for each li in L). Matrix R is a buffer
that accumulates the selection matrices when one or more coarsening levels are
skipped.

Algorithm 2 shows the details of the pooling function, used in line 3 of Algo-
rithm 1.

75 4.3 Node decimation pooling

Algorithm 1: Graph coarsening
Input: adjacency matrix A, coarsening levels L, sparsification threshold ε
Output: coarsened adjacency matrices A, selection matrices S

1: A(0) = A, R= IN , A= {}, S = {}, l = 0
2: while l ≤max(L) do
3: A(l+1),S(l+1) = pool(A(l))
4: if l ∈ L then
5: A←A∪A(l+1), S ← S ∪ S(l+1)R
6: R← INl

7: else
8: R← S(l+1)R
9: l ← l + 1

10: A← {Ā(l) | ā(l)i j = a(l)i j if a(l)i j > ε and 0 otherwise, ∀A(l) ∈A}

Algorithm 2: pool(·) function

Input: adjacency matrix A(l) ∈ RNl×Nl

Output: coarsened adjacency matrix A(l+1) ∈ RNl+1×Nl+1 , selection matrix
S(l+1) ∈ NNl+1×Nl

1: get L(l) = D(l) −A(l) and L(l)s = I− (D(l))−
1
2 A(l)(D(l))−

1
2

2: compute the eigenvector vmax of L(l)n
3: partition vector z s.t. zi = 1 if vmax[i]≥ 0, zi = −1 if vmax[i]< 0
4: if γ(z)< 0.5 then
5: random sample zi ∼ {−1,1},∀i = 1, . . . , Nl (random cut)
6: V+ = {i | zi = 1}, V− = {i | zi = −1}
7: L(l+1) = L(l) \ L(l)V−,V− (Kron reduction)

8: A(l+1) = −L(l+1) + diag(
∑

j 6=i L
(l+1)
i j)

9: S(l+1) = [INl+1
]V+,:

76 4.3 Node decimation pooling

Computational cost analysis The most expensive operations in the NDP al-
gorithm are i) the cost of computing the eigenvector vmax, and ii) the cost of
inverting the sub-matrix LV−,V− within the Kron reduction.

Computing all eigenvectors costs O(N 3), where N is the number of nodes.
However, computing only the eigenvector corresponding to the largest eigen-
value is fast when using the power method [217], which requires only a few
iterations (usually 5-10), each one of complexity O(N 2). The cost of inverting
LV−,V− is O(|V−|3), where |V−| is the number of nodes that are dropped.

We notice that the coarsened graphs are pre-computed before training the
GNN. Therefore, the computational time of graph coarsening is much lower com-
pared to training the GNN for several epochs, since each convolution in the GNN
has a cost O(N 2).

Structure of the sparsified graphs When applying the sparsification, the spec-
trum of the resulting adjacency matrix Ā is preserved, up to a small factor that
depends on ε, w.r.t. the spectrum of A.

Theorem 2. Let Q be a matrix used to remove small values in the adjacency matrix
A, which is defined as

Q=

¨

qi j = −ai j, if |ai j| ≤ ε
qi j = 0, otherwise.

(4.27)

Each eigenvalue ᾱi of the sparsified adjacency matrix Ā= A+Q is bounded by

ᾱi ≤ αi + u>i Qui, (4.28)

where αi and ui are eigenvalue-eigenvector pairs of A.

Proof. Let P be a matrix with elements pi j = sign(qi j) and consider the pertur-
bation A+ εP, which changes the eigenvalue problem Aui = αiui to

(A+ εP)(ui + uε) = (αi +αε)(ui + uε). (4.29)

where αε is a small number and uε a small vector, which are unknown and in-
dicate a perturbation on αi and ui, respectively. By expanding Equation (4.29),
then cancelling the equation Aui = αiui and the high order terms O(ε2), one
obtains

Auε + εPui = αiuε +αεui. (4.30)

77 4.3 Node decimation pooling

Since A is symmetric, its eigenvectors can be used as a basis to express the
small vector uε

uε =
N
∑

j=1

δ ju j, (4.31)

where δ j are (small) unknown coefficients. Substituting Equation (4.31) into
Equation (4.30) and bringing A inside the summation we get

N
∑

j=1

δ jAu j + εPui = αi

N
∑

j=1

δ ju j +αεui. (4.32)

By considering the original eigenvalue problem that gives
N
∑

j=1
δ jAu j =

N
∑

j=1
δ jα ju j

and by left-multiplying each term with u>i , Equation (4.32) becomes

u>i

N
∑

j=1

δ jα ju j + u>i εPui = u>i αi

N
∑

j=1

δ ju j + u>i αεui. (4.33)

Since eigenvectors are orthogonal, u>i u j = 0,∀ j 6= i and u>i u j = 1, for j = i,
Equation (4.33) becomes

u>i δiαiui + u>i εPui = u>i αiδiui + u>i αiui,

u>i εPui = u>i αεui = αε,
(4.34)

which, in turn, gives
αε = u>i εPui ≥ u>i Qui, (4.35)

as Q≤ εP.

A common way to measure the similarity of two graphs is to compare the
spectrum of their Laplacians. To extend the results of Theorem 1 to the spectra
of the Laplacians L and L̄, respectively associated with the original and sparsified
adjacency matrices A and Ā, it is necessary to consider the relationships between
the eigenvalues of A and L. For a d-regular graph, the relationship λi = d − αi

links the ith eigenvalue λi of L to the ith eigenvalue αi of A [131]. However, for
a general graph it is only possible to derive a loose bound, dmax − αn ≤ λn ≤
dmax−α1, that depends on the maximum degree dmax of the graph [250, Lemma
2.21].

Therefore, we numerically compare the spectra of the Laplacians associated
with the adjacency matrices before and after sparsification. In particular, Fig-
ure 4.12 (top-left) depicts the spectrum of the Laplacian associated to the origi-
nal graph A(0) (black dotted line) and the spectra Λ(L(1)), Λ(L(2)), Λ(L(3)) of the

78 4.3 Node decimation pooling

0 20 40 60 80 100
n

0.0

2.5

5.0

7.5

10.0

12.5 (L0)
(L1)

(L2)
(L3)

0 20 40 60 80 100
n

0.0

2.5

5.0

7.5

10.0

12.5 (L1)
(L2)

(L3)

0 20 40 60 80 100
n

0.00

0.01

0.02

0.03

0.04
| (L1) (L1)| | (L2) (L2)| | (L3) (L3)|

Figure 4.12. Top-left: Spectrum of the Laplacians associated with the original
adjacency matrix A(0) and its coarsened versions A(1), A(2), and A(3) obtained
with the NDP algorithm. Top-right: Spectrum of the Laplacians associated with
the sparsified adjacency matrices Ā(1), Ā(2), and Ā(3). Bottom: Absolute difference
between the spectra of the Laplacians.

Laplacians associated with A(1), A(2), and A(3). Figure 4.12 (top-right) depicts
the spectra of the Laplacians L̄(1), L̄(2), L̄(3) associated with the sparsified adja-
cency matrices Ā(1), Ā(2), and Ā(3). We observe that the spectra of L(l) and L̄(l)

are almost identical and therefore, to better visualise the differences, we show
in Figure 4.12 (bottom) the absolute differences |Λ(L(l)) − Λ(L̄(l))|, where Λ(L)
indicates the eigenvalues of L. The graph used in Figure 4.12 is a random sensor
network and the sparsification threshold is ε= 10−2.

To quantify how much the coarsened graph changes as a function of ε, we
consider the spectral distance that measures the dissimilarity between the spec-
tra of the Laplacians associated with A and Ā [128]. The spectral distance is
computed as

SD(L, L̄;ε) =
1
K

K+1
∑

k=2

|λ̄k(ε)−λk|
λk

, (4.36)

79 4.4 Experiments with pooling methods

0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

Sp
ec

tra
l d

ist
an

ce
1000

2000

3000

4000

No
n-

ze
ro

 e
dg

es

Figure 4.13. In blue, the variation of spectral distance between the Laplacian
L and the Laplacian L̄, associated with the adjacency matrix A sparsified with
threshold ε. In red, the number of edges that remain in L̄.

where {λk}K+1
k=2 and {λ̄k(ε)}K+1

k=2 are, respectively, the K smallest non-zero eigen-
values of L and L̄.

Figure 4.13 depicts in blue the variation of spectral distance between L and
L̄, as we increase the threshold ε used to compute Ā. The red line indicates the
number of edges that remain in Ā after sparsification. We see that, for small
increments of ε, the spectral distance increases linearly while the number of
edges in the graph drops exponentially. Therefore, with a small ε it is possible to
discard a large number of edges with minimal changes in the graph spectrum.

The graph used to generate Figure 4.13 is a sensor network; results for other
types of graph are in Appendix B.4.

4.4 Experiments with pooling methods

The contents of this section were adapted from “Understanding pooling in graph neural networks,”

Grattarola et al. [79].

One of the main issues in the GNN literature on graph pooling is how to fairly
evaluate and compare different methods in order to identify the best one for a
specific task. However, the literature has failed to provide a definitive answer on
how to best perform this assessment, and currently resorts mostly to evaluating
the downstream performance of GNNs equipped with different pooling opera-
tors on different graph classification and regression tasks. However, we argue
that there is no single general-purpose measure to quantify the performance of a

80 4.4 Experiments with pooling methods

graph pooling algorithm and the quality of a coarsened graph. In this section, we
define three evaluation criteria for pooling operators and design experiments to
test whether different classes of methods are able to meet them. In particular, we
evaluate operators based on their ability to 1) preserve the information content
of the node attributes, 2) preserve the topological structure, and 3) preserve the
information required to solve various classification tasks.

To study the behaviour of different pooling methods according to the three
main criteria, we perform an experimental comparison between eight hierar-
chical pooling methods representing the three remaining axes of the taxonomy
(density, adaptability, trainability). The pooling methods that we consider are
those listed in Table 4.1, which include the two methods that we proposed in
Sections 4.2 and 4.3: MinCut [20] and DiffPool [237] are trainable, dense and
fixed; Top-K [88, 32] and SAGPool [117] are trainable, sparse, and adaptive;
NMF [7] and LaPool [155] are non-trainable, dense and adaptive; Graclus [49]
and NDP [21] are non-trainable, sparse and adaptive. We defer implementation
details to Appendix C.

4.4.1 Preserving node attributes

As a first experiment, we test the ability of pooling methods to preserve node
information. We consider the task of reconstructing the original coordinates of a
geometric point cloud from its pooled version. We configure a graph autoencoder
to pool the node attributes and then lift them back to the original size using an
appropriate lift operator for each method. Note that this experiment evaluates
the quality of the pooling methods in compressing node information, but it does
not test their generalisation capability since the autoencoder is independently fit
on each point could.

Table 4.4 reports the average and standard deviation of the mean squared
error (MSE) obtained by the eight methods on different point clouds from the
PyGSP library [46] and the ModelNet40 dataset [228]. Figure 4.14 contrasts
the original point cloud with the points reconstructed from each pooling method
while the connectivity is unchanged; the figures for all point clouds are available
in Appendix C. As baseline values for the MSE, we report the mean squared
distance between adjacent points: γ = (|E |Dn)−1

∑

(i, j)∈E |xi − x j|22; the intuition
behind this baseline is that reconstructed points with a MSE score larger than
the reference γ cannot be matched, on average, with the original points. We
observe that as the point clouds grow in size, many operators cannot achieve
MSE < γ (red entries). The two methods that stand out from Table 4.4 are
the non-trainable NMF and NDP, as confirmed by their respective average ranks

81 4.4 Experiments with pooling methods

Table 4.4. MSE (values in scale of 10−3) in the autoencoder experiment.3 The
Rank row indicates the average ranking of the methods across all datasets.

Ref. γ DiffPool MinCut NMF LaPool TopK SAGPool NDP Graclus

Grid2d 7.812 0.010 ±0.005 0.002 ±0.002 0.000 ±0.000 0.002 ±0.001 18.86 ±3.923 16.61 ±3.270 0.000 ±0.000 0.109 ±0.000

Ring 4.815 0.018 ±0.003 0.001 ±0.000 0.000 ±0.000 0.052 ±0.046 132.2 ±4.133 148.5 ±30.10 0.000 ±0.000 0.600 ±0.000

Bunny 6.874 3.901 ±0.275 0.208 ±0.034 0.339 ±0.055 0.610 ±0.103 15.32 ±3.557 16.10 ±1.722 0.373 ±0.070 0.332 ±0.043

Airplane 0.097 0.094 ±0.022 0.005 ±0.002 0.020 ±0.000 0.002 ±0.000 0.096 ±0.028 0.268 ±0.081 0.012 ±0.000 0.009 ±0.000

Car 0.028 0.143 ±0.127 0.535 ±0.200 0.016 ±0.001 OOR 0.229 ±0.023 0.204 ±0.029 0.009 ±0.000 0.102 ±0.000

Guitar 0.091 0.101 ±0.025 0.313 ±0.000 0.007 ±0.000 OOR 0.056 ±0.051 0.060 ±0.044 0.005 ±0.000 0.010 ±0.000

Person 0.013 0.077 ±0.041 0.301 ±0.000 0.001 ±0.000 OOR 0.055 ±0.012 0.062 ±0.033 0.001 ±0.000 0.001 ±0.000

Rank 5.29 4.29 2.14 5.43 6.14 6.57 1.86 3.43

Figure 4.14. Node attributes (point locations) reconstructed with different op-
erators in the autoencoder experiment.

across datasets.
Figure 4.15 depicts a variant of the coarsened graphs where the SEL and CON

operations are the same as in Table 4.1, but the RED function is replaced by

X′ = S>X. (4.37)

This modification is crucial to interpret the SEL operation because most of the
pooling methods use message passing layers before the reduction (see the au-
toencoder architecture details), which makes the node feature space not directly
comparable with the original 2 or 3-dimensional input space. Conversely, the re-
duction in (4.37) gives (weighted) averages of the supernodes with the benefits
of maintaining points in the input space and locating them in the supernodes’
centres of mass.

3“OOR" indicates Out Of Resources, i.e., either we could not fit a batch size of 8 graphs on an
Nvidia Titan V GPU or it took more than 24 hours to complete training. Values of 0.000 indicate
any value < 10−6.

82 4.4 Experiments with pooling methods

Figure 4.15. Graphs pooled with different operators in the autoencoder experi-
ment with the modified RED function, and the associated selection matrices S.

Two main patterns emerge. First, we see that the two non-trainable sparse
methods (NDP and Graclus) perform a rather uniform node subsampling, in such
a way that the reduced node features are representative of the original input,
which may facilitate the reconstruction of the input node features, as confirmed
by the low MSE in Table 4.4. Second, trainable and sparse methods (TopK and
SAGPool) tend to cut off entire portions of the graphs, therefore discarding es-
sential node information.

4.4.2 Preserving structure

In this experiment we study the structural similarity between the input and coars-
ened graphs G and G′, respectively, by comparing the quadratic forms associated
with their respective combinatorial Laplacian matrices L and L′. This evalua-
tion criterion has also been recently studied by Loukas [128], Hermsdorff and
Gunderson [85], and Cai et al. [31], and allows us to compare graphs of differ-
ent sizes. Specifically, we consider the quadratic loss L(G,G′) =

∑Dn

i=0 ‖X
>
:,iLX:,i −

X′>:,iL
′X′:,i‖, where X ∈ RN×Dn is an arbitrary graph signal and X′ its reduction.

In this experiment, we choose X to be the concatenation of the first 10 eigen-
vectors of L and the node coordinates of G; all columns are normalised by their
norm. For trainable methods, we directly minimise the loss as a self-supervised
target. Table 4.5 reports the average loss obtained by the eight operators on
different graphs from the PyGSP library, while Figure 4.16 shows examples of
pooled graphs and their spectra. We show the result for Grid2d since it is easier
to interpret visually; the figures for all graphs are available in Appendix C.

Trainable dense methods can generate coarsened graphs with a quadratic loss
w.r.t. the original graph lower than their non-trainable or sparse counterparts.

83 4.4 Experiments with pooling methods

Table 4.5. Average quadratic loss in the spectral similarity experiment.

DiffPool MinCut NMF LaPool TopK SAGPool NDP Graclus

Grid2d 0.002 ±0.000 0.099 ±0.016 0.369 ±0.000 8.486 ±0.000 0.483 ±0.001 0.306 ±0.017 0.068 ±0.000 0.375 ±0.000

Ring 0.001 ±0.000 0.000 ±0.000 0.050 ±0.000 5.603 ±0.000 0.067 ±0.000 0.034 ±0.001 0.002 ±0.000 0.058 ±0.000

Sensor 0.010 ±0.000 0.155 ±0.005 1.177 ±0.000 28.99 ±0.000 1.306 ±0.001 0.721 ±0.077 0.486 ±0.000 1.027 ±0.000

Bunny 0.011 ±0.003 0.272 ±0.013 40.48 ±0.000 > 103 1.251 ±0.000 0.708 ±0.138 0.156 ±0.000 1.228 ±0.000

Minnes. 0.000 ±0.000 0.004 ±0.000 7.117 ±0.000 4.030 ±0.000 0.004 ±0.000 0.001 ±0.000 0.000 ±0.000 0.080 ±0.000

Airfoil 0.000 ±0.000 0.006 ±0.000 2.604 ±0.000 26.97 ±0.000 0.006 ±0.000 0.003 ±0.000 0.000 ±0.000 0.048 ±0.000

Rank 1.17 2.83 6.33 7.83 5.83 3.67 2.00 5.67

Table 4.6. Density and median weight of the edges of the coarsened graphs in
the spectral similarity experiment.

Original DiffPool MinCut NMF LaPool TopK SAGPool NDP Graclus

Grid2d
Density 0.055 0.969 0.969 0.463 0.917 0.084 0.092 0.189 0.103
Median 1.000 0.216 0.024 0.018 1.445 1.000 1.000 0.500 0.154

Minnes.
Density 9.47·10−4 0.999 0.999 0.010 0.999 0.002 0.002 0.003 0.002
Median 1.000 0.004 7.58·10−4 0.014 0.013 1.000 1.000 0.333 0.204

Sensor
Density 0.159 0.969 0.969 0.844 0.875 0.273 0.230 0.529 0.227
Median 0.742 0.463 2.42·10−4 0.005 6.147 0.765 0.756 0.201 0.103

Interestingly, from the bottom row of Figure 4.16 we see that a low quadratic
loss does not necessarily imply a good alignment of the spectra. For example, on
the regular grid in Figure 4.16, the excellent spectral alignment achieved by Top-
K and SAGPool is not reflected by a low quadratic loss value (0.596 and 0.361
respectively). While in principle this experiment focuses on comparing only SEL

and CON, we are also evaluating RED since it affects the loss that depends on
X′. This can explain the discrepancy between the loss values and the eigenvalues
plots.

From Figure 4.16, we see that dense methods (DiffPool, MinCut, NMF, LaPool)
yield coarsened graphs that are densely connected. We can make a similar ob-
servation for the autoencoder experiment with modified RED operation in Equa-
tion (4.37), as shown in Figure 4.15. However, in these dense graphs, most of
the edge weights are also small. This is quantitatively reported in Table 4.6, in
which we compare the density of edges (|E ′|/K2) and the median edge weight of
the coarsened graphs for Grid2d, Minnesota and Sensor. An extended version of
this table is reported in Appendix C.

84 4.4 Experiments with pooling methods

Original DiffPool MinCut NMF LaPool TopK SAGPool NDP Graclus

0 1i/n
0

1

2

i

Orig,
Pool. 0 1i/n 0 1i/n 0 1i/n 0 1i/n 0 1i/n 0 1i/n 0 1i/n

Figure 4.16. Results on a regular grid when optimising for spectral similarity.
Top: the coarsened adjacency matrices. Middle: the coarsened graphs with mod-
ified RED function. Bottom: the eigenvalues of the normalised Laplacian before
(black) and after (blue) pooling. The indices of the eigenvalues are rescaled to
fill [0, 1].

Table 4.7. Accuracy on the graph classification benchmarks.3

No-pool DiffPool MinCut NMF LaPool TopK SAGPool NDP Graclus

Colors-3 40.8±2.1 55.2 ±1.5 60.1 ±4.0 29.7 ±1.7 44.9 ±1.0 26.9 ±4.0 34.4 ±5.2 25.4 ±1.8 29.5 ±2.0

Triangles 93.5±0.7 91.3 ±0.2 95.3 ±0.5 58.1 ±5.2 88.8 ±0.8 75.2 ±17.3 80.3 ±8.6 75.3 ±1.0 71.4 ±1.7

Proteins 68.8±2.8 70.0 ±0.6 73.8 ±0.8 68.9 ±3.4 72.9 ±2.0 71.3 ±0.8 73.7 ±0.8 68.4 ±3.4 72.6 ±1.1

Enzymes 83.6±2.0 72.4 ±3.9 83.6 ±0.6 32.4 ±8.1 85.0 ±1.2 81.0 ±0.4 68.8 ±18.8 84.8 ±3.2 85.4 ±4.1

DD 81.1±0.4 75.6 ±1.8 82.5 ±0.9 OOR OOR 80.4 ±0.9 79.0 ±2.7 79.6 ±1.2 78.3 ±2.9

Mutagen. 78.0±1.6 76.2 ±1.4 73.9 ±1.6 70.3 ±1.6 75.3 ±0.1 75.8 ±1.4 76.9 ±1.4 76.9 ±1.0 74.2 ±0.5

ModelNet 81.0±0.5 70.4 ±2.4 75.9 ±1.2 OOR OOR 74.1 ±3.0 71.9 ±2.6 77.1 ±2.6 83.9 ±1.9

Rank 4.43 2.57 7.14 4.29 4.71 3.86 4.29 4.29

4.4.3 Preserving task-specific information

In our final experiment, we consider several benchmarks of graph classification
to test the third criterion. A high classification accuracy implies that an operator
can selectively preserve information based on the requirements of the task at
hand. We consider graph classification problems from the TUDataset [150], the
ModelNet10 dataset [228], and the Colors-3 and Triangles datasets introduced
by Knyazev et al. [108].

Table 4.7 reports the average and standard deviation of the classification ac-
curacy on the test set, as well as the average ranking of the operators. We also
report as a baseline the classification accuracy of a GNN with no pooling (No-

85 4.4 Experiments with pooling methods

pool). We observe that, on the datasets considered here, the operators based on
graph spectral properties (MinCut, NDP, Graclus) achieve the highest accuracy.
However, we could not find strong evidence that one pooling operator (or even
a class of operators) is systematically better than all others. For instance, on
Triangles and Colors-3 we see that dense, trainable operators have a consistent
advantage. However, the family of sparse and/or non-trainable methods per-
forms better on Enzymes, Mutagenicity, and the large-scale ModelNet10 dataset.
Finally, in datasets such as Mutagenicity, Proteins, and DD the performance gap
is not very large. Table 4.7 also shows that some of the models with graph pool-
ing operators achieve higher classification accuracy than the no-pool baseline
(in green). In Mutagenicity, the baseline architecture achieves top performance,
suggesting that graph pooling is not always beneficial in some graph classifica-
tion tasks. Further discussion can be found in the recent work of Mesquita et al.
[145].

4.4.4 Discussion

Overall, we showed that: 1) the choice of the best pooling operator, and whether
performing graph pooling is necessary at all, highly depends on the problem at
hand; 2) a comprehensive evaluation of pooling operators requires considering
multiple criteria—such as those discussed in this section—to highlight all their
fundamental properties and, in particular, it cannot be limited to measuring the
downstream performance on small-scale benchmark datasets.

86 4.4 Experiments with pooling methods

Part II

Architectures

87

Chapter 5

Adversarial autoencoders with
constant-curvature latent manifolds

Performing statistical inference and analysis on graph datasets is a complicated
task, due to the complexity added by the variable topology between samples (a
variability that classical domains, like images and time signals, do not have). In
particular, one of the key issues in dealing with graphs is to find representations
that respect their underlying geometry, which is usually defined by application-
specific distances that often do not satisfy the identity of indiscernibles or the
triangular inequality [125, 222]. The use of metric distances, like graph align-
ment distances [93], only mitigates the problem, as they are computationally
intractable and not useful in practical applications. However, recent research
on the geometry of the domain of graphs [222, 94, 245] has highlighted that
constant-curvature Riemannian manifolds (CCMs), like hyperspherical and hy-
perbolic spaces, are ideal for representing graphs and many other kinds of data [222,
154, 245, 80, 43].

Motivated by these observations, in this chapter we introduce the constant-
curvature manifold adversarial autoencoder (CCM-AAE) [75, 76], a neural net-
work architecture designed to learn representations on non-Euclidean manifolds
in an unsupervised way. The proposed architecture is general and not necessar-
ily limited to graph data, although we show that it leads to substantial improve-
ments on many problems of statistical inference and analysis in the domain of
graphs.

In reference [75], besides some benchmark applications, we consider the
task of generating small molecules for de novo drug design. We show that the
non-Euclidean geometry of the latent space promotes a more diverse generation
(measured in terms of variety and novelty w.r.t. the training data). In particular,

89

90 5.1 Background

we show that our approach achieves a significantly better generation than the
state of the art (at the time of publication).

In reference [76], inspired by the work of Zambon et al. [244, 243, 246], we
propose a change detection technique for sequences of graphs, based on the CCM
embeddings provided by the autoencoder. Specifically, we develop two ad hoc
change detection techniques that take into account the non-Euclidean geometry
of the latent space. Interestingly, we show that for some applications changes
emerge only on CCMs with specific curvatures. We apply our change detection
pipeline to two real-world applications: 1) the detection of hostile behaviour
in sequences of skeletal graphs representing humans, and 2) the detection of
epileptic seizures in sequences of functional brain networks.

In the following sections, we first give the relevant background on adversarial
autoencoders and CCMs, then we describe the proposed architecture, and finally,
we go over the applications mentioned above.

5.1 Background

5.1.1 Adversarial autoencoders

Adversarial autoencoders (AAEs) are probabilistic models for performing vari-
ational inference, based on the framework of generative adversarial networks
(GANs) [71]. In AAEs, the encoder network acts as the generator of a GAN,
and the aggregated posterior of its latent representation is matched with a prior
distribution, by training the model to fool the discriminator.

Training of AAEs occurs in two phases, namely reconstruction and regularisa-
tion. During the former, the AAE is trained to reconstruct samples from the data
distribution. During the regularisation phase, the discriminator is trained to dis-
tinguish between samples coming from the encoder and samples coming from
the prior. Finally, the encoder is updated to fool the discriminator. The repeti-
tion of these training steps results in a min-max game between the encoder and
the discriminator, where both networks compete to improve at their respective
tasks [71].

Let pdata(x) be the true data distribution in some data space X and p(z) the
prior distribution in some latent space Z. We indicate with fenc : X → Z the
encoder network of the AAE and with fdec : Z → X the decoder network, so that
the full autoencoder is fdec ◦ fenc : X → X . Finally, we indicate with fdis : Z → R
the discriminator network, which is typically a classifier.

First, during the reconstruction phase, the AAE is trained to minimise the

91 5.1 Background

reconstruction error between the samples x∼ pdata(x) and the output of the au-
toencoder, (fdec ◦ fenc)(x). Then, during the regularisation phase, the adversarial
optimisation is formulated by Makhzani et al. [136] as:

min
fenc

max
fdis

Ez∼p(z) [log fdis(z)] +Ex∼pdata(x) [log(1− (fdis ◦ fenc)(x)] . (5.1)

The two training steps are then repeated iteratively until convergence.
AAEs are intuitively similar to variational autoencoders (VAEs), with the key

difference that AAEs replace the Kullback-Leibler divergence penalty of VAEs with
the adversarial training procedure outlined above. However, this means that
AAEs do not need an exact functional form of the prior to perform backpropa-
gation, but only a way to sample from it. This makes them more flexible in the
choice of prior [136]. In our approach, we use this property of AAEs to constrain
the latent space of the network to a CCM using a particular prior.

5.1.2 Constant-curvature manifolds

A d-dimensional CCM M is a Riemannian manifold characterised by a constant
sectional curvature κ ∈ R. We consider an extrinsic representation of M in its
ambient space and define the CCM as

M= {x ∈ Rd+1 | 〈x,x〉= κ−1}. (5.2)

The scalar product 〈·, ·〉 in Equation (5.2) defines the geometry of the CCM.
For κ > 0, the geometry is said to be spherical and is defined by the inner product:

〈x,y〉= x>y. (5.3)

In this case, the geodesic distance between points is computed using Equation (5.3)
as

ρ(x,y) = arccos(〈x,y〉). (5.4)

For κ < 0, the geometry is said to be hyperbolic and the formulation of Equa-
tion (5.2) is the hyperboloid model. The geometry in this case is defined by the
pseudo-Euclidean scalar product:

〈x,y〉= x>
�

Id 0
0 −1

�

y. (5.5)

Geodesics are computed from Equation (5.5) as

ρ(x,y) = arcosh(〈x,y〉). (5.6)

92 5.2 Adversarial autoencoders on CCMs

Encoder Decoder
Proj.z ∈ ℝ

d+1

Input

Discriminator

[0, 1]

μ(z)
Membership

U



Avg.

