
Modeling User Information Needs on
Mobile Devices

From Recommendation to Conversation

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Mohammad Aliannejadi

under the supervision of

Fabio Crestani

September 2019

Dissertation Committee

Fabio Crestani Università della Svizzera italiana (USI), Lugano, Switzerland
Josiane Mothe Université Toulouse - Jean Jaurès, Toulouse, France
Stefano Mizzaro Università degli Studi di Udine, Udine, Italy
Laura Pozzi Università della Svizzera italiana (USI), Lugano, Switzerland
Antonio Carzaniga Università della Svizzera italiana (USI), Lugano, Switzerland

Dissertation accepted on 13 September 2019

Research Advisor PhD Program Director

Fabio Crestani Walter Binder and Silvia Santini

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Mohammad Aliannejadi
Lugano, 13 September 2019

ii

In memory of my father

iii

iv

“If we knew what it was we were
doing, it would not be called
research, would it?”

Albert Einstein

v

vi

Abstract

Recent advances in the development of mobile devices, equipped with multiple
sensors, together with the availability of millions of applications have made these
devices more pervasive in our lives than ever. The availability of the diverse set
of sensors, as well as high computational power, enable information retrieval
(IR) systems to sense a user’s context and personalize their results accordingly.
Relevant studies show that people use their mobile devices to access information
in a wide range of topics in various contextual situations, highlighting the fact
that modeling user information need on mobile devices involves studying several
means of information access.

In this thesis, we study three major aspects of information access on mobile
devices. First, we focus on proactive approaches to modeling users for venue sug-
gestion. We investigate three methods of user modeling, namely, content-based,
collaborative, and hybrid, focusing on personalization and context-awareness.
We propose a two-phase collaborative ranking algorithm for leveraging users’
implicit feedback while incorporating temporal and geographical information
into the model. We then extend our collaborative model to include multiple
cross-venue similarity scores and combine it with our content-based approach to
produce a hybrid recommendation.

Second, we introduce and investigate a new task on mobile search, that is,
unified mobile search. We take the first step in defining, studying, and model-
ing this task by collecting two datasets and conducting experiments on one of
the main components of unified mobile search frameworks, that is target apps
selection. To this end, we propose two neural approaches.

Finally, we address the conversational aspect of mobile search where we pro-
pose an offline evaluation protocol and build a dataset for asking clarifying ques-
tions for conversational search. Also, we propose a retrieval framework consist-
ing of three main components: question retrieval, question selection, and doc-
ument retrieval. The experiments and analyses indicate that asking clarifying
questions should be an essential part of a conversational system, resulting in
high performance gain.

vii

viii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Fabio
Crestani for the continuous support of my Ph.D. study and related research, for
his patience, motivation, and immense knowledge. His guidance helped me in
all the time of research and writing of this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee:
Prof. Josiane Mothe, Prof. Laura Pozzi, Prof. Stefano Mizzaro, and Prof. Antonio
Carzaniga for their insightful comments and encouragement.

My sincere thanks also go to Prof. W. Bruce Croft, who hosted me at the Center
for Intelligent Information Retrieval (CIIR) at the University of Massachusetts
Amherst, to join his group as a visiting scholar. Without his precious support
and contributions, it would not be possible to conduct this research. During and
before my visit, I had the opportunity to work with Dr. Hamed Zamani, to whom I
am grateful for the stimulating discussions and incredible collaboration we have
had in the past two years. I would also thank other members of the CIIR, namely,
Hamed Bonab, and Helia Hashemi, with whom I had the pleasure of working.

I would also like to thank my collaborators, who helped me throughout my
Ph.D. via countless meetings that we had. In particular, I am grateful to Dr. Dim-
itrios Rafailidis, Dr. Morgan Harvey, and Matthew Pointon. I also thank my col-
leagues for the constructive discussions, for the sleepless nights we were working
together before deadlines, and for all the fun we have had in the past few years.
In particular, I would like to thank Dr. Ali Bahrainian, Dr. Ida Mele, Luca Costa,
Dr. Monica Landoni, Maram Barifah, Dr. Anastasia Giachanou, Esteban Andrés
Ríssola, and Manajit Chakraborty. Also, I thank my friends at Università della
Svizzera italiana, as well as my Italian language teacher, Pamela Trincado, who
patiently helped me when it was difficult to catch up with the class due to the
heavy workload.

Last but not least, I would like to express my deepest gratitude and appreci-
ation to my mother, my wife, and the rest of my family for their unconditional
love and support throughout my Ph.D., writing this thesis, and my life.

ix

x

Contents

Contents xi

List of List of Figures xvii

List of List of Tables xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Outline . 4
1.3 Main Contributions . 5
1.4 Resources Created and Released . 7
1.5 Publication Overview . 8
1.6 Additional Publications . 10

2 Literature Review 13
2.1 Venue Suggestion . 13

2.1.1 TREC Contextual Suggestion 15
2.1.2 Context-Aware POI Recommendation 16
2.1.3 Collaborative Ranking . 17
2.1.4 Time-Aware Recommendation 18

2.2 Mobile Search . 18
2.2.1 Mobile IR . 19
2.2.2 Mobile HCI . 20
2.2.3 Context-Aware Search . 21
2.2.4 Proactive IR . 21
2.2.5 Federated and Aggregated Search 22
2.2.6 Query Classification . 22

2.3 Conversational Search . 23
2.3.1 Conversational IR . 23
2.3.2 Clarifying Questions . 24

xi

xii Contents

2.3.3 Conversational Question Answering 24

I Venue Suggestion 27

3 Content-based User Modeling for Venue Suggestion 29
3.1 Introduction . 29
3.2 Personalized Keyword Boosting . 32

3.2.1 Personalized Keyword-Tag Mapping 32
3.2.2 Parameter Estimation Based on Expectation-Maximization 34
3.2.3 Location Keywords Boosting 35
3.2.4 User Tag Prediction . 37

3.3 Contextual Appropriateness Prediction 39
3.3.1 Contextual Features . 40
3.3.2 Training the Classifier . 41

3.4 Recommendation based on Information from Multiple LBSNs . . . 42
3.4.1 Frequency-based Score . 42
3.4.2 Review-Based Score . 43
3.4.3 Location Ranking . 45

3.5 Data Collection and Analysis . 45
3.5.1 Data Crawling . 46
3.5.2 Crowdsourcing . 47
3.5.3 Data Analysis . 48

3.6 Experimental Setup . 49
3.6.1 Data . 49
3.6.2 Metrics . 51
3.6.3 Compared Methods . 53

3.7 Results and Discussion . 55
3.7.1 Preformance Comparison . 55
3.7.2 Impact of Different Learning to Rank Techniques 56
3.7.3 Impact of Using Information from Multiple LBSNs 56
3.7.4 Impact of Using Different Scores 59
3.7.5 Impact of Number of Visited POIs 61
3.7.6 Impact of Visiting POIs from a Single City vs. Two Cities . 62
3.7.7 Dimensionality Reduction . 63
3.7.8 User Tag Prediction . 64

3.8 Summary . 65

xiii Contents

4 Collaborative User Modeling for Venue Suggestion 67
4.1 Introduction . 67
4.2 Data Analysis . 69

4.2.1 Data . 69
4.2.2 Time-Dependency of User Activities and Interests 69
4.2.3 Users’ Multiple Check-ins . 71
4.2.4 Remarks . 72

4.3 Proposed Method . 73
4.3.1 Geographical Similarity . 75
4.3.2 Phase 1: Visited vs. Unvisited POIs 75
4.3.3 Phase 2: Multiple vs. Single Check-ins 77
4.3.4 Time-Sensitive Regularizer . 78
4.3.5 Joint Two-Phase Collaborative Ranking Algorithm 79

4.4 Experimental Setup . 80
4.4.1 Data . 81
4.4.2 Metrics . 81
4.4.3 Compared Methods . 82

4.5 Results and Discussion . 83
4.5.1 Performance Comparison . 83
4.5.2 Impact of the 2nd Phase . 88
4.5.3 Impact of the Time-Sensitive Regularizer 89
4.5.4 Impact of the Geographical Influence 89
4.5.5 Impact of the Model Parameters 90
4.5.6 Model’s Convergence . 90

4.6 Summary . 91

5 Hybrid User Modeling for Venue Suggestion 95
5.1 Introduction . 95
5.2 Proposed Method . 97

5.2.1 Collaborative Ranking with Multiple Location-based Simi-
larities . 97

5.2.2 Cross-Venue Similarities . 99
5.2.3 System Overview . 101
5.2.4 Hybrid Venue Suggestion . 101

5.3 Experimental Setup . 103
5.3.1 Data . 103
5.3.2 Metrics . 103
5.3.3 Compared Methods . 104

5.4 Results and Discussion . 105

xiv Contents

5.4.1 Performance Comparison . 105
5.4.2 Impact of the Number of Visited POIs 106
5.4.3 Impact of the Similarity Scores 108
5.4.4 Impact of the Number of Latent Factors 109
5.4.5 Impact of Regularization Parameter 109

5.5 Summary . 109

II Mobile Search 111

6 Unified Mobile Search 113
6.1 Introduction . 113
6.2 Data Collection . 115
6.3 Data Analysis . 118

6.3.1 App Distribution . 118
6.3.2 Query Attributes . 123
6.3.3 Query Overlap . 124
6.3.4 Remarks . 125

6.4 Neural Target Apps Selection . 125
6.4.1 NTAS1: App Scoring Model 126
6.4.2 NTAS2: Query Classification Model 128

6.5 Experimental Setup . 128
6.5.1 Data . 128
6.5.2 Metrics . 128
6.5.3 Compared Methods . 129

6.6 Results and Discussion . 130
6.6.1 Performance Comparison . 130
6.6.2 Representation Analysis . 132
6.6.3 Performance on Apps . 132
6.6.4 Performance on Tasks . 133

6.7 Summary . 135

7 Context-Aware Target Apps Selection 137
7.1 Introduction . 137
7.2 Data Collection . 139

7.2.1 uSearch . 139
7.2.2 Data Collection Procedure . 140
7.2.3 Quality Check . 141
7.2.4 Privacy Concerns . 141

xv Contents

7.2.5 Limitations . 142
7.3 Data Analysis . 142

7.3.1 Basic Statistics . 142
7.3.2 Apps . 143
7.3.3 Queries . 145
7.3.4 Sessions . 147
7.3.5 Context . 148

7.4 Context-Aware Neural Target Apps Selection 148
7.5 Experimental Setup . 152

7.5.1 Data . 152
7.5.2 Metrics . 152
7.5.3 Compared Methods . 153

7.6 Results and Discussion . 154
7.6.1 Performance Comparison . 154
7.6.2 Impact of Context on Performance Per App 157
7.6.3 Impact of Context on Performance Per User 157
7.6.4 Impact of Context on Performance Per Query Length. . . . 158

7.7 Summary . 158

III Conversational Search 161

8 Conversational Search with Clarifying Questions 163
8.1 Introduction . 163
8.2 Problem Statement . 166
8.3 Data Collection . 168

8.3.1 Topics and Facets . 168
8.3.2 Clarifying Questions . 170
8.3.3 Question Verification and Addition 171
8.3.4 Answers . 171

8.4 Conversational Retrieval Framework 174
8.4.1 Question Retrieval Model . 175
8.4.2 Question Selection Model . 176
8.4.3 Document Retrieval Model . 177

8.5 Experimental Setup . 178
8.5.1 Data . 178
8.5.2 Metrics . 178

8.6 Results and Discussion . 181
8.6.1 Question Retrieval . 181

xvi Contents

8.6.2 Oracle Question Selection . 181
8.6.3 Question Selection . 182
8.6.4 Impact of Data Splits . 183
8.6.5 Impact of Number of Conversation Turns 183
8.6.6 Impact of Clarifying Questions on Facets 183
8.6.7 Case Study: Failure and Success Analysis 187

8.7 Limitations . 188
8.8 Summary . 189

9 Conclusions 191
9.1 Summary of the Work Carried Out 191
9.2 Main Contributions . 192
9.3 Future Research Directions . 195

Bibliography 199

List of Figures

1.1 Mobile users search for a wide variety of information [89]. 2
1.2 Mobile search contexts vary by type of search [89]. 3

3.1 Overview of the proposed method. 31
3.2 An example of mapping of J = 4 location keywords to I = 2 user

tags. 34
3.3 A sample of tags from three different users assigned to one single

location and the calculated mapping. The lines connect each user
tag to their mapped location keywords. Also, the index number of
the mapped location keywords is written in parentheses for more
convenient reading. 36

3.4 Histogram of venue-context appropriateness score ranges. We
partition the histogram into 3 parts based on the scores range.
Scores below −0.4 represent inappropriateness and score higher
than +0.4 represent appropriateness. Scores between −0.4 and
+0.4 do not provide much information and show no agreement
among assessors (subjective task). 50

3.5 Effect on P@5 by varying the number of locations that each user
has visited for (a) TREC-CS 2015 and (b) TREC-CS 2016. 62

3.6 Our model’s performance in terms of P@5 with different number
of locations as users’ history of preferences compared to LinearCa-
tRev. We have chose the order of locations in two different man-
ners. Sequential: the first 30 locations are from one single city, the
second 30 are from another city, Interleaved: the list of locations
is interleaved based on their cities. 63

4.1 Number of check-ins per month on Foursquare’s and Gowalla’s. . 71
4.2 Popularity of the top-8 categories over time on Gowalla’s (best

viewed in color). 72

xvii

xviii List of Figures

4.3 Check-in distribution of users and POI categories over time in
Gowalla’s. Figures a & c depict the least time-variant users and
POI categories, respectively. Figures b & d, in contrast, show the
distribution of the most time-variant users and POI categories, re-
spectively (best viewed in color). 73

4.4 Check-in histogram of 100 randomly-sampled users from the 500
most active users of Gowalla’s. For each user, the red bar denotes
the number of multiple check-ins, while the blue bar denotes the
number of single check-ins. 74

4.5 Impact of the number of latent factors. 91
4.6 Impact of λ. 92
4.7 Impact of α. 93
4.8 Convergence of the joint objective function. 93

5.1 Impact of different model parameters on the performance of CR-MLS109

6.1 Workflow of an example unified mobile search framework. 114
6.2 HIT interface for choosing apps. The workers could enter an app’s

name or click on an app’s icon. 117
6.3 The distribution of number of queries with respect to apps and users.120
6.4 Number of queries per app for the top 17 apps. 121
6.5 Distribution of unique apps per user and task. 121
6.6 Histogram of number of query terms per app. 122
6.7 Query length distribution with respect to number of terms and

characters. 122
6.8 Distribution of top query unigrams for two sample apps. 124
6.9 Proximity of different app representations learned by NTAS1-pairwise.

This plot is produced by reducing the dimensionality (using the t-
SNE algorithm) of the app representations to two for visualization. 133

6.10 Performance comparison with respect to certain apps on both data
splits. 134

6.11 Negative correlation between the number of unique apps users
selected for a task and performance. 135

7.1 uSearch interface on LG Google Nexus 5 as well as the survey.
Checkboxes are used to indicate the target app for a query. 140

7.2 Number of queries and active participants per day, during the
course of data collection (best viewed in color). 144

7.3 Number of queries per app for top 20 apps. 144
7.4 Distribution of unique apps per user and task. 145

xix List of Figures

7.5 Time-of-the-day distribution of queries and unique apps (best viewed
in color). 149

7.6 Apps usage context ranking distribution of relevant target apps.
Lower values of x axis mean that the app has been used more
often in the past 24 hours. 149

7.7 Performance comparison with respect to certain apps with and
without context. 156

7.8 MRR differences on ISTAS-R with and without context per app and
user. 156

8.1 Example conversations with clarifying questions from our dataset,
Qulac. As we see, both users, Alice and Robin, issue the same
query (“dinosaur”), however, their actual information needs are
completely different. With no prior knowledge, the system starts
with the same clarifying question. Depending on the user’s an-
swers, the system selects the next questions in order to clarify
the user’s information need. The tag “No answer” shows that
the asked question is not related to the information need. We
asked the crowdworkers to answer each question given the origi-
nal query and information need. In cases where the question re-
quired knowledge that was out of the scope of the information
need, the workers would mark their answer with a “No answer”
tag (see example). 164

8.2 A workflow for asking clarifying questions in an open-domain con-
versational search system. 166

8.3 An example of three facets with their corresponding relevant doc-
uments for the topic “dinosaur” (best viewed in color). 169

8.4 An example of three users who have issued the same query “di-
nosaur,” but with different information needs. As we see, the
faceted relevance assessments are broken into three different sets
creating three new topics (best viewed in color). 170

8.5 Screenshots of clarifying question generation HIT instructions. . . 172
8.6 Screenshot of answer generation HIT instructions. 173
8.7 Impact of topic type, facet type, and query length on the perfor-

mance of BestQuestion oracle model, compared to OriginalQuery. 182
8.8 Performance comparison with the baselines for different number

of conversation turns (k ∈ {1,2, 3}). 185

xx List of Figures

List of Tables

3.1 Description of different contextual information dimensions. 39
3.2 Examples of contextual features generated using crowdsourcing. . 39
3.3 Four proposed models using different combination of similarity

scores. 45
3.4 Statistics on the crawled collection 49
3.5 Statistics on the crowdsourced contextual appropriateness collection 49
3.6 Statistical details of user tagging dataset 51
3.7 Performance evaluation on TREC-CS 2015. 57
3.8 Performance evaluation on TREC-CS 2016. 57
3.9 Effect on P@5 for different learning to rank techniques in TREC-

CS 2015. 58
3.10 Effect on P@5 for different learning to rank techniques in TREC-

CS 2016. 58
3.11 Performance evaluation after removing information provided by

Foursquare (F) and Yelp (Y) in the TREC-CS 2015 dataset. 59
3.12 Performance evaluation after removing information provided by

Foursquare (F) and Yelp (Y) in the TREC-CS 2016 dataset. 60
3.13 Performance of PK-Boosting using all the scores (All) and after

removing each score at a time. 61
3.14 Performance comparison on TREC-CS 2015 on dimensionality re-

duction. 65
3.15 Performance comparison on TREC-CS 2016 on dimensionality re-

duction. 65
3.16 Performance comparison of user tag prediction models. 65

4.1 General statistics of the datasets . 70
4.2 Performance evaluation on Foursquare’s in terms of nDCG@k. . . 84
4.3 Performance evaluation on Foursquare’s in terms of P@k. 85
4.4 Performance evaluation on Gowalla’s in terms of nDCG@k. 86

xxi

xxii List of Tables

4.5 Performance evaluation on Gowalla’s in terms of P@k. 87

5.1 Performance evaluation on TREC-CS in terms of P@k with k ∈
{1, 2,3, 4,5}. Bold values denote the best scores compared with
collaborative approaches and the content-based approach sepa-
rately. 107

5.2 Performance evaluation on TREC-CS in terms of nDCG@k with k
∈ {1,2, 3,4, 5}. Bold values denote the best scores compared with
collaborative approaches and the content-based approach sepa-
rately. 107

5.3 Effect on P@5 and nDCG@5 of different number of venues that
users visited as training set. 108

6.1 Distribution of crowdsourcing search task categories. 116
6.2 Statistics of UniMobile. 118
6.3 The percentage of similar queries at different similarity thresholds

considering only the queries associated with every app. 126
6.4 Performance comparison with baselines on UniMobile-Q and UniMobile-

T. 131

7.1 Statistics of ISTAS. 143
7.2 Corss-app query attributes for 9 apps. 146
7.3 Performance comparison with baselines on ISTAS-R and ISTAS-T. . 155
7.4 Performance analysis based on query length, dividing the test queries

into three evenly-sized length buckets. 157

8.1 Statistics of Qulac. 174
8.2 Performance of question retrieval model. 181
8.3 Performance comparison with baselines on Qulac-T and Qulac-F. . 184
8.4 Failure and success examples of NeuQS. Failure and success are

measured by the difference in performance of NeuQS and Origi-
nalQuery in terms of MRR (∆MRR). 186

Chapter 1

Introduction

1.1 Motivation

Recent years have witnessed a rapid growth in the use of mobile devices, such
as smartphones and tablets, to search the web for information. This has resulted
in a shift of users’ behavior to the extent that, as of 2016, more searches are
performed on mobile devices than on more “traditional” desktop computers [87].
Mobile devices can be readily used in many situations that a desktop computer
cannot since they are carried constantly on one’s person at most of the times
of the day and night. As such, searching is now performed in a larger range of
contexts than ever before and, often, at the same time with other tasks [94].

Moreover, mobile devices are nowadays equipped with many sensors such as
GPS, light sensor, and accelerometer. These sensors enable a system to capture
a user’s current position, surrounding devices, movement, people they are with,
time of the day, and weather as their current context. A mobile IR system should
be able to model a user’s context and interest to personalize the retrieval process
according to the user’s needs and context. Therefore, search on mobile devices
has become an area of interest in Information Retrieval (IR) [73].

Users access information on their mobile devices to address a wide range of
information needs such as shopping, dining, or visiting a new place. In particular,
Google and Nielsen conducted a large-scale study in 2013 to understand how
people access information on their mobile devices [89]. As we see in Figure 1.1,
they found that mobile users search for a wide variety of information [89] with
Art & Entertainment and News being the top search topics. Users tend to access
a wide range of information in various circumstances such as at home, on the
go, and in-store. We see in Figure 1.2 that Google and Nielsen [89] also found
mobile search contexts vary by type of search. Specifically, we see that many

1

2 1.1 Motivation

Figure 1.1. Mobile users search for a wide variety of information [89].

types of mobile searches occur out of the home. For instance, people search for
food and shopping, mainly while they are in a store or on the go.

Using mobile devices to access various types of information under various
contexts requires multiple strategies for modeling users’ information needs. Mod-
eling information needs of mobile users should consider various aspects that are
related to mobile information access. In particular, it should take into account
multiple methods of user interaction such as voice, text, and gestures under var-
ious contexts. For instance, suppose a user who is visiting a new city and is
walking in the city center. In this context, the user’s attention is fragmented [94]
since they have to pay attention to their surrounding area while walking and, as
a consequence, their interaction with their device is much limited. Therefore,
the system should be able to anticipate the user’s information need and recom-
mend points of interest (POIs) to them. Alternatively, the system can provide
the user with a voice interface through which the user can communicate their
information need with their device more conveniently.

Considering both the type of information need and context, we have focused
on three main aspects of mobile information access:

1. A mobile information access system must be able to model the user in-
formation need according to their past behavior, as well as their current
context, to provide personalized context-aware recommendations.

2. Such a system must be able to understand the users’ queries under different
contexts to retrieve relevant information from multiple applications. In
many cases, different parts of information need should be retrieved from
different applications and put together.

3 1.1 Motivation

Figure 1.2. Mobile search contexts vary by type of search [89].

3. The system must converse with the user to understand their information
need. Many queries are incomplete, faceted, or ambiguous and, as such, a
conversational search system needs to ask clarifying questions whose an-
swers would help the system understand the user’s information needs more
clearly.

These three aspects constitute the main ideas behind the new generation of
personal assistants such as Google Now, Microsoft Cortana, and Apple Siri. The
main goal of these systems is to be able to converse with users effectively and
retrieve useful information from multiple channels such as applications and web-
sites. At the same time, they aim to provide helpful information to the users based
on their past behavior and current context.

In this thesis, we present our work on all these three aspects of mobile in-
formation access. First, we study the problem of venue suggestion for mobile
devices as it enables proactive information retrieval on mobile devices. Also, as
it is concerned with user mobility and depends highly on the user’s context, it
poses multiple challenges to address. Second, we study how to determine a tar-
get application for a given query for unified mobile search where we also studied
modeling contextual information available on mobile devices. Third, we address
the conversational search task where we define an offline evaluation protocol for
IR and build a dataset for researching the problem of asking clarifying questions
for conversational search. Moreover, we proposed a neural approach that can
retrieve and select clarifying questions to narrow down a user’s search.

4 1.2 Thesis Outline

1.2 Thesis Outline

This thesis is organized into three parts and nine chapters. But first, Chapter 2
reviews the related work on areas relevant to venue suggestion, mobile search,
and conversational search, the three areas targeted by the thesis.

Part 1 focuses on venue suggestion where Chapter 3 describes our work on
studying various mobile relevance criteria in the context of the Text REtrieval
Conference - Contextual Suggestion track (TREC-CS). The task was to retrieve
and rank venues relevant to users’ interest and context, given by a history of
preferences in a mobile environment. Participants were provided with the same
dataset built by NIST1, and the result of their models was independently evalu-
ated by TREC assessors. In TREC-CS 2015, we explored the linear combination
of source, opinion, and category relevance criteria and were ranked as the best
performing group. In 2016, we followed a more sophisticated approach and
modeled complex contextual information. Our approach was again ranked as
the best performing approach in TREC-CS 2016. Later, we expanded those works
and studied various aspects of relevance criteria and their combination where we
collected different datasets: (i) a large dataset of venue profiles on Foursquare2;
(ii) a smaller dataset of venue profiles on Yelp3; (iii) a crowdsourced dataset of
contextual features relevant to a trip; and (iv) a crowdsourced dataset of con-
textual labels for given features. We explore several similarity scores as part of
a content-based recommendation model and the impact of several modalities
of information on their performance. Furthermore, we move one step further
and model user information need using a collaborative approach. To this end, in
Chapter 4, we propose a two-step collaborative model that utilizes users’ implicit
feedback (i.e., check-in data) as well as contextual information. From the lessons
we learned while experimenting content-based and collaborative relevance cri-
teria estimation and combination, we found that the best approach would be
to combine both strategies. Therefore, in Chapter 5, we propose a hybrid rec-
ommendation model outperforming all existing content-based and collaborative
state-of-the-art models.

Although studying venue recommendation on mobile devices helped us ac-
quire invaluable understanding and insight into how users’ access information
on their mobile devices, it missed an important element of mobile IR: search
queries. Part 2 elaborates on the work we have done on a unified mobile search.
Chapter 6 describes how we collected a dataset of mobile search queries that

1the USA National Institute of Science and Technology
2https://foursquare.com
3https://yelp.com

https://foursquare.com
https://yelp.com

5 1.3 Main Contributions

were submitted to various applications. This study gave us interesting intuitions
on how users seek information using various applications and helped us design
a system for unified mobile search where we tackled, as the first step, the task of
target apps selection. This task is concerned with returning a ranked list of appli-
cations for a given search query such that the applications that are ranked higher
are more likely to address the user’s information need. Chapter 7 presents our
follow-up work where we collected a more realistic dataset of cross-app queries
and captured mobile sensor data from users, where we modeled contextual in-
formation as part of a neural target apps selection model. Here we focused on
the user’s interaction with the application as context and studied how the appli-
cations that a user interacts with in the past 24 hours help a system determine
context more accurately.

Recently, there has been an increasing interest in conversational search sys-
tems, both on voice-only devices and smartphones. This motivated us to study
conversational search on mobile devices in Part 3. To this aim, we studied
the problem of asking clarifying questions for conversational search in Chap-
ter 8. Asking questions is a crucial element of conversational systems mainly for
two reasons: (i) systems are usually limited in the number of results they can
present to users and (ii) conversation is the easiest means of interacting with
users. Therefore, in cases where the user’s initial query is faceted, ambiguous,
or incomplete, and the confidence of the system is low, the user’s intent can be
clarified by asking relevant questions. We collected a large dataset of clarifying
questions and their corresponding answers for various search scenarios. This
helped us propose an offline evaluation framework and explore neural and non-
neural question retrieval and selection models. The results showed that asking
even only one clarifying question can lead to a retrieval improvement of over
170%.

Finally, Chapter 9 concludes the thesis and describes various possible future
directions that stem from this thesis.

1.3 Main Contributions

Here we describe the main contributions of each part of the thesis:

1. Venue Suggestion (Part 1):

• We introduce a set of relevance scores for measuring the similarity
between a user’s history and a location considering location’s content
and reviews.

6 1.3 Main Contributions

• We present a probabilistic generative approach to finding the mapping
between location taste keywords and user tags, thus modeling the
personalized opinion of users about venues more accurately.

• We introduce a novel dataset for predicting contextually appropriate
locations and show how to predict the contextually appropriate loca-
tions given the user’s current context and evaluate its effectiveness on
recommendation.

• We propose a general time-sensitive regularizer, taking into account
the variance of users activities and venues popularity over time.

• We propose a novel two-phase CR-based POI recommendation algo-
rithm incorporating users implicit check-in feedback with a focus on
the top of the list.

• We introduce a novel CR framework with the focus on the top of the
recommendation list while incorporating the cross-venue similarities
into the model.

• We propose a simple yet effective hybrid recommendation system.

2. Unified Mobile Search (Part 2):

• We design and conduct two crowdsourcing tasks for collecting cross-
app search queries for real-life search tasks.

• We present the first study of user behavior while searching with dif-
ferent apps as well as their search queries. In particular, we study
the attributes of the search queries that are submitted to different
apps and user behavior in terms of the apps they chose to complete a
search task.

• We propose two neural models for target apps selection.

• We design and conduct an in situ mobile search study for collecting
thousands of real-life cross-app queries.

• We present the first in situ analysis of cross-app queries and users’
behavior as they search with different apps. More specifically, we
study different attributes of cross-app mobile queries concerning their
target apps, sessions, and contexts.

• We propose a context-aware neural model for target apps selection.

• We evaluate the performance of state-of-the-art retrieval models for
this task and compare them against our proposed model.

7 1.4 Resources Created and Released

3. Conversational Search (Part 3):

• We formulate the task of selecting and asking clarifying questions in
open-domain information-seeking conversational systems.

• We propose an offline evaluation framework based on faceted and
ambiguous queries and collect a novel dataset, building on top of the
TREC Web Track 2009-2012 collections.

• We conduct oracle experiments and analyze the behavior of the model
under various conditions.

• We propose a retrieval framework, consisting of three main compo-
nents as follows: (i) question retrieval; (ii) question selection; and
(iii) document retrieval.

1.4 Resources Created and Released

Throughout my Ph.D., we have collected and released multiple resources with
the aim of foster research in relevant areas. Here we provide a brief overview of
the resources we have created. We first describe the data collections, followed
by the tools that we have developed.

• Data Collections:

– TREC-CS 2015-16 Venue Information: This dataset contains the
profiles of the venues on two main LBSNs. The venues are those that
are present in the TREC-CS 2015 and 2016 datasets. The dataset
contains over 300K venue profiles on Foursquare and 20K of venue
profiles on Yelp. It contains rich meta and textual information about
venues such as venue address, ratings, and reviews (see Section 3.5).

– Venue Appropriateness Feature and Labels: We built this dataset
via crowdsourcing. The aim is to assess the appropriateness of a venue
for a given contextual description. We collected this dataset based on
general contextual descriptors as well as venue categories. This makes
the dataset general enough to be used on venue suggestion datasets
(see Section 3.5).

– UniMobile: We designed two crowdsourcing tasks to collect cross-
app search queries paired with their relevant apps. The first task pro-
vided us with over 200 real-life mobile search tasks targeting various

8 1.5 Publication Overview

modalities and topics. The second task collected thousands of query-
app pairs for every mobile search tasks. We have released both search
task definitions and query-app pairs (see Section 6.2).

– ISTAS: This is the first in situ collection of cross-app mobile search
queries. We have collected thousands of query-app pairs via self-
reporting of nearly 300 users over three months. We have also col-
lected multiple sensor readings and app usage statistics (see Section 7.2).

– Qulac: To enable offline evaluation of asking clarifying questions we
have collected over 10K questions and answers via crowdsourcing.
We collected the data in four steps involving both crowdsourcing and
expert annotation. Qulac enables evaluation of models for asking clar-
ifying questions (see Section 8.3).

• Tools:

– uSearch: We developed a bespoke Android app, called uSearch, with
which we collected the ISTAS data collection. uSearch is open source
and can be used to collect various types of data that involve user
behavior and search on mobile devices. It is designed to perform
self-report data collection or user study. However, the architecture
of uSearch enables the easy and quick extension for other tasks (see
Section 7.2.1).

– Omicron: We developed Omicron based on the infrastructure that
we developed for uSearch. Omicron is designed for performing task-
based user studies for mobile search. Also, we improved the design
of its user interface as well as its efficiency (see [20]).

1.5 Publication Overview

The material of this thesis was published in conferences and journals as listed
below:

• Chapter 3 is based on:

– [11] Mohammad Aliannejadi, Ida Mele, and Fabio Crestani. User
model enrichment for venue recommendation. In Proceedings of the
Asia Information Retrieval Societies Conference (AIRS), pages 212–223.
Springer, 2016.

9 1.5 Publication Overview

– [16]Mohammad Aliannejadi, Dimitrios Rafailidis, and Fabio Crestani.
Personalized keyword boosting for venue suggestion based on multi-
ple lbsns. In Proceedings of the European Conference on IR Research
(ECIR), pages 291–303. Springer, 2017.

– [4] Mohammad Aliannejadi and Fabio Crestani. Venue appropriate-
ness prediction for personalized context-aware venue suggestion. In
Proceedings of the International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), pages 1177–1180.
ACM, 2017.

– [15] Mohammad Aliannejadi, Ida Mele, and Fabio Crestani. A cross-
platform collection for contextual suggestion. In Proceedings of the
International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 1269–1272. ACM, 2017.

– [7]Mohammad Aliannejadi and Fabio Crestani. Personalized context-
aware point of interest recommendation. ACM Trans. Inf. Syst., 36(4):
45:1–45:28, 2018.

• Chapter 4 is based on:

– [22]Mohammad Aliannejadi, Dimitrios Rafailidis, and Fabio Crestani.
A joint two-phase time-sensitive regularized collaborative ranking model
for point of interest recommendation. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 2019 (in press).

• Chapter 5 is based on:

– [17]Mohammad Aliannejadi, Dimitrios Rafailidis, and Fabio Crestani.
A collaborative ranking model with multiple location-based similari-
ties for venue suggestion. In Proceedings of the ACM SIGIR Interna-
tional Conference on Theory of Information Retrieval (ICTIR), pages
19–26. ACM, 2018.

• Chapter 6 is based on:

– [19] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and
W. Bruce Croft. Target apps selection: Towards a unified search frame-
work for mobile devices. In Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval (SI-
GIR), pages 215–224. ACM, 2018.

• Chapter 7 is based on:

10 1.6 Additional Publications

– [18] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and
W. Bruce Croft. In situ and context-aware target apps selection for uni-
fied mobile search. In Proceedings of the International Conference on
Information and Knowledge Management (CIKM), pages 1383–1392.
ACM, 2018.

• Chapter 8 is based on:

– [21] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and
W. Bruce Croft. Asking clarifying questions in open-domain information-
seeking conversations. In Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval (SI-
GIR), pages 475–484. ACM, 2019.

1.6 Additional Publications

These additional papers were published in conferences, workshops, and eval-
uation forums during this thesis, but were not included in it to maintain the
coherency of the thesis.

• [10] Mohammad Aliannejadi, Seyed Ali Bahrainian, Anastasia Giachanou,
and Fabio Crestani. University of Lugano at TREC 2015: Contextual sugges-
tion and temporal summarization tracks. In Proceedings of the Text REtrieval
Conference (TREC). NIST, 2015.

• [12]Mohammad Aliannejadi, Ida Mele, and Fabio Crestani. Venue appropriate-
ness prediction for contextual suggestion. In Proceedings of the Text RE-
trieval Conference (TREC). NIST, 2016.

• [14] Mohammad Aliannejadi, Ida Mele, and Fabio Crestani. Personalized
ranking for context-aware venue suggestion. In Proceedings of the Sympo-
sium on Applied Computing (SAC), pages 960–962. ACM, 2017.

• [13]Mohammad Aliannejadi, Maram Hasanain, Jiaxin Mao, Jaspreet Singh,
Johanne R. Trippas, Hamed Zamani, and Laura Dietz. ACM SIGIR student
liaison program. SIGIR Forum, 51(3):42–45, 2017.

• [5] Mohammad Aliannejadi and Fabio Crestani. A collaborative ranking
model with contextual similarities for venue suggestion. In Proceedings of
the Italian Information Retrieval Workshop (IIR), 2018.

11 1.6 Additional Publications

• [6] Mohammad Aliannejadi and Fabio Crestani. Venue suggestion using
social-centric scores. CoRR, abs/1803.08354, 2018.

• [20]Mohammad Aliannejadi, Morgan Harvey, Luca Costa, Matthew Pointon,
and Fabio Crestani. Understanding mobile search task relevance and user
behaviour in context. In Proceedings of the Conference Human Information
Interaction and Retrieval (CHIIR), pages 143–151. ACM, 2019.

• [95]Helia Hashemi, Mohammad Aliannejadi, Hamed Zamani, and W. Bruce
Croft. ANTIQUE: A non-factoid question answering benchmark. CoRR,
abs/1905.08957, 2019.

• [159]Hossein A. Rahmani, Mohammad Aliannejadi, Rasoul Mirzaei Zadeh,
Mitra Baratchi, Mohsen Afsharchi, and Fabio Crestani. Category-aware lo-
cation embedding for point-of-interest recommendation. In Proceedings of
the ACM SIGIR International Conference on Theory of Information Retrieval
(ICTIR), pages 173–176. ACM, 2019.

• [42] Hamed Bonab, Mohammad Aliannejadi, John Foley, and James Allan.
Incorporating hierarchical domain information to disambiguate very short
queries. In Proceedings of the ACM SIGIR International Conference on Theory
of Information Retrieval (ICTIR), pages 51–54. ACM, 2019.

• [158] Hossein A. Rahmani, Mohammad Aliannejadi, Sajad Ahmadian, Mi-
tra Baratchi, Mohsen Afsharchi, and Fabio Crestani. LGLMF: local geo-
graphical based logistic matrix factorization model for POI recommenda-
tion. In Proceedings of the Asia Information Retrieval Societies Conference
(AIRS), 2019.

12 1.6 Additional Publications

Chapter 2

Literature Review

In this chapter, we review the literature on the topics that we have covered in
this thesis. In particular, the chapter consists of three sections, reviewing works
related to venue suggestion, mobile IR, and conversational search, respectively.

2.1 Venue Suggestion

Recommender systems play an important role in satisfying users’ expectations for
many online services such as e-commerce, LBSN and social network websites.
Venue Suggestion can be divided into three categories of approaches, namely,
content-based, collaborative, and hybrid models.

Content-based approaches generally rely on modeling users behavior in the
form of user profiles. These models also generate POI profiles to characterize
venues’ features and produce the recommendation by computing the similarity
between users and venues profiles [3, 199]. Content-based filtering has several
advantages such as being user independent and transparent, as well as being
able to recommend items that have not yet been rated by any users [132]. The
dependency on user and item profiles, however, introduces a number of draw-
backs, namely, limited content analysis, over-specialization, and its inability to
recommend items to a new user [132]. The need for domain knowledge and fea-
ture generation leads to limited content analysis. Moreover, such models highly
depend on the generated profiles and users past behavior. Therefore, what a sys-
tem recommends to a user is very similar to what they have visited in the past,
limiting the serendipity of recommendation. Finally, the system is able to gen-
erate a user profile only after it receives sufficient ratings, limiting the ability of
such approaches to handle the cold-start problem.

Collaborative filtering (CF) approaches are based on the core idea that users

13

14 2.1 Venue Suggestion

with similar behavioral history tend to act similarly in the future [32, 88]. A
large body of research has been done following this idea [84, 90, 203, 217]. CF
can be divided into two categories: memory-based and model-based. Memory-
based approaches consider user rating as a similarity measure between users or
items [169]. Model-based approaches, on the other hand, employ techniques
like matrix factorization [116]. CF approaches often suffer from data sparsity
since there are a lot of available locations, and a single user can visit only a few
of them. As a consequence, user-item matrix of CF becomes very sparse, leading
to poor performance of recommender systems in cases that there is no significant
association between users and items.

Many studies have tried to address the data sparsity problem of CF by incor-
porating additional information into the model [201, 208]. More specifically, Ye
et al. [201] argued that users’ check-in behavior is affected by the spatial influ-
ence of locations and proposed a unified location recommender system incorpo-
rating spatial and social influence to address the data sparsity problem. Yuan
et al. [208], on the other hand, proposed a time-aware collaborative filtering ap-
proach. More specifically, they recommended locations to users at a particular
time of the day by mining historical check-ins of users in LBSNs. Yin et al. [203]
proposed a model which captures user interests as well as local preferences to rec-
ommend locations or events when users are visiting a new city. Ference et al. [84]
took into consideration user preference, geographical proximity, and social influ-
ences for POI recommendation. Griesner et al. [90] also proposed an approach
integrating temporal and geographic influences into matrix factorization. Zhang
and Chow [216] aggregated ratings of users’ friends as well as the bias of users
on venue categories as power-law distributions. Reviews reveal the underlying
reasons of users’ ratings related to a particular location and that is why many
researchers have tried to incorporate the review text into the recommendation
algorithms. In fact, as argued by Chen et al. [54], online reviews significantly
help a system to deal with the data sparsity problem. For instance, as showed
by Zhang et al. [217], fusing virtual ratings derived from online reviews into CF
improves the recommendation effectiveness. Hariri et al. [92] tried to predict
userâĂŹs context from their reviews about venues by learning a Labeled Latent
Dirichlet Allocation (LDA) [41] model on a dataset from TripAdvisor and using
the predicted contextual information to measure the relevance of a venue to a
user. In fact, the effectiveness of topic models has been extensively experimented
in other domains [34, 35, 136].

Another line of research lies in combining content-based and collaborative ap-
proaches, aiming to use the advantages of both models in various domains [103,
137, 168, 188] for improved recommendation. More specifically, [25] studied a

15 2.1 Venue Suggestion

number of content-based, collaborative, and hybrid recommendation algorithms
for contextual suggestion and concluded that hybrid methods perform best for
this task, followed by content-based and collaborative approaches. As mentioned
earlier, content-based modeling can effectively recommend POIs that have not
been visited in the past by other users. This is specifically crucial for cases where
the data is very sparse. The TREC Contextual Suggestion (TREC-CS) track is an
example of such scenario in which a user is visiting a new town with no prior
check-in data available in the dataset. That is why content-based approaches
generally outperform collaborative approaches on this dataset. Moreover, since
hybrid approaches are able to fuse information from both models and leverage
each model’s advantages, they perform best for various recommendation tasks
such as TREC-CS.

In the remaining of this section, we review the literature on the topics relevant
to the thesis. We start by reviewing research on contextual suggestion, followed
by studies on context-aware recommendation. Finally, we focus on the topic of
collaborative ranking.

2.1.1 TREC Contextual Suggestion

The TREC-CS track [96] aimed to encourage research on context-aware POI rec-
ommendation. In fact, the task was to produce a ranked list of locations for each
user in a new city, given the user’s context and history of preferences in 1-2 other
cities. The contextual dimensions were the trip duration, the season, the trip
type, and the type of group with whom the user was traveling. These contex-
tual dimensions were introduced in TREC-CS 2015. Since then, among the top
runs, few approaches tried to leverage such information. Arampatzis and Kala-
matianos [25] studied the performance of various content-based, collaborative,
and hybrid fusion methods on TREC-CS and they found that content-based meth-
ods performed best among these methods. Yang and Fang [198] introduced some
handcrafted rules for filtering locations based on their appropriateness to a user’s
current context. According to them, applying such filters degrades the perfor-
mance of the system. Hence, one can conclude that contextual appropriateness
is not a simple problem of applying some deterministic rules to filter locations.
Yang et al. [199] created rich user profiles aggregating online reviews from other
users and measured the similarity between a new location and a user profile.

Yuan et al. [209] proposed to consider both geographical and temporal influ-
ences while recommending POIs to the users via a geographical-temporal in-
fluences aware graph. They proposed to propagate these influences using a
breadth-first strategy. Cheng et al. [57] proposed a multi-center Gaussian model

16 2.1 Venue Suggestion

to capture users’ movement pattern as they assumed users’ movements involves
several centers. In a more recent work, Zhang et al. [215] considered three
travel-related constraints (i.e., uncertain traveling time, diversity of the venues,
and venue availability) and use them to prune the search space. Griesner et al.
[90] also proposed an approach integrating temporal and geographic influences
into matrix factorization. Cui et al. [75] investigated how geotagged photos can
be linked to venues to study users’ tastes. Finally, Yuan et al. [207] addressed
the data sparsity problem assuming that users tend to rank higher the POIs that
are geographically closer to the one that they have already visited.

2.1.2 Context-Aware POI Recommendation

Another line of research tries to leverage available contextual information to
enhance the performance of a recommender system. Context-aware recommen-
dation has been categorized into three types [1]: (i) pre-filtering: data selection
is done based on context; (ii) post-filtering: recommendation is done using a
traditional approach and context is used to filter venues; (iii) contextual mod-
eling: contextual information is incorporated into the model. Our work aims at
modeling the contextual information by re-ranking the recommendations. Ado-
mavicius et al. [2] proposed a multidimensional context pre-filtering model based
on the online analytical processing for decision support. Park et al. [146] com-
puted a weighted sum of the conditional probabilities of restaurants’ attribute
values. They automatically detected users’ physical contexts such as the time
of the day, the position, and the weather and used a Bayesian network for ex-
pressing their probabilistic influences. Levi et al. [122] developed a weighted
context-aware recommendation algorithm to address the cold start problem for
hotel recommendation. More specifically, they defined context groups based on
hotel reviews and followed a user’s preferences in trip intent and hotel aspects
as well as the user’s similarity with other users (e.g., nationality). Other works
focused on time as context [78, 83, 86, 208]. Gao et al. [86] developed a time-
aware recommendation model. Fang et al. [83] proposed a model which takes
into account both spatial and temporal context to address the data sparsity prob-
lem. Deveaud et al. [78] modeled locations popularity in the immediate future
utilizing time series. They leveraged the model to make time-aware POI recom-
mendation. Braunhofer et al. [45] used various complex contextual factors such
as budget, companion, and crowdedness to overcome the cold start problem.
They developed an active learning strategy and a context-aware recommenda-
tion algorithm using an extended matrix factorization model.

17 2.1 Venue Suggestion

2.1.3 Collaborative Ranking

Collaborative ranking is done by combining the ideas of CF and Learning to Rank
(LTR). LTR methods have been proven to be effective in Information Retrieval
(IR) [128]. LTR learns a ranking function which can predict a relevance score
given a query and document. There are three categories of LTR, namely, point
wise [71], pair wise [47], and list wise [51]. In short, point-wise approaches
predict ranking scores for individual items. Pair-wise approaches, on the other
hand, learn the order of the items, comparing the rank position of pairs of items.
List-wise approaches consider an entire ranked list of items as individual train-
ing example. CR takes the idea of predicting preference order of items from LTR
and combines it with the idea of learning the loss function in a collaborative
way [36]. Weimer et al. [189] used a surrogate convex upper bound of Normal-
ized Discounted Cumulative Gain (nDCG) error together with matrix factoriza-
tion as the basic rating predictor. Shi et al. [172] explored optimizing a surrogate
lower bound for Expected Reciprocal Rank (ERR) for data with multiple levels
of relevance.

Christakopoulou and Banerjee [60] followed the idea of pair-wise LTR ap-
proaches. In particular, the authors base their work on LTR methods with an
emphasis on the top of the recommendation list. This approach, however, is
limited to explicit user feedback such as user ratings for movies. Rafailidis and
Crestani [156] presented an LTR model, taking into account the relevant items
of users and their friends, pushing these items at the top of the list. Rendle
et al. [165] presented a generic optimization criterion as well as a learning al-
gorithm for incorporating implicit feedback while learning personal ranking for
users, demonstrating its effectiveness on approaches such as matrix factorization.
In Rafailidis and Crestani [154], authors combined various LTR methods into a
joint model aiming to enhance the recommendation accuracy with trust relation-
ships. In a more recent work, Rafailidis and Crestani [157] proposed a model
considering not only relevant items of the user and her trusted friends, but also
the items of her distrusted foes. Lee et al. [121] assumed that the user-item ma-
trix is low rank within certain neighborhoods of the metric space and minimized
a pair-wise loss function. Hu and Li [100] proposed a point-wise CR approach
considering user ratings as ordinal rather than viewing them as real values or cat-
egorical labels. Also, they emphasized more on positively rated items to improve
the performance at the top of recommended list.

18 2.2 Mobile Search

2.1.4 Time-Aware Recommendation

Many researchers have studied temporal influence on users’ preferences. A group
of studies conducts time-aware recommendation learning of users’ temporal pref-
erence for specific time slots and for recommending POIs for a given time slot,
like the hour of a day [81]. Yuan et al. [208] computed the similarity between
users by finding the same POIs at the same time slots in their check-in history to
train a user-based CF model. Yao et al. [200]matched the temporal regularity of
users with the popularity of POIs to improve a factorization-based algorithm. Li
et al. [124] proposed a time-aware personalized model adopting a fourth-order
tensor factorization-based ranking which enables the model to capture short-
term and long-term preferences. Yin et al. [205] proposed a topic-region model
that discovers the semantic, temporal, and spatial patterns of users’ check-ins and
uses the additional information to address the data-sparsity problem. Yin et al.
[202] defined the temporal context as the public’s attention at a certain time and
proposed a temporal context-aware mixture model, modeling the topics related
to users’ interests and temporal context in a unified way. This work was later
extended in [204] to a dynamic temporal context-aware mixture model, captur-
ing users’ evolving interests. Gao et al. [86] preserved the similarity of personal
preference in consecutive time slots by considering different latent variables at
each time slot for each user.

