
Analyzing System Performance
with

Probabilistic Performance Annotations

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Daniele Rogora

under the supervision of

Prof. Antonio Carzaniga and Prof. Robert Soulé

January 2021

Dissertation Committee

Prof. Matthias Hauswirth Università della Svizzera Italiana, Switzerland
Prof. Fernando Pedone Università della Svizzera Italiana, Switzerland
Prof. Amer Diwan Google, Mountain View, USA
Prof. Timothy Roscoe ETH Zurich, Switzerland

Dissertation accepted on 11 January 2021

Research Advisor Co-Advisor

Prof. Antonio Carzaniga Prof. Robert Soulé

PhD Program Director

Prof. Walter Binder, Prof. Silvia Santini

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Daniele Rogora
Lugano, 11 January 2021

ii

To Cecilia, may your journey know no limits

iii

iv

Abstract

Understanding the performance of software is complicated. For several perfor-
mance metrics, in addition to the algorithmic complexity, one must also consider
the dynamics of running a program within different combinations of hardware
and software environments. Such dynamical aspects are not visible from the
code alone, and any kind of static analysis falls short.

For example, in reality, the running time of a sort method for a list is going
to be different from the expected O(n log n) complexity if the hardware does not
have enough memory to hold the entire list.

Moreover, understanding software performance has become much more com-
plex because software systems themselves continue to grow in size and com-
plexity, and because modularity works quite well for functionality but less so
for performance. In fact, the many subsystems and libraries that compose a
modern software system usually guarantee well documented functional prop-
erties but rarely guarantee or even document any performance behavior. Fur-
thermore, while functional behaviors and problems can be reasonably isolated,
performance problems are often interaction problems and they are pervasive.

Performance analysts typically rely on profilers to understand the behavior of
software. However, traditional profilers like gprof produce aggregate informa-
tion in which the essential details of input or context-specific behaviors simply get
lost. Some previous attempts at creating more informative performance profiles
require that the analyst provide the performance models for software compo-
nents. Other performance modeling tools deduce those models automatically
but consider only the abstract algorithmic complexity, and therefore fail to find
or even express interesting runtime performance metrics.

In this thesis, we develop the concept of probabilistic performance annotations
to understand, debug, and predict the performance of software. We also intro-
duce Freud, a tool that creates performance annotations automatically for real
world C/C++ software.

A performance annotation is a textual description of the expected perfor-
mance of a software component. Performance is described as a function of fea-

v

vi

tures of the input processed by the software, as well as features of the systems on
which the software is running. Performance annotations are easy to read and un-
derstand for the developer or performance analyst, thanks to the use of concrete
performance metrics such as running time, measured in seconds, and concrete
features, such as the real variables as defined in the source code of the program
(e.g., the variable that stores the length of a list).

Freud produces performance annotations automatically using dynamic anal-
ysis. In particular, Freud instruments a binary program written in C/C++ and
collects information about performance metrics and features from the running
program. Such information is then processed to derive probabilistic performance
annotations. Freud computes regressions and clusters to create regression trees
and mixture models that describe complex, multi-modal performance behaviors.

We illustrate our approach to performance analysis and the use of Freud on
three complex systems—the ownCloud distributed storage service; the MySQL
database system; and the x264 video encoder library and application—producing
non-trivial characterizations of their performance.

Acknowledgments

My sincere thanks go to my friendly advisor Antonio for his continuous guidance,
teachings, and support.

I want to thank Alessandro, Gianpaolo, and Robert for guiding and encour-
aging me in my academic career, and Ali, Koorosh, Michele, and Fang for sharing
memorable steps during my path.

My dear friends Alberto, Cristina, Fabio, Grazia, Luca, Maria Elena, and Roberto
for sharing joyful moments that helped in overcoming adversities.

My beloved family, my center of gravity, for their unlimited patience and un-
conditional support.

Lastly, I want to thank those who think they do not deserve a spot here. Your
friendship was an invaluable contribution in writing this thesis.

The achievement would have never been possible without the unique contri-
bution of all these people. Thank you! Grazie!

vii

viii

Contents

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Performance Analysis . 2
1.2 Probabilistic Performance Annotations 6
1.3 Freud . 11
1.4 Contribution and Structure of the Thesis 12

2 Related Work 15
2.1 Traditional Profilers . 16
2.2 Performance Assertion Specification 17
2.3 Deriving Models of Code Performance 19
2.4 Distributed Profiling . 20
2.5 Hardware Aware Performance Specifications 21
2.6 Comparison with Freud . 22

3 Performance Annotations 25
3.1 Performance Annotations Language 25

3.1.1 Structure . 26
3.1.2 Basics . 27
3.1.3 Modalities and Scopes . 28
3.1.4 Mixture Models . 30
3.1.5 References to Other Annotations 31
3.1.6 Analysis Heuristics . 33
3.1.7 Grammar . 34

3.2 Uses . 35

ix

x Contents

3.2.1 Documentation and Prediction 36
3.2.2 Assertions . 37
3.2.3 Prediction . 37

4 Automatic Derivation of Performance Annotations 39
4.1 Instrumentation . 41

4.1.1 Data Collection . 41
4.1.2 Producing Output . 46
4.1.3 Perturbation and Overhead 47

4.2 Statistical Analysis . 48
4.2.1 Data Pre-processing . 50
4.2.2 Classification Tree . 52

4.3 Considerations on Composition . 58
4.4 Threats to Validity . 59

5 Freud 63
5.1 freud-dwarf . 65

5.1.1 DWARF . 65
5.1.2 Extracting the Data . 71
5.1.3 Generating Code and Info . 74
5.1.4 Parameters . 75

5.2 Instrumentation . 76
5.2.1 Intel Pin and Pin Tools . 76
5.2.2 freud-pin . 78
5.2.3 Adding Instrumentation . 78
5.2.4 Running the Program . 80
5.2.5 Collecting Features . 82
5.2.6 Producing Output . 83
5.2.7 Minimizing Perturbation and Overhead 84
5.2.8 Parameters . 84

5.3 Statistical Analysis . 85
5.3.1 freud-stats . 85
5.3.2 Checker . 87
5.3.3 Parameters . 88

5.4 Validation . 90
5.4.1 Accuracy . 90
5.4.2 Overhead and Perturbation 91
5.4.3 Running Time . 94

5.5 Other Contributions . 96

xi Contents

6 Evaluation 99
6.1 x264 . 100
6.2 MySQL . 103
6.3 ownCloud . 111

7 Conclusion and Future Work 115

A Microbenchmark 119
A.1 Function test_linear_int . 119
A.2 Function test_linear_int_pointer 120
A.3 Function test_linear_float . 121
A.4 Function test_linear_globalfeature 122
A.5 Function test_linear_charptr . 122
A.6 Function test_linear_structs . 123
A.7 Function test_linear_classes . 124
A.8 Function test_linear_fitinregister 125
A.9 Function test_linear_vector . 126
A.10 Function test_derived_class . 126
A.11 Function test_quad_int . 127
A.12 Function test_nlogn_int . 128
A.13 Function test_quad_int_wn . 129
A.14 Function test_interaction_linear_quad 130
A.15 Function test_linear_branches . 130
A.16 Function test_linear_branches_one_f 131
A.17 Function test_multi_enum . 132
A.18 Function test_grand_derived_class2 133
A.19 Function test_main_component . 134
A.20 Function test_random_clustering 136

xii Contents

Figures

1.1 Running time for std::list<int>::sort 5
1.2 Performance annotation for the running time of list<int>::sort 7
1.3 Performance annotation for minor page faults for sort 9
1.4 Performance annotation for major page faults for sort 10

3.1 A performance annotation with regressions 27
3.2 A performance annotation with regressions 29
3.3 A performance annotation with clusters 31
3.4 The C++ source code of sort_two . 32
3.5 A performance annotation without references 32
3.6 A performance annotation with references 33
3.7 A performance annotation with heuristics 34
3.8 Grammar of the performance annotations language 35

4.1 Overview of the derivation of performance annotations 41
4.2 A classification tree with mixture models 49

5.1 High-level architecture of Freud . 64
5.2 Example of DWARF tree for a C++ program 67
5.3 Architecture of freud-dwarf . 72
5.4 Architecture of freud-pin . 79
5.5 Example of plots for regressions with interaction terms 88
5.6 Runtime performance overhead of Freud 92

6.1 ff_h2645_extract_rbsp: running time. 101
6.2 encoder_encode: running time without context switches. 102
6.3 encoder_encode: wait time seen from two different features . . . 104
6.4 slice_write, sliced vs. framed processing. 105
6.5 mysql_execute_command, 5.7.24 (top) vs. 8.0.11. 107
6.6 test_quick_select(): IN vs AND/OR query. 108

xiii

xiv Figures

6.7 get_func_mm_tree: arg_count feature 109
6.8 Arithmetic progression of key_or(). 110
6.9 fseg_create_general: branch analysis. 111
6.10 Some annotations for ownCloud: linear and quadratic regressions

(top, middle) and clusters (bottom) 113
6.11 Robustness, use of annotations to detect anomalies 114

Tables

2.1 Comparison of different approaches to performance analysis . . . 22

3.1 Currently supported metrics and units of measurements 27

5.1 Parameters and default values in freud-dwarf 76
5.2 Parameters and default values in freud-pin 85
5.3 Parameters and default values in freud-statistics 89
5.4 Running time for freud-dwarf for three targets and different depths

of feature exploration . 95
5.5 Statistics and performance (running time) of the statistical analy-

sis for (a) the mysql_execute_command method of MySQL 5.7.24,
(b) the x264_8_encoder_encode method of x264 with a sampling
rate of 20 samples per second, and (c) the x264_8_encoder_encode
method of x264 with a sampling rate of 50 samples per second. . 96

xv

xvi Tables

Chapter 1

Introduction

In this thesis we introduce a methodology for dynamic performance analysis for
complex software systems. We also introduce a set of tools, Freud, that imple-
ment such analysis. Freud creates probabilistic performance annotations for soft-
ware components at different granularity, ranging from small utility methods to
the main function of a program. These performance annotations describe cost
functions that correlate some performance metrics measured on the running pro-
gram with some features describing either the state of the program or the system
on which the program is running.

The metrics are measurable quantities that describe the real behavior of the
software system when running on real hardware. Example metrics are the run-
ning time, measured in seconds, or the dynamic memory that is allocated, mea-
sured in bytes. Other interesting metrics include lock holding or waiting time,
or the number of memory page faults.

Similarly, the features are measurable values that describe the state of the
program or of the system on which it is running. A feature may indicate the
value of a variable, the number of threads being used by the program, or the
clock frequency of the CPU.

One key aspect of the analysis is that it is almost completely automated. The
performance analyst does not need a deep understanding of the system to gener-
ate rich and meaningful performance annotations. Freud automatically finds the
features that affect performance, and also manages to identify even non trivial,
multi-modal performance behaviors.

Performance annotations created with Freud can serve as an intuitive doc-
umentation of the performance of a system or as a performance specification.
Additionally, the automatic generation of performance annotations can be trig-
gered programmatically to accompany the development and evolution of a soft-

1

2 1.1 Performance Analysis

ware system, similar to functional tests in continuous integration. In such a con-
text or more generally, performance annotations can be used as assertions or test
oracles, for example to detect performance regressions. Also, since they define
cost functions, performance annotations can extrapolate what is measured ex-
perimentally to predict the performance of a software system with new inputs or
within new operating contexts.

Our performance annotation analysis improves over previous approaches to
software performance analysis and modeling. Like traditional profilers, Freud
analyzes the real behavior observed on a real system. At the same time, instead
of computing some aggregate information about the performance like traditional
profilers, Freud generates cost functions which are much more informative about
the observed and expected behavior of software. This approach was also explored
by algorithmic and input-sensitive profilers, but previous attempts failed at con-
sidering real performance metrics or at automating the analysis.

In essence, this thesis proposes a new approach to performance analysis that
combines some key aspects of previous approaches to create more informative
performance specifications. In addition to the approach, in this thesis we also
describe Freud, a set of tools that implement such approach to create perfor-
mance annotations automatically for C/C++ programs. Freud is a modularized
open source project, and can be expanded to work with other programming lan-
guages.

The chapter is structured as follows: we first introduce the challenges in per-
formance analysis (Section 1.1); then we describe the main contributions of this
thesis consisting of a new methodology for performance analysis (Section 1.2),
and of a concrete implementation of such methodology in a tool called Freud
(Section 1.3).

1.1 Performance Analysis

To manage complexity in programs, developers use a combination of tools (e.g.,
[15, 14, 21, 20]) and best practices (e.g., modularization and stylized documen-
tation). These tools and practices help with functionality but not so much with
runtime dynamical aspects such as performance. Understanding performance is
complicated. Admittedly, understanding functionality is not easy either. How-
ever, in principle, functional behaviors are fully determined by an algorithm,
which is expressed in the program code. Even if the code is non-deterministic
and therefore the resulting behavior will be stochastic in nature, that behavior
would still be fully characterized by the code. In this sense, performance analysis

3 1.1 Performance Analysis

is fundamentally more complex.
The complexity of performance analysis is twofold: one factor is the algo-

rithmic complexity that, as for functionality, is fully characterized by the algo-
rithm alone. Another factor is the embedding and interaction of the algorithm
within its execution environment and ultimately the real-world. Thus real-world
performance depends also on the compilation process, which might also be dy-
namic (just-in-time), or on the dynamic allocation of computational resources
among several other competing applications on the same execution platform,
which might itself be virtual and/or distributed and therefore affected signifi-
cantly by, for example, network traffic or power management.

Performance might refer to different metrics of the software. Some of these
metrics, such as memory allocation or number of executed instructions, can be
fully understood with the algorithmic complexity alone. Even for these metrics,
the analysis is not easy, and generally rely on asymptotic approximations, such
as O(n), Θ(n), Ω(n).

Conversely, performance metrics like the running time or number of page
faults incurred during the execution heavily depend on the dynamics of the sys-
tem that is executing the algorithm.

The analysis of these two types of performance metrics is not fundamentally
different. In the end, we always try to find correlations between a metric and
features. The difference is that, for some metrics, the noise affects the mea-
surement in possibly considerable ways, and that the dynamics of the system
introduce modalities in the behavior that are not visible from the algorithm.

It is no surprise, then, that today developers use good testing frameworks
and established practices for functional specifications (that is, the API), while
performance specifications are often ignored.

Indeed, even for implementations of classic algorithms, such as sorting algo-
rithms, the dynamics can be complex and significant to the point that asymptotic
computational complexity alone would simply be a mischaracterization. Interac-
tions with the memory subsystem, for example, can dramatically affect the per-
formance of these algorithms and introduce modalities. Therefore, developers
cannot readily understand the consequences of their code changes. If this prob-
lem exists for very basic, standard-library functions, it is even more prevalent for
large systems using several layers of external libraries. For example, invoking
an innocuous-sounding getX() method may result in RPC calls, acquiring locks,
allocating memory, or performing I/O. The outcome of not fully understanding
the performance of a method may be catastrophic; unintended changes in perfor-
mance can significantly degrade user experience with the program or the remote
service (e.g., by resulting in more timeouts for the user).

4 1.1 Performance Analysis

To illustrate the challenges in understanding the performance of even a sim-
ple method, Figure 1.1 shows the measured running time of the C++ standard
library sort method std::list<int>::sort(). We measure the running time
for a range of input sizes in a controlled environment.

We run the experiments on a Intel Xeon CPU E5-2670, with 8x8GB PC4-17000
ram modules (Samsung M393A1G40DB0), whose root partition is mounted on
a Samsung SSD 850 PRO drive. The OS is Ubuntu 18.04.5 LTS, and we compile
the program with g++ v7.5.0-3ubuntu1 18.04, using the flags -g -O2. The
system uses the default Ubuntu configuration, with the default scheduler and
the intel_pstate scaling governor. We execute the sort method in a program
that we wrote for the purpose. The program first adds its pid to a /sys/fs/c-
group/memory directory to add itself to a specific Linux Control Group, then
creates a list of integers with the size that is read as a command line argument.
The program creates the list dynamically pushing random integers to the back of
the list, and finally calls std::list<int>::sort().

To show the interactions with the memory subsystem we limit to 52MB the
amount of resident memory available to the program running sort (using Linux
Control Groups). Using much larger inputs would have the same effect, depend-
ing on the available system memory.

Despite the documented O(n log n) computational complexity of the func-
tion, Figure 1.1 shows that running time has three distinct modalities: n log n for
small inputs, a linear increase with a steep slope for medium-size inputs, and a
dramatic jump but lower slope for large inputs. Also, not only we can observe
the algorithmic complexity, but we can also see the actual absolute values that
determine precisely the running time.

As long as the system has enough memory to store the entire list, sort exhibits
the expected O(n log n) time complexity. As soon as the list becomes too big
(around 1.5M elements), some memory pages containing nodes of the list are
swapped out of the main memory to the slower storage memory. When that
happens, the time taken by Linux to store and fetch memory pages from the
storage memory dominates the execution time of the algorithm, and the time
complexity becomes linear. When the list becomes bigger than roughly 2.1M
elements, the performance behavior in our environment changes again. Thanks
to our analysis and tool, as we will show in Section 1.3, we can conclude that the
big jump in the running time is still the result of the Linux memory management
swapping memory pages out of the main memory. In fact, we see that the running
time of the sort function exhibits a trend that is very similar to the trend seen
for the number of major page faults incurred by the program.

Given this explanation of the results, we can conclude that using systems

5 1.1 Performance Analysis

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.5 1 1.5 2 2.5 3 3.5

T
im

e
 (

s
)

List Size (million)

Figure 1.1. Running time for std::list<int>::sort

with different amounts of memory (or using different sizes for the Linux Con-
trol Group) would change the results considerably. The change from the first
to the second modality in the performance would happen at different point on
the x axis, shifting to the right with more memory and shifting to the left with
less memory. Also, we can argue that running the same program with the same
amount of memory on a different machine would also change the performance
profile. For example using a CPU with a lower clock speed would probably in-
crease the slope of the n log n part, while it would probably have little to no effect
on the other parts of the graph, where the running time is mainly limited by the
storage access time.

How would a programmer wanting to use this code know about these modal-
ities and behaviors? The programmer could carefully study the code before using
it. But apart from the fact that this would be very onerous and would lose much
of the benefit of modularity, even this is not enough: the big jump in the running
time is not obvious or even visible from the code, and instead is a consequence of
the interaction of the code with the underlying kernel and memory subsystem.
The contribution of every additional element in the list to the total running time
depends on the hardware that executes the code; a different CPU executing the
code might result in different slopes; a different standard library implementation
might result in completely different algorithmic complexities.

In this thesis we present methodologies and tools to generate performance
analyses as presented here in this example. We produce descriptions of perfor-
mance with real metrics, real values for the features, and the real behavior that
we extrapolate from the observations on a real system. They can include any

6 1.2 Probabilistic Performance Annotations

relevant feature, such as the length of a list, the value of an integer paramenter,
or the clock speed of the CPU. And we apply this approach to every type of per-
formance metric, whether it is affected by the dynamics of the system, or not.

1.2 Probabilistic Performance Annotations

With our performance analysis we combine and improve every aspect of the pro-
filers and empirical models developed in the past, as described in Chapter 2.

At a high level, our approach works as follows. We collect performance data
(e.g., CPU time, memory usage, lock holding/waiting time, etc.) along with
features of the arguments to functions (e.g. value of an int, length of a string,
etc.) or of the system (e.g. CPU clock speed, network bandwidth, etc.). We then
use statistical analysis to build mathematical models relating input features to
performance. We produce performance annotations at the method granularity.
In other words, our performance annotations always refer to named software
routines, which take a set of input parameters, and produce some output before
finishing their execution.

We produce cost functions for different performance metrics. These cost func-
tions correlate concrete performance metrics to features of different nature. As
we already discussed, cost functions are more informative than the aggregate
metric data produced by traditional profilers.

Similarly to traditional profilers, we analyze real performance metrics, and
whether they are affected by the dynamical aspects of the system, or not. This
choice is at the base of two important features of our performance annotations:
(1) performance annotations are probabilistic, to handle and represent the noise
that stems from the dynamical aspects of a system, and (2) performance anno-
tations use scopes to represent the multi-modal performance behaviors, whether
they are due to the algorithm or to the interaction of the target program with the
rest of the system.

Let’s see a real example of performance annotation, for the example of the
std::list<int>::sort method shown in Section 1.1. Remember that we are
artificially limiting the amount of memory to make the sort method swap memory
to the main storage, and this induces different modalities in the running time of
the method for different list sizes.

Figure 1.2 shows the concrete output of our analysis for the running time. It
consists of a textual representation (Fig. 1.2f), and a graphical one (Fig. 1.2e).

The performance annotation shows that the running time metric is mainly
affected by the size of the list. The cost functions show that the performance

7 1.2 Probabilistic Performance Annotations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.5 1 1.5 2 2.5 3 3.5

T
im

e
 (

s
)

List Size (million)

(a) Overview

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

List Size (millions)

(b) O(n log n), small inputs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

T
im

e
 (

s
)

List Size (million)

(c) O(n), medium inputs

 120

 130

 140

 150

 160

 170

 180

 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

List Size (million)

(d) O(n), large inputs

(e) Graph representation

1 std::list<int>::sort().time {

2 features:

3 int s = *(this->_M_impl._M_node._M_storage._M_storage);

4
5 annotations:

6 [s < 1450341]

7 Norm(53350.31 - 2.10*s + 0.12*s*log(s), 12463.88);

8
9 [s > 1589482 && s < 2085480]

10 Norm(-90901042.29 + 63.11*s, 899547.29);

11
12 [s > 2098759]

13 Norm(56712024.50 + 35.38*s, 3379580.27);

14 }

(f) Textual representation

Figure 1.2. Performance annotation for the running time of list<int>::sort

8 1.2 Probabilistic Performance Annotations

complexity is O(n log n) for lists of less than 1450341 elements, while it becomes
O(n) for bigger inputs. Since the correlation is not perfect and there is some
noise around the expected performance cost, our cost functions contain random
variables. In this case the random variable has a normal distribution with a
known mean that depends on the size feature, and a known variance.

We believe that any developer or analyst with some domain knowledge would
be able to read and interpret the performance annotation easily, without any in-
depth knowledge of our annotations language.

Notice how the main feature, the list size, is expressed with the exact name
that the feature has in the program that is being analyzed. Thus the meaning of
the feature should be immediately clear to the developer.

The graph contains the visual representation of the performance annotation,
that is, the set of cost functions, and the set of observations that were used to
infer such function. To the human analyst, the graph is even more immediate to
interpret than the formal performance annotation,

The graphical representation is very useful to human users and are a very
effective documentation of the performance behavior, while the textual repre-
sentation can be efficiently parsed by computers, and make the ideal base for
assertion checking.

In order to have a better understanding of the nature of the different modal-
ities in the running time, we produce the performance annotations for sort also
for two additional performance metrics: minor page faults (Figure 1.3), and ma-
jor page faults (Figure 1.4).

These performance annotations confirm that indeed there are zero major
page faults when the list fits entirely in memory. Also, when the memory is
not enough to store the entire list, the number of minor page faults grows almost
linearly with the size of the list. It is very interesting to see that the growth is
slightly more than linear when the list has around 220 elements.

At the same time it is clear that it is the number of major page faults that
affects the running time of the sort function the most. Guided from the perfor-
mance annotations, we run more experiments manually to see that the big jump
in the major page faults (and in the running time) happens exactly when the list
contains 221+1 elements. Observing Figure 1.2b more carefully, we can notice a
smaller jump in the running time when the list contains exactly 220+1 elements.
These observations lead us to think that the big jump in the number of memory
page faults is not only related to the amount of resident memory available to the
program, but also to other factors, like the size of the cache memory of the CPU,
or the effect of the algorithm on the memory pages.

While the analysis for this sort example might appear trivial even for the

9 1.2 Probabilistic Performance Annotations

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 3x106

 3.5x106

 4x106

 0 0.5 1 1.5 2 2.5 3 3.5

M
in

o
r

P
a
g
e
 F

a
u
lt
s
 (

#
)

List Size (million)

1 std::list<int>::sort().pfaults {

2 features:

3 int s = *(this->_M_impl._M_node._M_storage._M_storage);

4
5 annotations:

6 [s > 1637857 && s < 2515031]

7 Norm(-1003849.81 + 4.79e-7 * s^2, 290017652);

8
9 [s > 2515059 && s < 3439237]

10 Norm(-3235264.47 + 2.05 * s, 356324125);

11 }

Figure 1.3. Performance annotation for minor page faults for sort

10 1.2 Probabilistic Performance Annotations

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1x106

 0 0.5 1 1.5 2 2.5 3 3.5

M
a
jo

r
P

a
g
e
 F

a
u

lt
s
 (

#
)

List Size (million)

1 std::list<int>::sort().Pfaults {

2 features:

3 int s = *(this->_M_impl._M_node._M_storage._M_storage);

4
5 annotations:

6 [s > 1637857 && s < 2094257]

7 Norm(-431212.95 + 0.23 * s, 19540310);

8 }

Figure 1.4. Performance annotation for major page faults for sort

11 1.3 Freud

human performance analyst, our analysis can be applied to much more com-
plex cases with similar results, as we will show in the experimental evaluation
presented later in Chapter 6.

Again, one of the key advantages of our analysis is that it can be performed
automatically, minimizing the input requested to the user. This avoids human
error, makes the adoption of the performance analysis more likely, and opens
new possibilities in terms of automation and integration of performance analysis
in common development practices. Indeed, the graphs and textual annotations
showed in Figures 1.2-1.4 were generated automatically by our tool, Freud.

1.3 Freud

Freud performs the analysis automatically. The user is not required to have any
knowledge of the program under analysis, to create semantically meaningful per-
formance annotations. The only input taken by Freud are (1) the binary of the
target program compiled with debugging symbols, (2) the names of the meth-
ods (or “symbols”) that shall be analyzed, and (3) the performance metrics of
interest. Also, if necessary, the workload that is processed by the target program
has to be provided. We do not provide any recipe for the creation of workloads
triggering interesting performance behavior.

As we will detail in Chapter 5, Freud uses different approaches to infer the
different modalities in the performance behavior automatically, regardless of the
origin of the multi-modal behavior.

Concretely, Freud consists of a set of tools. On the one side there are instru-
mentation modules, that find and extract data from a running program. On the
other side there is the analysis module, which performs a statistical analysis on
the data collected by the instrumentation.

The statistical analysis is generic. As longs as the data collected by the instru-
mentation is provided in the correct format, the analysis can work with software
written in any language.

The instrumentation part is necessarily language specific. We have imple-
mented a prototype for C/C++ code, that uses Intel Pin [35] to dynamically in-
strument the target program. The choice of the C/C++ programming language
is motivated by several factors.

C++ is the language used for most of the performance critical software. It
is extensively used by the industry in many different areas. Also, C is probably
one of the most difficult programming language to analyze for our purpose of
creating performance specifications. In particular, C has a type system that en-

12 1.4 Contribution and Structure of the Thesis

forces only a weak form of type safety that can in any case be circumvented. In
other words, we give a reference implementation for a difficult language, and
therefore argue that creating instrumentation tools for other, stricter languages
should be relatively easy.

Concretely, to create a performance annotation for the std::list::sort

function, the performance analyst would:

1. compile the program that uses the sort function with debugging symbols
(usually passing the -g flag to the compiler)

2. run the Freud binary analyzer (freud-dwarf) on the binary file that contains
the compiled program

3. compile the PinTool using the instrumentation code generated in step 2

4. run the instrumented program multiple times with Intel Pin (freud-pin),
executing the sort function with diverse inputs

5. run the Freud statistical analyzer (freud-statistics) on the logs collected in
step 4

We developed Freud with the ideal goal of making it reasonable efficient to be
used in a production environment. In this way Freud could continuously collect
new data, to react to unexpected performance behaviors as soon as they hap-
pen. For this purpose, we tried different approaches to minimize the overhead
introduced by Freud.