Figure 5.1. Schematic view of the spherical CCM-AAE. From left to right: the
encoder produces embeddings z ∈ Rd+1 in the ambient space, which are projected
onto the CCM before being fed to the decoder. The discriminator distinguishes
between the embeddings and the samples from the prior (blue path). Finally,
the membership degree of the embeddings is averaged with the discriminator to
compute the loss and update the encoder (yellow path)

5.1.3 Distributions on CCMs

To train the CCM-AAE and impose a geometric constraint on the representation,
we need to define probability distributions on CCMs.

Let PM(θ) be a probability distribution with support on M and parametrised
by vector θ . Given the tangent plane TxM ∈ Rd at point x, a general approach to
compute PM(θ) is to take a probability distribution P(θ) with support on TxM
and compute PM(θ) as the push-forward distribution of P(θ) through the Rie-
mannian exponential map (exp-map) Expx(·) [202, 222]. Intuitively, we obtain a
sample from PM(θ) by sampling from P(θ) and mapping the sample to M using
the exp-map. This provides a way to compute a distribution on a CCM start-
ing from any distribution on the Euclidean tangent space, but it is not the only
possibility. For instance, mapping the uniform distribution to the spherical man-
ifold via the exp-map leads to counter-intuitive results, whereas a correct way of
computing a spherical uniform distribution is to L2-normalise the samples from
a Gaussian distribution in the ambient space.

5.2 Adversarial autoencoders on CCMs

We consider the problem of mapping a data distribution to a d-dimensional CCM
M with curvature κ ∈ R, as well as learning a map from M to the data space to
generate new samples.

93 5.2 Adversarial autoencoders on CCMs

To achieve this, we introduce the constant-curvature manifold adversarial au-
toencoder (CCM-AAE). Using adversarial learning, we match the latent represen-
tation of the CCM-AAE to a prior distribution defined on the CCM, while jointly
training the encoder to produce embeddings that lie on the CCM via an explicit
regularisation term in the loss, penalising the encoder when the embeddings are
far from the manifold. This facilitates the network in converging to the target
manifold, making it easier to match the aggregated posterior to the prior. We
show a schematic view of the proposed architecture in Figure 5.1.

The methodology presented here is independent of the type of neural network
used to learn the representation of the data, and can be applied as a general
regularisation technique. In this section, we provide an outline of the approach
and leave the implementation details to the experiments section.

5.2.1 Method

We use the same notation adopted in Section 5.1.1, except that now the latent
space Z is a CCM M. The CCM-AAE is defined as the composition of two maps:

• fenc : X →M, mapping data to the manifold;

• fdec : M→ X , mapping embeddings back the data space.

In practice, the latent space of the autoencoder is R(d+1) and represents the
ambient space of M.

During the reconstruction phase, the autoencoder is trained to reconstruct
samples from the data distribution, by minimising a loss function between x ∈ X
and (fdec ◦ fenc)(x). During the regularisation phase, we train the discriminator
to distinguish between samples from the encoder and samples from the prior
PM(θ). Then, we update the encoder to fool the discriminator. By matching the
aggregated posterior to PM(θ), the network is implicitly constrained to embed
input data on the CCM, and the solution to the adversarial game can be obtained
from Equation (5.1) as:

min
fenc

max
fdis

Ez∼PM(θ) [log fdis(z)] +Ex∼pdata(x) [log(1− (fdis ◦ fenc)(x))] . (5.7)

However, this implicit optimisation may not be sufficient for the network to
learn the non-Euclidean geometry of the CCM. Consequently, here we also train
the encoder network to maximise the membership degree of the embeddings
to M, so that the CCM-AAE is steered towards computing embeddings that lie
exactly on the CCM. For a manifold M with κ 6= 0, the membership degree of a

94 5.2 Adversarial autoencoders on CCMs

2 1 0 1 2
2

1

0

1

2
=-1, =3

2 1 0 1 2
2

1

0

1

2
=1, =3

Figure 5.2. Membership function of a hyperbolic (left) and a spherical (right)
CCM in the case of d = 1. Lighter colours indicate higher values (white = 1).

sample z is computed as:

µ(z) = exp

−
�

〈z,z〉 − 1
κ

�2

2ς2

!

(5.8)

where ς 6= 0 controls the width of the membership function (see Figure 5.2).
In practice, we optimise both regularisation objectives in parallel, by taking the
average of the discriminator’s output and the membership degree of the embed-
dings when updating the encoder in the regularisation phase as:

˜fdis(z) =
fdis(z) +µ(z)

2
. (5.9)

The final form of the regularisation for the CCM-AAE is:

min
fenc

max
fdis

Ez∼PM(θ)

�

log ˜fdis(z)
�

+Ex∼pdata(x)

�

log(1− (˜fdis ◦ fenc)(x))
�

. (5.10)

Projection to the CCM When we need to compute exact operations on the CCM
(e.g., distances or sampling), we orthogonally project the embeddings onto M to
compensate for the inevitable error in the model. The projection can be embed-
ded as an operation in the computational graph of the CCM-AAE or computed
only at test time. For instance, for KNN-based semi-supervised classification (cf.

95 5.2 Adversarial autoencoders on CCMs

Section 5.3), where we need to compute the pairwise distances of the embed-
dings, we only project the embeddings onto M at test time. Alternatively, when
using the CCM-AAE for generating new samples in the data space, we ensure that
the decoder network learns a meaningful map between M and the data space
by always projecting the latent codes onto M. This does not impact the regular-
isation of the encoder and has only a marginal effect on the convergence of the
model.

5.2.2 Related works

Focusing on recent literature regarding unsupervised learning on graphs and Rie-
mannian manifolds, we mention that graph autoencoders (GAE) are typically
used for node-level prediction [107, 17, 187]; in this framework, an adversari-
ally regularised GAE is proposed by Pan et al. [165]. For graph-level learning,
instead, Simonovsky and Komodakis [196] propose a variational GAE for gener-
ating molecules.

Several works in the literature introduce different approaches to model the
latent space geometry of generative models or study the geometry of the data
distribution to facilitate the autoencoder in learning a non-Euclidean represen-
tation. Davidson et al. [43] introduce a variational autoencoder that uses the
von Mises–Fisher distribution as prior, aimed at modelling the spherical geom-
etry of the data. Korman [109] proposes to use the AAE framework to recover
the manifold underlying a data distribution, without making assumptions on the
geometry of the manifold. This is achieved by approximating the manifold as
a set of charts, each represented by the latent space of a linear AAE trained to
match a uniform prior. The Riemannian geometry of deep generative models
is also studied by Shao et al. [191], Chen et al. [34], whereas Giryes et al. [66]
study the metric-preserving properties of neural networks with random Gaussian
weights. To capture the hierarchical structure of domains like natural language,
Nickel and Kiela [154] develop a technique based on stochastic gradient descent
on manifolds for embedding graph data on a Poincaré ball.

Advantages A key difference of our approach with other works in the litera-
ture is that we do not impose the non-Euclidean geometry on the latent space by
simply projecting the embeddings onto the CCM, or otherwise explicitly limiting
the latent space (e.g., by sampling embeddings from the CCM prior [43]). The
encoder must learn the latent manifold autonomously because the projection is
not performed during the regularisation step. Moreover, as highlighted in previ-
ous sections, AAEs have the advantage w.r.t. to VAEs of not requiring the explicit

96 5.3 Benchmarks

form of the prior to perform backpropagation. This is especially relevant when
dealing with non-Euclidean geometry, where functional forms can be analytically
complex. A relevant effect of this is discussed in Section 5.3.2, where we show
that the spherical version of our model can deal with high-dimensional manifolds
better than an equivalent VAE with spherical latent space. This results in a more
stable performance when using high-dimensional manifolds on the considered
applications (we show a specific example of this on a semi-supervised classifica-
tion task on MNIST), since our model does not suffer from the same performance
drop of the spherical VAE.

5.3 Benchmarks

Following the experimental methodology of Davidson et al. [43], we begin by
reporting a performance comparison of different models on two relevant bench-
marks of interest: semi-supervised image classification on MNIST and link pre-
diction on citation networks.

For each experiment, we test two main configurations of CCM-AAE, i.e., with
spherical and hyperbolic geometry. The geometry of the CCM is dependent only
on the sign of the curvature, whereas the absolute value of the curvature has only
an effect on the scale of the representation. For this reason, in order to simplify
the implementation of the CCM-AAE, here we only consider κ= 1 and κ= −1.

For the prior, we follow the methodology of Makhzani et al. [136] and adapt
the standard normal distribution N (0,1) to our setting. For κ = −1 we use
the push-forward standard normal NM(0, 1), where the origin of the exp-map is
taken as the point x ∈ Rd+1 such that xi = 0 for i = 0, . . . , d − 1 and xd = 1 (the
point is chosen to simplify some implementation details, but any other point on
the manifold would be suitable).

For κ = 1 however, as the dimension d of the manifold grows, mapping
N (0,1) to the CCM via the exp-map results in a uniform distribution on the
sphere. A similar consideration was also noted by Davidson et al. [43] for the
von Mises–Fisher distribution. Therefore, a better choice is to use directly the
spherical uniform distribution as prior (cf. Section 5.1.3).

5.3.1 Semi-supervised image classification

Following the methodology of Kingma et al. [104], we evaluate the quality of the
embeddings produced by the CCM-AAE on a semi-supervised classification task
on the dynamically binarised MNIST dataset [176]. We train the CCM-AAE on a

97 5.3 Benchmarks

Table 5.1. Accuracy of semi-supervised KNN classification on MNIST for 100,
600, and 1000 observed training labels per class w.r.t. the dimensionality of the
latent manifold. We report mean and standard deviation computed over 10 runs.

Method d l=100 l=600 l=1000

VAE 10 89.1 ±0.6 92.7 ±0.5 93.3 ±0.5

S-VAE 10 90.7 ±0.7 93.7 ±0.5 94.1 ±0.5

AAE 100 91.2 ±0.5 94.9 ±0.2 95.4 ±0.2

Ours (κ= 1) 20 91.4 ±0.4 95.0 ±0.5 95.6 ±0.3

Ours (κ= −1) 30 91.5 ±0.3 95.2 ±0.2 95.8 ±0.2

random split of 55k samples for training, 10k for testing, and 5k for validation
and model selection.
After training, we draw for each class l = 100, 600,1000 pairs of samples and
labels uniformly from the training set, and evaluate the test accuracy of a K-
nearest neighbours (KNN) classifier on the embeddings produced by hyperbolic
and hyperspherical CCM-AAEs.

Similar to the experimental setting of Davidson et al. [43], the encoder is a
two-layer fully connected network of 256 and 128 neurons with ReLU activations,
followed by a linear layer with d+1 neurons to produce the latent representation.
The decoder has two ReLU layers with 128 and 256 units, followed by an output
layer with sigmoid activations.

For hyperparameters, we perform a grid search using the validation loss to
perform model selection. The tested values and final configuration are reported
in Table 5.2. We adopt a fully connected discriminator with two layers of h
units, leaky ReLU activation, and L2 regularisation, followed by an output layer
with sigmoid activation. We train both networks using Adam until convergence,
using early stopping on the autoencoder’s validation loss with a look-ahead of 50
epochs (value taken from Davidson et al. [43]). For both networks, we optimise
the cross-entropy between the inputs and reconstructed images.

The embeddings of the network are projected onto the manifold only at test
time to compute the mutual geodesic distances for KNN (for which we set K = 5
as done by Davidson et al. [43]). We compare our results using the same net-
work architecture and configuration to train a standard adversarial autoencoder
with Gaussian prior (AAE) [136], a variational autoencoder with Gaussian prior
(VAE) [103], and the hyperspherical variational autoencoder proposed by David-
son et al. [43] (S-VAE). For S-VAE, we use the open source implementation pro-

98 5.3 Benchmarks

Table 5.2. Hyperparameter configuration of the CCM-AAE for MNIST. The
Searched column indicates that the final value was found via grid search among
the indicated values, using the validation loss for model selection. Alternatively,
when we did not perform a grid search, we indicate how we chose the value
(Keras default indicates that the value was the default setting for the popular
deep learning library Keras, which we used for experiments). An empty final
value in the Value column indicates that the grid search was repeated for each
combination of dataset and κ.

Hyperparam. Value Searched

d - 2, 5, 10, 20, 40, 60, 100

h 64 32, 64, 128
Leaky ReLU α 0.3 Keras default
L2 reg. (for fdis) 0.01 Keras default

ς (for µ) 5 1, 2, 5, 10

Learning rate 0.001 0.001, 0.005, 0.01
Batch size 1024 Empirically

vided by the authors in the original paper.1

The best results obtained by each method are summarised in Table 5.1. We
note that the adversarial setting consistently outperforms its variational coun-
terparts, even when considering the non-Euclidean S-VAE method. The CCM-
AAE also performs slightly better on average w.r.t. the Euclidean AAE, with no
significant statistical differences observed between spherical and hyperbolic em-
beddings. However, we note that the Euclidean model requires a significantly
higher d in order to match the performance of the non-Euclidean ones, with
the spherical model being the most efficient in this regard. This confirms an
already observed fact in the literature [43], and a possible explanation for this
phenomenon can be intuitively seen in Figure 5.3, where MNIST is shown to
have a natural representation on a spherical domain.

Finally, we show in Figure 5.4 that the CCM-AAE can learn a sufficiently good
representation of the data even at very low dimensions (pictured for d = 2 for
visualisation purposes), with no substantial differences between hyperbolic and
spherical geometries as also highlighted by the performance of KNN.

1https://github.com/nicola-decao/s-vae-tf

99 5.3 Benchmarks

Figure 5.3. Traversing the latent space of a spherical CCM-AAE (d = 2) along an
equator of the sphere (samples are arranged left-to-right, top-to-bottom). Note
how the digits are smoothly represented in a circular way, suggesting how the
data can be naturally encoded on a sphere.

100 5.3 Benchmarks

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Poincarè disk, = 1, d = 2

0

1

2

3

4

5

6

7

8

9

3 2 1 0 1 2 3

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Aitoff projection, = 1, d = 2

0

1

2

3

4

5

6

7

8

9

Figure 5.4. Embeddings produced by the CCM-AAE on MNIST, for d = 2. We
report the Poincaré disk model of the latent CCM for κ = −1, and the Aitoff
projection for κ= 1.

5.3.2 Link prediction

For the link prediction task, we follow the methodology of Kipf and Welling [107]
and evaluate the performance of the CCM-AAE on the popular Cora and Citeseer
citation network datasets.2 In this task, we train the CCM-AAE to predict con-
nections on a subset of the network and evaluate the area under the receiver
operating characteristic curve (AUC) and average precision (AP) of the model in

2The Pubmed dataset is often considered alongside the other two, but its large number of
nodes caused GPU memory issues with all algorithms and we could not report results for it.

Table 5.3. Best average AUC and AP of semi-supervised link-prediction on the
Cora and Citeseer datasets. We report mean and standard deviation over 5 runs.
Best results are not highlighted due to the differences between the best algo-
rithms not being statistically significant.

Cora Citeseer
Method d AUC AP d AUC AP

VGAE 20 91.8 ±0.8 92.9 ±0.6 16 90.6 ±1.3 91.7 ±1.1

AAE 64 93.4 ±0.6 93.8 ±0.7 64 94.0 ±0.8 94.6 ±1.0

Ours (κ= 1) 8 93.4 ±0.7 93.9 ±0.8 8 92.8 ±0.4 93.4 ±0.4

Ours (κ= −1) 64 89.4 ±0.9 90.4 ±1.0 8 91.0 ±0.4 91.6 ±0.4

101 5.3 Benchmarks

predicting a test set of held-out links. We split the data randomly, using 10% of
the links for testing and 5% for validation and model selection.

Cora and Citeseer are two popular network datasets representing citation
links between documents, with sparse node attributes representing text features
found in the documents. Each node is also associated with a class label, which
we do not use here. We represent a network with N nodes and F -dimensional
node attributes as a tuple (A, X), where A∈ {0,1}N×N is the symmetric adjacency
matrix of the network, and X ∈ {0, 1}N×F is the node attribute matrix. For the
Cora dataset we have N = 2708 and F = 1433, whereas for Citeseer we have
N = 3327 and F = 3703. The networks have an average degree of 4 and 2.84,
respectively.

The CCM-AAE has the same structure as the variational graph autoencoder
(VGAE) [107], with a GCN encoder network followed by a scalar product de-
coder. The encoder consists of a graph convolutional layer with 32 channels and
ReLU activations, followed by a d + 1 dimensional graph convolutional linear
layer. Dropout is applied before every layer.

For the decoder, we first project the latent representation onto the target man-
ifold, and then we reconstruct the adjacency matrix by computing the scalar
product between node embeddings, followed by an activation to normalise the
output between 0 and 1. In the spherical case, the scalar product can be in-
terpreted as computing a cosine similarity between embeddings, which we then
normalise with a sigmoid activation. For the hyperbolic CCM-AAE, the pseudo-
Euclidean scalar product assumes values in the (−∞,−1] range, so we normalise
it to (0, 1] by applying a shifted exponential as activation to the decoder’s output,
σ(x) = exp(x + 1). In principle, any normalisation function can be used here,
but we leave further exploration of this matter as future work. For instance, an
obvious way of normalising the output would be to add a final layer with sigmoid
activations and let the network learn how to map the scalar product to a predic-
tion in (0,1). However, here we wanted to have the same number of parameters
across all models to report a fair comparison.

We keep most of the configurations used for MNIST unvaried, but we perform
a grid search over the dropout rate (0.0, 0.1, 0.2, 0.3, 0.4) for each dataset
and geometry. Additionally, we repeat the grid search over the dimension d
using similar values to those reported by Davidson et al. [43] (8, 16, 20, 32, 64,
128). Both networks are trained using Adam to optimise the cross-entropy (when
training the autoencoder, we apply the same re-weighting technique used by Kipf
and Welling [107]). We train the model using early stopping on the validation
AUC with patience of 100 epochs (value taken from Kipf and Welling [107]).

102 5.3 Benchmarks

2 5 10 20 30 40 50
d

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

S-VAE l=100
S-VAE l=600
S-VAE l=1000
CCM-AAE l=100
CCM-AAE l=600
CCM-AAE l=1000

Figure 5.5. Comparison between the spherical CCM-AAE and S-VAE considering
the mean test accuracy on MNIST w.r.t. the manifold dimension. S-VAE shows
a performance collapse as reported by Davidson et al. [43], but the CCM-AAE
maintains a stable performance even at higher dimensions.

We report results in Table 5.3. We compare our results against VGAE and an
AAE, using the same network architecture for all models. The spherical CCM-
AAE consistently outperforms VGAE in both tasks, but we highlight a drop in
performance in the hyperbolic model. Once again, the Euclidean AAE performs
comparably to the spherical one but requires a significantly higher-dimensional
latent space.

While the code used to implement S-VAE worked as intended on MNIST,
on the link prediction task we encountered numerical issues that made it im-
possible to replicate the results of Davidson et al. [43] in our different exper-
imental setting with different data splits, re-weighting technique for the loss,
and hyperparameters searched. When further investigating the instability of S-
VAE, we observed a computational issue in the model, which would saturate the
floating-point representation of the GPU, resulting in invalid gradients propagat-
ing through the network. The numerical instability derives from the sampling
procedure of the von Mises–Fisher distribution on which the model is based, as
the exponentially scaled modified Bessel function used for sampling causes a di-
vision by zero for higher values of d. On the other hand, we note that the perfor-
mance of the proposed spherical CCM-AAE does not suffer from the same issue
when using high-dimensional latent spaces (shown in Figure 5.5 for MNIST).

103 5.4 Molecule generation

5.4 Molecule generation

Graph-based molecule generation is a recent area of research that is starting
to draw the attention of the machine learning and cheminformatics communi-
ties [196, 45]. Unlike past approaches in molecule generation, most of which
relied on the SMILES string representation of molecules, the graph-based ap-
proach represents atoms as nodes in a graph, with chemical bonds represented
as attributed edges.

We compare the proposed CCM-AAE against several molecule generation
models using the QM9 dataset of small molecules. We evaluate the performance
of our model following the methodology of Simonovsky and Komodakis [196].
QM9 contains around 134.000 small molecules of up to nine heavy atoms, with
four atomic numbers and three bond types. We split the data randomly using
10.000 samples for testing and 10.000 for validation and model selection.

To evaluate the quality of the model, we sample random points from the
latent CCM and map them to the molecule space using the decoder. We then
compute three metrics for the generated molecules: the validity measure indi-
cates the fraction of chemically valid molecules, the novelty metric indicates the
fraction of valid molecules that are not in the original QM9 dataset, and finally
the uniqueness metric indicates the fraction of unique molecules among the valid
ones [177]. Finally, to quantify the overall performance of a model, we aggregate
the three metrics by multiplying them together. If we assume independence of
uniqueness and novelty given validity, this is the probability of generating a valid,
unique, and novel molecule. We use this aggregated joint metric to compare dif-
ferent models between them. We also empirically validated the assumption of
independence among the metrics, by computing the true ratio of valid, unique,
and novel molecules generated by our algorithm. The difference between the
true ratio and the joint metric was not statistically significant in our experiments.

Molecules representation We represent molecules as attributed graphs fol-
lowing the approach of Simonovsky and Komodakis [196]. We use a one-hot
binary representation for the attributes, where nodes are labelled with one of
four possible atomic numbers and edges with one of three types of bonds. We
also explicitly represent null node and edge types with a dedicated class label.

5.4.1 Setting

We structure the CCM-AAE according to the same architecture of GraphVAE [196],
of which we consider the unconditional version for simplicity. The encoder is a

104 5.4 Molecule generation

graph-convolutional network based on ECC [195] (cf. Section 2.3), composed of
two layers of 32 and 64 channels, with ReLU activation, batch normalisation,
and a kernel-generating network with a single linear layer. The convolutions are
followed by a global gated attention readout [124] with 128 units and a linear
layer with d + 1 units to map the representation to the ambient space of the
CCM. The decoder is a fully connected network with three layers of 128, 256,
and 512 neurons, with ReLU activation, and batch normalisation, followed by
three parallel output layers to produce the reconstructed A, X, and E matrices
of the graph (respectively, adjacency matrix, node features, and edge features).
The first output layer has sigmoid activations, whereas the latter two have node-
and edge-wise softmax activations, respectively. We project the embeddings to
the CCM before feeding them to the decoder. The configuration of the discrim-
inator and training procedure is again unvaried. The network is trained until
convergence, monitoring the validation reconstruction loss with a look-ahead of
25 epochs (i.e., the number of epochs used to train GraphVAE [196]).

Following Simonovsky and Komodakis [196], we train the CCM-AAE using
graph matching to account for graphs with unidentified nodes. This consists of
matching the input graphs to the generated outputs before computing the loss,
so that the network learns a permutation-invariant representation. We apply the
same max-pooling matching algorithm used for GraphVAE [35], with 75 itera-
tions and the same affinity function. We also implement the same tricks to speed
up training:

1. We impose the symmetry of the output matrices by removing those edges
for which ai j 6= a ji;

2. We include in the prediction the maximum spanning tree on the set of
probable nodes, i.e., those for which aii ≥ 0.5;

3. We ignore hydrogen atoms and only add them as padding during chemical
validation.3

Finally, we apply a re-weighting of the loss function to mitigate the importance
of the null nodes and edges, and to improve the reconstruction of the rarer types
of edges. We compute the weights from the dataset-wide inverse document fre-
quency (IDF) score of each element in A, X and E. For instance, the IDF score of
the adjacency matrix across a dataset D is:

IDFi j = log

|D|

1+
∑|D|

k=1 a(k)i j

!

(5.11)

3We used the RDKit framework for chemical validation and hydrogen padding.

105 5.4 Molecule generation

Table 5.4. Validity, uniqueness, and novelty metrics on QM9, with and without
graph matching. The Joint column shows the aggregated score computed as the
product of the three metrics, providing a general idea of the overall performance
of the models. Baseline results are taken from references [196, 45]. The best
individual metrics and the model with the best joint score are highlighted in
bold.

Method d Valid Uniq. Novel Joint

N
o

m
at

ch

GraphVAE 80 81.0 61.0 24.1 11.9
CVAE 60 10.3 67.5 90.0 6.3
GVAE 20 60.2 9.3 80.9 4.5
MolGAN - 98.1 10.4 94.2 9.6
AAE 80 30.1 92.7 84.8 23.7
Ours (κ= 1) 80 36.3 92.6 87.1 29.2
Ours (κ= −1) 80 22.5 86.1 70.2 13.6

M
at

ch

GraphVAE 80 55.7 66.0 61.6 26.1
GraphVAE/imp 40 56.2 42.0 75.8 17.9
AAE 40 13.8 87.1 66.6 8.0
Ours (κ= 1) 20 18.0 91.7 78.3 12.9
Ours (κ= −1) 5 19.1 50.7 76.5 7.4

and the log-loss between A and its reconstruction A′ is re-weighted as:

log(A′ | A) =
∑

i, j

�

1+ ai jIDFi j

�

�

a′i j logai j + (1− a′i j) log(1− ai j)
�

. (5.12)

To account for the node permutations, the IDF weight matrices are matched
to their respective target matrices before computing the loss.

5.4.2 Results

We report our results along with the results of several models for molecule gen-
eration, namely GraphVAE, MolGAN [45], the character-based CVAE [70], and
the grammar-based GVAE [111] (the latter two use SMILES representations). We
compare algorithms with and without the graph matching step, and we report
the performance of our model in both cases.

We report a comparison of the models in Table 5.4. The spherical CCM-AAE
without graph matching achieves the best performance for the joint metric, al-

106 5.5 Change detection

Figure 5.6. Traversing the latent space of a spherical CCM-AAE (d = 80) along
an equator of the sphere (samples are arranged left-to-right, top-to-bottom). We
show only valid, unique, and novel molecules.

though the performance on individual metrics is never better than the other mod-
els taken into account. All models have unbalanced performance across the three
metrics (with GraphVAE being the most balanced), and we note that the CCM-
AAE suffers from a low validity score. This confirms the effects of graph match-
ing observed for GraphVAE, and explains the poor performance of the CCM-AAE
when graph matching is considered (validity is halved in the spherical case). We
note, however, that our model does not suffer from mode collapse, a problem
commonly observed in generative adversarial networks as confirmed by the low
uniqueness score of MolGAN. Finally, sampling from the latent manifold learned
with the CCM-AAE produces a smooth transition in molecule space (Figure 5.6);
however, the properties of the generated molecules are less interpretable than in
the MNIST case, and we leave a more extended analysis of these results as future
research.

5.5 Change detection

In many application scenarios, graphs are assumed to be generated by a sta-
tionary process, implying that the topology and graph attributes are drawn from

107 5.5 Change detection

a fixed, albeit unknown, distribution [152]. However, the stationarity assump-
tion does not always hold, with relevant examples including cyber-physical sys-
tems [5], functional networks associated with brain imaging [84], and many
others, e.g., see the works in references [52, 142, 121, 123].

In this section, we focus on the problem of detecting changes in stationar-
ity in a sequence of attributed graphs, i.e., monitoring whether the common
assumption of i.i.d. observations breaks. We propose a methodology based on
the CCM-AAE to represent a graph sequence as a sequence of points on a CCM,
and we present two novel change detection tests (CDTs) operating on CCMs.
The first CDT monitors the geodesic distances of each embedded graph w.r.t. the
sample Fréchet mean observed in the nominal regime of the process. The result-
ing stream of distance values is processed by a CDT based on the Central Limit
Theorem (CLT). The second method considers embeddings lying on the CCMs,
and builds on a novel CDT based on the CLT for Riemannian manifolds [18].

We will show a comparative analysis of the proposed change detection mech-
anisms by testing on two real-world tasks:

1. The detection of ictal and preictal phases in epileptic seizures, using func-
tional connectivity networks extracted from intracranial electroencephalog-
raphy data;

2. The detection of hostility between two human subjects, using skeletal graphs
extracted from video frames.

We show that our methodology can effectively exploit the non-Euclidean geom-
etry of CCMs to detect changes in graph streams, consistently outperforming
baseline algorithms.

5.5.1 Related works

The problem of detecting changes in graph sequences is relatively unexplored
in the literature, with most works focusing on graphs with a fixed topology and
without attributes [87]. Literature reviews on detecting changes, anomalies, and
events in temporal networks can be found in the works of Akoglu and Faloutsos
[3], Ranshous et al. [172], Akoglu et al. [4]. Some notable contributions include
the matrix-decomposition-based algorithm of Sun et al. [203], the change point
methods of Barnett and Onnela [11], Peel and Clauset [166] for large-scale and
correlation networks, and the block-model of Wilson et al. [221] used to monitor
a co-voting network over time. More recently, Zambon et al. [243] proposed a

108 5.5 Change detection

theoretical framework for change detection in graph streams based on embed-
ding techniques. To the best of our knowledge, their work was the first to address
the problem by considering each graph in the stream as a random variable, which
allowed them to perform change detection using classical statistically motivated
methods. We note that none of the cited works applies modern deep learning
methods to compute graph embeddings, resorting to either feature extraction or
dissimilarity-based representations.