There also exists another category of approaches which tries to recommend
the next POI to visit, known as successive POI recommendation. For example,
Cheng et al. [56] captured sequential check-in behavior of users by training per-
sonalized Markov chains. Liu et al. [129] combined the ideas of both categories
by recommending POIs for a particular time, exploiting sequential patterns of
users.

2.2 Mobile Search

In this section, we review the work related to the second part of the thesis. While
the study of unified mobile search is a new research area, it has roots in previous
research related to mobile IR, human interaction with mobile devices (mobile
HCI), federated, and aggregated search. Moreover, relevant research has been
done in the area of proactive IR where a system aims to provide personalized
information to users based on their context. Other relevant works can be found
in the areas of query classification and neural networks. In the following, we
summarize the related research in each of these areas.

19 2.2 Mobile Search

2.2.1 Mobile IR

One of the main goals of mobile IR is to enable users to carry out all the classical
IR operations using a mobile device [73]. One of the earliest studies on mobile IR
was done by Kamvar and Baluja [105]where they did a large-scale mobile search
query analysis. They also found that mobile queries were less diverse than desk-
top queries at the early days of mobile search. Crestani and Du [72] compared
spoken and written queries in a lab study with 12 users. They found that spo-
ken queries are longer and more similar to natural language queries. In another
study, Church et al. [65] analysed six million search queries in a period of one
week. They also analysed the click-thru rate and found that users focused on the
first few search results. In fact, Song et al. [177] studied a commercial search
log and found significant difference in search patterns done using iPhone, iPad,
and desktop. For instance, they found that query length on mobile devices were
longer. However, they suggested that the query length continued to change and
this could be a sign of evolving mobile usage patterns. Also, query categories,
usage time, and location of usage were different among different devices. In
a similar study, Montanez et al. [139] studied search across multiple devices in-
cluding smartphones. In a more recent study, Guy [91] analysed 500,000 spoken
queries from a commercial mobile search app, submitted via a voice interface.
The analysis confirmed that voice queries are longer on average and are closer to
natural language. Moreover, they are more focused on multimedia content and
require less interaction with the device’s touchscreen.

More recently, research has been done on various topics in mobile IR such
as app recommendation search [144, 145]. For instance, Shokouhi et al. [174]
studied query reformulation patterns in mobile query logs and found that users
do not tend to switch between voice and text while reformulating their queries.
Park et al. [144] represented apps using online reviews for improved app search
on the market. Williams et al. [192] leveraged mobile user gesture interactions,
such as touch actions, to predict good search abandonment on mobile search.
Park et al. [145] inferred users implicit intentions from social media for the task
of app recommendation. Ong et al. [140] observed different user behaviors while
doing mobile and desktop search as the amount of information scent was altered.

A few industrial systems exist aiming to provide users with unified mobile
search. Apple Spotlight1 is the most popular example of such systems that is
available on iOS devices. Also, Sesame Shortcuts2 is an Android app that creates
easy-to-access shortcuts to the installed apps. The shortcuts are also accessible

1https://en.wikipedia.org/wiki/Spotlight_(software)
2http://sesame.ninja/

https://en.wikipedia.org/wiki/Spotlight_(software)
http://sesame.ninja/

20 2.2 Mobile Search

via keyword-based queries. Despite the existence of these systems, research on
cross-app search has not yet been done.

2.2.2 Mobile HCI

Understanding human interaction while doing mobile search has become an area
of interest since mobile devices are constantly evolving [177]. For this reason,
many researchers have conducted user studies to understand various aspect of
user behaviour and interaction in relation to mobile search. Sohn et al. [176]
conducted a two-week diary study from 20 participants in which they found that
contextual features such as activity and time influence 72% of mobile information
needs. Kaikkonen [104] asked 390 mobile Internet users to fill an online survey,
followed by a 23 face-to-face interviews. They analysed the impact of location
and Web page design on mobile phone browsing behaviour. At the time of the
study, they found that were more female users from Asian countries and they
preferred mobile tailored Web content over full Web content.

Church and Smyth [63] studied the intent behind mobile information needs
of twenty users over four weeks via a diary study. They observed significant
differences between mobile and desktop information needs. In particular, they
found that users had many non-informational information needs, with geograph-
ical and personal information needs being popular. Later, Church and Oliver [62]
carried out another diary and interview study to understand the shift of mobile
information needs. The study was done over a four-week period with 18 active
mobile users, discovering that the popularity of stationary mobile Web access was
increasing. In another attempt to understand users’ information needs, Church
et al. [66] conducted a large-scale snippet-based diary [43] study with 100 partic-
ipants throughout a three-month period. This technique allowed users to capture
moments in situ and send them via SMS or MMS. Later, they could access a Web
site in which they would review the messages and provide more details about
their context. They found significant differences in terms of information needs
and how they were addressed depending on users gender, device, and location.

Also, the studies aimed to analyse touch-screen gestures [192], effect of search-
ing on-the-go [93], effect of result snippets [112] as well as users’ perception of
result usefulness [135]. In particular, Williams et al. [192] conducted a lab study
with 60 participants, focusing on the analysis of user gesture interactions, such
as touch actions, and their relation with good search abandonment on mobile
search. They showed that the time spent interacting with answers on a SERP is
positively correlated with good abandonment and satisfaction. Through another
lab study consisting of 72 participants, Ong et al. [140] observed different pat-

21 2.2 Mobile Search

terns in user behaviour while doing mobile and desktop search as the amount
of information scent was altered. They found that users’ behaviour differ sig-
nificantly in a mobile environment. For instance, desktop users preferred SERPs
with a higher number of relevant search results; whereas this preference was
not observed on the mobile environment. Moreover, Harvey and Pointon [93]
recruited 24 participants and did a lab study where they found that fragmented
attention of users while searching on-the-go, affects their search objective and
performance perception. Kim et al. [112] conducted a lab study of 24 partici-
pants and analysed the effect of result snippet size on mobile search time and
accuracy. They found that, for informational tasks on mobile devices, longer
snippets lead to longer search times with no better search accuracy. In fact, they
conclude that the optimum mobile snippet length is two to three lines. Later,
Mao et al. [135] investigated result usefulness in mobile search via a lab study
involving 43 participants and confirmed that usefulness feedback can better re-
flect user satisfaction than relevance annotations.

Moreover, as mobile devices evolved to become our main means of accessing
data, researchers tried to understand the impact of mobile applications (apps)
on Web search [53] as well as search within apps [18, 19]. In this context, Car-
rascal and Church [53] ran an in situ study with 18 users, analysing how users
interacted with apps while they were doing mobile Web search. They showed
that users’ interactions with apps have an impact on search. For example, they
found significant differences in the categories of apps used within search sessions
as opposed to non search sessions.

2.2.3 Context-Aware Search

Most of the previous work in context-aware search is based on the user’s search
history [171, 190, 194]. Shen et al. [171] presented context-sensitive language
models based on users’ short-term search history. White et al. [190] investigated
ways to optimally combine the query and its context by learning a model that
predicts the context weight for each query. Bennett et al. [39] estimated the
location preference of a document and used it to improve Web search.

2.2.4 Proactive IR

The aim of proactive IR systems is to anticipate users’ information needs and
proactively present information cards to them. Shokouhi and Guo [173] ana-
lyzed user interactions with information cards and found that the usage patterns
of the cards depend on time, location, and user’s reactive search history. Benetka

22 2.2 Mobile Search

et al. [38] showed that information needs vary across activities as well as dur-
ing the course of an activity. They proposed a method to leverage users’ check-in
activity for recommending information cards. Sun et al. [180] proposed a collab-
orative nowcasting model, tackling the intent monitoring problem, utilizing the
collaborative capabilities among users. This thesis focuses on the queries that
users issue in different apps. Queries can express complex information needs
that are impossible to infer from context.

2.2.5 Federated and Aggregated Search

A unified mobile search system distributes a search query to a limited number of
apps that it finds more relevant to a search query. There is a considerable over-
lap between the target apps selection task and federated/aggregated search. In
federated search, the query is distributed among uncooperative resources with
homogeneous data; whereas in aggregated search, the content is blended from
cooperative resources with heterogeneous data [26]. Given the uncooperative
environment of most federated search systems, Callan and Connell [48] pro-
posed a query-based sampling approach to probe various resource providers and
modeled them based on the returned results. In most aggregated search systems,
on the other hand, different resources are parts of a bigger search system and
thus cooperative. Moreover, an aggregated search system can even access other
metadata such as users’ queries and current traffic [26]. Diaz [80] proposed mod-
eling the query dynamics and collection to detect news queries for integrating the
news vertical into the result page. This work was later extended by Arguello et al.
[27] to include images, videos, and travel information. In this thesis, we assume
an uncooperative environment because the contents of apps are not accessible
to the unified search system. Moreover, given the existence of various content
types in different apps, we assume documents to be heterogeneous.

2.2.6 Query Classification

Our work is also related to research in query classification where different strate-
gies are used to assign a query to predefined categories. Kang and Kim [107] de-
fined three types of queries arguing that search engines require different strate-
gies to deal with queries belonging to each of the classes. Shen et al. [170] intro-
duced an intermediate taxonomy to classify queries to specified target categories.
Cao et al. [49] leveraged conditional random fields to incorporate users’ neigh-
boring queries in a session as context. More recently, Zamani and Croft [210]

23 2.3 Conversational Search

studied word embedding vectors for the query classification task and proposed a
formal model for query embedding estimation.

2.3 Conversational Search

Finally, we review the work related to the third part of the thesis, that is, con-
versational search. Our work is mainly related to the areas of conversational IR,
clarifying questions, and conversational question answering. In the following,
we briefly summarize the related research in each of these areas.

2.3.1 Conversational IR

While conversational search has roots in early IR research, the recent advances in
automatic voice recognition and conversational agents have created increasing
interest in this area.

One of the first works in conversational IR dates back to 1987 when Croft and
Thompson [74] proposed I3R that acted as an expert intermediary system, com-
municating with the user in a search session. A few years later Belkin et al. [37]
characterized information-seeking strategies for conversational IR, offering users
choices in a search session based on case-based reasoning. Since then researchers
in the fields of IR and NLP have studied various aspects of this problem. Early
works focused on rule-base conversational systems [186, 191], while another
line of research investigated spoken language understanding approaches [8, 9,
98, 149] for intelligent dialogue agents in the domain of flight [99] and train trip
information [28]. The challenge was to understand the user’s request and query
a database of flight or train schedule information accordingly. The recent ad-
vances of conversational agents have attracted research in various aspects of con-
versational information access [19, 29, 30, 40, 181, 195]. One line of research
analyzes data to understand how users interact with voice-only systems [178].
Radlinski and Craswell [153] proposed a theoretical framework for conversa-
tional search highlighting the need for multi-turn interactions with users for nar-
rowing down their specific information needs. Also, Trippas et al. [183] studied
conversations of real users to identify the commonly-used interactions and in-
form the design of a conversational search system. Moreover, research on query
suggestion is relevant to our work if we consider suggesting queries as a means
of clarifying users’ intent in a traditional IR setting [153]. Result diversification
and personalization is one of the key components for query suggestion [102],
especially when applied to small-screen devices. In particular, Kato and Tanaka

24 2.3 Conversational Search

[109] found that presenting results for one facet and suggesting queries for other
facets is more effective on such devices.

2.3.2 Clarifying Questions

Research on clarifying questions has attracted considerable attention in the fields
of NLP and IR. People have studied human-generated dialogues on question an-
swering (QA) websites, analyzing the intent of each utterance [152] and, more
specifically, clarifying questions [44]. Kiesel et al. [111] studied the impact of
voice query clarification on user satisfaction and found that users like to be
prompted for clarification. Much work has been done on interacting with users
for recommendation. For instance, Christakopoulou et al. [61] designed a system
that can interact with users to collect more detailed information about their pref-
erences in venue recommendation. Also, Sun and Zhang [181] utilized a semi-
structured user query with facet-value pairs to represent a conversation history
and proposed a deep reinforcement learning framework to build a personalized
conversational recommender system. Focusing on clarifying questions, Zhang
et al. [218] automatically extracted facet-value pairs from product reviews and
considered them as questions and answers. They proposed a multi-memory net-
work to ask questions for improved e-commerce recommendation. Our work is
distinguished from these studies by formulating the problem of asking clarifying
questions in an open-domain information-seeking conversational setting where
several challenges regarding extracting topic facets [114] are different from a
recommendation setting.

In the field of NLP, researchers have worked on question ranking [161] and
generation [162, 187] for conversation. These studies rely on large amount
of data from industrial chatbots [151, 187], query logs [164], and QA web-
sites [161, 162, 182]. For instance, Rao and Daumé [161] proposed a neural
model for question selection on a simulated dataset of clarifying questions and
answers extracted from QA websites such as StackOverflow. Later, they proposed
an adversarial training for generating clarifying questions for a given product de-
scription on Amazon [162]. Also, Wang et al. [187] studied the task of question
generation for an industrial chatbot.

2.3.3 Conversational Question Answering

Several NLP areas fall into this category of research such as question answering
and language understanding. SQuAD [160] is a corpus on reading comprehen-
sion consisting of questions and answers about various topics. CoQA [163] ad-

25 2.3 Conversational Search

dresses the challenge of conversational question answering. While Choi et al.
[59] extended the idea of CoQA data collection with the difference that the
person asking questions did not see the description of information and called
it QuAC. Both CoQA and QuAC paired two crowdworkers to participate in a live
conversation.

26 2.3 Conversational Search

Part I

Venue Suggestion

27

Chapter 3

Content-based User Modeling for Venue
Suggestion

3.1 Introduction

Despite the ever-growing number of users on the major Location-Based Social
Networks (LBSNs) with long history of check-ins and interactions, these plat-
forms are still facing many challenges that need to be addressed. As a conse-
quence, a great deal of research is being carried out on improving user and POI
profiles on LBSNs. As the time goes by and the history of users as well as POIs
becomes richer, these platforms should be able to take advantage of the massive
amount of information they are exposed to. This provides a unique opportunity
to study how users’ behavior is influenced by various factors that occur in a long
span of time. Apart from personal preference and interest, the user behavior
is influenced and, in many cases, constrained by local and contextual prefer-
ences [83]. For instance, a user may be a big fan of nightlife spots. However,
when traveling with their family, they may prefer not to visit such locations.
Hence, it is crucial to consider a user’s context when recommending locations
to them. It is also important to note that the user’s context often introduces
new constraints, not necessarily in tune with their opinion and interest. To this
end, the main focus of the Text REtrieval Conference (TREC) Contextual Sug-
gestion (TREC-CS) track1 in 2015 [76] and 2016 [96] was to improve location
recommendation with the aid of contextual information. However, not many
successful participants took into account context in their proposed approaches.
Thus, applying contextual constraints still remains a challenge for context-aware

1https://sites.google.com/site/treccontext/

29

https://sites.google.com/site/treccontext/

30 3.1 Introduction

POI recommendation.
Given the easy access to the Internet and availability of mobile devices such

as cell phones, smart watches and tablets, users tend to leave their check-in data
more often. However, writing a long review on such devices is not as trivial as is
using a desktop computer. As a consequence, the majority of users rate locations
without writing a review. Reviews contain a wealth of information relevant to
the user’s opinion and view about a location; for example a user’s opinion about
a location’s view or staff. In order to compensate for the absence of such informa-
tion, an LBSN could assist a user with a few related predefined tags, from which
the user can conveniently select those expressing their opinion. Predefined tags
come very handy especially on smaller devices such as smart watches enabling
users to express themselves with the aid of a couple of taps. Modeling users with
such tags is very challenging since user tags are much more sparse compared to
user ratings. Thus the traditional CF approach could not be applied for user tag
modeling. Furthermore, in real-world POI recommendation scenarios for mobile
devices, the top 10 locations are usually interesting to users [57], because of the
screen size of a typical mobile device and limited effort a typical user spends to go
through the recommendation list. Therefore, providing a personalized ranking
to the user is crucial, making this task a top k recommendation task.

In this chapter, we present our initial attempt to model users’ information
need and context. As a first step, we followed a content-based approach for
modeling users and POIs. To this aim, our contributions can be summarized as
follows:

1. We introduce a set of relevance scores for measuring the similarity between
a user’s history and a location considering location’s content and reviews.

2. We present a probabilistic generative approach to find the mapping be-
tween location taste keywords and user tags thus modeling the personal-
ized opinion of users about venues more accurately.

3. We address the sparsity problem by performing personalized boosting of
location keywords in a user’s history.

4. We explore different machine learning models to predict user tags and eval-
uate their effectiveness in terms of both tag prediction and recommenda-
tion effectiveness.

5. We introduce a brand new dataset for predicting contextually appropriate
locations and show how to do this given the user’s current context and
evaluate its effectiveness on recommendation.

31 3.1 Introduction

Figure 3.1. Overview of the proposed method.

6. We evaluate several learning to rank techniques to incorporate boosting
and tag prediction into our POI recommendation model using information
from multiple LBSNs.

Figure 3.1 shows an overview of our proposed method. In the first step, user
and POI profiles are analyzed to perform personalized keyword boosting, result-
ing in a list of boosted keywords for each user (see Section 3.2). Then the list of
boosted keywords together with user and POI profiles are fed to the personalized
scoring component to calculate the similarity scores between a given user and a
POI. The scores are then passed to the ranking model (i.e., learning to rank) to
produce a personalized ranked list of POIs for each user (see Section 3.4). Fi-
nally, given the user’s current context, the level of contextual appropriateness of
every venue is predicted (see Section 3.3) and used to re-rank the personalized
ranking scores, resulting in a personalized context-aware ranked list of POIs.

In fact, experiments show that combining multimodal information from mul-
tiple LBSNs improves POI recommendation significantly. Moreover, we show
that the proposed mapping of location keywords to user tags enables us to pre-
dict user tagging behavior effectively. We also show that predicting contextually
appropriate locations and reranking suggestions according to their contextual
appropriateness results in a more accurate top k venue recommendation.

The remainder of the chapter is organized as follows. We begin with describ-
ing our methodology for crawling data from major LBSNs followed by two crowd-
sourcing tasks that we designed to collect contextual features in Section 3.5.
Then, before explaining our proposed recommendation approach, we describe
two critical components of our model in Sections 3.2 and 3.3. We first describe
how we model the statistical mapping between user tags and venue taste key-
words in Section 3.2.1. Then, we explore two directions to use this information.
First, we explain how we use the computed mapping to reduce the dimension-
ality of venue taste keywords in Section 3.2.3. Second, we describe how we use

32 3.2 Personalized Keyword Boosting

the computed mapping as training data to learn the sequential tagging of user
tags in Section 3.2.4. The trained tagging models are then used to predict user
tags for unseen venues. Section 3.3 elaborates our proposed approach to predict
contextual appropriateness of locations. After describing the two main compo-
nents of our model, in Section 3.4 we describe how we integrate them with other
similarity measures in order to recommend POIs to users. Section 3.6 describes
the evaluation protocol and Section 3.7 presents our experimental evaluation.
We summarize this chapter in Section 3.8, describing the main findings and the
need to explore this problem further as a collaborative approach.

3.2 Personalized Keyword Boosting

In this section we propose a probabilistic approach by which we map location key-
words to user tags. Furthermore we propose two possible approaches to utilizing
such additional information in order to enhance location recommendation. First,
we propose to use the mapping as additional information to reduce the dimen-
sionality of location keyword space in order to address the data sparsity problem.
Second, we use the mapping to train a sequence labeling model to predict user
tags for a new location. We use the outcome of both approaches to estimate the
similarity of a location to a user in Section 3.4.

3.2.1 Personalized Keyword-Tag Mapping

In this section we present a probabilistic approach to map location keywords to
user tags. We aim to find a meaningful correlation between the location content
(e.g., keywords) and user tags since users annotate locations with tags based on
both their personal views and locations’ characteristics. We assume that the key
characteristics that trigger the user’s mind to annotate a location with a specific
tag are of those listed in the location keywords. For example, tagging a location
as healthy-food is a result of the user’s personal view reflected in the location’s
characteristics (e.g., keywords). Hence, a user who believes vegan foods are
healthy may tag a vegan location as healthy-food, whereas another user with a
different view may tag a sushi place as healthy-food. Therefore, user tags are de-
pendent on both users views and locations’ characteristics. That is why we need
to find a meaningful mapping between user tags and location keywords to take
into account locations’ characteristics. The mapping needs to be personalized to
model users’ personal views. Figure 3.2 depicts a real example mapping with a
set of two user tags and four location keywords. Our ultimate goal is to deter-

33 3.2 Personalized Keyword Boosting

mine the most likely mapping of location keywords to user tags, personalized for
each user.

For a given user u, let fJ = 〈 f1 . . . f j . . . fJ〉 be a sequence of location keywords.
We aim to find the sequence of user tags tI = 〈t1 . . . t i . . . t I〉. Note that tI refers
to a sequence named t with the length of I . Hence, ti denotes a set with the size
of i (ti = 〈t1 . . . t i〉), whereas t i refers to the i-th item of a given sequence. Our
aim is to find a user tag sequence maximizing Pr(tI |fJ):

t̂I = argmax
tI
{Pr(tI |fJ)}= argmax

tI
{Pr(fJ |tI)Pr(tI)} , (3.1)

where Pr(tI)models user tags. In fact, given tI , this function determines to what
extend tI is likely to be generated by a specific user. It basically models the user’s
behavior of tag annotation regardless of location keywords. We fairly assume
that users annotate locations with a specific tag independent of other tags. In
other words, we assume zero-order dependence of user tags. Hence, we rewrite
Pr(tI) as follows:

Pr(tI) = p(I)
I
∏

i=1

p(t i|ti−1, I) = p(I)
I
∏

i=1

p(t i|I) , (3.2)

where ti−1 = 〈t1 . . . t i−1〉.
Pr(fJ |tI) in (3.1) models location keywords given a sequence of user tags tI .

We need to find the optimum mapping between location keywords and user tags
to optimally model location keywords given tI . Therefore, we marginalize the
probability Pr(fJ |tI) over mJ . We introduce mJ as the latent variable defining
how location keywords are mapped to user tags: mJ = 〈m1 . . . m j . . . mJ〉, with
m j ∈ {1, . . . , I}:

Pr(fJ |tI) =
∑

mJ

Pr(fJ ,mJ |tI) , (3.3)

where

Pr(fJ ,mJ |tI) = p(mJ |tI , I , J)p(fJ |mJ , tI , I , J)

= p(J |tI)
J
∏

j=1

[p(m j|m j−1, J , tI , I)p(f j|f j−1,mJ , J , tI , I)] ,
(3.4)

34 3.2 Personalized Keyword Boosting

Figure 3.2. An example of mapping of J = 4 location keywords to I = 2 user
tags.

where mi−1 = 〈m1 . . . mi−1〉. We also assume a zero-order dependence for both
m j ’s and f j ’s. Note that given the limited amount of data and its sparsity, we make
some assumptions in order to reduce the number of parameters. Therefore, we
consider p(J |tI) only dependent on J and m j is only dependent on the length of
the user tag sequence I . We also assume that f j depends only on tm j

, i.e., the user
tag associated to f j according to the mapping. Notice that since fJ denotes the
sequence of location keywords of size J and tI denotes the sequence of user tags
of size I , therefore Pr(fJ ,mJ |tI) also depends on the length of both sequences.
Consequently, (3.4) is simplified as follows:

Pr(fJ |tI) = p(J)
∑

mJ

J
∏

j=1

p(m j|I)p(f j|tm j
) . (3.5)

3.2.2 Parameter Estimation Based on Expectation-Maximization

Assume that we have N pairs of training samples as in S =
�

(f(1), t(1)), . . . , (f(n), t(n)),
. . . , (f(N), t(N))

	

, the log-likelihood function for the training samples would be:

F(ϑ) =
N
∑

n=1

Jn
∑

j=1

log
In
∑

i=0

p(i|In)p(f jn|t is) , (3.6)

where ϑ := {p(i|I), p(f |t)} are the free parameters. To solve the parameter
estimation problem of (3.6), we follow the Maximum Likelihood (ML) criterion
subject to the constraint

∑

f p(f |t) = 1, for each user tag t. We use Lagrange
multipliers to make the optimization problem unconstrained. However, since we
introduced hidden variables into our model (Equation (3.3)), there is no closed-
form solution to this optimization problem. Therefore, we follow the iterative
process of the Expectation-Maximization (EM) algorithm.

To be able to follow the EM algorithm, we first define Q(ϑ, ϑ̂) as:

35 3.2 Personalized Keyword Boosting

Q(ϑ, ϑ̂) =Q
�

{p(i|I), p(f |t)}; {p̂(i|I), p̂(f |t)}
�

=
N
∑

n=1

Jn
∑

j=1

In
∑

i=0

γn(i| j, Jn, In) log
�

p̂(i|In)p̂(f jn|t in)
	

=
N
∑

n=1

Jn
∑

j=1

In
∑

i=0

p(i|In)p(f js|t is)
∑In

i′=0 p(i′|In)p(f js|t i′s)
log

�

p̂(i|In)p̂(f jn|t in)
	

,

(3.7)

where γn(i| j, Jn, In) is the posterior probability, defined as:

γn(i| j, Jn, In) =
p(i|In)p(f js|t is)

∑In

i′=0 p(i′|In)p(f js|t i′s)
.

According to the EM algorithm, we follow an iterative procedure for param-
eter estimation. After defining the relative objective function, Q(ϑ, ϑ̂), we follow
the usual steps of the algorithm:

1. E-step: calculate Q(ϑ, ϑ̂) for all training samples in S with the previous
estimate of ϑ.

2. M-step: optimize Q(ϑ, ϑ̂) over ϑ̂.

We start the algorithm with uniform values for the parameters and follow the
EM steps until convergence.

In the following we describe two possible directions to use the computed
mapping.

3.2.3 Location Keywords Boosting

After finding the optimum mapping between the user tags and location keywords,
we aim to use this additional knowledge in our system to address the sparsity
problem and eventually enhance the recommendation performance. Take Fig-
ure 3.3 as a real example of such mapping from our dataset. As we can see,
19 taste keywords from one location are illustrated together with tags for the
same location by 3 different users . Not surprisingly, the 3 sets have some tags
in common such as “beer” and “cocktails.” However, each user has her own per-
sonal opinion and therefore her personal set of tags. The lines and the numbers
in parentheses represent the result of our proposed mapping for these 3 users.
Every mapped item is based on the user personal preference and behavior with
respect to all locations in her history. As an example, we take one of the user tags

36 3.2 Personalized Keyword Boosting

Figure 3.3. A sample of tags from three different users assigned to one single
location and the calculated mapping. The lines connect each user tag to their
mapped location keywords. Also, the index number of the mapped location
keywords is written in parentheses for more convenient reading.

that is common between the three users: “cocktails.” What is interesting about
this tag is that each user maps it to a different location keyword. For User1 “cock-
tails” is mapped to “good-for-a-late-night,” for User2 to “cocktails” and for User3
to “lemoncello.” All three location keywords are good candidates to be mapped
to “cocktails” user tag, however, as we argued each user has her own reasons to
tag the same location with a different tag.

After the observation of Figure 3.3, we assume that among the I location
keywords, we can determine J keywords that are mapped to user tags and pre-
sumably are more interesting to the user. As in the example of Figure 3.3, the
number of location keywords (I = 19) is much higher than user tags (Juser1 = 4).
Therefore, by boosting the mapped location keywords in our model we achieve
two main goals: 1) reduce the location keyword space dimensions drastically
(e.g., 19→ 4) and; 2) use the valuable information given by the users to detect
those location keywords that are more interesting to each users.

Formally, let fI = 〈 f1 . . . fI〉 be the set of keywords of a location and f̂ ∈ fI be
the set of location keywords which are mapped to user tags. According to the
result of our probabilistic mapping, we assume that there is a strong correlation

37 3.2 Personalized Keyword Boosting

between f̂ and the user’s interest. In other words, the keywords in f̂ correlate
more to the user’s interest as opposed to the other ones in fI . Hence, we boost f̂
to model the user’s interests, reducing the data dimensionality from I to |̂f|. This
helps us to address the data sparsity problem. The personalized boosted location
keywords are used for POI recommendation (see Section 3.4).

3.2.4 User Tag Prediction

As an alternative approach, we explore three models to predict user tags. We
utilize the result of our mapping model (m) between location keywords and user
tags to train a model able to predict user tags for a new location. We predict user
tags for an unseen location as an alternative to keyword boosting. We explore
this direction for two reasons: 1) to see how we can predict a user behavior
in terms of tag annotation and; 2) to compare the effect of user tag prediction
against location keyword boosting to see which strategy is able to enhance the
recommendation more effectively. We follow two approaches to predict user
tags: 1) we use the maximum likelihood criterion with our estimated parameters
to generate the most likely set of user tags given a set of location keywords and;
2) we model the user tag prediction as a sequence labeling problem enabling us
to apply different sequence labeling models.

Maximum likelihood. Here we describe how we follow Maximum Likelihood to
leverage the learned mapping parameters in order to predict user tags for a new
POI. As we mentioned in relation to (3.1) in Section 3.2.1, given a set of location
keywords from Foursquare, fJ , we aim to compute the most probable set of user
tags, t̂I . Once the model parameters are estimated using EM (see Section 3.2.2),
one approach to predict user tags given a set of location keywords is to follow the
maximum likelihood criterion (see (3.1)) to generate the most likely set of user
tags. We search the space of user tag probabilities to find the optimum sequence
of user tags following a Viterbi-like algorithm.

Sequence labeling. In the following, we begin with explaining how we model
user tag prediction as a sequence labeling problem. Furthermore, we introduce
the set of features we choose to train the tagging models as well as the tagging
models we adopt. Assuming we have N sample mapped pairs of user tags and lo-
cation keywords for each user: S = {(f(1), t(1)), . . . , (f(n), t(n)), . . . , (f(N), t(N))} with
N corresponding mappings. That is, M = {m(1), . . . ,m(n), . . . ,m(N)}. We should
model the tag prediction problem as a sequence labeling problem: given a se-
quence of location keywords we aim to predict the most probable sequence of
user tags. In order to do this, we need to adapt the form of the training data.

38 3.2 Personalized Keyword Boosting

As in a general sequence labeling problem, we need to assign a label from
the target space to each item in the source space. Therefore, we should assign
a label to all location keywords even if they are not mapped to any user tag. To
this end, we automatically annotate location keywords following these steps:

1. For each fi ∈ f(n) mapped to a user tag with m(n), we annotate fi with its
corresponding user tag m j.

2. For each fi ∈ f(n) not mapped to a user tag with m(n), we annotate fi with
“null.”

As for the example of Figure 3.3, a sample training sequence would be as
follows:

burgers
︸ ︷︷ ︸

restaurants

, chicken
︸ ︷︷ ︸

beer

, good-for-a-late-night
︸ ︷︷ ︸

cocktails

, pasta
︸︷︷︸

f ood

, good-for-groups
︸ ︷︷ ︸

null

, lively
︸︷︷︸

null

, steak
︸︷︷︸

null

, . . .

As we can see, each of the location keywords is annotated with a tag. There-
fore, it is straightforward to use this data as training samples for a sequence
tagger. We adopt two models as taggers: Conditional Random Fields (CRF) [119]
and another tagger based on Support Vector Machines (SVM) [117]. The main
advantage of these models is that they are discriminative [110]. Discriminative
tagging models have proven to be more effective for sequence labeling mainly
because they normalize the model over the whole training set, resulting in a more
generalized model. Furthermore, discriminative tagging models accept a wider
range of features, something that is of great importance to some applications.

As features of the sequence labeling models, for a user tag at position j, t j,
we only consider the location keyword at the same position, f j. That is to follow
our assumption that user tags only depend on one location keyword and since
we assume that user tags are independent, we use a zero-order tagger model.

In this section, we first introduced a probabilistic framework for finding the
mapping between location content (i.e., keywords) and user-annotated tags.
Then, we described how this information can be leveraged to reduce the dimen-
sionality of location keywords and hence to address the data sparsity problem.
We also explored modeling this problem as a sequence labeling problem and used
some state-of-the-art techniques to predict user tags given a new POI’s keywords.
In Section 3.4, we show how we use the two mentioned directions to enhance
POI recommendation.

39 3.3 Contextual Appropriateness Prediction

Table 3.1. Description of different contextual information dimensions.

Context Value Short Reference Description

Duration Day Trip day-trip The duration of the trip is one day.
Night Out night-trip The duration of the trip is a night out.
Weekend Trip weekend-trip The trip lasts for a weekend.
Longer longer-trip The trip lasts longer than a weekend.

Group Alone alone The person travels alone.
Friends with-friends The person travels with her friends.
Family with-family The person travels with her family.
Other with-others The person travels with a group.

other than family and friends.

Type Business business-trip The type of the trip is business.
Holiday holiday-trip The type of the trip is holiday.
Other other-trip The type of the trip is other than

holiday and business, e.g., medical.

Table 3.2. Examples of contextual features generated using crowdsourcing.

Category Context Fapp(cat, cx t)

Beach Trip type: Holiday 1.0
College & University Trip duration: Weekend −1.0
Shop & Service Trip type: Holiday 0.71
Museum Trip type: Business −0.66
Pet Store Trip duration: Weekend −0.18
Medical Center Trip type: Other 0.0

3.3 Contextual Appropriateness Prediction

In this section, we first define the problem of predicting the contextual rele-
vance of locations. Then we present the set of features that we use to train the
appropriateness classifier and introduce the dataset that we collected to train the
classifier. The computed contextual relevance scores are then used to re-rank a
ranked list of POIs in Section 3.4.

Let V = {v1, . . . , vn} be a set of locations and Cx = {cx1, . . . , cxm} a set of con-
textual descriptors. Our aim is to predict whether it is appropriate for a user to
visit a location vi ∈ V under a given context Cx . Different contextual dimensions
define user’s preferences, constraints, or requirements and are listed as follows:

40 3.3 Contextual Appropriateness Prediction

Trip type (holiday, business, other), Trip duration (day trip, night out, weekend
trip, longer) and Group type (alone, family, friends, other). More information
could be found in Table 3.1. We model the problem as binary classification con-
sidering location categories and contextual descriptors as classification features.

3.3.1 Contextual Features

In this section, we describe the features that we used to train the appropriate-
ness classifier. The degrees of appropriateness between location categories and
contextual descriptors constitute our features.

We define a contextual feature function as follows:

Definition 3.3.1. A contextual feature, Fapp(cat, cx t), is a function determining
the relevance of a POI category, cat, to a contextual dimension, cx t. Fapp(cat, cx t)
ranges between −1 and +1 with −1 representing absolute inappropriateness and
+1 absolute appropriateness.

For instance, assume a user wants to visit a location with category nightlife-
spot, and her context is described as follows: holiday-trip, with-family, weekend-
trip. The three features of this example are the appropriateness value between
the location category and each of the contextual dimensions. Therefore, the fea-
tures are Fapp(nightlife-spot, holiday-trip), Fapp(nightlife-spot, with-family), and
Fapp(nightlife-spot, weekend-trip).

In many cases, determining such contextual features is intuitive and can
be done by one human annotator. However, there are several features that
human annotators cannot agree on, like for example Fapp(office,with-friends),
Fapp(food-and-drink-shop, business-trip), or Fapp(stadium, night-out-trip). Hence,
we define two classes of features: objective and subjective. Objective features are
those that the annotators quickly agree on. This suggests that a user would be
very likely to agree with the annotators on the objective features. Therefore,
we can conclude that objective features potentially influence a user’s decision
of visiting a location. As in the previous example, supposedly, everyone would
consider going to a nightlife spot with family is not appropriate. Thus a user who
regularly goes to nightlife spots might change her mind when they are traveling
with her family. As we saw in this example, such objective features can directly
change users’ decisions adding contextual constraints to the model. Subjective
features, in contrast, have less impact as they mainly depend on the user’s opin-
ion and personal preferences. If the annotators did not agree on a feature, we
would not be able to predict a user’s opinion. Therefore, we cannot predict the
influence of subjective features on a user’s decision.

41 3.3 Contextual Appropriateness Prediction

We determined the level of subjectivity or objectivity of features via a crowd-
sourcing task. In the task, we asked the workers to judge if a location cate-
gory is appropriate for a context descriptor (e.g., cat = nightlife-spot and cx t =
with-family). We asked at least five different assessors to judge each category-
context pair. In the context of this thesis, we define those pairs with high agree-
ment rate between the workers as objective, while we consider those lacking as-
sessors agreement as subjective. More details on how we created the dataset can
be found in Section 3.5.

Table 3.2 lists some example features from our dataset. As we can see in this
table, lower values for |Fapp(cat, cx t)| mean that the features are more subjec-
tive. We created the contextual features for all pairs of 11 contextual dimensions
and the 177 most frequent categories of Foursquare category tree2. Overall we
generated 1,947 contextual features from 11,487 judgments3. More details can
be found in Section 3.5.

3.3.2 Training the Classifier

As described earlier, we formulate contextual appropriateness as binary classifi-
cation. In Section 3.3.1 we explained how we created the contextual features.
Here, we describe another dataset for training the appropriateness classifier us-
ing our features. We randomly selected 10% of the data from TREC-CS 2016
dataset. We created another crowdsourcing task for annotating the training data.
We asked workers to assess if it is appropriate that a user with a full description
of context (e.g., Holiday, Friends, Weekend) to visit a location category (e.g.,
Bar). Each instance in the dataset is considered as appropriate only if at least
two of the three assessors voted for their appropriateness. We train the contex-
tual appropriateness classifier on 10% of the data from TREC-CS 2016 to predict
the remaining 90% of TREC-CS 2016 and the whole TREC-CS 2015 dataset. We
applied a wide range of classifiers for this task. However, we only report the best
results that were obtained with SVM [70]. The predicted contextual relevance
score is denoted as Scx t and we use it to re-rank the personalized location ranking
(see Section 3.4).

2https://developer.foursquare.com/categorytree
3The dataset if freely available on request.

https://developer.foursquare.com/categorytree

42 3.4 Recommendation based on Information from Multiple LBSNs

3.4 Recommendation based on Information from Mul-
tiple LBSNs

After explaining the two major components of our proposed approach in Sec-
tions 3.2 and 3.3, here, we explain our way of performing POI recommendation,
exploiting the scores from multiple LBSNs. We describe two sets of scores: the
frequency-based and review-based scores. We use the frequency-based score to
incorporate the boosted keywords (Section 3.2.3), the predicted user tags (Sec-
tion 3.2.4), as well as other types of information. We also demonstrate how
we combine different scores to produce the personalized location ranking using
learning to rank.

3.4.1 Frequency-based Score

We base the frequency-based scores on the assumption that users prefer the type
of locations that they like more frequently and rate them positively4. Therefore,
we create positive and negative profiles considering the content of locations in
the user’s check-in history and calculate the normalized frequencies as they ap-
pear in her profile. Then we compute a similarity score between the user’s pro-
file and a new location. For simplicity, we only explain how to calculate the
frequency-based score using location categories. The method can be easily gen-
eralized to calculate the score for other types of information.

Let u be a user and hu = {v1, . . . , vn} her history of check-ins. Each location
has a list of categories C(vi) = {c1, . . . , ck}. We define the user category profile
as follows:

Definition 3.4.1. A Positive-Category Profile is the set of all unique categories
belonging to locations that user u has previously rated positively. A Negative-
Category Profile is defined analogously for locations that are rated negatively.

Each category in the positive/negative category profile is assigned with a
user-level normalized frequency. We define the user-level normalized frequency
for a category as follows:

Definition 3.4.2. A User-level Normalized Frequency for an item (e.g., cate-
gory) in a profile (e.g., positive-category profile) for user u is defined as:

cf+u (ci) =

∑

vk∈h+u

∑

c j∈C(vk),c j=ci
1

∑

vk∈hu

∑

c j∈C(vk)
1

,

4We consider reviews with rating [4, 5] as positive, 3 as neutral, and [1, 2] as negative.

43 3.4 Recommendation based on Information from Multiple LBSNs

where h+u is the set of locations that u rated positively. We calculate user-level
normalized frequency for negative categories, cf−u , analogously.

We create positive/negative category profiles for each user based on Defini-
tions 3.4.1 and 3.4.2 . Given a user u and candidate location v, the frequency-
based similarity score based on location categories, Scat(u, v), is calculated as
follows:

Scat(u, v) =
∑

ci∈C(v)

cf+u (ci)− cf−u (ci) . (3.8)

We follow the same procedure to calculate a frequency-based score based on
other types of information as listed below:

• Ske y: We consider location taste keywords (instead of categories) to com-
pute the similarity score between a given user’s profile and a candidate
location.

• Sboost: As for boosting, for each user we follow Definition 3.4.1 to create
positive and negative boosted location taste keyword profiles. We consider
only the location taste keywords that are mapped to user tags (see Sec-
tion 3.2). Given a candidate location, we calculate boosted keywords sim-
ilarity score according to Definition 3.4.2 and (3.8).

• Sml: Following Definitions 3.4.1 and 3.4.2, we create positive and negative
user tag profiles for each user. However, since a candidate location does
not naturally have user-assigned tags, we use our ML-based approach to
predict user tags. The predicted user tags are then compared with the user’s
profile following (3.8) to calculate Sml similarity score.

• Scr f : We calculate Scr f score similar to Sml . We predict user tags for a
candidate location using the trained CRF model. Then we follow (3.8) to
calculate the Scr f score comparing predicted user tags with user profile.

• Ssvm: This score is also calculated like Sml . For a candidate location, we pre-
dict user tags using our trained SVM-based tagging model. The predicted
user tags are then compared with the user’s profile using (3.8) resulting in
Ssvm.

3.4.2 Review-Based Score

Modeling a user only on locations’ content is general and does not determine
why the user enjoyed or disliked a POI. The content of locations is often used to

44 3.4 Recommendation based on Information from Multiple LBSNs

infer “which type” of POIs a user likes. On the other hand, reviews express the
motivations behind users’ ratings [199]. Since there could be a lack of explicit
reviews from the user, we tackle this sparsity problem using reviews of other
users who gave a similar rating to the location. We follow the same idea of Yang
et al. [199], that is, a user’s opinion regarding a location could be learned based
on the opinions of other users who rated the same location similarly.

We calculate the review-based score using a binary classifier. We model this
problem as binary classification since a user, before visiting a new city or loca-
tion, could get a positive or negative impression of the location after reading the
online reviews of other users. We assume that a user compares the characteris-
tics of a location and the opinions which are expressed by other users in their
reviews to her expectations and interests. A user would be convinced of visiting
a particular location if the reviews satisfy her expectations up to a certain point.
An alternative to binary classification would be a regression model. However, we
assume that users behave similarly to a binary classifier when they read online
reviews before deciding on whether to visit a venue or not. For example, assume
a user reads a few positive and negative online reviews about a POI and measures
how similar the mentioned qualities are to her expectations. Finally, depending
on the balance between the positive remarks and the negative ones, they make a
binary decision (i.e., whether to go or not). We see this behavioral pattern simi-
lar to that of a binary classifier: it learns from the positive and negative samples
and compares the learned parameters with a test sample and assigns its label
accordingly. Furthermore, due to data sparsity, grouping ratings as positive and
negative aids us to model users more effectively.

We train binary classifier using the reviews from the locations in a user’s
check-in history. The positive training samples for user u are positive reviews
of locations that were liked by u. Likewise, the negative reviews of locations
that u disliked constitute the negative training samples. We decided to ignore
the negative reviews of liked locations and positive reviews of disliked locations
since they are not supposed to contain any useful information.

We consider TF-IDF score of terms in reviews as features. We trained many
classifiers but SVM outperformed all other models. Therefore, we choose SVM
and consider the value of its decision function as the review-based score and refer
to it as Srev. The decision function gives us an idea on how relevant a location is
to a user profile.

45 3.5 Data Collection and Analysis

Table 3.3. Four proposed models using different combination of similarity
scores.

Category Review Keywords Context

UT-ML Scat Srev Ske y , Sml Scx t

UT-CRF Scat Srev Ske y , Scr f Scx t

UT-SVM Scat Srev Ske y , Ssvm Scx t

PK-Boosting Scat Srev Ske y , Sboost Scx t

3.4.3 Location Ranking

After defining the mentioned relevance scores, here we explain how we combine
them. Given a user and a list of candidate locations, we calculate the scores
for each location and combine them to create a ranked list of locations. We
adopt several learning to rank5 techniques to rank the candidate locations since
they have proven to be effective for similar tasks [128, 199]. In particular, we
examine the following learning to rank techniques: AdaRank, CoordinateAscent,
RankBoost, MART, LambdaMART, RandomForest, RankNet, aÆŠnd ListNet. We
introduce four models using different combinations of the scores as mentioned
in Table 3.3.

3.5 Data Collection and Analysis

We chose Foursquare and Yelp not only because they are two of the most popular
LBSNs where many users leave their check-in data, but also because the type of
information provided by Yelp is a perfect complement to the type of information
on Foursquare. Moreover, as we will show in the statistics of the dataset, there
is a considerable overlap of venues that have a profile on both LBSNs. However,
there are places in the TREC dataset that appear only on one of the two crawled
LBSNs, hence crawling data from both of them allows making the data gathering
more complete.

Deveaud et al. [78] showed that venue-centric features which were extracted
from Foursquare play a key role in venue recommendation. On the other hand, Chen
et al. [54] argued that user reviews on venues provide a wealth of information
that can be leveraged to address the data-sparsity and the cold-start problems

5We use RankLib implementation of learning to rank: https://sourceforge.net/p/lemur/
wiki/RankLib/

https://sourceforge.net/p/lemur/wiki/RankLib/
https://sourceforge.net/p/lemur/wiki/RankLib/

46 3.5 Data Collection and Analysis

for venue recommendation. Also, Yang et al. [199] showed that the accuracy
of a recommender system can be significantly improved by extracting opinions
from user reviews in Yelp. Also, almost all of the best performing systems in the
TREC Contextual Suggestion track 2015 and 2016 [96] crawled data from these
LBSNs. In particular, our previous work which were among the best runs in both
2015 [11] and 2016 [4] benefited from a comprehensive crawled dataset from
Yelp and Foursquare. We also showed that a system can benefit from multiple
LBSNs, and systems using reviews from Yelp and venue tags from Foursquare
had the best performance.

3.5.1 Data Crawling

For our collection, we crawled data from Foursquare and Yelp. Foursquare pro-
vides an easy-to-access API6 which makes crawling quite easy. We used Four-
square’s API to crawl a large number of venues and scraped a very smaller frac-
tion of venues for additional information on the website. Yelp’s API7, on the
other hand, has more restrictions and therefore we were able to crawl much
fewer venues on Yelp. For TREC 2016 Phase 1,8 we only crawled data using the
Foursquare’s API since there were virtually 630K venues to crawl in a very lim-
ited time and thus the only option was using the Foursquare’s API. For Phase 2
of TREC 2015 and 2016, there was more time and much fewer venues to crawl
so we could crawl data from both LBSNs.

The data was crawled in two time periods: July - August 2015 and July -
August 2016. To find the corresponding profiles of venues on LBSNs, we used
two search engines: 1) Foursquare venue search engine and 2) Google Custom
Search. For TREC 2015 there were 8,794 venues from which we crawled 6,427
places from Yelp and 5,639 from Foursquare, with a considerable overlap be-
tween data crawled from Yelp and Foursquare. For TREC 2016 there were 18,808
venues from which we crawled 13,868 places from Yelp and 13,417 from Four-
square, again emerging a big overlap between the two sources. As all the venues
are in the US cities, we expected that most of the users who reviewed the venues
were English speakers.

Query structure. For each venue in the collection, we created a query to search
on the LBSNs. The query consisted of a venue’s name and its location. We

6https://developer.foursquare.com/docs/
7https://www.yelp.com/developers/documentation/v2/overview
8Phase 1 consisted of a live experiment where the participants’ runs were evaluated by the

TREC assessors.

https://developer.foursquare.com/docs/
https://www.yelp.com/developers/documentation/v2/overview

47 3.5 Data Collection and Analysis

cleaned the venues’ names in the TREC collection since many contained unre-
lated terms such as the host service (e.g., Facebook, Wikipedia). Finally, the
query we used to search for venues was in the form:

query= venue’s name+ venue’s city+ venue’s state .

Search result validation. Since we could not trust the results of search and in
order to minimize the noise, we validated the returned results from the search
engine following these steps:

1. We first verified the city and state of the returned venue with the reference
data available in the TREC-CS collection.

2. We then measured the similarity between the name of the venue and the
name of the returned place using Levenshtein distance.

3. If the similarity between the two names (calculated in Step 2) was more
than a threshold (70%), we considered that result as a match. If not, we
continued steps 1-3 for other returned results up to the 5th result.