1.4 Contribution and Structure of the Thesis

In essence, this thesis describes systems work. We develop a new model for per-
formance analysis with a very practical approach. Indeed the requirements and
the development of the model have been driven by real-world cases of complex
performance analysis. We also present a real, open-source prototype that per-
forms performance analysis of complex software using most of the features of
our performance modeling language.

In summary, this thesis makes the following contributions:
• We compare our approach and tool for performance analysis to the models

and tools developed in the past (Chapter 2);
• We develop a performance model in the form of probabilistic performance

annotations. In Chapter 3 we detail the features and the language used for
our model formally;

13 1.4 Contribution and Structure of the Thesis

• We describe a methodology to derive performance annotations through dy-
namic analysis. In particular, our techniques can automatically identify rele-
vant features of the input, and relate those features through a synthetic statis-
tical model to a performance metric of interest (Chapter 4);

• We describe a concrete implementation of the methodology in a tool named
Freud, which automatically produces performance annotations for C/C++
programs (Chapter 5);

• We evaluate Freud through controlled experiments, and analyze two complex
systems: MySQL (written in C++), and the x264 video encoder (written in
C). We also show how the same analysis can be applied with promising results
also to the ownCloud storage service, which is a web application written in
PHP (Chapter 6).

14 1.4 Contribution and Structure of the Thesis

Chapter 2

Related Work

A lot of research spanning several decades has focused on performance analysis
for software systems. Indeed, optimizing algorithms and their implementations
to reduce resource usage is one of the driving factors in software development
and computer science generally, both for performance-critical applications and
not. Hardware and software profilers already existed in the early 70s, allowing
the programmer to identify hot spots and bottlenecks in their programs. For
example, the Unix prof command already appears in the 4th edition of the Unix
Programmer’s Guide, dated 1973.

Given the number of publications and authors working on performance anal-
ysis in the past, there are different possible ways of classifying the previous ap-
proaches. Examples are the surveys by Balsamo et al. [2] and Koziolek [26].

The first distinction that we can make between different approaches to per-
formance modeling, is that of static models as opposed to empirical models.

Static models (e.g. [5, 13, 47, 18, 4]) are designed to be used without any
concrete implementation of the program. The main advantage is that they can
be employed in the early design phases of software. These models typically rep-
resent software as a network of boxes, either extending UML diagrams or using
ad-hoc modeling languages. Each box represents a software component, and is
characterized by a user provided performance profile. These models typically
provide tools to compose the behavior of different components in the system
(e.g., the runtime needed to access the database) to infer and predict the over-
all performance of the complete software system (e.g., the end-to-end latency to
serve a user request).

Conversely, empirical models (e.g. [30, 29, 33]) are created through obser-
vation of real software. These models typically instrument or augment existing
software to extract performance information while the software runs. It goes

15

16 2.1 Traditional Profilers

without saying that these models need a concrete implementation of the soft-
ware, but have many advantages over static approaches. The amount and quality
of information that can be collected is much higher, and the analysis can be auto-
mated, reducing the need for any user input, which can be costly and is anyway
subject to human errors.

We now focus exclusively on empirical approaches to software modeling. In-
deed, this is the approach that we take with our performance annotations. In the
following sections we describe part of the research efforts in the field of software
performance. Besides traditional profilers (Section 2.1), software engineering
research has developed several ideas and tools to assert (Section 2.2) or infer
(Section 2.3) software performance. Most of these efforts resulted in some pro-
totype implementations of the ideas. Finally, Section 2.4 and Section 2.5 show
examples of research papers that discuss two of the immediate extensions of this
work, namely distributed instrumentation and performance prediction on differ-
ent hardware. In Section 2.6 we briefly compare all these implementations to
Freud, our tool to generate performance annotations.

2.1 Traditional Profilers

Today, developers rely on profilers like gprof [17] or JProfiler [24] to understand
the performance of their code.

Traditional profilers measure the execution cost (e.g., running time, executed
instructions, cache misses) of a piece of code. The profiler would typically access
information about function calls and periodically sample the program counter
to observe which function of the program is being executed. Knowing the total
running time for the program, the profiler computes aggregate statistics on func-
tions, indicating for example that function f was called a total of 1000 times, that
10% of program execution time was spent in function f , and that invocations of
function f took 4ms on average.

The information the gathered and summarized by the profiler might be in-
sufficient in some scenarios. Consider the sort example above: not only a tra-
ditional profiler would have no information about the different modalities, but
the output produced would probably be misleading. The aggregate information
about the runtime would show only the total time spent in the sort method dur-
ing the execution of the program, and the number of calls, indicating an average
execution time but not its variance.

Since the variance in the running time is large (it ranges from 0 to 180 sec-
onds), the aggregate information would fail completely in describing the real

17 2.2 Performance Assertion Specification

performance, suggesting an expected running time much higher than what it is
in reality.

Traditional profilers do not relate the performance of a method to its input
and offer no predictive capabilities. Also, traditional profilers generate informa-
tion that is specific not only to a particular executable program, but also to a
specific run (one or more) of the program. This means that a profiler shows in-
formation that is potentially affected by a specific context (e.g. the number of
CPUs, the size of the input passed to the program, . . .), without collecting any
information about such context. This means that the data collected with profil-
ers is useful only to the user of the profiler who ran the experiments, since the
results depend on information that is usually not provided with the analysis.

DTrace and Perfplotter are more advanced tools that extend the capabilities
of traditional profilers in different directions.

DTrace [8] represents one of the first attempts to instrument production sys-
tems, with zero overhead on non-probed software components. DTrace intro-
duces a new language, called D, to let users write their own instrumentation code,
which can access information in the user-space or in the kernel space. With the D
language, performance analysts can either produce aggregate information about
a finite set of executions of a given method, or produce specific information about
every single execution. On the other hand, both the selection of the information
to collect and the analysis of the raw data are a responsibility of the users of
DTrace. While DTrace was originally written for Solaris, several ports exist for
different operating systems, including Linux. On the other hand, DTrace relies
on its own kernel module to work, which is not in the Linux mainline repository,
possibly limiting the adoption of the tool.

Perfplotter [9] uses probabilistic symbolic execution to compute performance
distributions for Java programs. Perfplotter, which takes as input Java Bytecode,
a usage profile, and outputs performance distributions. Perfplotter uses symbolic
execution, in conjunction with the usage profile, to explore all the most common
execution paths in the Java byte-code. Every unique path is executed a number
of times with varying input parameters, and the average execution time is mea-
sured and associated with that path. The output distribution shows the average
execution time and the probability of being executed for each path.

2.2 Performance Assertion Specification

PSpec [34] introduces the idea of assertions that specify performance properties.
PSpec is a language for specifying performance expectations as automatically

18 2.2 Performance Assertion Specification

checkable assertions.
PSpec uses a trace of events produced by an application or system (e.g., a

server log). Developers modify their programs to produce event traces in the cor-
rect form. These traces amount to a sequential list of typed events. Each event
type has a unique name and a user-defined set of attributes. Basic attributes in-
clude the thread_id, the processor_id, and the timestamp. Other attributes might
include the size of an input, the name of a file, and so on.

Developers manually specify performance assertions in the PSpec language.
They first define an interval, identified by a pair (start_evt, end_evt). For each
interval they can specify a metric computed as a function of some attributes of
some events. For example, a simple metric would be running time, computed
as timestamp(end_evt)− timestamp(start_evt). For each interval, users of PSpec
can write assertions using the attributes of the events defining the interval. The
assertions can include unknown variables that can be assigned by the checker
tool provided by PSpec. PSpec also provides the where keyword, which can be
used in assertions to filter the intervals for which the assertion is checked.

Finally, PSpec provides the checker tool, that processes logs and the perfor-
mance specifications to validate the assertions.

Vetter and Worley [45] use assertions that are added to the source code of
the target program by the performance analyst. Assertions apply to specific code
segments identified by the keywords pa_start and pa_end, and can access a pre-
defined list of hardware performance counters, in addition to any user-defined
feature that is passed to the performance assertion explicitly in the code. Vetter
and Worley develop a runtime system that applies the optimal instrumentation
to extract the metrics requested by the user in the most efficient way. Assertions
are evaluated at runtime while the target program is executing.

Since performance assertions integrate natively with the source code of the
target program, developers can use the result of the assertions directly in their
programs, reacting to the outcome of the assertions. This approach requires a
tight integration with the specific programming language of the target program.
The authors implemented the runtime as a library for C, but argue that integrat-
ing their code in the compiler might be a viable alternative.

Both of the above approaches allow developers to specify fixed bounds for the
values of chosen metrics in their assertions (e.g., on running time), but do not
provide a statistical approach based on the distribution of those metrics. Also, the
approaches require a manual specification of the performance models/assertions.
Finally, the approaches described in this section require the availability of the
source code of the target program, so that the program can be augmented and
recompiled with the required instrumentation specifications.

19 2.3 Deriving Models of Code Performance

2.3 Deriving Models of Code Performance

Trend Profiling [16], Algorithmic Profiling [49] and Input-Sensitive Profiling [11,
12] represent a new form of profiling: instead of only measuring the execution
cost, these profilers characterize a specific cost function, namely a relationship
between input size and execution cost. They produce profiles such as: function
f takes 5+ 3i + 2i2 ms, where i is the length of the input array.

Besides the common goal of inferring performance cost models, these ap-
proaches have a number of differences:

• Granularity: Trend Profiling and Algorithmic Profiling analyze sub-routine
code blocks, while Input-Sensitive profiling considers complete routines.

• Feature discovery: Trend Profiling does not make any attempt at finding
relevant features, and relies completely on the input provided by the user.
Algorithmic Profiling and Input-Sensitive profiling, instead, try to find the
relevant feature automatically.

• Feature types: While the definition of a feature is left to the user of Trend
Profiling, both Algorithmic and Input-Sensitive profiling use a notion of
size as the only feature affecting performance. Algorithmic Profiling com-
putes the size of the data structures that are used either as input or output
by the code block under analysis, while Input-Sensitive profiling considers
the number of memory cells accessed. None of these profilers account for
multiple feature when computing cost models.

All these algorithmic profilers consider the number of executions of basic
blocks or loop iterations as the performance metric. While this performance
metric has the advantage of not being subject to noise in the measurement, and
thus being good for analyzing the asymptotic performance behavior of software,
it also has serious limitations.

Again, this kind of analysis would be limiting in our sort example. We would
only see the O(n log n) algorithmic complexity, but we would have no signs of the
different modalities, since the interaction with the memory subsystem would be
completely ignored. Moreover, we would have no idea of the actual time spent
executing the function. Our work complements algorithmic profilers in that,
rather than using an abstract notion of complexity, it considers real performance
metrics and also the interaction of the code with the underlying hardware and
software.

20 2.4 Distributed Profiling

2.4 Distributed Profiling

While we do not consider the problem of distributed instrumentation directly in
this dissertation, extending our analysis to distributed systems is clearly a pos-
sible future extension. In fact, using distributed instrumentation to be able to
collect more potential features would greatly extend the possible uses and appli-
cability of our analysis.

Distributed profiling allows instrumenting distributed systems to correlate
events happening on physically or logically different nodes of the distributed
system. Recent architectures running cloud services often run in big data centers,
where interactive software components run on virtually and physically different
machines. Still, it is usually essential for the developers and performance analysts
to be able to correlate events observed on one server to events observed on a
different server.

The first documented system in order of time that has this precise goal is
Magpie ([3]). The authors wanted to measure the end-to-end performance of
a web service from the user’s perspective. To do that, Magpie tags incoming
requests with a unique id, and then propagates this id throughout the processing
steps required to fulfill the request.

Dapper [38] takes a very similar approach. Dapper is a low-overhead in-
strumentation system developed and used internally by Google within their pro-
duction data centers. Dapper provides precious functional and performance de-
bugging information to developers by continuously and transparently recording
traces for requests entering a data center. In particular, Dapper instruments a
small set of flow-control Python libraries that run at a low level of the software
stack and that are used by most of the higher level software components across
the Google data centers. Similar to Magpie, the instrumented version of the li-
braries appends a trace id to every RPC call that is then shared and propagated for
all the follow up requests related to the original transaction. In order to limit the
overhead brought by the instrumentation, Dapper allows sampling of the traces.
Interestingly, researchers at Google claim that analyzing one out of a thousand
requests is sufficient to characterize precisely the workflow on their systems.

More distributed instrumentation tools that implement the same ideas are
Twitter’s Zipkin [43], Uber’s Jaeger, and OpenTracing.

Mace at al. combine dynamic instrumentation techniques with distributed
instrumentation in their tool Pivot Tracing [28]. This tool uses the established
distributed profiling technique of associating requests entering the system with
uniquely identifying metadata tags, which are propagated along with the request
in the distributed system. Performance analysts, who must have a good knowl-

21 2.5 Hardware Aware Performance Specifications

edge of the system, define tracepoints. A tracepoint is a specification containing
information on where, in the distributed system, to add jumps to the instru-
mentation code. Such instrumentation code is created by Pivot Tracing from
the user-defined specification of which input parameters to collect from software
method being instrumented. Pivot Tracing enables dynamic instrumentation of
a distributed systems, allowing performance analysts to collect requested infor-
mation, optionally including causal relationships between different events, from
the system.

2.5 Hardware Aware Performance Specifications

Finally, while we do not experiment directly with hardware with different archi-
tectures in this thesis, we think that it is possible to consider hardware specifi-
cations as additional features that Freud can analyze to document and predict
performance. Some recent research papers explored similar ideas, and proved
effective.

Valov et al. [44] show that it is possible to build linear transfer models that
allow to predict with good accuracy the performance metrics from one specific
hardware configuration to a different one. The approach is still limited in many
ways. It considers only the running time as a performance metric. Moreover, the
transfer models it produces are effective only over similar hardware, for which
linear transformations are appropriate. This is limiting because, in reality, spe-
cific hardware architectures could be used to speed up the execution of specific
tasks with super-linear improvements. One example is the use of GPUs to encode
a video stream to h264.

Thereska et al. [41] introduce the notion of performance signatures. A perfor-
mance signature is a collection of key-value pairs that describe a specific system
in a specific state. For example, a performance signature may state that an in-
stance of Microsoft Excel is saving a 100KB file to the filesystem, on a 2-cores
x86 machine, with 2GB of RAM. These performance signatures can be generated
and collected by Microsoft software that have specific debugging flags activated
by the user. Once the authors have collected metrics from thousand of deploy-
ment around the world, they make predictions picking the signature that is the
closest to the signature of the hypothesis. The distance between two signatures
is computed as a summation of the distances of specific (static) features of the
signatures, where each feature is assigned a weight chosen by the analyst.

22 2.6 Comparison with Freud

2.6 Comparison with Freud

Table 2.1 summarizes the main differences between Freud and the previous ap-
proaches to performance analysis.

no source cost real
required function metrics automatic scopes

gprof Ø Ø
PSpec Ø Ø
Perf. Assertions Ø
trend-prof ? Ø
Input-sensitive Prof. ? Ø Ø
Algorithmic Prof. ? Ø Ø
Freud Ø Ø Ø Ø Ø

Table 2.1. Comparison of different approaches to performance analysis

It is clear from the table that we are trying to combine all the good features of
the previous performance models into one method and tool. The reason that this
has not been done before is that these features introduce competing challenges.
For example, computing cost functions conflicts with using real metrics, for the
reasons that we discussed already (noise and modalities). Similarly, the automa-
tion of the analysis conflicts with the description of scopes in the performance
behavior, since multi-modal behaviors make the analysis much more difficult.

To recap, Freud expands on the previous ideas in four ways: (1) Unlike al-
gorithmic profiling, which measures cost in terms of platform-independent iter-
ation counts, we measure real performance metrics. (2) The domain of the cost
function in algorithmic profiling is the size of a data structure. In input-sensitive
profiling, it is the number of distinct accessed memory locations. In contrast,
our performance annotations can include arbitrary features of the executing pro-
gram, or of the system on which it is running. (3) Algorithmic and input-sensitive
profiling produce cost functions, but the specific approach for fitting a cost func-
tion to the measurements is outside the scope of that work. Freud automati-
cally infers cost functions from the measured data points, producing complete
formal performance annotations. (4) Code often exhibits different performance
modes (e.g., slow and fast paths), and Freud is able to automatically partition
the measurements and to model them as sets of scoped cost functions; prior work
produces a single cost function.

Also, many performance models use static features, such as calling context
[7], application configuration [19], OS version [42], or hardware platform [22].

23 2.6 Comparison with Freud

In contrast, Freud uses the dynamic state of the running system, i.e., the fea-
tures that most directly affect computational complexity and are most relevant
for scalability.

Finally, despite the semantic richness of the performance annotations created,
Freud does not need the source code for C/C++ programs to perform its analysis.
All the information needed are extracted from the debugging symbols integrated
with the binary of the target program.

24 2.6 Comparison with Freud

Chapter 3

Performance Annotations

In this chapter we describe the notion, the language, and the uses of proba-
bilistic performance annotations. In Section 3.1 we present the syntax of the
performance annotation language, and we show through a series of examples
what can be expressed with performance annotations. Section 3.2 then shows
how performance annotations can be used in different scenarios and for different
purposes, such as documentation and performance assertion checking.

While in this thesis we introduce both a language for performance specifi-
cations and a tool to automatically generate such specifications, in this chapter
we describe the language with all the features we developed for it to describe
the performance behavior of any software. Some of these features, such as the
composition of different performance annotations, are not yet used (i.e., not im-
plemented) by our tool.

3.1 Performance Annotations Language

We design a language for performance annotations intended for both human
engineers and automatic parsing and processing. The language defines concrete
metrics, such as run-time or allocated memory, to characterize the performance
of a module or function. An annotation expresses one or more relations between
one such metric and features of the input or state of the module or function. A
typical input feature is a parameter of the module or function being annotated.

The performance annotation language must include parts of the language of
the program under analysis. The metrics and the expressions that characterize
them are independent of the program, but the identification of the function or
module, as well as their input or state features are expressed in the language of
the program.

25

26 3.1 Performance Annotations Language

3.1.1 Structure

Performance annotations are composed of three distinct parts: (1) signature,
(2) features, and (3) annotations.

The signature introduces the annotation and uniquely identifies a method or
function as it appears in the instrumented program, typically with the method
name and the list of formal parameters. The signature also indicates which per-
formance metric the annotation describes.

The second part lists all the features that are used in the performance annota-
tion. Each feature is defined by a type, a name, and an initialization expression:

type name = definition-expression;

The type can be bool, int, float, or string; name is an identifier used to refer
to that feature in the performance annotation; and definition-expression defines
the feature in terms of the program under analysis, typically in terms of input pa-
rameters and other variables accessible within the annotated method or function.
Therefore, the definition expression is written is the programming language of
the target program, and should be easy to read and interpret by the performance
analyst and the developer of the program.

The third and last block describes the behavior of the annotated method or
function with a list of expressions. This is the central part of a performance
annotation. Each expression characterizes the indicated performance metric as
a random variable (the dependent variable) whose distribution is a function of
zero or more of the listed features (the independent variables). Thus, in essence,
a performance annotation is an expressions like the following:

Y ∼ expr(X)

which is read as: Y is a random variable distributed like expr(X), where X is the
set of relevant features. Expressions with zero input features describe behaviors
that are independent of the input or for which no relevant features have been
observed.

The characterization of each performance metric amounts to the total cost of
an execution of the annotated method or function, including all the costs incurred
by other methods or functions that are directly or indirectly within the annotated
method. Using the terminology of the gprof profiler, we describe the total cost of
the method, as opposed to the self cost.

We now present concrete examples of performance annotations to illustrate
all the features the language. We will use performance annotations that we cre-
ated for real software chosen from well known software libraries or programs.

27 3.1 Performance Annotations Language

3.1.2 Basics

Figure 3.1 shows a first basic example of a performance annotation for the sort()
method of the list<int> class of the C++ Standard Library (libstdc++ v6.0.24).
The annotation describes the running time of std::list<int>::sort() with
workloads that impose no memory constraints and that require no memory swap-
ping.

1 std::list<int>::sort().time {

2 features:

3 int s = *(this->_M_impl._M_node._M_storage._M_storage);

4
5 annotations:

6 Norm(0.15*s*log(s), 72124.40)

7 }

Figure 3.1. A performance annotation with regressions

Line 1 introduces the annotation with the signature of the target method and
the performance metric under analysis denoted by the time keyword. The unit of
measure for a performance metric is implicitly defined by the metric. In this case
for running time the unit is 1µs (microseconds). Table 3.1 shows the metrics that
we consider in the current version of the annotation language together with the
corresponding keywords and units of measure.

Line 3 defines a feature s of type int used in this performance annotation. The
definition of the feature *(this->_M_impl._M_node._M_storage._M_storage)
is written in the language of the target program and uses the exact names of
variables and struct members that refer to the relevant feature as they would
be interpreted in the program and in particular in the scope of the sort method.

metric keyword units
running time time microseconds
lock waiting wait microseconds
lock holding hold microseconds
memory mem bytes
minor page faults pfaults number
major page faults Pfaults number

Table 3.1. Currently supported metrics and units of measurements

28 3.1 Performance Annotations Language

Specifically, since we are analyzing a C++ program and since sort is a non-static
method of the std::list class, this represents a pointer to the std::list ob-
ject on which sort is called. In particular, the definition of the feature is an
r-value expression that identifies an int object that can be read within the instru-
mented target program at the time of the execution of the annotated method.

In essence, the annotation states that the running time of list<int>::sort
depends on a state variable of the list object on which it is called, and as it turns
out that state variable represents the number of elements in the list.

Finally, the expression on line 6 of Figure 3.1 characterizes the indicated per-
formance metric with the given feature. This is an example of the general expres-
sion Y ∼ expr(X) introduced above. In this case, the annotation states that the
running time is a random variable with a normal distribution whose mean grows
as s log s and whose variance is known, where s is the size of the list. Notice that
the annotation expression does not only define the asymptotic, big-O complexity
of the method, but it also defines an actual coefficient for the expected growth
rate, which corresponds to the concrete values of the performance metric (time)
in its predefined unit of measure (microseconds).

Notice that in this example and in the rest of this document we represent
floating-point numbers with a few decimal digits. This is solely for presentation
purposes, and is not a limit of the language or its implementation.

3.1.3 Modalities and Scopes

Oftentimes software functions exhibit different modalities in their performance
behavior. There are two different sources for such variability: (1) the algorithm
takes different paths in the execution depending on the input it reads, or (2) the
interaction of the algorithm with the rest of the system on which it is running.
More about the sources of multi-modal behaviors will be in Chapter. 4. In this
section we will discuss the features of the language that allow to account for and
describe this variability, regardless of its nature.

Performance annotations account for multi-modal performance behaviors by
means of scope conditions. With scope conditions we want to express cases in
which the occurrence of a specific distribution for the performance behavior is
tied to the validity of a specific condition (the scope). For example, we have:

Y ∼ [C1] expr1(X1); [C2] expr2(X2); . . . ; [Cn] exprn(Xn);

This means that the performance metric Y follows the distribution expr1(X1)
if condition C1 holds, expr2(X2) if condition C2 holds, and so on.

29 3.1 Performance Annotations Language

Going back to the std::list<int>::sort function, we limit the amount of
resident memory that the program can use. Again, we deliberately set a limit
(of 36MB) to cause memory swapping. We make the sort function behave as we
showed in Figure 1.1, in Chapter 1. The performance annotation becomes the
following:

1 std::list<int>::sort().time {

2 features:

3 int s = *(this->_M_impl._M_node._M_storage._M_storage);

4
5 annotations:

6 [s < 1450341]

7 Norm(53350.31 - 2.10*s + 0.12*s*log(s), 12463.88);

8
9 [s > 1589482 && s < 2085480]

10 Norm(-90901042.29 + 63.11*s, 899547.29);

11
12 [s > 2098759]

13 Norm(56712024.50 + 35.38*s, 3379580.27);

14 }

Figure 3.2. A performance annotation with regressions

We see that the relevant feature for the running time is still the length of the
list. This time, though, we observe three different modalities in the behavior of
the method. Each modality is described by a different expression, and a scope.
Each scope describes the condition that must evaluate to true for the expressions
in the following lines to be representative of the expected behavior. As example,
line 6 states that if the length of the list (s) is smaller than 1450341, then the
expected running time for the sort method is the one expressed at line 7. This is
exactly what we expect: if the list fits entirely in memory, the running time for
sort grows as n log n with the length of the list.

Similarly, at line 9 we have the condition in which the second modality is
observed (linear increase, high slope, line 10). Finally at line 12 we have the
condition in which the third modality is observed (linear increase, lower slope,
line 13).

In all three cases, the performance annotation uses a normal distribution. In
the first case, ignoring the constants, we see that the mean value is n log n where
n is the length of the list being sorted, which conforms to the expected O(n log n)

30 3.1 Performance Annotations Language

complexity. In the second and third cases, the performance is linear with the
length of the input list but with different constant values.

When a specific feature is not present in a scope condition, its value is ir-
relevant for the evaluation of the condition. The union of all the scopes in one
performance annotation covers the entire input domain of the function, while
their intersection is empty. In other words, scopes represent a partitioning of
the input domain of the function that is described by the performance annota-
tion. As we will see in the following Chapter, the annotation describes a type of
classification tree where the scope conditions indicate partitions.

While in Figure 3.2 the scope conditions contain only one variable/feature,
there is no such limit in general. For example, one scope condition of a perfor-
mance annotation could state [s < free_mem].

3.1.4 Mixture Models

Expressions with zero input features describe behaviors that are independent of
the input or for which no relevant features have been observed.

In the previous examples we always had performance annotations using at
least one feature, used in the performance expressions to characterize the ex-
pected performance behavior.

In other cases we might have performance annotations that do not use any
feature. While such annotations carry less information about the trends in the
performance behavior of functions, they might still describe different modalities.
In such cases, performance annotations resort to probabilities of occurrence to
describe the different modalities. More formally, performance annotations allow
expressions like the following:

Y ∼ {p1}expr1; {p2}expr2; . . . ; {pn}exprn;

where each pi represents the probability that the performance metric is dis-
tributed like expri. When a performance annotation specifies probabilities, it
must cover the entire space of behaviors. In other words,

∑n
i=1 pi = 1.

Here is a concrete example of a performance annotation that does not use
any features, but still describes a multi-modal behavior through probabilities:

31 3.1 Performance Annotations Language

1 emit_file_hooks_pre($exists, $path, &$run).time {

2 features:

3
4 annotations:

5 {0.77}Norm(0.13, 0.00075);

6 {0.23}Norm(0.24, 0.001);

7 }

Figure 3.3. A performance annotation with clusters

This performance annotation shows a bi-modal behavior, in which in 77% of
the cases the function executes in 0.13µs, while in 23% of the cases is executes
in 0.24µs.

In addition, performance annotations can also describe models that combine
probabilistic annotations within some given scoping conditions, as follows:

Y ∼ [C1] expr1(x); [C2]{ {p2} expr2(x); {p3} expr3(x) }
In this case, it still holds true that p2 + p3 = 1, covering the entirety of the

observations in which C2 is true.

3.1.5 References to Other Annotations

Software written with a good modular design usually breaks the computation in
different smaller components to maximize the reuse of such basic components
in different parts of the program.