5.5.2 Method

Let G(t) = {G1, . . . ,Gt , . . . } indicate a random process that, at every time step t,
generates a graph Gt . We consider the task of determining whether the probabil-
ity distribution underlying such a graph-generating process has changed, from
the nominal distribution Q0 to a non-nominal distribution Q1. Our methodology
consists of training a CCM-AAE to compute graph embeddings, and then running
a change detection test in the non-Euclidean embedding space.

The algorithm has a training and an operational phase. During the training
phase, we observe a finite stream of graphs, G(train) = [G1, . . . ,GT], generated
from the nominal distribution Q0. We map the training stream to the CCM using
the encoder network, and we perform a statistical analysis to configure the CDT.
In the operational phase, we monitor the graph-generating process, which is
again mapped to the CCM using the encoder, with the aim of raising an alarm
when a change in stationarity occurs.

The general test hypotheses considered for detecting a change in stationar-
ity in the distribution of a sequence of i.i.d. graphs G(t) observed during the
operational phase are

H0 : Gt ∼Q0, t = 1, 2, . . .

H1 : Gt ∼

¨

Q0 t < τ

Q1 t ≥ τ,

(5.13)

where τ indicates the change point of the sequence. Note that Q0, Q1, and τ
are unknown. During the operational phase, we use the encoder network of the
CCM-AAE to convert the incoming graph stream into a multivariate stream of
embeddings z(t) ∈Mκ, which we then monitor using a sequential statistical test
to detect a possible change in the nominal distribution. Similarly, the training
observations G(train) are converted to a sequence of embeddings Z (train).

Our change detection methodology builds on the CDT proposed by Zambon
et al. [243], extending it to the case of CCMs. More in detail, the CDT considers
a generic stream of vector points u1,u2, . . . ,ut , . . . , which we process in windows

109 5.5 Change detection

of n points at a time, so that for each w = 1, 2,3, . . . , a window [u]w containing
u(w−1)n+1, . . . ,uwn is generated, and a statistic Sw is computed by means of the
accumulation process of the cumulative sums (CUSUM) chart [162]. Statistic Sw

has a global role, as it recurrently accumulates information from local statistics
si = s([u]i), for i = 1, . . . , w, as

Sw =max{0, Sw−1 + sw − q}, (5.14)

with S0 = 0 and q a parameter for tuning the sensitivity of the test. The null
hypothesis H0 is rejected any time Sw exceeds a threshold hw, and the algorithm
raises an alarm indicating that a change has been detected; the accumulator Sw

is then reset to 0. After the first alarm is raised, the change point is estimated as

τ̂= n ·min{w | Sw > hw}. (5.15)

Threshold hw is set according to a user-defined significance level α, by requir-
ing, under the null hypothesis H0, that

P(Sw > hw | H0, Si ≤ hi, i < w) = α. (5.16)

The threshold is set so that the probability of having a false alarm at the
generic step w is α, allowing us to control the false-positive detection rate.

Note that the scoring function sw = s([u]w) entirely defines the behaviour of
the CDT and that by knowing the distribution of sw we can compute the threshold
hw given α. Here, we consider sw to be the Mahalanobis distance

sw = (E[u]− [u]w)>Cov[u]−1(E[u]− [u]w), (5.17)

between the sample mean [u]w of [u]w and the expected value E[u] of u. In the
stationary case, thanks to the CLT, it can be shown that n · sw ∼ χ2.

We propose two different ways of computing the points ui, both exploiting
the geometry of the CCMs. By monitoring the mean of the sequence, we can
detect changes in the distribution driving the graph-generating process. Since
we use graph convolutions in the encoder network, changes in the distribution
of A, X, and E are all reflected on the embeddings and can be detected by the
CDTs.

Distance-based CDT (D-CDT) The first proposed CDT considers the nominal
distribution F0 of the training stream of embeddings, derived as the push-forward

110 5.5 Change detection

distribution of Q0 through the encoder network. The Fréchet mean of F0, denoted
as µ0, is estimated over the training sequence Z (train) as

µ0 = ArgMin
z∈Mκ

∑

zt∈Z(train)

ρ(zt ,z)
2, (5.18)

where ρ(·, ·) is the geodesic distance as defined in Section 5.1.2.
For each embedding zt ∈Mκ in the operational stream, then, we consider

ut = ρ(µ0,zt). The resulting sequence u1,u2, . . . ,ut , . . . is finally monitored with
the CDT presented above.

Riemannian CLT-based CDT (R-CDT) Our second implementation of the CDT
builds on a Riemannian version of the CLT proposed by Bhattacharya and Lin
[18], which adapts the Mahalanobis distance of Equation (5.17) to non-Euclidean
manifolds. In this case, the operational stream of embeddings zt ∈Mκ is mapped
to the tangent space Tµ0

Mκ with

ut = Logµ0
(zt), (5.19)

and the usual CDT is applied using the modified local statistic sw. In the case of
κ = 0, the standard CLT applies directly to the embeddings without modifying
sw.

Setting CDT parameters The literature suggests setting q as half of the in-
crease in E[sw] that the designer expects to observe [148]. It is possible to show
that the change detection procedure can identify any change of magnitude larger
than q, independently from significance level α: to every α is associated a thresh-
old h and the expected time of detection is

t̂ <
h

(E[sw | H1]− q)
, (5.20)

where E[sw | H1] is the expected value of sw in the non-nominal conditions.
Although in principle it is possible to detect arbitrarily small shifts by setting
q = E[sw | H0], we suggest avoiding this setting because any (even small) bias
introduced at training time in estimating E[sw | H0]will eventually trigger a false
alarm.

Parameter α corresponds to type-I errors of the statistical test, that is, the
probability of rejecting H0 when H0 is known to be true. Parameter α, is therefore
directly related to the false alarm rate, with smaller values of α corresponding to
fewer false alarms. However, we note that a smaller α corresponds also to larger

111 5.5 Change detection

delays of detection under H1. Depending on the application, the user should
determine the best trade-off and the tolerable rate of false alarms.

Finally, the size n of the windows processed by the CDT should be large
enough to consider n · sw ∼ χ2, thus yielding the desired significance level α.
However, processing larger windows of observations in the operational phase of
the algorithm will result in a lower time resolution.

Ensemble of CCMs In most applications, we do not have prior information
about the optimal CCM for embedding the data distribution and choosing the
optimal CCM for a specific task may not be trivial. Therefore, here we pro-
pose to use an ensemble of CCMs, each characterised by a different curvature.
We denote the ensemble of CCMs using the product space notation as M∗ =
Mκ1

× · · · ×Mκi
× · · · ×Mκc

. In practice, we consider each manifold separately
and train the CCM-AAE to optimise the latent representation in parallel on each
CCM. Adapting the CCM-AAE to the ensemble case is as simple as considering c
parallel fully connected layers after the readout in the bottleneck, each producing
a representation in a (d+1)-dimensional ambient space; when κ= 0, we assume
that M0 has dimension d + 1, rather than d. We concatenate the embeddings
in a single c(d +1)-dimensional vector before feeding them to the discriminator.
Similarly, the prior is the concatenation of c samples zi ∼ PMκi

(θi), one for each
CCM. To compute the membership function of Equation (5.8) given an embed-
ding z = z1‖ . . .‖zc, we compute the membership for each CCM separately and
take the average:

µM∗
(z) =

1
c

c
∑

i=1

µMκi
(zi). (5.21)

We also perform the orthogonal projection of the embeddings separately for each
CCM.

Accordingly, we also adapt the CDTs to consider the ensemble of CCMs. For D-
CDT, we compute for each CCM the same distance-based representation as in the
single CCM case. This results in a multivariate stream of c-dimensional vector of
distances, which can be monitored by the base CDT. Similarly, we adapt R-CDT by
applying it separately on each CCM Mκi

. The ensemble of statistical tests raises
an alarm any time at least one of the individual tests detects a change. Since
the tests are generally not independent, we apply a Bonferroni correction [24]
to each R-CDT, so that the overall significance level is at least the user-defined
level α.

112 5.5 Change detection

5.5.3 Setting

We test our methodology by considering three different CCMs, namely the Eu-
clidean M0, hyperspherical M1, and hyperbolic M−1 manifolds. For M1 and
M−1, we take d = 2 and, accordingly, a three-dimensional ambient space. By
choosing a low-dimensional manifold, we encourage the encoder to learn an
abstract representation of the graphs and we can visualise the representations
learned by the CCM-AAE for a qualitative assessment of the algorithm. For M0,
we keep the architecture unchanged and consider a three-dimensional latent
space. Since we are unable to identify a priori the best curvature for the prob-
lems taken into account, we also consider an ensemble composed of all three
geometries, M∗ =M−1 ×M0 ×M1. Note that the specific values of κ are only
important for their sign, which determines the geometry of the CCMs. Since we
are not interested in imposing any other constraint on the representation (e.g.,
minimising the distortion introduced by the embedding process [245]), we can
safely ignore the magnitude of the curvature as it only affects the scale of the
representation. Thus, we choose κ = −1, 0,1 to simplify the implementation of
the experiments.

Unlike the previous experiments, here using the CCM-AAE to condition the
distribution of the embeddings by matching the prior is not necessarily a good
strategy, since preserving the original distribution of the graph stream is crucial
in detecting a change. Therefore, we propose to train the CCM-AAE using only
the membership function as regularisation, so that the discriminator of Equa-
tion (5.9) is effectively only Equation (5.8). We refer to this setting as the geo-
metric discriminator. To validate our assumption, we run the experiments con-
sidering both kinds of discriminator and, for each setting, we run both D-CDT
and R-CDT.

The reference baseline is that of Zambon et al. [243], for which we use the
open-source implementation published by the authors.4 There, we use a (d+1)-
dimensional dissimilarity representation for the embedding.

More details on the experimental setting are reported in Appendix D.

Performance metric for CDTs To evaluate the detection performance of a CDT,
we consider the predictions of the algorithm (i.e., whether or not it raises an
alarm) for each point of the operational stream, and compare them with the
ground truth (i.e., whether or not a change has occurred at a given time). In this
setting, accuracy is not a fair performance indicator for the proposed CUSUM-

4https://github.com/dan-zam/cdg

113 5.5 Change detection

based algorithms, because the detection delay of the CDT (due to the accumu-
lation process) may result in low true positive rates even if the change is consis-
tently detected by the algorithm. To avoid this issue, we consider the run lengths
(RLs) of the CDT, defined as the number of time-steps between any two consecu-
tive alarms. In the nominal regime, we configure the CDT to have a false positive
rate of α and, accordingly, the average RL is 1/α. Conversely, in the non-nominal
regime the detection rate should be significantly higher (ideally 1), and the aver-
age RL should be lower than the one under the nominal distribution. Therefore,
by comparing the distributions of RLs in the two regimes, we can quantify the
performance of the CDT.

We test whether nominal RLs are statistically larger than non-nominal ones
according to the Mann-Whitney U test [137]. The resulting U statistic is then
normalised to obtain the Area Under the receiver operating characteristic curve
(AUC) score, which in our case measures the separability of the two RL distribu-
tions,

AUCRL =
U

N0N1
, (5.22)

where N0 and N1 are the sample sizes of the observed RLs in the two regimes,
respectively. This metric allows us to compare different algorithms operating on
the graph streams and is easy to compute starting from the alarms raised by the
CDTs over time.

5.5.4 Seizure detection

As a first real-world application to test our methodology, we consider iEEG data
from Kaggle’s UPenn and Mayo Clinic’s Seizure Detection Challenge (SDC)5 and the
American Epilepsy Society Seizure Prediction Challenge (SPC).6 We provide a sum-
mary of the SDC and SPC datasets in Table 5.5. In these datasets, iEEG signals
are given as one-second clips in one of two different classes, namely the nominal
interictal class and the non-nominal ictal class (or preictal in SPC). The datasets
are collected from dogs and human patients, with a variable number of sensors
for each patient, resulting in multivariate streams of different dimensions. For
SDC, we consider only subjects with more than 1000 labelled clips, while for SPC
we consider those with more than 500 (due to the datasets of SPC being smaller,
with some patients having as little as 42 labelled clips). Functional networks
(FNs) are widely used in neuroscience [12] to represent the coupling between

5https://www.kaggle.com/c/seizure-detection
6https://www.kaggle.com/c/seizure-prediction

114 5.5 Change detection

the activity of different brain regions. By computing FNs over subsequent win-
dows of iEEG data, we obtain a stream of attributed graphs with varying topol-
ogy and attributes, with changes in the stream corresponding to the occurrence
of seizures. We will cover the subject of FNs for detecting and localising seizures
more in detail in Chapter 6.

Details We generate the training and operational streams for each patient using
the labelled training clips in the datasets. We generate the streams by bootstrap-
ping, sampling interictal graphs in the nominal regime and ictal (or preictal)
graphs in the non-nominal regime.

We generate graphs from each one-second multivariate stream. As a first pre-
processing step, we use a Butterworth filter to remove the baseline 60 Hz from
the recording devices. The number of nodes N in the graphs corresponds to the
number of channels in the iEEG recordings (see Table 5.5). We estimate func-
tional connectivity between channels in the high-gamma band (70-100 Hz), such
that E ∈ RN×N×1. We report experimental results using two different measures:
1) Pearson correlation and 2) the Directed Phase Lag Index (DPLI) [12]. Finally,
to encode information about each channel in the node attributes, we consider
the first four wavelet coefficients of the discrete wavelet transform of the related
signals [12]. As a final preprocessing step, we sparsify the FNs by removing those
edges with absolute connectivity below 0.1 (otherwise, the FNs would be fully
connected, reducing the effectiveness of the graph convolutions). We consider
a training stream of 5.000 graphs, and an operational stream of 20.000 graphs
with τ= 10.000.

Results The proposed method performs well on iEEG data, where the CCM
ensemble with R-CDT and the geometric discriminator outperforms the single-
curvature setting and the baseline on most patients. In Table 5.6, we report
the results obtained with Pearson’s correlation as the functional connectivity
measure. Using DPLI results in slightly worse performance on average (see Ta-
ble 5.7). Unlike correlation, DPLI is a directed measure of connectivity, indicat-
ing that undirected measures might be more suitable for detecting changes in
this case. We note that the spherical CCM has a marginal advantage w.r.t. the
other configurations on P1, indicating that single CCMs can be effective in some
cases. We also note the poor performance achieved by all models on subject P2.
Here, when considering non-nominal graphs, the representation learned by the
encoder collapses around the mean value of the nominal regime (a phenomenon
known as mode collapse), resulting in poor performance. Adding dropout be-

115 5.5 Change detection

Table 5.5. Summary of the iEEG datasets. We report the ID that we use to
identify subjects, the original ID from the datasets, the number of graphs in the
nominal and non-nominal distributions, and the number of nodes for each sub-
ject.

Dataset ID Original ID Graphs Q0 Graphs Q1 N

SDC

D1 Dog 2 1148 172 16
D2 Dog 3 4760 480 16
D3 Dog 4 2790 257 16
D4 Patient 2 2990 151 16
D5 Patient 5 2610 135 64
D6 Patient 6 2772 225 30
D7 Patient 7 3239 282 36

SPC
P1 Dog 2 500 42 16
P2 Dog 3 1440 72 16
P3 Dog 4 804 97 16

tween the ECC layers in the encoder mitigates the issue, but is still not sufficient
to achieve results as good as for the other patients.

5.5.5 Detection of hostile behaviour

As a second application, we consider the task of action recognition using graphs
that represent the skeletal structure of human beings. In line with our proposed
method, the task is to detect when the stream of skeletal graphs changes from
a nominal action performed by the subjects to a non-nominal one. Practical
applications of this setting include the surveillance of public places for security
purposes, the detection of a distracted driver, or the detection of incidents for
people at risk (e.g., children and the elderly). For this experiment, we focus
on one of such tasks: detecting whether the interaction between two subjects
changes from friendly to hostile. Because skeletal data provides information and
constraints that are not explicitly encoded in the raw video, approaches based
on GNNs have achieved state-of-the-art results in action recognition [235], sur-
passing the typical deep learning algorithms.

Details For this experiment, we consider the NTU RGB+D dataset for action
recognition, a large collection of video samples containing RGB images, infrared

116 5.5 Change detection

Table 5.6. AUC score on seizure detection, using Pearson’s correlation as func-
tional connectivity measure. Best results are in bold.

SDC SPC
CCM CDT Emb. D1 D2 D3 D4 D5 D6 D7 P1 P2 P3

M∗

D-CDT
Geom. 0.99 0.99 0.99 0.93 0.99 0.66 0.99 0.22 0.19 0.87
Full 0.98 0.99 0.99 0.92 0.99 0.43 0.98 0.10 0.15 0.83

R-CDT
Geom. 1.00 1.00 1.00 0.94 1.00 0.74 1.00 0.54 0.51 0.97
Full 1.00 1.00 1.00 0.96 1.00 0.79 0.98 0.40 0.45 0.98

M−1

D-CDT
Geom. 1.00 0.99 0.99 0.94 0.99 0.62 1.00 0.64 0.25 0.90
Full 0.99 0.99 0.99 0.90 0.99 0.34 0.95 0.78 0.16 0.92

R-CDT
Geom. 0.99 0.99 0.99 0.93 0.98 0.85 0.99 0.25 0.28 0.90
Full 0.97 0.99 0.97 0.83 0.98 0.82 0.96 0.58 0.28 0.95

M0

D-CDT
Geom. 0.99 0.99 0.99 0.81 0.99 0.00 0.99 0.44 0.09 0.78
Full 0.99 0.99 0.99 0.74 0.97 0.59 0.99 0.76 0.10 0.85

R-CDT
Geom. 0.92 0.96 0.93 0.83 0.97 0.61 0.93 0.17 0.17 0.74
Full 0.91 0.93 0.88 0.62 0.97 0.71 0.96 0.15 0.53 0.65

M1

D-CDT
Geom. 0.99 0.99 0.99 0.94 0.88 0.65 0.89 0.67 0.15 0.91
Full 0.99 0.99 0.99 0.90 0.99 0.33 0.98 0.87 0.48 0.82

R-CDT
Geom. 0.99 0.99 0.99 0.96 0.99 0.85 0.97 0.57 0.20 0.95
Full 0.99 0.99 0.99 0.95 0.99 0.53 0.99 0.64 0.73 0.91

M0 R-CDT [243] 0.92 0.74 0.84 0.90 0.90 0.88 0.79 0.73 0.84 0.90

117 5.5 Change detection

Table 5.7. AUC score on seizure detection, using DPLI as functional connectivity
measure. Best results are in bold.

SDC SPC
CCM CDT Emb. D1 D2 D3 D4 D5 D6 D7 P1 P2 P3

M∗

D-CDT
Geom. 0.99 0.99 0.99 0.72 0.98 0.15 0.69 0.20 0.30 0.62
Full 0.98 0.99 0.99 0.74 0.98 0.30 0.63 0.18 0.32 0.61

R-CDT
Geom. 1.00 0.99 1.00 0.81 0.99 0.68 0.81 0.63 0.61 0.73
Full 1.00 1.00 0.99 0.82 0.98 0.53 0.85 0.55 0.65 0.73

M−1

D-CDT
Geom. 0.99 0.99 0.99 0.38 0.98 0.44 0.12 0.00 0.22 0.51
Full 0.99 0.99 0.99 0.51 0.98 0.18 0.30 0.00 0.21 0.63

R-CDT
Geom. 0.91 0.96 0.90 0.61 0.84 0.29 0.51 0.37 0.50 0.56
Full 0.89 0.91 0.88 0.52 0.81 0.54 0.55 0.48 0.47 0.55

M0

D-CDT
Geom. 1.00 1.00 1.00 0.79 0.99 0.34 0.84 0.30 0.37 0.57
Full 0.97 0.99 0.96 0.61 0.99 0.70 0.32 0.35 0.37 0.66

R-CDT
Geom. 0.99 0.99 0.99 0.81 0.99 0.51 0.84 0.24 0.49 0.63
Full 0.94 0.99 0.98 0.70 0.97 0.51 0.68 0.41 0.39 0.66

M1

D-CDT
Geom. 0.99 0.99 0.99 0.70 0.94 0.38 0.72 0.31 0.50 0.48
Full 0.90 1.00 0.97 0.58 0.96 0.41 0.41 0.41 0.52 0.50

R-CDT
Geom. 0.99 0.99 0.99 0.72 0.96 0.28 0.84 0.27 0.51 0.65
Full 0.99 0.99 0.98 0.70 0.96 0.42 0.56 0.44 0.54 0.51

M0 R-CDT [243] 0.92 0.69 0.78 0.90 0.90 0.82 0.77 0.73 0.78 0.90

118 5.5 Change detection

Hugging Punching

Figure 5.7. Examples of graphs from NTU RGB+D, from the hugging and punch-
ing classes. Different colours indicate different subjects.

depth maps, and skeletal data of 56880 action samples [190]. The dataset con-
tains 60 different action types, including daily, mutual, and health-related ac-
tions. Actions are performed by 40 volunteers and each action is repeated twice
in 17 different camera settings. The dataset consists of short clips of about 2 sec-
onds sampled at 30Hz. Skeletal data are provided for each frame. Each subject
is represented by 25 joints annotated with 3D coordinates and orientation (i.e.,
position, direction and rotation of the joint in space), and 2D position w.r.t. the
frame for both the RGB and infrared channels. Metadata regarding the confi-
dence of the measurement (i.e., whether the annotation is missing, inferred, or
actually recorded) is also provided. The topological connections between pairs
of joints are fixed and known a priori.

We consider a subset of NTU RGB+D containing mutual interactions between
two subjects, namely the hugging and punching actions (see Figure 5.7), where
each sample is the disjoint union of the two skeletal graphs. The task is to detect
when the interaction between the two subjects changes from friendly (hugging)
to hostile (punching).

The graph stream is generated, like in the previous experiment, by sampling
graphs from the hugging distribution for the nominal regime, and then switching
to the punching distribution to simulate a change. The assumption of station-

119 5.5 Change detection

Table 5.8. Number of graphs sampled for the training and operational phases.
Training graphs correspond to the first set of clips, while operational graphs are
taken from the second set.

Phase Action Graphs

Train Hugging 26818

Operational
Hugging 26166
Punching 24512

Table 5.9. Performance of R-CDT and D-CDT on detection of hostile behaviour.

CCM Emb. Emb. AUC ARL

M∗ Geom.
R-CDT 0.999 1.04
D-CDT 0.965 3.27

arity of Q0 here does not hold due to the high correlation between consecutive
samples. To avoid this issue, we can decorrelate the observations by lowering
the sampling rate of the clips. However, we note that lowering the sampling rate
to obtain an i.i.d. graph stream is equivalent, in this controlled setting, to taking
random permutations of the available data. This results in a stationary stream
and allows us to test our method without wasting precious data. Therefore, we
obtain the training data by randomly sampling graphs from the hugging distribu-
tion. Similarly, for the operational test stream, we randomly sample graphs from
hugging first and then change to punching. While in principle it is not necessary
to randomise the non-nominal regime, we keep the same setting to ensure that
the CDT detects changes in the actual class rather than in the sampling tech-
nique. To make the training and operational streams independent, we sample
them from different sets of clips (since every clip is recorded twice for each pair
of subjects). We report in Table 5.8 the number of graphs for each regime in the
training and operational streams, i.e., the number of clips from the respective
sets of repetitions.

Results We build on the results of the previous experiment for configuring the
change detection pipeline, and we only report results with the ensemble of man-
ifolds M∗, the geometric discriminator, and R-CDT.

Our method achieved an AUC score of 0.999, i.e., the algorithm is consistently
able to identify changes in stationarity with a very short delay. The average run

120 5.5 Change detection

length (ARL) in the non-nominal regime is 1.04, meaning that the algorithm
raises an alarm almost at every window. By comparison, D-CDT shows a similarly
good separability in the distributions of the run lengths, with AUC 0.965 (see
Table 5.9). However, the ARL of D-CDT is significantly higher at 3.27, indicating
a slower detection.

In Figure 5.8, we show the evolution of the accumulator Sw on the opera-
tional stream for each of the three CDTs run by R-CDT (one for each manifold).
We see that the spherical component of the embeddings computed by the AAE
clearly indicates a change in stationarity. A similar conclusion is also evident
when comparing the distribution of the spherical embeddings to the other two
geometries in Figure 5.9.

These results highlight the advantages of using an ensemble of CCMs as latent
space and confirm the importance of representing graph-structured data in non-
Euclidean domains.

121 5.5 Change detection

0.0

2.5

5.0

7.5

10.0

12.5

S w

= 1
Threshold hw

Change point

0

5

10

15

S w

= 0

0 10000 20000 30000 40000 50000
Timestep

0

10

20

30

40

S w

= 1

Figure 5.8. Accumulator Sw on the operational stream, for the three independent
CDTs run by R-CDT on the ensemble of manifolds. The dashed red line indicates
the change point. Whenever the accumulator exceeds the threshold (green line)
an alarm is raised. The CDT on the spherical manifold (κ = 1) identifies the
change in stationarity, while the Euclidean and hyperbolic embeddings do not
show such a strong response to the change.

122 5.5 Change detection

1 0 1 2 3
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

= 1

4 3 2 1 0 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
= 0

1 0 1
1.6

1.4

1.2

1.0

0.8

0.6

0.4

= 1

Figure 5.9. Embeddings learned by the AAE with latent ensemble of CCMs,
M∗. We show a planar projection for the hyperbolic and Euclidean CCMs, and
the Hammer projection of the spherical CCM (hugging is in green, punching in
orange).

Chapter 6

Explainable GNNs: a case study on
seizure localisation

Epilepsy is a neurological disorder characterised by recurrent episodes of exces-
sive neuronal firing [199]. In approximately a third of the patients, epilepsy can-
not be treated with anti-seizure drugs and resective surgery can be considered
as a possible treatment [112]. The outcome of surgery is crucially dependent on
the successful localisation of the seizure onset zone (SOZ) [30, 209].

Electroencephalography (EEG) is the mainstay for studying and diagnosing
epilepsy, and it is widely used to detect, classify, and localise seizures by record-
ing and processing the electrical activity of groups of neurons [157]. However,
due to their low spatial resolution, scalp EEG recordings in some cases are not
informative enough to successfully localise seizures [188]. In these cases, in-
tracranial EEG recordings (iEEG), in which electrodes are placed directly on or
within the brain, provide better spatio-temporal resolution to capture the dy-
namics of seizure generation and propagation [83]. However, the high temporal
resolution of iEEG and the complex functional interaction of distant brain ar-
eas, especially during seizures, make the interpretation and processing of raw
iEEG data a non-trivial task for clinicians. For this reason, a significant branch of
epilepsy research is concerned with summarising iEEG data by considering the
pairwise (statistical) dependencies between the activity of different brain areas
over time [209]. These dependencies are usually represented by functional net-
works (FNs), in which each node represents a sensor and edges are weighted by
a functional connectivity (FC) metric [12].

In this chapter, we introduce a GNN-based methodology to automate the lo-
calisation of seizures, using FNs to efficiently represent brain states [77]. The
core of our algorithm is a GNN equipped with an attention-based readout. By

123

124

1s Functional
network

Node attention

Graph
embedding

Seizure
detection

Message
passing

Seizure
localisation

Figure 6.1. Schematic view of our GNN-based pipeline for seizure detection and
localisation. Starting from raw iEEG data, we compute a functional network to
represent the spatio-temporal dynamics of the signals compactly. The FN is then
given as input to a GNN with an attention-based readout to compute a graph-
level embedding. The embedding is then classified to perform seizure detection,
while the attention scores are analysed to perform seizure localisation.

training such a GNN to perform seizure detection, the readout automatically
learns to assign higher attention to those nodes that are more important for a
correct classification. Then, we propose a simple and fast way of analysing the
attention coefficients over time, so that we obtain a ranking of the nodes based on
their overall importance in detecting a seizure. Crucially, our methodology does
not require a priori information regarding the SOZ, but only weak supervision in
the form of annotated seizure onsets and offsets. A schematic representation of
our approach is shown in Figure 6.1.

Through a collaboration with the Krembil Research Institute and the Toronto
Western Hospital, we were able to test our methodology using iEEG data col-
lected from eight human subjects with refractory epilepsy, for which we also
had ground-truth knowledge regarding the SOZ provided by professional elec-
troencephalographers. The results obtained on real-world data (and verified on
synthetic data from brain simulators) are extremely encouraging. First, we show
that the attention coefficients learned by the GNN correlate with the clinically-
identified SOZs and accurately predict the presence of ictal activity. Second, we
show that, when electroencephalographers could not identify the SOZ from the
iEEG data, the GNN also shows uncertainty in the localisation. This is a very de-
sirable behaviour since a strong attention score in such cases would have raised
concerns about the reliability of our method. Finally, we show that our method-
ology performs well on very imbalanced datasets, achieving a good localisation
accuracy even on patients for which we observe as few as five seizures during
training.

In the following sections, we first give the relevant background on seizure

125 6.1 Background

localisation with functional networks and then we describe the proposed method
and report our experimental results. More details and experiments are reported
in Appendix E.