Note that the high similarity threshold (70%) was set to prevent adding pos-
sible noise to the collection.

3.5.2 Crowdsourcing

We used the CrowdFlower9 crowdsourcing platform to collect judgments of con-
textual appropriateness of venues and create the additional contextual-appropriateness
dataset. We asked a number of crowdworkers to judge if a venue category is
appropriate for a trip description. For instance, if a trip was described in the
collection as trip type: business, trip duration: one day, and group type: family,
for a venue with category Pizza Place, then we asked crowdworkers to judge if
the venue was appropriate to the trip. In particular, we asked them: “Is a Pizza
Place appropriate for a business trip?”, “Is it appropriate to go to a Pizza Place
on a one-day trip?”, “Is it appropriate to go to a Pizza Place with family?” While
assessing such tasks could seem trivial and objective, it is in fact subjective in
many cases (e.g., going to a pharmacy with family). Therefore, we asked at least
5 crowdworkers to provide their judgment to each row. If we found no agree-
ment among the assessors, we considered the task as subjective. We considered
the answer “appropriate” as a +1 score and “inappropriate” as a −1 score. Thus,

9http://www.crowdflower.com

http://www.crowdflower.com

48 3.5 Data Collection and Analysis

the assessment agreement is the average of assessment scores. We asked work-
ers to judge the context/category pairs for almost all possible pairs regardless of
their existence in the TREC collections. This makes this dataset general enough
to be used for other purposes.

We made sure to explain the task clearly to the workers and asked them to
assess such appropriateness regardless of their personal preferences over cate-
gories. Also, we performed a training step and allowed only top-quality workers
to do the task.

3.5.3 Data Analysis

The released collection contains more than 330K venues from Foursquare for
TREC 2016 Phase 1 and 15,765 venues from both Foursquare and Yelp for TREC
2016 Phase 2.10 As we can see in Table 3.4 there were many broken or unrelated
links in the TREC collection (300K out of 600K), however, there were much fewer
unrelated links for Phase 2 (3K out of 18K). For each venue we release all avail-
able information: venue name, address, category, tags, ratings, reviews, check-in
count, menu, opening hours, parking availability, etc.

The contextual-appropriateness collection consists of 1,969 pairs of trip de-
scriptors and venue categories as features. In order to enable researchers to train
their models using the contextual appropriateness of venues, we created another
collection providing ground truth assessments for the contextual appropriateness
of the venue categories. It contains the contextual information (i.e., trip type,
group type, trip duration) for 10% of the whole TREC collection. This collection
contains 760 rows including the features we already created using crowdsourc-
ing and the context-appropriateness labels for venues. The 10% of labeled data
allows to model the venues’ contextual appropriateness given the users’ context
and to make prediction for the remaining 90% of the data, as we did in [4].

Tables 3.4 and 3.5 lists some statistics of the crawled collection and the
crowdsourced collection, respectively. Figure 3.4 shows the histogram of venue-
appropriateness features assessed by the workers. We divided the assessments in
three groups based on appropriateness scores: [−1.00, −0.40): not appropriate
(objective), [−0.40, +0.40]: no agreement (subjective), (+0.40, +1.00]: appro-
priate (objective). To categorize the tasks as subjective and objective, we as-
sumed that those tasks for which there was a high agreement between the asses-
sors could be considered objective since everybody agreed on their (in)appropriateness.
On the other hand, we assumed that those tasks with relatively lower agreement

10Phase 2 was a reranking task where an offline evaluation was performed.

49 3.6 Experimental Setup

Table 3.4. Statistics on the crawled collection

Phase 1 Phase 2
TREC-CS 16 TREC-CS 15 TREC-CS 16

requests 442 211 442
requests evaluated by TREC 58 211 58
venues in TREC collection 633,009 8,794 18,808
venues crawled: Yelp - 6,427 13,868
venues crawled: Foursquare 336,080 5,639 13,417
Yelp and Foursquare overlap - 4,844 11,520
Avg. reviews per venue - 117.34 66.82
Avg. categories per venue 1.35 1.63 1.57
Avg. taste keywords per venue - 8.73 7.89
Avg. user tags per user 3.61 1.46 3.61
distinct user tags 150 186 150

Table 3.5. Statistics on the crowdsourced contextual appropriateness collection

categories 179
category-context pairs 1969
assessments 11,487
Avg. assessments per pair 5.83
Avg. assessment agreement 85%

full travel annotations 760

between the assessors could be considered subjective.

3.6 Experimental Setup

In this section, we present the experimental settings including the datasets we
used, compared methods, and evaluation process.

3.6.1 Data

Recommendation effectiveness. We evaluate our approach on two benchmark
collections, published by TREC. The collections are those used in the Batch Ex-

50 3.6 Experimental Setup

Figure 3.4. Histogram of venue-context appropriateness score ranges. We par-
tition the histogram into 3 parts based on the scores range. Scores below −0.4
represent inappropriateness and score higher than +0.4 represent appropriate-
ness. Scores between −0.4 and +0.4 do not provide much information and show
no agreement among assessors (subjective task).

periments/Phase 2 of the TREC-CS track 2015 [76] and 2016 [96]. The task was
to rank a list of candidate locations in a new city for a user, given her history of
check-ins in other cities. The datasets were collected using crowdsourcing where
each user rated 30 to 60 locations in one or two cities. In addition, each user may
have tagged locations to explain why they like them (i.e., user tags). Later, the
same users were called to rate new POIs in another city as well as the contextual
factors of their trip. More details can be found in Section 3.5.

Dimensionality reduction. We evaluate the dimensionality reduction effective-
ness on the same datasets as we do for recommendation effectiveness. We com-
pare the performance of our proposed model to a well-known dimensionality
reduction model (i.e., PCA) in terms of recommendation effectiveness. There-
fore, we use the same datasets used to evaluate recommendation effectiveness,
however, we provide more details and discussion related to dimensionality re-
duction.

User tag prediction. Since the test set in TREC-CS 2015 and TREC-CS 2016 do
not include user tags for locations, we need to evaluate the user tag prediction on
the training datasets. Therefore, we randomly split the TREC-CS 2015 and TREC-
CS 2016 training sets into: training, development, and test set. We train the

51 3.6 Experimental Setup

Table 3.6. Statistical details of user tagging dataset

Training Set Test Set

instances 20,148 5,037
non-null tags 102,667 25,541
null tags 54,444 13,954
unique user tags 156 121
unique location keywords 2,676 1,398
Avg. user tags per location 1.85 1.82
Avg. keywords per location 5.10 5.07

taggers using the new training set, tune them using the new development set and
evaluate them with the new test set. As part of the evaluating recommendation
effectiveness we show how different taggers can improve the recommendation;
however, the aim of this experiment is to show how accurately we can model the
user interests and tagging behavior. The statistical details of the tags dataset is
listed in Table 3.6.

3.6.2 Metrics

We evaluate the recommendation effectiveness as well as the dimensionality re-
duction for the top-k recommendation. We also evaluate the effectiveness of user
tag prediction methods.

Recommendation effectiveness. In both TREC-CS 2015 and TREC-CS 2016
datasets, for each user u, the data, S(u), is split into two sets: a number of lo-
cations visited in one or two cities constitute the training set and a number of
locations in a new city constitute the test set. Given a user u, if a recommended
location in the test set is marked by the user as relevant, it is a “hit,” otherwise
it is a “miss.” To perform a fair comparison, we choose the official evaluation
protocol and metrics of TREC-CS for this task, which are P@5 (Precision at 5),
nDCG@5 (Normalized Discounted Cumulative Gain at 5), and MRR (Mean Re-
ciprocal Rank). Since the main focus in this task was to improve the location
rankings, such evaluation metrics serve as perfect metrics.

The relevance assessments for test sets are slightly different in TREC-CS 2015
and TREC-CS 2016. In TREC-CS 2015 relevance of a location to a user is defined
with a binary value with 0 as irrelevant and 1 as relevant, whereas in TREC-CS
2016 users rated locations in the range of −2 to +2. This also explains why

52 3.6 Experimental Setup

the main evaluation metric in TREC-CS 2015 is P@5 as opposed to nDCG@5
in TREC-CS 2016. Both P@k and nDCG@k metrics are evaluated over k top
locations on the ranked list. Let U be the set of users and r p

u be the rating score
assigned by user u to the location at the ith rank of the list. Precision and nDCG
values are calculated at the kth position as follows:

Pu@k =
#hitsu@k

k
,

nDCGu@k = Zu

k
∑

i=1

2r i
u − 1

log(1+ i)
,

where u is the given user, Zu is a normalization factor and #hitsu@k is the num-
ber of relevant locations for user u in the top-k locations of the ranked list.
nDCG@k and P@k are the mean of nDCGu@k and Pu@k over U respectively.
MRR is also calculated as follows:

MRR=
1
|U |

|U |
∑

u=1

1
ranku

,

where ranku is the ranking of the first relevant location for user u. We conduct
a 5-fold cross validation on the training data to tune our model. We determine
the statistically significant differences using the two-tailed paired t-test at a 95%
confidence interval (p < 0.05).

Dimensionality reduction. Since there is no ground truth data to evaluate di-
mensionality reduction methods, we evaluate the recommendation effectiveness
using different dimensionality reduction methods to see how they enhance the
overall recommendation. Therefore, we use the same evaluation metrics that we
used for evaluating recommendation effectiveness.

User tag prediction. Since we modeled the user tag prediction problem as a
sequence-labeling problem, we evaluate the effectiveness of user tag prediction
using the same metrics used for evaluating typical sequence-labeling problems
such as Part of Speech (POS) tagging. Therefore, we report Precision, Recall, and
F-Measure for this experiment. Let Tp the number of true positive and Fp the
number false positive non-null predicted tags. Then precision is calculated as
follows:

Precision=
Tp

Tp + Fp
.

Given the number of false negatives, Fn, we also calculated recall as follows:

Recal l =
Tp

Tp + Fn
.

53 3.6 Experimental Setup

F-measure is then defined as follows:

F −Measure = 2×
Precision× Recal l
P recision+ Recal l

.

3.6.3 Compared Methods

Recommendation effectiveness. We consider the best performing system in
TREC-CS 2015 as our baseline. Moreover, we compare our proposed method
with state-of-the-art context-aware POI recommendation methods. We also com-
pare our proposed PK-Boosting with other models based on user tag prediction
(i.e., UT-ML, UT-CRF, and UT-SVM).

• LinearCatRev is our previous work [11]which is the best performing model
of TREC-CS 2015. It extracts information from different LBSNs and uses
it to calculate category-based and review-based scores. Then, it combines
the scores using linear interpolation. We choose this baseline for two rea-
sons, firstly because it is the best performing system of TREC-CS 2015, and
secondly because it also uses scores derived from different LBSNs.

• GeoSoCa exploits geographical, social, and categorical correlations for POI
recommendation [216]. GeoSoCa models the geographical correlation us-
ing a kernel estimation method with an adaptive bandwidth determining a
personalized check-in distribution. It models the categorical correlation by
applying the bias of a user on a POI category to weigh the popularity of a
POI in the corresponding category modeling the weighted popularity as a
power-law distribution. We used the implementation of GeoSoCa released
in [130]. We did not include the social correlation component since such
information does not exits in the datasets.

• n-Dimensional Tensor Factorization (nDTF) [108] generalizes matrix
factorization to allow for integrating multiple contextual features into the
model. We used the publicly available implementation of nDTF11. Regard-
ing the features, we include two types of features: (1) location based: cat-
egory, keywords, average rating on Yelp, and number of ratings on Yelp (as
an indicator of its popularity); (2) user based: age group and gender.

• UT-ML differs from PK-Boosting in one score. For UT-ML, instead of the
keyword boosting score (Sboost), we use the score based on the predicted

11https://github.com/VincentLiu3/TF

https://github.com/VincentLiu3/TF

54 3.6 Experimental Setup

user tags following maximum likelihood criterion. As we described in Sec-
tion 3.2.4, we also explored three different models as alternatives to PK-
Boosting. Our aim is to study the impact of predicting user tags on recom-
mendation effectiveness, compared to PK-Boosting. The other two alterna-
tive approaches are listed as follows.

• UT-CRF predicts user tags using a trained CRF model. Then, for each
venue-user pair, it computes the similarity between the predicted user tags
and the user profile. Finally, it replaces the boosting score with the com-
puted similarity score (see Section 3.2.4). We used CRFSuite12 implemen-
tation of CRF.

• UT-SVM predicts user tags given a user-venue pair using an SVM-based
tagging model. The boosting score is replaced by the similarity score be-
tween the user profile and predicted user tags (see Section 3.2.4). We used
YamCha13 implementation of the SVM-based tagging model.

Dimensionality reduction. In order to evaluate the keyword boosting approach
from the perspective of dimensionality reduction, we also apply the following
well-known dimensionality reduction method to reduce the location keywords
dimension. In particular, we use PK-PCA. PK-PCA uses Principal Component
Analysis (PCA) to reduce the dimensionality of location keywords. Finally, we
consider the score computed based on the PCA model as the boosting score and
calculate the recommendation score accordingly.

User tag prediction. As user tags contain very crucial information explicitly
described by users, we aim to evaluate the effectiveness of user tag models. In
particular, we evaluate the following models:

• Conditional Random Fields (CRF) Tagger [119]models the sequence tagging
problem in a discriminative manner. The tagger is based on binary features
that are extracted from the text and optimized for the training data.

• SVM-based Tagger [117] is also a discriminative approach that trains one
SVM classifier per tag. The model is an ensemble of all SVM classifiers.

12http://www.chokkan.org/software/crfsuite/
13http://chasen.org/~taku/software/yamcha/

http://www.chokkan.org/software/crfsuite/
http://chasen.org/~taku/software/yamcha/

55 3.7 Results and Discussion

3.7 Results and Discussion

In this section, we first present the results for recommendation effectiveness. We
also show the results for location keyword dimensionality reduction and user tag
prediction. Furthermore, we study the effect of different sources and scores on
recommendation effectiveness.

3.7.1 Preformance Comparison

Tables 3.7 and 3.8 demonstrate the performance of our approach compared with
other methods for the TREC-CS 2015 and TREC-CS 2016 datasets, respectively.
We choose the best performing learning to rank technique for each model we
adopt the best performing learning to rank technique according to Tables 3.9
and 3.10. It is worth noting that the best learning to rank technique for PK-
Boosting is ListNet [51]. Tables 3.7 and 3.8 show that PK-Boosting outperforms
the competitors in terms of the three evaluation metrics. This indicates that the
proposed PK-Boosting approach improves the performance of POI recommenda-
tion. This happens because the proposed approach for boosting location key-
words addresses the data sparsity problem, while at the same time it captures
user preferences more accurately. In contrast, the models UT-ML, UT-CRF, and
UT-SVM introduce a prediction error, when predicting user tags for a candidate
location. This error is then propagated to location ranking and subsequently de-
grades the models’ performances. As we can see, GeoSoCa and nDTF exhibit the
worst performance among all compared methods. This happens mainly because
these methods rely on user-POI check-in associations among the training and
test sets. In other words, there should be enough common POIs appearing in
both the training and test sets, otherwise they fail to recommend unseen POIs.
Hence, they suffer from the high level of sparsity on these datasets. In particular,
the intersection of POIs in the training and test sets is 771 (out of 8,794) and 4
(out of 18,808) in TREC-CS 2015 and 2016, respectively.

To compute the review-based classifier, we used various classifiers such as
Ná’ive Bayes and k-NN; however, the SVM classifier exhibited a better perfor-
mance by a large margin. The SVM classifier is a better fit for this problem since
it is more suitable for text classification, which is a linear problem with weighted
high dimensional feature vectors. Also, we observed a significant difference be-
tween the number of positive reviews and negative reviews per location. Gen-
erally, locations receive more positive reviews than negative reviews and, in our
case, this results in a unbalanced training set. Most of the classification algo-
rithms fail to deal with the problem of unbalanced data. This is mainly due to

56 3.7 Results and Discussion

the fact that those classifiers try to minimize an overall error rate. Therefore,
given an unbalanced training set, the classifier is usually trained in favor of the
dominant class to minimize the overall error rate. However, SVM does not suffer
from this, since it does not try to directly minimize the error rate but instead
tries to separate the two classes using a hyperplane maximizing the margin. This
makes SVM more intolerant of the relative size of each class. Another advan-
tage of linear SVM is that the execution time is very low and there are very few
parameters to tune.

3.7.2 Impact of Different Learning to Rank Techniques

In this experiment we aim to show how the recommendation effectiveness is af-
fected by applying different learning to rank techniques to combine the scores.
Our aim is to show how different state-of-the-art learning to rank models can ef-
fectively combine the proposed scores for recommendation. Tables 3.9 and 3.10
report P@5 applying different learning to rank techniques for TREC-CS 2015
and TREC-CS 2016 respectively. We report the performance for UT-ML, UT-CRF,
UT-SVM, and PK-Boosting. As we can see, ListNet in many cases outperforms
other learning to rank techniques. More specifically, for TREC-CS 2015, ListNet
exhibits the best performance for all models except for UT-ML. It is very interest-
ing that RankNet exhibits the best performance for UT-ML, and both ListNet and
RankNet are based on artificial neural networks. As for TREC-CS 2016, RankNet
performs better for UT-ML and UT-SVM while ListNet performs better for other
models. As we can observe, applying different learning to rank techniques can
potentially have a big impact on recommendation results. Therefore, it is critical
to apply the best technique for the scores.

3.7.3 Impact of Using Information from Multiple LBSNs

Tables 3.11 and 3.12 evaluate the performance of the examined models before
and after removing information from each LBSN. In this set of experiments, we
also report the relative performance drop of different models when using infor-
mation from the two different LBSNs. As we can see in almost all cases, when
a source of information is removed from the model, we observe a drop in the
performance. The average drop for TREC-CS 2015 is −4.90% and for TREC-CS
2016 is −6.00% which confirms the effectiveness of exploiting information from
different LBSNs. This indicates that using multimodal information from differ-
ent LBSNs is a key to improve POI recommendation. For all different runs, the

57 3.7 Results and Discussion

Table 3.7. Performance evaluation on TREC-CS 2015.

P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

LinearCatRev 0.5858 - 0.6055 - 0.7404 -
GeoSoCa 0.5147* −12.14 0.5404* −10.75 0.6918* −6.56
nDTF 0.5232* −10.96 0.5351* −11.63 0.6707* −9.41
UT-ML 0.6224* 6.25 0.6320* 4.38 0.7496 1.24
UT-CRF 0.6249* 6.67 0.6285 3.80 0.7434 0.41
UT-SVM 0.6219* 6.16 0.6339* 4.69 0.7553 2.01
PK-Boosting 0.6259* 6.85 0.6409* 5.85 0.7704* 4.05

Bold values denote the best scores and the superscript * denotes significant
differences compared to LinearCatRev. ∆ values (%) express the relative
improvement, compared to LinearCatRev. For each model we report the
scores using the best learning to rank technique (Table 3.9).

Table 3.8. Performance evaluation on TREC-CS 2016.

P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

LinearCatRev 0.4897 - 0.3213 - 0.6284 -
GeoSoCa 0.4207* −14.09 0.2958 −7.94 0.6497 3.39
nDTF 0.4172* −14.80 0.2663* −17.12 0.6167 −1.86
UT-ML 0.5138 4.92 0.3357 4.48 0.6389 1.67
UT-CRF 0.5138 4.92 0.3410 6.13 0.6765 7.65
UT-SVM 0.5207 6.33 0.3389 5.48 0.6510 3.60
PK-Boosting 0.5310 8.43 0.3526* 9.74 0.6800 8.21

Bold values denote the best scores and the superscript * denotes signifi-
cant differences compared to LinearCatRev. For each model we report the
scores using the best learning to rank technique (Table 3.10).

58 3.7 Results and Discussion

Table 3.9. Effect on P@5 for different learning to rank tech-
niques in TREC-CS 2015.

UT-ML UT-CRF UT-SVM PK-Boosting

MART 0.5911 0.6008 0.5958 0.6010
RankNet 0.6224 0.6190 0.6155 0.6190
RankBoost 0.6030 0.6086 0.6088 0.6146
AdaRank 0.6028 0.6121 0.6117 0.5893
CoordinateAscent .06115 0.5858 0.5918 0.5997
LambdaMART 0.6022 0.6077 0.6061 0.6135
ListNet 0.6069 0.6249 0.6219 0.6259
RandomForests 0.5836 0.5966 0.5920 0.5963

Bold values denote the best learning to rank technique per
model.

Table 3.10. Effect on P@5 for different learning to rank tech-
niques in TREC-CS 2016.

UT-ML UT-CRF UT-SVM PK-Boosting

MART 0.4653 0.4103 0.3931 0.4483
RankNet 0.5138 0.5103 0.5237 0.5103
RankBoost 0.3414 0.4241 0.4345 0.4586
AdaRank 0.3414 0.3414 0.3414 0.3414
CoordinateAscent 0.5021 0.4931 0.4931 0.5000
LambdaMART 0.3793 0.3931 0.3793 0.4931
ListNet 0.5103 0.5138 0.5103 0.5310
RandomForests 0.4207 0.4069 0.4345 0.4310

Bold values denote the best learning to rank technique per
model.

59 3.7 Results and Discussion

Table 3.11. Performance evaluation after removing information provided by Four-
square (F) and Yelp (Y) in the TREC-CS 2015 dataset.

F Y P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

LinearCatRev 3 3 0.5858 - 0.6055 - 0.7404 -
3 7 0.5649 −3.57 0.5860 −3.22 0.7263 −1.90
7 3 0.5697 −2.75 0.5917 −2.28 0.7341 −0.85

UT-ML 3 3 0.6224 - 0.6320 - 0.7496 -
3 7 0.5288* −15.04 0.5307* −16.03 0.6487* −13.46
7 3 0.5787* −7.02 0.5746* −9.08 0.6833* −8.84

UT-CRF 3 3 0.6249 - 0.6285 - 0.7434 -
3 7 0.5960* −8.95 0.5930* −5.65 0.7301 −1.79
7 3 0.6055 −3.10 0.6238 −0.75 0.7503 0.93

UT-SVM 3 3 0.6219 - 0.6339 - 0.7553 -
3 7 0.5728* −7.90 0.5921* −6.59 0.7388 −2.18
7 3 0.6129 −1.45 0.6250 −1.40 0.7497 −0.74

PK-Boosting 3 3 0.6259 - 0.6409 - 0.7704 -
3 7 0.5731* −8.44 0.6010* −6.23 0.7602 −1.32
7 3 0.6044 −3.44 0.6227 −2.84 0.7613 −1.18

The superscript * denotes significant differences compared to the performance each
model has when using information from the two different LBSNs. ∆ values (%)
express the relative drop, compared to the performance each model has when using
information from the two different LBSNs. (Average drop= −4.90%)

best performing method is the proposed PK-Boosting, that uses a combination of
information from both LBSNs.

3.7.4 Impact of Using Different Scores

In this experiment, we try to demonstrate the effectiveness of each score. We
remove each score and analyze our model’s performance without it (but we do
not remove more than one score at a time). The results are reported in Table
3.13. The first line (All) shows the results for P@5, nDCG@5, and MRR using all
scores. The second line (−Scat) shows the results without the location categories,
and so on for the other lines.

The results show a decrease of the model’s performance after removing each
of the scores exhibiting an average relative drop of −4.31%. It indicates that our
system is able to capture different aspects of information and combine them to

60 3.7 Results and Discussion

Table 3.12. Performance evaluation after removing information provided by Four-
square (F) and Yelp (Y) in the TREC-CS 2016 dataset.

F Y P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

LinearCatRev 3 3 0.4897 - 0.3213 - 0.6284 -
3 7 0.4172* −14.49 0.2705* −15.81 0.6222 −0.99
7 3 0.4759 −2.46 0.3072 −4.39 0.6032 −4.01

UT-ML 3 3 0.5138 - 0.3357 - 0.6389 -
3 7 0.4862 −5.37 0.3079 −8.28 0.6038 −5.49
7 3 0.5034 −2.02 0.3313 −1.31 0.6393 0.06

UT-CRF 3 3 0.5138 - 0.3410 - 0.6765 -
3 7 0.5069 −1.34 0.3336 −2.17 0.6531 −3.46
7 3 0.4793 −6.71 0.3133 −8.12 0.6268 −7.35

UT-SVM 3 3 0.5207 - 0.3389 - 0.6510 -
3 7 0.4724 −9.28 0.3057* −9.80 0.6260 −3.84
7 3 0.4793 −7.95 0.3158 −6.82 0.6512 0.03

PK-Boosting 3 3 0.5310 - 0.3526 - 0.6800 -
3 7 0.4793* −9.74 0.3210 −8.39 0.6542 −3.79
7 3 0.4759* −10.38 0.3177* −9.90 0.6354 −6.56

The superscript * denotes significant differences compared to the performance
each model has when using information from the two different LBSNs. (Average
drop= −6.00%)

61 3.7 Results and Discussion

Table 3.13. Performance of PK-Boosting using all the scores (All)
and after removing each score at a time.

P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

All 0.6259 - 0.6409 - 0.7704 -
−Scat 0.6009* −3.99 0.6124* −4.45 0.7324* −4.93
−Srev 0.5555* −11.25 0.5837* −8.92 0.7383* −4.17
−Ske y 0.6009* −3.99 0.6113 −3.35 0.7443 −3.10
−Sboost 0.6190 −1.10 0.6312 −1.51 0.7610 −1.22
−Scx t 0.5962* −4.75 0.6126* −4.42 0.7437 −3.47

The superscript * denotes significant differences compared to the
model using all scores (All). Percentages in bold represent the high-
est decrease in performance when the corresponding score is re-
moved (Average relative drop = −4.31%).

create a better personalized ranking model for POI recommendation. The Scat

score models the types of locations a user is interested in visiting, while Srev

models the reasons the user likes/dislikes different locations belonging to the
same category. Ske y tries to incorporate the most important keywords extracted
from the reviews and to describe a location and its characteristics. Sboost boosts
the most important keywords that interest a user and the contextual relevance is
measured by Scx t . Our model exhibits its largest decrease in performance when
Srev is removed from the model. This suggests that the review-based score is the
most important score in our model. We think this is because it captures users’
opinions. In fact, it is crucial to realize why a user rates two locations in the same
category differently.

3.7.5 Impact of Number of Visited POIs

We report P@5 of all models on TREC-CS 2015 and TREC-CS 2016 in Figure
3.5. In this set of experiments, we vary the number of locations to find the
mapping between the taste keywords and the user tags. We calculate the scores
of Section 3.4 with different number of locations and train the ranking model.
Figure 3.5 shows that PK-Boosting is the winning method when compared with
other models for all different number of locations. This result indicates that PK-
Boosting is more robust when the training set is smaller, whereas the prediction
models ML and SVM are not very well trained using such a small data and their
performance gets worse.

62 3.7 Results and Discussion

(a) TREC-CS 2015 (b) TREC-CS 2016

Figure 3.5. Effect on P@5 by varying the number of locations that each user
has visited for (a) TREC-CS 2015 and (b) TREC-CS 2016.

3.7.6 Impact of Visiting POIs from a Single City vs. Two Cities

In this experiment, we intend to see how the number of visited locations from one
single city affects the performance of our model as opposed to the same number
of locations from different cities. In order to do that, we consider at maximum
2 cities, and we train our model using 10, 15, ..., 60 of them for each user as
their history of preferences. To make sure that the order of selected locations
does not affect our experiment, we shuffle the list of previously visited locations
in two ways: 1) we make sure that the first 30 locations are from a city and the
second 30 are from the other city; 2) we shuffle the order of visited locations for
each city and interleave them. For example, v1 would be a location from City1,
v2 a location from City2, v3 a location from City1, and so on. We conduct this
experiment with 5 differently shuffled lists and report the average of the results.

The first ordering method ensures that the first half of the locations, visited by
a user, are from a particular city. The second ordering, on the other hand, makes
sure that for a given number of visited locations n, n/2 of them are locations from
City1 and n/2 are from City2 . We intend to examine how our model performs
when we have information about users from only one city as opposed to two
cities. Moreover, in cases where we have a low number of visited locations in the
user’s history, it is interesting to see how our model performs in both scenarios
(i.e., all locations from a single city vs. from multiple cities).

63 3.7 Results and Discussion

Figure 3.6. Our model’s performance in terms of P@5 with different number
of locations as users’ history of preferences compared to LinearCatRev. We
have chose the order of locations in two different manners. Sequential: the
first 30 locations are from one single city, the second 30 are from another city,
Interleaved: the list of locations is interleaved based on their cities.

Figure 3.6 demonstrates our system performance in terms of P@5 with dif-
ferent number of locations in the user’s history compared to LinearCatRev. As we
can see in the figure, the model shows a large improvement up to the first 30 lo-
cations, decreasing in size after we add 40 locations in both orderings. However,
it is interesting to see that the sequential order always performs better than the
interleaved one. This difference is more evident when the number of locations
is smaller than 20. It suggests that when we have limited number of locations
as the user’s history, it is better to have them all about the same city. This can
be observed when there are 30 locations and all from one single city (denoted
as Sequential), we get a much better performance as compared to training the
model using 30 locations with half from one city and the other half from another
one (denoted as Interleaved).

3.7.7 Dimensionality Reduction

In this experiment we compare our personalized keyword boosting method with
the well-known dimensionality reduction method PCA. Since keyword boost-
ing is a kind of personalized dimensionality reduction, we choose to compare
our method with PCA. As Tables 3.14 and 3.15 show, our personalized keyword

64 3.7 Results and Discussion

boosting method is able to beat PCA with respect to recommendation effective-
ness in terms of both P@k and nDCG@k. It suggests that the proposed prob-
abilistic model is able to effectively reduce the dimensionality of location key-
words taking into account user personal preferences as well as interests. In fact,
in TREC-CS 2015 the average location keyword per user is 277 and our pro-
posed approach is able to reduce it to 41 (−%85), whereas PCA reduces it to 25
(−%91). Moreover, the average location keywords per user in TREC-CS 2016 is
302 and PK-Boosting reduces it to 105 (−%65) compared with PCA reducing it
to 16 (−%95).

It is worth noting that PCA produces min(n, m − 1) principal components,
where n is the number of data samples and m is the number of data dimensions.
Since in both datasets n� m, the number of principal components is bounded
by n and thus PCA reduces data dimensionality more than PK-Boosting. This dif-
ference for TREC-CS 2016 is even bigger due to the fact that users have smaller
number of previously visited locations. It is interesting to note the difference be-
tween the dimensionality reduction that PK-Boosting exhibits on TREC-CS 2015
and TREC-CS 2016 (i.e., 41 vs. 105). This is due the difference between the
average number of user tags in the two datasets. As we can see in Table 3.4, the
average user tag per user for TREC-CS 2015 is 1.46 as compared with 3.61 for
TREC-CS 2016. Since PK-Boosting personalizes dimensionality reduction prob-
lem according to user tags, the average number of user tags can potentially have
an impact on the average number of reduced dimensions. The results of Ta-
bles 3.14 and 3.15 show that PK-Boosting outperforms PCA in terms of recom-
mendation effectiveness even though PCA is able to reduce more dimensions.
This suggests that incorporating personal information for dimensionality reduc-
tion is effective and hence PK-Boosting performs better.

3.7.8 User Tag Prediction

In this experiment we evaluate the effectiveness of different user tag prediction
methods. The aim of this experiment is to show how effective user tag prediction
is in terms of user tag prediction accuracy. In previous experiments we showed
how user tag prediction can improve the overall recommendation effectiveness;
however, it is crucial to know how effective is the prediction model so that we can
further analyze and improve the prediction accuracy in order to achieve better
recommendation. Table 3.16 reports the performance of different user tag pre-
diction models. Note that CRF and SVM-based taggers are trained using the same
feature set for fair comparison. As we can see in this table the SVM based model
is able to beat all other models. In fact, the SVM based model benefits highly

65 3.8 Summary

Table 3.14. Performance comparison on TREC-CS 2015 on dimensionality reduction.

Avg. Dim. P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

LinearCatRev 277 0.5858 - 0.6055 - 0.7404 -
PK-PCA 25 0.6030* 4.37 0.6157 3.07 0.7366 −0.32
PK-Boosting 41 0.6259* 6.85 0.6409* 5.85 0.7704* 4.05

The superscript * denotes significant differences compared to LinearCatRev.

Table 3.15. Performance comparison on TREC-CS 2016 on dimensionality reduc-
tion.

Avg. Dim. P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

LinearCatRev 302 0.4897 - 0.3213 - 0.6284 -
PK-PCA 16 0.5106 4.21 0.3406 6.02 0.6424 2.23
PK-Boosting 105 0.5310 8.43 0.3526* 9.74 0.6800 8.21

The superscript * denotes significant differences compared to LinearCatRev.

Table 3.16. Performance comparison of user tag prediction models.

Precision Recall F-Measure

ML 0.3982 0.2421 0.3011
SVM-Based 0.7923 0.8110 0.8016
CRF 0.7646 0.7573 0.7609

from the features that are extracted using the proposed mapping and therefore
it can beat ML.

3.8 Summary

In this chapter, we presented a probabilistic model to find the mapping between
user tags and location taste keywords. This mapping enabled us to explore var-
ious directions to address the data sparsity problem for POI recommendation.
In particular, we followed two directions: 1) a PK-Boosting model to reduce the
dimensionality of location taste keywords and 2) three models to predict user
tags for a new location, as alternatives to PK-Boosting. Moreover, we described
how to incorporate the new information into POI recommendation, calculating
different scores from information from multiple LBSNs. In addition, we also

66 3.8 Summary

created a dataset to measure the contextual appropriateness of locations and ex-
plained how we used the dataset to improve our model. Following learning to
rank techniques, the final POI recommendation ranking is obtained based on the
computed scores. The experimental results on two TREC collections demonstrate
that our method outperforms state-of-the-art strategies. This confirms that the
proposed approach, PK-Boosting, addresses the data sparsity problem capturing
user preferences accurately.

Although the results of this chapter demonstrate the success of our proposed
content-based approach, our intuition is that such content-based approaches are
able to outperform collaborative approaches in cases where the data is very
sparse. Data sparsity is a known problem in recommendation, however, the
TREC-CS dataset is an example of very sparse data. This is mainly due to the
fact that the training data is collected from a random city in the U.S. and the
test data is collected from another city. Therefore, there is not much common
check-in records in the test and train datasets. As a consequence, collabora-
tive approaches are not able to learn the latent associations between users and
POIs [25]. Therefore, in the next chapter, we propose a collaborative approach
to model users and POIs.

Chapter 4

Collaborative User Modeling for Venue
Suggestion

4.1 Introduction

While content-based approaches are strong in modeling user, POI behavior and
profile, they fail to capture the collaborative behavior of users on LSBNs. This
happens because every user is modeled solely based on their past behavior. Al-
though our first approach in Chapter 3 demonstrated the power of content-based
approaches in the absence of collaborative data, the available data from the
major LBSNs often contains sufficient data for learning user-POI associations.
Therefore, in this chapter we present a collaborative approach for POI recom-
mendation. More specifically, we propose a two-phase collaborative ranking
(CR) algorithm that is able to learn users’ preferences from implicit feedback
(i.e., check-ins). Our model is inspired by the successful results of CR in other
domains with explicit user feedback [167, 189] and of ranking methods using
implicit user feedback for POI recommendation [125, 165]. It is worth noting
that many temporal and long-term characteristics of users behavior and POI pop-
ularity should be studied on large-scale check-in data from LBSNs. That is why
we evaluate our proposed model on two datasets from Foursquare and Gowalla.
However, since users often do not leave explicit feedback about their check-ins,
we have taken into account users’ implicit feedback. Therefore, we use a two-
phase implicit feedback inference in our algorithm. In fact, we assume that a
single check-in means that a user “likes” the POI while multiple visits mean that
user prefers the POI over others. Based on this assumption, in the first phase we
push POIs with single or multiple check-ins at the top of the recommendation
list, taking into account the geographical influence of POIs in the same neigh-

67

68 4.1 Introduction

borhood. In the second phase, we push POIs with multiple check-ins over the
ones with a single visit. As argued in [125], considering both visited and un-
visited POIs in the learning alleviates the sparsity problem. Therefore, the first
phase of our algorithm addresses the sparsity problem, whereas the second stage
boosts the accuracy of our model by pushing more relevant POIs at the top of the
list. To take into account the dynamics of user and place check-in, we introduce a
time-sensitive regularizer in the ranking loss. The regularizer models the activity
pattern of every user and venue over time. Adding this regularizing parameter
to the objective function fuses the activity patterns into the ranking function in
a collaborative way.

Our contributions in this chapter can be summarized as follows:

• We perform an extensive analysis to demonstrate the underlying patterns
of preference and popularity over time.

• We propose a general time-sensitive regularizer, taking into account the
variance of users activities and venues popularity over time.

• We propose a novel two-phase CR-based POI recommendation algorithm
incorporating users implicit check-in feedback with a focus on the top of
the list.

• We propose a geographical similarity measure and add its influence to the
model’s objective function.

Experiments on two benchmark datasets show that the proposed approach
outperforms state-of-the-art POI recommendation and CR methods. In particular,
we show that the joint learning strategy enables the model not only to address
the sparsity problem but also to rank relevant POIs higher. The first phase mainly
addresses the sparsity problem by adding the geographical influence as well as
considering both visited and unvisited venues for training. The second phase
improves the accuracy of the model, pushing to the top of the recommendation
list the POIs that users prefer more. Moreover, we demonstrate the effectiveness
of the time-sensitive regularizer, that is applied to both phases of the algorithm
taking into consideration the long-term behavior of users and the popularity of
POIs.

The remainder of the chapter is organized as follows, a deep analysis on
the datasets is performed in Section 4.2. We describe our collaborative method
in Section 4.3 and in Section 4.4, we describe the evaluation settings. Sec-
tion 4.5 evaluates the performance of our model against competitive models.
Finally, Section 4.6 summarizes the chapter, highlighting the need for combining

69 4.2 Data Analysis

the content-based and collaborative approaches for improved recommendation,
which is described in the next chapter.

4.2 Data Analysis

In this section, we conduct an extensive analysis of two real-world datasets to
explore user preferences’ dynamics over time.

4.2.1 Data

We use two real-world check-in datasets from Foursquare and Gowalla provided
by [208]1. The Foursquare’s dataset originally consists of 342,850 check-ins of
users in Singapore in the period of Aug. 2010 to Jul. 2011 [208]. The Gowalla’s
dataset, on the other hand, includes 736,148 check-ins made by users in Califor-
nia and Nevada in the period of Feb. 2009 to Oct. 2010 [208]. Every check-in
contains a user id, POI id, time, and geographical coordinates. For a fair com-
parison, we also use the preprocessed data as in [208]. Users who have less
than 5 check-ins, as well as POIs with less than 5 check-ins are removed from
the datasets. Finally, we have 194,108 check-ins on Foursquare’s and 456,988
check-ins on Gowalla’s. We used the geographical coordinates of POIs to retrieve
their corresponding categories such as bar, pizza place. More details are listed in
Table 4.1. Notice that multiple check-ins refer to the check-ins that were made
by a particular user to a particular POI more than once. As shown in Table 4.1,
45.51% of check-ins on the Foursquare’s dataset refer to users visiting POIs more
than once. In Gowalla’s, we observe fewer multiple check-ins, namely, 32.69%
of all check-ins.

4.2.2 Time-Dependency of User Activities and Interests

Many studies analyzed users activity patterns over time [86, 200, 208, 209]. We
conduct a long-term user activity analysis, namely we study the user behavior
over several months. This monthly analysis allows us to realize the long-term
shift of users interest. Users’ interests could evolve over time while sustaining
their personal patterns. For instance, a teenager who reaches the legal age of
drinking often starts going to bars (long-term interest shift), whereas an adult
user often chooses to travel on Easter (personal pattern). Figure 4.1 depicts the
distribution of check-ins of both datasets every month. There is a significant shift

1Available at http://www.ntu.edu.sg/home/gaocong/data/poidata.zip

http://www.ntu.edu.sg/home/gaocong/data/poidata.zip

70 4.2 Data Analysis

Table 4.1. General statistics of the datasets

Foursquare’s Gowalla’s

of users 2,231 10,162

of POIs 5,596 24,250

of check-ins 194,108 456,988

Avg. POIs per user 45.57 30.356

Avg. users per POI 18.90 12.69

Multiple check-ins 45.51% 32.69%

Density 0.0081 0.0012

of activity on each month. For instance, we observe that the number of check-ins
increases from Feb. to Jul. in both datasets. Next, we report further analysis only
on Gowalla’s, as we observed similar attributes when analyzing the Foursquare’s
dataset. Figure 4.2 shows the popularity of the top 8 venue categories. As we
can see, before Oct. 2009 we observe dramatic shift of popularity. However, after
Oct. 2009, the top categories exhibit a rather more stable popularity pattern as
the dataset grows. Interestingly, we still can observe popularity shifts between
“Coffee Shop,” “American,” “Mexican,” “City Park,” and “Asian.” This suggests
that users also exhibit a time-dependent pattern in visiting popular categories of
POIs.

Figure 4.3 shows the activity of two samples of users in a long period. It
also shows how the popularity of two samples of POI categories changes over
time. Note that, all the plots of Figure 4.3 illustrate the distribution of each user
or category over time, that is, for each user or category, summing all the values
of Y over time (X) equals to 1. We compute the variance of check-ins for both
users and categories. Then, we pick the ones with the lowest in Figure 4.3a & c
and the ones with the highest variances in Figure 4.3b & d. Our aim is to pick
some representative user and categories from either end of the spectrum. As we
can see, even users who are supposed to be the most stable (Figure 4.3a) ex-
hibit very time-dependent check-in patterns. It is worth noting that we ignored
users with less than 50 check-ins in plotting Figure 4.3b, as those users mostly
appear once in the dataset and hence are listed among the top variant users.
However, we still observe that the users with high check-in variance are those
who appear a few times and have less regular check-in behavior. This suggests

71 4.2 Data Analysis

(a) Foursquare’s (b) Gowalla’s

Figure 4.1. Number of check-ins per month on Foursquare’s and Gowalla’s.

that the more active a user is, the less variant her check-in pattern is. We also
observed a negative correlation between the users’ check-in variance and quantity
(Spearman: −0.5583) which supports our assumption. As for the POI categories,
Figure 4.3c depicts the least variant categories. First, all of the categories relate
to users’ daily activities, for example going to a coffee shop or sandwich store.
These categories are more time-independent since they are less affected by sea-
sonal changes or weather conditions. Similar to what we observed for users,
more popular categories are also less time-variant. In fact, we found a negative
correlation between POI categories variance and popularity (Spearman: −0.8411).
On the other hand, the more time-variant categories (Figure 4.3d) are less pop-
ular and they depend mainly on weather and political events. For example, “Ski
Shop” only appears during winter and “Democratic Event” appears as a political
campaign takes place.

All our observations suggest that there is an underlying temporal pattern in
check-in activities from the perspective of both users and place categories. We
argued that check-in variance reveals meaningful information and thus we design
our model focusing on these aspects.

4.2.3 Users’ Multiple Check-ins

As we discussed earlier in Section 4.1, a good indicator of a user’s preference
is the fact that they visit the same POI multiple times. A multiple check-in be-
tween a user ρ and a venue l occurs if ρ visits l more than once. Other studies
assumed multiple check-ins as an implicit feedback and demonstrated its effec-
tiveness [125]. We also observed that a considerable amount of check-ins are
multiple check-ins (Table 4.1). We randomly picked 100 users from the 500
most active users of Gowalla’s. Figure 4.4 shows the quantity of single check-ins

72 4.2 Data Analysis

Figure 4.2. Popularity of the top-8 categories over time on Gowalla’s (best
viewed in color).

as well as multiple check-ins of the sample users. As we can see, users spend a
considerable amount of their time visiting POIs they have visited before. In fact,
multiple check-ins constitute 20% of check-ins for an average user on Gowalla’s
(with a standard deviation of 21). According to Figure 4.4, the more active a user
is, the more multiple check-ins they have. We calculated the correlation between
the number of check-ins and the percentage of multiple check-ins per user. We
observe that there is a positive correlation (Spearman: +0.4257) between the
two variables, supporting our assumption. Based on these observations, we con-
firm that multiple check-ins provide valuable information regarding users’ pref-
erence and since these account for a considerable amount of the datasets, we
design our model with a focus on them.

4.2.4 Remarks

In this section, we present the main findings of our analysis. As observed in
Section 4.2.2, users exhibit a long-term shift in their check-in behavior. As a con-
sequence, POIs witness a shift in their popularity. However, many of these shifts
are natural because users grow old and their habits evolve. Also, even though
some types of POIs exhibit less time-sensitivity, many POIs are highly dependent
on temporal phenomena such as seasonal changes or political campaigns. In ad-
dition, over a longer period of time, less active users exhibit more variance in
their check-in behavior. The same behavior is also observed for POIs, that is, less
popular POIs suffer from more variance in terms of users’ check-ins. Thus, it is
crucial to take into consideration how variant a user or POI has been in the past
while learning the model.

According to 4.2.3, there is a positive correlation between the activity of a
user and the number multiple check-ins they have had. This also means that

73 4.3 Proposed Method

(a) Least variant users (b) Most variant users

(c) Least variant POI categories (d) Most variant POI categories

Figure 4.3. Check-in distribution of users and POI categories over time in
Gowalla’s. Figures a & c depict the least time-variant users and POI categories,
respectively. Figures b & d, in contrast, show the distribution of the most time-
variant users and POI categories, respectively (best viewed in color).

a user who has visited the same POI several times in the past is more likely to
visit the same POI in the future. Moreover, single check-ins are already crucial
and should be considered in the model to account for users’ preferences as they
choose to visit a particular POI when they could have chosen other venues in the
same neighborhood. This gives us a rough estimate of their interest and pref-
erences while multiple check-ins are more accurate indicators of users’ interest.
Thus, both single and multiple check-ins need to be involved while learning the
model.

4.3 Proposed Method

Following the remarks based on our analysis in Section 4.2, in this section, we
present here our model. We first introduce the notations of our model. Let

74 4.3 Proposed Method

Figure 4.4. Check-in histogram of 100 randomly-sampled users from the 500
most active users of Gowalla’s. For each user, the red bar denotes the number
of multiple check-ins, while the blue bar denotes the number of single check-ins.

P = {ρ1, . . . ,ρn} be the set of n users and L = {l1, . . . , lm} be the set of m POIs.
As an implicit feedback, we consider POIs that each user ρi has visited, Li, as
“relevant” and all other unvisited POIs as “irrelevant” in the neighborhood where
the user has visited all relevant items. Also, we consider POIs with multiple
check-ins as “more relevant.” Therefore, we define L +i as the set of relevant
POIs, L −i as the set of irrelevant POIs, and L ∗i the set of “more-relevant” POIs
for user ρi. We also define n+ = |L +i |, n− = |L −i |, and n∗i = |L

∗
i |.

Our aim is to define a ranking function fi(l) for each user ρi to rank more-
relevant POIs higher than relevant POIs, and relevant POIs higher than irrelevant
POIs. Moreover, we aim to incorporate the influence of POIs that are located
close to each other. Let U ∈ Rd×n be the latent factor for users and V ∈ Rd×m

be the latent factor for POIs. It is worth noting that ui corresponds to ρi and
v j corresponds to l j. The ranking function for the ith user ρi and the jth POI l j

would be fi(l j) = uT
i v j.

We design a two-phase objective function, where the first phase constructs
ranking functions fi(l) such that relevant POIs are ranked higher than irrelevant
POIs. In the second phase, functions fi(l) are updated to rank more-relevant POIs
higher than relevant POIs. In Section 4.3.1, we first describe how we compute
the distance between two POIs and in Section 4.3.2 we explain the first phase of
the objective function in which the geographical influence is also incorporated.
In Section 4.3.3, we give details on the second phase of the objective function.
In Section 4.3.4, we describe the proposed time-sensitive regularizer which takes
into consideration the users’ long-term behavioral patterns, and in Section 4.3.5
we present an overview of the proposed algorithm and how both phases of the
objective function are optimized jointly.

75 4.3 Proposed Method

4.3.1 Geographical Similarity

We compute the geographical similarity between two POI to incorporate the ge-
ographical context while characterizing the user’s geographical preferences. The
similarity is inversely proportional to the distance between two POIs. Inspired
by relevant studies [5, 17, 125, 126] where a simple geographical measure im-
proved the models significantly, we use the Haversine formula to compute the
angular distance between li and l j:

hi j = 2 arcsin
�q

sin2(∆φi j/2) + cosφi × cosφ j × sin2(∆ηi j/2)
�

,

where φi and φ j are latitudes of li and l j in radian, respectively. Accordingly, ηi

and η j are longitudes of li and l j in radian. Then we calculate the geographical
similarity between li and l j as follows:

gi j =
1

1+ (hi j × R)
,

where R is the earth’s radius (R=6,371KM). In the following section, we demon-
strate how di j is incorporated in the our proposed method.