Performance annotations can describe this modularization, and therefore can
themselves be modular. This way, performance descriptions are easier to read for
programmers, and they are also reusable. In particular, higher level methods can
be described by composing the performance annotations of their basic compo-
nents.

Concretely, performance annotations might refer to other performance an-
notations to describe the behavior of methods that execute other methods. For
example, performance annotations can express models like the following:

Y ∼ expr(X) + f1 + f2 + · · ·+ fn

Here we are stating that the expected performance (Y) for some metric, is
equal to the sum of the expected performances, for the same metric, of methods
f1, f2, . . . , fn, plus some other component that depends on the feature set X . Each

32 3.1 Performance Annotations Language

fi is another method, which may or may not be executed on the same machine,
and for which we may or may not already have a performance annotation.

Let’s see a concrete example based on the sort_two C++ function listed in
Figure 3.4:

1 void sort_two(std::list<int> * l1, std::list<int> * l2,

2 unsigned int l2_size) {

3 for (unsigned int i = 0; i < l2_size; i++) {

4 l2->push_back(random());

5 }

6 l1->sort();

7 l2->sort();

8 }

Figure 3.4. The C++ source code of sort_two

On lines 6–7, the sort_two method calls std::list<int>::sort, for which
we already have a performance annotation.

From a quick analysis of the code, the expected running time of sort_two can
be expressed as a linear function of the running times of the two sort methods,
plus some linear complexity given by the size of the list B. We can be even more
precise, and state the size of the list on which the two sort methods are going
to be executed. In other words, Y = a× sort(l1) + b× sort(l2) + c × l2_size.

We can create two different performance annotations for the method above:
in one (Figure 3.5) we consider the method alone, ignoring the fact that it exe-
cutes other known methods.

1 sort_two(std::list<int> &l1, int l2_size).time {

2 features:

3 int s1 = *(l1->_M_impl._M_node._M_storage._M_storage);

4 int s2 = l2_size;

5
6 annotations:

7 Norm(3.35 * s1 + 3.55 * s2, 94594.71);

8 }

Figure 3.5. A performance annotation without references

Conversely, in the other performance annotation (Figure 3.7) we use refer-
ences to the performance annotations of other (known) methods, such as sort.

33 3.1 Performance Annotations Language

1 sort_two(std::list<int> &l1, int l2_size).time {

2 features:

3 int s1 = *(l1->_M_impl._M_node._M_storage._M_storage);

4 int s2 = l2_size;

5
6 annotations:

7 Norm(0.58*s2

8 + @std::list<int>::sort[s:=s1]

9 + @std::list<int>::sort[s:=s2]

10 , 48911.38

11);

12 }

Figure 3.6. A performance annotation with references

This performance annotation uses references to the performance annotation
of the std::list<int>::sort to express the mean of the distribution.

The keyword @ (lines 8–9) denotes a reference to another performance an-
notation. The performance metric that is considered is the same for all the an-
notations referenced in the performance annotation.

Moreover, performance annotations also document the values of the relevant
features of the referenced performance annotations. In the example, the perfor-
mance of the first sort method must be evaluated with a list size s equal to the
value of s1, which represents the size of the list l1 passed as input to sort_two.
Similarly, the second reference to the performance annotation of sort must be
evaluated with a list size of s2, which is equal to the value of the l2_size pa-
rameter.

With the performance annotations for sort and sort_two, it is sufficient to
know the input values passed to sort_two to predict not only its performance,
but also how the time is spent in each of the methods that are relevant for the
global performance.

3.1.6 Analysis Heuristics

One important requirement for performance annotations is that they should be
created automatically, possibly without any manual input from the performance
analyst. Our way of creating performance annotations automatically is through
statistical analysis, and to make the statistical analysis more robust in the pres-
ence of considerable noise in the measurements, we introduce some heuristics.

34 3.1 Performance Annotations Language

As we will see in Chapter 4, we apply two heuristics to support the statistical
analysis in these cases. These heuristics filter the data points that are used by
the analysis, therefore the results cannot be extended to the entire data set, and
it becomes necessary to report this information in the performance annotation.

In the current implementation of the statistical analysis, we have two heuris-
tics, which we will describe in details in Chapter 4: in one we remove additive
noise, while in the other we consider only the main trend in the data points.

To inform the performance analyst that some results in the performance anno-
tations are produced thanks to these heuristics, we introduce specific keywords
in the language, just before the distributions: R indicates that the analysis re-
moved the additive noise, while M indicates that the analysis considered only
the main trend.

Here we have one example:

1 mysql_execute_command(THD *thd, bool first_level).time {

2 features:

3 int len = thd->m_query_string.len;

4
5 annotations:

6 R Norm(6630.19 + 0.86*len, 15.78);

7 }

Figure 3.7. A performance annotation with heuristics

3.1.7 Grammar

In Figure 3.8 we formalize the grammar of performance annotations using the
extended BNF notation. Notice that the grammar for performance annotations
must include the grammar for declarations and expressions of the implementa-
tion language. For simplicity we omit that portion of the grammar, and instead
simply indicate the entry points of that grammar with the method-signature and
native-expression symbols. We also limit the grammar to the type of distributions
(Normal), regressions (constant, linear, quadratic, and n log n), and more gen-
erally the mathematical expressions that are currently supported by our Freud
prototype and that are displayed in this thesis. Nevertheless, the grammar can
be easily extended to include more specific expressions.

35 3.2 Uses

〈A〉 ::= 〈method-signature〉.〈metric〉 {
features:

〈f〉
annotations:

〈a〉
}

〈metric〉 ::= time | mem | hold | wait | pfaults | Pfaults
〈cmp〉 ::= > | >= | < | <= | == | !=

〈feature〉 ::= ((a–z) | (A–Z))((a–z) | (A–Z) | (0–9)) ∗
〈num〉 ::= -?(0–9) + (.(0–9)+)?

〈type〉 ::= char | int | long | float | string
〈f〉 ::= ε | 〈type〉 〈feature〉 = 〈native-expression〉 ; 〈f〉
〈a〉 ::= ε | 〈scope〉 〈heuristic〉 〈distr〉 ; 〈a〉

〈scope〉 ::= ε | [〈cond〉] | [〈cond〉] {〈num〉}
〈cond〉 ::= 〈cond〉 && 〈cond〉 | 〈feature〉 〈cmp〉 〈num〉

| !〈feature〉 | 〈feature〉
〈heuristic〉 ::= ε | R | M
〈distr〉 ::= Norm(〈expr〉,〈expr〉)
〈expr〉 ::= 〈num〉 | 〈feature〉 | log(〈feature〉) | 〈feature〉^〈num〉

| 〈expr〉 + 〈expr〉 | 〈expr〉 - 〈expr〉 | 〈expr〉 * 〈expr〉

Figure 3.8. Grammar of the performance annotations language

3.2 Uses

Performance annotations carry much information about the performance behav-
ior of software methods that is valuable for different uses. For example, the pre-
cise documentation of the behaviors is really valuable to developers who wish
to use documented software methods in their programs. Another potential use
of performance annotations is to assert that a given method is performing as ex-
pected. Also, in some cases, performance annotations can be used to predict the
performance of a software method when executing on systems and with param-
eters never observed before.

In the following sections we will expand on these use cases, discussing the
advantages and limitations of performance annotations in each scenario.

36 3.2 Uses

3.2.1 Documentation and Prediction

The first and most immediate use of performance annotations is for document-
ing the expected performance behavior of software methods. When considering
this use case, it is important to remind that performance annotations are built
through a runtime observation of a running system. This means that perfor-
mance annotations always describe what has actually been observed, and what
can actually be extrapolated from that. This is true for all the types of models that
performance annotations can express, whether they are based on regressions or
clusters.

When performance annotations contain expressions that use features, they
allow for prediction of the expected behavior of the method for any value that the
specific feature can have in its domain. Take the sort example with the annotation
of Figure 3.1: it is easy to predict how long the method is going to take to sort
a list of 10M integers, given that the memory is enough to store the entire list
without swapping, even if the biggest list that was observed was around 3M
integers.

But, as we have seen, if the program runs out of memory the running time
changes dramatically. Performance annotations would not be able to represent
and predict this different behavior without first observing the different modali-
ties, as it happens in the experiments with limited amounts of memory.

In the same way, notice how all the performance annotations presented in
this chapter do not depend on system features that a performance analyst might
expect to be important. For example, it is reasonable to expect that the running
time of std::list<int>::sort also depends on the CPU speed of the computer
that is running the program. That is indeed exactly what the performance an-
notation would say if the annotations were derived from enough observations
showing variability in the cpu_speed feature.

However, all the performance annotations presented in this chapter were
generated through experiments on a real system with a specific and fixed hard-
ware/software combination. So, even if cpu_clock_speed were a relevant feature
to predict the running time for sort, that feature would not be included in the
performance annotations shown in this chapter. We emphasize that this is not
a limitation of performance annotations or our tool Freud. Rather, it is a con-
sequence of the fact that the tests (input) used to identify all the performance
models were not exhaustive in covering the feature space. In the evaluation pre-
sented in Chapter 6, we show examples in which we account for system features.

Similarly, the boundaries in the scope conditions do not represent an abso-
lute truth. The specific numbers in the performance annotations are those that

37 3.2 Uses

we observe in the logs on which the statistical analysis is performed. On the
other hand, if the information reported by the performance annotation is cor-
rect, having more samples to analyze can only reduce the difference between
the boundaries in the annotations and the reality.

In other words, performance annotations do not represent a ground truth but
rather a model of what was observed. They do not necessarily describe the per-
formance behavior of any software method completely for any relevant feature.
The information contained in performance annotations is what can be extrap-
olated from what has been observed in real world experiments. Nevertheless,
it is possible at least in principle to identify all the relevant features that affect
performance, and therefore also make a performance annotation completely sys-
tem/environment aware.

Still, the idea is that performance annotations be created with experiments
that represent typical workloads and usage patterns for the software under anal-
ysis. So, rather than documenting all the features, it makes more sense to docu-
ment all the features that really matter.

3.2.2 Assertions

Performance annotations can also be used as assertions. In other words, they
can be used to compare the actual behavior of some software methods to their
expected behaviors, in order to trigger specific actions when the observations de-
viate significantly from the expected behavior. For example, this could be useful
to catch performance regressions when a new version of a software is released
and deployed, or more specifically to kill or isolate a misbehaving process in a
data center.

This use of performance annotations requires the deployment of our auto-
matic instrumentation software on productions systems, posing a challenging
constraint on the overhead introduced by the instrumentation. We discuss these
aspects in Chapter 4.

3.2.3 Prediction

Performance annotations can be used as the basis for predicting the performance
of methods in scenarios that were never observed. Indeed, with some knowledge
about the code and how it uses methods for which we have performance anno-
tations, it is possible to infer the performance of new methods. We do not cover
this topic in this thesis, but it is an interesting direction for future work.

38 3.2 Uses

Chapter 4

Automatic Derivation of
Performance Annotations

In Chapter 3 we introduced a language to describe the performance of soft-
ware through probabilistic performance annotations. The language allows for
the representation of the typical performance behaviors commonly observed in
software. As discussed in Chapter 1, we believe that a key feature of our ap-
proach to performance analysis is the ability to derive performance annotations
automatically. We now describe in detail how we accomplish that.

Our analysis is dynamic: we observe real software, compiled and configured,
running on a real system with specific inputs, and we collect measurements about
some performance metrics as well as values representing the state of the program
and of the system. This approach has several advantages compared to static anal-
ysis: we can observe real performance metrics that also depend on the hardware;
we can observe the average-case performance behavior defined by typical input
that goes beyond the algorithmic complexity that might be visible from the code
alone; and finally, we can analyze real-world complex software beyond what is
currently possible with static analysis, which is often intractable for even small
but real code bases.

The target of the analysis are uniquely identifiable software components. We
choose to consider software components at the method granularity. We consider
methods as defined in any imperative programming language: a named finite set
of instructions that takes as input a set of parameters and state, and produces an
output in the form of return values and/or changes to the state. Every method
has a specific entry point, and one or more exit points.

This choice of granularity has several advantages. A method is a very conve-
nient reference for programmers and performance analysts, both when specifying

39

40

which parts of the program to analyze and when reading performance annota-
tions. It is also a convenient granularity for the instrumentation purpose, since
it clearly identifies the entry and exit points for the instrumentation, and also of-
fers a clear indication of the parameters and features visible from the scope of the
method. Also, contracts for functionalities most often refer to complete methods,
so it is convenient to have uniformity in the granularity of the documentation for
performance and functionality.

Thus the performance analysis is defined by (1) the set of names of target
methods, and (2) the set of performance metrics to analyze. In this thesis we
do not study the problem of choosing the target methods and instead leave this
responsibility to the performance analyst in each case. When running the instru-
mented program, all the methods that are selected for the analysis are modified
or augmented for data collection, at the same time. Ideally all the methods of a
program could be instrumented at the same time. While there are no constraints
on the number of software methods that can be analyzed at the same time, the
main practical limitation is the total overhead introduced by the instrumenta-
tion, which could be a problem in a production environment. So, the perfor-
mance analyst should select only the most relevant methods for the problem at
hand. Similarly, any automation applying our performance analysis should limit
the number of methods that are instrumented during a single execution of the
target program.

From a high level point of view, the analysis consists of two distinct parts
(Figure 4.1): the instrumentation, which extracts information from a running
program, and the statistical analysis, which processes that information to create
performance annotations. The statistical analysis is generic, and can be applied
to data coming from any instrumented program. The instrumentation is to some
extent generic, but parts of it are also necessarily specific of the implementation
language and its runtime environment.

In this chapter we give a reference description of the two parts. In essence,
we describe the information collected by the the instrumentation, and how the
statistical analysis processes such information. Later, in Chapter 5, we detail our
implementation of these ideas and algorithms in the Freud tool.

The rest of the chapter is organized as follows: in Section 4.1 we describe the
instrumentation part to show the general requirements that any instrumentation
should meet to support this performance analysis. In Section 4.2 we describe
the statistical analysis including the detailed algorithms and statistical tools we
use to model performance data. In Section 4.3 we discuss some ideas to create
performance annotations that refer to other performance annotations.

41 4.1 Instrumentation

BLACK BOX
reflection

debugging information
. . .

WHITE BOX
instrument branches

. . .

INSTRUMENTATION

method names
perf. metrics

PREPROCESSING
branch analysis

CLASSIFICATION TREE

PARTITIONING
branches

kde1d clustering

MODEL SELECTION
multiple regressions

MIXTURE MODELS
kde1d clustering

STATISTICAL ANALYSIS

annotations

metrics, features

branch outcomes

Figure 4.1. Overview of the derivation of performance annotations

4.1 Instrumentation

The first step involves analyzing and instrumenting the code of the target pro-
gram to collect relevant data. For every execution of every target method, we
collect one sample containing (1) a unique id, (2) the values of all the desired
performance metrics, and (3) all the data that can be used to extract potentially
relevant features of the input or of the state of the system. We also collect (4) the
ids of all samples representing other target methods that have been executed
on the same thread while the method was running. In other words, we log the
children of the method.

All the information listed so far can be collected without ever looking at the
code of the methods that we instrument. In other words, we can consider meth-
ods as black boxes to which we attach probes without any knowledge of their
code. However, if the code is available, we can log additional information that
helps in finding modalities in the performance behavior, and more generally
that helps the statistical analysis produce good results. In particular, we can
optionally log (5) the outcome of every executed conditional branch instructions
(branch taken or not taken).

4.1.1 Data Collection

We now see more in details what the various pieces of information represent,
and how they should be extracted by the instrumentation.

42 4.1 Instrumentation

Ids

An id uniquely identifies a sample. The uniqueness of ids must be guaranteed
across all the samples that are considered during a single statistical analysis, even
if the samples come from different runs of the target program, possibly on differ-
ent machines. In fact, ids are used for the composition analysis, which requires
logging the descendants of a method, that is the methods actually called by the
target method during its execution. For this purpose, the instrumentation must
keep an internal stack to represent the execution status of the target program.
When a new instrumented method is called, the instrumentation has a reference
to the most recently called method that is also still active (that is, the top of the
stack) so that it can add the new id to the list of children of the active method.

Metrics

Performance metrics are the dependent variable (Y) in performance annotations.
Once we instrument a method, we always collect all the performance metrics
chosen by the performance analyst. When measuring a performance metric for
an instrumented method, we consider the cost incurred by the method itself,
plus the cost incurred by all the descendants of the target method. In gprof
terminology, we measure the total cost of the method, as opposed to the self
cost. For example, when measuring the running time with start-stop timestamp
pairs, we do not subtract the time taken by the children of the method.

Performance annotations account for metrics of different nature. Our analysis
currently supports running time, dynamic memory allocation, lock waiting time,
lock holding time, number of minor page faults, and number of major page faults.

In implementing the instrumentation for measurements, we consider two
main objectives: minimum overhead and maximum accuracy, which crucially
depends on the perturbation introduced by the instrumentation itself. We now
describe the metrics and briefly discuss their implementation strategies and is-
sues in different programming languages.

Running Time. Measuring running time is conceptually straightforward with
start/stop timers or entry/exit timestamps, and many programming lan-
guages have timing features or at a minimum a clock features in their
standard libraries. The most crucial parameter is the the clock resolution.
Performance annotations use a microseconds timescale, which is well sup-
ported by modern architectures. A coarser scale for the measurement of
time might be acceptable when measuring methods known to have orders
of magnitude longer running times.

43 4.1 Instrumentation

Memory Allocation. With memory allocation we measure the total amount of
bytes of heap memory allocated by a method. We measure the total num-
ber of bytes allocated for all objects created during the execution of the
method. Programming languages that use interpreters or virtual machines
for the execution usually expose information about memory usage to the
program through a dedicated API. Another approach is to instrument the
low-level memory-management functions (e.g., malloc and free). The
resolution that we use in performance annotations is 1byte.

Lock Holding/Waiting Time. Resources contention metrics are usually crucial
in the performance behaviors of multi-threaded applications. Lock-holding
time of a thread executing a method is the total duration of all the time in-
tervals in which the thread holds a lock on a shared resource. Lock waiting
time, instead, is the total time that the thread spends waiting for the acqui-
sition of a shared resource. These metrics represent time intervals, and are
measured in microseconds. This means that the same measurement tech-
niques for running time (i.e. stop-watch timers or timestamps) apply. The
difference is that the start and stop events for the time intervals are associ-
ated with the lock acquisition and release events, respectively, as opposed
to entry and exit for a method.

Exactly which events one must instrument, depends on the programming
language and the resources contention primitives. Typically, a lock hold is
delimited by the successful completion of a lock acquisition request (e.g.,
pthread_mutex_lock) and the successful completion of a lock release re-
quest (e.g., pthread_mutex_unlock). Similarly, a lock wait is typically de-
limited by a call to a lock acquisition method (e.g., pthread_mutex_lock)
and the successful termination of the same method.

In the end, locks-related metrics are time measurements, and therefore are
subject to the same limitations regarding time resolution as running time.

Minor/Major Page Faults. These metrics are indicative of the interaction of the
program with the memory subsystem of the operating system. Page faults
are common to all operating systems that use virtual memory. We use
the specific Linux definition to distinguish between minor and major page
faults. This metric comes directly from the operating system, and so it
is not language dependent. On Linux, thread-specific information about
page faults can be found in the procfs filesystem, specifically in the file
/proc/pid/task/tid/stat for process pid and thread tid. Page faults are mea-
sured with pure numbers, representing counters for such events.

44 4.1 Instrumentation

Regardless of the metric, every performance measurement we used so far
results in a scalar numeric value. While this is the list of performance metrics that
we currently support in our Freud prototype, new performance metrics can be
added with minimum effort. We will give a complete description of our approach
to C/C++ instrumentation in Chapter 5.

Features

Features are the independent variables (X) in performance annotations. Our
analysis selects the relevant features for each target method automatically. The
selection is performed during the statistical analysis stage. Since the instrumen-
tation alone does not know in advance which variables correlate with the perfor-
mance behavior, the instrumentation collects all the information that is visible to
the instrumented method within the program, as well as system features.

This process is therefore a bit more involved than collecting metrics. On the
instrumentation side, we want to find all the values of local, global, or system
variables that might have an effect on performance. We also want to use heuris-
tics to extract quantities computed from program variables.

The first and most directly relevant variables that the instrumentation looks
for are the parameters to the target method, as expressed in the program code.
We collect both local and global variables that are visible from the scope of the
method. We collect the values of scalar variables and explore structured (ag-
gregate) variables to extract information about their fields. Ultimately, every
structured type is decomposed into a set of scalar values, one for each field of
the structured type. Since we are interested in numeric features, we represent
Boolean values as 0 or 1, and strings with their length. We also follow references
to objects and explore those objects to collect more features. We limit the depth
of this exploration that might otherwise become arbitrarily complex. The depth
is defined as the distance from the global variable or parameter that is directly
accessed by the method.

In addition to the variables in the program, we also collect information that
is present in the system but not necessarily in the instrumented program, such
as the clock frequency of the processor, the number of active processes on the
machine, and other system performance indicators. Since by definition this in-
formation resides outside of the instrumented program, typically it takes more
time to access this information compared to the variables in the program.

A modern operating system provides a large amount of performance-related
data. For example, procfs and sysfs on Linux expose hundreds of system features
and many more for all the processes and devices. However, most of those fea-

45 4.1 Instrumentation

tures are likely to have no relation with the performance of the system under
analysis. Our approach is therefore to offer a restricted set of generally useful
features, and then let the performance analyst select the most interesting fea-
tures for the given application. For example, a generally useful feature is the
clock frequency of the processor, which, unsurprisingly, we found to relate quite
often with performance.

Finally, we heuristically discover derived features that are likely to affect per-
formance. These are values computed from one or more values of state variables
or parameters. For example, if we find that an object contains a pair of variables
named begin and end, first and last, or start and finish, we log a new, derived
feature computed as the difference between the two variables. The rationale,
confirmed by experience, is that this feature might represent a size, and might
therefore correlate well with performance.

The specific way to discover program variables automatically depends on the
programming language of the target program. We will describe Freud’s imple-
mentation that takes advantage of the debugging information that is shipped
with C/C++ program binaries in Chapter 5. Reflection can also be used in other
programming languages, such as Java, Python, or PHP. Reflection allows pro-
grams to access information about their own structure, and modify their own
code. For example, it is possible to create proxies for the target methods. These
proxies would examine and log the parameters they are given, prepare the col-
lection of performance metrics, and execute the original method. Once the ex-
ecution of the original method is finished, the control goes back to the proxy
method that finalizes the collection of performance metrics, before returning.

Branch Outcomes

The data collection presented up to this point does not need access to the source
code of the target methods. We can extract the list of parameters that are used by
the methods from their interface definitions, such as their signatures. Therefore
we can think of a target method as a black box to which we attach probes, without
opening the box.

However, the code can of course provide useful information. In particular,
software often exhibits different modalities, meaning different types of behav-
iors, and such modalities might be determined by the code selecting one of a
number of distinct algorithms. We therefore collect additional information that
relates to the code of the target method in the hope of finding high-level correla-
tions that would better explain different performance modalities based on input
features.

46 4.1 Instrumentation

More precisely, we want to distinguish different execution paths in the target
method. These execution paths are defined by the result of branch instructions.
Each branch instruction in the code is a potential fork point where the algorithm
might take a different path. And conversely, each execution path is uniquely iden-
tified by the sequence of the executed branch instructions and their outcomes.

In the most general case, the behavior might be determined by many branch
instructions defining a complex class of execution paths, and each branch in-
struction might depend on previous computations. However, in some significant
cases, the execution of even a single initial branch instruction executed only once
might allow us to distinguish between, say, a slow path and a fast path. And fur-
thermore that initial branch instruction might be directly tied to an input feature.
In such cases, we could use the condition on the input feature expressed by that
branch instruction as a scope condition to distinguish the slow modality from the
fast modality.

In practice, there are different approaches to analyzing branch information.
We could statically analyze the code of the program to parse the exact condi-
tion that is evaluated by these switches. Another approach, which only relies on
dynamic analysis, is to log the outcome of such switches, to see whether they
evaluated to true of false during a specific execution of the method. Again, the
way one can concretely implement such instrumentation depends on the pro-
gramming language. In the case of C/C++, we instrument every conditional
branch instruction to log whether the branch is taken or not taken, as we will
show in Chapter 5.

While not strictly necessary for our branch analysis, it might also be useful to
record all executions and outcomes of the branch instructions, since they could
be used as features during the performance analysis.

4.1.2 Producing Output

In summary, the instrumentation produces a log of records. Each record repre-
sents a single execution of a single method in the following format:

id, y1, . . . , ym, x1, . . . , xn, b1,1, b1,2, . . . , #, b2,1, b2,2, . . . , #, cid1, cid2, . . .

where id is the unique id of the sample, followed by the performance metrics yi,
by the raw and derived features x i, and the binary outcomes of the execution of
the first branch instruction, b1,1, b1,2, . . ., followed by the outcomes of the second
branch instruction, b2,1, b2,2, . . ., and so on. Finally, cid1, cid2, . . . represent the ids
of the children of the method.

47 4.1 Instrumentation

The log entries are minimally structured and consist primarily of sequences
of numbers, and therefore can be easily encoded in a compact binary format for
efficiency.

Also, since we want to be able to instrument long running services, like a
database server, a proxy, or an HTTP server, the instrumentation must be able to
export the information while the target program is running, without blocking or
perturbing its execution. For example, our Freud implementation uses a double
buffering mechanism and a dedicated output thread to meet this requirement.

4.1.3 Perturbation and Overhead

For any performance monitoring tool, instrumentation overhead and perturba-
tion can be a concern. First, it is important to distinguish between these two
concepts.

Overhead is the increase in the cost of the execution of the program under
analysis. Such increase might impact on the resources needed to execute the
program, on the response time taken to serve a request, or on the concurrent
number of requests that can be served. While the overhead might affect the
ability to instrument software running on a production system with tight perfor-
mance constraints, it does not affect the correctness of the measurements of per-
formance metrics. For example this means that even if the instrumented program
takes longer to execute, because it also needs to perform the instrumentation
tasks, the measurements produced by the instrumentation report performance
metrics as they would be in the original program, without any instrumentation
or measurement device installed.

The overhead originates from the data collection activities that the instru-
mentation needs to perform. Such activities use CPU time and memory. Thus,
any instrumentation incurs overhead, and should be designed to minimize it.

One common way of reducing overhead is to use sampling, which means
to avoid logging all the data for every execution of the instrumented methods,
and rather perform this expensive process only for a fraction of the executions.
When using sampling, it is important to select the executions that are going to
be logged so that they represent without bias the behavior of all the executions.
For example, in Freud we use reservoir sampling to achieve this result.

Conversely, perturbation is the modification of the behavior of the method
that is being observed as a consequence of the observation itself. Such mod-
ification can increase or reduce the cost of the execution of the instrumented
method. Prior work has shown that even innocuous changes to code layout,
similar to that caused by code instrumentation, can have considerable effects on

48 4.2 Statistical Analysis

execution times [32]. It is extremely important to be aware of the risk of per-
turbation when designing the instrumentation, as it may threaten the validity of
the measurements.

One of the first causes of perturbation might come from the instrumentation
code itself. It is very important to avoid attributing the cost of the instrumen-
tation to the instrumented method. This problem becomes more relevant when
instrumenting recursive or nested methods. In these cases it is not possible to
completely avoid the problem, because even the bookkeeping actions would need
to be measured. Also, it is important to consider the effects of instrumentation in
multi-threaded programs where there is a lot of synchronization and contention
between threads. For example, instrumenting the lock-release operation on one
thread would probably impact the running time of another thread that is waiting
for the lock to be released.