6.1 Background

FNs are a widespread tool to study seizure localisation, with early approaches
dating back to the 1970s [64, 26]. Seizures have been observed to affect the
functional organisation of brain activity at the mesoscale, both from a node-
centric [30] and an edge-centric [99] perspective. In particular, Burns et al.
[30] identified sets of brain states that emerge by clustering FNs, consistent in
interictal and ictal periods for individual patients. They observed that changes
in node centrality in FNs accurately predict the SOZ. Khambhati et al. [99] ob-
served a strengthening of FC in the SOZ during seizures, also coinciding with a
topological tightening of the connections (i.e., strong connections also become
physically closer). Khambhati et al. [100] proposed virtual cortical resection, i.e.,
the removal of nodes from FNs, in order to study changes in network synchroniz-
ability, which is a known predictor for the spread of seizures [183]. Lopes et al.
[126] also observed that the resection of brain areas associated with rich-club
hubs in FNs correlates with a good postoperative outcome. Seizure localisation
has also been studied in FNs obtained from functional magnetic resonance imag-
ing (fMRI) [116, 219] and scalp EEG [200] data. Recent work by Covert et al.
[40] introduced the use of spatio-temporal graph convolutional networks (ST-
GCNs) [240] to perform seizure detection, and conducted an ex-post analysis
similar to the one of Khambhati et al. [100] to quantify the importance of a node
by observing the effect of its removal on the downstream detection accuracy.
Gadgil et al. [61] also proposed a methodology based on ST-GCNs that allows
identifying high-interest areas in fMRI by learning to estimate edge importance,
although they did not apply it to seizure localisation. For a more in-depth review
of approaches to seizure localisation with FNs, we refer the reader to Van Mierlo
et al. [209].

6.2 Method

6.2.1 Functional networks

Choosing a suitable FC metric to model the pairwise interaction between brain
areas is a non-trivial challenge, as there exist a large variety of methods with

126 6.2 Method

their advantages and disadvantages. FC metrics can be characterised according
to several properties, including whether they are in the time or frequency do-
main, whether they are directed or undirected (i.e., if they model asymmetric
or symmetric couplings), or whether they are model-free or model-based [12].
Here, we focus on undirected FC metrics to simplify the GNN computation, and
on model-based approaches to reduce the computational costs of estimating the
FC metrics directly from data. We do, however, consider two different metrics
to highlight the practical differences that emerge between time- and frequency-
domain metrics.

FNs are generated by computing a FC value for each pair of iEEG channels
xa(t) and xb(t) over a time window of length T . For the time-domain metric,
we consider Pearson’s correlation coefficient:

ea→b = eb→a =

T
∑

t=1
(xa(t)− x̄a)(xb(t)− x̄b)

√

√ T
∑

t=1
(xa(t)− x̄a)2

√

√ T
∑

t=1
(xb(t)− x̄b)2

, (6.1)

where x̄a =
1

T

T
∑

t=1
xa(t) and analogously for x̄b. Correlation allows to quantify

symmetric linear interactions, it is easy to compute and, as such, it is often used
in the literature. For the frequency domain, we consider the phase-locking value
(PLV) [113]:

ea→b = eb→a =

�

�

�

�

�

1
T

T
∑

t=1

ei(ϕa(t)−ϕb(t))

�

�

�

�

�

, (6.2)

whereϕa(t) indicates the instantaneous phase of signal xa(t) obtained via Hilbert
transform (and similarly for ϕb(t)). A significant advantage of PLV over corre-
lation is that it is less sensitive to artefacts in the iEEG signals (such as those
caused by the patient’s movements). After computing the FC metrics for each
pair of channels, we sparsify the resulting FNs by removing those edges for which
|ei→ j| < 0.1, i.e., those indicating weak coupling. The choice of sparsification
threshold is generally an important hyperparameter when studying FNs. For
example, a principled way of computing a dynamic sparsification for each indi-
vidual FN is described in the work of Kramer et al. [110]. However, in this case
we are not interested in fine-tuning the threshold nor do we wish to devise a
dynamic sparsification scheme to process each FN independently. Our only goal
is to remove those connections that do not have enough statistical significance,
and a threshold of 0.1 achieves the desired result. As long as the same threshold
is consistently used for different FNs, then the GNN will learn to deal with the

127 6.2 Method

resulting distribution of FNs. We report an additional discussion regarding the
threshold in Appendix E.5.

We generate a dataset of FNs for each patient, dividing the FNs into ictal and
interictal classes and proceeding in a per-seizure fashion. Let fs be the sampling
rate of the iEEG signal, L the duration of a seizure, t0 the time indicating the
seizure onset, k ≥ 1 a subsampling factor, and T the length of the time windows.
Additionally, let y(t) ∈ {0, 1} be a binary signal indicating whether the patient
is having a seizure at time t (i.e., y(t) = 1 if t ≥ t0 and 0 otherwise). Note that
we consider each seizure to end at time t0 + L and we do not compute FNs for
the data immediately following a seizure offset.

Given a time window [t − T, ..., t], we compute a FN G(t) and label it with
class

Y (t) =

¨

1, if
∑τ

τ=t−T y(τ)> T/2

0, otherwise.
(6.3)

To generate the FNs associated with seizures (class 1), we consider the data
interval [t0−T/2, ..., t0+L] and take overlapping windows of size T with a stride
of 1/ fs. For the interictal FNs (class 0), instead, we consider a longer period
preceding the seizure onset, [t0 − kL, ..., t0 + T/2], and we take windows at a
larger stride of k/ fs. Here, we consider k = 10 and T = 1s for all experiments,
although other values are possible.

This procedure to generate the FNs (summarised in Figure 6.2) results in a
balanced dataset and has two advantages. First, it allows us to fully use all the
available (and rare) ictal events. Second, it allows us to consider a more diverse
sample for the interictal class. The small differences between consecutive FNs of
the positive class, due to the small stride at which windows are taken, can be seen
as a form of sample weighting to account for the class unbalance characterising
the problem.

In order to have initial node features that can be processed by the GNN, we
consider dummy attributes set to 1 for all nodes. Other choices that depend on
the actual iEEG signals are possible (e.g., the signal power or wavelet coefficients)
but were not explored here.

6.2.2 Attention mechanism

Attention [8, 210] is a processing technique for neural networks to learn how
to selectively focus on parts of the input. Originally developed for aligning sen-
tences in neural machine translation [8, 210], the attention mechanism has been

128 6.2 Method

Class	0 Class	1

Compute	FC

Interictal	windows Ictal	windows

Figure 6.2. Schematic representation of the procedure used to generate FNs. For
each seizure of length L starting at t0 (marked in red), we consider an interictal
interval of length kL. Interictal FNs are generated taking windows of length T at
stride k/ fs, while ictal windows are taken with stride 1/ fs (in green). For each
window and each pair of electrodes i and j, we compute the FC value ei→ j (in
blue) to obtain the full FN. This figure is only meant to represent the procedure
and is not shown in any physical temporal scale.

used to achieve state-of-the-art results on different tasks like language mod-
elling [28], image processing [233], and even learning on graphs [211].

Here, we focus on the concept of self -attention, which indicates a class of
attention mechanisms that learn to attend to the output of a layer using the
output itself (in contrast to classical attention, which uses the output of one layer
to focus on the output of another—e.g., the sentence of the source language
is used to focus on the target language). At its core, self-attention consists of
computing a compatibility score αi j ∈ [0, 1] between two vectors hi,h j ∈ RD

n
(both part of the same sequence, image, graph, etc.):

αi j = Softmax j(bi j) =
exp

�

bi j

�

∑N
k=1 exp (bik)

, (6.4)

where

bi j = fa(hi,h j) (6.5)

and fa is called an alignment model, which is usually learned end-to-end along
with the other parameters of the neural network. The compatibility score is then
used to compute a representation of element i as:

zi =
∑

j

αi jh j. (6.6)

129 6.2 Method

Intuitively, the attention mechanism learns the importance of element j to de-
scribe element i, and computes score αi j to quantify this importance. The align-
ment model can be seen as a similarity function between the two elements, which
is then normalised via the softmax function. Different implementations of the
alignment model are possible, although often it is implemented as a multi-layer
perceptron.

Attention mechanisms are usually trained without direct supervision and au-
tomatically learn to focus on different parts of the data according to the loss of
the given task. By optimising the overall task loss, the attention layers in a neural
network learn to compute the optimal compatibility scores. This is a key aspect
of our proposed methodology, where we use self-attention to automatically de-
tect those brain areas (monitored via different iEEG channels) that are important
to detect a seizure. Crucially, using attention allows us to perform localisation
without providing our neural network with ground truth information on the SOZ.

6.2.3 Graph neural networks for seizure localisation

Our method for seizure localisation can be summarised as follows. First, we
train a GNN with an attention-based readout to detect seizures from FNs. This is
a graph-level classification problem where a label (ictal or interictal) is assigned
to each FN. Then, we analyse the compatibility scores learned by the attentional
mechanism to identify those nodes that the model consistently considers impor-
tant. Although we train the GNN to do seizure detection in a supervised way,
i.e., it requires manually-annotated seizure onsets and offsets, the localisation is
fully unsupervised. This is one of the main strengths of the proposed method,
as significantly less manual work is required to annotate the temporal boundary
for each seizure, rather than the SOZ.

There are two main components in our GNN architecture. First, the con-
nectivity information is propagated to the node attributes via an edge-aware
message-passing operation like ECC (cf. Section 2.3, Equation (2.36)). A sin-
gle layer is sufficient because the input FNs are densely connected, and most
nodes will receive information from the whole graph in a single step of message
passing.

Then, we use a self-attentional mechanism to compute the graph readout:

z= ATTN-RO(h) =
N
∑

j=1

α jh j (6.7)

130 6.2 Method

where

α j =
exp

�

h j · a
�

∑N
k=1 exp (hk · a)

, (6.8)

h j ∈ RF out
is the embedding of the j-th node computed by the ECC layer, and

a ∈ RF out
is a vector of learnable weights. Note that, compared to Equation (6.6),

here index i is left implicit as the attention is only computed once for all nodes, to
reduce the graph to a vector. This is also reflected in the fact that the alignment
model is a function of only one node at a time, e.g., h j · a.

Finally, a multi-layer perceptron with sigmoid activation computes the prob-
ability that the input FN represents an ictal window of iEEG data.

The full architecture is written as:

ŷ =MLP(ATTN-RO(ECC(G))) (6.9)

where G represents an input FN (cf. Figure 6.1).
By training the GNN to correctly distinguish the ictal FNs from the non-ictal

ones, we also implicitly train the attentional readout ATTN-RO to assign higher
attention to those nodes of the FNs that maximise the confidence in the predic-
tion. We then analyse how the attention scores assigned to nodes change over
time, and rank the nodes according to the overall amount of attention they re-
ceive before and during a seizure. The localisation procedure is described in the
following section.

6.2.4 Localising the seizure onset zone

For each seizure in the data, we consider symmetric intervals of length 2L centred
at the seizure onset, so that the first L timesteps are pre-ictal and the remaining
L cover the beginning of the seizure. For each of the 2L timesteps, we compute
a FN G(t) from a T = 1s window ending at time t, obtaining a sequence of FNs
[G(1), . . . ,G(2L)] (this is equivalent to how we generate the training datasets, ex-
cept that the subsampling is set at k = 1). For each FN in the sequence, we
use the GNN to compute the attention scores over the nodes according to Equa-
tion (6.8). We thus compute a sequence of attention scores [α(1)i , . . . ,α(2L)

i] for
each node i.

We then sum the sequence of attention scores to obtain the overall importance
of the node over the considered time interval:

σi =
2L
∑

t=1

α
(t)
i , (6.10)

131 6.3 Results

and normalise the importance scores to the [0,1] interval as:

s(s)i =
σ
(s)
i −min j∈V σ

(s)
j

max j∈V σ
(s)
j −min j∈V σ

(s)
j

. (6.11)

Finally, we rank the nodes according to their importance and predict the SOZ
accordingly.

6.3 Results

We report the results obtained on real iEEG data collected from eight patients.
Additional results on two brain activity simulators (a simple network model [16]
and The Virtual Brain simulator [179]) and all experimental details regarding
the GNN are reported in Appendix E.

6.3.1 Data collection and pre-processing

We used iEEG data recorded from eight human subjects with medically refractory
epilepsy, the recordings obtained as part of their standard clinical pre-surgical
investigations. The patients were selected among a larger pool of patients based
on certain criteria, chiefly having at least five clinical seizures recorded in our
database and having a recorded clinical history of at least two years.

The study was approved by the Research Ethics Board at the University Health
Network (ID number 12-0413) and written consent for data collection was ob-
tained from all participants. Each patient had a varying number of recorded
clinical seizures and the number of electrodes also varied from patient to pa-
tient (cf. Table 6.1). The data was recorded from subdural or intracerebral depth
electrodes at fs = 500Hz over the course of several days per patient, and seizures
were manually annotated by electroencephalographers, inspecting both raw iEEG
and video recordings of the patient. The iEEG signal was notch-filtered at 60Hz
and related harmonics to remove powerline trends, and then filtered with an
order-3 low-pass filter at 100Hz to remove any high-frequency noise. Then,
each electrode channel was independently re-referenced to have zero mean and
rescaled to have unit variance.

Before pre-processing, we visually inspected the raw data of each patient and
each seizure to assess the presence of bad channels: we considered symmetric
windows around each labelled seizure onset and we removed from the data any
channels that exhibited abnormal (i.e., either flat or excessive) activity in at least
one seizure.

132 6.3 Results

Table 6.1. Summary of the patients considered for this study. The columns in-
dicate (left-to-right): the number of recorded seizures, the number of implanted
electrodes, the presence of ictal activity (IA) marked by electroencephalogra-
phers on one or more channels, whether the patient had surgery, and the out-
come of the surgery.

Patient Seizures Electrodes IA identified Surgery Outcome

1 15 100 Yes, low confidence No -
2 9 96 Yes Yes Seizures reduced
3 10 23 Yes No -
4 5 74 No No -
5 11 38 Yes Yes Seizures reduced
6 18 45 Yes, poorly defined No -
7 5 45 Yes No -
8 16 69 Yes No -

6.3.2 Per-patient analysis of the SOZ

This section reports the available clinical data for the patients considered in our
study. For all patients, both the seizure onset time instants and the SOZ annota-
tions were provided by electroencephalographers.

Patient 1 demonstrated ictal activity in both the left and right posterior inter-
hemispheric regions (Figure 6.3a), with interictal epileptiform discharges recorded
independently from the left anterior frontal and right middle frontal lobes. The
patient did not undergo resective surgery due to low confidence in the identifica-
tion of the SOZ. Patient 2 showed clear seizures originating in the right posterior
insular region (Figure 6.3b). The patient underwent laser interstitial thermal
therapy targeting a focal cortical dysplasia in the area. The patient continued
to have some postoperative seizures, although these were reduced in frequency
and intensity, indicating that the SOZ was identified correctly. Patient 3 had
seizure onsets recorded independently from both temporal lobes and thus was
not a candidate for surgery. Patient 4 had no clear ictal activity identified by
electroencephalographers in the iEEG recordings and was thus not a candidate
for surgery, the SOZ evidently not captured by the intracranial electrode place-
ments. Patient 5 demonstrated ictal activity in the left hippocampal body and
underwent a left anterior temporal resection. The patient continued to have
seizures after the surgery, but of reduced frequency and intensity, indicating a
successful localisation of the SOZ. Patient 6 had multiple seizures recorded with
poorly defined, inconsistent ictal onsets over the temporoparietal sensory cortex

133 6.3 Results

8 6 4 2 0 2 4 6 8
Seconds from seizure onset

LPIH4

LPIH5

RPIH3

RPIH4

(a) Patient 1

4 2 0 2 4
Seconds from seizure onset

RINS1

(b) Patient 2

Figure 6.3. Examples of raw iEEG traces for patients 1 and 2. The two plots
show the activity of electrodes that were identified as SOZs by electroencephalo-
graphers. The vertical line marks the seizure onset, as reported in the patients’
clinical records.

134 6.3 Results

and was deemed not a candidate for surgical resection due to uncertainty on the
SOZ. Patient 7 had seizures recorded in the left hemisphere, with onsets involv-
ing a broad region of the temporal lobe neocortex. The patient was not subject
to resection due to the epileptogenic zone being too large, and near eloquent
language cortex. Patient 8 exhibited abnormal activity in the left amygdala and
hippocampus. The patient had already undergone contralateral right anterior
temporal resective surgery years prior to the collection of the iEEG data and was
not a candidate for further resections.

Table 6.1 summarises the relevant details of the eight patients. In particu-
lar, six patients had clinically identified, well-defined information regarding the
SOZ, whereas in two patients the SOZ could not be clearly identified in the iEEG
data by electroencephalographers. Despite not having ground truth information
related to the SOZ for these two patients, we still included them as part of our
study to analyse the behaviour of our algorithm in such cases of high uncertainty.
The question that we aim to answer with this analysis is: what does the GNN
see when professional electroencephalographers are uncertain about the SOZ?
A strong attention score in such cases would raise concerns about the soundness
of our method. Instead, we observe in the following section that the GNN shows
uncertainty in those cases where professionals are also uncertain.

6.3.3 Results on seizure detection and localisation

Table 6.2 reports the Area Under the Receiver Operating Characteristic Curve
(ROC-AUC) and the Area Under the Precision-Recall Curve (PR-AUC) obtained
by the GNN on the seizure detection task. We report the results obtained using
both FC metrics (correlation and PLV) to generate the FNs. We also report the
detection performance of a baseline convolutional neural network for time series
classification (details in Appendix E.4). We repeat each experiment five times
and, where appropriate, report the average and standard deviation of the results.

The GNN achieved an average ROC-AUC score of 79.56 and an average PR-
AUC of 81.24 (the average is computed over all patients) when using correlation
as FC metric. These results are aligned with the performance of the baseline,
which our method slightly outperformed on average, and indicate that 1) our
choice of architecture was reasonable and 2) using graph-structured data is an
interesting direction for future research on efficient seizure detection. We also
recall that the detection task is only meant to provide a weak supervision for the
more interesting challenge of localisation, and that better detection results could
be achieved by increasing the capacity of the GNN or collecting more training
data.

135 6.3 Results

Table 6.2. Average ROC-AUC score and average PR-AUC score for seizure detec-
tion on unseen test data. These scores represent the model’s ability to correctly
classify the FNs as interictal or ictal. The last row reports the average score over
all patients. The highest ROC-AUC and PR-AUC scores are reported in bold for
each patient. We report the average and standard deviation over all test seizures
and all repetitions.

Baseline GNN Corr. GNN PLV
Patient ROC PR ROC PR ROC PR

1 62.54 ± 22.5 70.06 ± 17.8 68.63 ± 11.43 75.20 ± 10.30 75.68 ± 23.3 77.51 ± 20.1

2 80.19 ± 15.5 85.96 ± 10.6 86.87 ± 9.07 89.04 ± 9.35 65.36 ± 20.1 72.91 ± 14.8

3 82.32 ± 14.19 87.25 ± 9.24 93.35 ± 3.12 94.34 ± 2.72 71.50 ± 14.8 71.02 ± 16.3

4 67.81 ± 8.75 69.83 ± 13.12 60.40 ± 14.41 61.11 ± 14.82 53.83 ± 6.6 51.67 ± 6.4

5 76.18 ± 15.41 80.42 ± 14.26 77.04 ± 11.98 76.39 ± 13.03 71.46 ± 12.1 71.45 ± 12.9

6 76.32 ± 17.2 80.94 ± 13.5 73.72 ± 17.14 76.02 ± 14.53 63.81 ± 17.2 71.06 ± 12.4

7 76.46 ± 11.24 81.22 ± 7.65 85.52 ± 10.95 85.92 ± 13.65 69.32 ± 2.6 65.55 ± 1.8

8 85.60 ± 14.6 89.29 ± 10.7 90.97 ± 5.51 91.89 ± 3.49 77.69 ± 11.5 78.32 ± 11.3

Avg. 75.93 ± 7.06 80.62 ± 6.86 79.56 ± 10.82 81.24 ± 10.37 68.58 ± 7.08 69.94 ± 7.86

Tables 6.3 and 6.4 report the performance of the model on the patients with a
known SOZ, respectively using correlation and PLV to generate FNs. In particular,
we report three main performance measures:

(a) the average precision at K (AP@K) [178] obtained by the GNN when com-
puting an average ranking of the electrodes. Each electrode is re-ranked by
considering five models trained on the same data and taking the average
score assigned to each electrode over all models and all seizures. This mea-
sure quantifies the GNN’s ability to correctly identify the SOZ for a patient
in general, which is the most clinically relevant scenario.

(b) The mean AP@K (MAP@K) obtained by the GNN on different individ-
ual seizures. In this case, the ranking for each seizure is compared to
the ground truth independently of the others (i.e., without averaging the
scores), and the scores are averaged a posteriori (also considering five rep-
etitions of the experiments). This measure quantifies the GNN’s ability to
correctly identify target electrodes in a given seizure.

(c) The MAP@K obtained by the GNN on different individual seizures, but con-
sidering groups of electrodes belonging to the same strip (implying spatial

136 6.3 Results

Table 6.3. Localisation performance for patients with a known SOZ, when using
Pearson’s correlation as FC metric. We report: (a) the average precision at K
for averaged rankings, which evaluates the localisation for the patient overall;
(b) the mean average precision at K for single rankings, which evaluates the
localisation for a given seizure; (c) the mean average precision at K for single
rankings and groups of electrodes, which is equivalent to (b) but at a coarser
scale. We report scores for K = 2,5, 10. Bold indicates that the results are better
than the ones obtained with PLV as FC metric (cf. Table 6.4).

(a) AP@K - Avg. rank (b) MAP@K - Single (c) MAP@K - Groups
Patient K = 2 K = 5 K = 10 K = 2 K = 5 K = 10 K = 2 K = 5 K = 10

1 50.00 20.00 12.50 22.31 12.0 7.24 26.92 21.48 31.64
2 100.00 100.00 100.00 51.11 54.8 56.71 53.33 58.48 60.73
3 0.00 16.67 38.96 20.37 26.51 28.98 36.11 45.09 50.07
5 100.00 55.00 55.00 97.73 48.55 54.71 99.09 99.09 99.09
7 25.00 20.00 10.00 22.00 20.56 16.76 78.00 72.03 82.70
8 0.00 6.67 5.56 19.69 13.00 7.42 20.00 36.43 44.07

locality of the electrodes). This allows us to evaluate the performance of
the model at a coarser scale.

From the results we see that, while correlation was a clearly better metric
for seizure detection, the localisation performance can vary depending on the
particular FC metric used. In particular, the localisation for patients 1 and 5
was better when using correlation networks, but PLV yielded better results for
patients 3, 7, and 8.

In general, however, we note that the (M)AP@5 score is positive for both FC
metrics, for all performance measures and all patients, meaning that at least one
SOZ-associated electrode was ranked in the top five every time. We also note
that the GNN achieves a perfect AP@2 score (average rankings) in six out of
eight cases when using PLV, indicating a high chance of localising at least two
relevant electrodes per patient.

Remarkably, we see that these results were obtained even when considering
small datasets, e.g., down to only five seizures for patient 7 (cf. Table 6.1). While
this result is encouraging and highlights the sample efficiency of our approach,
we stress that a higher amount of training data can only improve the detection
and, likely, localisation performance of our method, as well as giving a higher
statistical certainty about the results.

137 6.3 Results

Table 6.4. Localisation performance for patients with a known SOZ, when using
PLV as FC metric. Bold indicates that the results are better than the ones obtained
with correlation as FC metric (cf. Table 6.3).

(a) AP@K - Avg. rank (b) MAP@K - Single (c) MAP@K - Groups
Patient K = 2 K = 5 K = 10 K = 2 K = 5 K = 10 K = 2 K = 5 K = 10

1 0.00 5.00 5.83 8.67 5.97 4.67 16.67 18.82 31.78
2 100.00 100.00 100.00 50.00 54.33 56.65 50.00 58.04 60.21
3 100.00 55.00 45.46 60.00 40.82 32.58 66.88 45.16 51.36
5 100.00 40.00 48.57 66.82 38.28 45.27 91.82 93.48 93.48
7 100.00 40.00 35.71 70.00 43.84 30.45 82.00 74.22 84.22
8 50.00 20.00 10.00 15.62 9.15 6.43 16.56 20.07 32.30

6.3.4 Comparison with clinical information

Figure 6.5 shows a graphical visualisation of the scores and rankings used to
compute the values in Tables 6.3 and 6.4. The figure summarises our results and
provides an overview of the importance scores, their variability across different
models and seizures, and their agreement with the ground truth. For every elec-
trode, we report the average score and its standard deviation over all test seizures
and all repetitions.

The results for patient 5 can be considered a complete success, with the high-
est AP@K scores among all patients and very little uncertainty in the ranking by
the GNN. Crucially, the successful postoperative outcome confirms that the local-
isation of the SOZ for this patient was accurate and points to a strong localisation
ability of the GNN. For patient 2, ictal activity was evident and well-localised on a
specific depth electrode placed in the right insular complex (RINS1). The clinical
localisation of the SOZ was therefore likely accurate, even if the outcome of the
surgery was not completely successful. More importantly, we note that the GNN
was strongly aligned with the human analysis given the same information, and
similarly focused on the same electrode (which is ranked first using either of the
FC metrics). Our methodology also confirms the conclusions reached by elec-
troencephalographers for patients 3, 7 and 8, although further studies would be
required to give a more precise interpretation of the results (including, possibly,
the outcome of future surgeries). The results for patient 8 are particularly un-
certain, despite the GNN achieving a good detection accuracy (cf. Table 6.2). In
general, however, the rankings provided by the GNN show a high agreement with
the medical assessment in those cases where the SOZ was successfully identified.

For patients with no known SOZ (4, 6), the GNN has a low detection per-

138 6.4 Discussion

formance and the average attention scores assigned by the GNN are uniformly
distributed across all electrodes around an average score of 0.5. On the contrary,
patients with a known SOZ have a few electrodes that are assigned a majority
of the attentional budget. This difference between the two cases is more clearly
visualised in Figure 6.4, which shows the distribution of the scores given to dif-
ferent electrodes at the seizure onset (patient 5 is taken as representative of the
case in which the SOZ is known).

For patient 1, the GNN did not identify any particularly important regions
despite there being some clinical evidence of ictal activity in the posterior in-
terhemispheric region. Two posterior interhemispheric electrodes are indeed
ranked in the top ten (averaged rankings) by the GNN when using correlation
FNs, although with very high uncertainty. We note, however, that the uncertainty
showed by the GNN was also reflected clinically in the electroencephalographers’
interpretations and in the final decision to not operate on this patient.

Our analysis for patients 1, 4, and 6 shows that the uncertainty of the GNN
correlates with uncertainty or inability on the part of electroencephalographers to
identify the SOZ in iEEG, and can still be useful to support their decision making
(e.g., deciding to not operate a patient can be just as valuable as a successful
localisation).

6.4 Discussion

Our work introduces a methodology for automated seizure localisation using
graph-based machine learning. Our approach does not require any manual an-
notation of the SOZ in order to work, making it cheaper to train and easier to
scale to a larger number of patients. Our method is also data-efficient: we were
able to provide a good—and clinically verified—localisation using as little as five
annotated seizures per patient.

The goal of the proposed approach is to provide a support tool for clinicians
to allocate precious resources in the analysis of iEEG data, and to improve the
efficiency of the decision-making process. Crucially, in this regard, we note that
our algorithm is conservative in scoring potential SOZ candidates. When the SOZ
was not identifiable by electroencephalographers, the GNN also showed uncer-
tainty in the scoring (rather than making high-confidence predictions). Con-
trarily, a high importance score consistently correlated with clinically-identified
SOZs. With this premise, we believe that our approach could have practical value
if deployed to epilepsy monitoring units to provide real-time analysis of iEEG
recordings.

139 6.4 Discussion

0.00 0.05 0.10 0.15
Attention score

Fr
eq

ue
nc

y

(a) Patient 5

0.00 0.05 0.10 0.15
Attention score

Fr
eq

ue
nc

y

(b) Patient 4

0.00 0.05 0.10 0.15
Attention score

Fr
eq

ue
nc

y

(c) Patient 6

Figure 6.4. Histograms of the attention scores over a 2-second window starting
from a seizure onset. Each bin represents the frequency with which the corre-
sponding attention score is assigned to ten randomly-selected electrodes. Figure
(a) shows a patient with a known SOZ, while Figures (b) and (c) show patients
without a known SOZ. For Figure (a), the contribution to each bin of those elec-
trodes that are part of the SOZ ground truth are highlighted in orange. Note
how the score distribution for SOZ-associated electrodes is spread out towards
higher values, while for patients with no known SOZ the scores are similar for
all channels.