4.3.2 Phase 1: Visited vs. Unvisited POIs

In the first phase, we focus on ranking higher POIs that a user has visited (no
matter how many times) than the ones they did not visit. Formally, we aim at
ranking L +i higher than L −i . More specifically, our goal is to rank the POIs
with emphasis on the top of the list. Moreover, we take into consideration the
geographical distance between POIs. Building ranking functions that incorporate
the distance between POIs also allows us to model latent associations between
users living in the same neighborhood, who would not be associated with each
other in a traditional CR setting. This happens because our method takes into
account venues’ distances as it updates the user and item latent matrices.

Let Hi(l−j) be the “height” of an irrelevant venue:

Hi(l
−
j) =

∑

k∈L +i

�

�

1[fi(l+k)≤ fi(l−j)]

�

/
�

1+αexp(gk j)
�

�

, (4.1)

where α is the weight of geographical influence and 1[.] is an indicator function.
Note that α controls the model’s bias towards POIs in the same neighborhood and
can be used to prevent the “Harry Potter” problem [115]. Dividing the indicator

76 4.3 Proposed Method

function by G allows the model to incorporate the geographical distances into
the model while constructing the height for irrelevant items. For example, if an
irrelevant item is ranked higher than a relevant item, but they are very close
then the denominator will be higher, reducing the height of the irrelevant POI.
The objective function should aim at minimizing Hi for all given POIs. A lower
value of Hi also means that there are fewer irrelevant POIs ranked higher than
relevant ones. From an optimization perspective, indicator functions are not
convex. Therefore, we use the logistic loss of the difference between the two
functions as a convex upper bound surrogate. For reading simplicity we define

Gα(i, j) = 1+αexp(gi j) .

We define the difference between the kth POI and the jth as follows:

δi(k, j) = uT
i

�

(vk − v j)/Gα(k, j)
�

. (4.2)

Therefore, the surrogate height function H ′i(l
−
j) becomes:

H ′i(l
−
j) =

∑

k∈L +i

log
�

1+ exp
�

−δi(k, j)
��

, (4.3)

where `(δ) = log(1+ exp(−δ)) is the logistic loss of δ. We consider `2-norm of
H ′i as the objective function, following [167]. Therefore, the objective function
is:

R(U , V) =
m
∑

i=1

1
ni

∑

j∈L −i

�

H ′i(l
−
j)
�2
=

m
∑

i=1

1
ni
×

∑

j∈L −i

�

∑

k∈L +i

log
�

1+ exp
�

− uT
i

�

(vk − v j)/Gα(k, j)
�

�

�

�2

.

(4.4)

For solving the above optimization problem, we use a gradient-descent-based
alternating optimization algorithm. We first keep V fixed and update U , and
then keep U and update V . Therefore, the update rules of the t+1 iteration are:

ut+1
i = ut

i − γ5ui
R(U t , V t),∀i = 1, . . . , n , (4.5)

vt+1
j = vt

j − γ5v j
R(U t+1, V t),∀ j = 1, . . . , m . (4.6)

For reading simplicity we define

θ (k, j) =
�

1+ exp(δ(k, j)
�

,

77 4.3 Proposed Method

and the gradients of R(U , V) with respect to ui and v j are computed as follows:

5ui
R(U , V)

=
2
ni

∑

j∈L −i

�

H ′i(l
−
j)
∑

k∈L +i

(v j − vk)/
�

Gα(k, j)θ (k, j)
�

�

,

5v j
R(U , V)

=
∑

i∈P −j

2
ni

∑

h∈L −i

�

H ′i(l
−
h)
∑

k∈L +i

ui/
�

Gα(k, h)θ (k, h)
�

�

−
∑

i∈P +j

2
ni

∑

h∈L −i

�

H ′i(l
−
h)
∑

k∈L +i

ui/
�

Gα(k, h)θ (k, h)
�

�

.

with P +j being the set of users who have visited l j and P −j the set of users who
have not visited l j.

4.3.3 Phase 2: Multiple vs. Single Check-ins

In the second phase, we focus on ranking POIs with multiple check-ins (i.e.,
more-relevant POIs) higher than the ones with single check-in (i.e., relevant
POIs). As we observed in Section 4.2.3, there is a positive correlation between
the number of multiple check-ins and total number check-ins. Therefore, it is
crucial to take into consideration the fact that the POIs that users have visited
more often in the past are more relevant. Formally, letL 1+

i =L +i −L
∗
i be the set

of POIs that the ith user has visited exactly once. Our goal is to rank L ∗i higher
than L 1+

i . Let Πi(l∗j) be the “reverse height” of a more-relevant venue, that is:

Πi(l
∗
j) =

∑

k∈L 1+
i

1[fi(l∗k)≤ fi(l1+
j)]

. (4.7)

Lower values of Πi mean that there are fewer relevant POIs ranked higher than
the more-relevant ones. Similarly to the first phase in Section 4.3.2, we use a
logistic loss as the surrogate:

Π′i(l
1+
j) =

∑

k∈L ∗i

log
�

1+ exp(−uT
i (vk − v j))

�

. (4.8)

However, Π′i is not easy to be optimized using typical ranking loss, like DCG.
Hence, we reformulate the objective functions as follows:

∑

k∈L ∗i

log
�

1+Πi(l
∗
k)
�

.

78 4.3 Proposed Method

Then, the objective function RΠ(U , V) of reverse height becomes:

RΠ(U , V) =
m
∑

i=1

1
ni

∑

j∈L ∗j

log(1+Π′i(l
∗
k)) =

m
∑

i=1

1
ni
×

∑

j∈L ∗j

log
�

1+
∑

k∈L 1+
i

log
�

1+ exp
�

− uT
i (vk − v j)

�

�

�

.
(4.9)

We optimize RΠ(U , V) similarly to Section 4.3.2, that is, we first keep V fixed and
update U , then keep U updating V . Therefore, we consider the following update
rules:

ut+1
i = ut

i − γ5ui
RΠ(U

t , V t),∀i = 1, . . . , n , (4.10)

vt+1
j = vt

j − γ5v j
RΠ(U

t+1, V t),∀ j = 1, . . . , m . (4.11)

Similarly, the gradients are defined as follows:

5ui
RΠ(U , V)

=
1
ni

∑

j∈L ∗i

� 1
1+Π′i(l

∗
j)

∑

k∈L 1+
i

�

(v j − vk)/(1+ exp(δi(k, j)))
�

�

,

5v j
RΠ(U , V)

=
∑

i∈P 1+
j

1
ni

∑

h∈L 1+
i

� 1
1+Π′i(l

∗
h)

∑

k∈L ∗i

�

ui/(1+ exp(δi(k, h)))
�

�

−
∑

i∈P ∗j

1
ni

∑

h∈L 1+
i

� 1
1+Π′i(l

∗
h)

∑

k∈L ∗i

�

ui/(1+ exp(δi(k, h)))
�

�

,

where we define P 1+
j the set of users who have visited l j only once and P ∗j the

set of users who have visited l j multiple times.

4.3.4 Time-Sensitive Regularizer

As we discussed in Section 4.2.2, the long-term temporal activity patterns of both
users and POIs should be taken into account. One way to account for the activity
patterns of users and the popularity of POIs is to consider how variant they are
over time. For example, if a POI is a coffee shop and receives approximately the
same number of people every month, it is more likely that it receives the same
number of users in the next month. Whereas, POIs like ski shop are only popular

79 4.3 Proposed Method

during the ski season. In particular, we observed in Figure 4.3d that the popu-
larity of certain POI categories are highly time-dependent. Here, we propose to
incorporate a novel time-sensitive regularizer into the objective function of both
of our objective phases in (4.4) and (4.9). Adding a regularizer that is calcu-
lated for each user and POI based on their past activities enables us to model
the time-sensitivity of users and POIs. The main goal here is to penalize those
users and POIs which are less stable. A more stable user or POI is one that ex-
hibits less activity variance over time. This regularizer is defined based on our
extensive analysis and observation in Section 4.2.2 where we observed that POIs
that are less popular are more time-sensitive. We also had a similar observation
for users, where we observed that less active users exhibit less stability in their
check-in behavior.

Let σ2,U ∈ R1×n be the variance vector for users, where σ2,U
i is the activity

variance of the ith user ρi. For each user ρi, we count the number of check-
ins per month and normalize the values. Then, calculating the variance of the
monthly check-ins of ρi produces σ2,U

i . Similarly, let σ2,V ∈ R1×m be the variance
vector for POIs, withσ2,V

j being the popularity variance of the jth POI l j. Note that
we calculate the variance of POIs based on their corresponding categories since
we observed more meaningful popularity patterns with respect to the categories.
The time-sensitive regularizer parameter for users and POIs are calculated as
follows:

ΛU = λ log(1+ exp(−σ2,U)) , (4.12)

ΛV = λ log(1+ exp(−σ2,V)) . (4.13)

It is worth noting that we consider the logistic function of variances to prevent
underflow and take the hyper parameter λ as a controlling parameter to prevent
the model from overfitting. Ultimately, we add the time-sensitive regularizer to
the objective functions of our two phases in (4.4) and (4.9). Thus, when updating
ui, we add the regularizer term ΛU

i ui, and for updating vj we add the regularizer
term ΛV

j v j.

4.3.5 Joint Two-Phase Collaborative Ranking Algorithm

Algorithm 1 presents the proposed joint two-phase collaborative ranking method.
Line 2 initializes the factor matrices randomly. θ is initialized at line 3, summing
up the values of the two phases of our objective function, namely, R(U t+1, V t+1)
and RΠ(U t+1, V t+1). The joint optimization of the two phases is done between
lines 4 and 12. As we see, in every iteration, ui and v j are first updated according
to (4.5) and (4.6) (lines 7 and 8) to push visited POIs higher in the ranking.

80 4.4 Experimental Setup

Algorithm 1: The Joint Two-Phase Collaborative Ranking Algorithm
(JTCR).

Input: P , L , max I ter, {λ,γ,α,ε, d}
Output: Uout, Vout

1 t ← 0
2 Initialize U t+1, V t+1

3 θ t+1← R(U t+1, V t+1) + RΠ(U t+1, V t+1), θ t = θ t+1

2
4 while (abs(θ t+1 − θ t)> ε) ∧ (t < max I ter) do
5 t ← t + 1
6 // Phase 1

7 Update ut+1
i ,∀i = 1, . . . , n Eq. (4.5)

8 Update vt+1
j ,∀ j = 1, . . . , m Eq. (4.6)

9 // Phase 2

10 Update ut+1
i ,∀i = 1, . . . , n Eq. (4.10)

11 Update vt+1
j ,∀ j = 1, . . . , m Eq. (4.11)

12 θ t+1← R(U t+1, V t+1) + RΠ(U t+1, V t+1)
end

13 Uout← U t+1, Vout← V t+1

Each iteration is then followed by optimizing ui and v j according to (4.10) and
(4.11) (lines 10 and 11), respectively. Therefore, U and V factor matrices are
optimized jointly to push visited POIs higher than unvisited POIs and multiple
visited POIs higher than single visited POIs simultaneously. After convergence,
the final values of the latent factor matrices are stored at line 13. Note that the
proposed time-sensitive regularizer is applied at lines 7, 8, 10, and 11. Also, the
geographical influence is applied at lines 7 and 8. One can argue that employing
a two-phase learning strategy might be computationally expensive. However,
since in the second phase we only focus on the POIs that each user has checked
in, the optimization algorithm does not add a substantial overhead to the whole
system. In fact, for each user the complexity of one iteration is O (n1+

i n∗i), which
is very small compared to the first phase, which is O (n−i n+i).

4.4 Experimental Setup

In this section, we evaluate the performance of our model compared with state-
of-the-art methods and study the impact of different parameters on the perfor-
mance of our model.

81 4.4 Experimental Setup

4.4.1 Data

We evaluate our method on two real-world datasets, namely, Foursquare’s and
Gowalla’s. Both datasets were provided by the authors of [208]. The statistical
details of the datasets are listed in Table 4.1. We take the first 70% of the data
for each user as the training set, 10% as the validation set, and the remaining
20% as the test set, following the evaluation protocol of [219].

4.4.2 Metrics

We compare the performance of our model in terms of Precision at k (P@k)
and Normalized Discounted Cumulative Gain at k (nDCG@k). Let Lch(ρ) be the
set POIs that a user has visited in the test set and Lk

rec(ρ) be the set of recom-
mended POIs of size k. P@k(ρ) for a user ρ is defined as P@k(ρ) = (|Lch(ρ)∩
Lk

rec(ρ)|)/(k) and P@k for the whole dataset is the average P@k(ρ) for all the
users in the test set.

To calculate nDCG@k, we need to define relevance values in the test set.
Following the same strategy of Section 4.3, we define a three-level relevance for
each POI based on the frequency of check-in for a particular user:

rel(l,ρ) =

2 if ρ visited l multiple times

1 if ρ visited l only once

0 if ρ did not visit l .

Therefore, nDCG@k(ρ) for a given user ρ is defined as follows:

DCG@k(ρ) =
k
∑

r=1

2rel(lr ,ρ) − 1
log2(r + 1)

,

nDCG@k(ρ) =
DCG@k(ρ)
IDCG@k(ρ)

,

where lr is the POI at the r th rank and IDCG@k(ρ) is the ideal DCG@k value for
user ρ, that is, the highest possible value for DCG@k. The reported values of
nDCG@k are the average of the nDCG@k(ρ) values for all the users in the test
set. We report the values of nDCG@k and P@k for three values of k, namely 5,
10, 20.

82 4.4 Experimental Setup

4.4.3 Compared Methods

We compare our Joint Two-Phase Collaborative Ranking (JTCR) model with ap-
proaches that consider geographical influence for POI recommendation and ap-
proaches based on collaborative ranking with emphasis on ranking relevant items
higher. Also, we include two variations of the proposed JTCR to demonstrate the
effectiveness of different elements of our algorithm. Note that for each model, we
find the optimum set of parameters using the validation set and report the mean
and standard deviation of results of 5 different runs with the same parameters.
We compare our JTCR model with the following methods:

• JTCR-Phase1 reports the performance of the first phase of JTCR. We in-
clude this model as a baseline to demonstrate the effectiveness of the first
phase of JTCR and the significance of the second phase of the algorithm.

• JTCR-NoVar reports the result of our proposed JTCR without using the
time-sensitive regularizer. Instead, we use λ/2(|U |2 + |V |2) as the reg-
ularizer. Our goal is to demonstrate the effectiveness of the time-based
regularizer.

• JTCR-NoGeo reports the result of our proposed JTCR without applying the
geographical influence (i.e., α= 0).

• WRMF [101] proposes an MF method for item prediction from implicit
feedback. It is an adaptation of SVD, minimizing the square-loss.

• IRenMF [131] is based on weighted MF [143] exploiting two levels of
geographical neighborhood characteristics: nearest neighboring locations
share more similar user preferences, while locations in the same geograph-
ical region may share similar user preferences.

• GeoMF [126] augments users’ and venues’ latent factors in the factoriza-
tion model with activity area vectors of users and influence area vectors of
venues, respectively.

• Rank-GeoFM [125] is a ranking-based MF model that includes the geo-
graphical influence of neighboring venues while learning users’ preference
rankings for venues.

• Rank-GeoFM-NoGeo reports the result of Rank-GeoFM without consider-
ing the geographical influence.

83 4.5 Results and Discussion

• RH-Push / Inf-Push / P-Push [60] are three push CR models based on re-
verse height, infinite, and p-norm. For each user, we considered the venues
they visited as positive training samples and selected k venues randomly
as negative training samples.

We aim to compare the performance of JTCR against state-of-the-art methods
in POI recommendation that consider recommendation as a ranking problem and
the ones that do not. Also, it is crucial to compare our method with approaches
that incorporate geographical influence into the model. The other set of methods
is based on CR. Our aim is to demonstrate the effectiveness of our two-phase
regularized CR in comparison with other CR baselines.

4.5 Results and Discussion

In this section, we evaluate the performance of our proposed method with base-
line methods.

4.5.1 Performance Comparison

Tables 4.2, 4.3, 4.4, and 4.5 report the performance of our method compared
with 11 baselines in terms of nDCG@k and P@k for Foursquare’s and Gowalla’s.
Based on the results we observe that our proposed JTCR significantly outperforms
all the baseline methods on both datasets with respect to both nDCG@k and P@k.
It is worth noting that the improvement is achieved for all values of k.

Moreover, Rank-GeoFM performs best among the geographical-based meth-
ods, as Rank-GeoFM propagates geographical influences using the constructed
graph, which confirms that geographical neighborhood is a major factor for rec-
ommendation. Rank-GeoFM considers the implicit feedback while training the
model similar to us, however, as we observe our two-phase collaborative rank-
ing approach beats Rank-GeoFM indicating the effectiveness of our approach.
Moreover, JTCR outperforms Rank-GeoFM by a large margin on both datasets.
It is worth noting that JTCR beats all geographical-based methods in terms of
both nDCG@k and P@k for all different values of k in both datasets. GeoMF
and IRenMF do not consider POI recommendation as a ranking problem. Hence,
they attempt to optimize the overall error rate which proves to be less effective
for POI recommendation mainly because the users are only interested in top k
recommended POIs. Consequently, JTCR beats GeoMF and IRenMF with a large
margin.

84 4.5 Results and Discussion

Table
4.2.

P
erform

ance
evaluation

on
Foursquare’s

in
term

s
ofnD

C
G
@
k.

n
D

C
G

@
5

∆
n

D
C

G
@

10
∆

n
D

C
G

@
20

∆

JT
C

R
0.0639

-
0.0529

-
0.0394

-

JT
C

R
-Phase1

0.0534
†

−
16.43%

0.0436
†

−
17.58%

0.0339
†

−
13.96%

JT
C

R
-N

oVar
0.0605

†
−

5.32%
0.0497

†
−

6.05%
0.0375

†
−

4.82%

JT
C

R
-N

oG
eo

0.0613
†

−
4.07%

0.0494
†

−
6.62%

0.0381
−

3.3%

W
R

M
F

0.0248
†

−
61.19%

0.0210
†

−
60.3%

0.0178
†

−
54.82%

G
eoM

F
0.0422

†
−

33.96%
0.0336†

−
36.48%

0.0250
†

−
36.55%

IR
en

M
F

0.0430
†

−
32.71%

0.0348
†

−
34.22%

0.0286
†

−
27.41%

R
an

k-G
eoFM

0.0438
†

−
31.46%

0.0359
†

−
32.14%

0.0277
†

−
29.70%

R
an

k-G
eoFM

-N
oG

eo
0.0418

†
−

34.59%
0.0314

†
−

40.64%
0.0234

†
−

40.61%

R
H

-Pu
sh

0.0251
†

−
60.72%

0.0187
†

−
64.65%

0.0137
†

−
65.23%

In
f-Pu

sh
0.0433

†
−

32.24%
0.0361

†
−

31.76%
0.0302

†
−

23.35%

P-Pu
sh

0.0423
†

−
33.8%

0.0309
†

−
41.59%

0.0218
†

−
44.67%

Statistically
significantdifferences

w
ith

JTC
R

are
denoted

by
†

for
p
<

0.05
in

paired
t-test.

∆
values

express
the

relative
difference,com

pared
to

JTC
R

.For
each

m
odelw

e
reportthe

m
ean

and
standard

deviation
of

5
different

runs.

85 4.5 Results and Discussion

Table
4.3.

P
erform

ance
evaluation

on
Foursquare’s

in
term

s
ofP

@
k.

P@
5

∆
P@

10
∆

P@
20

∆

JT
C

R
0.0591

-
0.0456

-
0.0303

-

JT
C

R
-Phase1

0.0462
†
−

21.83%
0.0357

†
−

21.71%
0.0260

†
−

14.19%

JT
C

R
-N

oVar
0.0536

†
−

9.31%
0.0414

†
−

9.21%
0.0282

†
−

6.93%

JT
C

R
-N

oG
eo

0.0551
†
−

6.77%
0.0411

†
−

9.87%
0.0292

−
3.63%

W
R

M
F

0.0224
†
−

62.1%
0.0181

†
−

60.31%
0.0151

†
−

50.17%

G
eoM

F
0.0385

†
−

34.86%
0.0281

†
−

38.38%
0.0186

†
−

38.61%

IR
en

M
F

0.0385
†
−

34.86%
0.0280

†
−

38.60%
0.0219

†
−

27.72%

R
an

k-G
eoFM

0.0397
†
−

32.83%
0.0304

†
−

33.33%
0.0215

†
−

29.04%

R
an

k-G
eoFM

-N
oG

eo
0.0339

†
−

42.64%
0.0229

†
−

49.78%
0.0157

†
−

48.18%

R
H

-Pu
sh

0.0214
†
−

63.79%
0.0140

†
−

69.3%
0.0094

†
−

68.98%

In
f-Pu

sh
0.0397

†
−

32.83%
0.0313

†
−

31.36%
0.0217

†
−

28.38%

P-Pu
sh

0.0326
†
−

44.84%
0.0211

†
−

53.73%
0.0132

†
−

56.44%

Statistically
significant

differences
w

ith
JTC

R
are

denoted
by

†
for

p
<

0.05
in

paired
t-test.

∆
values

express
the

relative
difference,com

pared
to

JTC
R

.For
each

m
odelw

e
report

the
m

ean
and

standard
deviation

of
5

different
runs.

86 4.5 Results and Discussion

Table
4.4.

P
erform

ance
evaluation

on
G
ow

alla’s
in

term
s
ofnD

C
G
@
k.

n
D

C
G

@
5

∆
n

D
C

G
@

10
∆

n
D

C
G

@
20

∆

JT
C

R
0.1158

-
0.0854

-
0.0633

-

JT
C

R
-Phase1

0.1090
†

−
4.32%

0.0823
−

3.04%
0.0607

−
2.53%

JT
C

R
-N

oVar
0.1092

†
−

5.79%
0.0802

†
−

5.85%
0.0593

†
−

7.42%

JT
C

R
-N

oG
eo

0.1099
†

−
5.09%

0.0823
−

3.63%
0.0608

−
3.95

†%

W
R

M
F

0.0620
†

−
46.46%

0.0523
†

−
38.76%

0.0425
†

−
32.86%

G
eoM

F
0.0604

†
−

47.84%
0.0495

†
−

42.04%
0.0374

†
−

40.92%

IR
en

M
F

0.0606
†

−
47.67%

0.0499
†

−
41.57%

0.0389
†

−
38.55%

R
an

k-G
eoFM

0.0593
†

−
48.79%

0.0525
†

−
38.52%

0.0451
†

−
28.75%

R
an

k-G
eoFM

-N
oG

eo
0.0675

†
−

41.71%
0.0514

†
−

39.81%
0.0387

†
−

38.86%

R
H

-Pu
sh

0.0985
†

−
14.94%

0.0765
†

−
10.42%

0.0569
†

−
10.11%

In
f-Pu

sh
0.1090

†
−

5.87%
0.0803

†
−

5.97%
0.0585

†
−

7.58%

P-Pu
sh

0.1026
†

−
11.40%

0.0805
†

−
5.74%

0.0596
†

−
5.85%

Statistically
significantdifferences

w
ith

JTC
R

are
denoted

by
†

for
p
<

0.05
in

paired
t-test.

∆
values

express
the

relative
difference,com

pared
to

JTC
R

.For
each

m
odelw

e
reportthe

m
ean

and
standard

deviation
of

5
different

runs.

87 4.5 Results and Discussion

Table
4.5.

P
erform

ance
evaluation

on
G
ow

alla’s
in

term
s
ofP

@
k.

P@
5

∆
P@

10
∆

P@
20

∆

JT
C

R
0.0949

-
0.0621

-
0.0425

-

JT
C

R
-Phase1

0.0889
†
−

6.32%
0.0596

†
−

4.03%
0.0414

−
2.59%

JT
C

R
-N

oVar
0.0865

†
−

8.85%
0.0570

†
−

8.21%
0.0378

†
−

11.06%

JT
C

R
-N

oG
eo

0.0866
†
−

8.75%
0.0590

†
−

4.99%
0.0401

†
−

5.65%

W
R

M
F

0.0556
†
−

41.41%
0.0448

†
−

27.86%
0.0346

†
−

18.59%

G
eoM

F
0.0540

†
−

43.10%
0.0415

†
−

33.17%
0.0284

†
−

33.18%

IR
en

M
F

0.0545
†
−

42.57%
0.0423

†
−

31.88%
0.0305

†
−

28.24%

R
an

k-G
eoFM

0.0564
†
−

40.57%
0.0472

†
−

23.99%
0.0384

†
−

9.65%

R
an

k-G
eoFM

-N
oG

eo
0.0549

†
−

42.15%
0.0383

†
−

38.33%
0.0269

†
−

36.71%

R
H

-Pu
sh

0.0820
†
−

13.59%
0.0588

†
−

5.31%
0.0400

†
−

5.88%

In
f-Pu

sh
0.0864

†
−

8.96%
0.0569

†
−

8.37%
0.0377

†
−

11.29%

P-Pu
sh

0.0844
†
−

11.06%
0.0573

†
−

7.73%
0.0396

†
−

6.82%

Statistically
significant

differences
w

ith
JTC

R
are

denoted
by

†
for

p
<

0.05
in

paired
t-test.

∆
values

express
the

relative
difference,com

pared
to

JTC
R

.For
each

m
odelw

e
report

the
m

ean
and

standard
deviation

of
5

different
runs.

88 4.5 Results and Discussion

In addition, we observe that in most cases CR-based baseline methods, namely
P-Push, Inf-Push, and RH-Push perform better than other baseline methods. This
suggests that a CR-based approach leads to better performance for POI recom-
mendation in general. However, we observe that JTCR outperforms all CR-based
baselines. This indicates that all CR-based methods suffer from the sparsity prob-
lem while our two-phase CR strategy alleviates this problem by considering both
visited and unvisited POIs in the same neighborhood. Also, none of the CR-based
methods consider time in their ranking loss function. While it is important to con-
sider POI recommendation as a ranking problem, it is also important to consider
time to generate accurate recommendations (Section 4.2). Our proposed model
beats the CR-based methods by a significant margin showing out time-sensitive
regularizer (Section 4.3.4) based on the temporal behavior of users and the tem-
poral popularity of POIs leads to a more accurate performance. Although the
CR-based baseline approaches focus on the top of the ranked list, they fail to
rank more-relevant POIs higher in the ranking. In fact, these methods consider a
binary relevance between users and POIs. Higher nDCG@k values indicate that
our model ranks POIs with multiple check-ins more accurately, compared with
the CR-based baseline approaches. This suggests that our two-phase model ranks
the POIs with higher relevance more effectively than the CR approaches by con-
sidering multi-level implicit user feedback. It is worth noting that the variants
of our model also outperform most of the baselines. In particular, JTCR-NoVar
outperforms all the baselines and JTCR-Phase1 performs better than most of the
baselines, including P-Push. This is important, since it indicates that incorporat-
ing the temporal information together with geographical similarities improves
the performance of this model when only the first phase is considered. Also, we
see that JTCR-NoGeo beats all the baselines. Specifically, it performs better that
Rank-GeoFM-NoGeo and other baselines that do not consider geographical in-
formation. This indicates the effectiveness of the proposed model even when the
geographical influence is not considered.

4.5.2 Impact of the 2nd Phase

To study the effect of the second phase of JTCR, we compare the performance of
JTCR when only the first phase is used (JTCR-Phase1) with the performance of
JTCR when both phases are considered. As we can see in Tables 4.2 - 4.5, JTCR
exhibits a significant improvement over JTCR-Phase1 in terms of all evaluation
metrics for both datasets. This indicates that while JTCR-Phase1 is able to beat all
other baselines, the second phase of the algorithm enables JTCR to model multi-
ple check-ins more accurately. This validates the remark based on our analysis in

89 4.5 Results and Discussion

Section 4.2.4 which states that a user who has visited a POI multiple times in the
past is likely to visit the same venue in the future. Moreover, while this remark
based on our analysis applies to a user, it is also valid with respect to similar users.
Therefore, in the second phase, similar users and their corresponding collabora-
tive associations are mainly determined based on how similar they are in terms
of multiple check-ins. This helps the model rank “more relevant” items higher
and hence improves the accuracy of the model. Moreover, we observe a higher
relative difference on Foursquare’s. According to Table 4.1, Foursquare’s consists
of more multiple check-ins than Gowalla’s (45.51% as opposed to 32.69%) which
suggests that the second phase can model multiple check-ins more effectively on
the Foursquare’s dataset.

4.5.3 Impact of the Time-Sensitive Regularizer

Next, we discuss the effect of the time-sensitive regularizer. To this end, we
compare the performance of JTCR without using the time-sensitive regularizer
(JTCR-NoVar). As seen in Tables 4.2 & 4.3, a statistically significant improve-
ment of JTCR over JTCR-NoVar is observed in terms of all evaluation metrics for
Foursquare’s, suggesting that using the time-sensitive regularizer enables JTCR
to place more relevant venues higher in the ranking. As for Gowalla’s, we also see
significant improvements in Tables 4.4 & 4.5 indicating that our proposed time-
sensitive regularizer improves the performance of JTCR by penalizing those users
and POIs that exhibit less stability in their check-in and popularity, respectively.
This validates the remark based on our analysis reported in Section 4.2.4 where
we showed that there is a negative correlation between a POI’s popularity and
its popularity variance. A similar observation was made for users. Based on this
remark, we defined the time-sensitive regularizer to penalize those users and
POIs that have been variant in the past. In other words, variant users are less
probable to visit variant POIs and the introduced regularizer enables the model
to take this into account while training.

4.5.4 Impact of the Geographical Influence

Here, we discuss the effect of the geographical influence. In order to do this, we
compare the performance of JTCR without applying the geographical influence
(JTCR-NoGeo). As seen in Tables 4.2 & 4.3, we observe a statistically significant
improvement of JTCR over JTCR-NoGeo in terms of all evaluation metrics for
Foursquare’s except for nDCG@20 and P@20. However, the significant improve-
ment in terms of other evaluation metrics for Foursquare’s suggests that applying

90 4.5 Results and Discussion

the geographical influence enables JTCR to model users’ geographical behavior
and activities more effectively. As for Gowalla’s, we see significant improvements
in Tables 4.4 & 4.5 for all evaluation metrics expect nDCG@10 and nDCG@20.
This indicates that the geographical influence improves the performance of JTCR
by considering how users like POIs that are in the same neighborhood.

4.5.5 Impact of the Model Parameters

Next, we demonstrate the effect of the model’s parameters. The results reported
in the previous sections are achieved after the best parameter set was found on
the validation set. We fixed the learning rate (γ= 1× 10−4) for both datasets to
ensure the generalization of our model.

In Figure 4.5 we study the effect of latent factors d on the performance of
our model and report nDCG@5 while keeping other parameters fixed. As we
can see in Figure 4.5a, the optimal number of latent factors d for Foursquare’s
is 80. For higher values of latent factors, nDCG@5 drops. Also, nDCG@5 drops
when selecting lower values for d. We observe a similar behavior on Gowalla’s
in Figure 4.5b with the difference that the optimal number of latent factors is 90.
For all other values of d, we observe a drop in the performance.

Furthermore, in order to study the effect of the regularizing control parameter
(λ), we varied λ while keeping d and α fixed. As shown in Figure 4.6a, the best
λ for Foursquare’s is 1× 10−4, while according to Figure 4.6b, for Gowalla’s, it
is 1× 10−4. The performance of our model drops using different values of λ for
both datasets. While lower performance achieved with lower values of λ indicate
that the introduced regularizer is essential to avoid overfitting, higher values of
λ also hurt the performance.

Next, in Figure 4.7 we study the effect of geographical influence weight α on
the performance of our model and report nDCG@5 while keeping other param-
eters fixed. As we can see in Figure 4.7a, the optimal value of α for Foursquare’s
is 0.5 and the performance drops for all other values of α. We observe a similar
behavior on Gowalla’s in Figure 4.7b where the best performance is achieved
with α= 0.9. For all other values of α, we see a drop in the performance.

4.5.6 Model’s Convergence

Finally, Figure 4.8 plots the value of the joint objective function, Θ t = R(U t , V t)+
RΠ(U t , V t) (Eq. (4.4) and (4.9)) when training the model in t iterations/epochs.
We observe that the value of Θ t consistently decreases as the training epochs
increase until the proposed JTCR model converges. The behavior of the proposed

91 4.6 Summary

(a) Foursquare’s (b) Gowalla’s

Figure 4.5. Impact of the number of latent factors.

objective function is as expected, since it is the summation of a logistic loss and
a quasi convex function. R, that is a logistic loss, it is convex and monotonic
decreasing. Also, RΠ is strictly positive and monotonic decreasing. Hence, the
summation of both loss functions converges, as illustrated in Figure 4.8.

4.6 Summary

In this chapter, we presented an extensive data analysis on two POI recommen-
dation datasets studying various attributes related to sparsity, time-sensitivity,
and multiple check-ins. Based on the intuitions we got from data analysis, we
proposed a two-phase CR model, called JTCR. In addition, we showed how to in-
corporate the geographical influence into the objective functions and proposed a
time-sensitive regularizer to capture the long-term user behavior and POI popu-
larity patterns. The experimental results on the two benchmark datasets demon-
strated that our proposed model outperforms other state-of-the-art methods. The
results indicated that our model is able to address the data sparsity problem tak-
ing into account both visited and unvisited POIs in the training phase and their
respective geographical distances. We also showed that the second phase is able
to rank more-relevant POIs higher in the ranking, explaining the superiority of
our two-phase model over the baselines as well as the first phase of the algorithm.
This suggests that while single check-ins provide valuable information about the
users’ preferences, multiple check-ins give us a more clear picture of their behav-
ior and habits. Therefore, in the first phase of our algorithm, a CR model that
focuses on ranking visited venues higher than unvisited ones addresses the data

92 4.6 Summary

(a) Foursquare’s (b) Gowalla’s

Figure 4.6. Impact of λ.

sparsity by taking into account the unvisited venues in the training phase. In the
second phase, a different CR approach is employed focusing on placing users’
favorite POIs higher in the ranking. Throughout this process, we have regular-
ized the learning procedure following the intuitions that we had by analyzing
time-sensitivity of users and POIs. Our aim was to penalize POIs and users that
have been more time-sensitive in the past.

In the next chapter, in an attempt to combine the two approaches we have
studied so far, we will propose a hybrid model. From the lessons we learned
in Chapters 3 and 4, we model users and POIs using both content-based and
collaborative models and fuse the predictions of both models to achieve a higher
performance. Our main motivation is to take advantage of both approaches and
use the complementary information that these models learn.

93 4.6 Summary

(a) Foursquare’s (b) Gowalla’s

Figure 4.7. Impact of α.

(a) Foursquare’s (b) Gowalla’s

Figure 4.8. Convergence of the joint objective function.

94 4.6 Summary

Chapter 5

Hybrid User Modeling for Venue
Suggestion

5.1 Introduction

While collaborative approaches are strong in terms of capturing POI and user
latent associations on large datasets, they fail to model complex user behavior
and preference. Content-based approaches, on the other hand, can effectively
model users and POIs individually, but fail to consider latent associations. That
is why in the majority of cases, the best performing models are those that combine
the two approaches. Such models are called hybrid recommendation models. In
this chapter, we aim to explore hybrid recommendation on the TREC-CS dataset.
Relevant literature [25] has explored existing content-based, collaborative, and
hybrid approaches for this task and has concluded that hybrid models perform
the best. As we mentioned earlier, the main reason is that hybrid approaches
take advantage of both individual user and POI profiles that are created by a
content-based model as well as latent user-POI associations that are learned by
a collaborative model.

To this aim, we first propose a novel collaborative venue suggestion frame-
work, called CR-MLS, that enables a model to learn the optimum venue ranking
with a focus on the top of the ranked list, while integrating additional informa-
tion about LBSNs into the model. The basic idea behind our proposed method is
that the latent association between two users does not necessarily require them to
have visited exactly the same venues in the past. On the other hand, if two users
have visited very similar venues, we should still be able to use this information
to associate those users with each other. In particular, we design the objective
function of our CR model to consider the similarity of venues in the loss func-

95

96 5.1 Introduction

tion with a focus on ranking relevant venues at the top of the recommendation
list. After proposing our CR method, we introduce three example cross-venue
similarity measures, each of which focuses on a different aspect.

In particular, we propose a geographical similarity to incorporate the influ-
ence of venues in the same neighborhood. Also, we compute a category-based
similarity to take into account venues that provide similar services, like serving
similar food. We also calculate a review-based similarity score extracting venues’
opinion- and context-based similarity. Note that while we introduce three exam-
ple similarity functions in this chapter, our proposed framework essentially is
not limited to this number of similarity measures. The experimental evaluation
shows that considering cross-venue similarities while training the CR model im-
proves the performance beating all CF and CR state-of-the-art methods.

As we mentioned earlier, content-based approaches generally perform better
in cases where the data is extremely sparse. Hence, we also compare the per-
formance of our proposed framework against our state-of-the-art content-based
approach. As expected, our CR model is unable to outperform our content-based
approach. However, we propose a simple yet effective hybrid approach, combin-
ing the two models. This model is able to combine the merits of both collabora-
tive and content-based approaches, achieving state-of-the-art recommendation
performance.

In summary, this chapter’s contributions can be summarized as follows:

• We introduce a novel CR framework, called CR-MLS, with the focus on
the top of the recommendation list, while incorporating the cross-venue
similarities into the model.

• In order to demonstrate the effectiveness of our CR framework, we propose
three different example similarity functions each of which focuses on a
different aspect.

• We also propose a simple yet effective hybrid recommendation system,
called CR-MLS-Hybrid.

The experimental results on data from the TREC Contextual Suggestion track
show that our model alleviates the sparsity problem associating similar venues
while training the CR model at different settings.

97 5.2 Proposed Method

5.2 Proposed Method

Let P = {ρ1, . . . ,ρn} and L = {l1, . . . , lm} be the sets of n users and m venues,
respectively. We consider user ratings 1, 2, and 3 on venues as negative feedback,
while ratings 4 and 5 as positive. For each user ρi, we define L +i as the set of
relevant venues, and L −i as the set of irrelevant ones. Moreover, let Sz ∈ Rm×m

be the similarity matrix of venues based on a similarity feature z.
We aim at computing a personalized ranking function fi(l) for each user ρi

to rank relevant venues higher than irrelevant ones. Let U ∈ Rd×n be the latent
factor of users and V ∈ Rd×m be the latent factor of venues, with ui and v j cor-
responding to ρi and l j, respectively. For user ρi the ranking of the venue l j is
computed as follows fi(l j) = uT

i v j. The goal of our model is to learn the latent
matrices U and V .

The rest of the section is organized as follows, first we present the CR model
that considers cross-venue similarities to generate venue recommendations, and
then we introduce the set of examples similarity measures to calculate how close
two venues are based on their content and context. Finally, we show how we
can combine the ranking of our model with a content-based method resulting in
a hybrid model.

5.2.1 Collaborative Ranking with Multiple Location-based Simi-
larities

In this section, we present our Collaborative Ranking framework, called CR-MLS,
to suggest venues for each userρi placing relevant venues at the top of the recom-
mendation list. Our goal is to understand the user’s check-in behavior in relation
to the similarities of venues (see Section 5.2.2). For example, a user may like
all venues that are in the city center and serve pizza. Building ranking functions
considering different similarities between venues also allows us to model latent
associations between users with similar tastes who would not be considered in
a traditional CR setting. This happens because CR-MLS takes into account the
venue similarities as it updates the user and item latent matrices. CR-MLS can
build the associations between users as it considers content- and context-based
similarities while updating the latent matrices. Notice that our CR-MLS model
does not rely on the type of similarity and is not limited to a certain number of
similarity features. Hence, it can be a general framework for incorporating any
type of similarity features.

We focus on ranking the venues that a user likes higher than the ones they
do not. Formally, we aim at ranking venues that belong toL +i higher than those

98 5.2 Proposed Method

that are in L −i . Our goal is to rank the venues with emphasis on the top of the
list. Let Hi(l−j) be the height of an irrelevant venue, that is:

Hi(l
−
j) =

∑

k∈L +i

|S|
∑

z=1

�

�

αz × 1[fi(l+k)≤ fi(l−j)]

�

/Sz(k, j)
�

,

where αz is the weight of similarity Sz and 1[.] is an indicator function. Note that
αz controls the model’s bias towards similar venues and can be used to prevent
the “Harry Potter” problem [115]. Dividing the indicator function by Sz allows
the model to incorporate the similarities into the model while constructing the
height for irrelevant items. For example, if an irrelevant item is ranked higher
than a relevant item, but they are very similar based on Sz, then the denominator
will be higher, which means the height of the irrelevant venue will be reduced
proportionally. The objective function should aim at minimizing Hi for all irrele-
vant venues of user ρi. A lower value of Hi means that there are fewer irrelevant
venues ranked higher than relevant ones, and those that are ranked higher are
more similar to relevant items. However, indicator functions are not convex and
they are not suitable to our optimization strategy. Therefore, we use the logis-
tic loss of the difference between the two functions as a convex upper bound
surrogate. We define the difference between the kth venue and the jth as follows:

δi(k, j) = uT
i

|S|
∑

z=1

�

αz(vk − v j)/exp(|Sz(k, j)|)
�

.

Therefore, the surrogate height function H ′i(l
−
j) becomes:

H ′i(l
−
j) =

∑

k∈L +i

log
�

1+ exp
�

−δi(k, j)
��

,

where log(1+exp(−δ)) is the logistic loss of δ. Therefore, the objective function
of CR-MLS can be reformulated as a minimization problem with respect to the
latent matrices U and V as follows:

R(U , V) =
m
∑

i=1

1
ni

∑

j∈L −i

�

H ′i(l
−
j)
�2
=

m
∑

i=1

1
ni
×

∑

j∈L −i

�

∑

k∈L +i

log
�

1+ exp
�

− uT
i

|S|
∑

z=1

�

αz(vk − v j)/exp(|Sz(k, j)|)
�

�

�

�2

.

(5.1)

For solving the optimization problem of (5.1), we use a gradient-descent-based
alternating optimization algorithm. We first keep V fixed and update U , and then

99 5.2 Proposed Method

keep U fixed and update V . Therefore, the update rules of the t+1 iteration are:

ut+1
i = ut

i − γ5ui
R(U t , V t),∀i = 1, . . . , n , (5.2)

vt+1
j = vt

j − γ5v j
R(U t+1, V t),∀ j = 1, . . . , m . (5.3)

For reading simplicity we define

θ (k, j) =
�

1+ exp(δ(k, j)
�

.

The gradients of R(U , V) with respect to ui and v j are computed as follows:

5ui
R(U , V) =

=
2
ni

∑

j∈L −i

�

H ′i(l
−
j)
∑

k∈L +i

|S|
∑

z=1

�

αz(v j − vk)/
�

exp(|Sz(k, j)|)θ (k, j)
�

�

�

,

5v j
R(U , V) =

=
∑

i∈P −j

2
ni

∑

h∈L −i

�

H ′i(l
−
h)
∑

k∈L +i

|S|
∑

z=1

�

αzui/
�

exp(|Sz(k, h)|)θ (k, h)
�

�

�

−
∑

i∈P +j

2
ni

∑

h∈L −i

�

H ′i(l
−
h)
∑

k∈L +i

|S|
∑

z=1

�

αzui/
�

exp(|Sz(k, h)|)θ (k, h)
�

�

�

,

with P +j being the set of users who gave a positive rating to l j and P −j the set
of users who gave a negative rating to l j. Notice that we also consider a regu-
larization term (λ/2)(|U |2+ |V |2) to avoid model overfitting in our optimization
strategy, where λ is the reguralization parameter. Then the final venue recom-
mendations are generated by computing the factorized matrix as the product of
U and V .

5.2.2 Cross-Venue Similarities

In this section, in order to demonstrate the effectiveness of our proposed frame-
work, we introduce three example similarity measures. We compute similarity
measures between two venues li and l j based on their content and location. Let
Si j = {Sz(i, j) : z ∈ {1,2, 3}} be the set of similarity functions, which are detailed
in the following.

100 5.2 Proposed Method

Geographical similarity. First, we compute the geographical similarity between
two venues to incorporate the geographical context while characterizing the
user’s geographical preferences. The similarity is inversely proportional to the
distance between two venues. This score is inspired by related studies [125, 126]
where a simple geographical measure improved the models significantly. We use
the Haversine formula to compute the angular distance between li and l j:

δi j = 2× arcsin
�q

sin2(∆φi j/2) + cosφi × cosφ j × sin2(∆ηi j/2)
�

,

where φi and φ j are latitudes of li and l j in radian, respectively. Accordingly, ηi

and η j are longitudes of li and l j in radian. Then we calculate the geographical
similarity between li and l j as follows:

S1(i, j) =
1

1+ (δi j × R)
, (5.4)

where R is the earth’s radius (R=6,371KM).

Review-based similarity. Online reviews contain a wealth of information about
venues as they reflect users’ opinions. Since many users explain their context
while writing reviews as in, for example: “I had a quick lunch with my friend
right after school,” it is crucial to measure how similar two venues are in terms
of the reviews they received. It is also important to consider how a particular user
rated venues that are similarly reviewed by others. Therefore, we train a Support
Vector Machine (SVM) classifier with linear kernel to estimate the review-based
similarity. The choice of SVM classifier was inspired by observing its notable
performance in other studies [6, 14]. For each venue, we train a different SVM
classifier. We take the positive reviews of the corresponding venue as positive
training samples and the negative reviews as negative training samples. We de-
note the trained SVM classifier of li as SVMi. Notice that the reviews used for
training are independent of a particular user’s reviews about a specific venue. In
other words, we train the SVM classifiers using the online public reviews avail-
able on LBSNs. Finally, we compute the review-based similarity between li and
l j by classifying the reviews of l j using SVMi. Note that we use both positive
and negative reviews of l j to classify l j with SVMi. The value of SVMi ’s decision
function computes the similarity of two venues li and l j, denoted as S2(i, j).

Category-based similarity. While it is essential to exploit users’ ratings consid-
ering geographical proximity and review-based similarity, it is also crucial to take
into account how users rate venues that are similar in terms of their categories.
For example, a user who likes pizza is more likely to visit a pizza place and rate

101 5.2 Proposed Method

it positively. It has been shown in relevant works that incorporating venue cat-
egories into the recommender system is crucial [216]. We calculate the cosine
similarity between the vectors of categories associated with venues li and l j on
LBSNs as follows:

S3(i, j) =
ci.c j

|ci|2|c j|2
, (5.5)

where ci and c j are the category vectors for li and l j, respectively.

5.2.3 System Overview

Algorithm 2 summarizes our proposed CR-MLS with the three cross-venue simi-
larity measures that we introduced in Section 5.2.2. As we can see from line 1 to
5, the three similarity scores are computed for all the pairs of venues and stored
in a three-dimensional matrix called S. Then, from line 7 to 13, the main steps
of CR-MLS are done to learn the parameters of the model, taking the similarity
of venues into account.

Efficiency. Note that one could argue that computing the similarity measures
between all pairs of venues is not efficient. Although this is a valid argument,
it is worth noting that the main focus of this thesis is not on efficiency but on
effectiveness. However, we believe that a more efficient strategy for selecting
venue pairs could be studied to improve the complexity of computing S.

5.2.4 Hybrid Venue Suggestion

In this section, we combine the output of CR-MLS with the output of a state-of-
the-art content-based method called LinearRankRev [10]. Our goal is to demon-
strate the effectiveness of our approach when combined with a content-based
approach on a highly sparse dataset. To this aim, we first produce the ranking
using both methods and consider the ordinal position of a venue as its score.
For example, the first venue in a ranked list gets the score of 1 and the score of
the second one becomes 2. Let RkS(ρi, l j) be the ordinal position of venue l j for
user ρi using CR-MLS and RkL(ρi, l j) be the ordinal position of l j for ρi using
LinearRankRev. We calculate the linear combination of the two ranked lists as
follows:

Rk(ρi, l j) = β × RkS(ρi, l j) + (1− β)× RkL(ρi, l j) ,

where β is the combination weight ranging between 0 and 1. The final ranking
is obtained by sorting the venues in terms of Rk. In the following section, we call
the results of this model CR-MLS-Hybrid.

102 5.2 Proposed Method

Algorithm 2: Collaborative Ranking with Multiple Location-based Similar-
ities Algorithm (CR-MLS)

Input: P , L , max I ter, c, φ, η, {d,λ,α,ε}
Output: U , V

1 forall the i ∈ |L | do
2 forall the j ∈ |L | do
3 S1(i, j)← 1/(1+ (δi j × R)) (Equation (5.4))
4 S2(i, j)← value of decision function of SVMi given reviews of l j

5 S3(i, j)← (ci.c j)/(|ci|2|cj|2) (Equation (5.5))

6 t ← 0
7 Initialize U t+1, V t+1

8 θ t+1← R(U t+1, V t+1), θ t = θ t+1/2
9 while (abs(θ t+1 − θ t)> ε) ∧ (t < max I ter) do

10 t ← t + 1
11 Update ut+1

i ,∀i = 1, . . . , n (Equation (5.2))
12 Update vt+1

j ,∀ j = 1, . . . , m (Equation (5.3))

13 θ t+1← R(U t+1, V t+1)
end

14 U ← U t+1, V ← V t+1

103 5.3 Experimental Setup

5.3 Experimental Setup

In this section, we first introduce the experimental setup describing the dataset,
evaluation metrics, parameter tuning as well as compared methods. Then we
present the results together with detailed discussions.