In Section 5.4.2 we describe our efforts to mitigate the instrumentation over-
head and minimize the perturbation for our tool Freud, and in Section 5.4 we
experimentally validate the accuracy and robustness of our measurements.

4.2 Statistical Analysis

The second phase of our analysis takes the output logs produced by by the in-
strumentation, and outputs probabilistic performance annotations in the form of
text and graphs. The statistical analysis is performed offline, so it does not need
to meet strict requirements on running time and resources consumption.

The statistical analysis is generic, and we apply it to every target component
for every target performance metric, with minor differences in the regression
analysis for time based metrics. The output of the statistical analysis is one per-
formance annotation for each method that is analyzed, for each performance
metric.

As shown in Figure 4.1 (page 41), the statistical analysis consists of two
phases. In the first phase we pre-process the data to extract branch informa-
tion for the purpose of partitioning the records; in the second phase we build a
classification tree to infer a set of models from the performance data with the help
of such branch information. A performance annotation is the direct translation
of the classification tree into our performance annotation language.

The classification tree defines a hierarchical partitioning of the performance
records. Each node represents a part of the records of the parent node defined
by a scope condition. The scope condition is a Boolean expression that contains
at least one feature and that is true for all the records in that part. The records

49 4.2 Statistical Analysis

*

s ≤ 10

e ≤ 0

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 3x106

 0 500000 1x106 1.5x106 2x106 2.5x106 3x106 3.5x106

T
im

e
 (

u
s
e

c
s
)

0|8 , this._M_impl._M_node._M_storage._M_storage

_ZNSt7__cxx114listIiSaIiEE4sortEv

0 < e ≤ 1

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 3x106

 0 500000 1x106 1.5x106 2x106 2.5x106 3x106 3.5x106

T
im

e
 (

u
s
e

c
s
)

0|8 , this._M_impl._M_node._M_storage._M_storage

_ZNSt7__cxx114listIiSaIiEE4sortEv

1 < e

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 3x106

 0 500000 1x106 1.5x106 2x106 2.5x106 3x106 3.5x106

T
im

e
 (

u
s
e

c
s
)

0|8 , this._M_impl._M_node._M_storage._M_storage

_ZNSt7__cxx114listIiSaIiEE4sortEv

s > 10

0.3

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 3x106

 0 500000 1x106 1.5x106 2x106 2.5x106 3x106 3.5x106

T
im

e
 (

u
s
e

c
s
)

0|8 , this._M_impl._M_node._M_storage._M_storage

_ZNSt7__cxx114listIiSaIiEE4sortEv

0.7

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 3x106

 0 500000 1x106 1.5x106 2x106 2.5x106 3x106 3.5x106

T
im

e
 (

u
s
e

c
s
)

0|8 , this._M_impl._M_node._M_storage._M_storage

_ZNSt7__cxx114listIiSaIiEE4sortEv

Figure 4.2. A classification tree with mixture models

in the leaves in the classification tree are modeled with distributions that depend
on zero or more features. We use regression analysis to compute parametric dis-
tributions that correlate the relevant features to the performance metrics.

In the creation of the tree, we keep partitioning nodes until we either (1) find
a distribution based on at least one feature that models the data (records) in the
node well enough, or (2) we do not have any new partitioning conditions for
that node. When can not formulate a valid regression model for the records in
a node and we do not find a scope condition to further partition, we formulate
mixture models. A mixture model is a combination of two or more sub-models
each associated with an occurrence probability rather than a scope condition.
Figure 4.2 shows an example of classification tree that uses mixture models.

The root node represents all the samples collected by the instrumentation.
The complete set is split into two parts based on the value of the feature s: one
part contains the records for which s ≤ 10, the other contains the remaining
records with s > 10. These two partitions are further split before valid models
can be found. If s ≤ 10 we further split based on the value of the enumeration
variable e, while if s > 10 we rely on clustering to partition the data (mixture
model). We find two clusters: one contains 30% of the samples, the other con-
tains 70% of the samples. The leaves of the tree represent different models that
we create to represent the data contained in those leaves. All these models con-
tain distributions that correlate the performance metric under analysis with zero

50 4.2 Statistical Analysis

or more features.
The partitioning conditions based on feature values correspond to scopes in

our annotation language, while mixture models correspond to probability speci-
fications. The models, i.e. the leaves of the tree, correspond to the distributions.

We now describe in greater detail the algorithms that we apply in each phase
of the statistical analysis. In particular, we describe (a) how we pre-process the
data to create partition candidates; (b) how we build the classification tree, defin-
ing scope conditions and producing regression models; and (c) how we use clus-
tering to model data for which we could not find any good regression model.

4.2.1 Data Pre-processing

The goal of the pre-processing stage is to compute potential partitions of the
data that can be used by the classification tree stage. To produce such infor-
mation, we use information extracted or inferred from the code of the target
methods.

This information allows our analysis to explain different performance modal-
ities that stem from the algorithm implemented by the method, as opposed to
the dynamic interaction of software with the rest of the system. While this is ef-
fective, our analysis also uses another strategy to partition the data, that is solely
based on the performance metrics and feature values. We will describe this other
strategy later in the next section.

There are two sources of information used by the pre-processing stage: enu-
meration variables, and branch outcomes.

Enumeration variables represent a promising source for finding different code
paths taken by an algorithm. It is a common practice in writing computer pro-
grams to evaluate enumeration variables in switches that make the algorithm
take different paths based on the value of the variable. So, we use every ob-
served unique value of the enumeration variable as a potential partition. In other
words, we create partition candidates in which each partition has all the samples
collected by the instrumentation in which the enumeration variables assumes a
specific value.

Partitioning based on branch outcomes is more involved, and is based on Al-
gorithm 1. The algorithm is executed for each branch instruction of the method,
and for each feature. We consider only branch instructions that are executed
only once during the execution of the method, because those are the branches
that likely represent a switch between two high-level distinct behavior modes
such as fast and slow paths.

51 4.2 Statistical Analysis

Algorithm 1 Branch analysis
Require: O = {t1, f1}, . . . , {tn, fn}.
Require: fi is the value of a specific feature in sample i.
Require: t i is the outcome of a specific branch in sample i.
Ensure: Output: P = {p}.

1: P ← ;
2: max_t ← IN T_M IN
3: max_n← IN T_M IN
4: min_t ← IN T_MAX
5: min_n← IN T_MAX
6: for o ∈ O do
7: if t i == t rue then
8: max_t = max(max_t, fi)
9: min_t = min(min_t, fi)

10: else
11: max_n= max(max_n, fi)
12: min_n= min(min_n, fi)
13: end if
14: end for
15:

16: if max_n< min_t then
17: if min_n== max_n then
18: P ← min_n
19: else if min_t == max_t then
20: P ← min_t
21: else
22: P ← max_n
23: end if
24: else if max_t < min_n then
25: if min_t == max_t then
26: P ← max_t
27: else if min_n== max_n then
28: P ← max_n
29: else
30: P ← max_t
31: end if
32: else
33: P ← ;
34: end if

52 4.2 Statistical Analysis

We look for conditions C that partition S into two parts S1 and S2, such that
C is true for all measurements in S1 and false for all those in S2. The condition
C checks whether the values of one specific feature in a given sample is bigger
or smaller-or-equal than a reference pivot value.

The algorithm finds these pivot values, that represent different execution
paths in the target method. To do so, we compute the minimum and maxi-
mum values of the selected feature for the executions in which the target branch
evaluated to true, and for those in which the target branch evaluated to false
(lines 6–14).

We then check whether the ranges of values of the feature for the two classes
of samples do not overlap (lines 16–34). If that is the case, we conclude that
the feature defines different execution paths, and therefore we use the boundary
values of the feature as a pivotal point.

Notice that, since we are performing a statistical analysis on a finite number of
samples, the boundary value that we find might not be exactly the value defined
in the code. This happens when we have no samples in which the feature has the
precise value specified in the condition in the code of the method. In other words,
the boundary value that we use to produce partition candidates is the closest to
the real one that we have observed through the instrumentation. This means that
more samples are likely to reduce the difference between the computed pivotal
point and the real one, and that eventually the difference will be zero.

4.2.2 Classification Tree

The goal of the second part of the statistical analysis is to build a classification
tree that can be directly translated into a performance annotation. The inputs
are all the samples collected by the instrumentation, with performance metrics
and feature values, and the partition candidates produced by the pre-processing
stage.

Our analysis keeps partitioning the data on a branch of the tree until either
we find a good regression model that contains at least one feature, or we cannot
split anymore the set of data points with scope conditions. If part of the records
can not be modeled with a simple and accurate enough regression, and if no
condition can be found to further split that part, then we proceed with the clus-
tering of the records of that part based on the metric values (y , as opposed to
x1, x2, . . .).

After clustering, whether it is for a specific partition or for the entire data set,
we still try to identify, for each cluster, a feature-dependent model as well as a
defining condition based on the values of the features. If that also fails, we resort

53 4.2 Statistical Analysis

to a simpler probabilistic characterization of each cluster, and we try to model the
data of each cluster first with a regression and then with an input-independent
model.

To recap, we have two types of scope conditions: derived from branches,
and derived from clusters. The two types are identical in the performance an-
notations language, but they describe performance modalities that stem from
different sources.

Partitioning based on branches are derived from information inferred from the
code of the method. Therefore, these partitions help distinguishing different per-
formance modalities as a consequence of the algorithm executed by the method.
Also, assuming that the instrumentation collected enough samples, these par-
titions are correct, in the sense that they represent the exact behavior of the
method. In other words, the condition on the features that define the scope are
precise and correct.

On the other hand, partitions inferred after clustering are created through
the performance measurements. This means that the precision, that is the differ-
ence between the values of the features specified in the scope conditions and the
thresholds that distinguish different behaviors in the reality, is directly related
to the precision of the clustering. At the same time, the big advantage of these
scope conditions is that they can represent the performance modalities that are
not given by the algorithm implemented in the target method, but rather by the
dynamics of the interaction of the program with the rest of the system.

We now describe in detail the components of this classification tree analysis:
data partitioning, computing regression models, and we clustering the data.

Building the Tree

We try to formulate a classification tree using Algorithm 2. We run this algorithm
for every target method, for every performance metric.

The input to Algorithm 2 is a set of log records R where each record ri repre-
sents a run of the target method and consists of a performance metric yi, and a
set of features values X . Additionally, the Algorithm takes as input a set of parti-
tion candidates C , produced in the pre-processing step. Each partition candidate
ci consists of a set of conditions {ci,1, ci,2, . . .}, one for every partition candidate.
Each condition ci, j specifies a feature name and two boundary values for such
feature. The condition evaluates to t rue for one sample only if the value of the
feature for that sample falls within the range delimited by the two boundaries
(strictly bigger for the lower boundary, smaller for the higher boundary).

The output is a classification tree T = [S1]h1; [S2]h2; . . . consisting of a set of

54 4.2 Statistical Analysis

Algorithm 2 Classification tree analysis
Require: R= {r1, r2, . . .}.
Require: C = {c1, c2, . . .}.
Ensure: Output: T = {(S1, h1), . . . }.

1: T ← ;
2: Q← {(true, R)}
3: while Q is not empty do
4: (S, P)←Q.pop()
5: h(X)← regression(P, X) for some feature-set X
6: if h(X) is a good model then
7: T ← T ∪ {(S, h(X))}
8: else if P can be split into {P1, . . . , Pn} on some condition ci then
9: Q←Q ∪ {(S ∧ ci,1, P1), . . . , (S ∧ ci,n, Pn)}

10: else
11: {formulate a mixture model h on P with clustering}
12: h← output of Algorithm 3 on R
13: T ← T ∪ {(S, h)}
14: end if
15: end while

expressions hi, representing the models, each associated with a scope condition
Si.

Algorithm 2 iteratively processes various sets of input records until it covers
the whole input set R with performance models. The first iteration starts by con-
sidering the whole set S = R. The algorithm looks for a good model h(X) that
predicts S (line 5). A model is considered good if the R2 goodness-of-fit, which
measures how well the model represents the data, is above a chosen threshold. If
no good model is found (line 8) the algorithm looks for a condition c′ that parti-
tions P into two or more sets of measurements P1, . . . , Pn—such that c′j,i is always
true in Pi and always false in all the other sets—and then proceeds recursively
to look for good models for all the Pi.

If this hierarchical partitioning fails to yield any model for the whole input
set—because no partition P can be modeled well by any regression h(X) and no
new partitions can be created based on known conditions—then the algorithm
fails to return a valid regression tree, and the analysis proceeds with clustering
the entire data set R.

55 4.2 Statistical Analysis

Regression Model

Now we describe how we formulate regression models h(X). Given a set of mea-
surements of a metric y and corresponding features x1, x2, . . ., we formulate
multiple-regression models with interaction terms h(x1, x2, . . . , x1 x2, . . .) with
multiple independent variables. We try to fit models of different classes to the
data, and evaluate the quality of the resulting model. We try four classes of
models of increasing order: first constant, then x (linear), then x log x , then x2

(quadratic). Conceptually, it is of course possible and indeed easy to consider
other classes of models. However, ultimately we are interested in analyzing sys-
tems, and complexities above (quadratic) are rare in systems software.

For each class, we select one model. To choose the model for a class, we
iteratively compute multiple regressions, progressively filtering the features that
are less relevant for the regression. The process stops when (1) the R2 value for
the regression is too low (failure), (2) there are no features remaining in the
regression (failure), or (3) all the remaining features of the regression obtain a
good (low) p-score (success). We can stop the process and return a failure as soon
as condition (1) is met because removing potential features from the regression
can only decrease the R2 value, since we are removing parameters—degrees of
freedom—from the model. We stop on condition (2) because if we can only find
a good correlation without any specific feature having a low p-score, then we
can conclude that the regression is not statistically solid.

At the end of this process, we have at most one regression model for each
class. Every regression has a R2 value above a fixed threshold, and all the fea-
tures having a p-score lower than a fixed threshold. Since we want to avoid
overfitting and choosing models with too many parameters, we use the Bayesian
Information Criterion [37] (BIC) to compare the relative quality of the candi-
date models. We compute the BIC value for the selected model of each class,
and choose the model with the lowest BIC value.

To reduce the complexity of the regression analysis with numerous features,
we first eliminate the features whose value does not have any variability in the
samples. Then, we group strongly correlated features into equivalence classes
and use a single representative from each class in the regression analysis.

For time-related metrics, and in general for performance metrics that are sub-
ject to noise in the measurements, we use additional heuristics to try to find
regression models before resorting to clustering.

We explore data-assimilation heuristics to find meaningful regressions be-
tween metrics and features. Specifically, we select input measurements and find
predictive models only on the selected data. We use two heuristics: we remove

56 4.2 Statistical Analysis

additive and strictly positive noise, and we select the dominant cluster.
We apply noise removal when the performance metric we want to analyze is

subject to only additive (positive) errors. One such metric is time (duration). The
goal is to filter out additive noise from the measurements. Given a feature, we
keep only the measurements that exhibit the lowest value for the performance
metric, for a specific value of the feature that, in case of success, returns the
lower boundary for the performance of the method, correlated to one feature.

Another heuristic that helps finding correlations when the performance met-
ric is subject to considerable noise is the selection of the dominant cluster. Essen-
tially, this is a special case of mixture modeling when the probabilities associated
with all but a particular cluster of data points are very small. For these cases, we
treat the outliers as noise, and do not use them in the regression. This is a simple
form of robustness analysis. The goal is to keep only the samples that are most
representative of the expected, average behavior of the method. Given a fea-
ture, we group the records by feature value. We then run a clustering algorithm
within the groups of measurements. Then, for each feature value, we select the
cluster with the most measurements as the representative for that feature value
and drop all other measurements.

Since these heuristics filter the data being analyzed, and might produce bi-
ased results as a consequence, it is important to state that the heuristic has been
applied in the performance annotation produced. To this extent, we have specific
keywords in our language to indicate the use of heuristics in the analysis.

Clustering and Mixture Model

The clustering analysis (Algorithm 3) tries to partition the input set R= {. . . ri . . .}
based on the values yi of the performance metric rather than based on any
condition on the input features. The output is either a classification tree T =
[S1]h1; [S2]h2; . . . where each model hi is associated with a scope condition Si,
or a mixture model T = {p1}h1; {p2}h2; . . . where each model hi, is associated
with a probability pi.

The first step of the algorithm is to cluster the input set of records based on
the values of the performance metrics y of the records. Since we are clustering
1-dimensional data (we consider only one performance metric at a time), we
use Kernel Density Estimator clustering [6]. KDE clustering finds minima and
maxima in the density distribution for the performance metric. We then use the
minima as boundaries between clusters, and maxima as centroids.

For each cluster, Algorithm 3 first tries to find a good model and also a defin-
ing scope condition for the data points in the cluster, which then becomes part of

57 4.2 Statistical Analysis

Algorithm 3 Clustering and mixture model
Require: R= {r1, r2, . . .}.
Ensure: A= {(p1, h1), . . . } or A= {(S1, h1), . . . }.

1: A← ;
2: {R1, R2, . . .} ← kde1d(R), based on the metric values y
3: for all clusters Ri do
4: formulate model hi(X) on Ri for some feature set X
5: if hi(X) is a good model then
6: if there exists a condition Si that defines Ri then
7: A← A∪ {(Si, hi(X))}
8: end if
9: end if

10: end for
11: if A= ; then
12: for all clusters Ri do
13: pi ← |Ri|/|R|
14: formulate model hi(X) on Ri for some feature-set X
15: if hi(X) is a good model then
16: A← A∪ {(pi, hi(X))}
17: else
18: formulate input-independent model hi on Ri

19: A← A∪ {(pi, hi)}
20: end if
21: end for
22: end if

58 4.3 Considerations on Composition

the output annotation (lines 3–10). In order to find cluster-defining scope con-
ditions, the algorithm searches for non overlapping ranges of values for some
feature. For example, if we find two clusters R1 and R2, and we find that all the
records in the cluster R1 have values smaller or equal to 10 for the feature f ,
while all the records in the cluster R2 have a value bigger than 10 for the same
feature f , then use f as a cluster defining feature, with 10 as pivotal value. In
this case, we would drop the probabilities associated with the clusters, and use
f <= 10 and f > 10 as scope conditions.

With this type of partitioning, we can find partitions that describe modalities
in the performance behavior that are not generated by specific execution paths
in the code of target methods.

If this first phase does not yield a condition and a good model for even a single
cluster, the algorithm continues with a search that includes input-independent
models and that associates models with probabilities (lines 12–21). When we
cannot formulate any regression model for the data points in a cluster, we for-
mulate models using normal variables whose mean is the centroid of the cluster,
and whose standard deviation is computed from the distances of all the data
points in the cluster from the centroid.

4.3 Considerations on Composition

In this Section we discuss some ideas to reason about composition. With the word
composition we refer to the use of performance annotations for different meth-
ods in the definition of another performance annotations, as we have shown in
Chapter 1. In other words, composition means describing how the performance
behavior of different methods which have some kind of inter-dependencies relate
to each other, for one specific performance metric. We will not formally discuss
the problem in this thesis, as we leave this topic for future work. Still, here are
some considerations.

While in the end the resulting performance annotations would look identical,
there are multiple ways to reason about composition. More precisely, there are
multiple ways to infer the properties of composition.

On the one hand, composition might refer to the process of finding how the
performance behavior of inter-dependent methods correlate to each other, when
we have instrumented and observed all the methods involved. This means that
we find correlations between the performance of the different methods that we
observe.

On the other hand, with composition we might refer to the process of pre-

59 4.4 Threats to Validity

dicting the performance behavior of a method that we have never instrumented
or observed, using the performance annotations of other methods. This kind of
composition requires an execution model for the method for which we want to
predict the performance. Either we ask the user to provide such model, or we
run static analysis. It does not make sense to think of any dynamic analysis, since
that would bring us back to the "easy thing".

4.4 Threats to Validity

While our analysis is effective in finding complex performance pattern in real
world complex software, as we will show in Chapter 6, there are several risks
to consider with the results and the information contained in our probabilistic
performance annotations.

For example, instrumentation inevitably introduces overhead on the running
time of the program being observed, and perturbation in the data collected. We
will discuss and quantify these risks in Section 5.4.2.

Other types of risks are related to the correctness and the completeness of our
results.

Correctness. The risk related to correctness is that of finding false correlations.
Indeed with our approach there is the risk of finding false correlations between
a performance metric and a specific feature. With false correlation we refer to
casual correlations, that are present in the samples that we observe with the
statistical analysis, but do not represent any real pattern caused by the program
being analyzed. For example the running time of a std::list<int>::sort()

function could be found to be correlated with the value of the first element of
the list, because just by accident such correlation was indeed observed in a given
set of samples.

While false correlations could admittedly deceive the performance analyst
reading performance annotations, the risk becomes indefinitely limited with a
growing number of samples that are collected. In other words, if the correlation
is really accidental, then collecting more samples is going to uncover the error
in the results. At the same time, if the correlation remains valid when more
and more samples are collected, then it becomes more and more likely that the
correlation is indeed existing, even if not immediately visible or intuitive from
the code of the program.

60 4.4 Threats to Validity

Completeness. The risk related to completeness is that of producing perfor-
mance annotations with not enough information to describe completely the per-
formance behavior of software components. Performance annotations that do
not account for the effect of some features, that in reality do have an effect on
performance, cannot be used to make accurate predictions of the behavior in
different environments and with different workloads.

As we said in Section 3.2.1, our performance annotations do not represent
a ground truth but rather a model of what was observed. The information con-
tained in performance annotations is what can be extrapolated from what has
been observed in real world experiments. As a concrete example, if we never run
experiments with different list sizes when analyzing std::list<int>::sort(),
the resulting performance annotation will not have the size of the list as a rele-
vant feature.

Also, our analysis cannot predict multi-modal performance behaviors with-
out observing them. For example, Freud would not have been able to predict
the big jump in the running time in the sort experiment with limited memory
(Figure 1.1), without observing it.

In order to produce richer performance annotations we need to collect ob-
servations in which we have (1) a good variability for the values of the relevant
features, and (2) information about all the potential relevant features.

As we said in Section 3.2.1, rather than documenting all the features, it makes
more sense to document all the features that really matter. This means that
we consider the variability of the features that can be observed in the typical
workload for a system to be enough to represent the performance behaviors of
interest.

While our approach for automatic feature exploration minimizes the risk of
ignoring relevant features within the memory of the program, we rely on the
performance analyst to identify relevant features in the system that is executing
the program under analysis.

In our current implementation of Freud we consider the CPU clock speed as
a system feature that is potentially relevant for the performance of software, but
others exist. For example, workloads different from the program under analysis,
running on the same machine, are likely to have an effect on the performance of
the program under analysis. Other examples can be the architecture or the size
of the cache memory of the processor executing the program, or the network
bandwidth and latency.

While we do not consider all these feature candidates in the current imple-
mentation of the analysis, we argue that these features can be accounted for
without any fundamental change in our analysis. For example, we can imagine

61 4.4 Threats to Validity

that Freud would compute a linear regression to correlate the running time of
a method download(std::string url) with the feature network_bandwidth, if
such feature was read from the system (in Linux, from sysfs).

Similarly, a different CPU architecture, or maybe the usage of a dedicated
processor or of a GPU instead of the main CPU, could be encoded with an enu-
meration feature that would be used to partition the data points. Freud would
be able to find different performance profiles, according to the hardware used to
execute parts of the method.

62 4.4 Threats to Validity

Chapter 5

Freud

In this chapter we describe Freud, the tool that we implemented to analyze the
performance of software systems to automatically derive performance annota-
tions. Freud is an open source tool that is designed to operate with any C/C++
program, that is, it does not target any specific program. Freud uses Intel’s Pin
instrumentation tool to dynamically recompile binaries to be able to extract per-
formance data at run time. Freud then performs a statistical analysis on the
collected data using the R statistical package.

Freud was developed for Linux. In particular, Freud processes 64bit ELF bi-
naries containing DWARF debugging information, and uses the procfs to collect
information about the state of the system. Freud also expects that the instru-
mented system uses the System V AMD64 application binary interface (ABI).
These requirements correspond to the typical default configuration on practi-
cally all modern Linux 64-bit systems with the default GCC compiler. However,
the choice of the Linux platform was not motivated by any unique feature of
Linux systems. In fact, we also believe that Freud can be easily extended to
handle more binary formats and operating systems thanks to its modular design.

Figure 5.1 shows a high level model of Freud, which is composed of three
separate modules: freud-dwarf, freud-pin, and freud-stats. Dwarf and pin are
the modules that constitute the instrumentation part of our analysis, while stats
implements the statistical analysis. Each module results in a separate program,
and the interaction between the different programs happens through physical
files on the filesystem.

The typical usage pattern is as follows:

1. The performance analyst runs freud-dwarf, passing as input the names of
the methods to instrument, and the path to the binary of the target pro-
gram. This operation produces two files as output: table.txt, and feature-

63

64

function
name

binary
program

workload annotations

DWARF

• Static analysis
• Feature discovery
• Feature-extraction code

CODE
INFOPIN

• Dyn. instrumentation with Pin
• PinTool using code from DWARF
• Run instrumented program

LOGS STATISTICS

• Offline statistical analysis
• Find regressions and clusters
• R for stats, gnuplot for graphs

Figure 5.1. High-level architecture of Freud

processing.cc.

2. The performance analyst compiles freud-pin, which requires the feature-
processing.cc file produced during the first step. This will result in a com-
piled PinTool. The performance analyst then runs the PinTool passing as
input the binary of the program to analyze, the table.txt file, and the set of
performance metrics to collect. The PinTool executes the target program
and produces output logs while the program is running. If necessary, the
performance analyst must supply an appropriate workload for the target
program.

3. Finally, the performance analyst executes freud-stats, passing as input the
logs produced at the previous step. Optional parameters are available to
override the default threshold values used during the analysis, such as the
minimum R2 for the regressions. The tool produces performance annota-
tions as output: txt files for the textual representation, and eps files for the
graphs.

In the rest of this chapter we describe in details the three modules of Freud:
the static analysis of the debugging information (freud-dwarf) in Section 5.1,
the instrumentation (freud-pin) in Section 5.2, and the statistical analysis (freud-
stats) in Section 5.3. In Section 5.4 we describe our validation of Freud, to assess
that it produces corrects results with methods with known performance behav-
iors. Finally in Section 5.4.2 we discuss, with the help of some real world exam-

65 5.1 freud-dwarf

ples, the overhead and the perturbation introduced by Freud’s instrumentation.

5.1 freud-dwarf

As shown in Figure 5.1, freud-dwarf performs a static analysis on the binary of
the target program. The binary must contain DWARF debugging symbols as gen-
erated, for example, by the gcc compiler with the -g flag. The goal of the static
analysis is to discover all the potential features within the program that might
affect the performance of all the methods that the performance analyst wants to
analyze. As we said in the previous chapter, this means all the local and global
variables that can be accessed by the selected methods. For each feature candi-
date, freud-dwarf produces C code to extract the values of such feature at run-
time. This code is written in feature-processing.cc, which is to be later compiled
and executed in freud-pin.

To perform the analysis, Freud takes advantage of the DWARF debugging
information that is stored within the ELF binaries of the target programs. We now
briefly introduce DWARF information and then describe the analysis performed
by freud-dwarf. For illustration purposes, we use the C++ program shown in
in Figure 5.2 as a target program. In this example, the performance analyst
wants to create performance annotations for the method target, which takes two
parameters a and b, and can also read the global variable c. The relevant feature
in the example is the member feature of the class derived, that is read by the
target method through the parameter b. Notice that b is statically defined to be
of type abstract in the signature of target (line 13). abstract is a polymorphic
class that can be downcast to derived, as in line 14.