140 6.4 Discussion

0.00 0.25 0.50 0.75 1.00
Normalized score

RPF2
LPT1

RPIH3
LPT5
LPT3
RPF4
RPF3
LPF3
LPF2

LPIH5
Top-10 electrodes

(a) Patient 1

0.0 0.5 1.0
Normalized score

LPIH1
RAT3

LFP10
LFP6
RPT1
RHD1
RAF2
RAF1

RPIH4
RINS1

Top-10 electrodes

(b) Patient 2

0.00 0.25 0.50 0.75 1.00
Normalized score

LAT3
LAT2
LAT4
LTS3
RHD4
LPT6

LMT3
LPT1

LMT2
LTS4

Top-10 electrodes

(c) Patient 3

0.00 0.25 0.50 0.75 1.00
Normalized score

LAF5
LFP10
LPF4
LPH3
RAF3
LPH2
LAF4
LAF2
LPH1
LPF7

Top-10 electrodes

(d) Patient 4

0.00 0.25 0.50 0.75 1.00
Normalized score

RHH9
LHB8
RHB8
LHB9

RI5
RHB7
LHB3

RHH10
LHB1
LHB2

Top-10 electrodes

(e) Patient 5

0.0 0.5 1.0
Normalized score

LHD1
L26

LOT6
LPT2

L2
LMT 12

LOT5
L23

LMT 11
L24

Top-10 electrodes

(f) Patient 6

0.00 0.25 0.50 0.75 1.00
Normalized score

LAHC7
LMPH2
LAHC8
LPPH8
LMPH7
LPHC8
LMHC8
LMPH3
LPPH6
LPPH7

Top-10 electrodes

(g) Patient 7

0.0 0.5 1.0
Normalized score

LDAC3
ROFC3

LPH2
RPHG4
RPHG3

LPH3
ROFC4

RAH4
RAH5
LAD6

Top-10 electrodes

(h) Patient 8

Figure 6.5. Top ten electrodes when considering the averaged rankings. We re-
port the ranking obtained with the best-performing FC metric for each patient, ac-
cording to the AP@10 score for average rankings reported in Tables 6.3 and 6.4.
The two plots in red indicate those patients for which the SOZ was not identified
clinically. Bold labels indicate that the corresponding electrode was marked as a
potential SOZ by electroencephalographers. For every electrode, we report the
average score and its standard deviation over all test seizures and all repetitions.

Chapter 7

Autoregressive models for graph
sequences

Predicting the temporal evolution of a multivariate stochastic process is a widely
explored problem in system identification and machine learning. However, the
extension of this problem to the case of attributed graphs poses significant chal-
lenges due to the lack of basic operations to process the sequence directly in the
domain of graphs. In an aim to address these issues, in this chapter we focus
on the development and analysis of autoregressive (AR) models for learning to
predict sequences of graphs [247].

We begin by formalising the idea of AR models for graph-valued variables,
by making the classical AR formulation more general. Then, we propose an AR
neural network to predict the next graph in a sequence. The architecture consists
of a GNN block to map an input sequence of graphs to a sequence of vectors,
followed by a recurrent neural network to predict the next vector in the sequence,
and a graph decoder to map the predicted vector back to a graph.

We run experiments on two graph-based dynamical systems in which the at-
tributes and connectivity can change at every time step. The results show that
our approach is better than simpler baselines at predicting the evolution of the
systems.

7.1 Autoregressive models for graphs

Several physical systems can be described using AR models in which, at every
time step, the observation is modelled as the realisation of a random variable
that depends on the previous observations.

141

142 7.1 Autoregressive models for graphs

In the traditional setting for AR models, each observation generated by the
process is modelled as a vector xt+1 ∈ Rd so that











xt+1 = f
�

xt ,xt−1, . . . ,xt−p+1

�

+ ε,

E[εi] = 0

Var[εi] = σ2 <∞,

(7.1)

where
f : Rp×d → Rd (7.2)

and ε ∈ Rd is a random noise vector. Given the model in (7.1), the prediction of
xt+1 is given by

x̂t+1 = Eε[xt+1] = f
�

xt ,xt−1, . . . ,xt−p+1

�

. (7.3)

The predictor from Equation (7.3) is optimal when considering the L2 norm be-
tween x̂t+1 and xt+1.

Due to the lack of basic mathematical operators for graphs, the generalisation
of model (7.1) to account for graph data is non-trivial. For instance, we have to
deal with the fact that the sum between two graphs is generally not defined, with
very few exceptions [15].

Let {G1, . . . ,Gt , . . . } be a random process that generates a graph at every time
step t. For simplicity of notation, we introduce the symbol G to indicate the
space of all possible attributed graphs. As for the numerical case, we model each
observation of the process as the realisation of a random variable Gt+1 through
an AR function

φ : Gp→G. (7.4)

Similar to Equation (7.1), we model Gt+1 as

Gt+1 = H
�

φ
�

Gt , . . . ,Gt−p+1

�

,η
�

, (7.5)

where
H : G→G. (7.6)

is a function that models the effects of noise on the predicted graph. Function
H (·, ·) is necessary because, even if we model η as a random graph variable in
G, the sum between graphs is not generally defined.

The assumptions made on the noise in model (7.1) have to be adapted as
well. The condition of unbiased noise in the classical formulation is E[εi] = 0
or, equivalently

f
�

xt , . . . ,xt−p−1

�

= Eε[f
�

xt , . . . ,xt−p−1

�

+ ε]. (7.7)

143 7.1 Autoregressive models for graphs

In the case of graphs, the assumption of unbiased noise can be written as

φ
�

Gt , . . . ,Gt−p+1

�

∈ Ef
η
[H
�

φ
�

Gt , . . . ,Gt−p+1

�

,η
�

], (7.8)

where Ef[·] ∈G is the set of mean graphs according to Fréchet [59]:

Ef[G] = ArgMin
G′∈G

∫

G

d
�

G,G′
�2

dQ (G) (7.9)

where d(·, ·) is a pre-metric graph distance, and Q is a graph distribution defined
on the Borel sets of space (G, d). Possible choices for d(·, ·) include the graph edit
distances [2, 55, 25] and any distance derived from positive semi-definite kernel
functions [186]. Ef[·] is defined as a set because, depending on the distribution
Q, there can be more than one graph minimising Equation (7.9). Note that, for
a sufficiently small Fréchet variation of the noise η (see Equation (7.11)) and a
metric d(·, ·), the Fréchet mean graph exists and is unique.

Equation (7.9) holds only when

∫

G

d
�

G,G′
�2

dQ (G)<∞, (7.10)

which can be interpreted as the graph counterpart of Var[εi]<∞ in model (7.1).
The variance of a graph distribution can be expressed in terms of the Fréchet vari-
ation as

Varf[G] :=min
G′∈G

∫

G

d
�

G,G′
�2

dQ (G) . (7.11)

The final AR system model in the graph domain is











Gt+1 = H
�

φ
�

Gt , . . . ,Gt−p+1

�

,η
�

,

φ
�

Gt , . . . ,Gt−p+1

�

∈ Ef
η
[H
�

φ
�

Gt , . . . ,Gt−p+1

�

,η
�

],

Varf[η]<∞.

(7.12)

Note that the proposed graph AR model (7.12) is a proper generalisation of
model (7.1). In fact, it can be shown that (7.12) reduces to (7.1), when con-
sidering (R,‖·‖)—or more generally,

�

Rd ,‖·‖2

�

—instead of (G, d), and choosing
H(a, b) as the sum a+ b (see Appendix F.1 for a proof).

Given a system modelled by (7.12), we can predict graph at time t + 1 as the
graph Ĝt+1 minimising

E
�

d (G,Gt+1)
2
�

, (7.13)

144 7.1 Autoregressive models for graphs

...
Graph
conv.

Graph
conv.

Graph
conv.

Graph
conv.

Sequence of
transformed graphs

RNNPool.

Pool.

Pool.

Pool.

Sequence of
vectors

RNN

RNN

RNN

Predicted
vector

Input sequence

tim
e

D
en

se
de

co
de

r

A

X

Predicted
graph

=

ϕconv ϕrnn

ϕdense

Figure 7.1. Schematic view of NGAR. The network takes as input a sequence of
k graphs up to time t (red box) and predicts the graph at time t+1. The input is
processed by a GNN, applied in parallel to all graphs, followed by a global pool-
ing layer that compresses the graphs down to vectors. Then, a recurrent neural
network predicts the representation of the next graph. Finally, the prediction is
converted to a graph by a multi-layer perceptron with two outputs: one for the
node features Xt+1 and one for the adjacency matrix At+1.

where the expectation is taken w.r.t. Gt+1. Therefore, we have that the optimal
prediction is

Ĝt+1 = ArgMin
G∈G
E
�

d (G,Gt+1)
2
�

= (7.14)

= Ef
η

�

H
�

φ
�

Gt , . . . ,Gt−p+1

�

,η
��

= (7.15)

= φ
�

Gt , . . . ,Gt−p+1

�

. (7.16)

7.1.1 Neural graph recurrent autoregressive model

Given a graph-generating process described by an AR model of order p, the task
of predicting the next graph in the sequence can be formulated as that of approx-
imating φ(·) in (7.12), since the optimal prediction is given by Equation (7.16).
In order to approximate φ(·) we propose to use a neural network, which can be
seen as a family of parametric models

φnn : Gp→G (7.17)

that receive as input a regressor Gt,p = [Gt , . . . ,Gt−p+1] and output the predicted
graph

Ĝt+1 = φnn(Gt,p). (7.18)

145 7.1 Autoregressive models for graphs

Note that since the true order of the system is usually unknown, here the value
p is a hyperparameter that must be chosen appropriately.

Our architecture for φnn is composed of three stages:

1. We map each graph in Gt,p to a vector representation, using a GNN with a
final readout layer;

2. We apply a recurrent neural network to the resulting vector sequence;

3. We obtain the predicted graph by mapping the predicted vector back to the
graph domain.

The full model φnn is therefore obtained by the composition of three blocks,
denoted φgnn, φrnn, and φdec. We refer to this model, schematised in Figure 7.1,
as a neural graph AR (NGAR) model.

The first block of NGAR converts the input sequence Gt,p to a sequence of
l-dimensional vectors. This operation can be described by a map:

φgnn : G→ Rl , (7.19)

which we implement using a GNN with a final readout step. By mapping graphs
to vectors, we go back to the numerical setting of model (7.1). Also, by using a
GNN we ensure that the graph embeddings will encode information related to
both attributes and structure.

By applying φgnn to each graph in the regressor Gt,p, we obtain a sequence

Zt,p = [φgnn(Gt), . . . ,φgnn(Gt−p+1)] (7.20)

of l-dimensional vectors, which we then process using a recurrent neural net-
work:

φrnn : Rp×l → Rl . (7.21)

The role of this block is to produce the vector representation of the predicted
graph, capturing the temporal dependencies in the input sequences. Here, we
formulate the block as a recurrent network, but any method to map the sequence
to a prediction is suitable (e.g., 1-dimensional convolutional networks).

Finally, we convert the vector representation to the final prediction in the
space of graphs, using a multi-head dense MLP similar to the ones proposed by
Simonovsky and Komodakis [196] and De Cao and Kipf [45]:

φdec : Rl →G. (7.22)

146 7.2 Experiments with NGAR

7.1.2 Extensions of NGAR

Generating a graph by sampling its structure and attributes with a dense network
has known limitations and implicitly assumes node identity and a maximum or-
der of the graph. While this solution greatly simplifies the implementation of the
GNN, other approaches can be used when dealing with more complex graphs,
like the GraphRNN decoder proposed by You et al. [238]. In the follow-up work
of reference [161], we have addressed these issues by introducing the Graph
Edit Network (GEN), a general technique in which we train a GNN to edit the
last observed graph in the sequence into the following one. The idea behind
GEN is that, under reasonable operating conditions, the difference between two
consecutive graphs will be small and, therefore, easy to model as a series of edit
operations. GEN is a flexible technique that can be trained to model a variety
of edits, including node and edge insertions and deletions, as well as changes
in the attributes. In the paper, we prove that a mapping between the node sets
of two consecutive graphs is sufficient to construct training data for a GEN and
that an optimal mapping yields edit scripts that are almost as short as the graph
edit distance between the graphs. We further provide a proof-of-concept empir-
ical evaluation on several graph dynamical systems, which are difficult to learn
for baselines from the literature. We refer the reader to the paper for more de-
tails [161].

7.2 Experiments with NGAR

In this section, we perform experiments on sequences of graphs to compare
NGAR with other non-AR or non-graph-based baselines. We consider graphs
with N = 5 identified nodes and variable topology. Each node is associated with
a vector attribute of dimension Dn = 2, and no edge attributes. The sequences
are produced by two synthetic graph-generating processes with a known memory
order p, allowing us to have a ground truth for our analysis.

To have a fair comparison of the methods, we consider a graph edit distance
(GED) [2]

d(Gt+1, Ĝt+1) (7.23)

between the ground truth and the prediction made by the models. We also anal-
yse the loss and accuracy of NGAR to show the relative performance of the model
on problems of different complexity. Finally, we report a qualitative assessment
of NGAR, by visualising the graphs predicted by the model and the true observa-
tions from the system.

147 7.2 Experiments with NGAR

7.2.1 Baseline methods

We consider four baselines commonly applied in the numerical case, that can be
easily adapted to our setting. We indicate our proposed method as NGAR, while
the four baselines as Mean, Mart, Move, and VAR, respectively.

Mean The first baseline (Mean) assumes that the system is stationary, with in-
dependent and identically distributed graphs. In this case, the optimal prediction
ĝt+1 is the mean graph:

Ĝt+1 = Ef[G] (7.24)

where G ∼Q, and Q indicates here the distribution (supposed stationary) of the
graphs.

Martingale The second baseline assumes that the process is a martingale (Mart),
s.t. Ef[Gt+1] = Gt , and predicts:

Ĝt+1 = Gt , (7.25)

i.e., the graph at the previous time step.

Moving average The third baseline (Move) considers the p last observed graphs
Gt,p, and predicts Gt+1 to be their Fréchet sample mean:

Ĝt+1 = ArgMin
G′

∑

Gi∈ ~Gt,p

d(G′,Gi)
2. (7.26)

VAR The fourth baseline is a vector AR model (VAR) of order p, which treats
each graph Gt as the vectorisation of its node features Xt and adjacency matrix
At , concatenated in a single vector:

ut = [vec(Xt)
>, vec(At)

>]> ∈ RN ·Dn+N2
. (7.27)

We compute a prediction ût+1 using the linear model

ût+1 = B0 +
p
∑

i=1

Bi · ut−i+1, (7.28)

with regressor Ut,p = [ut , . . . ,ut−p+1] and, subsequently, we obtain the actual
graph prediction Ĝt+1 by reshaping ût+1.

Note that we can use the VAR baseline in these experiments only because here
we are considering dynamical systems that produce graphs with a fixed size. In
more general settings, this would not be possible.

148 7.2 Experiments with NGAR

7.2.2 Graph-generating processes

We consider two different systems, both based on a common framework where
a multivariate AR model of the form

xt+1 = f (X t,p) + ε, (7.29)

produces a sequence of vectors {x1,x2, . . . ,xt , . . . }, which are then used to gener-
ate the graph sequence. From each xt , we obtain the node features Xt ∈ RN×Dn .
The graph is the Delaunay triangulation of the rows of Xt . ε is a noise term
randomly drawn from a normal distribution N (0,σ2).

The result of this process is a sequence of graphs {G1,G2, . . . ,Gt , . . . }, where
each graph depends on the previous p graphs. By choosing different implemen-
tations of f (X t,p), we can generate different graph-generating processes. Note
that the noise η and the function H(·, ·) in model (7.12) are never made explicit
in this procedure, but instead they are determined by the Gaussian noise per-
turbation introduced by ε, which affects the node attributes and causes possible
changes in the topology.

Rotational model In our first model, we implement Equation (7.29) as:

f (X t,p) = Rt,p · xt (7.30)

where xt ∈ RN ·Dn and Rt,p ∈ RN ·Dn×N ·Dn is a block-diagonal rotation matrix with
blocks Rn,t,p ∈ RDn×Dn , n= 1, . . . , N , defined as:

Rn,t,p =

�

cos(ω) sin(ω)
− sin(ω) cos(ω)

�

, (7.31)

where

ω= cn +α · cos

� p−1
∑

i=0

xt−i[2n− 1] + xt−i[2n]

�

. (7.32)

The coefficients cn are randomly sampled from a uniform distribution in (−1,1],
while α is set to 0.01.

We obtain the node attributes by re-arranging each xt in a N × Dn matrix.
The regression function f can be interpreted as an independent rotation of each
node feature (see Figure 7.2).

149 7.2 Experiments with NGAR

0 100 200 300 400 500
0.5
0.0
0.5

Node 0

0 100 200 300 400 500
0.5
0.0
0.5

Node 1

0 100 200 300 400 500
1

0

1
Node 2

0 100 200 300 400 500
0.5

0.0

0.5
Node 3

0 100 200 300 400 500
timesteps

1
0
1

Node 4

Figure 7.2. Evolution of the node attributes in the rotational model of order 10.
Each plot shows the dynamics of the Dn = 2 attributes of each node in the graph.

150 7.2 Experiments with NGAR

0 100 200 300 400 500
2.5

0.0

2.5
Node 0

0 100 200 300 400 500
2.5

0.0

2.5
Node 1

0 100 200 300 400 500
2.5

0.0

2.5
Node 2

0 100 200 300 400 500
2.5

0.0

2.5
Node 3

0 100 200 300 400 500
timesteps

2.5
0.0
2.5

Node 4

Figure 7.3. Temporal evolution of the node attributes in PMLDS(10). Each plot
shows the dynamics of the Dn = 2 attributes of each node in the graph.

151 7.2 Experiments with NGAR

0 20 40 60 80 100
1
0
1

c=3

0 20 40 60 80 100
2

0

2
c=4

0 20 40 60 80 100

1
0
1

c=5

0 20 40 60 80 100
2

0

c=10

0 20 40 60 80 100
timesteps

2.5

0.0

2.5
c=30

Figure 7.4. Temporal evolution of the first component of PMLDS, for different
values of c. As c increases, it becomes more difficult to explain the dynamics.

152 7.2 Experiments with NGAR

Table 7.1. Hyperparameter configuration for the GNN used in the experiments.

Hyperparameter Value

Weight for L2 0.0005
Learning rate 0.001
Batch size 256
Early stopping 20 epochs

Partially Masked Linear Dynamical System We consider a discrete-time lin-
ear dynamical system

xt+1 = Rxt , (7.33)

where xt ∈ Rc, and R ∈ Rc×c is an orthonormal random correlation matrix com-
puted with the method proposed by Davies and Higham [44].

Although the dynamical system in Equation (7.33) depends on exactly one
previous time step, the partial observation of the first N · Dn < c components of
xt results in a dynamical system of order p∝ (c − N · Dn) [160]. Similar to the
rotational model, we obtain Xt by reshaping the masked vectors to N × Dn (see
Figure 7.3). We refer to this setting as a partially masked linear dynamical system
of complexity c (PMLDS(c)).

The size c of the original linear system is an index of complexity of the prob-
lem, as the system’s memory is dependent on it: given N , a higher c will result
in more complicated dynamics of xt and vice versa (see Figure 7.4). However,
because the system is controlled by hidden variables that the NGAR model never
sees at training time, the problem is closer to real-world scenarios where pro-
cesses are rarely fully observable.

7.2.3 Details

We use the same GNN architecture for both settings. All hyperparameters of
φnn were found through a grid search of common values, using the validation
loss as a metric. We report them in Table 7.1. All component networks were
structured with two layers to provide sufficient expressivity and. In particular,
φgnn and φdec have been shown to be effective architectures for processing small
graphs [47, 196]. Our network consists of two convolutional layers with 128
channels, ReLU activations, and L2 regularisation. For convolution, we use a
first-order polynomial GCN (cf. Section 2.3.1), although any other method is
suitable. The convolutions are followed by a gated global pooling layer with

153 7.2 Experiments with NGAR

Table 7.2. Test performance of NGAR on the rotational model of order p. We
report the full prediction loss as well as its two terms for X and A separately. For
A, we also report the accuracy achieved by the model.

p Loss Loss X Loss A Acc. A

1 1.108 0.715 0.334 0.86
5 0.341 0.076 0.227 0.92
10 0.326 0.090 0.197 0.92
20 0.336 0.105 0.194 0.92
50 0.479 0.193 0.244 0.90
100 0.541 0.250 0.246 0.90

128 channels [124]. We apply φgnn in parallel (i.e., with shared weights) to all
p graphs in the input sequence, and feed the resulting vector sequence to a 2-
layer LSTM [86] with 256 units and hyperbolic tangent activations. Note that
we set p = 20 for NGAR, Move, and VAR. The output of the LSTM is fed to a
fully connected network of two layers with 256 and 512 units, ReLU activations,
and L2 regularisation. Finally, the network has two parallel output layers with
N · N and N · Dn units respectively, to produce the adjacency matrix and node
attributes of the predicted graph. The output layer for A has sigmoid activations,
and the one for X is a linear layer. The network is trained until convergence us-
ing Adam [102], monitoring the validation loss on a held-out 10% of the train-
ing data for early stopping. We jointly minimise the mean squared error for the
predicted node attributes and the log-loss for the adjacency matrix. For each
problem, we evolve the systems for 10000 steps and test the model on 10% of
the data.

7.2.4 Results

Tables 7.2 and 7.3 report the test performance of NGAR, in terms of prediction
loss and accuracy. We see that, as the problem complexity increases (p and c),
the test performance gets worse. In Table 7.2, for the rotational model with p = 1
we observe an unexpected high test loss, which might be due to overfitting. We
also see from Figure 7.5 that the test performance is consistently better when
the complexity of the problem is lower than the order of NGAR, i.e., p ≤ k and
c − N · Dn ≤ k (cf. Sections 7.2.2 and 7.2.2).

The second part of the experimental analysis aims at comparing the NGAR
method with the baselines in terms of prediction error, assessed as the GED be-

154 7.2 Experiments with NGAR

Table 7.3. Test performance of the NGAR model on PMLDS(c). We report the
full prediction loss as well as its two terms for X and A separately. For A, we also
report the accuracy achieved by the model.

c Loss Loss X Loss A Acc. A

11 0.200 0.018 0.154 0.95
15 0.278 0.041 0.195 0.92
20 0.283 0.038 0.204 0.92
30 0.341 0.081 0.222 0.90
60 1.366 0.983 0.345 0.85
110 4.432 3.950 0.418 0.82

1 5 10 20 50 100
p

0.50

0.75

1.00

Lo
ss

Rotational

11 15 20 30 60 110
c

0

2

4

Lo
ss

PMLDS

Figure 7.5. Test loss of NGAR for different levels of complexity on the rotational
and PMLDS models.

Figure 7.6. Comparison of Mean (blue), Mart (orange), Move (green), VAR
(red), and NGAR (purple) on different rotational systems. Each plot shows the
distribution of the residual GED between the targets in the test set and the graphs
predicted by each model respectively.

155 7.2 Experiments with NGAR

Figure 7.7. Comparison of Mean (blue), Mart (orange), Move (green), VAR
(red), and NGAR (purple) on different PMLDS(c) settings. Each plot shows the
distribution of the residual GED between the targets in the test set and the graphs
predicted by each model respectively.

Figure 7.8. Comparison of a graph predicted by the NGAR model with the
ground truth, on PMLDS(30).

Figure 7.9. Comparison between randomly selected graphs in the test set of
PMLDS(30) and the corresponding graphs predicted by the NGAR model. Upper
row: samples from the ground truth. Bottom row: graphs predicted by the GNN.

156 7.2 Experiments with NGAR

tween predicted and ground-truth graphs; Figures 7.6 and 7.7 show a compar-
ison of the baselines for different levels of complexity. NGAR consistently out-
performed the baselines in almost all settings. On the other hand, among the
baselines, we cannot identify one with significantly better performance. Given
the performance of Mean and Mart for all p and c, we see that neither system
is stationary or a martingale. Mean and Move performed almost the same in all
experiments, while Mart performed significantly better than the other baselines
in some cases, e.g., see the rotational system with p = 10. Despite being widely
used in multivariate AR problems, VAR was not able to compute meaningful pre-
dictions.

Finally, we show a qualitative assessment of the predictions in Figures 7.8
and 7.9, which highlight a good performance of NGAR even on sequences of
graphs that cannot be predicted intuitively.

Chapter 8

Conclusion

8.1 Summary

In this thesis we have presented numerous contributions to the field of graph
machine learning, organised along two main research directions.

In Part I, we have covered operators. Specifically, in Chapter 3, we have
introduced a graph convolutional layer based on autoregressive moving-average
graph filters, showing that it overcomes the modelling limitations of typical poly-
nomial GNNs and that it outperforms many competitive baselines on tasks of
node-level and graph-level learning.

In Chapter 4, we have studied pooling operators in detail. First, we have
proposed a unifying and modular framework (SRC) to implement any pooling
operator, leading us to organise the vast literature under a common taxonomy.
We have also proposed two new pooling methods inspired by the complemen-
tary problems of finding the minimum and maximum cut on a graph: MinCut
and Node Decimation Pooling (NDP). Finally, we have proposed a suite of evalu-
ation benchmarks for pooling operators, based on measuring their information-
preservation ability for attributes, structure, and task-specific information. The
two methods proposed in this work achieve state-of-the-art results in their re-
spective category of the taxonomy (respectively: MinCut is dense, trainable and
fixed, NDP is sparse, non-trainable and adaptive).

In Part II, we have focused on architectures and their practical applications.
In Chapter 5, we have presented the constant-curvature manifold adversarial au-
toencoder (CCM-AAE), a general family of autoencoders designed to learn repre-
sentations on non-Euclidean manifolds (namely, hyperspherical and hyperbolic
spaces). We have applied the CCM-AAE to the tasks of molecule generation and
change detection. For the former, we have shown that the CCM-AAE achieves a

157

158 8.2 Future work

more balanced generation of small molecules compared to previous baselines. In
particular, it is more likely that the CCM-AAE will generate a novel, chemically
valid, and unique molecule (whereas previous methods tended to have much less
variety in the generation). For change detection, we have proposed two novel
algorithms for detecting changes in non-Euclidean spaces. We have focused on
two tasks: detecting epileptic seizures in a stream of functional brain networks
and detecting when the interaction between two subjects (represented by their
skeletal graphs) changes from friendly to hostile. In all tasks, we have observed
that modelling data in a non-Euclidean latent space leads to significant improve-
ments in the final performance.

In Chapter 6, we have proposed a GNN architecture designed to be explain-
able. The model was specifically designed for the task of localising the seizure
onset zone in patients with epilepsy. We trained our model, in a supervised way,
to perform seizure detection, using functional brain networks extracted from
electroencephalography data. By learning to solve the main task, the attention-
based readout of the GNN also learned, implicitly, to place more attention on
those areas of the brain that were most important to discriminate between inter-
ictal and ictal functional networks. By analysing the attention scores, we were
able to identify the potential seizure onset zones of a subject. Empirically, we
observed that the areas identified by the GNN were in agreement with the ar-
eas identified by professional electroencephalographers. The results were also
validated on two simulators of brain activity.

Finally, in Chapter 7, we have discussed how to model stochastic sequences of
graphs as autoregressive (AR) processes. First, we extended the typical AR model
to account for graph-valued variables, generalising the concept of additive noise
to the graph domain. Then, we propose an AR architecture to solve the prediction
problem. The model consists of a GNN block to compute a vector representation
of the input graphs, a recurrent neural network to predict the next code in the
vector sequence, and finally a graph decoder to map the predicted vector back
to the domain of graphs. The model showed competitive performance compared
to simpler baselines.

8.2 Future work

The research presented in this thesis covers many different topics and applica-
tions of graph machine learning and GNNs and we believe that our work has
uncovered some interesting opportunities for future research in the field.

159 8.2 Future work

Operators The design of more expressive methods for learning graph repre-
sentations is an open challenge. The study of convolutional operators has now
moved towards a more theoretical approach, in which their expressive power is
measured based on the kinds of graphs that they are able to distinguish. The
literature on the subject is incredibly rich and indicates a likely path forward in
the study of GNNs [180]. Regarding our contributions in this area, the ARMA
GNN was designed primarily as a method to learn node representations on static
graphs with no edge attributes. However, the design of ARMA GNNs naturally
lends itself to dealing with dynamical graphs and the extension of the ARMA
GNN to account for edge attributes could also make the model more versatile on
a large class of problems (e.g., in chemistry or social network analysis).

We have also highlighted that the topic of graph pooling is in dire need of fur-
ther exploration. While representing a significant step forward on the subject,
the Select, Reduce, Connect framework, the taxonomy, and the suite of experi-
mental benchmarks that we have presented are merely tools to accelerate future
research. The experimental results of Section 4.4 are useful to provide general
guidelines on how to choose a pooling operator in practice, but they also high-
light that no single method is consistently better than all others. This leads to
two considerations. First, a one-size-fits-all pooling operator has yet to be dis-
covered, and we conjecture that it will likely combine the strengths of existing
methods. Namely, we expect that an operator with a strong inductive bias for
preserving structure will perform reliably across tasks. Also, the flexibility of
dense and trainable operators is evident from our results and the literature, al-
though a severe limitation of current methods is that they are fixed (whereas an
adaptive pooling strategy is necessarily better). Our second consideration is that
the question of whether having pooling operators in GNNs at all, which has been
discussed in works like that of Mesquita et al. [145], might depend strongly on
the task. It is still not clear what problems or types of data benefit from having
hierarchical representations, but we argue that this underlying hierarchy should
be evident to experts in the associated domain (e.g., one field where hierarchy
and pooling are universally acknowledged to be useful is that of computer vision
on point clouds).

Architectures The future research directions that we envision from the per-
spective of architectures are tightly related to the specific application domains.