5.3.1 Data

We evaluate our approach on a benchmark dataset, made available by the TREC.
The dataset is the combination of the data of the TREC-CS 2015 and 2016 tracks [96].
Since TREC released the ground truth for 211 and 58 users in TREC-CS 2015 and
2016, respectively and the settings for both datasets were identical, we combined
both datasets to generate a single larger dataset, denoted as TREC-CS. In doing
so, the sparsity of the user-venue matrix is increased. The task was to produce a
ranked list of venues in a new city for users given their history of venue prefer-
ences in other cities. Each user has visited and rated 30 to 60 venues in one or
two cities. We used the publicly available crawls of [15] as additional informa-
tion. More specifically, we used additional information from Yelp such as reviews,
categories, and address. We then used HERE API1 to extract geographical coordi-
nates given a venue’s address. In summary, the unified TREC-CS dataset consists
of 269 users. The auxiliary information was crawled from Yelp for 6,346 venues.
The average number of reviews per venue is 105.55 and the average number of
categories per venue is 2.44.

5.3.2 Metrics

We use the official evaluation metrics of TREC for this task, that is, P@k (Pre-
cision at k) and nDCG@k with k ∈ {1, 2,3, 4,5}. Since our approach exploits
the influence of neighboring venues, evaluating recommendation in a new city
where the user does not have any check-in records does not allow us to study the
effect of the geographical similarity function. Hence, we evaluate our method
in the same way as the state-of-the-art approaches evaluated their works [125],
that is, we use 70% of the check-in data as training set (17.9K ratings), 10% as
validation set (2.5K ratings), and 20% as testing set (5.4K ratings). Notice that
since the ratings are not timestamped, we split the dataset randomly; hence we
repeat our experiments 5 times and report the average P@k and nDCG@k.

1https://developer.here.com/

https://developer.here.com/

104 5.3 Experimental Setup

5.3.3 Compared Methods

We compare our CR-MLS and CR-MLS-Hybrid models with approaches that con-
sider ranking and geographical influence for venue suggestion and approaches
based on collaborative ranking with emphasis on the ranking performance at the
top of the list. We also compare our models with the TREC’s best performing run.
Thus, we compare CR-MLS and CR-MLS-Hybrid with the following methods:
− Collaborative methods:

• P-Push [60] focuses on the ranking performance at the top of the list using
a p-norm height function in CR. P-Push does not include any contextual
information in its learning strategy.

• RH-Push [60] is another push CR model based on reverse height, focus-
ing on the ranking performance at the top of the list. RH-Push does not
consider any contextual information in its learning strategy either.

• IRenMF [131] is based on weighted MF [143] exploiting two levels of
geographical neighborhood characteristics: nearest neighboring locations
share more similar user preferences, while locations in the same geograph-
ical region may share similar user preferences.

• GeoMF [126] augments users’ and venues’ latent factors in the factoriza-
tion model with activity area vectors of users and influence area vectors of
venues, respectively.

• Rank-GeoFM [125] is the state-of-the-art venue recommendation algo-
rithm. It is a ranking-based MF model that includes the geographical influ-
ence of neighboring venues while learning users’ preference rankings for
venues.

− Content-based method:

• LinearCatRev [10, 12] is the best performing model of TREC-CS 2015
and 2016. It is a content-based recommender system which extracts infor-
mation from different LBSNs and uses it to calculate category-based and
review-based scores. Then, it combines the scores using linear interpo-
lation. The main difference between LinearCatRev and other methods is
that it is a content-based method focusing on creating rich user and venue
profiles. Although this method performs very well on this dataset, there
are major concerns regarding its scalability, mainly because it trains a sep-
arate classifier per user, something that can be challenging in a real-life
recommendation scenario.

105 5.4 Results and Discussion

We compare the performance of our proposed models with these methods in the
following section.

5.4 Results and Discussion

In this section, we present the results of our proposed model compared against
state-of-the-art recommendation methods. Furthermore, we study the impact of
the model parameters and components.

5.4.1 Performance Comparison

Tables 5.1 and 5.2 report the performance of all the models on TREC-CS in terms
of P@k and nDCG@k with k ∈ {1,2, 3,4, 5}, respectively. We observe that the
push CR-based models perform worse in terms of P@5 and nDCG@5. This oc-
curs because the baseline push CR-models do not consider any similarities while
training the model. Although P-Push performs more effectively than RH-Push re-
garding P@1-4, it has the worst performance in terms of P@5 among all models
because P-Push focuses on optimizing the model for the negative items, while
RH-Push focuses on the positive items. However, since none of them take into
account the similarities between venues, they cannot perform as well as the other
models. Among the methods that consider geographical influence in the model,
Rank-GeoFM performs better. This is because Rank-GeoFM considers venue sug-
gestion problem as a ranking problem, similar to our approach. Rank-GeoFM,
IRenMF, and GeoMF perform better than CR-based baselines indicating that ge-
ographical influence is an important factor in venue suggestion. While Rank-
GeoFM and GeoMF perform similarly in terms of P@5, we observe that Rank-
GeoFM performs better in term of nDCG@5 indicating that a ranking-based ap-
proach enables a system to rank more relevant items higher in the ranking.

Our proposed CR-MLS model significantly outperforms all collaborative state-
of-the-art methods in terms of P@1-3 and nDCG@1-5 (according to pairwise t-
test at p < 0.05). Compared to the state-of-the-art method, Rank-GeoFM, the
improvements in terms nDCG@1 and nDCG@5 are 17% and 11%, respectively.
This indicates that our proposed CR-MLS can address the data sparsity problem
by incorporating different types of similarities. While the geographical similarity
includes the neighborhood influences in the model, the category-based similar-
ity takes into account users with similar tastes when they do not share the same
check-in records. In addition to that, the review-based similarity models venues
similarities in terms of other users’ opinions in various contexts. Fusing these

106 5.4 Results and Discussion

similarity measures with a CR-based model enables CR-MLS to elaborate compli-
cated similarity affinities among venues and propagate them to the users. Hence,
our proposed CR-MLS addresses the data sparsity problem more effectively than
other state-of-the-art models, indicated by the high recommendation accuracy.
Finally, more improvements in terms of nDCG@k suggests that CR-MLS is able
to rank higher venues that are rated higher by the users.

We also compare the performance of our model when combined with a content-
based model as a hybrid method, called CR-MLS-Hybrid (see Section 5.2.4).
We see in Table 5.1 that LinearCatRev performs better than all collaborative ap-
proaches. This result is inline with the findings of Arampatzis and Kalamatianos
[25], that is, due to high sparsity of TREC-CS dataset content-based approaches
are generally more effective than collaborative methods. However, we observe
that CR-MLS exhibits a better performance in terms of nDCG@1 compared to
LinearCatRev. This motivated us to combine the ranking of CR-MLS and Lin-
earCatRev to build a stronger hybrid approach. As we can see in Table 5.1, CR-
MLS-Hybrid outperforms all other methods. In particular, we observe more im-
provements in terms of nDCG@k, indicating that CR-MLS-Hybrid is also able to
rank higher the venues with higher rating. It is also worth noting that significant
improvement from LinearCatRev indicates that CR-MLS not only performs better
than state-of-the-art collaborative methods, but also is able to exploit user-venue
associations in a way that the content-based approach fails to do.

5.4.2 Impact of the Number of Visited POIs

Table 5.3 shows P@5 and nDCG@5 of all models when varying the number of
venues that each user has visited in the training set. Table 5.3 shows that CR-MLS
achieves the highest accuracy, compared to the other collaborative models and
CR-MLS-Hybrid compared to all other models for all different number of venues.
This result indicates that CR-MLS can address the sparsity problem better when
the training set is smaller. Also, we observe a more robust behavior of CR-MLS
compared to the baselines suggesting that incorporating similarities enables the
model to deal with noise and data sparsity more effectively. This is more obvious
when observing that CR-MLS outperforms all the baseline methods with a larger
margin in terms of nDCG@5. Also, we can see that LinearCatRev’s performance
is less robust as we vary the number of venues. We do not observe the same
behavior in CR-MLS-Hybrid’s performance implying that combining the ranking
of CR-MLS with LinearCatRev also improves the stability of the content-based
approach when trained with less venues in the training set.

107 5.4 Results and Discussion

Table 5.1. Performance evaluation on TREC-CS in terms of P@k with
k ∈ {1,2, 3,4, 5}. Bold values denote the best scores compared with
collaborative approaches and the content-based approach separately.

P@1 P@2 P@3 P@4 P@5

P-Push 0.5635 0.5179 0.5079 0.4772 0.4524
RH-Push 0.4606 0.4547 0.4580 0.4626 0.4567
IRenMF 0.5037 0.4706 0.4767 0.4706 0.4610
GeoMF 0.4743 0.4871 0.4714 0.4789 0.4740
Rank-GeoFM 0.5662 0.5441 0.5392 0.4926 0.4743
CR-MLS 0.6605†‡ 0.5830† 0.5510† 0.5055 0.4804

LinearCatRev 0.6471 0.6452 0.6336 0.6121 0.5868
CR-MLS-Hybrid 0.6801†‡ 0.6673†‡ 0.6458† 0.6140† 0.5919†

The superscript † denotes significant improvements compared to
all collaborative baselines and ‡ denotes significant improvements
compared to the content-based baseline (i.e., LinearRankRev), for
p <0.05 in paired t-test.

Table 5.2. Performance evaluation on TREC-CS in terms of nDCG@k with
k ∈ {1, 2,3, 4,5}. Bold values denote the best scores compared with collab-
orative approaches and the content-based approach separately.

nDCG@1 nDCG@2 nDCG@3 nDCG@4 nDCG@5

P-Push 0.5635 0.5282 0.5188 0.4963 0.4775
RH-Push 0.4606 0.4561 0.4581 0.4611 0.4575
IRenMF 0.5037 0.4781 0.4806 0.4759 0.4689
GeoMF 0.4743 0.4842 0.4879 0.4801 0.4774
Rank-GeoFM 0.5662 0.5491 0.5445 0.5123 0.4976
CR-MLS 0.6605†‡ 0.6043† 0.5865† 0.5614† 0.5509†

LinearCatRev 0.6471 0.6498 0.6499 0.6444 0.6394
CR-MLS-Hybrid 0.6801†‡ 0.6734†‡ 0.6672†‡ 0.6562† 0.6538†‡

The superscript † denotes significant improvements compared to all col-
laborative baselines and ‡ denotes significant improvements compared to
the content-based baseline (i.e., LinearRankRev), for p <0.05 in paired
t-test.

108 5.4 Results and Discussion

Table 5.3. Effect on P@5 and nDCG@5 of different number of venues that users visited
as training set.

P@5 nDCG@5

Number of venues 40 50 60 40 50 60

P-Push 0.4278 0.4346 0.4466 0.4493 0.4375 0.4744
RH-Push 0.4343 0.4556 0.4574 0.4277 0.4659 0.4606
IRenMF 0.4404 0.4588 0.4588 0.4485 0.4654 0.4636
GeoMF 0.4544 0.4618 0.4640 0.4559 0.4573 0.4636
Rank-GeoFM 0.4551 0.4727 0.4728 0.4576 0.5006 0.5027
CR-MLS 0.4677† 0.4732 0.4800 0.4736† 0.5302† 0.5450†

LinearCatRev 0.5706 0.5632 0.5721 0.6246 0.6195 0.6260
CR-MLS-Hybrid 0.5772† 0.5787†‡ 0.5853†‡ 0.6357† 0.6353†‡ 0.6433†‡

The superscript † denotes significant improvements compared to all collaborative base-
lines and ‡ denotes significant improvements compared to the content-based baseline
(i.e., LinearRankRev), for p <0.05 in paired t-test.

5.4.3 Impact of the Similarity Scores

Figure 5.1a shows the performance of CR-MLS when varying α1, α2, and α3,
keeping in each run the other two parameters fixed. The best performance is
achieved with geographical similarity weight at α1 = 0.5, review-based similarity
weight at α2 = 0.2, and category-based similarity weight at α3 = 0.3. From
Figure 5.1a, we can also see how much each of the similarity measures contribute
to the overall performance. To do so, we take the performance of CR-MLS when
the value of each α equals zero. This values indicates the performance of CR-
MLS when the respective similarity measure is removed from the model. More
specifically, the performance of CR-MLS in terms of nDCG@5 removing each of
the similarity scores is as follows:

• CR-MLS: nDCG@5 = 0.5509

• CR-MLS-NoGeographical: nDCG@5 = 0.5288

• CR-MLS-NoReview: nDCG@5 = 0.5375

• CR-MLS-NoCategory: nDCG@5 = 0.5306

We can see that the performance is dropped after removing each of the similar-
ity scores, indicating that each of these similarity scores contribute to the over-
all performance of CR-MLS. Removing the geographical similarity results in the

109 5.5 Summary

(a) Effect of α1, α2, α3 (b) Impact of d (c) Effect of λ

Figure 5.1. Impact of different model parameters on the performance of CR-
MLS

highest drop compared to the other similarity measures. This shows that geo-
graphical similarity captures the similarity of two venues more effectively and
reflects users’ preference more accurately.

5.4.4 Impact of the Number of Latent Factors

In Figure 5.1b we study the effect of latent factors d on the performance of our
model and report nDCG@5 while keeping other parameters fixed. We observe
that the optimal number of latent factors d is 90, and for other values of latent
factors, nDCG@5 drops. As we can see, the difference in the performance of the
model is more when varying d from 80 to 90. This indicates the importance of
finding the optimal number of latent factors for training CR-MLS as it can have
large impact on the model’s performance since the number of latent factors are
crucial while learning the latent associations between users and venues.

5.4.5 Impact of Regularization Parameter

Figure 5.1c shows the effect of the regularizing control parameter (λ). We varied
λ while keeping other parameters fixed. We see that CR-MLS performs best with
λ= 1. The performance of CR-MLS drops using different other values of λ.

5.5 Summary

In this chapter, we presented a similarity-aware collaborative ranking framework
for venue suggestion, called CR-MLS. The proposed CR-MLS is able to include
an arbitrary number of cross-venue similarity measures in the model’s objective

110 5.5 Summary

function enabling the model to propagate venue affinities to the users and hence
address the data sparsity problem. To demonstrate the performance of CR-MLS,
we also proposed three example cross-venue similarity measures focusing on dif-
ferent aspects. Geographical similarity incorporates the neighborhood influence
of venues while category-based similarity takes into account venues that provide
similar services. A review-based similarity score was also computed extracting
an opinion- and context-based similarity of venues. We compared the perfor-
mance of CR-MLS with five collaborative and one content-based state-of-the-art
approaches on a combined dataset of two publicly available TREC collections.
The results indicated that our model can address the data sparsity problem, out-
performing the state-of-the-art methods significantly. While we introduced three
example similarity functions, it should be noted that CR-MLS is very flexible to
incorporate other features.

Part II

Mobile Search

111

Chapter 6

Unified Mobile Search

6.1 Introduction

Recent years have witnessed a rapid growth in the use of mobile devices, enabling
people to access the Internet in various contexts. More than 77% of Americans
now own a smartphone,1 with an increasing trend in terms of the time people
spend on their phones. As of 2016, the average U.S. user spends 5 hours on
mobile devices per day, with just 8% of it spent in the phone’s browser. In fact,
people spend most of their time (72%) using apps that have their own search
feature.2 Moreover, Google Play Store now features more than 3.5 million apps
and users install an average of 35 mobile apps on their phones, using half of
them regularly.3

More recently, with the release of intelligent assistants, such as Google Assis-
tant and Apple Siri, people are experiencing mobile search through a single voice-
based interface. These systems introduce several research challenges. Given that
people spend most of their times in apps and, as a consequence, most of their
search interactions would be with apps (rather than a browser), one limitation
is that users are unable to use a conversational system to search within many
apps. This suggests the need for a unified search framework that replaces all the
search boxes in the apps, with a single search box. The workflow of a unified mo-
bile search framework is presented in Figure 6.1. As we see in this figure, with
such a framework, the user can submit a query through this system which will
identify the target app(s) for the issued query. The query is then routed to the

1http://www.pewinternet.org/fact-sheet/mobile/
2http://flurrymobile.tumblr.com/post/157921590345/
3https://www.thinkwithgoogle.com/advertising-channels/apps/

app-marketing-trends-mobile-landscape/

113

http://www.pewinternet.org/fact-sheet/mobile/
http://flurrymobile.tumblr.com/post/157921590345/
https://www.thinkwithgoogle.com/advertising-channels/apps/app-marketing-trends-mobile-landscape/
https://www.thinkwithgoogle.com/advertising-channels/apps/app-marketing-trends-mobile-landscape/

114 6.1 Introduction

Figure 6.1. Workflow of an example unified mobile search framework.

identified target apps and the results are displayed in a unified interface.

After a thorough investigation and modeling of user behavior for POI recom-
mendation in previous chapters, here we study user behavior in an environment
where users express their information needs explicitly via queries. Even though
research on mobile IR has been going on for over a decade [73], only now re-
searchers have has studied app-based user behaviour. Moreover, the recent ad-
vances of mobile apps, social media, and conversational agents increase the need
for analysis and modeling of user behavior and information need for unified mo-
bile search. In this chapter, we are particularly interested in taking the first step
towards developing a unified search framework for mobile devices by introduc-
ing and studying the task of target apps selection, which is defined as identifying
the target app(s) for a given query. To this end, we built a collection of cross-app
search queries through crowdsourcing, which is released for research purposes.4

Our crowdsourcing experiment consists of two parts: we initially asked crowd-
workers to explain their latest search experience on their smartphones and used
them to define various realistic mobile search tasks. Then, we asked another set
of workers to select the apps they would choose to complete the tasks as well as
the query they would submit. We investigate various aspects of user behaviors
while completing a search task. For instance, we show that users choose to com-
plete most of the search tasks using two apps. In addition, we demonstrate that
for the majority of the search tasks, most of the users prefer not to use Google

Search.

4Available at http://aliannejadi.github.io/unimobile.html

http://aliannejadi.github.io/unimobile.html

115 6.2 Data Collection

From the lessons learned from our data analysis, we propose two simple yet
efficient neural target apps selection models. Our first model looks at the problem
as a ranking task and produces a score for a given query-app pair. We study
two different training settings for this model. Our second framework, on the
other hand, casts the problem as a multi-label classification task. Both neural
approaches, called NTAS, learn a high-dimensional representation for each app.
Our experiments demonstrate that our model significantly outperforms a set of
state-of-the-art models in this task.

In summary, the main contributions of this chapter include:

• Designing and conducting two crowdsourcing tasks for collecting cross-app
search queries for real-life search tasks. The tasks and queries are publicly
available for research purposes.

• Presenting the first study of user behaviors while searching with different
apps as well as their search queries. In particular, we study the attributes of
the search queries that are submitted to different apps and user behaviors
in terms of the apps they chose to complete a search task.

• Proposing two neural models for target apps selection.

• Evaluating the performance of state-of-the-art retrieval models for this task
and comparing them against the proposed method.

Our analyses and experiments show the good performance of our proposed
model and suggest specific future directions in this research area.

6.2 Data Collection

In this section, we describe how we collected UniMobile, which is, to the best of
our knowledge, the first dataset on cross-app mobile search queries. We started
by creating a number of Human Intelligence Tasks (HITs) on Amazon Mechanical
Turk,5 asking workers to describe their latest mobile search experience in detail.
The answers helped us to define fine-grained diverse naturalistic mobile search
tasks. Then, we launched another task asking workers to assume they wanted
to complete a given search task on their smartphones. They had to submit their
search queries as well as select the apps they would choose to complete each
task.

5http://www.mturk.com

http://www.mturk.com

116 6.2 Data Collection

Table 6.1. Distribution of crowdsourcing search task categories.

Search Category % of tasks

General Information & News 13%
Video & Music 12%
Image 9%
Social Networking 9%
App 9%
File & Contact 8%
Online Shopping 13%
Local Services & Navigation 15%
Email & Event 12%

Task definition. In the first crowdsourcing task, we described the category of
search, giving the workers a handful of general examples. Furthermore, we also
asked them to give us the context and background of their search, as well as the
queries and the apps they used to do the search. Finally, we provided a complete
example of a valid answer. We launched this job for most of search categories
listed in Table 6.1. The HIT payment was $0.10 and the workers were based in
the U.S. with an overall acceptance rate of 75% or higher. The average work time
was 246 seconds with 135 workers completing 169 HITs resulting in an average
of 92 terms per HIT. The workers provided enough details about the context and
background of their search that enabled us to generalize the task to the level that
we would get a wide range of queries on the same task. For example, one worker
submitted the following answer:

“I was searching for a new refrigerator to buy. The first thing I did
was search for the best refrigerators of 2017 and then narrow down
my search for exactly the type of refrigerator that I was looking for...”

Then, we used this answer to define a more general search task:

“Consider one of the oldest appliances in your home. You have been
thinking of changing it for a while. Now, it’s time to order it online.”

Query and app pairs. The second crowdsourcing task consisted of 206 individ-
ual search task descriptions, mostly extracted from the answers we got in the first
task. Table 6.1 lists the distribution of the tasks. In the definition of tasks, our
aim was to cover various aspects of mobile information seeking as mentioned

117 6.2 Data Collection

Figure 6.2. HIT interface for choosing apps. The workers could enter an app’s
name or click on an app’s icon.

in [63]. We asked the workers to read the search task description very carefully
and assume that they wanted to perform it using their own mobile device. Then,
we asked them to select one or more apps from a given list. Alternatively, they
could type the name of the app they would choose for that search task. We pro-
vided an auto-complete feature for entering the apps’ names in order to make
it easier for the users to type the name of their favorite apps. Figure 6.2 shows
the interface we designed for this HIT. Since we restricted the HIT to be done
only by workers in the U.S., we chose the list of apps from the most popular
Android apps in the U.S. market. Note that the apps were randomly shuffled
and displayed to each worker to prevent any position bias. These apps are listed
as follows: Google Search, Gmail, Play Store, Facebook, Instagram, Google
Maps, YouTube, Amazon, Twitter, Spotify, Waze, Pinterest, WhatsApp, File
Manager, Netflix, Yelp, Contacts, Dropbox.

As incentive, we paid $0.05 for every HIT assignment. We also encouraged
the workers to complete a survey for a $0.05 bonus. Our aim was to under-
stand the workers’ background and familiarity with mobile devices. We asked
the workers to perform the task using their mobile devices’ browsers and tracked
their keyboard keystrokes to prevent them from copying any text from the task
description. The average work time for this task was 85 seconds with 91% of the
workers completing the survey. The key statistics of the survey were that 59% of
the workers used Android and 55% used a mobile device as the primary device
to connect to the Internet. Moreover, 83% of the workers believed they use their
mobile device more than two hours a day and 41%, more than four hours a day.
After launching several batches, we went through all the submitted answers for

118 6.3 Data Analysis

Table 6.2. Statistics of UniMobile.

queries 5,812
unique queries 5,567
users 625
search tasks 206
unique apps 121
unique first apps 70
unique second apps 89
Mean unique apps per task 7.51 ± 10.57
Mean query per user 9.30 ± 20.30
Mean query per task 28.21 ± 12.72
Mean query terms 4.21 ± 2.45
Mean query characters 24.83 ± 12.88

quality control and we observed that following crowdsourcing task design guide-
lines of [113] helped us achieve a very high assignment approval rate (99%). We
have made the collection publicly available for research purposes. The released
data consists of the tasks that we defined through the first set of HITs as well as
user queries in the second set of HITs, together with their corresponding ranked
list of apps. The data can be used to study how users are engaged in searching
with different apps. Also, the release of the defined tasks provides the oppor-
tunity to conduct a similar study in a lab setting on participants’ mobile phones
and compare the findings with our results.

6.3 Data Analysis

In this section, we present a thorough analysis of UniMobile, to understand how
users issue queries in different apps, and which apps they choose to complete
search tasks. With the definition of 206 mobile search tasks, we were able to
collect 5,812 search queries and their target apps. Overall, queries were assigned
to 121 unique apps. Table 6.2 lists all the details of our dataset. In the following,
we analyze different aspects of the data.

6.3.1 App Distribution

Figure 6.3 shows the distribution of queries with respect to users and apps in
UniMobile. As we can see in Figures 6.3a and 6.3c, while there exist 173 users

119 6.3 Data Analysis

who submitted only one query, 110 users account for 80% of the queries and
239 users account for 95% of the queries. Also, we see in Figures 6.3b and 6.3d
that the distribution of apps follows a power-law distribution. In particular, 9
apps account for more than 80% and 17 apps account for more than 95% of the
queries. Figure 6.4 shows how queries are distributed with respect to the top
17 apps. As we can see, while Google Search6, that is mainly targeted for Web
search, constitute 39% of total app selections, users opt to perform the majority
(61%) of their search tasks using other apps. Moreover, the variety of apps ranges
from apps dealing with local phone data (e.g., Contacts and Calendar) to social
media apps (e.g., Facebook and Twitter) indicating that they cover a wide range
of search tasks.

App selection. Here we are interested in finding out how users behave while
choosing an app to perform a search task. Although users assign two apps while
submitting 72% of the queries, they choose only one app for 21% of the queries
and choose more than two apps for only 7% of the queries. We also analyze
how many different apps users select while doing the tasks. Figure 6.5a shows
the distribution of unique apps per users illustrating how many users selected a
certain number of different apps. As we can see, a quarter of users preferred to
search using two unique apps. On the other hand, Figure 6.5b plots the same
distribution with respect to the tasks, that is how many unique apps were se-
lected for each task. We see an entirely different distribution where the average
number of unique apps per task is 7.51, showing that the given search tasks can
be addressed using multiple apps. As we compare the two distributions in Fig-
ures 6.5a and 6.5b, we can conclude that while the majority of search tasks can
be addressed using multiple apps, users usually limit their choice to a personal
selection of apps. Therefore, a system can define a set of candidate apps which
then can be narrowed down considering user’s personal preference.

Furthermore, we analyze users’ choice of Google Search, observing that it is
selected as the first app in 39% of the queries while 46% as the second app. The
users chose Google Search as the third app in 30% of the queries with three
selected apps. This indicates that, according to UniMobile, in most cases (61%),
users prefer to open a more specific app than Web search apps such as Google
Search. We also analyze users collective app selection behavior with respect to
the tasks. For each task, we count how often each app is selected and sorted
them. Our aim is to find out how often users decide to perform their search
tasks using Google Search. According to our study, in 14% of the tasks, no
user selected Google Search, while in 35% of the tasks Google Search was the

6The app “Google Search” is also used to refer to the Google Chrome app.

120 6.3 Data Analysis

(a) (b)

(c)
(d)

Figure 6.3. The distribution of number of queries with respect to apps and
users.

121 6.3 Data Analysis

Figure 6.4. Number of queries per app for the top 17 apps.

(a) (b)

Figure 6.5. Distribution of unique apps per user and task.

122 6.3 Data Analysis

(a) Google Search (b) Gmail (c) Yelp (d) File Manager

(e) Contacts (f) Calendar (g) WhatsApp

Figure 6.6. Histogram of number of query terms per app.

(a) (b)

Figure 6.7. Query length distribution with respect to number of terms and
characters.

123 6.3 Data Analysis

most selected app. Moreover, in 68% of the tasks it was among the top two most
frequently selected apps, and in 78% of the tasks it was among the top three.
Considering the categorical distribution of apps in Table 6.1 where only 13%
of the tasks were in the category of General Information & News, we see that
Google Search attracts many queries from the tasks that can be done using a
more specific app. Given the integrity and aggregation of various search services
such as image, video, location, and online shopping and easy access to them in
one app, this observation is not surprising. Nevertheless, we see that for 86% of
the tasks, most users preferred other apps. This suggests that a unified mobile
search system has a high potential of simplifying and improving users search
experience.

6.3.2 Query Attributes

We analyze different attributes of queries with respect to their corresponding
apps, to understand how different users formulate their information needs into
queries using different apps. After tokenizing the queries, the average query
terms per query is 4.21. We analyze the distribution of number of query terms
per app, observing different distributions for every app, some of which are shown
in Figure 6.6. This difference is more obvious if we compare Google Searchwith
personal or local apps such as Contacts. In particular, Google Search has an
average of 4.82 query terms while Contacts has an average of 2.67, which is
considerably less than other apps. This can be explained if we consider the type
of information users usually look for using the Contacts app. The queries usu-
ally consist of one of the stored names on the phone, followed by terms such as
“email,” “address,” “info,” and “contact.” Moreover, Figure 6.7 plots the distribu-
tion of query length with respect to terms and characters on the whole dataset.

Figure 6.6 demonstrates the distribution of number of query terms for 7 apps.
In this figure, we only include the apps that exhibit a considerably different dis-
tribution from the average. As shown, Google Search query terms peak at 3
while personal apps such as Contacts, Calendar, and Gmail peak at 2. This
indicates that the structure of queries vary depending on the target app. We can
also see the difference in the most frequent unigrams for two example apps in
Figure 6.8 where we see that while stopwords are the most frequent unigrams
used in queries submitted to Google Search, for a specific personal app such as
Calendar, a domain-specific term such as “meeting” accounts for more than 15%
of the total distribution. This suggests that while considering domain-specific
terms is crucial to predicting the target app, taking into account the query struc-
ture is also important. For instance, as we see in Figure 6.8a, the question mark

124 6.3 Data Analysis

(a) Google Search (b) Calendar

Figure 6.8. Distribution of top query unigrams for two sample apps.

is among the top query unigrams submitted to Google Search, suggesting that
many of the queries are submitted in the form of a question. In contrast, as
we mentioned earlier, the structure of contact queries are mostly in the form of
“<proper noun> + <information field>,” as in “sam email.”

6.3.3 Query Overlap

Here we study query overlap or query similarity over the queries using a sim-
ple function used in previous studies done on large-scale query logs (e.g., [64]).
We measure the query overlap at various degrees and use the similarity func-
tion sim(q1, q2) = |q1 ∩ q2|/|q1 ∪ q2|. This function simply measures the overlap
of query terms. We observed 70% of queries overlapping with at least another
query at the similarity threshold of > 0.25. Higher thresholds lead to signif-
icantly lower similar queries; with thresholds > 0.50 and > 0.75 we observe
that 24% and 9% of queries were similar, respectively. Similar to previous anal-
yses, in Table 6.3 we observe a different level of query overlap in queries as-
sociated with different apps. The least query overlap is observed for Facebook
queries. This could be due to the personal environment of Facebook. The highest
query overlap is observed in Play Store queries. We observed the presence of
some domain-specific terms such as “app” in many queries which results in higher
query similarity. The observed difference in query overlap for every app suggests
that various factors influence the way users formulate their queries. For exam-
ple, apps that provide more focused information, receive more similar queries.
On the other hand, more personal apps receive a diverse set of queries as they

125 6.4 Neural Target Apps Selection

reflect personal information needs which can be totally different from one user
to the other.

6.3.4 Remarks

Our analyses first showed that users’ queries are mainly targeted to a few apps;
however, these apps are very different in terms of their content. Moreover, we
showed that users often choose two different apps for a single query, suggest-
ing that many users submit the same query in multiple apps. Also, we showed
that different users select an average of more than 7 apps for each task, with
Google Search being the top selected app in only 35% of the cases. This again
indicates the necessity of a unified search system on mobile devices. Finally, we
analyzed the queries issued in different apps and found notable differences. For
instance, we showed that query lengths, unigram distribution, and query overlap
differ among apps. This suggests that the query structure needs to be taken into
account while representing the apps.

6.4 Neural Target Apps Selection

Assume that a user aims at submitting a query q to a set of mobile apps {a1, a2, · · · ,
an}, called the target apps. Note that the size of this set could be equal to 1. The
task of target apps selection is defined as ranking the mobile apps in response to
the query q, such that the target apps appear in higher ranks. In this section,
we propose our methodology to tackle the target apps selection task. To this
end, we propose two general frameworks based on neural networks. Our first
framework, called NTAS1, is given a query and a candidate app and produces a
retrieval score. We study both pointwise and pairwise training settings for this
framework. Our second framework, called NTAS2, is given a query as the input
and produces a probability distribution indicating the probability of each app
being targeted, for all apps.

One of the main challenges in this task is that it is not obvious how to rep-
resent each app. For example, although the apps’ descriptions would be used
for app representation in the app selection task [144], it cannot be used in the
target apps selection. Because the queries that can be searched in a specific app
do not match with the content of the app’s description. To address this issue,
our frameworks learn a high-dimensional representation for each app, as part of
the network. The following subsections describe these two frameworks in more
detail.

126 6.4 Neural Target Apps Selection

Table 6.3. The percentage of similar queries at different similarity thresholds
considering only the queries associated with every app.

App
% of similar queries

> 0.25 > 0.50 > 0.75

All apps 70% 24% 9%
Google Search 63% 19% 6%
Amazon 38% 8% 3%
Gmail 57% 14% 7%
YouTube 49% 20% 7%
Google Maps 46% 3% 1%
Facebook 30% 9% 1%
Play Store 61% 26% 14%

6.4.1 NTAS1: App Scoring Model

NTAS1 outputs a retrieval score for a given query q and a candidate app a. For-
mally, NTAS1 can be defined as follows:

score=ψ(φQ(q),φA(a)) ,

whereψ(·, ·) ∈ R is a scoring function for the given query representationφQ(q) ∈
Rm and app representation φA(a) ∈ Rn. Various neural architectures can be
employed to model each of the three components in the NTAS1 framework.

We implement the component φQ(q) with two major functions: an embed-
ding function E : V → Rd that maps each vocabulary term to a d-dimensional
embedding space, and a global term weighting function W : V → R that maps
each vocabulary term to a real-valued number showing its global importance.
The query representation function φQ represents a query q = {w1, w2, · · · , w|q|}
as follows:

φQ(q) =
|q|
∑

i=1

cW (wi) · E (wi) , (6.1)

which is the weighted element-wise summation over the terms’ embedding vec-
tors (hence, m = d). cW is the normalized global weights computed using a
softmax function as follows:

cW (wi) =
exp(W (wi))

∑|q|
j=1 exp(W (w j))

.

127 6.4 Neural Target Apps Selection

This is a simple yet effective approach for query representation based on the
bag of words assumption, which has been proven to be effective for the ad-hoc
retrieval task [77]. Note that the matrices E and W are the network parameters
in our model and are learned to provide task-specific representations.

The app representation component φA is simply implemented as a look-up
table. In other words, our neural model consists of an app representation matrix
A ∈ RN×n where N denotes the total number of apps and the ith row of this
matrix is a n-dimensional representation for the ith app. Therefore,φA(a) returns
a row of the matrixA that corresponds to the app a.

To model the functionψ, following Zamani et al. [213], we feed the Hadamard
product (which enforces m = n) of the learned query and app representations
into a fully-connected feed-forward network with two hidden layers. This net-
work produces a single output as the score assigned to the given query-app pair.
We use rectified linear unit (ReLU) as the activation function in the hidden layers
of the network. To prevent overfitting, the dropout technique [179] is employed.

We study both pointwise and pairwise learning settings for our NTAS1 model.

Pointwise learning. In a pointwise setting, we use mean squared error (MSE)
as the loss function. MSE for a mini-batch b is defined as follows:

LMSE(b) =
1
|b|

|b|
∑

i=1

(yi −ψ(φQ(qi),φA(ai)))
2 ,

where qi, ai, and yi denote the query, the candidate app, and the label in the
ith training instance of the mini-batch. For this training setting, we use a linear
activation for the output layer.

Pairwise learning. NTAS1 can be also trained using a pairwise setting. There-
fore, each training instance consists of a query, a target app, and a non-target
app. To this end, we employ hinge loss (max-margin loss function) that has been
widely used in the learning to rank literature for pairwise models [123]. Hinge
loss for a mini-batch b is defined as follows:

LHinge(b) =
1
|b|

|b|
∑

i=1

max {0,ε− sign(yi1 − yi2)

�

ψ(φQ(qi),φA(ai1))−ψ(φQ(qi),φA(ai2))
�	

,

where ε is a hyper-parameter determining the margin of hinge loss, a linear loss
function that penalizes examples violating the margin constraint. To bound the
output of the model to the [−1,1] interval, we use tanh as the activation function
for the output layer, in the pairwise training setting. The parameter ε is also set
to 1, which works well when the predicted scores are in the [−1, 1] interval.

128 6.5 Experimental Setup

6.4.2 NTAS2: Query Classification Model

Unlike NTAS1 that predicts a score for a given query-app pair, our second frame-
work computes the probability of each app being targeted by a given query. In
more detail, NTAS2 is modeled as γ(φQ(q)) ∈ RN , whose ith element denotes the
probability of the ith app being targeted, given the query representation φQ(q).
N is the total number of apps.

To implement NTAS2, we represent each query via a weighted element-wise
average as explained in Equation (6.1). γ is modeled using a fully-connected
feed-forward network with the output dimension of N . ReLU is employed as the
activation function in the hidden layers, and a softmax function is applied on the
output layer to compute the probability of each app being targeted by the query.

To train NTAS2, we use a cross-entropy loss function which for a mini-batch
b is defined as:

Lce(b) =
1
|b|

|b|
∑

i=1

N
∑

j=1

(p(a j|qi) logγ(φQ(qi))) .

Similar to NTAS1, we use dropout to regularize the model.

6.5 Experimental Setup

6.5.1 Data

We evaluated the performance of our proposed models on the UniMobile dataset.
We followed two different strategies to split the data: 1. In UniMobile-Q, we ran-
domly selected 70% of the queries for training, 10% for validation, and 20% for
test set 2. In UniMobile-T, we randomly split the tasks (rather than queries). To
do so, we randomly selected 70% of the tasks for training, 10% for validation,
and 20% for test set. To minimize random bias, for each splitting strategy we
repeated the process five times. The hyper-parameters of the models were tuned
based on the results on the validation sets. Therefore, we repeated all the exper-
iments five times and reported the average performance.

6.5.2 Metrics

Effectiveness was measured by five standard evaluation metrics: mean recipro-
cal rank (MRR), precision of the top 1 retrieved app (P@1), normal discounted
cumulative gain for the top 1, 3, and 5 retrieved apps (nDCG@1, nDCG@3,

129 6.5 Experimental Setup

nDCG@5). We determined the statistically significant differences using the two-
tailed paired t-test with Bonferroni correction at a 95% confidence interval (p <
0.05). In the ranked list of apps associated to every query, we assigned the score
of 2 to the first relevant app and 1 to the rest of relevant apps, to differentiate
between a model that is able to rank the first relevant app higher and a model
that is not.

The choice of evaluation metrics was motivated by considering three differ-
ent aspects of the task, inspired by data analysis. We chose MRR considering
scenarios where a user is looking for relevant information only in one app, and
so they would stop scanning the search results as soon as they find the first rele-
vant document. We reported P@1 and nDCG@1 to measure the performance for
scenarios that a user only checks the first result. Given that many search tasks
need to be addressed using more than one app, it is crucial to evaluate a sys-
tem with respect to more than one relevant app in the top-k results. nDCG@3
allowed us to evaluate our approach when a user scans the top 3 results. Since
we found that most of the queries were assigned to one or two apps (see Sec-
tion 6.3), nDCG@3 measures how well a system is able to place the two relevant
apps among the top 3 results. We also used nDCG@5 to evaluate top 5 results
on a single screen, given the size of a typical smartphone.

6.5.3 Compared Methods

We compared the performance of our model with the following methods:

• StaticRanker: For every query we ranked the apps in the order of their popu-
larity in the training set as a static (query independent) model.

• QueryLM, BM25, BM25-QE: For every app we aggregated all the relevant queries
from the training set to build a document representing the app. Then we used
Terrier [141] to index the documents. QueryLM uses the language model re-
trieval model [150]. For BM25-QE, we adopted Bo1 [24] model for query
expansion. We used the Terrier implementation of these methods.

• k-NN, k-NN-AWE: To find the nearest neighbors in k nearest neighbors (k-NN),
we considered the cosine similarity between TF-IDF vectors of queries. Then,
we took the labels (apps) of the nearest queries and produced the app ranking.
As for k-NN-AWE, we computed the cosine similarity between the average
word embedding (AWE) of the queries obtained from GloVe [147] with 300
dimensions.

130 6.6 Results and Discussion

• LambdaMART: For every query-app pair, we used the scores obtained by BM25,
k-NN, and k-NN-AWE as features to train LambdaMART [193] implemented
in RankLib.7 For every query, we considered all irrelevant apps as negative
samples.

6.6 Results and Discussion

In the following, we evaluate the performance of NTAS1 and NTAS2 trained on
both data splits. We further analyze how other baseline models perform compar-
ing their performance on both splits.

6.6.1 Performance Comparison

Table 6.4 lists the performance of our proposed methods as well as the com-
pared methods. As we can see, the performance of all methods drops when we
use UniMobile-T data splits, except for StaticRanker. StaticRanker gives us an
idea of how much the test set is biased towards more popular apps. For exam-
ple, we see that StaticRanker performs better on UniMobile-T suggesting that it
consists of more popular apps. As we compare the relative performance drop be-
tween the two data splits, we see that among other baselines, k-NN-AWE is more
robust with the minimum relative drop (−8.4% on average). QueryLM, on the
other hand, is the least robust model with the maximum relative drop (−16% on
average). This indicates that k-NN-AWE is able to capture similar queries for un-
seen tasks using a pre-trained word embedding, whereas QueryLM relies heavily
on the indexed queries.

Among the baselines tested on UniMobile-Q, we see that BM25 performs best
in terms of all evaluation metrics. Given that UniMobile-Q contains queries be-
longing to the same tasks both in training and test sets, this shows that when
more similar queries exist in the index, BM25 is able to rank the apps more effec-
tively. However, on UniMobile-T, k-NN-AWE performs best in terms of all metrics.
Given that UniMobile-T does not contain queries belonging to the same task in
training and test sets, this suggests that leveraging a pre-trained word embedding
helps k-NN capture query similarities more effectively when the queries are less
similar, leading to a better generalization. This can also be seen when compar-
ing the performance of k-NN and k-NN-AWE, given that k-NN-AWE consistently
outperforms k-NN. Regarding LambdaMART, we see that even though it bene-
fits from multiple features, it does not perform as well as k-NN-AWE and BM25

7https://sourceforge.net/p/lemur/wiki/RankLib/

https://sourceforge.net/p/lemur/wiki/RankLib/

131 6.6 Results and Discussion

Table
6.4.

P
erform

ance
com

parison
w
ith

baselines
on

U
niM

obile-Q
and

U
niM

obile-T
.

M
ethod

U
n

iM
obile-Q

U
n

iM
obile-T

M
R

R
P@

1
nD

C
G

@
1

nD
C

G
@

3
nD

C
G

@
5

M
R

R
P@

1
nD

C
G

@
1

nD
C

G
@

3
nD

C
G

@
5

StaticR
an

ker
0.6485

0.5293
0.4031

0.4501
0.5144

0.6718
0.5507

0.4247
0.4853

0.5446
Q

u
eryLM

0.5867
0.3803

0.3068
0.4676

0.5508
0.5178

0.3272
0.2619

0.3716
0.4503

B
M

25
0.7523

0.6233
0.4915

0.6298
0.6859

0.6780
0.5244

0.4101
0.5392

0.5992
B

M
25-Q

E
0.6948

0.5177
0.4116

0.5909
0.6498

0.6256
0.4276

0.3312
0.5015

0.5704
k-N

N
0.7373

0.6031
0.4794

0.6091
0.6633

0.6879
0.5414

0.4287
0.5413

0.6003
k-N

N
-A

W
E

0.7420
0.6081

0.4842
0.6156

0.6682
0.6984

0.5551
0.4407

0.5560
0.6117

Lam
bdaM

A
R

T
0.7313

0.6127
0.4864

0.6110
0.6426

0.6749
0.5469

0.4323
0.5419

0.5704

N
TA

S1-poin
tw

ise
0.7591*

0.6214
0.4897

0.6328
0.6934*

0.7047*
0.5582*

0.4493*
0.5506*

0.6258*
N

TA
S1-pairw

ise
0.7661*

0.6285*
0.5012*

0.6364*
0.7018*

0.7192*
0.5661*

0.4709*
0.5941*

0.6471
N

TA
S2

0.7638*
0.6271*

0.4996*
0.6351*

0.6976*
0.7144*

0.5723*
0.4608*

0.5689*
0.6334*

The
superscript

*
denotes

significant
differences

com
pared

to
allthe

baselines.

132 6.6 Results and Discussion

on UniMobile-Q. On the contrary, we see that it performs better on UniMobile-T
showing that the AWE-based feature improves its generalization.

As we can see, NTAS1-pairwise and NTAS2 outperform all the methods, on
both data splits, in terms of all evaluation metrics. All the improvements are sta-
tistically significant suggesting that using queries to learn the app representation
helps our approach learn the similarities more effectively. Considering the rela-
tive difference on the two data splits, we observe that our proposed approaches
also show a drop. Compared to other methods (except for StaticRanker), we
observe that NTAS1-pairwise and NTAS2 consistently have a lower relative drop
across UniMobile-Q and UniMobile-T, indicating that the trained app embedding
is an effective way to represent mobile apps based on the queries that are as-
signed to them. Among our proposed methods, NTAS1-pairwise has the least
relative drop (−7.4% on average), suggesting that a pairwise setting leads to a
higher generalization.

6.6.2 Representation Analysis

We reduce the dimensionality of the learned app representations by projecting
them to a two-dimensional space using t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [134]. Figure 6.9 shows the proximity of the representation of
different apps8 being grouped in some clusters. For instance, all social media
apps are placed close to each other. Also, we see that location search and navi-
gation apps are in another cluster. Interestingly, Gmail is close to File Manager,
Contacts, and WhatsApp. People usually search for attachments or their contacts
using Gmail, explaining their proximity. Google Search, on the other hand, be-
longs to no cluster. This could be due to the variety of queries people submit
to Google Search, placing it somewhere in the center of all other apps. How-
ever, we cannot explain why YouTube is close to WhatsApp, or why Play Store

is close to Amazon. Hence, Figure 6.9 shows that learning high-dimensional app
representation using the queries submitted to them is effective, though perhaps
not perfect.

6.6.3 Performance on Apps

Here, we compute the mean performance of the queries targeted to a specific app
and plot the result for each app in Figure 6.10. For the sake of visualization, we
only compare the performance of NTAS1-pairwise with three other methods in

8Given space limitations, we could not include all the apps in this figure.

133 6.6 Results and Discussion

Figure 6.9. Proximity of different app representations learned by NTAS1-
pairwise. This plot is produced by reducing the dimensionality (using the
t-SNE algorithm) of the app representations to two for visualization.

terms of MRR. We see that all models perform well in ranking less personal apps
such as Google Search, YouTube, and Google Maps. Since none of the mod-
els incorporate users’ personal data, this result is expected. This suggests users’
personal data can be leveraged to rank apps such as File Manager, Contacts,
and Calendar higher. Also, users’ activities on their social media apps should
be leveraged to provide a more effective personalized ranking. Moreover, we
see that k-NN-AWE is more robust across the two data splits, compared to other
baselines. In particular, it performs well in ranking Contacts suggesting that
the proximity of contact names in the high-dimensional space of word embed-
ding enables k-NN-AWE to outperform other models. Finally, it can be seen that
NTAS1-pairwise is more robust across the two data splits, compared to other
methods. Specifically, it outperforms all other methods for the majority of apps.
However, NTAS1-pairwise performs worse than other methods for File Manager,
on both data splits. This is mainly due to insufficient number of training data,
given the diversity of the queries related to this app.

6.6.4 Performance on Tasks

We are interested in seeing how methods perform differently with respect to dif-
ferent search tasks. To do so, we averaged the performance (nDCG@3) of all
queries belonging to the same task. Then, we grouped the tasks by the total

134 6.6 Results and Discussion

(a) UniMobile-Q

(b) UniMobile-T

Figure 6.10. Performance comparison with respect to certain apps on both
data splits.

135 6.7 Summary

(a) UniMobile-Q (b) UniMobile-T

Figure 6.11. Negative correlation between the number of unique apps users
selected for a task and performance.

number of unique apps selected by users and plotted their results in Figure 6.11.
Our intuition was that if different users chose several apps for a single task, it can
be a sign that the task is more challenging for the models. We can see in the fig-
ure that as the number of unique apps per task raises, the models perform worse.
Although, the negative correlation is not very strong (Pearson’s r = −0.3049 and
−0.3450 for UniMobile-Q and UniMobile-T, respectively), it is consistent with all
models and evaluation metrics. This indicates that if a task can be done using
multiple apps, their corresponding queries also become more difficult for a sys-
tem. A multi-app task can be either very personal (i.e., every user chooses their
own favorite app) or very general (i.e., it can be done using many apps). There-
fore, one can explore incorporating users’ regular app usage patterns to perform
a personalized target app selection.