5.1.1 DWARF

DWARF [40] is a common format for storing debugging information. This in-
formation relates data and locations in the compiled program to programming
concepts and specifically to their human readable definitions in the source code.
Such information is used by debuggers such as gdb to help the developers inspect
the state of the program at runtime with reference to the source code.

DWARF uses a tree structure to represent the debugging information of an
entire program. Each node of the tree is a Debugging Information Entry (DIE).
DIEs represent different objects in the program, from compilation units to meth-
ods and variables. Each DIE has a set of DWARF-defined attributes, such as name,
type, or location. The semantics of the attributes depends on the type of the DIE.

66 5.1 freud-dwarf

In this thesis we cover only a very limited set of attributes for presentation pur-
poses. A complete documentation is available in the reference manual [10].

67 5.1 freud-dwarf

COMPILE UNIT
example.cc

low_pc: 0x0
. . .

CLASS
abstract

byte_size: 8
. . .

CLASS
derived

byte_size: 16
. . .

BASE TYPE
int

byte_size: 4
. . .

VARIABLE
c

type: 0x3d
loc.: 0x4014

. . .

SUBPROGRAM
target

l_name: _Z6t. . .
low_pc: 0x1169
frame_base: cfa

. . .

POINTER

type: 0xe1
. . .

MEMBER
_vptr.abstract

type: ref
location: 0

artificial
. . .

MEMBER
feature

type: 0x3d
location: 8

. . .

INHERITANCE

type: 0xe1
location: 0

. . .

FORMAL PAR
a

type: 0x3d
loc.: fbr− 36

. . .

FORMAL PAR
b

type: 0x1a7
loc.: fbr− 48

. . .

1 class abstract {

2 virtual void foo() = 0;

3 };

4
5 class derived: public abstract {

6 public:

7 int feature;

8 void foo() {};

9 };

10
11 int c;

12
13 void target(int a, abstract * b) {

14 derived * d = dynamic_cast<derived *>(b);

15 }

16
17 int main() {

18 target(0, new derived());

19 }

Figure 5.2. Example of DWARF tree for a C++ program

The upper part of Figure 5.2 shows the DWARF tree that corresponds to the

68 5.1 freud-dwarf

C++ program in the lower part of the picture. Each node of the tree is a DIE; the
first line of each DIE represents its type, the second line is the name, while the
rest is the set of relevant attributes used by Freud. For space efficiency reasons
in the binary encoding, every DIE has an implicit reference to zero or one child,
and a reference to zero or one sibling.

In order to reduce the size of the binaries, DWARF avoids duplicating infor-
mation and instead uses cross-references to DIEs. For example, the DIE repre-
senting the int base type is referenced by three other DIEs in our program. We
illustrate these references with dashed arrows in the Figure. Red arrows are for
basic type specifications, blue arrows are for pointer types, and green arrows are
for inheritance relations.

We now introduce the DIEs of interest for our analysis. Such DIEs represent
information in the program such as types, methods, parameters to methods, and
variables.

Subprograms

The methods in the program are represented by SUBPROGRAM DIEs in the tree.
This kind of DIE has a few attributes that are used by Freud: (1) name or link-
age_name, whose value represents the name (mangled name) of the method in
C (C++) programs, (2) low_pc which is the address of the first instruction of
the method, and (3) frame_base, which represents the address of the base of the
activation frame of the method. The activation frame is the memory buffer that
is allocated as stack memory to the method during its execution. In our example
the target method has a linkage name that is created by the g++ compiler. The
value for the low_pc is a constant, while the value for the frame_base, cfa, stands
for Canonical Frame Address, and is defined to be the value of the stack pointer at
the call site in the previous frame. This value can typically be found in a specific
register of the processor (rbp) at the beginning of methods.

Formal Parameters

The parameters taken by the methods are represented by FORMAL PARAMETER
DIEs, which can be found among the children of the SUBPROGRAM DIE of the
corresponding method. The most important attributes of these DIEs, besides the
name, are (1) type, which is a reference to the DIEs representing the type of
the parameter, and (2) location, which encodes the position in memory of the
parameter.

The type is encoded as a chain of DIEs. The chain contains DIEs such as

69 5.1 freud-dwarf

POINTER or CONST, and ends in (a) a BASE TYPE, (b) a STRUCTURE, or (c) a
CLASS. In our example the formal parameter b of target has a type attribute
which points to a POINTER DIE, which in turns points to the CLASS DIE repre-
senting the abstract class.

Location attributes, instead, describe where the parameter is going to be lo-
cated in the program memory. DWARF uses location expressions that encode
instructions for a virtual stack machine. Such virtual machines instructions use
absolute values, register values, or values present at given memory locations.
The execution of these location-programs with the runtime registers and mem-
ory values as they are during the execution of the target program, produces the
actual location.

This encoding with such stack machine programs is necessary because the
location of variables and parameters changes during the execution of the target
program, since CPU registers and the stack are used for various purposes and
often interchangeably. So, the DWARF location expressions must be evaluated
in a specific context, assuming a specific value for the program counter. Since
we always know where our instrumentation is going to be executed within the
program, most of the times we can evaluate the location expressions already
during the static analysis of the debugging information, avoiding any overhead
incurred for the evaluation at runtime.

Complex Types

Complex types, such as structures and classes in C/C++, are described with all
their members and the corresponding memory layout in the DWARF debugging
information. DWARF represents complex types such as classes and structures
with CLASS and STRUCTURE DIEs. For our analysis, their most important chil-
dren in the tree are MEMBER DIEs, which enumerate their members. Just like
formal parameters, members have location and type attributes. While the type
attribute is identical to those of the formal parameter DIEs, the location indicates
the offset (in bytes) of specific members relative to the beginning of the memory
buffer containing the complex type.

Let’s go back to our example. The parameter b of the method target has
a type field that points to a POINTER DIE, which in turns points to the CLASS
DIE named abstract. abstract has only one member, _vptr.abstract, which
we discuss later. At the same time, the feature member of the derived class is
positioned 8 bytes after the beginning of the class. In more complex scenarios,
the members of complex types can have complex types as well. These sub-trees
representing complex types always end in base types.

70 5.1 freud-dwarf

Note from this example that, just by reading the debugging information ref-
erenced from the target DIE, we do not reach the information of the derived

class and therefore we cannot see the feature variable. To handle these cases,
we need our static analysis to be aware of inheritance and polymorphism in C++.

Inheritances

Several programming languages, such as C++, support class inheritance and
polymorphic types. In C++, a class B inherits from a class A when B extends A.
In other words, B has all the fields and methods declared by A, plus potentially
more fields and methods as specified by the programmer. This relation between
types is represented in DWARF with the INHERITANCE DIE. This DIE represents
exactly the relation between a class and one of its base classes introduced in C++
by the colon (:) character, as in line 5 in our example program.

In our example, one of the children of the derived class in the DWARF tree is
an inheritance DIE, indicating that derived is extending another class. The type
of this DIE points to the type of the complex type that derived inherits from.
Concretely, at the byte-level, these classes are as follows: first there are all the
members of the inherited type, and then all the members of the derived type.
The location attribute represents the offset, in bytes, at which the members of
the derived class begin relative to the beginning of the inherited class.

In our example, we see that the class derived is extending the class abstract.
Therefore, at byte-level an object of type derived will have all the members of
abstract at the beginning, and then, with offset 0, the members of the type
derived. Adding the offset of the inheritance with the offsets of each member,
it is possible to reconstruct the complete memory layout of derived objects.

Polymorphic Types

With polymorphism, it is possible to use a single symbol to represent multiple
different types. Such types might have different members, and therefore differ-
ent features. While static, compile-time polymorphism allows our static analysis
on debugging symbols to correctly access all the information that is stored in
objects as they can be seen by the methods of the target program, dynamic (i.e.
runtime) polymorphism can be a problem.

This can be seen in our example, in which our feature of interest is in the
derived class. However, in the code and in the DWARF debugging symbols,
our target method takes an object of type abstract, which does not carry any
feature of interest. Since abstract has virtual methods, it uses dynamic poly-

71 5.1 freud-dwarf

morphism: objects that are declared to be of type abstract in the code, might
actually be of different types at runtime.

The way this dynamic polymorphism is implemented in the binary program
is compiler specific. g++ uses pointers to virtual tables, such that polymorphic
types contain, at the beginning of their memory space, _vptr. members that are
added automatically by the compiler and are not visible from the source code.
These are pointers to the virtual tables of the runtime objects. These tables con-
tain pointers to methods, allowing the program to execute the methods specifi-
cally assigned to the objects, as appropriate for their runtime dynamic types.

Still, these virtual pointer tables do not uniquely identify a type, which is what
we need for our purpose of accessing all the information carried by polymorphic
objects at runtime. So, the compiler must add one more field to a polymorphic
object to uniquely identify its dynamic type. In particular, the binary code gener-
ated by g++ stores at address _vptr.−8 the address of the __class_type_info

object that represents the actual type of the object. __class_type_info is itself
a structure that contains a pointer to a char string representing the name of the
dynamic type. In other words, we can programmatically retrieve the name of
the runtime type of a polymorphic object, starting from the object’s virtual table
pointers and going through the object’s __class_type_info descriptor.

Additionally, C++ allows multiple inheritances, which results in objects hav-
ing more than one _vptr members at the beginning.

5.1.2 Extracting the Data

Figure 5.3 shows the two main phases of the computation performed by freud-
dwarf ; first the DWARF tree is explored to collect information about the selected
methods, their parameters, and about the class hierarchies. In the second phase
such information is used to produce the C code (feature-processing.cc) and other
info (table.txt) used by freud-pin.

Methods and Parameters

First freud-dwarf finds the SUBPROGRAM DIEs of the methods selected by the
users. To uniquely identify methods in C++ programs, the user of Freud must
provide their mangled names, which is matched against the linkage_name at-
tribute of every SUBPROGRAM DIE. In plain C, instead, the name of the methods
must be unique, therefore the search is based on the value of the name attribute
of the subprogram DIEs.

72 5.1 freud-dwarf

DWARF

function
name

binary
program

info
code

EXPLORE TREE

Build class graph

Find function

Find global variables

Find parameters

CLASS
GRAPH

VARIABLES

EXPLORE VARIABLES

Check possible
dynamic types

Generate info

Generate code

Figure 5.3. Architecture of freud-dwarf

Once the correct DIE has been identified, freud-dwarf collects information
about the method: instrumentation entry point address, parameters, and global
variables in the same scope.

Entry Point Address

freud-dwarf reads the low_pc attribute’s value of the SUBPROGRAM DIE in order
to find the address for the entry point into the methods.

In C/C++ programs, each method executes in a dedicated memory area in
the program’s memory. Such memory area is used to store parameters and local
variables used by the method. The creation and setup of such memory area is
performed before the actual code of the corresponding method is executed, in
the so called preamble of the method.

The address defined by low_pc points to the method’s code, at the beginning
of the preamble. Since the goal of the instrumentation code is to read the value of
the parameters, we want it to execute after the preamble is complete, when the
memory area will be populated with the information we want to collect. So, we
need to find the address of the first instruction of the method after the preamble.

To find it, freud-dwarf uses information from a different section of the pro-
gram’s binary, the .debug_line section of the ELF file. This section is effectively
an index into the program information. Each line maps a memory address in the
binary program to information in the source code of the program. gcc uses the
convention of storing multiple lines with the same address pointing to the same

73 5.1 freud-dwarf

method, if there is a preamble for the method. The last address points to the first
instruction of the method, after the preamble.

Parameters and Variables

Next, freud-dwarf looks for FORMAL_PARAMETER DIEs among the children of
the method’s SUBPROGRAM DIE. These DIEs represent the parameters that are
passed to the method. The attributes that we use for our analysis, in addition to
the name, are (1) location and (2) type.

Freud tries to evaluate DWARF location expressions during the static anal-
ysis. Since we know exactly the address in the program memory where our
instrumentation code is going to execute, most of the times we can resolve the
location expressions to a register, an absolute address in the program memory,
or an offset from the value contained in a register at runtime. This allows for
efficient evaluation of locations at runtime, minimizing the overhead of the in-
strumentation.

Freud also follows the chain of DIEs that describe the type of the parameters,
including whether each parameter represents a pointer or not. We ignore const
qualifiers, since Freud never writes or modifies any bit of information in the
instrumented program. If one parameter is of a complex type that has a _vptr.

member, then we know that the object, at runtime, might be of different types.
We need to find all the possible runtime types to extract information that will be
used at runtime to read all the information available.

In order to compute the number of potential runtime types for each complex
type, Freud performs an exhaustive search in the DWARF tree. The goal of this
search is to build a complete class graph, which represents all the hierarchies
between classes in the program. We use this graph when writing the informa-
tion about parameters: for each complex type, in addition to the type defined
statically in the signature of the target method, we write all the possible derived
classes (i.e. descendants, in the class graph). For each potential class, we write
the hash of the name of the type, and the number and names of the possible
features.

Additionally, while exploring the tree, freud-dwarf logs all the variables that
are direct descendants of Compilation Unit DIEs. These are global variables
which are visible to all the methods at the same level, or at lower levels in the
same branch of the tree. We explore the location and type attributes of global
variables as we do with formal parameters, but the location is typically an abso-
lute address, which is resolved at runtime.

74 5.1 freud-dwarf

5.1.3 Generating Code and Info

Once we have all the information that is needed for our instrumentation, we
have to create the actual instrumentation code and information that will be used
by freud-pin.

The static information is written in a file called table.txt. This table contains
one entry per target method, including the entry point address for the instrumen-
tation, and information about parameters. For each parameter we have: name,
location, whether the parameter represents a pointer, and one or more sets of
basic features. Each set of features is associated with a different runtime type
when we have polymorphic types. To identify the runtime type, we use a hash
of the string representing the type.

The information described so far is used to set up the instrumentation: it finds
the points in the program where to add jumps to the instrumentation code, and
also finds the registers and memory addresses that contain information relevant
to the parameters.

On the other hand, Freud must extract feature candidates from complex
types, such as structures and classes. To do this, freud-dwarf creates specific
C code in the feature-processing.cc file. This code is executed for every parameter
and global variable that should be collected for a method. The code consists of a
switch statement that evaluates the static type of the parameter that is going to
be analyzed. Each parameter type requires different actions to extract features
information. Some types also require different actions whether they are stored
in memory or in registers. This is the case for smaller objects that can be passed
completely through CPU registers. Pointers and references to complex types are
always passed as addresses.

To speed up string comparisons, we use 64-bit hashes of the strings in all the
instrumentation code.

The code to handle polymorphic types has one additional switch, to iden-
tify the actual type of objects at runtime. To perform this check, we hash the
name of the dynamic type at runtime and compare the result with the hash value
stored in table.txt. vptr points to the __class_type_info for the object, at runtime.
__class_type_info + 8 points to a string representing the mangled name of the
object. At runtime, in the PinTool, we hash that string and compare to the hash
generated statically by freud-dwarf. The static hash is passed through table.txt.

Once the correct type at runtime is determined, we execute the actual feature
extraction code. This code does not use any source-level declaration or definition
of the objects it is inspecting. Instead, everything is performed at a low level, with
only basic types and memory locations. The feature extraction code collects the

75 5.1 freud-dwarf

values of variables and complex types members of the C primitive data types:
float, double, signed and unsigned char, short, int, long, and long long, as well
as size_t and bool. For fixed-length arrays, we collect the size and optionally an
aggregate value, like the sum of all the elements of the array. For char pointers,
we try to find the string terminator to compute the string length. Whenever we
need to dereference a pointer or read from unsafe memory locations, we use
the PIN_Safecopy function, that performs checks on the validity of the memory
address without causing SIGSEGV.

Also, while exploring the tree to document the structure of complex objects,
freud-dwarf applies heuristics to create potential derived features. For example,
we compute the difference between variables named start, begin, first and stop,
end, last, respectively, and we log them as a derived feature representing a size or
time span. For pointers and aggregate types (i.e., structs) we perform a traversal
to reach nested or linked variables. Pointer traversal requires a runtime check to
avoid de-referencing invalid pointers.

5.1.4 Parameters

Table 5.1 enumerates the parameters that the user can control in freud-dwarf.

We use MAX_DEPTH and MAX_FEATURES when looking for feature candidates,
to limit the number of potential features that we consider.

With MAX_DEPTH we limit the distance, in terms of structures or classes, of
the feature candidates from the direct variable that is accessed by a software
component. For instance, abstract.feature is at depth 2 from the viewpoint
of the method target, in the example of Figure 5.2.

With MAX_FEATURES we limit the number of features candidates that are col-
lected for a single variable as seen by the target method.

We set a maximum to the depth of the exploration to limit the amount of data
that we collect, in order to reduce both the overhead during the execution of the
target program, and the running times for the statistical analysis.

It is not possible to characterize precisely the effect of these parameters on a
generic program, since the number of additional features that are discovered at
increasing depths depends on the specific program that is being analyzed.

In Section 5.4.3 we give concrete data to show the effect of the value of
MAX_DEPTH on the number of features collected and on the running time for the
statistical analysis in real world complex cases.

76 5.2 Instrumentation

name default description

MAX_DEPTH 3 Maximum search distance from the direct parame-
ters

MAX_FEATURES 512 Minimum number of features to collect before
stopping the search even at depths lower than
MAX_DEPTH

Table 5.1. Parameters and default values in freud-dwarf

5.2 Instrumentation

Once we have all the information about target methods and their potential fea-
tures, we want to run the target program to extract information from it. This re-
quires instrumenting the target program, which means modifying the program’s
binary code so that, in addition to the normal operations, it executes instructions
to measure performance metrics, and extract feature values. For the instrumen-
tation we use Intel Pin.

Pin allows for dynamic modification of the program binary. Every instruction
of a compiled program can be analyzed and modified, and it is also possible to
inject new instructions in the program. Pin allows for transparent instrumenta-
tion, which means that the original program is not aware of the instrumentation
context, and all the relative addresses within the program remain unchanged. In
other words, all the relative addresses provided by the debugging information
remain valid, from the viewpoint of the instrumentation.

We will now describe in details our instrumentation tool, how it measures
performance, extracts feature values, and create the logs for the statistical anal-
ysis. First, we discuss some of the constraints of Pin, and how they affect our
choices for the instrumentation.

5.2.1 Intel Pin and Pin Tools

Pin is a proprietary tool. The distribution consists of a binary program, pin, and
a set of libraries and headers, the PinCRT (Pin C Run Time).

The typical usage of Pin is as follows: users write their own Pin tools in C,
and compile their tools against the PinCRT to create objects containing compiled
code. Users then execute pin passing the compiled object as parameter, followed
by a process to which Pin must attach or a binary program to run. After initializa-
tion, the Pin tool takes control of the execution of the process and of its memory

77 5.2 Instrumentation

space, with the possibility of modifying the code.
Pin can be used in two mutually exclusive modes: Just In Time (JIT), and

Probe. With JIT, Pin re-compiles on-the-fly the binary code of the program to
which it is attached. So, when using Pin’s JIT mode, the binary code that is exe-
cuted is effectively Pin’s newly generated code, and not the original binary code.
This is true for all the binary code of the target program, whether it is modified
by the Pin tool or not. In JIT mode, it is possible to use all the features of Pin, in-
cluding instruction-level instrumentation, which we use to log branch outcomes.
The Probe mode instead only allows for a limited set of features. In particular,
in Probe mode it is only possible to insert jump instructions in very constrained
places in the program, or to replace entire methods with instrumentation meth-
ods.

Freud currently uses only the JIT mode of Pin. While using the Probe mode
would reduce the overhead of our instrumentation, there are different problems
with this latter approach: (1) in Pin’s Probe mode there are only a few places
where we can insert jumps, which is problematic for our instrumentation; and
(2) replacing the entire method is not easy, because we would need to replace
signatures that contain complex types from the instrumented software, and this
must be done within a Pin tool that must be compiled and linked against the
PinCRT.

In fact, the requirement that a Pin tool be compiled against the PinCRT poses
various limitations to the external libraries and resources that can be used in
the tool. In fact, PinCRT implements part of the standard C/C++ libraries, and
replace the standard libraries provided by the system (e.g., glibc on Linux).

For example, this means that it is not possible to use tools and libraries such
as the PAPI (Performance Application Programming Interface) library to collect
performance measurements. Also, Pin tools cannot link against any object that
is linked against the native system libraries. This makes it not viable to use
declarations about complex types from the target program’s source code, because
(a) linking against the objects containing their definition is not possible, and
(b) compiling their definitions against the PinCRT is unlikely to work without
major modifications, which would alter the behavior, in addition to being quite
a cumbersome task for users.

In order to use the definitions of complex types from the target program’s
source code from a Pin tool, one option would be to create some glue code that
embeds all the instructions to extract features from complex types using the na-
tive system libraries and that can be executed from the Pin tool. This amounts to
instrumentation code that extracts features from complex types using the source
code with the definition of those types, possibly using the default getters provided

78 5.2 Instrumentation

by the developers. This code would be compiled statically against the native C
library of the system. From the Pin tool, it would then be possible to link to entry
points in this compiled module. One advantage of this solution is that it would
be possible to use “for free” the structure definitions and parsing code that comes
with the instrumented program. Still, it would not be easy to compile such glue
module pulling code and header files from a big, complex project. Indeed, we
would have a chain of dependencies on more development headers and libraries
that would complicate a lot the ideally simple glue module.

Given these constraints, we opted for a solution in which we create Pin tools
that contain all the code that is needed to extract features from complex types,
and can be compiled against the PinCRT without any external dependency.

5.2.2 freud-pin

Figure 5.4 shows the main operations of our Pin tool, freud-pin. In the first phase,
during the startup of the target program, we setup the instrumentation context,
and add jumps to our instrumentation code in specific points in the target pro-
gram. We also create a new Pin thread that operates in the program’s memory
space, but is reserved to our instrumentation. Such thread is used to dump out-
put logs while the target program is running, without blocking its execution, and
with minimum overhead.

We will now describe more in details each phase and operation.

5.2.3 Adding Instrumentation

The first operation performed by freud-pin is to modify the target program’s bi-
nary code to add jumps to the instrumentation code in different places. More
precisely, we add the following jumps:

• At the entry points of target methods, we add a jump to the instrumentation
entry code. We will describe in details this code later.

• At the exit points of target methods, we add jumps to the instrumentation
exit code. We will describe in details this code later.

• For every branch instruction within the target methods, we add a jump to
the branch logging code, which logs the outcome of the branch evaluations.

• At entry and exit points of specific standard library methods, such as malloc
or pthread_mutex_lock, we add jumps to performance measurement code.
We will give more details later.

79 5.2 Instrumentation

PIN

table.txt

binary
program

feat_proc.cc

output
logs

ADD INSTR

Instrument branches

Instrument methods

Open file descriptors

Add JIT callback

Instrument malloc/pthread

Start output thread

Write output logs

Switch data structures

Write out files

RUN PROGRAM

Instrumentation entry

Check sampling

Collect features

Take timestamp

Instrumentation exit

Take timestamp

Add to output

Run instrumented methods

TARGET

PREAMBLE

INSTR. ENTRY

CODE
BRANCH

CODE

INSTR. EXIT

Figure 5.4. Architecture of freud-pin

As explained in Section 5.1, when we add jumps at the entry points of meth-
ods, we use the address of the first instruction of the method after the preamble.
Such address is reported in table.txt.

All the addresses provided with the debugging information are provided as
relative to the beginning of the target program’s memory space. With the Pin
API, on the other hand, we need to provide absolute memory addresses. Absolute
addresses change at every execution of the program, as mandated by the Address
Space Layout Randomization (ASLR) security feature, that is typically enabled
on every modern Linux distribution.

To compute real absolute addresses, freud-pin finds the base address of the
program’s memory space at the beginning of each execution of the target pro-
gram, reading the procfs filesystem. The complete addresses are computed as

80 5.2 Instrumentation

the sum of the base address, and the relative addresses within the program’s
memory.

Conditional Branches

If we want to collect information about branches, we analyze the code of the
target methods at the instruction level. To do so, we use Pin’s JIT mode to find
all the conditional jump instructions. We instrument those instruction to first
jump to our instrumentation code, which records for every execution whether
the jump has been taken, or not. Different branches are uniquely identified with
their addresses.

This instruction level instrumentation can introduce a considerable overhead
if the instrumented branches are executed many times. Branch instrumentation
should therefore be avoided when exploring and when it is somehow known that
the branch analysis is not needed.

5.2.4 Running the Program

When the setup of the instrumentation is complete, the target program is started,
with the same command line options it would take during normal operations.
The target program runs with our instrumentation code, which is executed when
any of the jumps added during the setup phase is reached. Such instrumentation
codes takes care of measuring performance metrics, and collect the values of
potential features.

Metrics Collection

Given the limited number of possible approaches allowed in the PinCRT context,
we will now describe our approach at performance measurements. In general,
we access directly low-level information, minimizing the overhead introduced by
the measurement.

Time. For time, our Pin tool reads directly the processor Time-Stamp Counter
(TSC). The TSC on newer Intel and AMD processors is synchronized across all
the CPU cores, and ticks at constant rate regardless of any power state and clock
speed. Also, the TSC for all the CPU cores is reset at the same time by the Linux
kernel during the boot of the system. Thus, the TSC can be used for wall clock
timings ([23], Sec. 17.17.1).

81 5.2 Instrumentation

We use the rdtscp instruction to read the TSC efficiently at the user level
without context switch, minimizing the chances of instructions reordering by the
processor. We take one timestamp just before the execution of the target method,
and another one as soon as the control goes back to the instrumentation, when
the execution of the target method ends.

The difference represents the number of TSC ticks that occurred during the
execution of the method, even in case of context switches and threads being
moved to other processors. To convert this metric to time, it is necessary to
divide the number of ticks by the nominal speed of the processor.

Memory. We instrument malloc to add a jump to our instrumentation code
at the entry point of the function. The instrumentation code reads the integer
parameter passed to the function, and the thread id on which the function was
called.

The integer parameter represents the size of the allocation requested, in
bytes. This value is added to the counters associated with all the methods ac-
tive on the same thread.

In order to increase the accuracy of the instrumentation, at the expense of
additional overhead, it is possible to instrument also the exit point of malloc, in
order to read the return value, and catch potential failures in the allocation.

Instrumenting malloc catches also the C++ new calls, which are implemented
with malloc in glibc.

We measure the amount of memory bytes allocated during the execution of a
method. In case the maximum amount of memory allocated during the execution
is required, it is necessary to instrument also the free function.

Locks. We instrument pthread functions to log all lock operations, namely re-
quests, completions, and releases. We produce two different metrics from these
logs: waiting time, and holding time. We do not measure the details about mul-
tiple locks, and instead we just consider each thread as waiting for or holding a
lock, or neither. It could be one or more locks. Still, there are only three basic
cases we consider for methods run by threads that acquire/release locks: (1) a
method can be called while a lock is held, (2) a method can be the caller of the
lock acquisition functions, (3) a method can release a lock while it is running.

More in detail, we instrument:

• pthread_mutex_lock, at both the entry and exit points. When this func-
tion is called, we take a timestamp with rdtscp and store its value in a
thread specific structure. When the function returns for the same thread,

82 5.2 Instrumentation

we take another timestamp. The time difference represents time that all
the active methods on the thread spent waiting to acquire a lock. If the re-
turn value is zero, then a new timestamp is taken to record the beginning
of the lock acquisition by the thread.

• pthread_mutex_trylock, at the exit point. When this function returns
zero, then a new timestamp is taken to record the beginning of the lock
acquisition by the thread.

• pthread_mutex_unlock, at the exit point. When this function returns zero,
then we compute the difference between the current timestamp and the
timestamp representing the lock acquisition by the thread. The difference
is the time during witch the thread had the lock.