The CCM-AAE has proved to be a powerful architecture for learning unsuper-
vised representations of all kinds of data, although its success is mostly due to
the general idea of modelling data in non-Euclidean spaces. In this regard, the

160 8.3 Final remarks

literature on the subject is vast (cf. Section 5.1) and there are no doubts about the
advantage of non-Euclidean representations. Any applications based on studying
distances between graphs, or where the distance between graphs carries impor-
tant meaning, can benefit from this kind of representation. We have applied it
to molecule generation (small distance in the latent space means small semantic
distance in molecule space) and change detection (measuring the distance from
the nominal mean), but the potential applications are countless.

Our pipeline for seizure localisation using attention in GNNs has had success
in identifying the seizure onset zones in real subjects with epilepsy and shows
a promising future for applying GNNs in neuroscience. Our results are encour-
aging, but further research is obviously needed to assess the generality of our
localisation method. For this, a larger sample of subjects and a fine-tuning of the
model could validate our results further. Also, the results that we have shown
in Chapter 6 are patient-specific, and a limitation of the model is that it must be
trained specifically for every patient. A large-scale study would allow us to train
models that can be transferred between subjects, making the deployment of our
method easier and cheaper.

Finally, our work on modelling sequences of graphs is part of a larger corpus
of literature about modelling time in the domain of graphs. Our contributions
represent a first general formalisation of the problem. The NGAR model is a ro-
bust architecture for solving the prediction task in the domain of graphs but has
evident limitations in the decoder. We have discussed a better approach to im-
prove over NGAR in the work by Paassen et al. [161], although we believe that
future work could explore the topic further. A key factor in the development of
this topic is the availability of training data: most datasets of temporal networks
usually have significant limitations, like a short time horizon or the absence of
structural changes. The introduction of benchmarks to better understand the im-
plications of modelling temporal graph sequences could give a significant boost
to this research area.

8.3 Final remarks

In this thesis, we set out to study graph machine learning and to design operators
and architectures to expand the state of the art of this vibrant field. We believe
to have achieved this goal, even if our contributions represent only a small drop
in a vast ocean of research.

The multifaceted nature of this work reflects the depth and variety of graph
machine learning itself, and we hope that it will inspire the larger scientific com-

161 8.3 Final remarks

munity to design new artificial intelligence systems to solve real-world problems.
As we have discussed at the beginning of the thesis, the path to understand-

ing general intelligence will likely require us to understand human intelligence
first, the only example that we have. In this pursuit, designing our systems to
model relations is a sensible choice that combines the strengths of the two main
paradigms of artificial intelligence and reflects the nature of human thought.

From here, it is up to us to use these systems to understand the networks of
our world.

162 8.3 Final remarks

Appendices

163

Appendix A

Experimental details for ARMA
GNNs

A.1 Node classification

Table A.1 reports for each node classification dataset the number of nodes, num-
ber of edges, number of node attributes (size of the node feature vectors), the
average shortest path of the graph (Avg. SP), and the number of classes that
each node can be assigned to. The three citation networks (Cora, Citeseer, and
Pubmed) are taken from https://github.com/tkipf/gcn/raw/master/gcn/

data/, while the PPI dataset is taken from http://snap.stanford.edu/graphsage/.
Table A.2 describes the optimal hyperparameters used in GCN, Chebyshev,

CayleyNet, and ARMA for each node classification dataset. For all GNN, we re-
port the L2 regularisation weight, the learning rate (lr) and dropout probability
(pdrop). For GCN, we report the number of stacked graph convolutions (L). For
Chebyshev, we report the polynomial order (K). For CayleyNet, we report the
polynomial order (K) and the number of Jacobi iterations (T). For ARMA, we
report the number of GCS stacks (K) and the stacks’ depth (T). Additionally,

Table A.1. Summary of the node classification datasets.

Dataset Nodes Edges Node attr. Avg. SP Node classes

Cora 2708 5429 1433 5.87±1.52 7 (single label)
Citeseer 3327 9228 3703 6.31±2.00 6 (single label)
Pubmed 19717 88651 500 6.34±1.22 3 (single label)
PPI 56944 818716 50 2.76±0.56 121 (multi-label)

165

https://github.com/tkipf/gcn/raw/master/gcn/data/
https://github.com/tkipf/gcn/raw/master/gcn/data/
http://snap.stanford.edu/graphsage/

166 A.2 Graph regression

Table A.2. Hyperparameters for node classification.

Dataset L2 reg. pdrop lr
GCN Cheby. Cayley ARMA
L K K T K T

Cora 5e-4 0.75 0.01 1 2 1 5 2 1
Citeseer 5e-4 0.75 0.01 1 3 1 5 3 1
Pubmed 5e-4 0.25 0.01 1 3 2 5 1 1
PPI 0.0 0.25 0.01 2 3 3 5 3 2

Table A.3. Summary of the graph regression dataset.

Samples Avg. nodes Avg. edges Node attr.

133,885 8.79 27.61 1

we configured the MLP in GIN with 2 hidden layers and trained the parameter
ε, while for GraphSAGE we used the max aggregator, to differentiate more its
behaviour from GCN and GIN. Finally, GAT is configured with 8 attention heads
and the same number of layers L as GCN.

Each model is trained for 2000 epochs with early stopping (based on the
validation accuracy) at 50 epochs. We used full-batch training, i.e., in each epoch
the weights are updated one time, according to a single batch that includes all
the training data.

A.2 Graph regression

The QM9 dataset used for graph regression is available at http://quantum-machine.
org/datasets/, and its statistics are reported in Table A.3.

The hyperparameters are reported in Table A.4. Only for this task, CayleyNets
use only 3 Jacobi iterations, since with more iterations we experienced numerical
errors and the loss quickly diverged. All models are trained for 1000 epochs with
early stopping at 50 epochs, using the Adam optimiser with learning rate 10−3.
We used batch size 64 and no L2 regularisation.

http://quantum-machine.org/datasets/
http://quantum-machine.org/datasets/

167 A.3 Graph classification

Table A.4. Hyperparameters for graph regression.

Dataset
GCN Cheby. Cayley ARMA
L K K T pdrop K T

QM9 3 3 3 3 0.75 3 3

Table A.5. Summary of the graph classification datasets.

Dataset Samples Classes Avg. nodes Avg. edges Node attr. Node labels

Bench-hard 1,800 3 148.32 572.32 – yes
Enzymes 600 6 32.63 62.14 18 no
Proteins 1,113 2 39.06 72.82 1 no
D&D 1,178 2 284.32 715.66 – yes
MUTAG 188 2 17.93 19.79 – yes

A.3 Graph classification

The datasets Enzymes, Proteins, D&D, and MUTAG are taken from the Bench-
mark Data Sets for Graph Kernels https://ls11-www.cs.tu-dortmund.de/staff/
morris/graphkerneldatasets, while the dataset Bench-hard is taken from https:

//github.com/FilippoMB/Benchmark_dataset_for_graph_classification. The
statistics of each graph classification dataset are summarised in Table A.5.

For all methods, we use a fixed architecture composed of three GNN layers,
each with 32 output units, ReLU activations, and L2 regularisation with a factor
of 10−4. All models are trained to convergence with Adam, using a learning rate
of 10−3, batch size of 32, and patience of 50 epochs. We summarise in Table A.6
the hyperparameters used for ARMA, Chebyshev, and CayleyNets on the different
datasets.

A.4 Graph signal classification

To generate the datasets we used the code available at github.com/mdeff/cnn_

graph. The models are trained for 20 epochs on each dataset. We used batches
of size 32 for MNIST and 128 for 20news. In the 20news dataset, the word
embeddings have size 200.

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://github.com/FilippoMB/Benchmark_dataset_for_graph_classification
https://github.com/FilippoMB/Benchmark_dataset_for_graph_classification
github.com/mdeff/cnn_graph
github.com/mdeff/cnn_graph

168 A.4 Graph signal classification

Table A.6. Hyperparameters for graph classification.

Dataset
GCN Cheby Cayley ARMA
L K K T pdrop K T

Bench-hard 2 2 2 10 0.4 1 2
Enzymes 2 2 2 10 0.6 2 2
Proteins 4 4 4 10 0.6 4 4
D&D 4 4 4 10 0.0 4 4
MUTAG 4 4 4 10 0.0 4 4

Table A.7. Summary of the graph signal classification datasets.

Dataset Nodes Edges Avg. SP Class Train Val Test

MNIST 784 5,928 12.36±5.45 10 55,000 5,000 10,000
20news 10,000 249,944 4.21±0.94 20 10,168 7,071 7,071

Table A.8. Hyperparameters for graph signal classification.

Dataset L2 reg. lr pdrop
GCN Cheby. Cayley ARMA
L K K T K T

MNIST 5e-4 1e-3 0.5 3 25 12 11 5 10
20news 1e-3 1e-3 0.7 1 5 5 10 1 1

Appendix B

Additional discussion on NDP

B.1 Kron reduction in graphs with self-loops

If A contains self loops, the existence of the strict inequality condition Lii >
∑n

j=1, j 6=i |Li j| discussed in Section 4.3.2 is no more guaranteed. However, it is
sufficient to consider the loopy-Laplacian Q = D − A + 2I � A. Q is now an
irreducible matrix and Qii >

∑n
j=1, j 6=i |Qi j|+ Aii holds for at least least one ver-

tex i ∈ V+. We note that the adjacency matrix can be univocally recovered:
A= −Q+diag({

∑N
j=1, j 6=i Qi j}Ni=1). Therefore, from the Kron reduction Q′ of Q we

can first recover A′ and then compute the reduced Laplacian as L′ = D′ −A′.

B.2 Derivation of the maximum cut upper bound

Let us consider the Rayleigh quotient

r(z,L) =
z>Lz
z>z

, (B.1)

which assumes its maximum value λmax when z = umax. When z is the partition
vector in Equation (4.20), we have r(z,L) ≤ λmax. As shown in Section 4.3.1,

169

170 B.3 Relationship with Trevisan’s spectral algorithm

the numerator in Equation (B.1) can be rewritten as

z>Lz=
∑

i, j∈E

ai j(zi − z j)
2 (B.2)

=
∑

i, j∈V+
ai j(zi − z j)

2 +
∑

i, j∈V−
ai j(zi − z j)

2 +
∑

i∈V+, j∈V−
ai j(zi − z j)

2 (B.3)

= 0+ 0+
∑

i∈V+, j∈V−
ai j2

2 (B.4)

= 4 · cut(z), (B.5)

since zi = 1 if i ∈ V+ and zi = −1 if i ∈ V− according to Equation (4.20),
and where cut(z) is the volume of edges crossing the partition induced by z.
From Equation (4.20), it also follows that the denominator in Equation (B.1) is
z>z= N , since z2

i = 1,∀i. By combining the results we obtain

4 · cut(z)
N

≤ λmax,∀z ∈ RN , (B.6)

from which wee obtain a bound on the value of the maximum cut, MaxCut:

MaxCut≤ λmax
N
4

. (B.7)

When considering the symmetric normalised Laplacian Ln, we multiply Equa-
tion (B.1) on both sides by D−1/2, changing the denominator into:

z>Dz=
∑

i,i

diiz
2
i = 2|E |. (B.8)

Replacing N with 2|E | and λmax with µmax in Equation (B.6), we get the bound

MaxCut≤ µmax
|E |
2

. (B.9)

B.3 Relationship with Trevisan’s spectral algorithm

Trevisan [208] shows that if µmax ≥ 2(1 − τ), then there exist a set of vertices
V and a partition (V1,V2) of V so that |e(V1,V2)| ≥ 1

2(1
p

16τ)vol(V), where
vol(V) =

∑

i∈V di and e(V1,V2) are the edges with one endpoint in V1 and the
other in V2. In cases where an optimal solution cuts 1−τ fraction of the edges, a
partition found by a recursive spectral algorithm will remove 1−4

p
τ+8τ of the

edges. The optimal τ is value 0.0549 for which 1−4
p
τ+8τ

1−τ reaches its minimum

171 B.4 Spectral similarity after sparsification

0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0
Sp

ec
tra

l d
ist

an
ce

0

1000

2000

3000

4000

No
n-

ze
ro

 e
dg

es

(a) Regular grid

0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

tra
l d

ist
an

ce

500

1000

1500

2000

No
n-

ze
ro

 e
dg

es

(b) Community graph

0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

Sp
ec

tra
l d

ist
an

ce

1000

2000

3000

4000

No
n-

ze
ro

 e
dg

es

(c) Sensor network graph

Figure B.1. In blue, the variation of spectral distance between the Laplacian L
associated with A and the Laplacian L̄ associated with the adjacency matrix Ā
sparsified with a varying threshold ε. In red, the number of edges that remain in
L̄.

0.5311. When the largest eigenvalue µmax is too small, the expected random
cut is larger than the solution found by the spectral algorithm. The analysis
in [208] shows that the spectral cut is guaranteed to be larger than the random
cut only when µmax ≥ 2(1− τ), i.e., when µmax ≥ 1.891 given the optimal value
τ = 0.0549. Therefore, an algorithm that recursively cuts a fraction of edges
according to the values in vmax until µmax ≥ 2(1−τ) and then performs a random
cut, finds a solution that is always larger than 0.5311 MaxCut.

B.4 Spectral similarity after sparsification

In Section 4.3.4, we introduced the spectral similarity distance to quantify how
much the spectrum of the Laplacian associated with the sparsified adjacency ma-
trix changes when edges smaller than ε are dropped. In Figure B.1 we show how
the graph structure (in terms of spectral similarity) varies when the value of ε
increases and more edges are dropped. In every example, for small values of ε
the structure of the graphs changes only slightly while a large amount of edges is
dropped. Notably, the spectral similarity increases almost linearly with ε, while
the edge density decreases exponentially.

172 B.4 Spectral similarity after sparsification

Appendix C

Experimental details for pooling
operators

C.1 Experimental Details

C.1.1 Preliminaries

We use the same message-passing model in all of our experiments. The model is
inspired by the work of You et al. [239] and has the following form:

x′i = xi

∑

j∈N (i)

ReLU
�

BN
�

Wx j + b
��

(C.1)

where BN indicates batch normalisation [91], ReLU is the rectified linear unit,
xi ∈ Rdin , x′i ∈ R

dout , W ∈ Rdout×din is a trainable matrix, b ∈ Rdout is a trainable

bias, and

 indicates concatenation. We configure all layers to have dout = 256.

We use GNN(A,X) to indicate the application of one layer as in Equation (C.1)
to a graph described by A and X.

We use MLP(X) to indicate the application, to the features of each node, of one
multi-layer perceptron (MLP) with 2 layers, 256 hidden units, ReLU activation
and batch normalisation. The number of neurons of each layer is implied by the
dimension of the data or, if not specified, is also set to 256 units (e.g., for MLPs
used as intermediate blocks).

All architectures and hyperparameters are also inspired by the work You et al.
[239]. Specifically, we include a pre-processing and post-processing MLP as the
first and last blocks of each architecture, respectively. The activation of the last
layer of the post-processing MLP is implied by the task.

173

174 C.1 Experimental Details

We use POOL(A,X) to indicate the application of a generic pooling layer, which
is substituted in the architecture with the different operators that we compared
in our experiments. Note that, for clarity, we change notation w.r.t. the main text
and indicate with Xpool , Apool the output of a pooling layer.

C.1.2 Preserving node attributes

Architecture The bottleneck of the autoencoder consists of a single pooling
layer to compress the graph signal, immediately followed by an upscaling layer.
The overall architecture is:

X,A← G (C.2)

Xin←MLPin (X) (C.3)

Xin← GNNin (A,Xin) (C.4)

Xpool ← POOL (A,Xin) (C.5)

Xup← UPSCALE
�

Xpool

�

(C.6)

Xout ← GNNout

�

A,Xup

�

(C.7)

Xout ←MLPout (Xout) . (C.8)

All pooling layers are configured to reduce the graph to K = bN/2c nodes, except
for LaPool which determines the number of output nodes autonomously.

The UPSCALE layer lifts the reduced node features X′ of the coarsened graph
G′ back to the original data dimensionality of Xin. For almost all methods, the up-
scaled node features Xup are constructed as UX′, where U= S∓ is the transposed
pseudo-inverse of the selection matrix S = SEL(X,A). This is the optimal choice
when the reduction function is X′ = S>Xin. Conversely, for Top-K and SAGPool
we need to account also for the scaling factors σ(y), so we have U= (σ(y)�S)∓.
Finally, even though DiffPool’s reduction is X′ = S>GNN(A,X), we still employ
US∓ as upscaling operator and allow the output layer GNNout to counteract the
effects of the GNN.

Note that GNNout takes as input the original adjacency matrix A, to focus the
experiment on the node features only and suppressing possible interference of
the CON function.

Training All models are trained to convergence using Adam to minimise the
mean squared error between the input and output features, with a learning rate
0.0005 and early stopping on the training loss with a patience of 1000 epochs
and a tolerance of 10−6. Each experiment is repeated 3 times.

175 C.1 Experimental Details

Table C.1. Statistics of graphs used in the autoencoder and spectral similarity
experiments.

Graph Nodes Edges Avg. degree

Grid 64 112 3.5
Ring 64 64 2
Bunny 2503 65490 52.35
Airfoil 4253 12289 5.77
Sensor 64 313.7 ± 21.9 9.8 ± 0.8

Airplane 1333 2611 3.91
Car 1920 2372 2.47
Guitar 3125 5508 3.52
Person 3305 9055 5.47

Data The Grid, Ring, and Bunny graphs are generated using the PyGSP li-
brary [46]. The Airplane, Car, Person, and Guitar graphs are taken from the
ModelNet40 dataset [228]. We selected one graph randomly from the training
set of each category (with a threshold on the number of nodes). The ModelNet40
IDs of the selected graph are: sample 151 for Airplane, sample 75 for Car, sam-
ple 38 for Guitar, sample 83 for Person. Details on the size and average degrees
of the graphs are reported in Table C.1. All datasets that were not generated
programmatically are unlicensed.

C.1.3 Preserving structure

Architecture The architecture for this experiment consists only of a pooling
layer, to ensure that the model is actually operating on the original coordinates
and eigenvectors without transformations:

X,A← G (C.9)

Xpool ← POOL (A,X) (C.10)

(C.11)

All pooling layers are configured to reduce the graph to K = bN/2c nodes, except
for LaPool which determines the number of output nodes autonomously.

Training For trainable models, we train them to convergence using Adam to
minimise the quadratic loss described in the main text, with a learning rate 0.01

176 C.1 Experimental Details

and early stopping on the training loss with a patience of 50 epochs and a toler-
ance of 10−6. Each experiment is repeated 3 times.

Data All graphs are generated using the PyGSP library. In particular, Sensor is
a random graph that is generated once per experiment and used for all models.
Details on the size and average degrees of the graphs are reported in Table C.1.
All datasets that were not generated programmatically are unlicensed.

C.1.4 Preserving task-specific information

Architecture We use the following architecture for all datasets:

X,A← G (C.12)

X←MLP1 (X) (C.13)

X← GNN1 (A,X) (C.14)

Apool ,Xpool ← POOL (A,X) (C.15)

Xpool ← GNN2

�

Apool ,Xpool

�

(C.16)

xout ←
∑

i

xpool,i (C.17)

xout ←MLP2 (xout) (C.18)

(C.19)

Adaptive pooling layers are configured to reduce the graph to K = bN/2c nodes,
except for LaPool which determines the number of output nodes autonomously.
Fixed pooling layers are configured to return K =

�

N̄/2
�

nodes, where N̄ is the
average number of nodes in the training set.

Training All models are trained to convergence using Adam, with a batch size
of 16, learning rate 0.0005 and early stopping on the validation loss with a pa-
tience of 50 epochs. Each experiment is repeated 3 times.

Data Proteins, Enzymes, Mutagenicity, DD, Colors-3 and Triangles are taken
from the TUDataset collection [150]. The ModelNet10 dataset is taken from
its original source [228]. All datasets are split randomly according to an 8:1:1
proportion between training, validation and test sets. The only exceptions are
Colors-3 and Triangles, for which the data splits are described in [108], and
ModelNet10, for which the data splits are given. The TUDatasets are unlicensed
and ModelNet10 is provided freely for academic use.

177 C.2 Additional results

Table C.2. Density and median weight of the edges of the coarsened graphs in
the spectral similarity experiment.

Original DiffPool MinCut NMF LaPool TopK SAGPool NDP Graclus

Grid2d
Density 0.055 0.969 0.969 0.463 0.917 0.084 0.092 0.189 0.103
Median 1.000 0.216 0.024 0.018 1.445 1.000 1.000 0.500 0.154

Ring
Density 0.031 0.969 0.969 0.125 0.900 0.055 0.061 0.062 0.045
Median 1.000 0.124 0.032 0.039 1.171 1.000 1.000 0.500 0.250

Bunny
Density 0.021 0.999 0.999 0.327 0.952 0.038 0.038 0.104 0.029
Median 0.812 0.068 7.55·10−4 9.99·10−6 234.887 0.815 0.816 0.111 0.026

Minnesota
Density 9.47·10−4 0.999 0.999 0.010 0.999 0.002 0.002 0.003 0.002
Median 1.000 0.004 7.58·10−4 0.014 0.013 1.000 1.000 0.333 0.204

Sensor
Density 0.159 0.969 0.969 0.844 0.875 0.273 0.230 0.529 0.227
Median 0.742 0.463 2.42·10−4 0.005 6.147 0.765 0.756 0.201 0.103

Airfoil
Density 0.001 1.000 1.000 0.009 0.996 0.003 0.003 0.006 0.002
Median 0.500 0.003 4.70·10−4 0.026 0.209 0.500 0.500 0.090 0.118

C.1.5 Memory usage

To produce Figure 3, we generated random Erdős-Rényi graphs with p = 0.1 and
random features, and gave it as input to the trainable pooling methods (Min-
CutPool, DiffPool, Top-K and SAGPool). At each forward pass, we increased the
number of nodes by 1000 until an out-of-memory exception was raised. We used
a sparse tensor to represent the adjacency matrix of the input graphs (so that the
cost of loading A into memory is linear in the number of edges). We repeated
the experiments with node features of size F = 1, 10,100, 1000 and found no
significant differences in the results.

C.2 Additional results

C.2.1 Preserving node attributes

An extended version of Figure 4 in the main paper is reported in Figure C.1 here.
An extended version of Figure 5 in the main paper is reported in Figures C.2
and C.3. Note that the missing plots for LaPool are due to the Out Of Memory
exception as reported in Table 3 in the main paper.

C.2.2 Preserving structure

An extended version of Figure 6 in the main paper is reported in Figure C.4 here.
An extended version of Table 5 is reported in Table C.2.

178 C.2 Additional results

Figure C.1. Node attributes (point locations) reconstructed with different oper-
ators in the autoencoder experiment.

179 C.2 Additional results

Figure C.2. Graphs pooled with different operators in the autoencoder experi-
ment with the modified RED function.

180 C.2 Additional results

Figure C.3. Selection matrices computed with different operators in the autoen-
coder experiment.

181 C.2 Additional results

(a) Grid

(b) Ring

(c) Sensor

182 C.2 Additional results

(d) Bunny

(e) Minnesota

(f) Airfoil

Figure C.4. Results for all graphs when optimising for spectral similarity. Top:
the coarsened adjacency matrices. Middle: the coarsened graphs with modi-
fied SEL function. Bottom: the eigenvalues of the normalised Laplacian before
(black) and after (blue) pooling. The indices of the eigenvalues are rescaled to
fill [0, 1].

Appendix D

Experimental details for the change
detection experiments

The architecture of the AAE is closely inspired to GraphVAE [196], and we con-
duct a brief hyperparameter search for each experiment, using the validation
loss of the network for model selection. As done by Simonovsky and Komodakis
[196], the encoder consists of two graph convolutional layers with 32 and 64
channels respectively, with batch normalisation, ReLU, and L2 regularisation (with
a factor of 5 · 10−4), followed by global attention pooling with 128 channels.
When using ECC layers, the kernel-generating network consists of two fully con-
nected ReLU layers of 128 units, with a linear output of Fl · Fl−1 neurons. The
latent representation is produced by a ReLU layer with 128 units followed by a
linear layer with d+1 units (these last two layers are replicated in parallel when
considering the ensemble of CCMs). The decoder is a fully connected three-layer
network of 128, 256, and 512 neurons, with ReLU and batch normalisation, fol-
lowed by three parallel output layers to reconstruct the graphs: a sigmoid layer
for A, and two layers for X and E, with activations according to their specific
domain (e.g., for categorical attributes we could use a softmax activation).

We consider a discriminator network with three hidden ReLU layers of 128
units each. For the prior, we consider the commonly used Gaussian distribu-
tion NMκi

(0, 1), adapted to have support on the CCM (cf. Section 5.1.3). When
using the geometric discriminator we set ς = 5. We train all networks using
Adam [102] with a learning rate of 0.001 and a batch size of 128. We train to
convergence, monitoring the validation loss with a patience of 20 epochs. We
set aside 10% of the samples for testing, and 10% for validation and model se-
lection. For each graph, X and E are normalised element-wise, by removing the
mean and scaling to unit variance. For the CDTs we set α = 0.01 and q to the

183

184

0.75 quantile of the χ2 distribution of sw. The size of the windows processed by
CUSUM is set to 0.1% of the number of training samples, which we found to be
enough to estimate the mean and variance of sw in Equation 5.17.

Appendix E

Additional experiments and details
on seizure localisation

E.1 Seizure generator from Benjamin et al. [16]

In this experiment we considered a simple network model of seizure initiation
presented by Benjamin et al. [16], and also used by Lopes et al. [126, 127] to
study the effect of network structure on the generation of seizures. The model
consists of a network of N bi-stable oscillators

ż = f (z) = (λ− 1+ iω)z + 2z|z|2 − z|z|4 (E.1)

where z ∈ C. Equation (E.1) describes a dynamical system with a stable fixed
point at the origin of the complex plane (which we consider as interictal), and an
oscillating attractor with frequency ω (which we consider as ictal). Parameter λ
controls the location of the oscillator in phase space. Nodes are interconnected
in a graph described by adjacency matrix A with a coupling factor β , such that
the dynamic of a single node reads:

dzi(t) =
�

f (zi) + β
∑

j 6=i

A ji(z j − zi)
�

+α dWi(t) (E.2)

where Wi(t) is a stochastic Wiener process rescaled by a factor of α.
All nodes in the model are initialised at the fixed point and, due to the pres-

ence of noise and the interaction between nodes, eventually switch to the oscilla-
tion state. We identify the activity of the whole system as ictal if any of the nodes
meets the condition |Re(zi)| > 1, and the SOZ as the first node that escapes the
fixed regime.

185

186 E.2 The Virtual Brain simulator

Table E.1. Configuration used for the simulator by Benjamin et al. [16].

Param. Value

N 3
ω 20
λ 0.5
β 0.1
α 0.05

We consider a complete graph without self-loops to describe the interaction of
the nodes. The configuration of the parameters is summarised in Table E.1. The
hyperparameters used for creating the FNs and training the GNN are the same
ones that we used for the real iEEG data, and we only report results obtained
using PLV as FC metric.

The GNN achieves an almost perfect detection score with a ROC-AUC of 99.61
± 0.0 and a PR-AUC of 99.69 ± 0.0 (averaged over five runs, evaluated on hold-
out test data). Figure E.1 compares the generated node activity with the atten-
tion scores assigned by the GNN over time. The SOZ channel (green) is assigned
the highest attention since the beginning of the seizure until all nodes are simul-
taneously oscillating, at which point the attention scores converge to be evenly
distributed. A similar even distribution is observed in the interictal state, indicat-
ing that the network has correctly learned to identify the SOZ electrode without
defaulting to assign a high score to just one electrode. This behaviour is con-
firmed by the spikes in attention assigned to channels 0 and 1, which happen as
soon as the node dynamics escape the fixed-point attractor.

E.2 The Virtual Brain simulator

In this experiment we use The Virtual Brain simulator (TVB) [179] to model a
patient with temporal lobe epilepsy.

We follow the same approach described in TVB’s documentation to config-
ure the simulator.1 We assign the Epileptor neural mass model [95] to all the
controllable brain regions of TVB. We set the epileptogenicity of the right limbic
areas (rHC, rPHC and rAMYG) to −1.6, the superior temporal cortex (rTCI) and
the ventral temporal cortex (rTCV) to −1.8, while for all other areas to −2.2.
The remaining parameters are kept as default. The hyperparameters used for

1https://github.com/the-virtual-brain/tvb-root/blob/master/tvb_documentation

https://github.com/the-virtual-brain/tvb-root/blob/master/tvb_documentation

187 E.3 GNN training details

0 5 10 15 20 25 30 35 40
Time (s)

0

1

2

Ch
an

ne
ls

0 5 10 15 20 25 30 35 40
Time (s)

0.2

0.4

0.6

0.8

No
de

 a
tte

nt
io

n

Figure E.1. Top: a clip showing the generated activity of a 3-node simulator,
compared to the attention coefficient assigned by the GNN at each node over
time. Colors indicate the same node in both plots.

creating the FNs and training the GNN are the same ones that we used for the
real iEEG data.