6.7 Summary

In this chapter, we introduced and studied the task of target apps selection, which
was motivated by the growing interest in conversational search systems where
users speak their queries to a unified voice-based search system. To this aim, we
presented the first analysis of mobile cross-app search queries and user behaviors
in terms of the apps they chose to complete different search tasks. We found that
a limited number of popular apps attract most of the search queries. We further
observed notable differences between queries submitted to different apps. We

136 6.7 Summary

showed that query length and content differ among apps. We also showed that,
39% of search queries were done in Google Search, and it was the top choice of
users in 35% of the tasks. Given that more than 71% of the defined tasks could
be done with the current features of Google Search, this indicates that users
prefer to search using a more specific app. We carried out the experiments and
analyses on the dataset of cross-app mobile queries that we collected through
crowdsourcing.

Since the mobile information environment is uncooperative and the data is
heterogeneous, representing each app for the target apps selection task is chal-
lenging. We proposed two models that learn high-dimensional latent represen-
tations for the mobile apps in an end-to-end training setting. Our first model
produces a score for a given query-app pair, while the second model produces a
probability distribution over all the apps given a query. We compared the perfor-
mance of our proposed method with state-of-the-art retrieval baselines splitting
data following two different strategies. Our approach outperformed all baselines
significantly.

After conducting a crowdsourced study of the unified mobile search task and
finding out that such as task is needed in a mobile environment, we validate our
findings in a more realistic situation where users report their everyday mobile
queries through a bespoke app. The new setting not only provides a much more
realistic experimental environment but also enables us to capture more-in-depth
contextual information such as several sensor data as well as app usage statistics.
In the next chapter, we will describe our effort for conducting a more realistic
study as well as incorporating contextual information into a target apps selection
model.

Chapter 7

Context-Aware Target Apps Selection

7.1 Introduction

As mobile devices provide rich contextual information about users [20], previous
studies [4, 106, 211] have tried to incorporate query context in various domains.
In particular, query context is often defined as the information from the previous
queries and their corresponding clickthrough data [190, 194], or situational con-
text such as location and time [39, 97, 211]. However, as user interactions on
mobile devices are mostly with apps, exploring apps usage patterns reveals im-
portant information about the users contexts, information needs, and behavior.
For instance, a user who starts spending time on travel-related apps, e.g., TripAd-
visor, is likely to be planning a trip in the near future. Carrascal and Church [53]
verified this claim by showing that people use certain categories of apps more
intensely as they do mobile search.

However, as we described in the previous chapter our previous attempt to
study unified mobile search through crowdsourcing failed to capture users’ con-
texts while collecting data [19]. In addition, there are some other limitations.
For example, we asked the workers to complete a set of given search tasks, which
obviously were not their actual information needs, and thus the queries may dif-
fer from real search queries. In addition, the workers did not complete their work
on mobile devices, which affects their behavior. Furthermore, the user behavior
and queries could not be studied in a day-long or week-long period.

The aforementioned limitations have motivated us to conduct the first in situ
study on target apps selection for unified mobile search. This enables us to obtain
more clear insights into the task. In particular, we are interested in studying the
users’ behavior as they search for their real-life information needs using their
own mobile devices. Moreover, we study the impact of contextual information

137

138 7.1 Introduction

on the apps they use for search. To this aim, we developed a simple open source
app, called uSearch, and used it to build an in situ collection of cross-app queries.
Through an open call, we recruited 255 participants who installed uSearch and
used it to report their queries as well as the target apps, right after they did a
search on their smartphones. With participants’ consents, uSearch also ran in
the background collecting useful contextual data. We have released the code of
uSearch to facilitate research on mobile information retrieval. In fact, uSearch is
extendable and can be used for collecting data to study various search tasks on
mobile devices. Over a period of 12 weeks, we collected thousands of queries
which enables us to investigate various aspects of user behavior as they search
for information in a cross-app search environment.

Using the collected data, we conduct an extensive data analysis, aiming to
understand how users’ behavior vary across different apps while they search for
their information needs. The key findings of our analysis include the fact that
users conduct the majority of their daily search tasks using specific apps, rather
than Google. Among various available contextual information, we focus on the
users’ apps usage statistics as their apps usage context, and leave others for future
work. This is motivated by the results of our analysis in which we show that users
often search on the apps that they use more frequently. Based on the insights we
got from our data analysis, we propose a context-aware neural target apps selec-
tion model, called CNTAS. In our model, we deal with the problem as a ranking
task estimating a relevance score for a given context-query-app triplet. Our ex-
periments demonstrate that our model significantly outperforms state-of-the-art
retrieval models in this task. Also, we show that incorporating context improves
nDCG@5 by an average of 20% on all models and improves the performance
with respect to 57% of the users.

In summary, the main contributions of this chapter include:

• Designing and conducting an in situ mobile search study for collecting thou-
sands of real-life cross-app queries. Both the app1 and the collected data2 are
publicly available for research purposes.

• Presenting the first in situ analysis of cross-app queries and users’ behavior as
they search with different apps. More specifically, we study different attributes
of cross-app mobile queries with respect to their target apps, sessions, and
contexts.

• Proposing a context-aware neural model for target apps selection.

1Available at https://github.com/aliannejadi/uSearch
2Available at http://aliannejadi.com/istas.html

https://github.com/aliannejadi/uSearch
http://aliannejadi.com/istas.html

139 7.2 Data Collection

• Evaluating the performance of state-of-the-art retrieval models for this task
and comparing them against our proposed model.

Our analyses and experiments lead to new findings compared to previous
studies, opening specific future directions in this research area.

7.2 Data Collection

In this section, we describe how we collected ISTAS, which is, to the best of
our knowledge, the first in situ dataset on cross-app mobile search queries. We
collected the data by recruiting 255 participants through an open call on the
Web. The participants installed a simple Android app, called uSearch, for at
least 24 hours on their smartphones. We asked them to use uSearch to report
their real-life cross-app queries as well as the corresponding target apps.

We first describe the characteristics of uSearch. Then, we provide details on
how we recruited participants as well as the details on how we instructed them
to report queries through the app. Finally, we give details on how we checked
the quality of the collected data.

7.2.1 uSearch

In order to facilitate the query report procedure, we developed uSearch, the An-
droid app shown in Figure 7.1. We chose the Android platform because, in com-
parison with iOS, it imposes less restrictions in terms of sensor data collection
and background app activity.

User interface. As shown in Figure 7.1, uSearch consists of three sections. The
upper part lists all the apps that are installed on the phone, with the most used
apps ranked higher. The participants were supposed to select the app in which
they had done their real-life search (e.g., Facebook). In the second section, the
participants were supposed to enter exactly the same query that they had entered
in the target app (e.g., Facebook). Finally, the lower part of the app, provided
them easy access to a unique ID of their device and an online survey on their
demographics and backgrounds.

Collected data. Apart from the participants’ input data, we also collected their
interactions within uSearch (i.e., taps and scrolling). Moreover, a background
service collected the phone’s sensors data. We collected data from the following
sensors: (i) GPS; (ii) accelerometer; (iii) gyroscope; (iv) ambient light; (v) WiFi;
and (vi) cellular. Also, we collected other available phone data that can be used

140 7.2 Data Collection

Figure 7.1. uSearch interface on LG Google Nexus 5 as well as the survey.
Checkboxes are used to indicate the target app for a query.

to better understand a user’s context. The additional collected data are as fol-
lows: (i) battery level; (ii) screen on/off events; (iii) apps usage statistics; and
(iv) apps usage events. Note that apps usage statistics indicate how often each
app has been used in the past 24 hours, whereas apps usage events provides
more detailed app events.3 Apps usage events record user interactions in terms
of: (i) launching a specific app; (ii) interacting with a launched app; (iii) closing
a launched app; (iv) installing an app; and (v) uninstalling an app. The back-
ground service collected the data at a predefined time interval. The data was
securely transferred to a cloud service.

7.2.2 Data Collection Procedure

We recruited participants through an online platform. In the announcement,
we provided all the details about the intention of the study as well as the data
we were collecting. First, we asked them to complete a survey inside uSearch.
Moreover, we mentioned all the steps required to be done by the participants in
order to report a query. In short, we asked them to open uSearch after every
search they did using any installed app on their phones. Then, we asked them

3https://developer.android.com/reference/android/app/usage/package-summary

https://developer.android.com/reference/android/app/usage/package-summary

141 7.2 Data Collection

to report the app as well as the query they used to perform their search task. We
encouraged the participants to report their search as soon as it occurs, as it is
very crucial to capture their context at the right moment.

After running several pilot studies, over the period of 12 weeks we recruited
255 participants, asking them to let the app running on their smartphones for at
least 24 hours and report at least 5 queries. Since some people may not submit 5
search queries during the period of 24 hours, we asked them to keep the app run-
ning on their phones after the first 24 hours until they reported 5 queries. Also,
we encouraged them to continue reporting more than 5 queries for an additional
reward. As incentive, we paid the participants $0.2 per query. We recruited par-
ticipants only from English-speaking countries.

7.2.3 Quality Check

During the course of data collection, we performed daily quality checks on the
collected data. The checks were done manually with the help of some data visu-
alization tools that we developed. As we were paying the participants a reward
per query, we carefully studied the submitted queries as well as user interactions
to prevent participants from reporting false queries. For each query, we checked
the apps usage statistics and events for the same day. If a participant reported
a query in a specific app (e.g., Facebook) but we could not find any recent us-
age events regarding that app, we assumed that the query was falsely reported.
Moreover, if a participant reported more than 10 queries per day, we took some
extra quality measures into account. Finally, we approved 6,877 queries out of
7,750 reported queries.

7.2.4 Privacy Concerns

Before asking for required app permissions, we made clear statement about our
intentions on how we are going to use the participants’ collected data as well
as what was collected from their devices. We ensured them that their data was
stored on secure cloud servers and that they could opt out at any point of the
study. In that case we would remove all their data from the servers. While
granting apps usage access was mandatory, granting location access was optional.
We asked participants to allow uSearch access their locations only if they felt
comfortable with that. Note that, through the background service, we did not
collect any other data that could be used to identify the identity of participants.

142 7.3 Data Analysis

7.2.5 Limitations

Like any other study, our study has some limitations. First, the study relies on self-
reporting. This could result in specific biases in the collected data. For instance,
participants may prefer to report shorter queries simply because it requires less
typing. Also, in many cases, participants are likely to forget reporting queries
or do not report all the queries that belong to the same session. Second, the
reported queries are not actually submitted to a unified search system and users
may formulate their queries differently is such setting. For example, in a unified
system a query may be “videos of Joe Bonamassa” but in YouTube it may be “Joe
Bonamassa.” Both limitations are due to lack of an existing unified mobile search
app. Hence, developing such app is essential for constructing a more realistic
collection.

7.3 Data Analysis

In this section, we describe the basic characteristics of ISTAS, and present a thor-
ough analysis of target apps, queries, sessions, and context.

7.3.1 Basic Statistics

During the period of 86 days, with the help of 255 participants, we were able
to collect 6,877 search queries and their target apps as well as sensor and usage
data. The collected raw data is over 300 gigabytes. Here, we summarize the
main characteristics of the participants based on the submitted surveys. 59% of
the participants were female and 50% aged between 25 and 34. Participants were
from all kinds of educational backgrounds ranging from high school diploma to
PhD. In particular, 32% of them had a college degree, followed by 30% with
a bachelor’s degree. Smartphone was the main device used for connecting to
the Internet for 53% of the participants, followed by laptop (25%). Among the
participants, 67% used their smartphones more often for personal reasons rather
than work. Finally, half of the participants stated that they use their smartphones
4 hours a day or more. Table 7.1 lists basic characteristics of ISTAS. Moreover,
Figure 7.2 shows the number of queries and active participants per day during
the data collection period. Note that as shown in Figure 7.2, in the first half
collection period, we were mostly developing the visualization tools and did not
recruit many participants.

143 7.3 Data Analysis

Table 7.1. Statistics of ISTAS.

queries 6,877
unique queries 6,262
users 255
unique apps 192
search sessions 3,796
days data collected 86
Mean queries per user 26.97 ± 50.21
Mean queries per session 1.81 ± 2.88
Mean queries per day 79.96 ± 101.27
Mean days of report per user 7.38 ± 15.95
Mean unique apps per user 5.14 ± 14.06
Mean query terms 3.00 ± 1.96
Mean query characters 17.53 ± 10.46

7.3.2 Apps

How apps are distributed. Figure 7.3 shows how queries are distributed with
respect to the top 20 apps. We see that the top 20 apps account for 88% of the
searches in ISTAS, showing that the app distribution follows a power-law. While
Google and Chrome queries respectively attract 26% and 23% of the target apps,
users conduct half (51%) of their search tasks using other apps. This finding is
inline with what was shown in a previous work [19]. However, we observe a
higher percentage of searches done using Google and Chrome apps. This can be
due to two reasons: (i) ISTAS is collected in situ and on mobile devices, thus
being more realistic; (ii) ISTAS queries reflect real-life information needs rather
than a set of given search tasks, hence the information need topics are diverse.
Moreover, we observe a notable variety of apps among the top 20 apps, such as
Spotify and Contacts. We also see Google Play Store among the top target
apps. This suggests that people use their smartphones to search for a wide variety
of search tasks, most of which were done by apps other than Google or Chrome.
It should also be noted that users seek the majority of their information needs
on various apps, even though there exists no unified mobile search system on
their smartphones, suggesting that they might even do a smaller portion of their
searches using Google or Chrome, if a unified mobile search system was available
on their smartphones.

How apps are selected. Here, we analyze the behavior of the participants as

144 7.3 Data Analysis

Figure 7.2. Number of queries and active participants per day, during the
course of data collection (best viewed in color).

Figure 7.3. Number of queries per app for top 20 apps.

145 7.3 Data Analysis

(a) (b)

Figure 7.4. Distribution of unique apps per user and task.

they searched for real-life information needs, in terms of the apps they chose
for performing the search. Figure 7.4a shows the distribution of unique apps
per user. We can see how many users selected a certain number of unique apps,
with an average of 5.14 unique apps per user. Again, this indicates that users
seek information in a set of diverse apps. It is worth noting that in Figure 7.4a,
we observe a totally different distribution compared to [19], where the average
number of unique apps per user was much lower. We believe this difference is
due to the fact that the participants in our work reported their real-life queries,
as opposed to the crowdsourcing setup of [19].

On the other hand, Figure 7.4b plots the distribution of unique apps with
respect to the sessions, that is how many unique apps were selected during a
single search session. We see an entirely different distribution where the aver-
age number of unique apps per task is 1.36. This shows that while users seek
information using multiple apps, they are less open to switching between apps in
a single session. This can partly be due to the fact that switching between apps
is not very convenient. However, this behavior requires more investigation that
we leave for future work.

7.3.3 Queries

In order to understand the differences in user behavior while formulating their
information needs using different apps, we conduct an analysis on the attributes
of the queries with respect to their target apps. First, we start by studying the
number of query terms in each app, for the top 9 apps in ISTAS.

How query length differs among apps. The upper part of Table 7.2 lists the
distribution of the number of query terms in the whole dataset (denoted by All)

146 7.3 Data Analysis

Table 7.2. Corss-app query attributes for 9 apps.

A
ll

G
oo

gl
e

Yo
uT

ub
e

Fa
ce

bo
ok

A
m

az
on

Sh
.

M
ap

s

G
m

ai
l

G
.P

la
y

St
or

e

Sp
ot

if
y

C
on

ta
ct

s

terms Query term distribution

1 22% 13% 11% 22% 12% 25% 57% 49% 29% 81%
2 28% 26% 29% 48% 45% 27% 30% 33% 35% 10%
3 20% 21% 24% 16% 25% 18% 9% 12% 24% 7%
4 12% 13% 18% 10% 10% 13% 3% 4% 7% 2%
> 4 17% 26% 17% 4% 10% 17% 1% 1% 6% 0%

Mean 3.00 3.49 3.19 2.34 2.74 3.07 1.61 1.75 2.31 1.31

τ Query overlap

> 0.25 56% 39% 41% 28% 27% 26% 27% 25% 8% 14%
> 0.50 19% 11% 15% 13% 7% 11% 12% 12% 4% 10%
> 0.75 13% 5% 8% 11% 5% 9% 12% 10% 2% 10%

The upper part lists the distribution of number of query terms as well as
mean query terms per app.
The lower part lists the query overlap at different similarity thresholds (de-
noted by τ) per app.
All shows query distributions across all apps.

147 7.3 Data Analysis

as well as each app. It also lists the average query terms per app. As we can see,
the average query length is 3.00, which is slightly lower than previous studies
on mobile query analysis [91, 105]. However, the average query length for apps
that deal with general web search such as Google is higher (=3.49). This indi-
cates that users submit shorter queries to other apps. For instance, we see that
Contacts has the lowest average query length (=1.31). Also Gmail and Google

Play Store have an average query length lower than 2. This difference shows
a clear behavioral difference in formulating queries using different apps. More-
over, we can see that the distribution of the number of query terms varies among
different apps; take Contacts as an example, whose single-term queries consti-
tute 81% of its query distributions. This indicates that the structure of queries
vary across the target apps. Studying the most frequent query unigrams of each
app also confirms this finding. For example, Google’s most popular unigrams
are mostly stopwords (i.e., “to”, “the”, “of”, “how”), whereas Facebook’s most
popular unigrams are not (i.e., “art”, “eye”, “wicked”, “candy”).

How query similarity differs across apps. The lower part of Table 7.2 lists
the query similarity or query overlap using a simple function used in previous
studies [19, 64]. We measure the query overlap at various degrees and use the
similarity function sim(q1, q2) = |q1∩ q2|/|q1∪ q2|, simply measuring the overlap
of query terms. We see that among all queries, 18% of them are similar to no
other queries. We see a different level of query overlap in queries belonging to
different apps. The highest overlap is among queries from Web search apps such
as Chrome and Google. Lower query similarity is observed for personal apps such
as Facebook and more focused apps such as Amazon Shopping. Note that the
query overlap is higher when all app queries are taken into account (All), as
opposed to individual apps. This shows that users submit more similar queries
as they switch between apps, suggesting that switching between apps is part of
the information seeking or query reformulation procedure on mobile devices.

7.3.4 Sessions

A session is a “series of queries by a single user made within a small range of
time” [175]. Similar to previous work [53, 105, 175], we consider a 5-minute
range of inactivity to close a session. ISTAS consists of 3,796 sessions, with
1.81 average queries per session. The majority of sessions have only one query
(=66%). Similarly, as shown in Figure 7.4b, participants use only one app in
the majority of sessions (=80%). We also studied how similar queries were dis-
tributed among single-app sessions as compared to multiple-app sessions. We

148 7.4 Context-Aware Neural Target Apps Selection

found that queries are more similar to each other in multiple-app sessions. More
specifically, query overlap at the threshold of > 0.25 is 49% and 56% in single-
app and multiple-app sessions, respectively. This suggests that users tend to
switch between apps to search for the same information need as they reformulate
their queries.

7.3.5 Context

Temporal behavior. We analyze the behavior of users as they search with respect
to day-of-week and time-of-day. The distribution across day-of-week among the
participants who reported their queries for more than 6 days slightly peaks on
Fridays. Moreover, Figure 7.5 shows the distribution of queries and unique target
apps across time-of-day for all participants. As we can see, more queries are
submitted in the evenings, however we do not see a notable difference in the
number of unique target apps.

Apps usage context. We define a user’s apps usage context at a given time t as
the apps usage statistics of that specific user during the 24 hours before t. Apps
usage statistics contain details about the amount of time users spent on every
app installed on their smartphones. This gives valuable information on users’
personal app preferences as well as their contexts. For example, a user who has
interacted with travel guide apps in the past 24 hours is probably planning a trip
in the near future. Therefore, we analyze how users’ apps usage context can
potentially help a target app selection model. Figure 7.6 shows the histogram of
target app rankings in the users’ apps usage contexts. We see that participants
often looked for information in the apps that they use more frequently. For in-
stance, 19% of searches were done on the most used app, followed by 10% on
the second most used app. We also see that, in most cases, as the ranking in-
creases, the percentage of target apps decreases, suggesting that incorporating
users app usage context is critical for target apps selection.

7.4 Context-Aware Neural Target Apps Selection

In this section, we propose a context-aware neural model called CNTAS, which
is an extension to our recent neural target apps selection model (i.e., NTAS1)
[19]. Our model takes a query q, a candidate app a, and the corresponding
query context cq as input and produces a score indicating the likelihood of the
candidate app a being selected by the user as the target app for the query q.

149 7.4 Context-Aware Neural Target Apps Selection

Figure 7.5. Time-of-the-day distribution of queries and unique apps (best
viewed in color).

Figure 7.6. Apps usage context ranking distribution of relevant target apps.
Lower values of x axis mean that the app has been used more often in the past
24 hours.

150 7.4 Context-Aware Neural Target Apps Selection

In the following, we first describe a general framework for context-aware target
apps selection and further explain how it is implemented and how context is
incorporated into the framework.

Formally, the CNTAS framework estimates the probability p(S = 1|q, a, cq; A),
where S is a binary random variable indicating whether the app a should be
selected (S = 1) or not (S = 0). A denotes the set of candidate apps. This set
can be all the apps installed on the user’s mobile device, or the set of candidate
apps that is obtained by another model in a cascade setting. The app selection
probability in the CNTAS framework is estimated as follows:

p(S = 1|q, a, cq; A) =ψ(φQ(q),φA(a),φC(cq)) , (7.1)

where φQ, φA, and φC respectively denote query representation, app representa-
tion, and context representation components. ψ is a target apps selection com-
ponent that takes the mentioned representations and generates an app selection
score. Any of these components can be implemented in different ways. In addi-
tion, cq can contain various types of query context, including search time, search
location, and the users apps usage.

We implement the component φQ with two major functions: an embedding
function E : V → Rd that maps each vocabulary term to a d-dimensional em-
bedding space, and a global term weighting functionW : V → R that maps each
vocabulary term to a real-valued number showing its global importance. The
matrices E and W are the network parameters in our model and are learned to
provide task-specific representations. The query representation component φQ

represents a given query q = {w1, w2, · · · , w|q|} as follows:

φQ(q) =
|q|
∑

i=1

cW (wi) · E (wi) ,

which is the weighted element-wise summation over the terms’ embedding vec-
tors. cW is the normalized global weights computed using a softmax function as
follows:

cW (wi) =
exp(W (wi))

∑|q|
j=1 exp(W (w j))

.

This is a simple yet effective approach for query representation based on the
bag of words assumption, which has proven to be effective for target apps selec-
tion [19], ad-hoc retrieval [77], and query performance prediction [212].

To implement the app representation componentφA, we learn a d-dimensional
dense representation for each app. In more detail, this component consists of an

151 7.4 Context-Aware Neural Target Apps Selection

app representation matrixA ∈ RN×d where N denotes the total number of apps.
Therefore, φA(a) returns a row of the matrixA that corresponds to the app a.

Various context definitions can be considered to implement the context rep-
resentation component. General types of context, such as location and time, has
been extensively explored in different tasks, such as web search [39], personal
search [211], and mobile search [97]. In this document, we refer to the apps us-
age time as context, which is a special type of context for our task. As introduced
earlier in Section 7.3.5, the apps usage context is the time that the user spent
on each mobile app in the past 24 hours of the search time. To implement φC ,
we first compute a probabilistic distribution based on the apps usage context, as
follows:

p(a′|cq) =
time spent on app a′ in the past 24 hours

∑

a′′∈A time spent on app a′′ in the past 24 hours
,

where A is a set of candidate apps. φC is then computed as:

φC(cq) =
∑

a′∈A

p(a′|cq) · AC[a
′] ,

whereAC ∈ RN×d denotes an app representation matrix which is different from
A used in the app representation component. This matrix is supposed to learn
app representations suitable for representing the apps usage context. AC[a′]
denotes the representation of app a′ in the app representation matrixAC .

In summary, each of the representation learning components φQ, φA, and φC

returns a d-dimensional vector. The app selection component is modeled as a
fully-connected feed-forward network with two hidden layers and the output di-
mensionality of 1. We use rectified linear unit (ReLU) as the activation function
in the hidden layers of the network. Sigmoid is used as the final activation func-
tion. To avoid overfitting, the dropout technique [179] is employed. For each
query, the following vector is fed to this network:

(φQ(q) ◦φA(a)) · |φQ(q)−φA(a)| · (φC(cq) ◦φA(a)) · |φC(cq)−φA(a)| ,

where ◦ denotes the Hadamard product, i.e., the element-wise multiplication,
and · here means concatenation. In fact, this component computes the similarity
of the candidate app with the query content and context, and estimates the app
selection score based on the combination of both.

We train our model using pointwise and pairwise settings. In a pointwise
setting, we use mean squared error (MSE) as the loss function. MSE for a mini-
batch b is defined as follows:

LMSE(b) =
1
|b|

|b|
∑

i=1

(yi −ψ(φQ(qi),φA(ai),φC(cqi
)))2 ,

152 7.5 Experimental Setup

where qi, cqi
, ai, and yi denote the query, the query context, the candidate app,

and the label in the ith training instance of the mini-batch. For this training
setting, we use a linear activation for the output layer.

CNTAS can also be trained in a pairwise fashion. Therefore, each training
instance consists of a query, the query context, a target app, and a non-target
app. To this end, we employ hinge loss (max-margin loss function) that has
been widely used in the learning to rank literature for pairwise models [123].
Hinge loss is a linear loss function that penalizes examples violating the margin
constraint. For a mini-batch b, hinge loss is defined as below:

LHinge(b) =
1
|b|

|b|
∑

i=1

max {0, 1− sign(yi1 − yi2)(byi1 − byi2)} ,

where byi j =ψ(φQ(qi),φA(ai j),φC(cqi
)).

7.5 Experimental Setup

7.5.1 Data

We evaluate the performance of our proposed models on the ISTAS dataset. We
follow two different strategies to split the data: (i) In ISTAS-R, we randomly
select 70% of the queries for training, 10% for validation, and 20% for testing set;
(ii) In ISTAS-T, we sort the queries of each user chronologically and keep the first
70% of each user’s queries for training, the next 10% for validation, and the last
20% for testing set. ISTAS-T is used to evaluate the methods when information
about users’ search history is available. To minimize random bias, for ISTAS-R
we repeated the experiments 10 times and report the average performance. The
hyper-parameters of all models were tuned based on the nDCG@3 value on the
validation sets.

7.5.2 Metrics

Effectiveness is measured by four standard evaluation metrics that were also used
in [19]: mean reciprocal rank (MRR), and normalized discounted cumulative
gain for the top 1, 3, and 5 retrieved apps (nDCG@1, nDCG@3, nDCG@5). We
determine the statistically significant differences using the two-tailed paired t-
test with Bonferroni correction at a 95% confidence interval (p < 0.05).

153 7.5 Experimental Setup

7.5.3 Compared Methods

We compared the performance of our model with the following methods:

• StaticRanker: For every query we rank the apps in the order of their popularity
in the training set as a static (query independent) model.

• QueryLM, BM25, BM25-QE: For every app we aggregate all the relevant queries
from the training set to build a document representing the app. QueryLM is the
query likelihood retrieval model [150]. For BM25-QE, we adopt Bo1 [24] for
query expansion. We use the Terrier [141] implementation of these methods.

• k-NN, k-NN-AWE: To find the nearest neighbors in k nearest neighbors (k-NN),
we consider the cosine similarity between the TF-IDF vectors of queries. Then,
we take the labels (apps) of the nearest queries and produce the app ranking.
As for k-NN-AWE [210], we compute the cosine similarity between the average
word embedding (AWE) of the queries obtained from GloVe [147] with 300
dimensions.

• ListNet, ListNet-CX: For every query-app pair, we use the scores obtained by
BM25-QE, k-NN, k-NN-AWE, and StaticRanker as features to train ListNet [50]
implemented in RankLib4. For every query, we consider all irrelevant apps as
negative samples. ListNet-CX also includes users’ apps usage context as an
additional feature.

• NTAS: A neural model approach that we designed for the target apps selection
task in our previous work [19]. We use the NTAS1 model due to its superior
performance compared to NTAS2.

• Contextual baselines: In order to carry out a fair comparison between CN-
TAS and other context-aware baselines, we apply a context filter to all non-
contextual baselines. We create the context filter as follows: for every app α
in the training samples of user u, we take the time that u has spent on α in
the past 24 hours as its score. We then perform a linear interpolation with the
scores of all the mentioned baselines. Note that all scores are normalized. All
these models are denoted by a -CR suffix.

4https://sourceforge.net/p/lemur/wiki/RankLib/

https://sourceforge.net/p/lemur/wiki/RankLib/

154 7.6 Results and Discussion

7.6 Results and Discussion

In the following, we evaluate the performance of CNTAS trained on both data
splits and study the impact of context on the performance. We further analyze
how the models perform on both data splits.

7.6.1 Performance Comparison

Table 7.3 lists the performance of our proposed methods as well as the com-
pared methods. First, we compare the relative performance drop between the
two data splits. We see that almost all non-contextual models perform worse
on ISTAS-T compared to ISTAS-R, whereas almost all context-aware models per-
form better on ISTAS-T. Among the non-contextual methods, ListNet is the most
robust model with the least performance drop and k-NN-AWE is the only method
that performs better on ISTAS-T (apart from StaticRanker). On the other hand,
QueryLM exhibits the most performance drop (−27% on average), as opposed
to Contextual-k-NN-AWE with the highest performance improvement on ISTAS-
T (+10% on average). This indicates that k-NN-AWE is able to capture similar
queries more effectively, whereas QueryLM relies heavily on the indexed queries.
It should also be noted that StaticRanker performs better on ISTAS-T indicating
that it is biased towards more popular apps.

Among the non-contextual baselines, we see that NTAS-pairwise performs
best in terms of most evaluation metrics on both data splits, this is because it
learns high dimensional app and query representations which help it to perform
more effectively. We see that applying the contextual filter improves the perfor-
mance of all models. These improvements are statistically significant in all cases,
so are not shown in the table. Although this filter is very simple, it is still able to
incorporate useful information about user context and behavior into the ranking.
This also indicates the importance of apps usage context, as mentioned in Sec-
tion 7.3.5. Among the context-aware baselines, we see that NTAS-pairwise-CR
performs best in terms of MRR and nDCG@1, while k-NN-AWE-CR and ListNet-
CR perform better in terms of other evaluation metrics. It should be noted that
ListNet-CR performs better than ListNet-CX. This happens because ListNet-CX in-
tegrates the apps usage context as an additional feature, whereas ListNet-CR is
the result of the combination of ListNet and the contextual filter.

We see that our proposed CNTAS outperforms all the baselines with respect to
the majority of evaluation metrics. In particular CNTAS-pairwise exhibits the best
performance. The achieved improvements in terms of MRR and nDCG@1 are
statistically significant. The reason is that CNTAS is able to learn latent features

155 7.6 Results and Discussion

Table
7.3.

P
erform

ance
com

parison
w
ith

baselines
on

ISTA
S-R

and
ISTA

S-T
.

M
ethods

ISTA
S-R

D
ataset

ISTA
S-T

D
ataset

M
R

R
nD

C
G

@
1

nD
C

G
@

3
nD

C
G

@
5

M
R

R
nD

C
G

@
1

nD
C

G
@

3
nD

C
G

@
5

StaticR
anker

0.4502
0.2597

0.4435
0.4891

0.4786
0.2884

0.4752
0.5173

Q
ueryLM

0.3556
0.2431

0.3534
0.3900

0.2706
0.1486

0.2713
0.3097

B
M

25
0.4205

0.3134
0.4363

0.4564
0.3573

0.2447
0.3771

0.3948
B

M
25-Q

E
0.4319

0.2857
0.4371

0.4727
0.3930

0.2411
0.4053

0.4364
k-N

N
0.4433

0.2761
0.4455

0.4811
0.4067

0.2294
0.3982

0.4655
k-N

N
-AW

E
0.4742

0.2937
0.4815

0.5211
0.4859

0.2950
0.4919

0.5392
ListN

et
0.5170

0.3330
0.5211

0.5623
0.5118

0.3219
0.5208

0.5572
N

TA
S-pointw

ise
0.5221

0.3427
0.5231

0.5586
0.5162

0.3385
0.5162

0.5550
N

TA
S-pairw

ise
0.5257

0.3468
0.5236

0.5618
0.5214

0.3427
0.5183

0.5580

C
on

text-A
w

are
M

ethods

StaticR
anker-C

R
0.4903

0.3015
0.4901

0.5268
0.5289

0.3576
0.5358

0.5573
Q

ueryLM
-C

R
0.4540

0.2773
0.4426

0.5013
0.4696

0.3023
0.4597

0.5145
B

M
25-C

R
0.5398

0.3653
0.5394

0.5871
0.5249

0.3496
0.5255

0.5723
B

M
25-Q

E-C
R

0.5215
0.3398

0.5223
0.5693

0.5230
0.3474

0.5260
0.5728

k-N
N

-C
R

0.4978
0.3114

0.4926
0.5431

0.5161
0.3481

0.4956
0.5555

k-N
N

-AW
E-C

R
0.5144

0.3233
0.5142

0.5632
0.5577

0.3722
0.5612

0.6086
ListN

et-C
R

0.5391
0.3544

0.5417
0.5845

0.5599
0.3780

0.5657
0.6037

ListN
et-C

X
0.5349

0.3580
0.5343

0.5784
0.5019

0.3139
0.5153

0.5521
N

TA
S-pointw

ise-C
R

0.5532
0.3745

0.5580
0.5883

0.5627
0.3865

0.5663
0.5965

N
TA

S-pairw
ise-C

R
0.5576

0.3779
0.5568

0.5870
0.5683

0.3923
0.5661

0.6047
C

N
TA

S-pointw
ise

0.5614*
0.3833*

0.5592
0.5901

0.5702*
0.4146*

0.5655
0.5938

C
N

TA
S-pairw

ise
0.5637*

0.3861*
0.5586

0.5924*
0.5738*

0.4182*
0.5679*

0.6071

The
superscript

*
denotes

significant
differences

com
pared

to
allthe

baselines.

156 7.6 Results and Discussion

Figure 7.7. Performance comparison with respect to certain apps with and
without context.

(a) ∆MRR per app (b) ∆MRR per user

Figure 7.8. MRR differences on ISTAS-R with and without context per app
and user.

157 7.6 Results and Discussion

Table 7.4. Performance analysis based on query length, dividing the test queries
into three evenly-sized length buckets.

Short queries Med. queries Long queries

MRR MRR MRR

w/o context 0.5302 0.4924 0.4971
w/ context 0.5733 0.5190 0.4977

from the interaction of mobile usage data in the context. These interactions can
reveal more information for better understanding of the user information needs.

7.6.2 Impact of Context on Performance Per App

In this experiment we demonstrate the effect of context on the performance
with respect to various apps. Figure 7.7 shows the performance for queries that
are labeled for specific target apps (as listed in the figure). We see that the
context-aware model performs better while predicting social media apps such as
Facebook and Instagram. However, we see that the performance for Google

drops as it improves for Chrome. This happens because users do most of their
browsing activities on Chrome, rather than Google; hence the usage statistics of
Chrome helps the model to predict it more effectively. Moreover, we study the
difference of MRR between the model with and without context for all apps. Our
goal is to see how context improves the performance for every target app. We see
in Figure 7.8a that the performance is improved for 39% of the apps. As shown
in the figure, the improvements are much larger compared with the performance
drops. Among the apps with the highest context improvements, we can mention
Quora, Periscope, and Inbox. We saw that these apps were less popular among
our participants and their representations were weaker than the other apps, that
is why the contextual information shows the highest improvement for them.

7.6.3 Impact of Context on Performance Per User

Here we study the difference of MRR between the model with and without con-
text for all users. Our goal is to see how many users are impacted positively
by incorporating context in the target apps selection model. Figure 7.8b shows
how performance differs per user when we apply context compared with when
we do not. As we can see, users’ apps usage context is able to improve the ef-

158 7.7 Summary

fectiveness of target apps selection for the majority of users. In particular, the
performance for 57% of the users is improved by incorporating the apps usage
context. In fact, we observed that users with the highest impact from context use
less popular apps.

7.6.4 Impact of Context on Performance Per Query Length.

Following Zamani et al. [213], we create three buckets of test queries based on
query length uniformly. Therefore, the buckets will have approximately equal
number of queries. The first bucket, called Short queries, contains the short-
est queries. The second one, called Med. queries, constitutes of medium-length
queries. The last bucket, called Long queries, includes the longest queries of our
test set. Table 7.4 lists the performance of the model with and without context in
terms of MRR. As we see, the average MRR for all three buckets is improved as
we apply context. However, we observe that as the queries become shorter, the
improvement increases. The reason is that shorter queries tend to be more gen-
eral or ambiguous, and thus query context can have higher impact on improving
search for these queries.

7.7 Summary

In this chapter, we conducted the first in situ study on the task of target apps se-
lection, which was motivated by the growing interest in intelligent assistants and
conversational search systems where users interact with a universal voice-based
search system. To this aim, we developed an Android app, called uSearch, and
recruited 255 participants, asking them to report their real-life cross-app mobile
queries via uSearch. We observed notable differences in length and structure
among queries submitted to different apps. Furthermore, we found that while
users choose to search using various apps, few apps attract most of the search
queries. We found that even though Google and Chrome are the most popular
apps, users do only 26% and 23% of their searches in these apps, respectively.
The in situ data collection enabled us to collect valuable information about users’
contexts. For instance, we found that the target app for 29% of the queries were
among the top two most used apps of a particular user. Inspired by our data
analysis, we proposed a model that learns high-dimensional latent representa-
tions for the apps usage context and predicts the target app for a query. The
model was trained with an end-to-end setting. Our model produces a score for a
given context-query-app triplet. We compared the performance of our proposed

159 7.7 Summary

method with state-of-the-art retrieval baselines splitting data following two dif-
ferent strategies. We observed that our approach outperforms all baselines, sig-
nificantly.

This chapter brings the thesis to the end of its part on a unified mobile search
where we introduced and analyzed distributed IR in a mobile environment. Next,
we present our work on conversational search. Increasing interest and recent ad-
vances in intelligent assistants make research on conversational search and rec-
ommendation inevitable. Moreover, as we mentioned earlier, distributed search
in a mobile environment is an essential component of a functional intelligent
agent since users would communicate their information needs through a single
channel. That being said, in the next chapter, we take the first step in studying
and formalizing the task of asking clarifying questions in conversational search
systems.

160 7.7 Summary

Part III

Conversational Search

161

Chapter 8

Conversational Search with Clarifying
Questions

8.1 Introduction

While searching on the Web, users often fail to formulate their complex infor-
mation needs in a single query. As a consequence, they may need to scan mul-
tiple result pages or reformulate their queries. Alternatively, systems can decide
to proactively ask questions to clarify users’ intent before returning the result
list [44, 153]. In other words, a system can assess the level of confidence in the
results and decide whether to return the results or ask users questions to clarify
their information need. The questions can be aimed to clarify ambiguous, faceted
or incomplete queries [185]. Asking clarifying questions is especially important
in conversational search systems for two reasons: (i) conversation is the most
convenient way for natural language interactions and for asking questions [111]
and (ii) a conversational system can only return a limited number of results, thus
being confident about the retrieval performance becomes even more important.
One possible approach to improve the confidence is to ask clarifying questions.
Figure 8.1 shows an example of such a conversation selected from our dataset.
We see that both users, Alice and Robin, issue the same query, “dinosaur.” As-
suming that the system does not have access to any prior personal or contextual
information, the conversation starts with the same clarifying question. The rest
of the conversation, however, depends on the users’ responses. In fact, the users’
responses aid the system to get a better understanding of the underlying infor-
mation need.

A possible workflow for an information system with clarifying questions is
shown in Figure 8.2. As we can see, Alice initiates a conversation by submitting

163

164 8.1 Introduction

Figure 8.1. Example conversations with clarifying questions from our dataset,
Qulac. As we see, both users, Alice and Robin, issue the same query (“di-
nosaur”), however, their actual information needs are completely different.
With no prior knowledge, the system starts with the same clarifying ques-
tion. Depending on the user’s answers, the system selects the next questions
in order to clarify the user’s information need. The tag “No answer” shows
that the asked question is not related to the information need. We asked the
crowdworkers to answer each question given the original query and informa-
tion need. In cases where the question required knowledge that was out of the
scope of the information need, the workers would mark their answer with a “No
answer” tag (see example).

165 8.1 Introduction

her query to the system. The system then retrieves a list of documents and es-
timates its confidence on the result list (i.e., “Present Results?”). If the system
is not sufficiently confident to present the results to the user, it then starts the
process of asking clarifying questions. As the first step, it generates a list of can-
didate questions related to Alice’s query. Next, the system selects a question from
the candidate question list and asks it from the user. Based on Alice’s answer, the
system retrieves new documents and repeats the process.

In this chapter, we formulate the task of selecting and asking clarifying ques-
tions in open-domain information-seeking conversational systems. To this end,
we propose an offline evaluation framework based on faceted and ambiguous
queries and collect a novel dataset, called Qulac,1 building on top of the TREC
Web Track 2009-2012 collections. Qulac consists of over 10K question-answer
pairs for 198 TREC topics consisting of 762 facets. Inspired from successful ex-
amples of crowdsourced collections [18, 23], we collected clarifying questions
and their corresponding answers for every topic-facet pair via crowdsourcing.
Our offline evaluation protocol enables further research on the topic of asking
clarifying questions in a conversational search session, providing a benchmarking
methodology to the community.

Our experiments on an oracle model show that asking only one good question
leads to over 100% retrieval performance improvement. Moreover, the analysis
of the oracle model provides important intuitions related to this task. For in-
stance, we see that asking clarifying questions can improve the performance of
shorter queries more. Also, clarifying questions exhibit a more significant ef-
fect on improving the performance of ambiguous queries, compared to faceted
queries. We further propose a retrieval framework following the workflow of Fig-
ure 8.2, consisting of three main components: (i) question retrieval; (ii) question
selection; and (iii) document retrieval. The question selection model is a simple
yet effective neural model that takes into account both users’ queries and con-
versation context. We compare the question retrieval and selection models with
competitive term-matching and LTR baselines, showing their ability to signifi-
cantly outperform the baselines. Finally, to foster research in this area, we have
made Qulac publicly available.2

1Qulac, pronounced ku:l2k, means blizzard and wonderful in Persian.
2Code and data are available at https://github.com/aliannejadi/qulac.

https://github.com/aliannejadi/qulac

166 8.2 Problem Statement

Figure 8.2. A workflow for asking clarifying questions in an open-domain con-
versational search system.

8.2 Problem Statement

A key advantage of a conversational search system is its ability to interact with
the user in the form question and answer. In particular, a conversational search
system can proactively pose questions to the users to understand their actual
information needs more accurately and improve its confidence in the search re-
sults. We illustrate the workflow of a conversational search system, focusing on
asking clarifying questions.

As depicted in Figure 8.2, once the user submits a query to the system, the
Information Need Representation module generates and passes their information
need to the Retrieval Model, which returns a ranked list of documents. The sys-
tem should then measure its confidence in the retrieved documents (i.e., Present
Results? in Figure 8.2). In cases where the system is not sufficiently confident
about the quality of the result list, it passes the query and the context (including
the results list) to the Question Generation Model to generate a set of clarifying
questions, followed by the Question Selection Model whose aim is to select one
of the generated questions to be presented to the user. Next, the user answers
the question and the same procedure repeats until a stopping criterion is met.
Note that when the user answers a question, the complete session information is
considered for selecting the next question. In some cases, a system can decide to
present some results, followed by asking a general question on possible further
information. For example, assume a user submits the query “sigir 2019” and the

167 8.2 Problem Statement

system responds “The deadline of SIGIR 2019 is Jan. 28. Would you like to know
where it will be held?” As we can see, while the system is able to return an an-
swer with high confidence, it can still ask further questions [196]. Here, we do
not study this scenario; however, one can investigate it for exploratory search.

A facet-based offline evaluation protocol. The design of an offline evalua-
tion protocol is challenging because conversation requires online interaction be-
tween a user and a system. Hence, an offline evaluation strategy requires human-
generated answers to all possible questions that a system would ask, something
that is impossible to achieve in an offline setting. To circumvent this problem,
we substitute the Question Generation Model in Figure 8.2 with a large bank
of questions, assuming that it consists of all possible questions in the collection.
This assumption reduces the complexity of the evaluation significantly as human-
generated answers to a limited set of questions can be collected offline, facilitat-
ing offline evaluation.

Here, we build our evaluation protocol on top of the TREC Web track’s data.
TREC has released 200 search topics, each of which being either “ambiguous” or
“faceted.”3 Clarke et al. [67] defined these categories as follows: “... Ambiguous
queries are those that have multiple distinct interpretations. ... On the other
hand, facets reflect underspecified queries, with different aspects covered by the
subtopics...” The TREC collection is originally designed to evaluate search result
diversification. In contrast, here we build various conversation scenarios based
on topic facets.

Formally, let T = {t1, t2, . . . , tn} be the set of topics (queries) that initiates
a conversation. Moreover, we define F = {f1, f2, . . . , fn} as the set of facets
with fi = { f i

1 , f i
2 , . . . , f i

mi
} defining different facets of t i, where mi denotes the

number of facets for t i. Further, let Q = {q1,q2, . . . ,qn} be the set of clarifying
questions belonging to every topic, where qi = {qi

1, qi
2, . . . , qi

zi
} consists of all

clarifying questions that belong to t i; zi is the number of clarifying questions
for t i. Here, our aim is to provide the users’ answers to all clarifying questions
considering all topics and their corresponding facets. Therefore, letA (t, f , q)→
a define a function that returns answer a for a given topic t, facet f , and question
q. Hence, to enable offline evaluation, A requires to return an answer for all
possible values of t, f , and q. In this chapter, T and F are borrowed from
the TREC Web track 2009-2012 data. Q is then collected via crowdsourcing
and A (t, f , q) is also modeled by crowdsourcing (see Section 8.3). It is worth
noting that we also borrow the relevance assessments of the TREC Web track,

3In this chapter, we use the term “facet” to refer to the subtopics of both faceted and ambiguous
topics.

168 8.3 Data Collection

after breaking them down to the facet level. For instance, suppose the topic
“dinosaur” has 10 relevant documents, 6 of which are labeled as relevant to the
first facet, and 4 to the second facet. In Qulac, the topic “dinosaur” is broken
into two topic-facet pairs together with their respective relevance judgments.

8.3 Data Collection

In this section, we explain how we collected Qulac (Questions for lack of clarity),
that is, to the best of our knowledge, the first dataset of clarifying questions in an
IR setting. As we see in Figure 8.1, each topic is coupled with a facet. Therefore,
the same question would receive a different answer based on the user’s actual
information need. We follow a four-step strategy to build Qulac. In the first
step we define the topics and their corresponding facets. In the second step, we
collect a number of candidate clarifying questions (Q) for each query through
crowdsourcing. Then, in the third step, we assess the relevance of the questions
to each facet and collect new questions for those facets that require more specific
questions. Finally, in the last step, we collect the answers for every query-facet-
question triplet, modeling A . In the following subsections, we elaborate on
every step of our data collection procedure.

8.3.1 Topics and Facets

As we discussed earlier, the problem of asking clarifying questions is particularly
interesting in cases where a query can be interpreted in various ways. An exam-
ple is shown in Figure 8.1 where two different users issue the same query for dif-
ferent intents. Therefore, any data collection should contain an initial query and
description of its facet, describing the user’s information need. In other words,
we define a target facet for each query. Faceted and ambiguous queries make an
ideal case to study the effect of clarifying questions in a conversational search
system for the following reasons: (i) the user information need is not clear from
the query; (ii) multiple facets of the same query could satisfy the user’s informa-
tion need; (iii) asking clarifying questions related to any of the facets provide a
high information gain. Therefore, we choose the TREC Web track’s topics4 [69]
as the basis for Qulac. In other words, we take the topics of TREC Web track
09-12 as initial user queries. We then break each topic down into its facets and
assume that each facet describes the information need of a different user (i.e., it
is a topic). Figures 8.3 and 8.4 illustrate how we have divided every topic into

4https://trec.nist.gov/data/webmain.html

https://trec.nist.gov/data/webmain.html

169 8.3 Data Collection

Figure 8.3. An example of three facets with their corresponding relevant doc-
uments for the topic “dinosaur” (best viewed in color).

its facets. As we can see in Figure 8.3, every TREC topic is assessed at a facet
level. Therefore, all three colors (green, red, and blue) denote relevant docu-
ments to the topic “dinosaur,” each of which concerned with a different facet.
Figure 8.4 shows how we have broken a topic into its facets and assumed that
a user’s information need is one of them. Here, we see that Alice’s information
need is concerned with the “Discovery channel,” hence only green documents
that are labeled for this facet, are considered as relevant documents. We have
broken down the topic to all its facets in a similar way as we can see for Robin
and Ross.