• pthread_cond_wait and pthread_cond_timedwait, at the entry and exit
points. When these functions are called, the thread implicitly releases the
lock. When the functions return zero, the thread implicitly acquires the
lock.

Page Faults. We use the procfs [27] to read the number of memory page faults.
The thread specific information can be read in /proc/PID/task/TID/stat, where
PID is the Process ID, and TID is the Thread ID. We compute the difference be-
tween the values at the exit and entry points of the instrumented methods. We
assume a specific interface to the information in the procfs, which might change
in future versions of Linux. We do not use /proc/thread-self because we want
to open the file only once and keep the handle open. However, we rewind with
fseek(0) on each read.

5.2.5 Collecting Features

All the code that extracts values from features within the program, such as pa-
rameters and variables, comes from freud-dwarf. Our Pin tool executes the switch
in the feature-processing.cc file for every parameter of the target methods, and for
every global variables they can access.

System features, instead, are collected by freud-pin autonomously. As an
example, to read the clock speed of the processor executing a specific method
we do as follows: we first read the thread id on which a thread is running
(/proc/PID/task/TID/stat), then use the procfs to check on which CPU the thread
is running, and finally read the CPU clock speed for that CPU (/sys/devices/sys-
tem/cpu/cpuX/cpufreq/scaling_cur_freq). This might not be always correct, since

83 5.2 Instrumentation

a context switch might change the CPU that is executing the thread, however it
is still a reasonable solution. Indeed, power-related frequency scaling happens
at a different time scale, and the CPU does not idle in between the measurement
of the clock speed and the execution of the method. Also, it does make sense in
comparing different CPU models or fixed power profiles.

In the current implementation, we do not explore other system features, but
all the useful information about the system can usually be found in the procfs,
and can be parsed as we do for the CPU clock speed.

5.2.6 Producing Output

We designed Freud to be usable also with long running processes, such as a
web server, or a DBMS. This requirement implies that freud-pin must be able
to produce the output logs even when the target program is running, without
affecting its performance.

For this goal, we use Pin to spawn a dedicated thread that produces out-
put files periodically. To minimize the impact on performance we do not block
any thread that is executing the target program. To access safely the data struc-
ture, we use a double buffering mechanism. The data structure holding all the
records collected during the execution of the target program is duplicated, so
that at any time only one is active, and used to store new information. When
the output thread wakes up, it switches the active data structure, so that the pro-
gram threads start using the one that was previously inactive. Then, the output
thread dumps the content of the data structure to output files and clears the data
structure before going to sleep for another period of time.

One problem with this approach is that we might invalidate some measure-
ments that are active when the buffer-switch happens. However, with an ade-
quate sleeping period, the amount of missed measurements should be limited.
When the target program ends, the output thread is activated to dump all the
remaining log entries.

The default period for producing the output is 5 seconds, and can be set with
a command-line parameter to freud-pin. Logically, the output follows the format
described in Chapter 4, with one entry per observation. In order to reduce the
size of the logs we apply two optimizations: (1) we use a binary encoding, and
(2) we replace common information such as the strings that represent feature
names with references to a single instance of such information.

84 5.2 Instrumentation

5.2.7 Minimizing Perturbation and Overhead

We do several things to minimize the perturbation of the measurements. First, we
do not introduce any lock whatsoever in our instrumentation. We still instrument
multi-threaded programs, but every thread has its own data structures to write
data.

One of the biggest sources of perturbation is the JIT recompilation. To avoid
this, we discard every measurement during which the JIT compiler has been
active.

We also measure the instrumentation time. This is necessary when there are
more than 1 active methods, concurrently.

There might still be perturbations in multi-threaded applications whenever
a method instrumented for time depends on another instrumented method on
another thread. In that case, Freud effectively attributes the running time cost of
the instrumentation of the second method to the running time total of the first
method.

To minimize overhead, we use sampling, so as to collect a limited number
of observations for each output dumping period. Since we are sampling from
a potentially infinite stream of observations, we use reservoir sampling [46] to
collect random samples for each target method. The default number of samples
is 100 per dumping period, but this value is arbitrary, and should be adjusted by
the performance analyst as needed for specific use cases. The number of samples
per period can be specified with command-line parameters to freud-pin.

5.2.8 Parameters

Table 5.2 enumerates the command line parameters that are available in freud-
pin. Freud users can use these parameters, in addition to the freud-dwarf param-
eters, to reduce the overhead of the instrumentation when some information is
not needed for the performance analysis.

The parameters that contribute the most to the overhead are branches, which
controls whether branch instructions of selected software methods are instru-
mented or not, and logs_count, which controls how many samples are collected,
in conjunction with dump_period.

dump_period is used to decide how often the instrumentation writes the col-
lected information to output files. A value of 0 can be used to disable the addi-
tional dumping thread, and write output files only once, at the end of the execu-
tion of the instrumented program.

Finally there are parameters to enable or disable the collection of all the per-

85 5.3 Statistical Analysis

formance metrics, in addition to time, which does not introduce any observable
overhead.

name default description

branches true Instrument branches

logs_count 100 Number of samples to take per dump_period for
each symbol

dump_period 5000 Time (ms) between consecutive flush to the output

locks false Measure locks related metrics

memory false Measure memory allocations

pfaults false Measure page faults (needs procfs)

procfs true Read from procfs (needed for CPU speed)

Table 5.2. Parameters and default values in freud-pin

5.3 Statistical Analysis

The last step of our performance analysis is a statistical analysis, which is per-
formed offline by our tool, freud-stats. freud-stats reads the logs produced by
freud-pin, and produces performance annotations, in the form of text files with
the textual representation, and EPS files with the plot representation.

5.3.1 freud-stats

freud-stats is a stand-alone program, that can be run offline on any system, that
processes the binary logs produced with the interface implemented by freud-pin,
and terminates the execution with the creation of performance annotations.

The parameters taken for the analysis are the names of the methods to an-
alyze, and the performance metric. There are also some optional parameters,
such as for setting a custom minimum R2 for the regression analysis.

We implemented the algorithms of Section 4.2 in C++ in freud-stats. We use
the R statistical package library for the basic blocks of the statistical analysis, and
gnuplot to produce graphs.

We now detail some some parts of our specific implementation of some of the
algorithms of Section 4.2. Our C++ code implements the algorithms to create
the classification tree exactly as they are described there.

86 5.3 Statistical Analysis

Pre-processing

We implement the pre-processing code directly in freud-stats. We find scoping
conditions using the branch logs, which contain the outcome of each executed
conditional branch. In our analysis, we consider only branches that are executed
exactly one time for every execution of the target methods. These branches likely
represent switches that distinguish slow and fast paths in the execution of the
methods. We use Algorithm 1 to find perfect correlations between some feature
values and the outcome of specific branches, and produce partitioning candidates
based on the values of specific features.

Regressions

First we filter correlated features to keep only one representative for each equiv-
alence class. To do so, we use the correlation matrix given by the cor function
provided by R. We remove one of the two features, for any pair with a corre-
lation coefficient bigger than 0.9, where 0 means no correlation, and 1 means
perfect correlation. In the current implementation, we do not use any heuristic
or algorithm to decide which of the two correlated features to drop. A future im-
provement might use some heuristics on the name of the features to keep the one
that is more likely to be indicative of a size or a length, which would presumably
be more meaningful for the performance analyst.

Once we have filtered the inter-correlated features, we proceed with formu-
lating regressions, as described in Chapter 4. We use the lm function provided by
R to compute linear models with interaction terms. To generate regressions we
use a default R2 value of 0.75, because in our experience it is a good trade-off to
account for noise in the data, and still produce meaningful models. We still let
the user override the default R2 value. The minimum p-value that every feature
must have in the regression is 2× 10−11.

In addition to what we said in Chapter 4, when we compare regression models
from different classes (i.e. constant, linear, quadratic, logarithmic) with the BIC
value, we additionally use a delta for the BIC to prefer simpler models over more
complex ones. In other words, if we have two valid regressions r1 and r2, we
prefer r1 over r2 if and only if BIC(r1) − BIC(r2) − 10|deg(r1) − deg(r2)|, where
deg(r) is the degree of the model r.

The idea of using a delta to reduce the probability of choosing more complex
models with no big difference in the prediction quality of the model, comes from
a statistical paper ([25], [36]) that discusses the use of BIC in the different scien-
tific contexts. We choose 10 as the value for the delta, because it produces good

87 5.3 Statistical Analysis

results in choosing the most appropriate models in our experiments.

Clustering

When we cluster the data points, we always consider only the performance met-
ric, ignoring all the information about the features. This means that we always
consider one-dimensional data. We choose to use a Kernel Density Estimator
clustering, which is efficient with one-dimensional data, and does not require
any prior assumption on the number of clusters.

The one parameter that is required by this KDE analysis, is the smoothing
bandwidth (i.e. the window size) to use when computing the density of the dis-
tribution of values. For this purpose, we use a variable-bandwidth kernel density
estimator [39] to compute the one-dimensional density of the data. We imple-
ment this technique in our own-made R port of the akde1d function [6], originally
written for Matlab. akde1d automatically adjusts the smoothing bandwidth ac-
cording to the local densities of the distribution under analysis.

We then find the local minima and maxima in the density, and use those points
to cluster the data. The minima represent the boundaries of the clusters, while
the maxima represent the centroids. The number of clusters is thus defined by
the number of local maxima in the density of the performance metric.

Plots

We use gnuplot to produce graphs. To keep the graphs readable to the human per-
formance analyst, we split multi-feature and therefore multi-dimensional graphs
into various two-dimensional graphs. Each two-dimensional graph represents
the correlation between one performance metric and one of the relevant fea-
tures. The effect of the other inter-correlated features is represented taking some
sample values for the other features. Figure 5.5 is one example, that shows the
interaction between the features a, which contributes a linear complexity to the
performance, and b, which contributes a quadratic complexity.

5.3.2 Checker

Freud also implements a checker, that can read performance annotations as in-
put, and check them against the measurements coming from the instrumenta-
tion. The result of the analysis is a Boolean value stating whether or not the
new behavior is compatible with the performance annotations. In other words,

88 5.3 Statistical Analysis

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

u
s
e
c
s
)

a

_Z28test_interaction_linear_quadii

b2[19]
b2[9]

[0]

(a) Main feature a

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

u
s
e
c
s
)

b

_Z28test_interaction_linear_quadii

a[19]
a[9]
a[0]

(b) Main feature b

void test_interaction_linear_quad(int a, int b).time {

features:

int a = a;

int b = b;

annotations:

Norm(155.10*a + 15.52*b^2 - 7.62*b + 17.95*a*b^2 - 51.50*a*b, 21.87);

}

(c) Performance annotation

Figure 5.5. Example of plots for regressions with interaction terms

the checker implements a prototype for assertion checking using performance
annotations.

5.3.3 Parameters

Table 5.3 enumerates all the parameters that are used in the current implemen-
tation of freud-statistics.

CORRELATION_THRESHOLD represents the minimum correlation value that two
different feature candidates must have to be considered equivalent in the regres-
sion pre-processing phase. If two features are considered equivalent, then one of
the two is dropped and not used to compute regressions. A higher value means
less pre-filtering and therefore more pressure on R, that is going to compute re-
gression models with more features. Highly correlated features are going to be
filtered anyway by R during the iterative regression analysis phase. While a lower
value for CORRELATION_THRESHOLD means less features used in the regression
analysis, the risk of using a lower value is drop features that could be beneficial

89 5.3 Statistical Analysis

name default description

CORRELATION_THRESHOLD 0.9 Maximum correlation between two
features when filtering

MIN_DET 0.75 Minimum R2 value for a correlation

GOOD_PVALUE 2× 10−11 Maximum p-value for which a feature
is considered good in a regression

BIC_DIFF 10 Additional penalty for a higher-degree
model for a regression

DROP_K 5 Number of bad features to remove
at each iteration when computing re-
gressions

Table 5.3. Parameters and default values in freud-statistics

in finding good regressions. The default value, 0.9, aims at filtering only highly
correlated features, and is therefore a conservative choice. On the other hand,
in complex cases with hundreds of feature candidates, it might be beneficial to
lower the value in order to reduce the time for the statistical analysis.

MIN_DET is the minimum R2 value that a regression must have in order to be
considered valid. This is one of the most direct way of controlling the results of
the statistical analysis. A higher value forces freud-statistics to try to compute re-
gressions that fit better the observations. This is achieved with either (1) branch
analysis, (2) noise removal, (3) main trend analysis, or (4) regression after clus-
tering analysis. Setting an exceedingly high value for MIN_DET might hide some
regression that would be informative for the performance analysts. Setting a low
value, on the other hand, might make freud-statistics stop the exploration of the
classification tree soon, and hide more precise regressions that could have been
found with one of the approaches above.

GOOD_PVALUE is the maximum p-value that a feature must have in a regression
to be considered relevant, and be used for more iterations in the iterative regres-
sion analysis. The default value is quite strict, meaning that only features that
are considered strongly relevant are kept. A higher value makes freud-statistics
keep features that are less relevant in the regressions, with the risk of using more
features, and building more complex models. A lower value, instead, increases
the risk of dropping features that are instead very relevant to determine the per-
formance behavior in a performance annotation.

BIC_DIFF is the minimum absolute difference that there must be in order

90 5.4 Validation

to prefer a more complex model when computing regressions, as discussed in
Section 5.3.1.

DROP_K is used in the iterative algorithm that computes the best regression
model of a given complexity to represent the given set of samples (Section 4.2.2).
When we cannot find any feature with a p-value lower than GOOD_PVALUE, we
proceed removing the worst DROP_K features. A higher value for this parameter
makes the model selection process quicker, but might remove from the regression
model features that would be relevant to describe the performance.

5.4 Validation

In this Section we validate Freud, as a tool that automatically creates perfor-
mance annotations for C/C++ methods. To such extent, we want to show that
Freud (1) produces accurate performance annotations that correctly document
the performance in non trivial scenarios, (2) does not perturb the performance
behavior of observed programs, (3) completes the analysis in a “reasonable” time
(i.e., minutes).

5.4.1 Accuracy

To validate Freud, we created a set of micro benchmarks consisting of simple
methods written in C that have known performance behaviors. We analyze
twenty-two methods, each exhibiting a well-defined behavior in terms of run-
ning times, which we control using usleep.

With this experiment we evaluate two fundamental functionalities that Freud
must implement to produce performance annotations automatically: (1) the abil-
ity to find relevant features even when such features are found in complex struc-
tures and classes, and (2) the ability to compute the expected correlations and
produce the expected clusters from the raw data.

The micro-benchmark source code and test programs are included with the
Freud public distribution. We provide a complete description of all the functions
of the micro-benchmark, the resulting performance annotations, and comment
on the purpose and the results of each function in Appendix A.

We experiment with times linearly and quadratically correlated with a given
value of an input feature, and also with running times chosen at random from
a known distribution independent of any feature. We also have methods that
exhibit different behaviors based on switches and enumeration variables, meth-
ods in which different features interact to define the performance behaviors, and

91 5.4 Validation

methods that use dynamic polymorphism to access features that would not be
visible from a static analysis of the parameters. In all these cases, we first verify
that Freud accurately derives a model of the expected class (quadratic, linear,
etc.) for each method. We then measure the accuracy of the specific annotations
through cross-validation for all twenty-two methods with an overall minimum
R2 value of 0.9866.

Also, the running time for freud-dwarf on the complete micro-benchmark pro-
gram is of 0.019 seconds. The running time for freud-statistics varies from 0.3
seconds, for the analyses that do not need clustering, to 11 seconds when the
statistical analysis needs to cluster the data points.

5.4.2 Overhead and Perturbation

Perturbation and overhead are two potential effects of the instrumentation ap-
plied by freud-pin. Ideally, we want to minimize both effects, so that the program
under analysis runs identically in terms of performance (i.e., using the same re-
sources) with and without the instrumentation.

Considering time as the performance metric, both perturbation and overhead
might result in the same effect of increasing the running time for the program un-
der analysis. However, perturbation and overhead are effectively very different
phenomena.

With overhead we refer to a degradation of some performance metric of the
programs under analysis, as a consequence of the instrumentation of the pro-
gram. Examples are an increase of the running time, or an increase of the mem-
ory usage. Instrumentation necessarily introduces overhead. However, this is
widely regarded as an acceptable cost, as the benefits of collecting the data out-
weigh the performance degradation. The important point, however, is that over-
head does not necessarily threaten the validity of the data collected about the
performance metrics.

On the other hand, with perturbation we refer to a modification, which might
be positive or negative, of some performance metrics of the program under anal-
ysis, as a consequence of the instrumentation. Such modification is observed
also by the instrumentation, which is therefore collecting perturbed information
about performance metrics. In other words, when perturbation occurs, the in-
strumentation produces measurements of the performance that do not represent
the real behavior of the program in the absence of the instrumentation.

In the design of Freud, our highest priority was to minimize the perturbation,
as opposed to the overhead. For example, the addition of callback functions to
check the activity of the JIT compiler of Pin is useful to limit the perturbation,

92 5.4 Validation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

so
rt

10
0k

so
rt

1M

so
rt

5M

so
rt

10
M

m
ic
ro

be
nc

h

m
ys

ql
 1

 1.5

 2

 2.5

 3

 3.5

 4

R
u

n
 t
im

e
 (

s
)

R
e
la

ti
v
e

 o
v
e

rh
e
a

d

Instr. Full
Instr. Min.

Bare
Instr. Full (%)

Instr. Min. (%)

Figure 5.6. Runtime performance overhead of Freud

even though it increases the overall overhead on the target program.
One potential source of perturbation is the instrumentation itself. It is im-

portant that the instrumentation does not consider the cost incurred by the in-
strumentation itself, as costs generated by the instrumented methods. This could
happen, for example, when instrumenting nested methods.

To test that this problem of measuring the instrumentation is not affecting
Freud, we analyze the same twenty-two controlled functions under two config-
urations: normal instrumentation and double instrumentation (i.e., log every-
thing twice). We would expect that if instrumentation perturbs data and pro-
duces wrong annotations, then doubling the instrumentation would double the
perturbation and therefore lead to significantly different annotations. But that is
not the case. The experiment confirms that the models for both configurations
(for the same function) are of the same class (e.g., linear) and they are equiv-
alent. We measure equivalence by checking that a model derived with double
instrumentation predicts the data collected with normal instrumentation with
the same high accuracy as the model derived with normal instrumentation, and
vice-versa, with a minimum R2 value of 0.9838.

Let’s consider now the running time as a performance metric. The same ideas
apply to others, such as memory usage, with no differences.

To evaluate the overhead introduced by freud-pin, we run some experiments
on different programs.

Figure 5.6 shows the overhead introduced in some specific experiments: we
test (a) the sort method of the std::list<int> class, executed in a simple pro-
gram written for this specific test, (b) our validation micro-benchmark described

93 5.4 Validation

above, and (c) the MySQL DBMS version 5.7.24, executing a specific insertion
benchmark.

To measure the overhead for the instrumentation of sort, we write a program
that runs a loop a predefined number of times. In each iteration of the loop,
the program creates a new list of random integers and sorts it. The lists have
fixed size, that is passed as input to the program. In our experiments, we test
with sizes of 100k, 1M, 5M, and 10M. In this program, we instrument only the
std::list<int>::sort method. The instrumentation collects many features
from complex data types.

Next, we test our micro-benchmark, in which we instrument all the meth-
ods at the same time. The instrumentation collects only few features for each
methods, since there are no complex types that are big in terms of number of
members.

Finally, we measure the overhead introduced when instrumenting MySQL.
We let MySQL execute a well defined insertion benchmark, while we instrument
the mysql_execute_command method. This is a high level method with access to
a huge number of feature candidates.

For all the experiments, we measure the total time taken to initialize and run
the target program. We do that using the time Unix utility program. For MySQL,
we use a custom script to kill the server as soon as the insertion queries are
executed. We run the programs (a) without any instrumentation (bare), (b) with
the minimum instrumentation (Instr. Min.) needed to generate rich performance
annotations for the methods, and (c) with the full instrumentation (InstrḞull),
where every possible functionality of the instrumentation activated, even if not
needed.

Figure 5.6 suggests that the overhead stems from three sources.
First, there are fixed initialization and termination costs. This is clear from

the experiments with a shorter absolute running time, such as sort_100k and
sort_1M, where the overhead is dominated by such costs, resulting in huge rel-
ative overheads. The fixed costs quickly become negligible, as it can be seen by
the relative overheads for the sort experiments with more than 1M elements.

Second, there is overhead introduced by the instrumentation to read the fea-
ture values, read the branch outcomes, and measure the performance metrics.
This overhead depends on the number and complexity of features collected, and
on the level of instrumentation. The difference between the full and minimum
levels of instrumentation shows that using all the instrumentation features, espe-
cially collecting the branch logs, has a considerable cost, and should be avoided
when not necessary. The impact of this overhead on the overall performance
of the instrumented program depends on the number of times an instrumented

94 5.4 Validation

method is executed, and on the duration of the method. For example, in the
micro-benchmark test we only have methods running for at least milliseconds,
which is long enough time to make the relative cost of the instrumentation to
collect the few feature candidates almost negligible.

Finally, there is the overhead introduced by Pin, not directly caused by the
operations of the instrumentation. In other words, this overhead would be visible
even with a fake, completely empty instrumentation. This overhead is introduced
by the Pin JIT recompilation of the code. On the one hand, it actually takes
time to recompile the code. On the other hand, the recompiled code might not
perform exactly as the original one. This might also introduce some perturbation
in the performance behavior of the methods observed, but we have experimental
evidence that the behavior of the recompiled code is similar to that of the original
code. Bach et al. [1] observe the overhead introduce by the Pin JIT recompilation
with different programs, and obtain overhead values that are comparable to what
we also observe with our Freud instrumentation.

In all the experiments where the fixed initialization costs are not dominating
the running time, we have a maximum relative overhead of 21% when using
the needed instrumentation features, and 31% when instrumenting more than
what is necessary to create informative performance annotations. Whether this
is acceptable overhead for a production system depends on the specific domain
of the application.

5.4.3 Running Time

The static analysis of the binary code (freud-dwarf) and the statistical analysis
(freud-statistics) are performed offline with respect to the execution of the pro-
gram under analysis. Therefore we did not invest time in optimizing the per-
formance of those two components of Freud. Still, we consider the time for
performing these two steps of the analysis to be reasonable. We give a precise
characterization of those steps in the case of the micro-benchmark programs in
Appendix A. Now we analyze the performance of freud-dwarf and freud-statistics
on real-world complex programs.

Table 5.4 reports the time taken by freud-dwarf when analyzing three target
methods. Two are the same mysql_execute_command method in two different
versions of MySQL; one is x264_8_encoder_encode in x264. We measure the
running time and the number of potential features found with different values
for the depth parameter. It is interesting to notice that the running time does
not really depend on the depth of the exploration, nor on the number of feature
candidates that are discovered. The main parameters affecting the running time

95 5.4 Validation

are the size of the binary file containing the debugging information, and the
complexity of the class hierarchy encoded in the debugging information.

target method depth features time (s)

mysql_execute_command

MySQL 5.7.24
(binary size 218MB)

1 106 9.055
2 632 9.094
3 655 9.105
4 734 9.125
5 783 9.143

mysql_execute_command

MySQL 8.0.15
(binary size 652MB)

1 103 32.808
2 637 32.816
3 675 32.787
4 727 32.843
5 753 32.946

x264_8_encoder_encode

x264
(binary size 99MB)

1 99 1.13
2 992 1.17
3 1023 1.18
4 1056 1.20
5 1214 1.21

Table 5.4. Running time for freud-dwarf for three targets and different depths
of feature exploration

The size of the binary is usually correlated with the amount of debugging
information that is stored in the binary itself. Notice the difference between the
sizes of the MySQL binaries for version 5.7.24 and version 8.0.15. A similar
difference in the time required to parse these binaries can be noticed when using
gdb to collect debugging information.

On the other hand, notice also that the x264 binary is still of considerable size,
and yet the time required for the static analysis is significantly lower. The main
factor defining this difference is the absence of class objects among the potential
features. Thus, freud-dwarf does not need to perform a complete exploration of
the debugging information tree to build the complete class graph.

Table 5.5 shows the time taken by freud-statistics when analyzing the same
two target methods mysql_execute_command and x264_8_encoder_encode of
MySQL 5.7.24 and x264, respectively. A first, high-level consideration is that
even with real-world complex software, with thousands of observations and sev-
eral hundreds candidate features, freud-statistics completes the analysis in min-
utes, which we consider to be a reasonable time.

96 5.5 Other Contributions

candidate candidate regression
target samples features branches features time (s)
MySQL(a) 3038 655 34 8 124.00
x264(b) 4251 992 13 66 232.47
x264(c) 7649 992 13 72 807.14

Table 5.5. Statistics and performance (running time) of the statistical anal-
ysis for (a) the mysql_execute_command method of MySQL 5.7.24, (b) the
x264_8_encoder_encode method of x264 with a sampling rate of 20 samples
per second, and (c) the x264_8_encoder_encode method of x264 with a sam-
pling rate of 50 samples per second.

Second, we observe that our pre-processing algorithm that filters out uninter-
esting feature candidates prior to the regression analysis is effective in reducing
the number of features that are then considered in the computation of the re-
gressions. For example, in the case of the mysql_execute_command method of
MySQL, the algorithm selects 8 regression features out of 655 potential features
identified through the static analysis.

Lastly, we look at the number of samples, which is the main size parameter for
the analysis performed by freud-statistics. The second and third lines in Table 5.5
characterize the analysis on the same target x264_8_encoder_encode and with
the same input but with different sampling rates. We first use the default sam-
pling rate of 20 samples per second (see Table 5.3) and then about double that
rate, resulting in a total of 4251 and 7649 samples, respectively. The results of
Table 5.5 clearly show an increase in the analysis time. However, we also report
that in terms of results for this case study, we do not need the higher sampling
rate. A few hundreds of observations are often sufficient to produce informative
performance annotations even in complex cases, with multi-modal performance
behaviors affected by many different features and branches. In fact, all the per-
formance annotations that Freud was able to produce for x264 that we show
later in Chapter 6 were produced with the default sampling rate, and in all those
cases we obtain the same result as with double that rate.

5.5 Other Contributions

Freud uses a C++ library to help parsing the debugging information. This li-
brary is open sourced under the MIT license. During the development of Freud,
we expanded the library to handle the most common information that might be

97 5.5 Other Contributions

found in the debugging information produced by gcc/g++. Some of the miss-
ing features that we added during the development of freud are eh_frames. In
its current state, Freud can use the debugging information to analyze the vast
majority of the debugging information for most if not all real-world C/C++ pro-
gram. However, some rare constructs are still not handled. One such example is
expr_loc.

98 5.5 Other Contributions

Chapter 6

Evaluation

In this chapter we evaluate Freud and more generally the idea of performance
annotations. To do so, we demonstrate the use of Freud on three real-world,
complex software systems. The first system is MySQL, a well-known and widely
used DBMS written in C/C++. The second system is the x264 library and ap-
plication for encoding video streams into the H.264/MPEG-4 AVC compression
format, which is written in C. We also report on some early experiments that show
the use of performance annotations on a third complex software system written
in a different programming language, namely ownCloud, a remote storage web
application written in PHP.

We use Freud (an early prototype in the case of PHP) to derive performance
annotations for all three systems for several metrics, including running time,
dynamic memory allocation, and lock holding/waiting time.