We select a subset of 34 sEEG virtual sensors among the ones provided for the
default subject of TVB. Of this subset, electrode 33 shows strong epileptogenic
activity, while electrodes 18, 19, and 20 show mild activity. We generate clips of
roughly 1 minute at 20Hz so that there is a simulated onset in the middle of each
clip. An example of a generated clip is shown in Figure E.2.

The GNN achieved an average detection ROC-AUC of 98.87 ± 0.18 and an
average PR-AUC of 99.18 ± 0.07 (averaged over five runs, evaluated on hold-
out test data). The electrode with a strong ictal activity is consistently assigned
a maximum score of 1 by all models and electrode 19 is also ranked in the top-5
electrodes (see Figure E.3).

E.3 GNN training details

We consider each patient separately and train a GNN from scratch to build patient-
specific models. The GNN architecture is the one given in Equation (6.9). The

188 E.3 GNN training details

0 10 20 30 40 50 60 70
Time (s)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Figure E.2. A virtual seizure generated with TVB. The vertical line indicates the
annotated seizure onset in time.

0.00 0.25 0.50 0.75 1.00
Normalized score

0

1

5

2

3

19

22

4

23

33

Top-10 electrodes

Figure E.3. Top-10 electrodes with averaged rankings. Bold labels indicate that
the corresponding electrode showed ictal activity. As desired, electrode 33 shows
strong epileptogenic activity.

189 E.4 Baseline training details

ECC layer has 32 output units with ReLU activation and a kernel-generating net-
work f (·) consisting of a two-layer MLP with 32 hidden units and ReLU activa-
tion. All parameters of the layer are regularised with an L2 penalty with a factor
of 10−5.

The MLP classifier following the ATTN-RO readout has 2 layers, with the hid-
den one having 32 units and ReLU activation and with 25% dropout in-between.
Both layers are regularised with an L2 penalty with factor 10−5.

The model is trained using Adam, with a learning rate of 10−3 and a batch size
of 32 graphs. The model is trained to convergence with 10 epochs of patience,
using the data from d0.1 · ne seizures selected randomly (n being the overall
number of seizures) for early stopping. We then test the model on a held-out set
of d0.1·ne seizures. The remaining seizures are used for training. All experiments
are repeated 5 times using different random data splits.

E.4 Baseline training details

The baseline is a simple 1D convolutional neural network (CNN) based on the
architecture described by Wang et al. [216]. The CNN operates directly on iEEG
time series and therefore does not take into account any graph-based representa-
tion for the data. Similarly to how we create the input-output pairs for the GNN,
here we consider windows of size T taken at a stride of k/ fs for the interictal
class and stride 1/ fs for the ictal class, and we associate to each window a class
label corresponding to the majority class of y(t) in the corresponding window.

In particular, we shrink the model to make it comparable in terms of number
of parameters and depth to the GNN one, and also to prevent overfitting (which
we experimentally encountered as a significant problem with the model). We
consider a single convolutional layer with a kernel of size 3, 8 output channels,
and ReLU activations, followed by a global average pooling and a single-layer
MLP to output the classification decision. We train the model using Adam with
learning rate 0.001, batch size of 32 and early stopping with a patience of 5
epochs.

E.5 Additional results

Detection A notable behaviour of the GNN can be observed from Figure E.4,
which shows the output of the GNN (i.e., the detection score outputted by the
model) on a symmetrical window around the onset, for randomly sampled seizures

190 E.5 Additional results

40 20 0 20 40
Seconds from onset

0.0

0.5

1.0

Pr
ed

ict
io

n
Patient 1

20 10 0 10 20
Seconds from onset

0.0

0.5

1.0

Pr
ed

ict
io

n

Patient 2

40 20 0 20 40
Seconds from onset

0.0

0.5

1.0

Pr
ed

ict
io

n

Patient 3

40 20 0 20 40
Seconds from onset

0.0

0.5

1.0

Pr
ed

ict
io

n

Patient 5

40 20 0 20 40
Seconds from onset

0.0

0.5

1.0

Pr
ed

ict
io

n

Patient 7

30 20 10 0 10 20 30
Seconds from onset

0.0

0.5

1.0

Pr
ed

ict
io

n

Patient 8

Figure E.4. Example of the detection score outputted by the GNN, for all patients
with a known SOZ. We show a window of 50 seconds around the marked onset
for random test seizures.

of the six patients with a known SOZ. We empirically observed that the model
is robust to the onset labelling provided by electroencephalographers. Notably,
by analysing the prediction of the GNN in the time instants prior to the seizure
onset, we can see that the confidence with which the GNN detects a seizure starts
to gradually increase towards the seizure onset, but does not always peak at the
onset time marked by electroencephalographers. This suggests that the GNN
is learning to detect the anomalous brain activity rather than overfitting to the
known onset labels.

Localisation We show in Figures E.6 and E.7 the top 10 electrodes by AP@10
score for all patients, respectively when using correlation and PLV as FC metrics.

Threshold To demonstrate that our approach is robust to the choice of sparsi-
fication threshold for the FNs, as argued in Section 6.2.1, we report in Figure E.5
the average performance for detection and localisation over all patients and all
metrics for different thresholds (that is, we average all the values reported in ta-
bles 6.2 and 6.3 after having re-computed the tables with different sparsification
thresholds). While this is a coarse-grained analysis, it shows that there are no
significant differences in the downstream performance for reasonable sparsifica-
tion thresholds (i.e., in the [0.0, 0.5] interval). All results in Figure E.5 are not

191 E.5 Additional results

Figure E.5. Average detection and localisation performance as a function of the
sparsification threshold. We report the average over all metrics and all patients,
as reported in Tables II and III of the manuscript.

0.00 0.25 0.50 0.75 1.00
Normalized score

RPF2
LPT1

RPIH3
LPT5
LPT3
RPF4
RPF3
LPF3
LPF2

LPIH5
Top-10 electrodes

(a) Patient 1

0.00 0.25 0.50 0.75 1.00
Normalized score

RPT1
RPIH1
RAF2
RAF1
LMF4
RPF1
LAF2
RAT3

RPIH4
RINS1

Top-10 electrodes

(b) Patient 2

0.00 0.25 0.50 0.75 1.00
Normalized score

LMT2
LTS4
LTS2
LAT4
LHD2
LHD3
LHD4
LAT3
LPT5
LPT6

Top-10 electrodes

(c) Patient 3

0.00 0.25 0.50 0.75 1.00
Normalized score

LPF5
RAF3
RAF2
LAH6
RPF4
RPF3
RPF7
RAF1
RPF1
RPF2

Top-10 electrodes

(d) Patient 4

0.00 0.25 0.50 0.75 1.00
Normalized score

RHH9
LHB8
RHB8
LHB9

RI5
RHB7
LHB3

RHH10
LHB1
LHB2

Top-10 electrodes

(e) Patient 5

0.0 0.5 1.0
Normalized score

L8
LAT4
LAT3
LOT5
LOT6

L24
L23

LAT2
LMT 14
LMT 12

Top-10 electrodes

(f) Patient 6

0.0 0.5 1.0
Normalized score

LAHC3
LPHC3
LAHC4
LMHC2
LPHC4
LMPH8

LMPH7
LMPH4

LMPH6
LMPH5

Top-10 electrodes

(g) Patient 7

0.0 0.5 1.0
Normalized score

ROFC7
LAD6

LPSMA4
LPSMA5

RAH7
LDAC6
ROFC8
LAH6

ROFC9
LPSMA7

Top-10 electrodes

(h) Patient 8

Figure E.6. Top ten electrodes by AP@10 score for the average rankings, using
correlation as FC measure. The two plots in red indicate those patients for which
the SOZ was not identified clinically. Bold labels indicate that the corresponding
electrode was marked as a potential SOZ by electroencephalographers.

192 E.5 Additional results

0.00 0.25 0.50 0.75 1.00
Normalized score

LPT5
LPF2
LPF4

RPIH3
LPF3

LPIH5
LPT3
RPF1
RPT1
RPF2

Top-10 electrodes

(a) Patient 1

0.0 0.5 1.0
Normalized score

LPIH1
RAT3

LFP10
LFP6
RPT1
RHD1
RAF2
RAF1

RPIH4
RINS1

Top-10 electrodes

(b) Patient 2

0.00 0.25 0.50 0.75 1.00
Normalized score

LAT3
LAT2
LAT4
LTS3
RHD4
LPT6

LMT3
LPT1

LMT2
LTS4

Top-10 electrodes

(c) Patient 3

0.00 0.25 0.50 0.75 1.00
Normalized score

LAF5
LFP10
LPF4
LPH3
RAF3
LPH2
LAF4
LAF2
LPH1
LPF7

Top-10 electrodes

(d) Patient 4

0.00 0.25 0.50 0.75 1.00
Normalized score

RHH7
LHB3
RHH9
RHH8
LHB9

RHB10
LHB7
LHB8
LHB1
LHB2

Top-10 electrodes

(e) Patient 5

0.0 0.5 1.0
Normalized score

LHD1
L26

LOT6
LPT2

L2
LMT 12

LOT5
L23

LMT 11
L24

Top-10 electrodes

(f) Patient 6

0.00 0.25 0.50 0.75 1.00
Normalized score

LAHC7
LMPH2
LAHC8
LPPH8
LMPH7
LPHC8
LMHC8
LMPH3
LPPH6
LPPH7

Top-10 electrodes

(g) Patient 7

0.0 0.5 1.0
Normalized score

LDAC3
ROFC3

LPH2
RPHG4
RPHG3

LPH3
ROFC4

RAH4
RAH5
LAD6

Top-10 electrodes

(h) Patient 8

Figure E.7. Top ten electrodes by AP@10 score for the average rankings, using
PLV as FC measure. The two plots in red indicate those patients for which the
SOZ was not identified clinically. Bold labels indicate that the corresponding
electrode was marked as a potential SOZ by electroencephalographers.

193 E.5 Additional results

significantly different, with p-value of a two-sided t-test p� 0.05 for all pairs on
both tasks (detection and localisation).

194 E.5 Additional results

Appendix F

Additional details on autoregressive
models

F.1 Equivalence between (7.1) and (7.12).

Let (G, d) be the Euclidean space (R,‖·‖), H(a, b) = a+ b, and

Gt,p = [Gt , . . . ,Gt−p+1]. (F.1)

Then
Gt+1 = H(φ(Gt,p),η) = φ(Gt,p) +η. (F.2)

Regarding assumption (7.8), we see that the integral in Equation (7.9) (known
as Fréchet function of Q) becomes

∫

G

d(G,G′)2dQ(G) =
∫

R

G − G′

2
dQ(G) (F.3)

and
∫

G

d(H(φ(Gt,p),η),G′)2 dQ(η) =

∫

R

φ(Gt,p) +η− G′

2
dQ(η) = (F.4)

=

∫

R

¦

φ(Gt,p)− G′

2
+ ‖η‖2 − 2η(φ(Gt,p)− G′)

©

dQ(η) = (F.5)

=

φ(Gt,p)− G′

2
+ Var[η]− 2E[η](φ(Gt,p)− G′). (F.6)

We conclude that (7.1) and (7.12) are equivalent since

φ(Gt,p) ∈ Ef[H(φ(Gt,p),η)] ⇔ E[η] = 0. (F.7)

and
Var[η]<∞ ⇔ Varf[η]<∞. (F.8)

195

196 F.1 Equivalence between (7.1) and (7.12).

Appendix G

Spektral

In this Appendix, we report our efforts in the development of open-source soft-
ware related to this thesis and GML in general.

One of the major challenges faced by researchers and software developers
who wish to contribute to the larger scientific community is to make software
both accessible and intuitive, so that even non-technical audiences can benefit
from the advances carried by intelligent systems. In this spirit, Keras is an ap-
plication programming interface (API) for creating neural networks, developed
according to the guiding principle that “being able to go from idea to result with
the least possible delay is key to doing good research” [36]. Keras is designed
to reduce the cognitive load of end-users, shifting the focus away from the boil-
erplate implementation details and allowing instead to focus on the creation of
models. As such, Keras is extremely beginner-friendly and, for many, an entry
point to machine learning itself. At the same time, Keras integrates smoothly
with its TensorFlow [1] backend and enables users to build any model that they
could have implemented in pure TensorFlow. This flexibility makes Keras an ex-
cellent tool even for expert deep learning practitioners and has recently led to
TensorFlow’s adoption of Keras as the official interface to the framework.

Figure G.1. The logo of Spektral.

197

198

Motivated by the increasing interest in GNNs from the scientific community,
and the consequent need for an easy-to-use and complete software library for
GNNs, a core contribution of the doctorate was the development of Spektral, a
Python library for building GNNs using TensorFlow and the Keras API. Spektral
implements some of the most important papers from the GNN literature as Keras
layers, and it integrates seamlessly within Keras models and with the most impor-
tant features of Keras like the training loop, callbacks, distributed training, and
automatic support for GPUs and TPUs. As such, Spektral inherits the philosophy
of ease of use and flexibility that characterises Keras. The components of Spek-
tral act as standard TensorFlow operations and can be easily used even in more
advanced settings, integrating tightly with all the features of TensorFlow and al-
lowing for easy deployment to production systems. For these reasons, Spektral is
the ideal library to implement GNNs in the TensorFlow ecosystem, both for total
beginners and experts alike. The documentation and source code of Spektral is
available at the following URL: https://graphneural.network.

We have also presented the main features of Spektral in reference [74].

https://graphneural.network

Appendix H

Hardware and software

All the experimental results reported in this thesis were obtained on a machine
configured with the following hardware:

• 2 Intel Xeon Silver 4116 CPUs (48 threads in total);

• 126 GB of RAM;

• 1 NVIDIA Titan XP GPU;

• 2 Nvidia Titan V GPUs;

• 1 Nvidia GeForce RTX 2080 GPU.

The operating system for the machine was Ubuntu 16.04.1 LTS. All models
were implemented in Python 3, and all machine learning code was based on Ten-
sorFlow 2 [1] and Spektral [74]. We have published the code for all experiments
discussed in this thesis on github.com (see the relevant references for the exact
URLs).

199

github.com

200

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, and Patrick Mar-
tineau. An exact graph edit distance algorithm for solving pattern recog-
nition problems. In 4th International Conference on Pattern Recognition
Applications and Methods 2015, 2015.

[3] Leman Akoglu and Christos Faloutsos. Anomaly, event, and fraud detec-
tion in large network datasets. In Proceedings of the sixth ACM interna-
tional conference on Web search and data mining, pages 773–774. ACM,
2013.

[4] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly
detection and description: a survey. Data mining and knowledge discovery,
29(3):626–688, 2015.

[5] Cesare Alippi and Manuel Roveri. The (not) far-away path to smart cyber-
physical systems: An information-centric framework. Computer, 50(4):
38–47, 2017.

[6] James Atwood and Don Towsley. Diffusion-convolutional neural net-
works. In Advances in Neural Information Processing Systems, pages 1993–
2001, 2016.

[7] Davide Bacciu and Luigi Di Sotto. A non-negative factorization approach
to node pooling in graph convolutional neural networks. In Proceedings
of the 18th International Conference of the Italian Association for Artificial
Intelligence. AIIA, 2019.

201

202 Bibliography

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In Yoshua Bengio
and Yann LeCun, editors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1409.0473.

[9] Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting
Chen, Yizhou Sun, and Wei Wang. Unsupervised inductive graph-
level representation learning via graph-graph proximity. arXiv preprint
arXiv:1904.01098, 2019.

[10] Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational
poincaré graph embeddings. Advances in Neural Information Processing
Systems, 32:4463–4473, 2019.

[11] Ian Barnett and Jukka-Pekka Onnela. Change point detection in correla-
tion networks. Scientific reports, 6:18893, 2016.

[12] A M Bastos and J-M Schoffelen. A tutorial review of functional connectiv-
ity analysis methods and their interpretational pitfalls. Frontiers in Systems
Neuroscience, 9:175, 2016.

[13] Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua
Teng. Spectral sparsification of graphs: theory and algorithms. Com-
munications of the ACM, 56(8):87–94, 2013.

[14] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti,
David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational in-
ductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[15] Lowell W Beineke, Robin J Wilson, and Peter J Cameron. Topics in alge-
braic graph theory, volume 102. Cambridge University Press, 2004.

[16] Oscar Benjamin, Thomas HB Fitzgerald, Peter Ashwin, Krasimira Tsaneva-
Atanasova, Fahmida Chowdhury, Mark P Richardson, and John R Terry.
A phenomenological model of seizure initiation suggests network struc-
ture may explain seizure frequency in idiopathic generalised epilepsy. The
Journal of Mathematical Neuroscience, 2(1):1–30, 2012.

http://arxiv.org/abs/1409.0473

203 Bibliography

[17] Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolu-
tional matrix completion. arXiv preprint arXiv:1706.02263, 2017.

[18] Rabi Bhattacharya and Lizhen Lin. Differential geometry for model inde-
pendent analysis of images and other non-euclidean data: Recent devel-
opments. arXiv preprint arXiv:1801.00898, 2018.

[19] Filippo Maria Bianchi, Enrico Maiorino, Lorenzo Livi, Antonello Rizzi, and
Alireza Sadeghian. An agent-based algorithm exploiting multiple local dis-
similarities for clusters mining and knowledge discovery. Soft Computing,
21(5):1347–1369, 2017.

[20] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral
clustering with graph neural networks for graph pooling. In International
Conference on Machine Learning (ICML), 2020.

[21] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi.
Hierarchical representation learning in graph neural networks with node
decimation pooling. IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[22] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi.
Graph neural networks with convolutional arma filters. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

[23] Cristian Bodnar, Catalina Cangea, and Pietro Liò. Deep graph mapper:
Seeing graphs through the neural lens. arXiv preprint arXiv:2002.03864,
2020.

[24] C Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Pub-
blicazioni del R. Istituto Superiore di Scienze Economiche e Commericiali di
Firenze, 8:3–62, 1936.

[25] Sebastien Bougleux, Luc Brun, Vincenzo Carletti, Pasquale Foggia, Benoit
Gaüzère, and Mario Vento. Graph edit distance as a quadratic assignment
problem. Pattern Recognition Letters, 87:38–46, 2017.

[26] Mary AB Brazier. Spread of seizure discharges in epilepsy: anatomical
and electrophysiological considerations. Experimental Neurology, 36(2):
263–272, 1972.

204 Bibliography

[27] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. Geometric deep learning: going beyond euclidean data.
IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[28] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[29] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-
tral networks and locally connected networks on graphs. arXiv preprint
arXiv:1312.6203, 2013.

[30] S P Burns, Sabato Santaniello, R B Yaffe, C C Jouny, N E Crone, G K
Bergey, W S Anderson, and S V Sarma. Network dynamics of the brain
and influence of the epileptic seizure onset zone. Proceedings of the Na-
tional Academy of Sciences, 111(49):321–330, 2014. doi: 10.1073/pnas.
1401752111.

[31] Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural
networks. arXiv preprint arXiv:2102.01350, 2021.

[32] Catalina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and
Pietro Liò. Towards sparse hierarchical graph classifiers. arXiv preprint
arXiv:1811.01287, 2018.

[33] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher
Morris, and Petar Veličković. Combinatorial optimization and reasoning
with graph neural networks. arXiv preprint arXiv:2102.09544, 2021.

[34] Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer,
and Patrick van der Smagt. Metrics for deep generative models. In AIS-
TATS, 2018.

[35] Minsu Cho, Jian Sun, Olivier Duchenne, and Jean Ponce. Finding matches
in a haystack: A max-pooling strategy for graph matching in the presence
of outliers. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2083–2090, 2014.

[36] Francois Chollet et al. Keras. https://keras.io, 2015.

https://keras.io

205 Bibliography

[37] Adam Coates and Andrew Y Ng. Selecting receptive fields in deep net-
works. In Advances in neural information processing systems, pages 2528–
2536, 2011.

[38] Maxwell D Collins, Ji Liu, Jia Xu, Lopamudra Mukherjee, and Vikas Singh.
Spectral clustering with a convex regularizer on millions of images. In
European Conference on Computer Vision, pages 282–298. Springer, 2014.

[39] Padraig Corcoran. Function space pooling for graph convolutional net-
works. arXiv preprint arXiv:1905.06259, 2019.

[40] Ian Covert, Balu Krishnan, Imad Najm, Jiening Zhan, Matthew Shore,
John Hixson, and M J Po. Temporal Graph Convolutional Networks for
Automatic Seizure Detection. arXiv preprint arXiv:1905.01375, 2019.

[41] Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu,
Kyle Cranmer, David Spergel, and Shirley Ho. Discovering sym-
bolic models from deep learning with inductive biases. arXiv preprint
arXiv:2006.11287, 2020.

[42] Anil Damle, Victor Minden, and Lexing Ying. Robust and efficient multi-
way spectral clustering. arXiv preprint arXiv:1609.08251, 2016.

[43] Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M.
Tomczak. Hyperspherical variational auto-encoders. 34th Conference on
Uncertainty in Artificial Intelligence (UAI-18), 2018.

[44] Philip I Davies and Nicholas J Higham. Numerically stable generation of
correlation matrices and their factors. BIT Numerical Mathematics, 40(4):
640–651, 2000.

[45] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model
for small molecular graphs. arXiv preprint arXiv:1805.11973, 2018.

[46] Michaël Defferrard, Lionel Martin, Rodrigo Pena, and Nathanaël Per-
raudin. Pygsp: Graph signal processing in python. URL https://github.

com/epfl-lts2/pygsp/.

[47] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convo-
lutional neural networks on graphs with fast localized spectral filtering.
In Advances in Neural Information Processing Systems, pages 3844–3852,
2016.

https://github.com/epfl-lts2/pygsp/
https://github.com/epfl-lts2/pygsp/

206 Bibliography

[48] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spec-
tral clustering and normalized cuts. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 551–556. ACM, 2004.

[49] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts
without eigenvectors a multilevel approach. IEEE transactions on pattern
analysis and machine intelligence, 29(11):1944–1957, 2007.

[50] Frederik Diehl. Edge contraction pooling for graph neural networks.
CoRR, abs/1905.10990, 2019. URL http://arxiv.org/abs/1905.

10990.

[51] Frederik Diehl, Thomas Brunner, Michael Truong Le, and Alois Knoll. To-
wards graph pooling by edge contraction. ICML Workshop on Learning
and Reasoning with Graph-Structured Representations, 2019.

[52] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in nonstationary
environments: A survey. IEEE Computational Intelligence Magazine, 10(4):
12–25, Nov. 2015. ISSN 1556-603X. doi: 10.1109/MCI.2015.2471196.

[53] F. Dorfler and F. Bullo. Kron reduction of graphs with applications to elec-
trical networks. IEEE Transactions on Circuits and Systems I: Regular Pa-
pers, 60(1):150–163, Jan 2013. ISSN 1549-8328. doi: 10.1109/TCSI.
2012.2215780.

[54] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bom-
barell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolu-
tional networks on graphs for learning molecular fingerprints. In Advances
in neural information processing systems, pages 2224–2232, 2015.

[55] Stefan Fankhauser, Kaspar Riesen, and Horst Bunke. Speeding up graph
edit distance computation through fast bipartite matching. In Interna-
tional Workshop on Graph-Based Representations in Pattern Recognition,
pages 102–111. Springer, 2011.

[56] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based
image segmentation. International journal of computer vision, 59(2):167–
181, 2004.

http://arxiv.org/abs/1905.10990
http://arxiv.org/abs/1905.10990

207 Bibliography

[57] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller.
Splinecnn: Fast geometric deep learning with continuous b-spline ker-
nels. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 869–877, 2018.

[58] Alex M Fout. Protein interface prediction using graph convolutional net-
works. PhD thesis, Colorado State University, 2017.

[59] Maurice Fréchet. Les éléments aléatoires de nature quelconque dans un
espace distancié. In Annales de l’Institut Henri Poincaré, volume 10, pages
215–310, 1948.

[60] Victor Fung, Jiaxin Zhang, Eric Juarez, and Bobby G Sumpter. Benchmark-
ing graph neural networks for materials chemistry. npj Computational Ma-
terials, 7(1):1–8, 2021.

[61] Soham Gadgil, Qingyu Zhao, Ehsan Adeli, Adolf Pfefferbaum, Edith V Sul-
livan, and Kilian M Pohl. Spatio-temporal graph convolution for functional
mri analysis. arXiv preprint arXiv:2003.10613, 2020.

[62] P Gainza, F Sverrisson, F Monti, E Rodolà, D Boscaini, MM Bronstein, and
BE Correia. Deciphering interaction fingerprints from protein molecular
surfaces using geometric deep learning. Nature Methods, 17(2):184–192,
2020.

[63] Claudio Gallicchio and Alessio Micheli. Fast and deep graph neural net-
works. In AAAI, pages 3898–3905, 2020.

[64] Will Gersch and GV Goddard. Epileptic focus location: spectral analysis
method. Science, 169(3946):701–702, 1970.

[65] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. arXiv
preprint arXiv:1704.01212, 2017.

[66] R. Giryes, G. Sapiro, and A. M. Bronstein. Deep neural networks with
random Gaussian weights: A universal classification strategy? IEEE Trans-
actions on Signal Processing, 64(13):3444–3457, Jul. 2016. ISSN 1053-
587X. doi: 10.1109/TSP.2016.2546221.

[67] Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler
Leman, Daniel Berenberg, Tommi Vatanen, Chris Chandler, Bryn C Taylor,

208 Bibliography

Ian M Fisk, Hera Vlamakis, et al. Structure-based protein function predic-
tion using graph convolutional networks. Nature communications, 12(1):
1–14, 2021.

[68] K Goebel and WA Kirk. A fixed point theorem for asymptotically nonex-
pansive mappings. Proceedings of the American Mathematical Society, 35
(1):171–174, 1972.

[69] Michel X Goemans and David P Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems using semidefinite
programming. Journal of the ACM (JACM), 42(6):1115–1145, 1995.

[70] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel
Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-
Guzik. Automatic chemical design using a data-driven continuous repre-
sentation of molecules. ACS central science, 4(2):268–276, 2018.

[71] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in Neural Information Processing Systems, pages
2672–2680, 2014.

[72] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for
learning in graph domains. In Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., volume 2, pages 729–734. IEEE,
2005.

[73] Leo J Grady and Jonathan R Polimeni. Discrete calculus: Applied analysis
on graphs for computational science. Springer Science & Business Media,
2010.

[74] Daniele Grattarola and Cesare Alippi. Graph neural networks in tensor-
flow and keras with spektral. IEEE Computational Intelligence Magazine,
2021.

[75] Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Adversarial autoen-
coders with constant-curvature latent manifolds. Applied Soft Computing,
81:105511, 2019.

[76] Daniele Grattarola, Daniele Zambon, Cesare Alippi, and Lorenzo Livi.
Change detection in graph streams by learning graph embeddings on

209 Bibliography

constant-curvature manifolds. IEEE Transactions on Neural Networks and
Learning Systems, 2019.

[77] Daniele Grattarola, Lorenzo Livi, Cesare Alippi, Richard Wennberg, and
Taufik Valiante. Unsupervised seizure localisation with attention-based
graph neural networks. bioRxiv, 2020.

[78] Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Learning graph cel-
lular automata. In Neural Information Processing Systems, 2021.

[79] Daniele Grattarola, Daniele Zambon, Filippo Maria Bianchi, and Cesare
Alippi. Understanding pooling in graph neural networks. arXiv preprint
arXiv:2110.05292, 2021.

[80] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan
Pascanu, Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Ra-
poso, Adam Santoro, et al. Hyperbolic attention networks. arXiv preprint
arXiv:1805.09786, 2018.

[81] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Advances in Neural Information Processing
Systems, pages 1024–1034, 2017.

[82] Yufei Han and Maurizio Filippone. Mini-batch spectral clustering. In 2017
International Joint Conference on Neural Networks (IJCNN), pages 3888–
3895. IEEE, 2017.

[83] Kimiaki Hashiguchi, Takato Morioka, Fumiaki Yoshida, Yasushi Miyagi,
Shinji Nagata, Ayumi Sakata, and Tomio Sasaki. Correlation between
scalp-recorded electroencephalographic and electrocorticographic activi-
ties during ictal period. Seizure, 16(3):238–247, 2007.

[84] Stewart Heitmann and Michael Breakspear. Putting the “dynamic” back
into dynamic functional connectivity. Network Neuroscience, pages 1–61,
2017. doi: 10.1162/NETN_a_00041.

[85] Gecia Bravo Hermsdorff and Lee M Gunderson. A unifying framework for
spectrum-preserving graph sparsification and coarsening. arXiv preprint
arXiv:1902.09702, 2019.

[86] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735–1780, 1997.

210 Bibliography

[87] Petter Holme. Modern temporal network theory: a colloquium. The Eu-
ropean Physical Journal B, 88(9):234, 2015.

[88] Gao Hongyang and Ji Shuiwang. Graph u-net. Submitted to ICLR, 2019.

[89] R A Horn and C R Johnson. Matrix analysis. Cambridge university press,
2012.

[90] Yasuhiko Ikebe, Toshiyuki Inagaki, and Sadaaki Miyamoto. The mono-
tonicity theorem, cauchy’s interlace theorem, and the courant-fischer the-
orem. The American Mathematical Monthly, 94(4):352–354, 1987.

[91] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Interna-
tional conference on machine learning, pages 448–456. PMLR, 2015.