As we see in Table 8.1, the average facet per topic is 3.85 ± 1.05. Therefore,
the initial 198 TREC topics5 leads to 762 topic-facet pairs in Qulac. Consequently,
for each topic-facet pair, we take the relevance judgements associated with the
respective facet.

5 The official TREC relevance judgements cover 198 of the topics.

170 8.3 Data Collection

Figure 8.4. An example of three users who have issued the same query “di-
nosaur,” but with different information needs. As we see, the faceted relevance
assessments are broken into three different sets creating three new topics (best
viewed in color).

8.3.2 Clarifying Questions

It is crucial to collect a set of reasonable questions that address multiple facets
of every topic6 while containing sufficient negative samples. This enables us to
study the effect of retrieval models under the assumption of having a functional
question generation model. Therefore, we asked human annotators to generate
questions for a given query based on the results they observed on a commercial
search engine as well as query auto-complete suggestions.

To collect clarifying questions, we designed a Human Intelligence Task (HIT)
on Amazon Mechanical Turk.7 We asked workers to imagine themselves acting
as a conversational agent such as Microsoft Cortana where an imaginary user
had asked them about a topic. Then, we described the concept of facet to them,
supporting it with multiple examples. Finally, we asked them to follow the steps
below to figure out the facets of each query and generate questions accordingly:

1. Enter the same query in a search engine of their choice and scan the results
in the first three pages. Reading the title of the results as well as scanning the

6Candidate clarifying questions should also address out-of-collection facets.
7http://www.mturk.com

http://www.mturk.com

171 8.3 Data Collection

snippets would give them an idea of different facets of the query on the Web.

2. For some difficult queries such as “toilet,” scanning the results would not help
in identifying the facets. Therefore, inspired by [38], we asked the workers
to type the query in the search box of the search engine, and press the space
key after typing the query. Most commercial search engines provide a list of
query auto-complete suggestions. Interestingly, in most cases the suggested
queries reflect various aspects of the same query.

3. Finally, we asked them to generate six questions related to the query, aiming
to address the facets that they had figured out.

The screenshots of the instructions that we provided to the workers can be
found in Figure 8.5. We assigned two workers to each HIT, resulting in 12 ques-
tions per topic in the first round. In order to preserve the language diversity of
the questions, we limited each worker to a maximum of two HITs. HITs were
only available to workers residing in the U.S. with an approval rate of over 97%.
After collecting the clarifying questions, in the next step, we explain how we
verified them for quality assurance.

8.3.3 Question Verification and Addition

In this step, we aim to address two main concerns: (i) how good are the collected
clarifying questions? (ii) are all facets addressed by at least one clarifying ques-
tion? Given the high complexity of this step, we appointed two expert annotators
for this task. We instructed the annotators to read all the collected questions of
each topic, marking invalid and duplicate questions. Moreover, we asked them
to match a question to a facet if the question was relevant to the facet. A ques-
tion was considered relevant to a facet if its answer would address the facet.
Finally, in order to make sure that all facets were covered by at least one ques-
tion, we asked the annotators to generate an additional question for the facets
that needed more specific questions. The outcome of this step is a set of verified
clarifying questions, addressing all the facets in the collection.

8.3.4 Answers

After collecting and verifying the questions, we designed another HIT in which
we collected answers to the questions for every facet. As we have illustrated in
Figure 8.6, the HIT started with detailed instructions of the task, followed by

172 8.3 Data Collection

Figure 8.5. Screenshots of clarifying question generation HIT instructions.

173 8.3 Data Collection

Figure 8.6. Screenshot of answer generation HIT instructions.

several examples. The workers were provided with a topic and a facet descrip-
tion. Then we instructed them to assume that they had submitted the query with
their actual information need being the given facet. Finally, they were required
to write the answer to one clarifying question that was presented to them. To
avoid the bias of other questions for the same facet, we included only one ques-
tion in each HIT. If a question required information other than what workers
were provided with, we instructed the workers to identify it with a “No answer”
tag. Each worker was allowed to complete a maximum of 100 HITs to guarantee
language diversity. Workers were based in the U.S. with an approval rate of 95%
or greater.

Quality check. During the course of data collection, we performed regular qual-
ity checks on the collected answers. The checks were done manually on 10%
of submissions per worker. In case we observed any invalid submissions among
the sampled answers of one user, we then studied all the submissions of that
user. Invalid submissions were then removed from the collection and the worker
was banned from the future HITs. Finally, we assigned all invalid answers to
other workers to complete. Notice that we employed basic behavioral check

174 8.4 Conversational Retrieval Framework

Table 8.1. Statistics of Qulac.

topics 198
faceted topics 141
ambiguous topics 57

facets 762
Average facet per topic 3.85 ± 1.05
Median facet per topic 4
informational facets 577
navigational facets 185

questions 2,639
question-answer pairs 10,277
Average terms per question 9.49 ± 2.53
Average terms per answer 8.21 ± 4.42

techniques in the design of the HIT. For example, we disabled copy/paste fea-
tures of text inputs and tracked workers’ keystrokes. This enabled us to detect
and reject low-quality submissions.

8.4 Conversational Retrieval Framework

In this section, we propose a conversational search system that is able to select
and ask clarifying questions and rank documents based on the user’s responses.
The proposed system initially retrieves a set of questions for a given query from
a large pool of questions, containing all the questions in the collection. At the
second stage, our proposed model, called NeuQS, selects the best question to be
posed to the user based on the query and the conversation context. This problem
is particularly challenging because the conversational interactions are in natural
language, highly dependent on the previous interactions between the user and
the system (i.e., conversation context).

As mentioned earlier in Section 8.2, a user initiates the conversation by sub-
mitting a query. Then the system should decide whether to ask a clarifying ques-
tion or present the results. At every stage of the conversation, the previous ques-
tions and answers exchanged between the user and the system are known to the
model. Finally, the selected question and its corresponding answer should be
incorporated in the document retrieval model to enhance the retrieval perfor-
mance.

175 8.4 Conversational Retrieval Framework

Formally, for a given topic t let h= {(q1, a1), (q2, a2), . . . , (q|h|, a|h|)} be the his-
tory of clarifying questions and the corresponding answers exchanged between
the user and the system (i.e., the context). Here, the ultimate goal is to predict
q, that is the next question that the system should ask the user. Moreover, let
a be the user’s answer to q. The answer a is unknown to the question selection
model, however, the document retrieval model retrieves documents once the sys-
tem receives the answer a. In the following, we describe the question retrieval
model, followed by the question selection and the document retrieval models.

8.4.1 Question Retrieval Model

We now describe BERT8 Language Representation based Question Retrieval model,
called BERT-LeaQuR. We aim to maximize the recall of the retrieved questions,
retrieving all relevant clarifying questions to a given query in the top k questions.
Retrieving all relevant questions from a large pool of questions is challenging,
because questions are short and context-dependent. In other words, many ques-
tions depend on the conversation context and the query. Also, since conversation
is in the form of natural language, term-matching models cannot effectively re-
trieve short questions. For instance, some relevant clarifying questions for the
query “dinosaur” are: “Are you looking for a specific web page?” “Would you
like to see some pictures?”

Yang et al. [197] showed that neural models outperform term-matching mod-
els for question retrieval. Inspired by their work, we learn a high-dimensional
language representation for the query and the questions. Formally, BERT-LeaQuR
estimates the probability p(R= 1|t, q), where R is a binary random variable indi-
cating whether the question q should be retrieved (R= 1) or not (R= 0). t and
q denote the query (topic) and the candidate clarifying question, respectively.
The question relevance probability in the BERT-LeaQuR model is estimated as
follows:

p(R= 1|t, q) =ψ
�

φT (t),φQ(q)
�

, (8.1)

where φT and φQ denote topic representation and question representation, re-
spectively. ψ is the matching component that takes the aforementioned repre-
sentations and produces a question retrieval score. There are various ways to
implement any of these components.

We implement φT and φQ similarly using a function that maps a sequence
of words to a d-dimensional representation (V s → Rd). We use the BERT [79]
model to learn these representation functions. BERT is a deep neural network

8BERT: Bidirectional Encoder Representations from Transformers

176 8.4 Conversational Retrieval Framework

with 12 layers that uses an attention-based network called Transformers [184].
We initialize the BERT parameters with the model that is pre-trained for the lan-
guage modeling task on Wikipedia and fine-tune the parameters on Qulac with
3 epochs. Notice that BERT has recently outperformed state-of-the-art models in
a number of language understanding and retrieval tasks [79, 142]. We particu-
larly use BERT in our model to incorporate the knowledge from the vast amount
of unlabeled data while learning the representation of queries and questions. In
addition, BERT shows promising results in modeling short texts.

The component ψ is modeled using a fully-connected feed-forward network
with the output dimensionality of 2. Rectified linear unit (ReLU) is employed as
the activation function in the hidden layers, and a softmax function is applied
on the output layer to compute the probability of each label (i.e., relevant or
non-relevant). To train BERT-LeaQuR, we use a cross-entropy loss function.

8.4.2 Question Selection Model

In this section, we introduce a Neural Question Selection Model (NeuQS) which
selects questions with a focus on maximizing the precision at the top of the
ranked list. The main challenge in the question selection task is to predict whether
a question has diverged from the query and conversation context. In cases where
a user has given a negative answer(s) to previous question(s), the model needs
to diverge from the history. In contrast, in cases where the answer to the previous
question(s) is positive, questions on the same topic that ask for more details are
preferred. For example, as we saw in Figure 8.1, when Robin answers the first
question positively (i.e., being interested in dinosaur books), the second question
tries to narrow down the information to a specific type of dinosaur.

NeuQS incorporates multiple sources of information. In particular, it learns
from the similarity of a query, a question and the context as well as retrieval and
performance prediction signals. In particular, NeuQS outputs a relevance score
for a given query t, question q, and conversation context h. Formally, NeuQS can
be defined as follows:

score = γ
�

φT (t),φH(h),φQ(q),η(t,h, q),σ(t,h, q)
�

, (8.2)

where γ is a scoring function for a given query representation φT (t), context
representation φH(h), question representation φQ(q), retrieval representation
η(t,h, q), and query performance representation σ(t,h, q). Various strategies
can be employed to model each of the components of NeuQS.

We model the components φT and φQ similarly to Section 8.4.1. Further, the

177 8.4 Conversational Retrieval Framework

context representation component φH is implemented as follows:

φH(h) =
1
|h|

|h|
∑

i

φQA(qi, ai) , (8.3)

where φQA(q, a) is an embedding function of a question q and answer a. More-
over, the retrieval representation η(t,h, q) ∈ Rk is implemented by interpolating
the retrieval score of the query, context and question (see Section 8.4.3) and the
score of the top k retrieved documents is used. Finally, the query performance
prediction (QPP) representation component σ(t,h, q) ∈ Rk consists of the per-
formance prediction score of the ranked documents at different ranking positions
(for a maximum of k ranked documents). We employed theσ QPP model for this
component [148]. We take the representations from the [CLS] layer of the pre-
trained uncased BERT-Base model (i.e., 12-layer, 768-hidden, 12-heads, 110M
parameters). To model the function γ we concatenate and feed φT (t), φH(h),
φQ(q), η(t,h, q), andσ(t,h, q) into a fully-connected feed-forward network with
two hidden layers. We use ReLU as the activation function in the hidden layers
of the network. We use a pointwise learning setting using a cross-entropy loss
function.

8.4.3 Document Retrieval Model

Here, we describe the model that we use to retrieve documents given a query,
conversation context, and current clarifying question as well as user’s answer.
We use the KL-divergence retrieval model [118] based on the language modeling
framework [150] with Dirichlet prior smoothing [214] where we linearly inter-
polate two likelihood models: one based on the original query, and one based on
the questions and their respective answers.

For every term w of the original query t, conversation context h, the cur-
rent question q, and answer a, the interpolated query probability is computed as
follows:

p(w|t,h, q, a) = α× p(w|θt) + (1−α)× p(w|θh,q,a) , (8.4)

where θt denotes the language model of the original query, and θh,q,a denotes
the language model of all questions and answers that have been exchanged in
the conversation. α determines the weight of the original query and is tuned on
the development set.

Then, the score of document d is calculated as follows:

p(d|t,h, q, a) =
∑

wk∈τ

p(wk|t,h, q, a) log(p(wk|d) , (8.5)

178 8.5 Experimental Setup

where τ is the set of all the terms present in the conversation. We use Dirichlet’s
smoothing for terms that do not appear in d. We use the document retrieval
model for two purposes: (i) ranking documents after the user answers a clar-
ifying question; (ii) ranking documents of a candidate question as part of the
NeuQS (see Section 8.4.2). Hence, the model does not see the answer in the
latter case.

8.5 Experimental Setup

8.5.1 Data

We evaluate BERT-LeaQuR and NeuQS on Qulac, following a 5-fold cross-validation.
We follow two strategies to split the data:

• Qulac-T: we split the train/validation/test sets based on topics. In this
case, the model has not seen the test topics in the training data;

• Qulac-F: here we split the data based on their facets. Thus, the same test
topic might appear in the training set, but with a different facet.

In order to study the effect of multi-turn conversations with clarifying ques-
tions, we expand Qulac to include multiple artificially generated conversation
turns. To do so, for each instance, we consider all possible combinations of ques-
tions to be asked as the context of conversation. Take t1 as an example where
we select a new question after asking the user two questions. Assuming that
t1 has four questions, all possible combinations of questions in the conversation
context would be: (q1, q2), (q1, q3), (q1, q4), (q2, q3), (q2, q4), (q3, q4). Notice that
the set of candidate clarifying questions for each multi-turn example would be
the ones that have not appeared in the context. The number of instances grows
significantly as we enlarge the length of the conversation, leading to a total of
907,366 instances in the collection. At each turn of the conversation, we select
the question from all candidate questions of the same topic and facet, having the
same conversation history. In other words, they share the same context. Since
the total number of unique conversational contexts is 75,200, a model should
select questions for 75,200 contexts from all 907,366 candidate questions.

8.5.2 Metrics

Question retrieval evaluation metrics. We consider four metrics to evaluate
the effectiveness of question retrieval models: mean average precision (MAP)

179 8.5 Experimental Setup

and recall for the top 10, 20, and 30 retrieved questions (Recall@10, Recall@20,
Recall@30). Our choice of measures is motivated by the importance of achieving
high recall for this task.

Question selection evaluation metrics. Effectiveness is measured considering
the performance of retrieval after adding the selected question to the retrieval
model as well as the user answer. To this end, at each stage of the conversation,
we pass the selected question and its corresponding answer to the document re-
trieval model (Section 8.4.3). The model then re-ranks the documents based
on the given query, question(s), and answer(s). Finally, the effectiveness of a
question is evaluated based on the effect it has on the document retrieval perfor-
mance. Five standard evaluation metrics are considered: mean reciprocal rank
(MRR), precision of the top 1 retrieved document (P@1), and normalized dis-
counted cumulative gain for the top 1, 5, and 20 retrieved documents (nDCG@1,
nDCG@5, nDCG@20). We use the relevance assessments as they were released
by TREC. However, we modify them in such a way to evaluate the performance
with respect to every facet. For instance, if one topic consists of 4 facets it is then
broken into 4 different topics each inheriting its own relevance judgements from
the TREC assessments.

The choice of evaluation metrics is motivated by considering three different
aspects of the task. We choose MRR to evaluate the effect of asking clarifying
questions on ranking the first relevant document. We report P@1 and nDCG@1
to measure the performance for scenarios where the system is able to return
only one result. This is often the case with voice-only conversational systems.
Moreover, we report nDCG@5 and nDCG@20 as conventional ranking metrics
to measure the impact of asking clarifying questions in a traditional Web search
setting. Notice that nDCG@20 is the preferred evaluation metric for the ClueWeb
collection due to the shallow pooling performed for relevance assessments [68,
133].

We determine statistically significant differences using the two-tailed paired
t-test with Bonferroni correction at a 99.9% confidence interval (p < 0.001).

Compared Methods We compare the performance of our question retrieval and
selection models with the following methods:

• Question retrieval:

– BM25, RM3, QL: we index all the questions using Galago.9 Then, for a
given query we retrieve the documents using BM25 [166], RM3 [120],
and QL [150] models.

9https://sourceforge.net/p/lemur/galago/

https://sourceforge.net/p/lemur/galago/

180 8.5 Experimental Setup

– LambdaMART, RankNet: for every query-question pair, we use the scores
obtained by BM25, RM3, and QL as features to train LambdaMART [193]
and RankNet [46] implemented in RankLib.10 For every query, we con-
sider all irrelevant questions as negative samples.

• Question selection:

– OriginalQuery reports the performance of the document retrieval model only
with the original query (Eq. (8.4) with α= 1).

– σ-QPP: we use a simple yet effective query performance predictor, σ [148]
as an estimation of a question’s quality. We calculate the σ predictor of the
document retrieval model with the following input: original query, the con-
text, and candidate questions. We then select the question with the highest
σ value.

– LambdaMART, RankNet: we consider the task of question selection as a rank-
ing problem where a list of candidate questions should be ranked and the
one with the highest rank is chosen. Therefore, we use LambdaMART [193]
and RankNet [46] as two LTR baselines. The list of features are: (i) a flag
determining if a question is open or not; (ii) a flag indicating if the answer to
the last question in the context is yes or no; (iii) σ [148] performance pre-
dictor of the current question; (iv) the Kendall’s τ correlation of the ranked
list at 10 and 50 of the original query and the current question; (v) the
Kendall’s τ correlation of the ranked list at 20 and 50 of the current ques-
tion and previous question-answer pairs in the context; (vi) Similarity of
the current question and the query based on their BERT representations;
(vii) Similarity of the current question and previous question-answer pairs
in the context based on their BERT representations.

– BestQuestion, WorstQuestion: in addition to all the baselines, we also re-
port the retrieval performance when the worst and the best question is se-
lected for an instance. BestQuestion (or WorstQuestion) selects the candi-
date question for which the MRR value of the retrieval model is the maxi-
mum (or minimum). Note that the retrieval scores are calculated knowing
the selected question and its answer (i.e., oracle model). Our goal is to show
the upper and lower bounds.

10https://sourceforge.net/p/lemur/wiki/RankLib/

https://sourceforge.net/p/lemur/wiki/RankLib/

181 8.6 Results and Discussion

Table 8.2. Performance of question retrieval model.

Method MAP Recall@10 Recall@20 Recall@30

QL 0.6714 0.5917 0.6946 0.7076
BM25 0.6715 0.5938 0.6848 0.7076
RM3 0.6858 0.5970 0.7091 0.7244
LambdaMART 0.7218 0.6220 0.7234 0.7336
RankNet 0.7304 0.6233 0.7314 0.7500
BERT-LeaQuR 0.8349* 0.6775* 0.8310* 0.8630*

The superscript * denotes statistically significant differences com-
pared to all the baselines (p < 0.001).

8.6 Results and Discussion

8.6.1 Question Retrieval

Table 8.2 shows the results of question retrieval for all the topics. As we see,
BERT-LeaQuR is able to outperform all baselines. It is worth noting that the
model’s performance gets better as the number of retrieved documents increases.
This indicates that BERT-LeaQuR is able to capture the relevance of query and
questions when they lack common terms. In fact, we see that all term-matching
retrieval models such as BM25 are significantly outperformed in terms of all eval-
uation metrics.

8.6.2 Oracle Question Selection

Performance analysis. Here we study the performance of an oracle model,
i.e. assuming that an oracle model is aware of the answers to the questions.
The goal is to show to what extent clarifying questions can improve the perfor-
mance of a retrieval system. As we see in the lower rows of Table 8.3 selecting
the best questions (BestQuestion model) helps the model to achieve substan-
tial improvement, even in the case that the retrieval model is very simple. This
shows the high potential gain of asking good clarifying questions on the per-
formance of a retrieval system. Particularly, we examine the relative improve-
ment of the system after asking only one question and observe that BestQuestion
achieves over 100% relative improvement in terms of different evaluation metrics
(MRR: 0.2820→ 0.5677, P@1: 0.1933→ 0.4986, nDCG@1: 0.1460→ 0.3988,
nDCG@5: 0.1503 → 0.2793, nDCG@20: 0.1520 → 0.2265). It is worth men-

182 8.6 Results and Discussion

faceted ambiguous

topic type

−0.5

0.0

0.5

1.0
∆

M
R
R

nav. inf.

facet type
1 2 3 4 5 10

query terms

Figure 8.7. Impact of topic type, facet type, and query length on the perfor-
mance of BestQuestion oracle model, compared to OriginalQuery.

tioning that we observe the highest relative improvements in terms of nDCG@1
(=173%) and P@1 (=158%), exhibiting a high potential impact on voice-only
conversational systems.

Impact of topic type and length. We analyze the performance of BestQues-
tion based on the number of query terms and topic type. We see that the rel-
ative improvement of BestQuestion is negatively correlated with the number of
query terms (Pearson’s r = −0.2, p � 0.001), suggesting that shorter queries
require clarification in most cases. Also, comparing the topic types (ambiguous
vs. faceted), we see a significant difference in the relative improvement. The
average ∆MRR for ambiguous topics is 0.3858, compared with the faceted top-
ics with average ∆MRR of 0.2898. The difference was statistically significant
(2-way ANOVA, p� 0.001).

8.6.3 Question Selection

Table 8.3 presents the results of the document retrieval model taking into ac-
count a selected question together with its answer. We see that all models out-
perform OriginalQuery, confirming that asking clarifying questions is crucial in
a conversation, and leading to high performance gain. For instance, compared
to OriginalQuery, a model as simple as σ-QPP achieves a 31% relative improve-
ment in terms of MRR. Also, NeuQS consistently outperforms all the baselines
in terms of all evaluation metrics on both data splits. All the improvements are
statistically significant. Moreover, NeuQS achieves a remarkable improvement in
terms of both P@1 and nDCG@1. These two evaluation metrics are particularly
important for voice-only conversational systems where the system must return
only one result to the user. The obtained improvements highlight the necessity

183 8.6 Results and Discussion

and effectiveness of asking clarifying questions in a conversational search system,
where they are perceived as natural means of interactions with users.

8.6.4 Impact of Data Splits

We compare the performance of models on both Qulac-T and Qulac-F data splits.
We see that the LTR baselines perform worse on Qulac-F. Notice that the perfor-
mance difference of LambdaMART among the splits is statistically significant in
terms of all evaluation metrics (p < 0.001). RankNet, on the other hand, exhibits
a more robust performance, i.e., the difference of its performance on the two data
splits is not statistically significant. Unlike the baselines, NeuQS exhibits a sig-
nificant improvement in terms of all evaluation metrics on Qulac-F (p < 0.05),
except for nDCG@5. This suggests that the baseline models are prone to overfit-
ting on queries and conversations in the training data. As mentioned, Qulac-F’s
train and test sets may have some queries and questions in common, hurting
models that are weak at generalization.

8.6.5 Impact of Number of Conversation Turns

Figure 8.8 shows the performance of NeuQS as well as the baselines for different
conversation turns. We evaluate different models at k turns (k ∈ {1, 2,3}). We
see that the performance of all models improves as the conversation advances
to multiple turns. It is worth noting that a probabilistic modeling of users’ in-
teractions under the probabilistic framework proposed by Fuhr [85] to better
understand the additional cost and effect that a system gets at each turn. Also,
we see that all models consistently outperform the OriginalQuery baseline at dif-
ferent number of turns. Finally, we see that NeuQS exhibits robust performance,
outperforming all the baselines at different turns.

8.6.6 Impact of Clarifying Questions on Facets

We study the difference of MRR between NeuQS and OriginalQuery on all facets.
Note that for every facet we average the performance of NeuQS at different con-
versation turns. Our goal is to see how many facets are impacted positively by
asking clarifying questions. NeuQS improves the effectiveness of retrieval by
selecting relevant questions for a considerable number of facets on both data
splits. In particular, the performance for 45% of the facets is improved by asking
clarifying questions, whereas the performance for 19% becomes worse.

184 8.6 Results and Discussion

Table
8.3.

P
erform

ance
com

parison
w
ith

baselines
on

Q
ulac-T

and
Q
ulac-F

.

M
ethod

Q
u

lac-T
D

ataset
Q

u
lac-F

D
ataset

M
R

R
P@

1
nD

C
G

@
1

nD
C

G
@

5
nD

C
G

@
20

M
R

R
P@

1
nD

C
G

@
1

nD
C

G
@

5
nD

C
G

@
20

O
riginalQ

uery
0.2715

0.1842
0.1381

0.1451
0.1470

0.2715
0.1842

0.1381
0.1451

0.1470
σ

-Q
PP

0.3570
0.2548

0.1960
0.1938

0.1812
0.3570

0.2548
0.1960

0.1938
0.1812

Lam
bdaM

A
R

T
0.3558

0.2537
0.1945

0.1940
0.1796

0.3501
0.2478

0.1911
0.1896

0.1773
R

ankN
et

0.3573
0.2562

0.1979
0.1943

0.1804
0.3568

0.2559
0.1986

0.1944
0.1809

N
euQ

S
0.3625*

0.2664*
0.2064*

0.2013*
0.1862*

0.3641*
0.2682*

0.2110*
0.2018*

0.1867*

W
orstQ

uestion
0.2479

0.1451
0.1075

0.1402
0.1483

0.2479
0.1451

0.1075
0.1402

0.1483
B

estQ
uestion

0.4673
0.3815

0.3031
0.2410

0.2077
0.4673

0.3815
0.3031

0.2410
0.2077

W
orstQ

uestion
and

BestQ
uestion

respectively
determ

ine
the

low
er

and
upper

bounds.
The

superscript
*

denotes
statistically

significant
differences

com
pared

to
allthe

baselines
(p
<

0.001).

185 8.6 Results and Discussion

1 2 3

conversation turns

0.28

0.30

0.32

0.34

0.36

M
R
R

NeuQS LambdaMART RankNet σ-QPP OriginalQuery

1 2 3

conversation turns

0.28

0.30

0.32

0.34

0.36

M
R
R

Qulac-T

1 2 3

conversation turns

Qulac-F

1 2 3

conversation turns

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

n
D
C
G
@
1

Qulac-T

1 2 3

conversation turns

Qulac-F

1 2 3

conversation turns

0.16

0.17

0.18

0.19

n
D
C
G
@
20

Qulac-T

1 2 3

conversation turns

Qulac-F

Figure 8.8. Performance comparison with the baselines for different number of
conversation turns (k ∈ {1,2, 3}).

186 8.6 Results and Discussion

Table
8.4.

Failure
and

success
exam

ples
ofN

euQ
S.Failure

and
success

are
m
easured

by
the

difference
in

perform
ance

ofN
euQ

S
and

O
riginalQ

uery
in

term
s
ofM

R
R

(∆
M
R
R
).

Q
u

ery
Facet

D
escription

Selected
Q

u
estion

U
ser’s

A
n

sw
er

∆
M

R
R

dog
heat

W
hat

is
the

effect
of

ex-
cessive

heat
on

dogs?
W

ould
you

like
to

know
how

to
care

for
your

dog
during

heat?

N
o,

I
w

ant
to

know
w

hat
happens

w
hen

a
dog

is
too

hot.

−
0.86

sit
and

reach
test

H
ow

is
the

sit
and

reach
test

properly
done?

D
o

you
w

antto
know

how
to

perform
this

test?
Yes,I

do.
−

0.75

alexian
brothers
hospital

Find
A

lexian
B

rothers
hospitals.

A
re

you
looking

for
our

schedule
of

classes
or

events?

N
o,I

don’t
need

that.
−

0.54

east
ridge

high
school

Inform
ation

about
the

sports
program

at
East

R
idge

H
igh

School
in

C
lerm

ont,Florida

W
hat

inform
ation

about
East

R
idge

H
igh

School
are

you
looking

for?

I’m
looking

for
inform

a-
tion

about
their

sports
program

.

+
0.96

euclid
Find

inform
ation

on
the

G
reek

m
athem

atician
Eu-

clid.

D
o

you
w

ant
a

biogra-
phy?

Yes.
+

0.93

rocky
m

ountain
new

s

W
ho

are
the

sports
re-

porters
for

the
R

ocky
M

ountain
N

ew
s?

W
ould

you
like

to
read

recent
new

s
about

the
R

ocky
M

ountain
N

ew
s?

N
o,

I
just

w
ant

a
list

of
the

reporters
w

ho
w

rite
the

sports
for

the
R

ocky
M

ountain
N

ew
s.

+
0.88

187 8.6 Results and Discussion

8.6.7 Case Study: Failure and Success Analysis

Finally, in Table 8.4 we analyze representative cases of failure and success of our
proposed framework. We list three cases where selecting questions using NeuQS
improves the retrieval performance, as well as three other examples in which the
selected questions lead to decreased performance. ∆MRR reports the difference
of the performance of NeuQS and OriginalQuery in terms of MRR. As we see, the
first three examples show the selected questions that hurt the performance (i.e.,
∆MRR< 0.0). The first row is an example where the user’s response to the ques-
tion is negative; however, the user provides additional information about their
information need (i.e., facet). We see that even though the user has provided
additional information, the performance drops. This is perhaps due to lack of
common terms between the additional information (i.e., “dog is too hot”) and
the facet (i.e., “excessive heat on dogs”). This is more evident when we compare
this example with a successful answer: “No, I would like to know the effects of
excessive heat on dogs.”

The second row of the table shows a case where the answer to the question
is positive, but there are no common terms between the question and the facet.
Again, the intuition here is that the retrieval model is not able to take advantage
of the additional information when it has no terms in common with the relevant
documents.

The third row of the table shows another failure example where the selected
question is not relevant to the facet and the user provides no additional informa-
tion. This is a typical failure example where the system does not get any positive
feedback, but could still use the negative feedback to improve the ranking. This
can be done by diverging from the documents that are similar to the negative
feedback.

As for the success examples, we have listed three types. The first example
(“east ridge high school”) is where the system is able to ask an open question.
Open questions are very hard to formulate for open-domain information-seeking
scenarios; however, it is more likely to get useful feedback from users in response
to such questions.

The fifth row shows an example of a positive feedback. The performance
gain, in this case, is perhaps due to the existence of term “biography” in the
question which would match with relevant documents. It is worth noting that the
question and the query in this example have no common terms. This highlights
the importance of employing a language-representation-based question retrieval
model (e.g., BERT-LeaQuR) as opposed to term-matching IR models.

The last example shows a case where the answer is negative, but the user

188 8.7 Limitations

is engaged in the conversation and provides additional information about the
facet. We see that the answer contains keywords of the facet description (i.e.,
“reporters,” “sports”), improving the score of relevant documents that contain
those terms.

8.7 Limitations

Every data collection comes with some limitations. The same is valid for Qulac.
First, the dataset was not collected from actual conversations. This decision was
mainly due to the unbalanced workload of the two conversation participants.
In our crowdsourcing HITs, the task of question generation required nearly 10
times more effort compared to the task of question answering. This makes it
challenging and more expensive to pair two workers as participants of the same
conversation. There are some examples of this approach in the literature [59,
163]; however, they address the task of reading comprehension, a task that is
considerably simpler than identifying topic facets. A possible future direction is
to provide a limited number of pre-generated questions (say 10) to the workers
to select from, so that the complexity of the task would be significantly reduced.

Furthermore, Qulac is built for single-turn conversations (i.e., one question;
one answer). Even though there are questions that can be asked after one an-
other to form a multi-turn conversation, our data collection approach does not
guarantee the existence of multi-turn conversations that involve the same partic-
ipants. Also, we believe that the quality of generated clarifying questions highly
depends on how well the selected commercial search engine is able to diversify
the result list. We aimed to minimize this bias by asking workers to scan at least
three pages of the result list. Also, the questions added by expert annotators
guarantees the coverage of all facets (see Section 8.3.3).

Finally, as we mentioned, faceted and ambiguous queries are good examples
of topics that a conversational system needs to clarify; however, this task can-
not be limited only to such queries. One can collect similar data for exploratory
search scenarios, where asking questions can potentially lead to more user en-
gagement while doing exploratory search.

In this chapter, our main focus was on question selection. There are various
directions that can be explored in the future. One interesting problem is to ex-
plore various strategies for improving the performance of the document retrieval
model as new information is added to the model. Moreover, we assumed the
number of conversation turns to be fixed. Another interesting future direction is
to model the system’s confidence at every stage of the conversation so that the

189 8.8 Summary

model is able to decide when to stop asking questions and present the result(s).

8.8 Summary

In this chapter, we introduced the task of asking clarifying questions in open-
domain information-seeking conversations. We proposed an evaluation method-
ology which enables offline evaluation of conversational systems with clarify-
ing questions. Also, we constructed and released a new data collection called
Qulac, consisting of 762 topic-facet pairs with over 10K question-answer pairs.
We further presented a neural question selection model called NeuQS along with
models on question and document retrieval. NeuQS was able to significantly out-
perform the LTR baselines. The experimental analysis provided many insights of
the task. In particular, experiments on the oracle model demonstrated that ask-
ing only one good clarifying question leads to over 150% relative improvement
in terms of P@1 and nDCG@1. Moreover, we observed that asking clarifying
questions improves the model’s performance for a substantial percentage of the
facets, despite the fact that a more effective retrieval model than the one we
used could potentially improve the performance. Finally, we showed that, ask-
ing more clarifying questions leads to better results, once again confirming the
effectiveness of asking clarifying questions in a conversational search system.

190 8.8 Summary

Chapter 9

Conclusions

9.1 Summary of the Work Carried Out

The primary motivation of this thesis was to address various aspects of user mod-
eling on mobile devices. To this aim, we focused on three different aspects of
mobile information access, that is, recommendation, unified search, and conver-
sational search. The first step in modeling user information need is to build a
personalized system, able to model users’ past behavior and interests. To ad-
dress this problem, we proposed enriching the user profiles for venue suggestion
based on the history of preferences. Furthermore, we improved the user and
venue profiles by incorporating complex contextual information such as trip type
and accompanying people. Due to the known limitations of content-based rec-
ommender models, we also studied collaborative user modeling for venue sug-
gestion. In particular, we proposed to incorporate geographical and temporal
influences into a two-phase collaborative ranking model. The two-phase design
of the algorithm enabled us to infer the user’s preferences from their implicit
feedback, i.e., check-ins. In the final chapter of the first part, we extended the
collaborative framework to include an arbitrary number of venue-venue similar-
ities to address the sparsity problem. Furthermore, we combined the proposed
model with our content-based approach to introduce a hybrid model for venue
suggestion, outperforming both content-based and collaborative state-of-the-art
models.

As the users are nowadays exposed to a variety of mobile applications, each
of which is concerned with a different type of information, featuring its search
engine, in Part 2 we focused on the task of unified mobile search for the first
time. We first introduced the task, highlighting its differences with distributed
IR and federated search. Then, we ran two crowdsourcing tasks to understand

191

192 9.2 Main Contributions

how people seek information on their devices, among various applications. The
findings of our first study suggested that users tend to find information in various
applications, with the majority of queries targeted to specific applications. We
further proposed two neural app selection models to select target apps for given
queries as the first step of building a unified mobile search system. In our sec-
ond study, we took this work one step further and collected more realistic data
of cross-app search queries. We asked the participants to report their everyday
mobile queries, as well as the applications in which they issued the queries. The
findings of our second study were in line with the first one and confirmed that
users tend to seek information in various applications. It also shed light on other
aspects of unified mobile search such as users temporal behavior and the effect
of context.

In the last part of the thesis, we focused on conversational search and in par-
ticular, on asking clarifying questions in a conversation. We argued that asking
clarifying questions is an essential part of a conversational search system as it en-
ables the system to understand the users’ information need more clearly. More-
over, since conversational systems can often return a limited number of results
(if not just one), it is crucial for the system to clarify the user’s information need
before it is confident enough to return the result(s) to the user. To understand the
effect of clarifying questions, we collected a dataset of questions and answers for
762 search scenarios where a single query could be interpreted in 3.85 different
ways on average. The experiments showed that asking only one good clarifying
question can lead up to over 150% relative improvement in terms of nDCG@1
and P@1, proving the importance and significance of clarifying questions in a
conversational search system. Moreover, we proposed a retrieval framework con-
sisting of question retrieval and selection, as well as document retrieval models.

The rest of this chapter is organized as follows. In Section 9.2 we revisit our
contributions and provide a summary about them. Finally, in Section 9.3 we list
the future research directions following from this thesis.

9.2 Main Contributions

In Part 1, we focused on the task of venue suggestion and, in particular, our
contributions consisted in modeling users’ information needs based on three ap-
proaches, namely, content-based, collaborative, and hybrid. The main contribu-
tions of Part 2 can be summarized as follows:

• We performed a personalized dimensionality reduction on venue taste key-
words to address the sparsity problem for recommendation. To this aim, we

193 9.2 Main Contributions

presented a probabilistic generative model that finds a statistical mapping
between location taste keywords and user tags. We further elaborated on
how we employed the EM algorithm to learn the parameters of the model.

• We studied how appropriateness information collected from a crowdsourc-
ing platform can improve the effectiveness of recommendation by tak-
ing into account the appropriateness of a venue to the user’s context. To
this end, we collected and released two datasets containing contextual
appropriateness features and labels.

• We proposed a novel two-phase CR-based POI recommendation algorithm
incorporating users implicit check-in feedback with a focus on the top of the
list. The two-phase design of the algorithm allowed us to follow a two-step
strategy for incorporating the user’s implicit feedback while regularizing
the model using our proposed time-sensitive regularizer.

In Part 2, we presented and focused on the problem of a unified mobile search
framework. The main contributions of Part 2 are summarized as follows:

• We introduced the task of unified search in mobile environments and dis-
cussed its differences with distributed IR and federated search, highlight-
ing the reasons why it needs to be studied as a field. We then designed a
crowdsourcing task in which we collected real-life mobile search tasks on
various topics. We used the collected mobile search tasks to collect mobile
search queries paired the mobile apps in which users would issue them.

• We presented the first study of user behavior while searching with different
apps, as well as their search queries. We studied various attributes of the
search queries that are submitted to different apps such as query terms
and overlap. We also conducted an in-depth analysis of user behavior in
terms of the apps they chose to complete a search task both individually
and collectively.

• In an attempt to conduct a more realistic study and collect an in situ dataset,
we designed and conducted a field study for collecting thousands of real-
life cross-app queries. To this aim, we developed a bespoke Android app
and asked the participants to install the app and let it run in the back-
ground for at least 24 hours. Hence, we collected the first in situ dataset
of cross-app queries.

194 9.2 Main Contributions

• We presented the first analysis of in situ cross-app queries and users’ be-
havior as they search with different apps. More specifically, we studied dif-
ferent attributes of cross-app mobile queries concerning their target apps,
sessions, and contexts. This study not confirmed the findings of our first
study, but also provided several useful insights into how users access infor-
mation via different apps to satisfy their everyday information needs.

In the last part of the thesis, we provided the first study on asking clarifying
questions in open-domain information-seeking conversations. Our contributions
in this part can be summarized as follows:

• We formulated the task of selecting and asking clarifying questions in open-
domain information-seeking conversational systems. To this end, we pro-
posed a sample workflow of such a system where the system can proactively
ask clarifying questions.

• We proposed an offline evaluation framework for conversational systems
with clarifying questions. We supported our proposed evaluation frame-
work by collecting a dataset on top of the TREC Web Track 2009-2012
collections. Our dataset takes advantage of multi-faceted queries and rel-
evance assessments that were initially targeted to evaluate search result
diversification.

• We proposed a retrieval framework, consisting of three main components:

1. Question retrieval aims to retrieve all relevant questions to a given
query from the large pool of questions that is available in the dataset.
The main goal in this component is to maximize the recall. This task
is challenging since many questions have no terms in common with
the query. We proposed a model that fine-tunes the BERT pre-trained
model for this task.

2. Question selection is concerned with selecting only one question from
a list of candidate questions. Since a conversational system should
eventually ask to select only one question to ask, it is important to
take into account the query and conversation context while choosing
the next question to ask. Hence, the main goal here is to maximize
precision. We proposed a neural approach that learns to select the
next question given multiple features on query, question, and conver-
sation context.

195 9.3 Future Research Directions

3. Document retrieval component is used to update the retrieved list of
documents one a question is a selection, and the user has provided
an answer to it. It is crucial to incorporate the query, conversation
context, as well as the latest question and answer into the ranking.
Our proposed model is a simple linear interpolation of the QL model.

• We conducted oracle experiments and analyzed the behavior of the re-
trieval model under various conditions. We found that asking only one
good question can lead up to 150% relative improvement in terms of P@1
and nDCG@1. Moreover, we observed asking clarifying questions have
different impacts on different types of queries. In particular, ambiguous
topics benefit more than faceted ones, informational facets helped more
than navigational ones, and shorter queries benefited more than longer
ones.

• We generated artificial multi-turn conversations and studied the impact of
multiple clarifying questions on the performance. We observed that our
model, as well as all baselines, exhibited an improved performance as the
conversation advanced.

9.3 Future Research Directions

We started the thesis by tackling a well-established problem in IR, that is, venue
suggestion and provided new techniques and perspectives on this problem. Fur-
ther, we studied a new task in mobile IR by collecting new datasets and ana-
lyzing them, followed by providing a new evaluation framework in conversa-
tional search. The trajectory of the thesis has stemmed specific future research
directions on different topics. Below, we describe some of the possible future
directions.

Cross-platform CR recommendation. A wealth of information about users and
POIs are available on various LBSNs. As future work, we plan to extend our
two-phase model to generate POI recommendations considering users’ behav-
ior in different LBSNs [7, 155]. Previous work has shown that considering a
cross-platform and multimodal behavioral analysis improves the performance of
a model dramatically. Hence, we are very interested in investigating how we can
extend our current work to consider multimodal information such as POI cate-
gory, user reviews, and opening hours. It would also be important to incorporate
the sentiment of users in recommendation for such tasks [31, 33]

196 9.3 Future Research Directions

Recurrent neural networks for recommendation. Also, with the recent ad-
vances in applying deep neural models for POI recommendation [82, 127, 206]
and their power to capture complicated structures of user-POI interactions, we
plan to combine our joint learning approach with the existing deep recurrent
neural models to explore its potential benefits to a deep neural recommender
model.

Negative sampling for recommendation. Furthermore, since our training strat-
egy requires negative training examples, we considered all unseen POIs as neg-
ative samples, which increases the complexity of the model. Inspired by the
relevant studies [55, 201], we plan to explore various strategies for negative
sampling and evaluate their effect on JTCR.

Multiple similarity functions for hybrid recommendation. We also plan to
study how other similarity features, such as personal tags, time-based similarity,
and contextual information from multiple LBSNs can improve venue suggestion
and analyze their impact on our hybrid recommendation model.

Incorporating contextual information for target apps selection. Immediate
future work for Part 2 can be exploring the influence of other types of contextual
information, such as location and time, on the target apps selection task. As we
saw in the analysis, temporal information shows a significant impact on the user’s
behavior. Therefore, it would be interesting to see how it can improve a target
apps selection model.

Real-life unified mobile search. As described, our Android app is only used as
a self-report data collection apparatus that is also able to collect sensor and con-
textual data. Therefore, our collected dataset does not reflect the actual behavior
of users as they would search using a unified mobile search. It happens because
no such system exists, and hence, one future direction is to develop such a sys-
tem that can provide a unified interface for users’ queries and retrieve results
from multiple applications. Such a system would enable researchers to collect
a more realistic dataset and uncover new aspects of this task to both industrial
and research community.

Studies on results aggregation and presentation for unified mobile search.
Also, it would be interesting to explore result aggregation and presentation in
the future, considering two crucial factors: information gain and user satisfac-
tion. This direction can be studied in both areas of information retrieval and
human-computer interaction. It is essential to see whether users prefer to see
an aggregated list of results (similar to the work done in federated search), or if
they prefer to see results grouped based on the source apps.

197 9.3 Future Research Directions

Proactive information retrieval using cross-app queries. Based on our find-
ings in the analyses, we believe that mobile search queries can be leveraged to
improve the user experience. For instance, a user searches for a restaurant us-
ing a unified search system and finds some relevant information on Yelp. In this
case, considering the user’s personal preference as well as the context, the system
could push notification with information about the traffic near the restaurant.

Studying the effect of difficult queries on system performance for unified
mobile and conversational search. Query performance prediction and the ef-
fect of difficult queries have been studied extensively in the community [52, 58,
138]. Following a similar approach, we plan to understand how users and sys-
tems perform differently more difficult queries, as opposed to easier ones. More
specifically, it would be interesting to see how clarifying questions would help
a system for difficult queries, compared to easier ones. Also, we are interested
in understanding whether users’ perception of difficulty has any effect on their
choice of app in a unified mobile search environment.

More realistic setting for collecting clarifying questions. We did not collect
Qulac via actual conversations. This decision was mainly due to the unbalanced
workload of the two conversation participants. In our crowdsourcing HITs, the
task of question generation required nearly ten times more effort compared to the
task of question answering. This makes it challenging and more expensive to pair
two workers as participants of the same conversation. There are some examples
of this approach in the literature [59, 163]; however, they address the task of
reading comprehension, a task that is considerably simpler than identifying topic
facets. A possible future direction is to provide a limited number of pre-generated
questions (say 10) to the workers to select from, so that the complexity of the
task would be significantly reduced.

Multi-turn conversations. Furthermore, Qulac is built for single-turn conversa-
tions (i.e., one question; one answer). Even though there are questions that can
be asked after one another to form a multi-turn conversation, our data collec-
tion approach does not guarantee the existence of multi-turn conversations that
involve the same participants. A possible future direction is to set up a crowd-
sourcing task similar to the one that we described in the previous future direction
and allow participants to continue their conversation for multiple turns.

Clarifying questions for exploratory search. Faceted and ambiguous queries
are good examples of topics that a conversational system needs to clarify; how-
ever, this task cannot be limited only to such queries. One can collect similar data
for exploratory search scenarios, where asking questions can potentially lead to

198 9.3 Future Research Directions

more user engagement while doing an exploratory search.

Extended document retrieval model. In this work, our primary focus was on
question selection. Various directions can be explored in the future. One inter-
esting problem is to explore multiple strategies of improving the performance of
the document retrieval model as new information is added to the model.

Modeling system confidence. Moreover, we assumed the number of conversa-
tion turns to be fixed. Another exciting future direction is to model the system’s
confidence at every stage of the conversation so that the model can decide when
to stop asking questions and present the result(s).

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recom-
mender systems. In Recommender Systems Handbook, pages 217–253.
Springer, 2011.

[2] Gediminas Adomavicius, Ramesh Sankaranarayanan, Shahana Sen, and
Alexander Tuzhilin. Incorporating contextual information in recom-
mender systems using a multidimensional approach. ACM Trans. Inf. Syst.,
23(1):103–145, 2005.

[3] Charu C. Aggarwal. Recommender Systems - The Textbook. Springer, 2016.
ISBN 978-3-319-29657-9.

[4] Mohammad Aliannejadi and Fabio Crestani. Venue appropriateness pre-
diction for personalized context-aware venue suggestion. In Proceedings
of the International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 1177–1180. ACM, 2017.

[5] Mohammad Aliannejadi and Fabio Crestani. A collaborative ranking
model with contextual similarities for venue suggestion. In Proceedings
of the Italian Information Retrieval Workshop (IIR), 2018.

[6] Mohammad Aliannejadi and Fabio Crestani. Venue suggestion using
social-centric scores. CoRR, abs/1803.08354, 2018.

[7] Mohammad Aliannejadi and Fabio Crestani. Personalized context-aware
point of interest recommendation. ACM Trans. Inf. Syst., 36(4):45:1–
45:28, 2018.

[8] Mohammad Aliannejadi, Shahram Khadivi, Saeed Shiry Ghidary, and Mo-
hammad Hadi Bokaei. Discriminative spoken language understanding
using statistical machine translation alignment models. In International
Symposium on Artificial Intelligence and Signal Processing, pages 194–202.
Springer, 2013.

199

200 Bibliography

[9] Mohammad Aliannejadi, Masoud Kiaeeha, Shahram Khadivi, and
Saeed Shiry Ghidary. Graph-based semi-supervised conditional random
fields for spoken language understanding using unaligned data. In Pro-
ceedings of the Australasian Language Technology Association Workshop
(ALTA), pages 98–103, 2014.

[10] Mohammad Aliannejadi, Seyed Ali Bahrainian, Anastasia Giachanou, and
Fabio Crestani. University of Lugano at TREC 2015: Contextual sugges-
tion and temporal summarization tracks. In Proceedings of the Text RE-
trieval Conference (TREC). NIST, 2015.

[11] Mohammad Aliannejadi, Ida Mele, and Fabio Crestani. User model enrich-
ment for venue recommendation. In Proceedings of the Asia Information
Retrieval Societies Conference (AIRS), pages 212–223. Springer, 2016.

[12] Mohammad Aliannejadi, Ida Mele, and Fabio Crestani. Venue appropriate-
ness prediction for contextual suggestion. In Proceedings of the Text RE-
trieval Conference (TREC). NIST, 2016.