For the case studies, the goal of the evaluation is demonstrative rather than
quantitative. We show that Freud outputs performance annotations for many
different software components of the three systems, that are easy to read and
interpret for the performance analyst. Even though these three systems are very
different in their functionalities, programming languages used, and deployment,
we successfully applied the same analysis techniques to all of them. We inten-
tionally choose functions to analyze and present that exhibit different features
of performance annotations and/or interesting and sometimes counter-intuitive
behaviors. We go from simple to progressively more articulate cases.

In summary, we demonstrate that Freud correctly identifies many interesting
behaviors; in particular that Freud is effective even in cases where the perfor-
mance depends on multiple features or on specific internal conditions (parame-
ters or state) or external conditions (environment); that all such behaviors can be
meaningfully described by relatively simple annotations that relate input features

99

100 6.1 x264

and measured metrics; that such annotations can be used not only as documen-
tation but also to detect performance regressions and anomalies; that Freud and
its annotations can be used to diagnose non-trivial performance bugs.

We do not evaluate Freud in terms of the types of performance annotations it
finds, in particular we do not count or classify the methods for which Freud finds
regressions as opposed to clustered annotations. This kind of evaluation is more
pertinent to the workload than to Freud, since regressions by definition require
a meaningful coverage of the relevant input features, which in turn depends on
the workload. In our evaluation we analyze various methods, ranging from small
utility methods to high level and complex methods, all taken from large software
systems. Since most of these methods run deep within the execution of the sys-
tem, we have limited control on the specific input taken by such methods, and in
any case we do not artificially forge workloads to tweak specific input features.
Instead, we intentionally use the systems with limited but realistic inputs and
deployments.

The structure of the chapter is as follows: in Section 6.1 we create perfor-
mance annotations for x264, which is a multi-threaded, heavily optimized pro-
gram. In this Section we show how Freud can efficiently document the perfor-
mance of complex methods, that are affected by different features. Performance
annotations are of great benefit in understanding the behavior and the multi-
threading model of complex, highly optimized and parallel, software. In Sec-
tion 6.2 we use Freud to investigate the performance of MySQL. Notably, we
use performance annotations to investigate bugs that affect different versions of
MySQL, and to catch and quantify a performance regression that affects newer
versions of MySQL. In Section 6.3 we show some preliminary results that demon-
strate the use of the same performance analysis on a completely different sys-
tem: we produce performance annotations for ownCloud, which is written PHP.
We show that we can use the performance annotations to catch a performance
anomaly that we deliberately introduce in a distributed system.

6.1 x264

For the first case study, we use the most recent version of x264 at the time of
writing (git commit 5493be8). x264 is an open-source library and utility for
H.264/MPEG-4 video encoding [48]. We run all experiments on a 4-core, 8-
thread Intel Core i7-6700HQ CPU at 2.60GHz, in a system equipped with 16GB
of RAM and a NVMe SSD drive. We compile x264 with gcc 8.3 on a Ubuntu 18.10
64-bit system.

101 6.1 x264

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20000 40000 60000

T
im

e
 (

u
s
e

c
s
)

length

clock=2.6GHz
clock=1.7GHz
clock=0.8GHz

ff_h2645_extract_rbsp(const uint8_t *src, int length, H2645RBSP *rbsp,

H2645NAL *nal, int small_padding).time {

features:

int l = length;

int clock = system.cpu_clock;

annotations:

Norm(43.32 + 0.055*l - 1.46e-05*clock - 1.75e-08*l*clock, 4.56);

}

Figure 6.1. ff_h2645_extract_rbsp: running time.

As a workload, we use x264 to convert or re-encode six different videos (dif-
ferent content) from either VP9 or H.264 to H.264. We re-encode each video at
the original resolution. All videos have the same aspect ratio (16:9) but different
vertical resolutions, ranging from 240p to 2160p, and different frame rates (25–
30fps). We then run the experiments with 2, 4, 8, and 12 threads (default is 12).
We also enable or disable the sliced-threads option to test both the slice-based and
frame-based processing of x264. Finally, for some experiments we also use the
Intel p-state driver to change the CPU clock speed between 800MHz, 1.6GHz,
and 2.6GHz.

Selected Results. We start with ff_h2645_extract_rbsp, a utility method
that extracts a raw bit stream from an h264 source buffer. Freud derives an
annotation (Figure 6.1) that indicates that the running time increases linearly
with the size of the input buffer. Moreover, Freud also finds an interaction be-

102 6.1 x264

tween the size and cpu_clock features. Notice that cpu_clock is a system feature.
Qualitatively, the annotation indicates that the running time is CPU-bound.

Proceeding now to the core of the encoding functionality, we analyze the
x264_8_encoder_encode method. We choose not vary the CPU speed for the
sake of clarity, since there are already many parameters that affect performance.
x264_8_encoder_encode drives the encoding process by managing the pool of
worker threads that perform the actual encoding. In slice-based mode, the method
runs once for every output video frame; splits the frame in many slices; assigns
those to the worker threads for processing; and waits for them to complete the
frame. Every output frame is completed before the next one is processed. Con-
versely, in frame-based mode, x264_8_encoder_encode processes a set of frames
at a time, assigning an entire frame to each worker thread.

-2

 0

 2

 4

 6

 8

 10

 12

 14

 400 800 1200 1600 2000

T
im

e
 (

m
s
)

h->param.i_height

det=true
det=false

x264_8_encoder_encode(x264_t *h, x264_nal_t **pp_nal, int *pi_nal,

x264_picture_t *pic_in, x264_picture_t *pic_out).time {

features:

int h = h->param.i_height;

int d = pic_in->param.b_deterministic;

annotations:

Norm(394.27 + 1.67e-03*d - 0.41*h + 2.88e-05*h^2, 14.96);

}

Figure 6.2. encoder_encode: running time without context switches.

We first run Freud so as to filter out the measurements affected by any context
switch (voluntary or not). This is an intentional bias to remove some noise and

103 6.2 MySQL

complexity, and to show that the actual work performed grows as expected with
higher resolutions, as shown in Figure 6.2.

Interestingly, without this filter we see a different behavior. The running
time of x264_8_encoder_encode is much higher, and the correlation with the
video resolution is not as clear. We therefore analyze the time spent waiting
on a condition variable, and find that it completely dominates the total run-
ning time. Freud, with branch analysis, finds that the waiting time in sliced-
mode (when h->param.b_sliced_threads=1) correlates well with the number
of threads and the video resolution (Figure 6.3). The waiting time grows with
the resolution of the video, and is lower with more threads. We conclude that
indeed x264_8_encoder_encode() always waits for the worker threads to finish
processing their slices.

When the processing is frame-based, instead, there is little or no correlation
between the collected features and the run time, and therefore Freud fails to find
a good regression and instead performs a cluster analysis. The resulting model
(condition !sliced in Figure 6.3) is still informative and shows that the majority
of the frame-based executions of x264_8_encoder_encode wait for a very short
time.

Moving to another analysis, slice_write is one of the most time consuming
functions and is executed by the worker threads in all the processing modes (Fig-
ure 6.4). In this case Freud shows that having more threads has opposite effects
on the running time depending on the processing mode. Also, Freud’s annota-
tions reveals that x264_8_encoder_encode is not synchronizing on each execu-
tion of slice_write in frame-based mode, since for some inputs slice_write

has a much higher running time (Figure 6.4) than any waiting time observed for
x264_8_encoder_encode (Figure 6.3).

6.2 MySQL

In the second case study, we use Freud to investigate two performance bugs re-
ported on the MySQL bug tracker (n. 94296 and 92979). To reproduce these
bugs we use different versions of MySQL. We compile the unmodified code cloned
from the MySQL github repository [31] with gcc 7.3 on a Ubuntu 18.04 64-bit
machine. We pass the -g and -gstrict-dwarf flags to the compiler to add stan-
dard DWARF debugging symbols in the ELF mysqld binary. We run the exper-
iments on a Intel Xeon CPU E5-2670, with 64GB of ram, whose root partition
is mounted on a Samsung SSD 850 PRO drive. We run the MySQL server with
the default configuration. We inject the workload locally using the MySQL client

104 6.2 MySQL

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 400 800 1200 1600 2000

W
a

it
 T

im
e

 (
m

s
)

h->param.i_height

det=true
det=false
threads=12
threads=2

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2 4 6 8 10 12

W
a

it
 T

im
e

 (
m

s
)

h->param.i_threads

det=true det=false height=2160 height=240

x264_8_encoder_encode(x264_t *h, x264_nal_t **pp_nal, int *pi_nal,

x264_picture_t *pic_in, x264_picture_t *pic_out).wait_time {

features:

bool sliced = h->param.b_sliced_threads;

int height = h->param.i_height;

int threads = h->param.i_threads;

int dequant = h->thread.dequant4_mf;

bool det = pic_in->param.b_deterministic;

annotations:

[sliced]

Norm(-56362 + 189.17*height - 3221.21*threads - 1378.66*dequant

- 152.83*height*det - 6.48*height*threads + 10044*threads*det

, 1.05e+05)

[!sliced]

{0.55}Norm(108.7, 188.65);

{0.30}Norm(7282, 51465.24);

...

}

Figure 6.3. encoder_encode: wait time seen from two different features

105 6.2 MySQL

-500
 0

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000

 400 800 1200 1600 2000

T
im

e
 (

m
s
)

h->param.i_height

sliced=true, threads=12

sliced=true, threads=2

sliced=false, threads=12

sliced=false, threads=2

slice_write(x264_t *h).time {

features:

bool sliced = h->param.b_sliced_threads;

int threads = h->param.i_threads;

int height = h->param.i_height;

annotations:

[sliced]

Norm(-1.34e+05 - 3.65e+04*threads + 269.17*height + 69.76*threads*
height, 2.51e+04);

[!sliced]

Norm(-4.94e+04 + 155.76*height - 6.17*height*threads, 4.87e+03);

}

Figure 6.4. slice_write, sliced vs. framed processing.

106 6.2 MySQL

application on the same host that runs the server. We use modified versions of
the workloads attached to the bug reports. We modify the workloads to obtain a
greater variety for some feature values.

Bug 92979. The report describes a performance regression in MySQL 8 as com-
pared to version 5.7 for a specific insertion workload. The regression has been
verified but not fixed by the developers. The root cause is not known.

We replicate and analyze the bug using versions 5.7.24 and 8.0.11. As a work-
load, we use the MySQL dump attached to the bug report. The dump consists of
a set of INSERT operations for a specific table. Using this set as a basis, we create
a workload with a series of INSERT operations each inserting an increasing num-
ber of rows. As an entry point for our investigation, we instrument the high level
function mysql_execute_command, which is present with the same signature in
both versions.

Figure 6.5 shows the annotations and corresponding graphs generated by
Freud for MySQL versions 5.7.24 (top) and 8.0.11 (bottom), respectively. The
annotations and the graphs evidence the performance regression. Freud iden-
tifies the size of the input query as a relevant features, and formulates a linear
performance model for both versions. However, Freud finds a significantly higher
linear coefficient for version 8 than for version 5 (4.94 vs. 0.86).

Notice that the running times for version 5 are lower, and therefore the mea-
surements are affected in a greater proportion by other factors, such as the stor-
age access times. Freud treats those factors as additive noise as discussed in
Section 4.2.2. Also, unlike version 5, MySQL version 8 performs some additional
startup operations during the execution of mysql_execute_command whose run-
ning time correlates with another input feature (dynamic_variable_version),
as evidenced by the multiple regression found by Freud.

Bug 94296. Bug n. 94296 reports a difference in the execution time of func-
tionally identical SELECT queries that use different operators. The performance
is found to be worse when using a series of IN operators instead of a disjunction
of conjunctions. The bug is marked as fixed in MySQL 8. However, our analysis
with Freud demonstrates that the bug is still present in version 8.0.15.

The workload consists of two SELECT queries provided with the bug report.
As with Bug n. 92979, we split the workload into multiple queries of increas-
ing sizes. The queries are simple selections on a single table t (SELECT * FROM

t WHERE ...) with the same logical condition on two columns c1 and c2 ex-
pressed with two different WHERE clauses: one with the IN operator, (c1, c2) IN

107 6.2 MySQL

 0

 20

 40

 60

 80

 100

 120

 4000 8000 12000 16000

T
im

e
 (

m
s
)

thd.m_query_length

mysql_execute_command(THD *thd, bool first_level).time {

features:

int len = thd->m_query_string.len;

annotations:

R Norm(6630.19 + 0.86*len, 15.78);

}

 0

 20

 40

 60

 80

 100

 120

 140

 160

 4000 8000 12000 16000

T
im

e
 (

m
s
)

thd.m_query_length

dvv=12
dvv=0

mysql_execute_command(THD *thd, bool first_level).time {

features:

int len = thd->m_query_string.len;

int dvv = thd->variables.dynamic_variable_version;

annotations:

Norm(168.65 + 4.94*len + 1886.87*dvv, 2489.04);

}

Figure 6.5. mysql_execute_command, 5.7.24 (top) vs. 8.0.11.

108 6.2 MySQL

((v11, v21), . . . , (v1n, v2n)), the other with AND/OR, (c1= v11 AND c2= v21) OR

...OR (c1= v1n AND c2= v2n).
We start our analysis from test_quick_select(), which we find as the top-

level function in MySQL that processes all the queries of the given workload. We
use Freud to analyze the running time of test_quick_select(), obtaining the
performance annotations shown in Figure 6.6.

 0

 2

 4

 6

 8

 10

 0 50000 100000 150000 200000 250000

T
im

e
 (

s
)

thd.m_query_string.length

vptr <= 562874922
vptr > 562874922

test_quick_select(THD * thd, Key_map keys_to_use, table_map prev_tables

, ha_rows limit, bool force_quick_range, const enum_order

interesting_order, const QEP_shared_owner * tab, Item * cond,

Key_map * needed_reg, QUICK_SELECT_I ** quick).time {

features:

int len = thd->m_query_string.len;

int vptr = cond->_vptr.Parse_tree_node_tmpl;

annotations:

[vptr <= 562874922]

Norm(467533 - 50.21*len + 0.0036*len^2, 282711.59);

[vptr > 562874922]

Norm(-53.603 + 0.057*len, 157.57);

}

Figure 6.6. test_quick_select(): IN vs AND/OR query.

Freud automatically distinguishes two different behaviors that depend on the
query type. test_quick_select() takes a cond parameter that is statically seen
as a structure of the generic class Item, although its actual type is a different

109 6.2 MySQL

subclass when the query uses the IN operator and the AND/OR. The virtual table
pointer, which Freud considers as a feature (logged as an integer), distinguishes
the actual type and their different behaviors. The time grows linearly with the
AND/OR operator (which produces longer query strings), but grows quadrati-
cally with the IN operator.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2000 3000 4000 5000

T
im

e
 (

s
)

cond_func->arg_count

get_func_mm_tree(RANGE_OPT_PARAM * param, Item * predicand, Item_func *
cond_func, Item * value, bool inv).time {

features:

int ac = cond_func->arg_count;

annotations:

Norm(156569 - 269.041*ac + 0.414447*ac^2, 15781.22);

}

Figure 6.7. get_func_mm_tree: arg_count feature

Through a simple manual inspection, we follow a chain of functions executed
in the case of IN queries. We then analyze these functions with Freud to find the
origin of the quadratic behavior. This analysis first points to get_func_mm_tree,
that is executed only in the case of queries using the IN operator. In Figure 6.7
we see that the main feature affecting the quadratic behavior is arg_count, which
is a field of the class Item_func. Going deeper with the analysis, we analyze
tree_or() that in turn calls key_or(). key_or() computes the logical disjunc-
tion of two keys encoded with two RB-trees. Freud reveals that key_or() has
a linear complexity but is called repeatedly, as many times as there are clauses,
with a key2 parameter that progressively grows in size (Figure 6.8) from zero
to the number of clauses in the query. This arithmetic progression explains the
overall quadratic behavior.

110 6.2 MySQL

 0

 1000

 2000

 3000

 4000

 1000 2000 3000 4000

T
im

e
 (

u
s
e

c
s
)

key2.elements

key_or(RANGE_OPT_PARAM * param, SEL_ROOT * key1, SEL_ROOT * key2).time

{

features:

int e = key2->elements;

annotations:

Norm(-0.276 + 0.073*e + 0.062*e*log(e), 2.24);

}

Figure 6.8. Arithmetic progression of key_or().

Reading the well documented code of key_or(), we find that key_or() is de-
signed to compute a more general disjunction of ranges, as opposed to the specific
values in the reported workload. This may suggest a specialized implementation
and therefore a more radical bug fix.

Other metrics and other bi-modal behaviors. The annotation for method
fseg_create_general (Figure 6.9) shows a case in which the behavior is bi-
modal depending on a certain condition. If the page_id parameter is greater
than 0, then the method allocates a fixed amount of memory. Conversely, if
page_id is equal to 0, then the method allocates a variable amount of mem-
ory, which we could not predict successfully with the features collected for the
experiment.

A code inspection confirms that fseg_create_general() contains a switch
that follows different execution paths depending on the value of page_id. If
page_id is equal to 0, the method allocates new memory for a new segment.

111 6.3 ownCloud

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300 350

M
e

m
o

ry
 (

K
B

)

page_id (x1000)

fseg_create_general(space_id_t space_id, page_no_t page, ulint

byte_offset, ibool has_done_reservation, mtr_t * mtr).mem {

features:

int page_id = page;

annotations:

[page_id > 0]

Norm(1496, 0);

}

Figure 6.9. fseg_create_general: branch analysis.

Otherwise the method returns an already allocated buffer, and performs other
operations, which cause some memory consumption.

6.3 ownCloud

Finally, we run some experiments in a completely different scenario: we cre-
ated a scaled-down replica of a real-world data center that runs a cloud appli-
cation called SWITCHdrive. SWITCHdrive is a file-hosting cloud service similar
to Dropbox operated by SWITCH, the national ISP for academic institutions in
Switzerland. Our replica runs on 12 instead of 41 servers, but it is otherwise
identical in its structure and configuration, including applications, web servers,
storage layers, virtualization stack, hosts, and network. We focus our analysis on
the ownCloud application, which is written in PHP.

We use the WebDAV filesystem interface (davfs) provided by ownCloud to

112 6.3 ownCloud

mount a user folder on a spare client machine. We then use this folder to apply
two workloads. The first runs an rsync operation that copies a large tree of
directories and files (the complete Linux kernel source) to the mounted directory.
The second workload consists of more than 100 thousand requests involving files
of different sizes, name-lenghts, and relative path lengths. To improve the clarity
of the visualization without losing generality, we limit our presentation to about
two thousand requests.

Selected Results. At a basic level, performance annotations provide human
readable documentation of the actual performance of methods. Figure 6.10
shows some interesting behaviors that exemplify common correlations (or lack
thereof) found in ownCloud. The x-axis indicates the relevant feature; the y-axis
indicates the measured metric.

The first two graphs show annotations for generateMultiStatus, a method
that takes an array of file properties. The method iterates over the objects in
the array, computing some data about each one. The graph on the left clearly
shows that memory usage is linearly correlated to the size of the input array. As
it turns out, this linear behavior can be clearly deduced from the code. The data
is also perfectly linear because the chosen metric (memory usage) is not affected
by noise. The graph in the center shows the run time, which is more noisy. But
again, a regression produces a fitting performance model, which in this case is
quadratic. Although not immediately obvious, this quadratic behavior indeed
corresponds to the algorithmic complexity of the code.

Finally, the graph on the right shows the run time for emit_file_hooks_pre,
which is used to invoke callback functions associated with file events. The graph
shows the running time over string-length of the path parameter. However, in
this case Freud did not find good regressions with this or any other feature, and
therefore formulated an annotation based on clusters of the running time metric.

Use of Annotations in Anomaly Detection. Having derived several perfor-
mance annotations, we ask whether these annotations would serve developers
and system operators beyond their value as documentation. In particular, we try
using annotations as assertions and therefore as failure or anomaly detectors.
We then verify that such detectors are sensitive to real anomalies at the same
time as they are robust with respect to different workloads.

We proceed as follows: we first derive annotations using the two workloads
described above. We then run the same workloads in a special setting in which
we artificially introduce an anomaly in the system. In this setting, we use anno-

113 6.3 ownCloud

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 50 100 150 200 250 300

M
e
m

o
ry

 (
k
B

)

Collection size

generateMultiStatus(

array $fileProperties,
$strip404s = false

).mem {

features:

int s = count(fileProperties);

annotations:

Norm(721.362*s + 8851.16, 2324.567)

;

}

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

T
im

e
 (

s
)

Collection size

generateMultiStatus(

array $fileProperties,
$strip404s = false

).time {

features:

int s = count(fileProperties);

annotations:

Norm(0.0066*s^2 + 0.000038*s +

0.0000036, 0.022);

}

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 20 40 60 80 100 120 140 160 180 200 220 240

T
im

e
 (

s
)

String length

emit_file_hooks_pre($exists, $path,
&$run).time {

features:

annotations:

{0.77}Norm(0.13, 0.00075);

{0.23}Norm(0.24, 0.001);

}

Figure 6.10. Some annotations for ownCloud: linear and quadratic regressions
(top, middle) and clusters (bottom)

114 6.3 ownCloud

tations as standard one-sample statistical tests to compare measured metrics to
the idealized model given by the annotation. We record an assertion violation
whenever the test indicates that the measurements do not conform to the anno-
tation. For each run, we then count the number of assertions passed (or failed)
for all the instrumented methods.

As an anomaly, we introduce an artificial network latency between the virtual
machine hosting the database server and the rest of the cluster, varying the delay
from 0 to 10 milliseconds. The case of 0ms serves as a robustness check of the
assertions generated during training.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

%

Annotation robustness (%)

10ms
5ms
2ms
1ms

no delay

Figure 6.11. Robustness, use of annotations to detect anomalies

Figure 6.11 shows the cumulative distribution function of the passed asser-
tions as a percentage of all assertions. The graph shows that assertion failures
clearly expose a change in the performance behavior of the system, thereby sig-
naling a performance problem. The overall difference may appear small. Indeed,
we only tweak the behavior of the database component, leaving all the other
components in their original configurations. This means that only a fraction of
the 138 methods analyzed are affected by the slow database. In fact, we observe
that the methods whose annotations are violated more often in the different ex-
periments are those that directly or indirectly involve database operations.

Chapter 7

Conclusion and Future Work

This thesis introduces probabilistic performance annotations as a new tool for
software performance analysis and specification.

Performance annotations describe the observed performance behavior of soft-
ware components with concrete performance metrics, such as the running time,
expressed in seconds, or the memory usage, expressed in bytes.

Differently from traditional profilers, which report only aggregate informa-
tion, performance annotations describe performance with cost functions that cor-
relate a performance metric with one or more features. Features represent either
information internal to the program under analysis, such as values of parameters
or variables, or external information coming from the system where the target
program is running, such as the CPU clock speed or the number of virtual cores.

Such correlations allow performance annotations to extrapolate and there-
fore predict the performance of software components beyond what has actually
been observed. Also, performance annotations can be used to make assertions
about the observed behavior of software that can then be used as oracles in per-
formance testing and analysis. For example, it is possible to compare the ex-
pected performance with the observed behavior to find performance regressions
between different versions of the software.

In addition to the notion of performance annotations, we have also intro-
duced Freud. Freud is a tool that automatically creates meaningful performance
annotations for C/C++ software. Freud is quite simple to use: the performance
analyst selects some methods to be analyzed along with one or more performance
metrics. If necessary, the analyst also provides a specific workload, or otherwise
runs the program normally in a laboratory environment but also possibly in the
production environment. Beyond that, the performance analysis is completely
automated, and produces performance annotations describing the expected be-

115

116

havior of software methods, in the form of text files and plots.
We have shown experimentally that Freud produces meaningful and useful

performance annotations automatically, even for very large and complex soft-
ware such as MySQL and the x264 codec. Still, the ideas introduces in this thesis
are intended to establish a new approach to performance analysis, and we see
Freud as a first step in that direction that also leaves many new lines of research
open.

One of the problems that we did not discuss in this thesis is workload gener-
ation. The richness of our performance annotations is directly correlated to the
richness of the performance behaviors that the instrumentation could observe on
the real software. For example, if we identify a potential feature that seems to be
correlated with performance, but that feature does not have enough variability
to give a strong p-value in our regression analysis, then we cannot confidently
use such feature in the corresponding performance annotation. If on the other
hand we could generate a workload to expose observations with more variability
for such feature, then we would be able to prove (or disprove) the hypothesized
correlations. The generation of such workloads is an interesting research direc-
tion.

Another interesting research direction that we only briefly touched upon is
that of compositional annotations. With this term, we refer to the problem of
automatically creating performance annotations in which we use references to
performance annotations of other methods. Such annotations could describe
not only methods that we could observe through the instrumentation, but also
methods that were never observed or executed. In the case in which we want
to predict the performance of a software method without ever observing it, we
are not applying a dynamic analysis as we do with Freud, but instead we need
to perform a static analysis. In other words, we need to analyze the code of the
method to infer the way in which the method uses and interacts with other meth-
ods with known performance behaviors and annotations. Some techniques that
might be helpful in researching such static analysis approach include probabilis-
tic symbolic execution, probabilistic programming, and Monte Carlo analysis.

With the ownCloud example we have shown that performance annotations
can be used even in complex distributed software that runs at many different
layers and on different physical machines. This example suggests a research
direction that would expand on specific instrumentation for distributed systems.
The base observation is that most of the operations happening in distributed
systems running in data centers require the interaction of different physical or
virtual machines. Such interaction is usually concretely implemented through
RPC calls. From the viewpoint of the performance analyst, the performance of

117

a single method running on a specific system depends also on the performance
behavior of other methods possibly running on different systems. In addition, the
performance analyst might want to assign the entire performance costs generated
in the data center to the execution of one specific method in one single node. To
be able to perform this kind of analysis, we need to be able to correlate events
happening in different parts of a data center. The correlation should be defined
on the basis of a causality-relation, in which the execution of some methods on
one node in the data center is the effect caused by the execution of some other
method on another node. Finding this type of correlations requires a distributed
instrumentation. Such instrumentation might inject unique traces ids in the RPC
requests of the data center. Examples of this distributed instrumentation are
Google Dapper [38], or Zipkin [43].

Finally, there are some more concrete directions to explore: on the one hand,
it would be interesting to development more instrumentation modules for Freud,
to instrument programs written in other programming languages, such as Java
or Python. The development should benefit from the well defined requirements
and interface for the format of the logs, described in this thesis.

Another concrete direction for future work would be optimization work on
the current instrumentation of Freud. As we have shown in Figure 5.6, there is
a considerable difference in the overhead when the instrumentation is logging
all the potential features, all the branches, and all the metrics, as opposed to the
case in which the instrumentation is reducing the collection and measurements
to what is strictly necessary to produce specific performance annotations. The
overhead might be a problem in production environments, in which we instru-
ment software that is running in a system (e.g. a data center) that is serving real
user requests. On the other hand, in the current implementation there is no way
to know which features and branches will be useful to the statistical analysis in
the creation of the performance annotation, and therefore the instrumentation
collects every possible source of information. One optimization that we could
apply is to feed the result of the statistical analysis back to the instrumentation.
With this information, the instrumentation could enable or disable the collection
of specific features and branches and also adjust the sampling rate on-the-fly. In
other words the idea is to dynamically control the instrumentation so as to avoid
collecting data that turns out to be insignificant or too noisy for the performance
analysis (metrics, branch decisions, features). The goal is to reduce the overhead
of the instrumentation to the point that Freud can be safely used with systems
running in production environments.

118

Appendix A

Microbenchmark

In this Appendix we describe in detail the micro-benchmark introduced in Sec-
tion 5.4.1. We use this micro-benchmark to validate Freud and the results of
the performance analysis. For each function of the micro-benchmark we report
(1) the complete code of the function, (2) the performance annotations that
Freud produced, and (3) the running time for the statistical analysis. We also
discuss briefly why each specific function is part of the micro-benchmark, and
what functionalities of Freud are being tested.