[92] Elvin Isufi, Andreas Loukas, Andrea Simonetto, and Geert Leus. Autore-
gressive moving average graph filtering. arXiv preprint arXiv:1602.04436,
2016.

[93] B J Jain. On the geometry of graph spaces. Discrete Applied Mathematics,
214:126–144, 2016. doi: 10.1016/j.dam.2016.06.027.

[94] B J Jain. Statistical graph space analysis. Pattern Recognition, 60:802–812,
2016. doi: 10.1016/j.patcog.2016.06.023.

[95] Viktor K Jirsa, William C Stacey, Pascale P Quilichini, Anton I Ivanov, and
Christophe Bernard. On the nature of seizure dynamics. Brain, 137(8):
2210–2230, 2014.

[96] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction
with alphafold. Nature, 596(7873):583–589, 2021.

[97] George Karypis. Metis: Unstructured graph partitioning and sparse matrix
ordering system. Technical report, 1997.

[98] Nicolas Keriven and Gabriel Peyré. Universal invariant and
equivariant graph neural networks. In Advances in Neural In-
formation Processing Systems 32, pages 7090–7099. Curran As-
sociates, Inc., 2019. URL http://papers.nips.cc/paper/

8931-universal-invariant-and-equivariant-graph-neural-networks.

pdf.

http://papers.nips.cc/paper/8931-universal-invariant-and-equivariant-graph-neural-networks.pdf
http://papers.nips.cc/paper/8931-universal-invariant-and-equivariant-graph-neural-networks.pdf
http://papers.nips.cc/paper/8931-universal-invariant-and-equivariant-graph-neural-networks.pdf

211 Bibliography

[99] A N Khambhati, K A Davis, B S Oommen, S H Chen, T H Lucas, Brian Litt,
and D S Bassett. Dynamic network drivers of seizure generation, propaga-
tion and termination in human neocortical epilepsy. PLoS Computational
biology, 11(12):e1004608, 2015. doi: 10.1371/journal.pcbi.1004608.

[100] A N Khambhati, K A Davis, T H Lucas, Brian Litt, and D S Bassett. Virtual
cortical resection reveals push-pull network control preceding seizure evo-
lution. Neuron, 91(5):1170–1182, 2016. doi: 10.1016/j.neuron.2016.07.
039.

[101] Daesik Kim, YoungJoon Yoo, Jee-Soo Kim, Sangkuk Lee, and Nojun Kwak.
Dynamic graph generation network: Generating relational knowledge
from diagrams. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4167–4175, 2018.

[102] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representations, 2015.

[103] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

[104] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max
Welling. Semi-supervised learning with deep generative models. In Ad-
vances in Neural Information Processing Systems, pages 3581–3589, 2014.

[105] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard
Zemel. Neural relational inference for interacting systems. arXiv preprint
arXiv:1802.04687, 2018.

[106] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[107] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308, 2016.

[108] Boris Knyazev, Graham W. Taylor, and Mohamed R. Amer. Understanding
attention in graph neural networks. CoRR, abs/1905.02850, 2019. URL
http://arxiv.org/abs/1905.02850.

[109] E O Korman. Autoencoding topology. arXiv preprint arXiv:1803.00156,
2018.

http://arxiv.org/abs/1905.02850

212 Bibliography

[110] Mark A Kramer, Uri T Eden, Sydney S Cash, and Eric D Kolaczyk. Network
inference with confidence from multivariate time series. Physical Review
E, 79(6):061916, 2009.

[111] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Gram-
mar variational autoencoder. In International Conference on Machine
Learning, pages 1945–1954, 2017.

[112] Patrick Kwan and M J Brodie. Early identification of refractory epilepsy.
New England Journal of Medicine, 342(5):314–319, 2000.

[113] Jean-Philippe Lachaux, Eugenio Rodriguez, Jacques Martinerie, and Fran-
cisco J Varela. Measuring phase synchrony in brain signals. Human Brain
Mapping, 8(4):194–208, 1999.

[114] Marc T Law, Raquel Urtasun, and Richard S Zemel. Deep spectral clus-
tering learning. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1985–1994. JMLR. org, 2017.

[115] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[116] H W Lee, Jagriti Arora, Xenophon Papademetris, Fuyuze Tokoglu, Michiro
Negishi, Dustin Scheinost, Pue Farooque, Hal Blumenfeld, D D Spencer,
and R T Constable. Altered functional connectivity in seizure onset zones
revealed by fmri intrinsic connectivity. Neurology, 83(24):2269–2277,
2014.

[117] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling.
arXiv preprint arXiv:1904.08082, 2019.

[118] Huan Lei, Naveed Akhtar, and Ajmal Mian. Octree guided cnn with spher-
ical kernels for 3d point clouds. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9631–9640, 2019.

[119] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cay-
leynets: Graph convolutional neural networks with complex rational spec-
tral filters. arXiv preprint arXiv:1705.07664, 2017.

[120] Ron Levie, Isufi Elvin, and Kutyniok Gitta. On the transferability of spectral
graph filters. arXiv preprint, 2019.

213 Bibliography

[121] Aming Li, S P Cornelius, Y-Y Liu, Long Wang, and A-L Barabási. The funda-
mental advantages of temporal networks. Science, 358(6366):1042–1046,
2017. doi: 10.1126/science.aai7488.

[122] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph
convolutional networks for semi-supervised learning. arXiv preprint
arXiv:1801.07606, 2018.

[123] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting. In International
Conference on Learning Representations, 2018.

[124] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.

[125] L. Livi and A. Rizzi. The graph matching problem. Pattern Analysis and
Applications, 16(3):253–283, 2013. ISSN 1433-7541. doi: 10.1007/
s10044-012-0284-8.

[126] M A Lopes, M P Richardson, Eugenio Abela, Christian Rummel, Kaspar
Schindler, Marc Goodfellow, and J R Terry. An optimal strategy for epilepsy
surgery: Disruption of the rich-club? PLoS Computational Biology, 13(8):
e1005637, 2017.

[127] M A Lopes, Leandro Junges, Wessel Woldman, Marc Goodfellow, and J R
Terry. The role of excitability and network structure in the emergence of
focal and generalized seizures. Frontiers in Neurology, 11:74, 2020.

[128] Andreas Loukas. Graph reduction with spectral and cut guarantees. Jour-
nal of Machine Learning Research, 20(116):1–42, 2019.

[129] Andreas Loukas, Andrea Simonetto, and Geert Leus. Distributed autore-
gressive moving average graph filters. IEEE Signal Processing Letters, 22
(11):1931–1935, 2015.

[130] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches
to recurrent neural network training. Computer Science Review, 3(3):127–
149, 2009. doi: 10.1016/j.cosrev.2009.03.005.

[131] JF Lutzeyer and AT Walden. Comparing graph spectra of adjacency and
laplacian matrices. arXiv preprint arXiv:1712.03769, 2017.

214 Bibliography

[132] Enxhell Luzhnica, Ben Day, and Pietro Lio. Clique pooling for graph clas-
sification. International Conference of Learning Representations (ICLR) –
Representation Learning on Graphs and Manifolds workshop, 2019.

[133] Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph con-
volutional networks with eigenpooling. arXiv preprint arXiv:1904.13107,
2019.

[134] Takanori Maehara. Revisiting graph neural networks: All we have is low-
pass filters. arXiv preprint arXiv:1905.09550, 2019.

[135] Jack B Maguire, Daniele Grattarola, Vikram Khipple Mulligan, Eugene
Klyshko, and Hans Melo. Xenet: Using a new graph convolution to ac-
celerate the timeline for protein design on quantum computers. PLoS
computational biology, 17(9):e1009037, 2021.

[136] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow.
Adversarial autoencoders. In International Conference on Learning Repre-
sentations, 2016.

[137] Henry B Mann and Donald R Whitney. On a test of whether one of two
random variables is stochastically larger than the other. The Annals of
Mathematical Statistics, pages 50–60, 1947.

[138] Gary Marcus. The algebraic mind, 2001.

[139] Gary Marcus. Deep learning: A critical appraisal. arXiv preprint
arXiv:1801.00631, 2018.

[140] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the
universality of invariant networks. In International Conference on Machine
Learning, pages 4363–4371, 2019.

[141] A Marques, A Ribeiro, and S Segarra. Graph signal processing: Funda-
mentals and applications to diffusion processes. In Proc. Int. Conf. Accous-
tic, Speech and Signal Processing,(ICASSP), 2017.

[142] N. Masuda and R. Lambiotte. A Guide to Temporal Networks. Series
on Complexity Science. World Scientific Publishing Company, Singapore,
2016.

215 Bibliography

[143] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a
feather: Homophily in social networks. Annual review of sociology, 27
(1):415–444, 2001.

[144] Donald Meagher. Geometric modeling using octree encoding. Computer
graphics and image processing, 19(2):129–147, 1982.

[145] Diego Mesquita, Amauri Souza, and Samuel Kaski. Rethinking pooling in
graph neural networks. Advances in Neural Information Processing Systems,
33, 2020.

[146] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient es-
timation of word representations in vector space. In ICLR (Workshop),
2013.

[147] Gabriele Monfardini, Vincenzo Di Massa, Franco Scarselli, and Marco
Gori. Graph neural networks for object localization. Frontiers in Artifi-
cial Intelligence and Applications, 141:665, 2006.

[148] D C Montgomery. Introduction to Statistical Quality Control. John Wiley
& Sons, 2007.

[149] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan
Svoboda, and Michael M Bronstein. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Proc. CVPR, volume 1, page 3,
2017.

[150] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Pe-
tra Mutzel, and Marion Neumann. Tudataset: A collection of benchmark
datasets for learning with graphs. arXiv preprint arXiv:2007.08663, 2020.

[151] Nicolò Navarin, Dinh Van Tran, and Alessandro Sperduti. Universal read-
out for graph convolutional neural networks. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–7. IEEE, 2019.

[152] M E J Newman. Networks: An Introduction. Oxford University Press,
Oxford, UK, 2010.

[153] Mark EJ Newman. Mixing patterns in networks. Physical Review E, 67(2):
026126, 2003.

216 Bibliography

[154] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning
hierarchical representations. In Advances in Neural Information Processing
Systems, pages 6341–6350, 2017.

[155] Emmanuel Noutahi, Dominique Beani, Julien Horwood, and Prudencio
Tossou. Towards interpretable sparse graph representation learning with
laplacian pooling. arXiv preprint arXiv:1905.11577, 2019.

[156] Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All
we have is low-pass filters. arXiv preprint arXiv:1905.09550, 2019.

[157] Paul L Nunez, Ramesh Srinivasan, et al. Electric fields of the brain: the
neurophysics of EEG. Oxford University Press, USA, 2006.

[158] Alan V Oppenheim, John R Buck, and Ronald W Schafer. Discrete-time
signal processing. Vol. 2. Upper Saddle River, NJ: Prentice Hall, 2001.

[159] Antonio Ortega, Pascal Frossard, Jelena Kovacević, José MF Moura, and
Pierre Vandergheynst. Graph signal processing: Overview, challenges, and
applications. Proceedings of the IEEE, 106(5):808–828, 2018.

[160] Edward Ott. Chaos in Dynamical Systems. Cambridge University Press,
2002.

[161] Benjamin Paassen, Daniele Grattarola, Daniele Zambon, Cesare Alippi,
and Barbara Eva Hammer. Graph edit networks. In International Confer-
ence on Learning Representations, 2021.

[162] Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100–
115, 1954.

[163] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

[164] Laura Palagi, Veronica Piccialli, Franz Rendl, Giovanni Rinaldi, and An-
gelika Wiegele. Computational approaches to max-cut. In Handbook on
semidefinite, conic and polynomial optimization, pages 821–847. Springer,
2012.

[165] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi
Zhang. Adversarially regularized graph autoencoder for graph embed-
ding. In Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence, IJCAI-18, pages 2609–2615. International

217 Bibliography

Joint Conferences on Artificial Intelligence Organization, 7 2018. doi:
10.24963/ijcai.2018/362.

[166] Leto Peel and Aaron Clauset. Detecting change points in the large-scale
structure of evolving networks. In AAAI, volume 15, pages 1–11, 2015.

[167] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 652–660, 2017.

[168] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space. In Ad-
vances in neural information processing systems, pages 5099–5108, 2017.

[169] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-
Dickstein. On the expressive power of deep neural networks. In interna-
tional conference on machine learning, pages 2847–2854. PMLR, 2017.

[170] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole
Von Lilienfeld. Quantum chemistry structures and properties of 134 kilo
molecules. Scientific data, 1:140022, 2014.

[171] Ekagra Ranjan, Soumya Sanyal, and Partha Pratim Talukdar. Asap: Adap-
tive structure aware pooling for learning hierarchical graph representa-
tions. arXiv preprint arXiv:1911.07979, 2019.

[172] Stephen Ranshous, Shitian Shen, Danai Koutra, Steve Harenberg, Chris-
tos Faloutsos, and Nagiza F Samatova. Anomaly detection in dynamic
networks: a survey. Wiley Interdisciplinary Reviews: Computational Statis-
tics, 7(3):223–247, 2015.

[173] Santanu Saha Ray. Graph theory with algorithms and its applications: in
applied science and technology. Springer Science & Business Media, 2012.

[174] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning
deep 3d representations at high resolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3577–3586,
2017.

[175] Krzysztof Rusek, José Suárez-Varela, Albert Mestres, Pere Barlet-Ros, and
Albert Cabellos-Aparicio. Unveiling the potential of graph neural networks

218 Bibliography

for network modeling and optimization in sdn. In Proceedings of the 2019
ACM Symposium on SDN Research, pages 140–151, 2019.

[176] Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of
deep belief networks. In Proceedings of the 25th international conference
on Machine learning, pages 872–879. ACM, 2008.

[177] Bidisha Samanta, Abir De, Gourhari Jana, Vicenc Gómez, Pratim Kumar
Chattaraj, Niloy Ganguly, and Manuel Gomez-Rodriguez. Nevae: A deep
generative model for molecular graphs. Journal of machine learning re-
search. 2020 Apr; 21 (114): 1-33, 2020.

[178] Mark Sanderson, Christopher D. Manning, Prabhakar Raghavan, and Hin-
rich Schütze. Introduction to information retrieval, cambridge university
press. 2008. isbn-13 978-0-521-86571-5, xxi+ 482 pages. Natural Lan-
guage Engineering, 16(1):100–103, 2010.

[179] Paula Sanz Leon, Stuart A Knock, M Marmaduke Woodman, Lia Domide,
Jochen Mersmann, Anthony R McIntosh, and Viktor Jirsa. The virtual
brain: a simulator of primate brain network dynamics. Frontiers in Neu-
roinformatics, 7:10, 2013.

[180] Ryoma Sato. A survey on the expressive power of graph neural networks.
arXiv preprint arXiv:2003.04078, 2020.

[181] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009.

[182] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009.

[183] Kaspar A Schindler, Stephan Bialonski, Marie-Therese Horstmann, Chris-
tian E Elger, and Klaus Lehnertz. Evolving functional network properties
and synchronizability during human epileptic seizures. Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 18(3):033119, 2008.

[184] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg,
Ivan Titov, and Max Welling. Modeling relational data with graph convo-
lutional networks. In European Semantic Web Conference, pages 593–607.
Springer, 2018.

219 Bibliography

[185] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
Neural networks, 61:85–117, 2015.

[186] Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fuku-
mizu. Equivalence of distance-based and rkhs-based statistics in hypoth-
esis testing. The Annals of Statistics, pages 2263–2291, 2013.

[187] Raghavendra Selvan, Thomas Kipf, Max Welling, Jesper H Pedersen, Jens
Petersen, and Marleen de Bruijne. Extraction of airways using graph neu-
ral networks. arXiv preprint arXiv:1804.04436, 2018.

[188] A K Shah and Sandeep Mittal. Invasive electroencephalography monitor-
ing: Indications and presurgical planning. Annals of Indian Academy of
Neurology, 17(Suppl 1):S89, 2014.

[189] Uri Shaham, Kelly Stanton, Henry Li, Boaz Nadler, Ronen Basri, and Yuval
Kluger. Spectralnet: Spectral clustering using deep neural networks. arXiv
preprint arXiv:1801.01587, 2018.

[190] Amir Shahroudy, Jun Liu, T-T Ng, and Gang Wang. NTU RGB+D: A large
scale dataset for 3d human activity analysis. In The IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas Valley, Nevada, United
States, June 2016.

[191] Hang Shao, Abhishek Kumar, and P. Thomas Fletcher. The riemannian
geometry of deep generative models. In CVPR Workshops, 2018.

[192] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
Departmental Papers (CIS), page 107, 2000.

[193] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural
networks in particle physics. Machine Learning: Science and Technology, 2
(2):021001, 2020.

[194] David I Shuman, Mohammad Javad Faraji, and Pierre Vandergheynst. A
multiscale pyramid transform for graph signals. IEEE Transactions on Sig-
nal Processing, 64(8):2119–2134, 2016.

[195] Martin Simonovsky and Nikos Komodakis. Dynamic edgeconditioned fil-
ters in convolutional neural networks on graphs. In Proc. CVPR, 2017.

220 Bibliography

[196] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards gen-
eration of small graphs using variational autoencoders. arXiv preprint
arXiv:1802.03480, 2018.

[197] Gurjeet Singh, Facundo Mémoli, and Gunnar E Carlsson. Topological
methods for the analysis of high dimensional data sets and 3d object
recognition. In SPBG, pages 91–100, 2007.

[198] Alessandro Sperduti and Antonina Starita. Supervised neural networks
for the classification of structures. IEEE Transactions on Neural Networks,
8(3):714–735, 1997.

[199] C E Stafstrom and Lionel Carmant. Seizures and epilepsy: An overview
for neuroscientists. Cold Spring Harbor Perspectives in Medicine, 5(6):
a022426, 2015.

[200] Willeke Staljanssens, Gregor Strobbe, Roel Van Holen, Gwénaël Birot,
Markus Gschwind, Margitta Seeck, Stefaan Vandenberghe, Serge Vullié-
moz, and Pieter van Mierlo. Seizure onset zone localization from ictal
high-density eeg in refractory focal epilepsy. Brain Topography, 30(2):
257–271, 2017.

[201] X Yu Stella and Jianbo Shi. Multiclass spectral clustering. In Computer
Vision, IEEE International Conference on, volume 2, pages 313–313. IEEE
Computer Society, 2003.

[202] Julian Straub, Jason Chang, Oren Freifeld, and John Fisher III. A Dirich-
let process mixture model for spherical data. In Proceedings of the 18th
International Conference on Artificial Intelligence and Statistics, volume 38,
pages 930–938, San Diego, CA, USA, 2015.

[203] Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. Less is more:
Sparse graph mining with compact matrix decomposition. Statistical Anal-
ysis and Data Mining: The ASA Data Science Journal, 1(1):6–22, 2008.

[204] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep
representations for graph clustering. In AAAI, pages 1293–1299, 2014.

[205] Peter Tiňo. Dynamical systems as temporal feature spaces. Journal of
Machine Learning Research, 21(44):1–42, 2020.

221 Bibliography

[206] Nicolas Tremblay, Paulo Goncalves, and Pierre Borgnat. Design of graph
filters and filterbanks. In Cooperative and Graph Signal Processing, pages
299–324. Elsevier, 2018.

[207] Alain Trémeau and Philippe Colantoni. Regions adjacency graph applied
to color image segmentation. IEEE Transactions on image processing, 9(4):
735–744, 2000.

[208] Luca Trevisan. Max cut and the smallest eigenvalue. SIAM Journal on
Computing, 41(6):1769–1786, 2012.

[209] Pieter Van Mierlo, Margarita Papadopoulou, Evelien Carrette, Paul Boon,
Stefaan Vandenberghe, Kristl Vonck, and Daniele Marinazzo. Functional
brain connectivity from eeg in epilepsy: Seizure prediction and epilepto-
genic focus localization. Progress in Neurobiology, 121:19–35, 2014.

[210] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in neural information processing systems, pages 5998–
6008, 2017.

[211] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[212] Kirill Veselkov, Guadalupe Gonzalez, Shahad Aljifri, Dieter Galea, Reza
Mirnezami, Jozef Youssef, Michael Bronstein, and Ivan Laponogov. Hyper-
foods: Machine intelligent mapping of cancer-beating molecules in foods.
Scientific reports, 9(1):1–12, 2019.

[213] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Se-
quence to sequence for sets. arXiv preprint arXiv:1511.06391, 2015.

[214] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and com-
puting, 17(4):395–416, 2007.

[215] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bron-
stein, and Justin M Solomon. Dynamic graph cnn for learning on point
clouds.(2018). arXiv preprint arXiv:1801.07829, 2018.

222 Bibliography

[216] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification
from scratch with deep neural networks: A strong baseline. In 2017 Inter-
national joint conference on neural networks (IJCNN), pages 1578–1585.
IEEE, 2017.

[217] David S Watkins. Fundamentals of matrix computations, volume 64. John
Wiley & Sons, 2004.

[218] Duncan J Watts and Steven H Strogatz. Collective dynamics of small-
world networks. nature, 393(6684):440–442, 1998.

[219] Kurt E Weaver, WA Chaovalitwongse, Edward J Novotny, Andrew Poliakov,
Thomas J Grabowski Jr, and Jeffrey G Ojemann. Local functional connec-
tivity as a pre-surgical tool for seizure focus identification in non-lesion,
focal epilepsy. Frontiers in Neurology, 4:43, 2013.

[220] Zaiwen Wen and Wotao Yin. A feasible method for optimization with or-
thogonality constraints. Mathematical Programming, 142(1-2):397–434,
2013.

[221] James D Wilson, Nathaniel T Stevens, and William H Woodall. Modeling
and detecting change in temporal networks via a dynamic degree cor-
rected stochastic block model. arXiv preprint arXiv:1605.04049, 2016.

[222] R. C. Wilson, E. R. Hancock, E. Pekalska, and R. P. W. Duin. Spherical and
hyperbolic Embeddings of data. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(11):2255–2269, Nov. 2014. ISSN 0162-8828.
doi: 10.1109/TPAMI.2014.2316836.

[223] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty,
Tao Yu, and Kilian Q Weinberger. Simplifying graph convolutional net-
works. arXiv preprint arXiv:1902.07153, 2019.

[224] Jun Wu, Jingrui He, and Jiejun Xu. Net: Degree-specific graph neural net-
works for node and graph classification. arXiv preprint arXiv:1906.02319,
2019.

[225] Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning Gao, Shucheng Li,
Jian Pei, and Bo Long. Graph neural networks for natural language pro-
cessing: A survey. arXiv preprint arXiv:2106.06090, 2021.

223 Bibliography

[226] Shiwen Wu, Fei Sun, Wentao Zhang, and Bin Cui. Graph neural networks
in recommender systems: a survey. arXiv preprint arXiv:2011.02260,
2020.

[227] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

[228] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,
Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep representation
for volumetric shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912–1920, 2015.

[229] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and Philip S Yu. A comprehensive survey on graph neural networks. arXiv
preprint arXiv:1901.00596, 2019.

[230] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 2020.

[231] Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural net-
works for an accurate and interpretable prediction of material properties.
Physical review letters, 120(14):145301, 2018.

[232] Yu Xie, Chuanyu Yao, Maoguo Gong, Cheng Chen, and AK Qin. Graph con-
volutional networks with multi-level coarsening for graph classification.
Knowledge-Based Systems, page 105578, 2020.

[233] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Rus-
lan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell:
Neural image caption generation with visual attention. In International
conference on machine learning, pages 2048–2057, 2015.

[234] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How power-
ful are graph neural networks? arXiv preprint arXiv:1810.00826, 2018.

[235] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convo-
lutional networks for skeleton-based action recognition. In AAAI, 2018.

224 Bibliography

[236] Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. Syncspeccnn: Syn-
chronized spectral cnn for 3d shape segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2282–
2290, 2017.

[237] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamil-
ton, and Jure Leskovec. Hierarchical graph representation learning with
differentiable pooling. arXiv preprint arXiv:1806.08804, 2018.

[238] Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and Jure Leskovec.
Graphrnn: Generating realistic graphs with deep auto-regressive models.
arXiv preprint arXiv:1802.08773, 2018.

[239] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph
neural networks. Advances in Neural Information Processing Systems, 33,
2020.

[240] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolu-
tional networks: A deep learning framework for traffic forecasting. arXiv
preprint arXiv:1709.04875, 2017.

[241] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos,
Russ R Salakhutdinov, and Alexander J Smola. Deep sets. In Advances
in neural information processing systems, pages 3391–3401, 2017.

[242] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li,
Igor Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward
Lockhart, et al. Relational deep reinforcement learning. arXiv preprint
arXiv:1806.01830, 2018.

[243] D. Zambon, C. Alippi, and L. Livi. Concept drift and anomaly detection
in graph streams. IEEE Transactions on Neural Networks and Learning Sys-
tems, pages 1–14, Mar. 2018. doi: 10.1109/TNNLS.2018.2804443.

[244] Daniele Zambon, Lorenzo Livi, and Cesare Alippi. Detecting changes in
sequences of attributed graphs. In 2017 IEEE Symposium Series on Com-
putational Intelligence (SSCI), pages 1–7. IEEE, 2017.

[245] Daniele Zambon, Lorenzo Livi, and Cesare Alippi. Anomaly and change
detection in graph streams through constant-curvature manifold embed-
dings. In 2018 International Joint Conference on Neural Networks (IJCNN),
pages 1–7. IEEE, 2018.

225 Bibliography

[246] Daniele Zambon, Cesare Alippi, and Lorenzo Livi. Change-point methods
on a sequence of graphs. IEEE Transactions on Signal Processing, 67(24):
6327–6341, 2019.

[247] Daniele Zambon, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Au-
toregressive models for sequences of graphs. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2019.

[248] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-
to-end deep learning architecture for graph classification. In Proceedings
of AAAI Conference on Artificial Inteligence, 2018.

[249] Denny Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bern-
hard Schölkopf. Learning with local and global consistency. In Advances
in neural information processing systems, pages 321–328, 2004.

[250] Philipp Zumstein. Comparison of spectral methods through the adjacency
matrix and the laplacian of a graph. TH Diploma, ETH Zürich, 2005.

	Contents
	Figures
	Tables
	Nomenclature
	Introduction
	Contributions
	Thesis outline
	Publications

	I Operators
	Background
	Definitions and notation
	Spectral graph theory
	Spectral analysis of the Laplacian
	Graph Fourier transform and graph convolution

	Graph neural networks
	Convolutional operators
	Pooling operators
	Readout operators

	Convolution: GNNs with ARMA filters
	ARMA graph filters
	ARMA1 GNN filter
	ARMAK GNN filter
	Properties and relationship with other approaches
	Spectral analysis of ARMA GNNs
	Experiments with ARMA GNNs

	Pooling
	Select, reduce, connect
	SRC as embedding operations
	Taxonomy of graph pooling

	MinCut pooling
	Minimum cut and spectral clustering
	Spectral clustering with GNNs
	Pooling and graph coarsening
	Experiments with MinCut

	Node decimation pooling
	Node decimation with maximum cut spectral partitioning
	Link construction on the coarsened graph
	Graph sparsification
	Analysis and implementation details

	Experiments with pooling methods
	Preserving node attributes
	Preserving structure
	Preserving task-specific information
	Discussion

	II Architectures
	Adversarial autoencoders with constant-curvature latent manifolds
	Background
	Adversarial autoencoders
	Constant-curvature manifolds
	Distributions on CCMs

	Adversarial autoencoders on CCMs
	Method
	Related works

	Benchmarks
	Semi-supervised image classification
	Link prediction

	Molecule generation
	Setting
	Results

	Change detection
	Related works
	Method
	Setting
	Seizure detection
	Detection of hostile behaviour

	Explainable GNNs: a case study on seizure localisation
	Background
	Method
	Functional networks
	Attention mechanism
	Graph neural networks for seizure localisation
	Localising the seizure onset zone

	Results
	Data collection and pre-processing
	Per-patient analysis of the SOZ
	Results on seizure detection and localisation
	Comparison with clinical information

	Discussion

	Autoregressive models for graph sequences
	Autoregressive models for graphs
	Neural graph recurrent autoregressive model
	Extensions of NGAR

	Experiments with NGAR
	Baseline methods
	Graph-generating processes
	Details
	Results

	Conclusion
	Summary
	Future work
	Final remarks

	Appendices
	Experimental details for ARMA GNNs
	Node classification
	Graph regression
	Graph classification
	Graph signal classification

	Additional discussion on NDP
	Kron reduction in graphs with self-loops
	Derivation of the maximum cut upper bound
	Relationship with Trevisan's spectral algorithm
	Spectral similarity after sparsification

	Experimental details for pooling operators
	Experimental Details
	Preliminaries
	Preserving node attributes
	Preserving structure
	Preserving task-specific information
	Memory usage

	Additional results
	Preserving node attributes
	Preserving structure

	Experimental details for the change detection experiments
	Additional experiments and details on seizure localisation
	Seizure generator from benjamin2012phenomenological
	The Virtual Brain simulator
	GNN training details
	Baseline training details
	Additional results

	Additional details on autoregressive models
	Equivalence between (7.1) and (7.12).

	Spektral
	Hardware and software
	Bibliography