[13] Mohammad Aliannejadi, Maram Hasanain, Jiaxin Mao, Jaspreet Singh,
Johanne R. Trippas, Hamed Zamani, and Laura Dietz. ACM SIGIR student
liaison program. SIGIR Forum, 51(3):42–45, 2017.

[14] Mohammad Aliannejadi, Ida Mele, and Fabio Crestani. Personalized rank-
ing for context-aware venue suggestion. In Proceedings of the Symposium
on Applied Computing (SAC), pages 960–962. ACM, 2017.

[15] Mohammad Aliannejadi, Ida Mele, and Fabio Crestani. A cross-platform
collection for contextual suggestion. In Proceedings of the International
ACM SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR), pages 1269–1272. ACM, 2017.

[16] Mohammad Aliannejadi, Dimitrios Rafailidis, and Fabio Crestani. Person-
alized keyword boosting for venue suggestion based on multiple lbsns. In
Proceedings of the European Conference on IR Research (ECIR), pages 291–
303. Springer, 2017.

[17] Mohammad Aliannejadi, Dimitrios Rafailidis, and Fabio Crestani. A col-
laborative ranking model with multiple location-based similarities for
venue suggestion. In Proceedings of the ACM SIGIR International Confer-
ence on Theory of Information Retrieval (ICTIR), pages 19–26. ACM, 2018.

201 Bibliography

[18] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W. Bruce
Croft. In situ and context-aware target apps selection for unified mobile
search. In Proceedings of the International Conference on Information and
Knowledge Management (CIKM), pages 1383–1392. ACM, 2018.

[19] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W. Bruce
Croft. Target apps selection: Towards a unified search framework for
mobile devices. In Proceedings of the International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR), pages 215–
224. ACM, 2018.

[20] Mohammad Aliannejadi, Morgan Harvey, Luca Costa, Matthew Pointon,
and Fabio Crestani. Understanding mobile search task relevance and user
behaviour in context. In Proceedings of the Conference Human Information
Interaction and Retrieval (CHIIR), pages 143–151. ACM, 2019.

[21] Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W. Bruce
Croft. Asking clarifying questions in open-domain information-seeking
conversations. In Proceedings of the International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR), pages 475–
484. ACM, 2019.

[22] Mohammad Aliannejadi, Dimitrios Rafailidis, and Fabio Crestani. A
joint two-phase time-sensitive regularized collaborative ranking model for
point of interest recommendation. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 2019 (in press).

[23] Omar Alonso and Maria Stone. Building a query log via crowdsourcing.
In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages 939–942. ACM, 2014.

[24] Giambattista Amati. Probability models for information retrieval based on
divergence from randomness. PhD thesis, University of Glasgow, UK, 2003.

[25] Avi Arampatzis and Georgios Kalamatianos. Suggesting points-of-interest
via content-based, collaborative, and hybrid fusion methods in mobile de-
vices. ACM Trans. Inf. Syst., 36(3):23:1–23:28, 2017.

[26] Jaime Arguello. Aggregated search. Foundations and Trends in Information
Retrieval, 10(5):365–502, 2017.

202 Bibliography

[27] Jaime Arguello, Jamie Callan, and Fernando Diaz. Classification-based
resource selection. In Proceedings of the International Conference on In-
formation and Knowledge Management (CIKM), pages 1277–1286. ACM,
2009.

[28] Harald Aust, Martin Oerder, Frank Seide, and Volker Steinbiss. The philips
automatic train timetable information system. Speech Communication, 17
(3-4):249–262, 1995.

[29] Seyed Ali Bahrainian and Fabio Crestani. Towards the next generation of
personal assistants: Systems that know when you forget. In Proceedings of
the ACM SIGIR International Conference on Theory of Information Retrieval,
ICTIR, pages 169–176, 2017.

[30] Seyed Ali Bahrainian and Fabio Crestani. Augmentation of human mem-
ory: Anticipating topics that continue in the next meeting. In Proceedings
of the Conference Human Information Interaction and Retrieval (CHIIR),
pages 150–159. ACM, 2018.

[31] Seyed Ali Bahrainian and Andreas Dengel. Sentiment analysis of texts by
capturing underlying sentiment patterns. Web Intelligence, 13(1):53–68,
2015.

[32] Seyed Ali Bahrainian, Seyed Mohammad Bahrainian, Meytham Salari-
nasab, and Andreas Dengel. Implementation of an intelligent product
recommender system in an e-store. In Proceedings Active Media Technol-
ogy, 6th International Conference, AMT, pages 174–182, 2010.

[33] Seyed Ali Bahrainian, Marcus Liwicki, and Andreas Dengel. Fuzzy subjec-
tive sentiment phrases: A context sensitive and self-maintaining sentiment
lexicon. In 2014 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT), pages 361–368,
2014.

[34] Seyed Ali Bahrainian, Ida Mele, and Fabio Crestani. Modeling discrete
dynamic topics. In Proceedings of the Symposium on Applied Computing,
SAC, pages 858–865, 2017.

[35] Seyed Ali Bahrainian, Ida Mele, and Fabio Crestani. Predicting topics in
scholarly papers. In Advances in Information Retrieval - 40th European
Conference on IR Research, ECIR, pages 16–28, 2018.

203 Bibliography

[36] Suhrid Balakrishnan and Sumit Chopra. Collaborative ranking. In Proceed-
ings of the ACM International Conference on Web Search and Data Mining
(WSDM), pages 143–152, 2012.

[37] Nicholas J Belkin, Colleen Cool, Adelheit Stein, and Ulrich Thiel. Cases,
scripts, and information-seeking strategies: On the design of interactive
information retrieval systems. Expert systems with applications, 9(3):379–
395, 1995.

[38] Jan R. Benetka, Krisztian Balog, and Kjetil Nørvåg. Anticipating informa-
tion needs based on check-in activity. In Proceedings of the ACM Interna-
tional Conference on Web Search and Data Mining (WSDM), pages 41–50.
ACM, 2017.

[39] Paul N. Bennett, Filip Radlinski, Ryen W. White, and Emine Yilmaz. Infer-
ring and using location metadata to personalize web search. In Proceedings
of the International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 135–144. ACM, 2011.

[40] Agon Bexheti, Evangelos Niforatos, Seyed Ali Bahrainian, Marc Langhein-
rich, and Fabio Crestani. Measuring the effect of cued recall on work
meetings. In Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, pages 1020–1026, 2016.

[41] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allo-
cation. J. Mach. Learn. Res., 3:993–1022, 2003.

[42] Hamed Bonab, Mohammad Aliannejadi, John Foley, and James Allan. In-
corporating hierarchical domain information to disambiguate very short
queries. In Proceedings of the ACM SIGIR International Conference on The-
ory of Information Retrieval (ICTIR), pages 51–54. ACM, 2019.

[43] Joel Brandt, Noah Weiss, and Scott R. Klemmer. txt 4 l8r: lowering the
burden for diary studies under mobile conditions. In Extended Abstracts
Proceedings of the CHI Conference on Human Factors in Computing Systems
(CHI), pages 2303–2308. ACM, 2007.

[44] Pavel Braslavski, Denis Savenkov, Eugene Agichtein, and Alina Dubatovka.
What do you mean exactly?: Analyzing clarification questions in CQA. In
Proceedings of the Conference Human Information Interaction and Retrieval
(CHIIR), pages 345–348. ACM, 2017.

204 Bibliography

[45] Matthias Braunhofer, Mehdi Elahi, and Francesco Ricci. Techniques for
cold-starting context-aware mobile recommender systems for tourism. In-
telligenza Artificiale, 8(2):129–143, 2014.

[46] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt
Deeds, Nicole Hamilton, and Gregory N. Hullender. Learning to rank us-
ing gradient descent. In Proceedings of the International Conference on
Machine Learning (ICML), pages 89–96. PMLR, 2005.

[47] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt
Deeds, Nicole Hamilton, and Gregory N. Hullender. Learning to rank us-
ing gradient descent. In Proceedings of the International Conference on
Machine Learning (ICML), pages 89–96, Bonn, Germany, 2005. PMLR.

[48] James P. Callan and Margaret E. Connell. Query-based sampling of text
databases. ACM Trans. Inf. Syst., 19(2):97–130, 2001.

[49] Huanhuan Cao, Derek Hao Hu, Dou Shen, Daxin Jiang, Jian-Tao Sun,
Enhong Chen, and Qiang Yang. Context-aware query classification. In
Proceedings of the International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR), pages 3–10. ACM, 2009.

[50] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to
rank: from pairwise approach to listwise approach. In Proceedings of the
International Conference on Machine Learning (ICML). PMLR, 2007.

[51] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of
the International Conference on Machine Learning (ICML), pages 129–136.
PMLR, 2007.

[52] Claudio Carpineto, Stefano Mizzaro, Giovanni Romano, and Matteo
Snidero. Mobile information retrieval with search results clustering: Pro-
totypes and evaluations. JASIST, 60(5):877–895, 2009.

[53] Juan Pablo Carrascal and Karen Church. An in-situ study of mobile app &
mobile search interactions. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (CHI), pages 2739–2748, 2015.

[54] Li Chen, Guanliang Chen, and Feng Wang. Recommender systems based
on user reviews: the state of the art. User Model. User-Adapt. Interact., 25
(2):99–154, 2015.

205 Bibliography

[55] Chen Cheng, Haiqin Yang, Irwin King, and Michael R. Lyu. Fused matrix
factorization with geographical and social influence in location-based so-
cial networks. In Jörg Hoffmann and Bart Selman, editors, Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), pages 17–23. AAAI
Press, 2012.

[56] Chen Cheng, Haiqin Yang, Michael R. Lyu, and Irwin King. Where you like
to go next: Successive point-of-interest recommendation. In Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, Beijing,
China, pages 2605–2611, 2013.

[57] Chen Cheng, Haiqin Yang, Irwin King, and Michael R. Lyu. A unified point-
of-interest recommendation framework in location-based social networks.
ACM Trans. Intell. Syst. Technol., 8(1):10:1–10:21, 2016.

[58] Adrian-Gabriel Chifu, Léa Laporte, Josiane Mothe, and Md Zia Ullah.
Query performance prediction focused on summarized letor features. In
The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval, SIGIR, pages 1177–1180. ACM, 2018.

[59] Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi,
Percy Liang, and Luke Zettlemoyer. Quac: Question answering in context.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2174–2184, 2018.

[60] Konstantina Christakopoulou and Arindam Banerjee. Collaborative rank-
ing with a push at the top. In Proceedings of the 24th International Confer-
ence on World Wide Web, Florence, Italy, pages 205–215, 2015.

[61] Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. To-
wards conversational recommender systems. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pages 815–824, 2016.

[62] Karen Church and Nuria Oliver. Understanding mobile web and mobile
search use in today’s dynamic mobile landscape. In Proceedings of the In-
ternational Conference on Human Computer Interaction with Mobile Devices
and Services (MobileHCI), pages 67–76. ACM, 2011.

[63] Karen Church and Barry Smyth. Understanding the intent behind mo-
bile information needs. In Proceedings of the International Conference on
Intelligent User Interfaces (IUI), pages 247–256. ACM, 2009.

206 Bibliography

[64] Karen Church, Barry Smyth, Paul Cotter, and Keith Bradley. Mobile in-
formation access: A study of emerging search behavior on the mobile
internet. TWEB, 1(1):4, 2007.

[65] Karen Church, Barry Smyth, Keith Bradley, and Paul Cotter. A large scale
study of european mobile search behaviour. In Proceedings of the Interna-
tional Conference on Human Computer Interaction with Mobile Devices and
Services (MobileHCI), pages 13–22. ACM, 2008.

[66] Karen Church, Mauro Cherubini, and Nuria Oliver. A large-scale study
of daily information needs captured in situ. ACM Trans. Comput.-Hum.
Interact., 21(2):10:1–10:46, 2014.

[67] Charles L. A. Clarke, Nick Craswell, and Ian Soboroff. Overview of the
TREC 2009 web track. In Proceedings of the Text REtrieval Conference
(TREC), 2009.

[68] Charles L. A. Clarke, Nick Craswell, Ian Soboroff, and Ellen M. Voorhees.
Overview of the TREC 2011 web track. In Proceedings of the Text REtrieval
Conference (TREC), 2011.

[69] Charles L. A. Clarke, Nick Craswell, and Ellen M. Voorhees. Overview of
the TREC 2012 web track. In Proceedings of the Text REtrieval Conference
(TREC), 2012.

[70] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

[71] Koby Crammer and Yoram Singer. Pranking with ranking. In Proceed-
ings of the Neural Information Processing Systems: Natural and Synthetic,
Vancouver, British Columbia, Canada, pages 641–647, 2001.

[72] Fabio Crestani and Heather Du. Written versus spoken queries: A qual-
itative and quantitative comparative analysis. JASIST, 57(7):881–890,
2006.

[73] Fabio Crestani, Stefano Mizzaro, and Ivan Scagnetto. Mobile Information
Retrieval. Springer Briefs in Computer Science. Springer, 2017.

[74] W. Bruce Croft and R. H. Thompson. I3r: A new approach to the design
of document retrieval systems. JASIS, 38(6):389–404, 1987.

207 Bibliography

[75] Chaoran Cui, Jialie Shen, Liqiang Nie, Richang Hong, and Jun Ma. Aug-
mented collaborative filtering for sparseness reduction in personalized
POI recommendation. ACM Trans. Intell. Sys. and Tech., 8(5):71:1–71:23,
2017.

[76] Adriel Dean-Hall, Charles L. A. Clarke, Jaap Kamps, Julia Kiseleva, and
Ellen M. Voorhees. Overview of the TREC 2015 contextual suggestion
track. In Proceedings of the Text REtrieval Conference (TREC). NIST, 2015.

[77] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and
W. Bruce Croft. Neural ranking models with weak supervision. In Pro-
ceedings of the International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR), pages 65–74. ACM, 2017.

[78] Romain Deveaud, M-Dyaa Albakour, Craig Macdonald, and Iadh Ounis.
Experiments with a venue-centric model for personalisedand time-aware
venue suggestion. In Proceedings of the International Conference on Infor-
mation and Knowledge Management (CIKM), pages 53–62. ACM, 2015.

[79] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understand-
ing. arXiv:1810.04805, 2018.

[80] Fernando Diaz. Integration of news content into web results. In Proceed-
ings of the ACM International Conference on Web Search and Data Mining
(WSDM), pages 182–191. ACM, 2009.

[81] Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings of
the International Conference on Information and Knowledge Management
(CIKM), pages 485–492. ACM, 2005.

[82] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. Recurrent marked temporal point processes:
Embedding event history to vector. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD),
pages 1555–1564, 2016.

[83] Quan Fang, Changsheng Xu, M. Shamim Hossain, and Ghulam Muham-
mad. STCAPLRS: A spatial-temporal context-aware personalized location
recommendation system. ACM Trans. Intell. Syst. Technol., 7(4):59:1–
59:30, 2016.

208 Bibliography

[84] Gregory Ference, Mao Ye, and Wang-Chien Lee. Location recommendation
for out-of-town users in location-based social networks. In Proceedings of
the International Conference on Information and Knowledge Management
(CIKM), pages 721–726. ACM, 2013.

[85] Norbert Fuhr. A probability ranking principle for interactive information
retrieval. Inf. Retr., 11(3):251–265, 2008.

[86] Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. Exploring temporal effects
for location recommendation on location-based social networks. In Pro-
ceedings of the ACM Conference on Recommender Systems (RecSys), pages
93–100. ACM, 2013.

[87] StatCounter GlobalStats. Mobile and tablet internet usage exceeds desk-
top for first time worldwide. http://gs.statcounter.com/press/mobile-and-
tablet-internet-usage-exceeds-desktop-for-first-time-worldwide, 2016.

[88] David Goldberg, David A. Nichols, Brian M. Oki, and Douglas B. Terry.
Using collaborative filtering to weave an information tapestry. Commun.
ACM, 35(12):61–70, 1992.

[89] Google and Nielsen. Mobile search moments: Understanding how
mobile drives conversions. https://www.thinkwithgoogle.com/consumer-
insights/creating-moments-that-matter/, 2013.

[90] Jean-Benoît Griesner, Talel Abdessalem, and Hubert Naacke. POI rec-
ommendation: Towards fused matrix factorization with geographical and
temporal influences. In Proceedings of the ACM Conference on Recommender
Systems (RecSys), pages 301–304. ACM, 2015.

[91] Ido Guy. Searching by talking: Analysis of voice queries on mobile web
search. In Proceedings of the International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR), pages 35–44.
ACM, 2016.

[92] Negar Hariri, Bamshad Mobasher, Robin Burke, and Yong Zheng. Context-
aware recommendation based on review mining. In Proceedings of the 9th
Workshop on Intelligent Techniques for Web Personalization & Recommender
Systems, ITWP@IJCAI, volume 756. CEUR-WS.org, 2011.

[93] Morgan Harvey and Matthew Pointon. Searching on the go: The effects
of fragmented attention on mobile web search tasks. In Proceedings of

209 Bibliography

the International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 155–164. ACM, 2017.

[94] Morgan Harvey and Matthew Pointon. Searching on the go: the effects
of fragmented attention on mobile web search tasks. In Proceedings of
the International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 155–164. ACM, 2017.

[95] Helia Hashemi, Mohammad Aliannejadi, Hamed Zamani, and W. Bruce
Croft. ANTIQUE: A non-factoid question answering benchmark. CoRR,
abs/1905.08957, 2019.

[96] Seyyed Hadi Hashemi, Charles L. A. Clarke, Jaap Kamps, Julia Kiseleva,
and Ellen M. Voorhees. Overview of the TREC 2016 contextual suggestion
track. In Proceedings of the Text REtrieval Conference (TREC). NIST, 2016.

[97] Shun Hattori, Taro Tezuka, and Katsumi Tanaka. Context-aware query
refinement for mobile web search. In SAINT Workshops, 2007.

[98] Yulan He and Steve J. Young. Semantic processing using the hidden vector
state model. Computer Speech & Language, 19(1):85–106, 2005.

[99] Charles T. Hemphill, John J. Godfrey, and George R. Doddington. The
ATIS spoken language systems pilot corpus. In HLT, pages 96–101, 1990.

[100] Jun Hu and Ping Li. Decoupled collaborative ranking. In Rick Barrett,
Rick Cummings, Eugene Agichtein, and Evgeniy Gabrilovich, editors, Pro-
ceedings of the International Conference on World Wide Web (WWW), pages
1321–1329. ACM, 2017.

[101] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for
implicit feedback datasets. In Proceedings of the 8th IEEE International
Conference on Data Mining, Pisa, Italy, pages 263–272, 2008.

[102] Di Jiang, Kenneth Wai-Ting Leung, Lingxiao Yang, and Wilfred Ng. Query
suggestion with diversification and personalization. Knowl.-Based Syst.,
89:553–568, 2015.

[103] Thorsten Joachims, Dayne Freitag, and Tom M. Mitchell. Web watcher: A
tour guide for the world wide web. In Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 97, Nagoya, Japan,
August 23-29, 1997, 2 Volumes, pages 770–777. Morgan Kaufmann, 1997.

210 Bibliography

[104] Anne Kaikkonen. Full or tailored mobile web-where and how do people
browse on their mobiles? In Proceedings of the 5th International Confer-
ence on Mobile Technology, Applications, and Systems, MobiSys ’08, Yilan,
Taiwan, pages 28:1–28:8. ACM, 2008.

[105] Maryam Kamvar and Shumeet Baluja. A large scale study of wireless
search behavior: Google mobile search. In Proceedings of the CHI Con-
ference on Human Factors in Computing Systems (CHI), pages 701–709,
2006.

[106] Maryam Kamvar and Shumeet Baluja. The role of context in query input:
using contextual signals to complete queries on mobile devices. In Pro-
ceedings of the International Conference on Human Computer Interaction
with Mobile Devices and Services (MobileHCI), pages 405–412, 2007.

[107] In-Ho Kang and Gil-Chang Kim. Query type classification for web docu-
ment retrieval. In Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), pages 64–71.
ACM, 2003.

[108] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria
Oliver. Multiverse recommendation: n-dimensional tensor factorization
for context-aware collaborative filtering. In Proceedings of the ACM Con-
ference on Recommender Systems (RecSys), pages 79–86. ACM, 2010.

[109] Makoto P. Kato and Katsumi Tanaka. To suggest, or not to suggest for
queries with diverse intents: Optimizing search result presentation. In
Proceedings of the ACM International Conference on Web Search and Data
Mining (WSDM), pages 133–142, 2016.

[110] Abbas Keramati, Ruholla Jafari-Marandi, M. Aliannejadi, I. Ahmadian,
M. Mozaffari, and U. Abbasi. Improved churn prediction in telecommu-
nication industry using data mining techniques. Appl. Soft Comput., 24:
994–1012, 2014.

[111] Johannes Kiesel, Arefeh Bahrami, Benno Stein, Avishek Anand, and
Matthias Hagen. Toward voice query clarification. In Proceedings of the
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR), pages 1257–1260. ACM, 2018.

[112] Jaewon Kim, Paul Thomas, Ramesh Sankaranarayana, Tom Gedeon, and
Hwan-Jin Yoon. What snippet size is needed in mobile web search? In

211 Bibliography

Proceedings of the Conference Human Information Interaction and Retrieval
(CHIIR), pages 97–106. ACM, 2017.

[113] Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing user studies
with mechanical turk. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (CHI), pages 453–456, 2008.

[114] Weize Kong and James Allan. Extracting query facets from search results.
In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages 93–102. ACM, 2013.

[115] Marijn Koolen, Toine Bogers, Antal van den Bosch, and Jaap Kamps. Look-
ing for books in social media: An analysis of complex search requests. In
Proceedings of the European Conference on IR Research (ECIR), pages 184–
196, 2015.

[116] Yehuda Koren. Factorization meets the neighborhood: a multifaceted col-
laborative filtering model. In Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’08, Las
Vegas, NV, USA, pages 426–434, August 2008. doi: 10.1145/1401890.
1401944.

[117] Taku Kudo and Yuji Matsumoto. Fast methods for kernel-based text anal-
ysis. In Proceedings of the Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 24–31. ACL, 2003.

[118] John Lafferty and Chengxiang Zhai. Document language models, query
models, and risk minimization for information retrieval. In Proceedings of
the International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 111–119. ACM, 2001.

[119] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Con-
ditional random fields: Probabilistic models for segmenting and labeling
sequence data. In Proceedings of the International Conference on Machine
Learning (ICML), pages 282–289. PMLR, 2001.

[120] Victor Lavrenko and W. Bruce Croft. Relevance-based language models.
In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages 120–127. ACM, 2001.

[121] Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy Lebanon, and Yoram
Singer. Local collaborative ranking. In Proceedings of the International
Conference on World Wide Web (WWW), pages 85–96. ACM, 2014.

212 Bibliography

[122] Asher Levi, Osnat Mokryn, Christophe Diot, and Nina Taft. Finding a nee-
dle in a haystack of reviews: cold start context-based hotel recommender
system demo. In Proceedings of the ACM Conference on Recommender Sys-
tems (RecSys), pages 305–306. ACM, 2012.

[123] Hang Li. Learning to Rank for Information Retrieval and Natural Language
Processing. Morgan & Claypool Publishers, 2011. ISBN 1608457079,
9781608457076.

[124] Xin Li, Mingming Jiang, Huiting Hong, and Lejian Liao. A time-aware
personalized point-of-interest recommendation via high-order tensor fac-
torization. ACM Trans. Inf. Syst., 35(4):31:1–31:23, 2017.

[125] Xutao Li, Gao Cong, Xiaoli Li, Tuan-Anh Nguyen Pham, and Shonali Kr-
ishnaswamy. Rank-geofm: A ranking based geographical factorization
method for point of interest recommendation. In Proceedings of the Inter-
national ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR), pages 433–442. ACM, 2015.

[126] Defu Lian, Cong Zhao, Xing Xie, Guangzhong Sun, Enhong Chen, and
Yong Rui. Geomf: joint geographical modeling and matrix factorization
for point-of-interest recommendation. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD),
pages 831–840, 2014.

[127] Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. Predicting the next lo-
cation: A recurrent model with spatial and temporal contexts. In Proceed-
ings of the AAAI Conference on Artificial Intelligence (AAAI), pages 194–200,
2016.

[128] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval, 3(3):225–331, 2009.

[129] Yanchi Liu, Chuanren Liu, Bin Liu, Meng Qu, and Hui Xiong. Unified
point-of-interest recommendation with temporal interval assessment. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD), pages 1015–1024. ACM, 2016.

[130] Yiding Liu, Tuan-Anh Pham, Gao Cong, and Quan Yuan. An experimental
evaluation of point-of-interest recommendation in location-based social
networks. PVLDB, 10(10):1010–1021, 2017.

213 Bibliography

[131] Yong Liu, Wei Wei, Aixin Sun, and Chunyan Miao. Exploiting geographical
neighborhood characteristics for location recommendation. In Proceedings
of the International Conference on Information and Knowledge Management
(CIKM), pages 739–748. ACM, 2014.

[132] Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-based
recommender systems: State of the art and trends. In Francesco Ricci,
Lior Rokach, Bracha Shapira, and Paul B. Kantor, editors, Recommender
Systems Handbook, pages 73–105. Springer, 2011.

[133] Xiaolu Lu, Alistair Moffat, and J. Shane Culpepper. The effect of pooling
and evaluation depth on IR metrics. Inf. Retr. Journal, 19(4):416–445,
2016.

[134] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-
sne. Journal of machine learning research, 9(Nov):2579–2605, 2008.

[135] Jiaxin Mao, Yiqun Liu, Noriko Kando, Cheng Luo, Min Zhang, and Shaop-
ing Ma. Investigating result usefulness in mobile search. In Proceedings of
the European Conference on IR Research (ECIR), pages 223–236. Springer,
2018.

[136] Ida Mele, Seyed Ali Bahrainian, and Fabio Crestani. Linking news across
multiple streams for timeliness analysis. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, CIKM, pages
767–776, 2017.

[137] Prem Melville, Raymond J. Mooney, and Ramadass Nagarajan. Content-
boosted collaborative filtering for improved recommendations. In Rina
Dechter, Michael J. Kearns, and Richard S. Sutton, editors, Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), pages 187–192. AAAI
Press, 2002.

[138] Stefano Mizzaro and Josiane Mothe. Why do you think this query is dif-
ficult?: A user study on human query prediction. In Proceedings of the
39th International ACM SIGIR conference on Research and Development in
Information Retrieval, SIGIR, pages 1073–1076. ACM, 2016.

[139] George D. Montanez, Ryen W. White, and Xiao Huang. Cross-device
search. In Proceedings of the International Conference on Information and
Knowledge Management (CIKM), pages 1669–1678. ACM, 2014.

214 Bibliography

[140] Kevin Ong, Kalervo Järvelin, Mark Sanderson, and Falk Scholer. Using
information scent to understand mobile and desktop web search behavior.
In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages 295–304. ACM, 2017.

[141] Iadh Ounis, Gianni Amati, Vassilis Plachouras, Ben He, Craig Macdonald,
and Douglas Johnson. Terrier information retrieval platform. In Proceed-
ings of the European Conference on IR Research (ECIR), pages 517–519.
Springer, 2005.

[142] Harshith Padigela, Hamed Zamani, and W. Bruce Croft. Investigating the
successes and failures of bert for passage re-ranking. arXiv:1903.06902,
2019.

[143] Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu, Rajan M. Lukose,
Martin Scholz, and Qiang Yang. One-class collaborative filtering. In Pro-
ceedings of the 8th IEEE International Conference on Data Mining, Pisa,
Italy, pages 502–511, 2008.

[144] Dae Hoon Park, Mengwen Liu, ChengXiang Zhai, and Haohong Wang.
Leveraging user reviews to improve accuracy for mobile app retrieval. In
Proceedings of the International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR), pages 533–542. ACM, 2015.

[145] Dae Hoon Park, Yi Fang, Mengwen Liu, and ChengXiang Zhai. Mobile app
retrieval for social media users via inference of implicit intent in social
media text. In Proceedings of the International Conference on Information
and Knowledge Management (CIKM), pages 959–968. ACM, 2016.

[146] Moon-Hee Park, Jin-Hyuk Hong, and Sung-Bae Cho. Location-based rec-
ommendation system using bayesian user’s preference model in mobile
devices. In Proceedings of the 4th International Conference Ubiquitous In-
telligence and Computing, UIC ’07, Hong Kong, China, pages 1130–1139.
Springer, 2007.

[147] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1532–
1543, 2014.

[148] Joaquín Pérez-Iglesias and Lourdes Araujo. Standard deviation as a query
hardness estimator. In SPIRE, pages 207–212, 2010.

215 Bibliography

[149] Roberto Pieraccini, Evelyne Tzoukermann, Z. Gorelov, Jean-Luc Gauvain,
Esther Levin, Chin-Hui Lee, and Jay Wilpon. A speech understanding
system based on statistical representation of semantics. In ICASSP, pages
193–196, 1992.

[150] Jay M. Ponte and W. Bruce Croft. A language modeling approach to infor-
mation retrieval. In Proceedings of the International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR), pages 275–
281. ACM, 1998.

[151] Minghui Qiu, Liu Yang, Feng Ji, Wei Zhou, Jun Huang, Haiqing Chen,
W. Bruce Croft, and Wei Lin. Transfer learning for context-aware ques-
tion matching in information-seeking conversations in e-commerce. In
Proceedings of the Annual Meeting of the Association for Computational Lin-
guistics (ACL) (2), pages 208–213, 2018.

[152] Chen Qu, Liu Yang, W. Bruce Croft, Johanne R. Trippas, Yongfeng
Zhang, and Minghui Qiu. Analyzing and characterizing user intent in
information-seeking conversations. In Proceedings of the International
ACM SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR), pages 989–992. ACM, 2018.

[153] Filip Radlinski and Nick Craswell. A theoretical framework for conversa-
tional search. In Proceedings of the Conference Human Information Inter-
action and Retrieval (CHIIR), pages 117–126. ACM, 2017.

[154] Dimitrios Rafailidis and Fabio Crestani. Joint collaborative ranking with
social relationships in top-n recommendation. In Proceedings of the Inter-
national Conference on Information and Knowledge Management (CIKM),
pages 1393–1402. ACM, 2016.

[155] Dimitrios Rafailidis and Fabio Crestani. Top-n recommendation via joint
cross-domain user clustering and similarity learning. In Proceedings of
the European Conference on Machine Learning and Knowledge Discovery in
Databases (PKDD), 2016.

[156] Dimitrios Rafailidis and Fabio Crestani. Collaborative ranking with social
relationships for top-n recommendations. In Proceedings of the Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pages 785–788. ACM, 2016.

216 Bibliography

[157] Dimitrios Rafailidis and Fabio Crestani. Learning to rank with trust and
distrust in recommender systems. In Proceedings of the ACM Conference on
Recommender Systems (RecSys), pages 5–13. ACM, 2017.

[158] Hossein A. Rahmani, Mohammad Aliannejadi, Sajad Ahmadian, Mitra
Baratchi, Mohsen Afsharchi, and Fabio Crestani. LGLMF: local geographi-
cal based logistic matrix factorization model for POI recommendation. In
Proceedings of the Asia Information Retrieval Societies Conference (AIRS),
2019.

[159] Hossein A. Rahmani, Mohammad Aliannejadi, Rasoul Mirzaei Zadeh, Mi-
tra Baratchi, Mohsen Afsharchi, and Fabio Crestani. Category-aware loca-
tion embedding for point-of-interest recommendation. In Proceedings of
the ACM SIGIR International Conference on Theory of Information Retrieval
(ICTIR), pages 173–176. ACM, 2019.

[160] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know:
Unanswerable questions for squad. arXiv:1806.03822, 2018.

[161] Sudha Rao and Hal Daumé. Learning to ask good questions: Ranking
clarification questions using neural expected value of perfect information.
In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL) (1), pages 2736–2745, 2018.

[162] Sudha Rao and Hal Daumé III. Answer-based adversarial training for gen-
erating clarification questions. arXiv:1904.02281, 2019.

[163] Siva Reddy, Danqi Chen, and Christopher D. Manning. Coqa: A conversa-
tional question answering challenge. arXiv:1808.07042, 2018.

[164] Gary Ren, Xiaochuan Ni, Manish Malik, and Qifa Ke. Conversational query
understanding using sequence to sequence modeling. In Proceedings of the
International Conference on World Wide Web (WWW), pages 1715–1724,
2018.

[165] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. BPR: bayesian personalized ranking from implicit feedback. In
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence,
Montreal, QC, Canada, pages 452–461, 2009.

[166] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-
Beaulieu, and Mike Gatford. Okapi at TREC-3. In Proceedings of the Text
REtrieval Conference (TREC), pages 109–126, 1994.

217 Bibliography

[167] Cynthia Rudin. The p-norm push: A simple convex ranking algorithm that
concentrates at the top of the list. Journal of Machine Learning Research,
10:2233–2271, 2009.

[168] James Salter and Nick Antonopoulos. Cinemascreen recommender agent:
Combining collaborative and content-based filtering. IEEE Intelligent Sys-
tems, 21(1):35–41, 2006.

[169] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl.
Item-based collaborative filtering recommendation algorithms. In Pro-
ceedings of the 10th International World Wide Web Conference, Hong Kong,
China, pages 285–295, 2001.

[170] Dou Shen, Jian-Tao Sun, Qiang Yang, and Zheng Chen. Building bridges
for web query classification. In Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR),
pages 131–138. ACM, 2006.

[171] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Context-sensitive informa-
tion retrieval using implicit feedback. In Proceedings of the International
ACM SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR), pages 43–50. ACM, 2005.

[172] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, and
Alan Hanjalic. Gapfm: optimal top-n recommendations for graded rele-
vance domains. In Proceedings of the International Conference on Informa-
tion and Knowledge Management (CIKM), pages 2261–2266. ACM, 2013.

[173] Milad Shokouhi and Qi Guo. From queries to cards: Re-ranking proactive
card recommendations based on reactive search history. In Proceedings of
the International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 695–704. ACM, 2015.

[174] Milad Shokouhi, Rosie Jones, Umut Ozertem, Karthik Raghunathan, and
Fernando Diaz. Mobile query reformulations. In Proceedings of the Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pages 1011–1014. ACM, 2014.

[175] Craig Silverstein, Monika Rauch Henzinger, Hannes Marais, and Michael
Moricz. Analysis of a very large web search engine query log. SIGIR Forum,
33(1):6–12, 1999.

218 Bibliography

[176] Timothy Sohn, Kevin A. Li, William G. Griswold, and James D. Hollan. A
diary study of mobile information needs. In Proceedings of the CHI Confer-
ence on Human Factors in Computing Systems (CHI), pages 433–442. ACM,
2008.

[177] Yang Song, Hao Ma, Hongning Wang, and Kuansan Wang. Exploring and
exploiting user search behavior on mobile and tablet devices to improve
search relevance. In Proceedings of the International Conference on World
Wide Web (WWW), pages 1201–1212, 2013.

[178] Damiano Spina, Johanne R. Trippas, Lawrence Cavedon, and Mark
Sanderson. Extracting audio summaries to support effective spoken doc-
ument search. JASIST, 68(9):2101–2115, 2017.

[179] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15:1929–1958,
2014.

[180] Yu Sun, Nicholas Jing Yuan, Xing Xie, Kieran McDonald, and Rui Zhang.
Collaborative intent prediction with real-time contextual data. ACM Trans.
Inf. Syst., 35(4):30:1–30:33, 2017.

[181] Yueming Sun and Yi Zhang. Conversational recommender system. In
Proceedings of the International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR), pages 235–244. ACM, 2018.

[182] Zhiliang Tian, Rui Yan, Lili Mou, Yiping Song, Yansong Feng, and Dongyan
Zhao. How to make context more useful? an empirical study on context-
aware neural conversational models. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics (ACL) (2), pages 231–236,
2017.

[183] Johanne R. Trippas, Damiano Spina, Lawrence Cavedon, Hideo Joho, and
Mark Sanderson. Informing the design of spoken conversational search:
Perspective paper. In Proceedings of the Conference Human Information
Interaction and Retrieval (CHIIR), pages 32–41. ACM, 2018.

[184] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. arXiv:1706.03762, 2017.

219 Bibliography

[185] Alexandra Vtyurina, Denis Savenkov, Eugene Agichtein, and Charles L. A.
Clarke. Exploring conversational search with humans, assistants, and wiz-
ards. In CHI Extended Abstracts, pages 2187–2193, 2017.

[186] Marilyn A. Walker, Rebecca J. Passonneau, and Julie E. Boland. Quanti-
tative and qualitative evaluation of darpa communicator spoken dialogue
systems. In Proceedings of the Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 515–522, 2001.

[187] Yansen Wang, Chenyi Liu, Minlie Huang, and Liqiang Nie. Learning to ask
questions in open-domain conversational systems with typed decoders.
In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL) (1), pages 2193–2203, 2018.

[188] Ahmad M. Ahmad Wasfi. Collecting user access patterns for building user
profiles and collaborative filtering. In Mark T. Maybury, Pedro A. Szekely,
and Christoph G. Thomas, editors, Proceedings of the 4th International
Conference on Intelligent User Interfaces, IUI 1999, Los Angeles, CA, USA,
January 5-8, 1999, pages 57–64. ACM, 1999.

[189] Markus Weimer, Alexandros Karatzoglou, Quoc V. Le, and Alexander J.
Smola. COFI RANK - maximum margin matrix factorization for collabora-
tive ranking. In Proceedings of the Twenty-First Annual Conference on Neu-
ral Information Processing Systems, Vancouver, British Columbia, Canada,
pages 1593–1600, 2007.

[190] Ryen W. White, Paul N. Bennett, and Susan T. Dumais. Predicting short-
term interests using activity-based search context. In Proceedings of
the International Conference on Information and Knowledge Management
(CIKM), pages 1009–1018. ACM, 2010.

[191] Jason D. Williams, Antoine Raux, Deepak Ramachandran, and Alan W.
Black. The dialog state tracking challenge. In SIGDIAL, pages 404–413,
2013.

[192] Kyle Williams, Julia Kiseleva, Aidan C. Crook, Imed Zitouni, Ahmed Has-
san Awadallah, and Madian Khabsa. Detecting good abandonment in mo-
bile search. In Proceedings of the International Conference on World Wide
Web (WWW), pages 495–505. ACM, 2016.

220 Bibliography

[193] Qiang Wu, Christopher J. C. Burges, Krysta Marie Svore, and Jianfeng
Gao. Adapting boosting for information retrieval measures. Inf. Retr. Jour-
nal, 13(3):254–270, 2010.

[194] Biao Xiang, Daxin Jiang, Jian Pei, Xiaohui Sun, Enhong Chen, and Hang
Li. Context-aware ranking in web search. In Proceedings of the Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pages 451–458. ACM, 2010.

[195] Rui Yan, Yiping Song, and Hua Wu. Learning to respond with deep neu-
ral networks for retrieval-based human-computer conversation system. In
Proceedings of the International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR), pages 55–64. ACM, 2016.

[196] Rui Yan, Dongyan Zhao, and Weinan E. Joint learning of response ranking
and next utterance suggestion in human-computer conversation system.
In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages 685–694. ACM, 2017.

[197] Liu Yang, Hamed Zamani, Yongfeng Zhang, Jiafeng Guo, and W. Bruce
Croft. Neural matching models for question retrieval and next question
prediction in conversation. arXiv:1707.05409, 2017.

[198] Peilin Yang and Hui Fang. University of delaware at TREC 2015: Combin-
ing opinion profile modeling with complex context filtering for contextual
suggestion. In Proceedings of the Text REtrieval Conference (TREC). NIST,
2015.

[199] Peilin Yang, Hongning Wang, Hui Fang, and Deng Cai. Opinions matter: a
general approach to user profile modeling for contextual suggestion. Inf.
Retr. Journal, 18(6):586–610, 2015.

[200] Zijun Yao, Yanjie Fu, Bin Liu, Yanchi Liu, and Hui Xiong. POI recommen-
dation: A temporal matching between POI popularity and user regularity.
In Proceedings of the 16th IEEE International Conference on Data Mining,
Barcelona, Spain, pages 549–558, 2016.

[201] Mao Ye, Peifeng Yin, Wang-Chien Lee, and Dik Lun Lee. Exploiting ge-
ographical influence for collaborative point-of-interest recommendation.
In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages 325–334. ACM, 2011.

221 Bibliography

[202] Hongzhi Yin, Bin Cui, Ling Chen, Zhiting Hu, and Zi Huang. A temporal
context-aware model for user behavior modeling in social media systems.
In Proceedings of the International Conference on Management of Data (SIG-
MOD), pages 1543–1554, 2014.

[203] Hongzhi Yin, Bin Cui, Yizhou Sun, Zhiting Hu, and Ling Chen. LCARS:
A spatial item recommender system. ACM Trans. Inf. Syst., 32(3):11:1–
11:37, 2014.

[204] Hongzhi Yin, Bin Cui, Ling Chen, Zhiting Hu, and Xiaofang Zhou. Dynamic
user modeling in social media systems. ACM Trans. Inf. Syst., 33(3):10:1–
10:44, 2015.

[205] Hongzhi Yin, Bin Cui, Xiaofang Zhou, Weiqing Wang, Zi Huang, and
Shazia W. Sadiq. Joint modeling of user check-in behaviors for real-
time point-of-interest recommendation. ACM Trans. Inf. Syst., 35(2):11:1–
11:44, 2016.

[206] Hongzhi Yin, Weiqing Wang, Hao Wang, Ling Chen, and Xiaofang Zhou.
Spatial-aware hierarchical collaborative deep learning for POI recommen-
dation. IEEE Trans. Knowl. Data Eng., 29(11):2537–2551, 2017.

[207] Fajie Yuan, Joemon M. Jose, Guibing Guo, Long Chen, Haitao Yu, and
Rami Suleiman Alkhawaldeh. Joint geo-spatial preference and pairwise
ranking for point-of-interest recommendation. In Proceedings of the 28th
IEEE International Conference on Tools with Artificial Intelligence, San Jose,
CA, USA, pages 46–53, 2016.

[208] Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat-
Thalmann. Time-aware point-of-interest recommendation. In Proceedings
of the International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 363–372. ACM, 2013.

[209] Quan Yuan, Gao Cong, and Aixin Sun. Graph-based point-of-interest rec-
ommendation with geographical and temporal influences. In Proceedings
of the International Conference on Information and Knowledge Management
(CIKM), pages 659–668. ACM, 2014.

[210] Hamed Zamani and W. Bruce Croft. Estimating embedding vectors for
queries. In Proceedings of the ACM SIGIR International Conference on The-
ory of Information Retrieval (ICTIR), pages 123–132. ACM, 2016.

222 Bibliography

[211] Hamed Zamani, Michael Bendersky, Xuanhui Wang, and Mingyang Zhang.
Situational context for ranking in personal search. In Proceedings of the
International Conference on World Wide Web (WWW), pages 1531–1540,
2017.

[212] Hamed Zamani, W. Bruce Croft, and J. Shane Culpepper. Neural query
performance prediction using weak supervision from multiple signals. In
Proceedings of the International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR), pages 105–114. ACM, 2018.

[213] Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh
Tiwary. Neural ranking models with multiple document fields. In Proceed-
ings of the ACM International Conference on Web Search and Data Mining
(WSDM). ACM, 2018.

[214] Chengxiang Zhai and John Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. SIGIR Forum,
51(2):268–276, 2017. ISSN 0163-5840.

[215] Chenyi Zhang, Hongwei Liang, and Ke Wang. Trip recommendation meets
real-world constraints: POI availability, diversity, and traveling time un-
certainty. ACM Trans. Inf. Syst., 35(1):5:1–5:28, 2016.

[216] Jia-Dong Zhang and Chi-Yin Chow. Geosoca: Exploiting geographical,
social and categorical correlations for point-of-interest recommendations.
In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages 443–452. ACM, 2015.

[217] Weishi Zhang, Guiguang Ding, Li Chen, Chunping Li, and Chengbo Zhang.
Generating virtual ratings from chinese reviews to augment online recom-
mendations. ACM Trans. Intell. Syst. Technol., 4(1):9:1–9:17, 2013.

[218] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W. Bruce Croft. To-
wards conversational search and recommendation: System ask, user re-
spond. In Proceedings of the International Conference on Information and
Knowledge Management (CIKM), pages 177–186. ACM, 2018.

[219] Shenglin Zhao, Tong Zhao, Irwin King, and Michael R. Lyu. Geo-teaser:
Geo-temporal sequential embedding rank for point-of-interest recommen-
dation. In Proceedings of the 26th International Conference on World Wide
Web Companion, Perth, Australia, pages 153–162, 2017.

	Contents
	List of List of Figures
	List of List of Tables
	Introduction
	Motivation
	Thesis Outline
	Main Contributions
	Resources Created and Released
	Publication Overview
	Additional Publications

	Literature Review
	Venue Suggestion
	TREC Contextual Suggestion
	Context-Aware POI Recommendation
	Collaborative Ranking
	Time-Aware Recommendation

	Mobile Search
	Mobile IR
	Mobile HCI
	Context-Aware Search
	Proactive IR
	Federated and Aggregated Search
	Query Classification

	Conversational Search
	Conversational IR
	Clarifying Questions
	Conversational Question Answering

	I Venue Suggestion
	Content-based User Modeling for Venue Suggestion
	Introduction
	Personalized Keyword Boosting
	Personalized Keyword-Tag Mapping
	Parameter Estimation Based on Expectation-Maximization
	Location Keywords Boosting
	User Tag Prediction

	Contextual Appropriateness Prediction
	Contextual Features
	Training the Classifier

	Recommendation based on Information from Multiple LBSNs
	Frequency-based Score
	Review-Based Score
	Location Ranking

	Data Collection and Analysis
	Data Crawling
	Crowdsourcing
	Data Analysis

	Experimental Setup
	Data
	Metrics
	Compared Methods

	Results and Discussion
	Preformance Comparison
	Impact of Different Learning to Rank Techniques
	Impact of Using Information from Multiple LBSNs
	Impact of Using Different Scores
	Impact of Number of Visited POIs
	Impact of Visiting POIs from a Single City vs. Two Cities
	Dimensionality Reduction
	User Tag Prediction

	Summary

	Collaborative User Modeling for Venue Suggestion
	Introduction
	Data Analysis
	Data
	Time-Dependency of User Activities and Interests
	Users' Multiple Check-ins
	Remarks

	Proposed Method
	Geographical Similarity
	Phase 1: Visited vs. Unvisited POIs
	Phase 2: Multiple vs. Single Check-ins
	Time-Sensitive Regularizer
	Joint Two-Phase Collaborative Ranking Algorithm

	Experimental Setup
	Data
	Metrics
	Compared Methods

	Results and Discussion
	Performance Comparison
	Impact of the 2nd Phase
	Impact of the Time-Sensitive Regularizer
	Impact of the Geographical Influence
	Impact of the Model Parameters
	Model's Convergence

	Summary

	Hybrid User Modeling for Venue Suggestion
	Introduction
	Proposed Method
	Collaborative Ranking with Multiple Location-based Similarities
	Cross-Venue Similarities
	System Overview
	Hybrid Venue Suggestion

	Experimental Setup
	Data
	Metrics
	Compared Methods

	Results and Discussion
	Performance Comparison
	Impact of the Number of Visited POIs
	Impact of the Similarity Scores
	Impact of the Number of Latent Factors
	Impact of Regularization Parameter

	Summary

	II Mobile Search
	Unified Mobile Search
	Introduction
	Data Collection
	Data Analysis
	App Distribution
	Query Attributes
	Query Overlap
	Remarks

	Neural Target Apps Selection
	NTAS1: App Scoring Model
	NTAS2: Query Classification Model

	Experimental Setup
	Data
	Metrics
	Compared Methods

	Results and Discussion
	Performance Comparison
	Representation Analysis
	Performance on Apps
	Performance on Tasks

	Summary

	Context-Aware Target Apps Selection
	Introduction
	Data Collection
	uSearch
	Data Collection Procedure
	Quality Check
	Privacy Concerns
	Limitations

	Data Analysis
	Basic Statistics
	Apps
	Queries
	Sessions
	Context

	Context-Aware Neural Target Apps Selection
	Experimental Setup
	Data
	Metrics
	Compared Methods

	Results and Discussion
	Performance Comparison
	Impact of Context on Performance Per App
	Impact of Context on Performance Per User
	Impact of Context on Performance Per Query Length.

	Summary

	III Conversational Search
	Conversational Search with Clarifying Questions
	Introduction
	Problem Statement
	Data Collection
	Topics and Facets
	Clarifying Questions
	Question Verification and Addition
	Answers

	Conversational Retrieval Framework
	Question Retrieval Model
	Question Selection Model
	Document Retrieval Model

	Experimental Setup
	Data
	Metrics

	Results and Discussion
	Question Retrieval
	Oracle Question Selection
	Question Selection
	Impact of Data Splits
	Impact of Number of Conversation Turns
	Impact of Clarifying Questions on Facets
	Case Study: Failure and Success Analysis

	Limitations
	Summary

	Conclusions
	Summary of the Work Carried Out
	Main Contributions
	Future Research Directions

	Bibliography