The instrumentation of the micro-benchmark binary program including all
the functions below took 0.019 seconds on a Intel Xeon CPU E5-2670, using a
single CPU core. For each function of the micro-benchmark, we find three to five
feature candidates.

We collect 149 observations for each function. Each function is executed 150
times, but the first one is automatically discarded because it is affected by JIT
recompilation.

A.1 Function test_linear_int

void test_linear_int(int t) {

for (int i = 0; i < t; i++) {

usleep(250);

}

}

119

120 A.2 Function test_linear_int_pointer

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

u
s
e
c
s
)

t

void test_linear_int(int t).time {

features:

int i = t;

annotations:

Norm(-754.85 + 373.86 * t, 1306916);

}

(Time for statistical analysis: 0.379s)

In this function we have a linear correlation between the int parameter, passed
by value, and the running time. We test both the correctness of the statistical part
in finding the linear correlation, and of the instrumentation in reading feature
values from the CPU registers. With the default gcc optimization level (i.e., -O2)
the integer parameter is stored in a CPU register.

A.2 Function test_linear_int_pointer

void test_linear_int_pointer(int *t) {

for (int i = 0; i < *t; i++) {

usleep(250);

}

}

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250 300

T
im

e
 (

u
s
e
c
s
)

t

void test_linear_int_pointer(int *t).time {

features:

121 A.3 Function test_linear_float

int t = *t;

annotations:

Norm(-1454.12 + 370.27*t, 8560724);

}

(Time for statistical analysis: 0.370s)

This function is really similar to test_linear_int, with the only difference
being the location of the relevant feature. The parameter t is now passed as a
pointer, which means that Freud will find the address of the feature in a CPU
register.

A.3 Function test_linear_float

void test_linear_float(float t) {

for (int i = 0; i < (int)t; i++) {

usleep(250);

}

}

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

u
s
e
c
s
)

t

void test_linear_float(float t).time {

features:

int t = t;

annotations:

Norm(371.30 * t, 1141729);

}

(Time for statistical analysis: 0.388s)

A linear correlation between the float parameter, passed by value, and the
running time. With the default gcc optimization level, float parameters are stored

122 A.4 Function test_linear_globalfeature

in the CPU XMM registers, when processor have such registers. This requires the
instrumentation to be able to read packed values from such 128bit registers.

A.4 Function test_linear_globalfeature

void test_global_feature() {

for (int i = 0; i < global_feature; i++) {

usleep(70);

}

}

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

u
s
e
c
s
)

global_feature

void test_global_feature().time {

features:

int g = global_feature;

annotations:

Norm(33.15 + 142.48 * g, 6796);

}

(Time for statistical analysis: 0.369s)

A linear correlation between an integer global variable, and the running time.
Global variables are found at static addresses in the program memory space. This
test requires freud-dwarf to be able to correctly identify global variables in the
scope of selected methods, and freud-pin to be able to read values from absolute
addresses.

A.5 Function test_linear_charptr

void test_linear_charptr(char * str) {

for (int i = 0; i < strlen(str); i++) {

usleep(100);

123 A.6 Function test_linear_structs

}

}

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

u
s
e
c
s
)

str

void test_linear_charptr(char * str).time {

features:

int s = strlen(str);

annotations:

Norm(-59.69 + 173.45*s, 785);

}

(Time for statistical analysis: 0.383s)

A linear correlation between the length of a zero-terminated C string and
the running time. The memory reads in the native expression are wrapped with
Pin_SafeCopy in the feature extraction code. strlen is a special feature that
Freud implements through heuristics (the behavior of which can be controlled
with compile time switches). When Freud finds a char pointer, it tries to compute
the length of the C string pointed to by the pointer.

A.6 Function test_linear_structs

void test_linear_structs(struct basic_structure * bs) {

for (int i = 0; i < bs->useful; i++) {

usleep(150);

}

}

124 A.7 Function test_linear_classes

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

u
s
e
c
s
)

bs.useful

void test_linear_structs(struct basic_structure * bs).time {

features:

int u = bs->useful;

annotations:

Norm(-8.45 + 222.43 * u, 21147);

}

(Time for statistical analysis: 0.386s)

A linear correlation between the length of a field of a structure that is passed
by reference through a pointer and the running time. With this method, we test
the exploration of C structures performed by freud-dwarf.

A.7 Function test_linear_classes

void test_linear_classes(basic_class * bc) {

int pf = bc->get_private_field();

for (int i = 0; i < pf; i++) {

usleep(150);

}

}

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

u
s
e
c
s
)

bc.private_�eld

void test_linear_classes(basic_class * bc).time {

features:

int p = bc->private_field;

125 A.8 Function test_linear_fitinregister

annotations:

Norm(0.33 + 222.45 * p, 5753);

}

(Time for statistical analysis: 0.401s)

A linear correlation between the length of a private field of a class that is
passed by reference through a pointer and the running time. With this method,
we test the exploration of C++ classes performed by freud-dwarf.

A.8 Function test_linear_fitinregister

void test_linear_fitinregister(fit_in_register fir) {

int pf = fir.get_int();

for (int i = 0; i < pf; i++) {

usleep(150);

}

}

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

u
s
e
c
s
)

�r.single_int

void test_linear_fitinregister(fit_in_register fir).time {

features:

int s = fir.single_int;

annotations:

Norm(9.40 + 222.60 * s, 850);

}

(Time for statistical analysis: 0.370s)

A linear correlation between the length of a private field of a class that is
passed by value, and the running time. Since the class is small, the actual content

126 A.9 Function test_linear_vector

is packed in CPU registers directly. This tests both the code generated by freud-
dwarf to handle structures that can fit in CPU registers, and the ability of freud-pin
to unpack values in CPU registers.

A.9 Function test_linear_vector

void test_linear_vector(std::vector<int> * t) {

for (int i = 0; i < t->size(); i++) {

usleep(250);

}

}

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10 20 30 40 50 60 70 80 90 100 110

T
im

e
 (

u
s
e
c
s
)

t.arti�cial.size

void test_linear_vector(std::vector<int> * t).time {

features:

int t.artificial.size = t->_M_impl._M_finish - t->_M_impl._M_start;

annotations:

Norm(-287.62 + 375.38 * t.artificial.size, 293989);

}

(Time for statistical analysis: 0.379s)

A linear correlation between the size of a std::vector and the running time.
Our heuristics create an artificial feature, called size, as the difference between
the finish and start fields of the vector class.

A.10 Function test_derived_class

void test_derived_class(const abstract_class_1 &c) {

const derived_class &dc = dynamic_cast<const derived_class &>(c);

usleep(dc.get_pv());

}

127 A.11 Function test_quad_int

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

u
s
e
c
s
)

c.private_value

void test_derived_class(const abstract_class_1 &c).time {

features:

int c = c.private_value;

annotations:

Norm(100.93 + 1.01 * c, 258);

}

(Time for statistical analysis: 0.374s)

A linear correlation between the value of a private field of a class and the
running time. The class that contains the relevant feature is of type derived_class,
which inherits from abstract_class_1. On the other hand, no useful feature can
be found in abstract_class_1. This tests (1) the ability of freud-dwarf to produce
correct information about the hierarchy of classes in C++ programs, and (2) the
ability of freud-pin to use such information at run time to extract features from
objects that have a different type at runtime, compared to the type at compile
time.

A.11 Function test_quad_int

void test_quad_int(int t) {

for (int i = 0; i < t; i++) {

usleep(t);

}

}

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

u
s
e
c
s
)

t

128 A.12 Function test_nlogn_int

void test_quad_int(int t).time() {

features:

int t = t;

annotations:

Norm(63.51 * t + 1.07 * t ^ 2, 45612);

}

(Time for statistical analysis: 0.373s)

A quadratic correlation between the int parameter, passed by value, and the
running time. Here we test the ability of freud-statistics to produce a model with
the expected complexity.

A.12 Function test_nlogn_int

void test_nlogn_int(int t) {

for (int i = 0; i < t; i++) {

usleep(log2(t));

}

}

 0

 50000

 100000

 150000

 200000

 250000

 0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e
 (

u
s
e
c
s
)

t

void test_nlogn_int(int t).time {

features:

int t = t;

annotations:

Norm(2585.09 + 1.03 * t * log(t), 477983);

}

(Time for statistical analysis: 0.372s)

129 A.13 Function test_quad_int_wn

An n log n correlation between the int parameter, passed by value, and the
running time. Here we test the ability of freud-statistics to produce a model with
the expected complexity. Notice how we must test with bigger absolute values
for the features (controlled by the input parameters) in order to distinguish the
n log n case from the linear and quadratic cases.

A.13 Function test_quad_int_wn

void test_quad_int_wn(int t, int nlevel) {

for (int i = 0; i < t; i++) {

unsigned int noise = rand() % t * 100;

usleep(t + noise);

}

}

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

u
s
e
c
s
)

t

void test_quad_int_wn(int t, int nlevel).time {

features:

int t = t;

annotations:

Norm(6269.55 + 52.18 * t^2, 991720824);

}

(Time for statistical analysis: 0.358s)

A quadratic correlation between the int parameter with added random noise,
passed by value, and the running time. We add noise around the expected per-
formance to test the ability of freud-statistics to identify the correct complexity
class even when there is residual noise in the measurements, when such noise
cannot be correlated to any feature.

130 A.14 Function test_interaction_linear_quad

A.14 Function test_interaction_linear_quad

void test_interaction_linear_quad(int a, int b) {

for (int i = 0; i < a; i++)

usleep(b*b);

}

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

u
s
e
c
s
)

a

_Z28test_interaction_linear_quadii

b2[19]
b2[9]

[0]

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

u
s
e
c
s
)

b

_Z28test_interaction_linear_quadii

a[19]
a[9]
a[0]

void test_interaction_linear_quad(int a, int b).time {

features:

int a = a;

int b = b;

annotations:

Norm(155.10*a + 15.52*b^2 - 7.62*b + 17.95*a*b^2 - 51.50*a*b, 21.87);

}

(Time for statistical analysis: 0.523s)

In this method we let two features interact to define the resulting performance
behavior. We test both the ability of freud-statistics to identify such correlation,
and to produce human readable 2-d plots for such cases.

A.15 Function test_linear_branches

void test_linear_branches(int a, int b, int c) {

if (a > 10) {

for (int i = 0; i < b; i++) {

usleep(b);

}

}

else {

for (int i = 0; i < c; i++) {

usleep(450);

131 A.16 Function test_linear_branches_one_f

}

}

}

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

u
s
e
c
s
)

c

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

u
s
e
c
s
)

b

void test_linear_branches(int a, int b, int c).time {

features:

int a = a;

int b = b;

int c = c;

annotations:

[a <= 10]

Norm(-392.24 + 587.35 * c, 424838118);

[a > 10]

Norm(17743.87 + 1.14 * b ^ 2, 581010480);

}

(Time for statistical analysis: 0.514s)

The branch defined by feature a triggers either a linear or quadratic behavior.
We test the ability of our analysis to create and explore a complex classification
tree.

A.16 Function test_linear_branches_one_f

void test_linear_branches_one_f(int a, int b, int c) {

if (a < 10) {

for (int i = 0; i < 10 - a; i++) {

usleep(400);

}

}

else {

132 A.17 Function test_multi_enum

usleep(4000);

for (int i = 0; i < a - 10; i++) {

usleep(400);

}

}

}

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 10 12 14 16 18 20

T
im

e
 (

u
s
e
c
s
)

a

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1 2 3 4 5 6 7 8 9

T
im

e
 (

u
s
e
c
s
)

a

void test_linear_branches_one_f(int a, int b, int c).time {

features:

annotations:

[a <= 9]

Norm(5122.16 - 514.55 * a, 41817);

[a > 9]

Norm(-1189.46 + 532.05 * a, 33452);

}

(Time for statistical analysis: 0.486s)

The case is very similar to test_linear_branches, but this time the branch
is defined by the same feature that is also used in the regression analyses. Here
we are testing the classification tree exploration performed by freud-statistics.

A.17 Function test_multi_enum

void test_multi_enum(enum command c, int a) {

switch (c) {

case CMD_CONSTANT:

usleep(100000);

break;

case CMD_LINEAR:

for (int i = 0; i < a; i++) {

133 A.18 Function test_grand_derived_class2

usleep(100);

}

break;

case CMD_QUAD:

for (int i = 0; i < a; i++) {

usleep(a);

}

break;

}

}

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

u
s
e
c
s
)

a

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

u
s
e
c
s
)

a

void test_multi_enum(enum command c, int a).time {

features:

int c = c;

int a = a;

annotations:

[0 <= c]

Norm(10435, 124398);

[0 < c <= 1]

Norm(354.35 + 171.54 * a, 5249978);

[1 < c]

Norm(19357.97 + 1.14 * a^2, 647021694);

}

(Time for statistical analysis: 0.447s)

With this experiment, we test the identification and usage of partitions gen-
erated by enum variables in the code of target programs.

A.18 Function test_grand_derived_class2

134 A.19 Function test_main_component

void test_grand_derived_class2(const abstract_class_2 *c) {

const grand_derived_class2 *gdc =

dynamic_cast<const grand_derived_class2 *>(c);

if (gdc)

usleep(gdc->get_pv());

const derived_class *dc = dynamic_cast<const derived_class *>(c);

if (dc)

usleep(2000 - dc->get_pv());

}

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

u
s
e
c
s
)

c.private_value

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

u
s
e
c
s
)

c.private_value2

void test_grand_derived_class2(const abstract_class_2 *c).time {

features:

int p = c->private_value;

int p2 = c->private_value2;

annotations:

[c_vptr.abstract_class_2 <= 1844335335]

Norm(2123.23 - 1.01 * p, 627);

[c_vptr.abstract_class_2 > 1844335335]

Norm(116.40 + 1.01 * p2, 527);

}

(Time for statistical analysis: 0.455s)

Here we have two different possible dynamic types for the input parameter.
One inheritance is two steps away from the compile time type. Also, the actual
type of the input parameter at run time is used for the branch analysis, as a
partitioning feature.

A.19 Function test_main_component

135 A.19 Function test_main_component

void test_linear_main_component(int a) {

int p = rand() % 100;

if (p < 25)

usleep(rand() % 1500 + 10000);

else if (p >= 25 && p < 50)

usleep(rand() % 100);

else {

for (int i = 0; i < a; i++) {

usleep(1000);

}

}

}

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5 6 7 8 9

T
im

e
 (

u
s
e
c
s
)

a

void test_linear_main_component(int a).time {

features:

int a = a;

annotations:

M Norm(64.88 + 1042.19 * a, 4697777);

}

(Time for statistical analysis: 4.582s)

Main component analysis. The method has a linear time complexity with re-
spect to a only in half of its executions. In the other half, it exhibits difference
performance behaviors, that do not depend on any feature. Our statistical analy-
sis correctly identifies the clusters representing the most observed behavior, and
produces a linear regression for those observations. Notice how the time required
by the statistical analysis is bigger than all the cases observed so far, since the
main trend analysis requires clustering, which is the slowest part of the analysis
in the current implementation. Also, notice how the textual performance anno-
tation contains an M keyword before the Norm expression, to indicate that the
expression represents only a subset of the data points collected, filtered with the

136 A.20 Function test_random_clustering

main trend analysis.

A.20 Function test_random_clustering

void test_random_clustering(int a) {

int rnd = rand() % 100;

if (rnd < 30)

usleep(900);

else if (rnd < 70)

usleep(600);

else

usleep(300);

}

void test_random_clustering(int a).time() {

features:

annotations:

{0.32} Norm(422, 528);

{0.32} Norm(740, 888);

{0.34}Norm(1034, 1138);

}

(Time for statistical analysis: 11.285s)

This function takes one input parameter, in addition to the global_variable,
but does not use any feature to select a specific behavior. Clustering always
takes more time than finding regressions for a specific data set. On the one
hand clustering is always performed if the regression analysis failed, on the other
hand our implementation of the variable KDE clustering is the slowest part of the
statistical analysis. We do not produce any plot automatically, since we have no
cost function to draw.

Bibliography

[1] Moshe Bach, M. Charney, R. Cohn, Elena Demikhovsky, Tevi Devor,
K. Hazelwood, A. Jaleel, Chi-Keung Luk, Gail Lyons, Harish Patil, and A. Tal.
Analyzing parallel programs with pin. Computer, 43:34–41, 2010.

[2] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Sime-
oni. Model-based performance prediction in software development: A sur-
vey. IEEE Trans. Softw. Eng., 30(5):295–310, May 2004.

[3] Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth Narayanan.
Magpie: Online modelling and performance-aware systems. In Michael B.
Jones, editor, HotOS, pages 85–90. USENIX, 2003.

[4] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based perfor-
mance prediction with the palladio component model. In Proceedings of the
6th International Workshop on Software and Performance, WOSP ’07, page
54–65, New York, NY, USA, 2007. Association for Computing Machinery.

[5] Antonia Bertolino and Raffaela Mirandola. CB-SPE Tool: Putting
component-based performance engineering into practice. In Ivica Crnkovic,
Judith A. Stafford, Heinz W. Schmidt, and Kurt Wallnau, editors, Compo-
nent Based Software Engineering: 7th International Symposium, CBSE 2004,
volume 3054 of LNCS, pages 233–248. Springer, May 2004.

[6] Z. I. Botev, J. F. Grotowski, and D. P. Kroese. Kernel density estimation via
diffusion. Annals of Statistics, 38(5):2916–2957, 10 2010.

[7] Marc Brünink and David S. Rosenblum. Mining performance specifications.
FSE ’16, pages 39–49, New York, NY, USA, 2016. ACM.

[8] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic
instrumentation of production systems. In Proceedings of the Annual Confer-
ence on USENIX Annual Technical Conference, ATEC ’04, page 2, USA, 2004.
USENIX Association.

137

138 BIBLIOGRAPHY

[9] Bihuan Chen, Yang Liu, and Wei Le. Generating performance distributions
via probabilistic symbolic execution. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, page 49–60, New York, NY,
USA, 2016. Association for Computing Machinery.

[10] DWARF Debugging Information Format Committee. Dwarf debugging in-
formation format. http://dwarfstd.org/doc/DWARF4.pdf, 2010.

[11] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. Input-sensitive Pro-
filing. PLDI ’12, pages 89–98, New York, NY, USA, 2012. ACM.

[12] Emilio Coppa, Camil Demetrescu, Irene Finocchi, and Romolo Marotta. Es-
timating the Empirical Cost Function of Routines with Dynamic Workloads.
CGO ’14, pages 230:230–230:239, New York, NY, USA, 2014. ACM.

[13] Miguel de Miguel, Thomas Lambolais, Mehdi Hannouz, Stéphane Betgé-
Brezetz, and Sophie Piekarec. Uml extensions for the specification and
evaluation of latency constraints in architectural models. In Proceedings of
the 2Nd International Workshop on Software and Performance, WOSP ’00,
pages 83–88, New York, NY, USA, 2000. ACM.

[14] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Car-
los Pacheco, Matthew S. Tsch̃antz, and Chen Xiao. The daikon system for
dynamic detection of likely invariants. Science of Computer Programming,
69(1-3):35–45, December 2007.

[15] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Statã. Extended static checking for java. FSE
’16, pages 234–245. ACM, 2002.

[16] Simon F. Goldsmith, Alex S. Aiken, and Daniel S. Wilkerson. Measuring
Empirical Computational Complexity. In Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on The Foundations of Software Engineering, ESEC-FSE
’07, pages 395–404, New York, NY, USA, 2007. ACM.

[17] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A
Call Graph Execution Profiler. SIGPLAN ’82, pages 120–126, New York,
NY, USA, 1982. ACM.

[18] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. From design
to analysis models: A kernel language for performance and reliability anal-
ysis of component-based systems. In Proceedings of the 5th International

http://dwarfstd.org/doc/DWARF4.pdf

139 BIBLIOGRAPHY

Workshop on Software and Performance, WOSP ’05, page 25–36, New York,
NY, USA, 2005. Association for Computing Machinery.

[19] Jianmei Guo, Krzysztof Czarnecki, Sven Apely, Norbert Siegmundy, and
Andrzej Wasowski. Variability-aware Performance Prediction: A Statistical
Learning Approach. ASE’13, pages 301–311, Piscataway, NJ, USA, 2013.
IEEE Press.

[20] Johannes Henkel and Amer Diwan. Discovering algebraic specifications
from java classes. ECOOP ’03, pages 431–456, 2003.

[21] Johannes Henkel and Amer Diwan. A tool for writing and debugging alge-
braic specifications. ICSE ’04, pages 449–458, Washington, DC, USA, 2004.
IEEE Computer Society.

[22] Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy Georges,
Lizy K. John, and Koen De Bosschere. Performance Prediction Based on In-
herent Program Similarity. PACT ’06, pages 114–122, New York, NY, USA,
2006. ACM.

[23] Intel® 64 and IA-32 Architectures Software Developer’s Manual Com-
bined Volumes 3A, 3B, 3C, and 3D: System Programming Guide.
https://software.intel.com/content/www/us/en/develop/download/
intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-
3d-system-programming-guide.html, 2020.

[24] JProfiler. https://www.ej-technologies.com/products/jprofiler/overview.
html, 2019.

[25] Robert E. Kass and Adrian E. Raftery. Bayes factors. Journal of the American
Statistical Association, 90(430):773–795, 1995.

[26] Heiko Koziolek. Performance evaluation of component-based software sys-
tems: A survey. Perform. Eval., 67(8):634–658, August 2010.

[27] THE /proc FILESYSTEM. https://www.kernel.org/doc/Documentation/
filesystems/proc.txt, 2020.

[28] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot tracing: Dynamic
causal monitoring for distributed systems. ACM Trans. Comput. Syst., 35(4),
December 2018.

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt

140 BIBLIOGRAPHY

[29] Adrian Mos. Compas: Adaptive performance monitoring of component-
based systems. In In Workshop on Remote Analysis and Measurement of
Software Systems (RAMSS) at 26th International Conference on Software En-
gineering (ICSE), 2004.

[30] Adrian Mos and John Murphy. A framework for performance monitoring,
modelling and prediction of component oriented distributed systems. In
Proceedings of the 3rd International Workshop on Software and Performance,
WOSP ’02, page 235–236, New York, NY, USA, 2002. Association for Com-
puting Machinery.

[31] MySQL Server. https://github.com/mysql/mysql-server, 2019.

[32] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney.
Producing Wrong Data Without Doing Anything Obviously Wrong! ASPLOS
XIV, pages 265–276, New York, NY, USA, 2009. ACM.

[33] Trevor Parsons, John Murphy, et al. Detecting performance antipatterns in
component based enterprise systems. J. Object Technol., 7(3):55–91, 2008.

[34] Sharon E. Perl and William E. Weihl. Performance Assertion Checking.
SOSP ’93, pages 134–145, New York, NY, USA, 1993. ACM.

[35] Pin - A Dynamic Binary Instrumentation Tool. https://software.intel.com/
en-us/articles/pintool, 2019.

[36] Adrian E. Raftery. Bayesian model selection in social research. Sociological
Methodology, 25:111–163, 1995.

[37] Gideon Schwarz et al. Estimating the dimension of a model. The annals of
statistics, 6(2):461–464, 1978.

[38] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephen-
son, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag.
Dapper, a large-scale distributed systems tracing infrastructure. Technical
report, Google, Inc., 2010.

[39] George R. Terrell and David W. Scott. Variable kernel density estimation.
20(3):1236–1265, 09 1992.

[40] The DWARF Debugging Standard. http://dwarfstd.org, 2019.

https://github.com/mysql/mysql-server
https://software.intel.com/en-us/articles/pintool
https://software.intel.com/en-us/articles/pintool
http://dwarfstd.org

141 BIBLIOGRAPHY

[41] Eno Thereska, Bjoern Doebel, Alice X. Zheng, and Peter Nobel. Practical
performance models for complex, popular applications. In Proceedings of
the ACM SIGMETRICS International Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’10, pages 1–12, New York, NY,
USA, 2010. ACM.

[42] Eno Thereska, Bjoern Doebel, Alice X. Zheng, and Peter Nobel. Practical
Performance Models for Complex, Popular Applications. SIGMETRICS ’10,
pages 1–12, New York, NY, USA, 2010. ACM.

[43] Twitter, Inc. Distributed Systems Tracing with Zipkin, June 2012.

[44] Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo, Sebastian Fischmeis-
ter, and Krzysztof Czarnecki. Transferring performance prediction models
across different hardware platforms. In Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering, ICPE ’17, pages
39–50, New York, NY, USA, 2017. ACM.

[45] Jeffrey S. Vetter and Patrick H. Worley. Asserting Performance Expectations.
SC ’02, pages 1–13, Los Alamitos, CA, USA, 2002. IEEE Computer Society
Press.

[46] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Transactions
on Mathematical Software, 11:37–57, 1985.

[47] Xiuping Wu and Murray Woodside. Performance modeling from software
components. In Proceedings of the 4th International Workshop on Software
and Performance, WOSP ’04, page 290–301, New York, NY, USA, 2004. As-
sociation for Computing Machinery.

[48] x264. https://www.videolan.org/developers/x264.html, 2019.

[49] Dmitrijs Zaparanuks and Matthias Hauswirth. Algorithmic profiling. In
Proceedings of the 33rd ACM SIGPLAN conference on Programming Language
Design and Implementation, PLDI ’12, pages 67–76. ACM, 2012.

https://www.videolan.org/developers/x264.html

142 BIBLIOGRAPHY

	Contents
	List of Figures
	List of Tables
	Introduction
	Performance Analysis
	Probabilistic Performance Annotations
	Freud
	Contribution and Structure of the Thesis

	Related Work
	Traditional Profilers
	Performance Assertion Specification
	Deriving Models of Code Performance
	Distributed Profiling
	Hardware Aware Performance Specifications
	Comparison with Freud

	Performance Annotations
	Performance Annotations Language
	Structure
	Basics
	Modalities and Scopes
	Mixture Models
	References to Other Annotations
	Analysis Heuristics
	Grammar

	Uses
	Documentation and Prediction
	Assertions
	Prediction

	Automatic Derivation of Performance Annotations
	Instrumentation
	Data Collection
	Producing Output
	Perturbation and Overhead

	Statistical Analysis
	Data Pre-processing
	Classification Tree

	Considerations on Composition
	Threats to Validity

	Freud
	freud-dwarf
	DWARF
	Extracting the Data
	Generating Code and Info
	Parameters

	Instrumentation
	Intel Pin and Pin Tools
	freud-pin
	Adding Instrumentation
	Running the Program
	Collecting Features
	Producing Output
	Minimizing Perturbation and Overhead
	Parameters

	Statistical Analysis
	freud-stats
	Checker
	Parameters

	Validation
	Accuracy
	Overhead and Perturbation
	Running Time

	Other Contributions

	Evaluation
	x264
	MySQL
	ownCloud

	Conclusion and Future Work
	Microbenchmark
	Function test_linear_int
	Function test_linear_int_pointer
	Function test_linear_float
	Function test_linear_globalfeature
	Function test_linear_charptr
	Function test_linear_structs
	Function test_linear_classes
	Function test_linear_fitinregister
	Function test_linear_vector
	Function test_derived_class
	Function test_quad_int
	Function test_nlogn_int
	Function test_quad_int_wn
	Function test_interaction_linear_quad
	Function test_linear_branches
	Function test_linear_branches_one_f
	Function test_multi_enum
	Function test_grand_derived_class2
	Function test_main_component
	Function test_random_clustering

