


To the memory of my grandfather Augusto Legnazzi (1929-2007),

one of the most genial and curious people I have ever met.



Abstract

The high informational content and the ease of accessibility are among the most attractive

features which make derivative securities particularly useful in financial applications. With

a special focus on risk management and asset pricing, I present several methodologies which

involve the use of option and futures data in the estimation process. This doctoral thesis

consists of three chapters. The first one, “Forward-looking VaR and CVaR: an application

to the Natural gas Market”, presents, backtests and compares point risk forecasts for the

natural gas market using a novel methodology which introduces derivative securities into

a classical calibration setting. The second chapter, “A Bayesian Estimate of the Pricing

Kernel”, is a joint work with G. Barone-Adesi and A. Mira. The article sets the pricing

kernel estimation into a Bayesian framework, which enables to combine the use of derivative

and historical data in the physical density calibration. Thanks to their higher accuracy and

flexibility, the resulting pricing kernel estimates display a monotonic decreasing shape over

a large range of returns, consistently with the classical theory. The third chapter, “S&P

500 Index, an Option-Implied Risk Analysis”, is a joint work with G. Barone-Adesi and

C.Sala. Tested on the US equity market, the article presents a detailed analysis on the

performance of the option-implied risk metrics both in absolute terms and relative to the

existing historical-based risk metrics.

Keywords: Derivative Securities, Hybrid and Option-implied VaR and CVaR, Risk Neutral Mea-

sure, Pricing Kernel, Poisson-Dirichlet process.
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Part I

Forward-looking VaR and CVaR: an application to the

Natural gas Market

1 Introduction

The article presents a methodology finalized at the derivation of forward-looking point risk forecasts.

The proposed approach is denoted as “hybrid” because it exploits the advantages and, at the same

time overcomes the limits, of the classical and option-implied approaches already existing in the

risk management literature. To test the validity of the hybrid methodology, the article presents a

direct application of the proposed approach to the US natural gas market.

Over the last decades energy commodities have attracted considerable interest as alternative

financial investments. The intrinsic features of these assets, such as high-volatility, high correlation

with inflation, counter-cyclicality within the economy and low correlation with bonds and equities,

have driven the development of a liquid derivative market. Being the closest substitute to oil,

natural gas has gained increasing importance both in real and financial markets. From 2007 onwards

in the US real market, the hydraulic fracturing and the horizontal drilling have allowed for the

extraction of shale gas, thus prompting the sharp increase of the US gas production and the

subsequent drop of the price (see figure 3). In financial markets, starting from the deregulation of

wellhead prices in 1989, natural gas has experienced the development of an active derivative market.

The growth of US natural gas futures market volumes1 (see figure 1) has been accompanied by an

increase in the share of non-commercial investors2 actively trading in this commodity (see figure

2). Besides supply/demand-linked risks3, the increasing trading activity of non-commercial agents

has strongly amplified the magnitude of unanticipated changes into the natural gas dynamics (see

Geman (2009)[50]), thus making profit and loss forecasting in this market a challenging task to

perform.

This article relates to two streams of research. First, from a methodological point of view,

1In a quarterly review in 2007, the Bank of International Settlements (BIS) documented an overall increase
of open interest in the futures and options markets in the period from 1994 to 2004.
2According to the US Commodity Futures Trading Commission (CFTC) definition, an investors is “non-
commercial” if he/she does not trade primarily for hedging purposes.
3For example, risk associated to inventories, to the availability and unexpected revisions of the proven
reserves.
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Figure 1: Yearly volumes of the Henry Hub natural gas futures contracts with maturity
one-month from January 2000 to December 2016.

Figure 2: Evolution of the share of open interest in options and futures contracts on the
Henry Hub natural gas hold by non commercial investors from January 2006 to December
2017.

the option-based VaR and CVaR estimates are derived using a novel methodology, substantially

different from the majority of risk models existing in the literature. Second, the empirical applica-

tion of the proposed approach to the natural gas market and the comparison with alternative risk
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models enriches the existing risk management literature in energy markets. In the financial risk

management literature the majority of risk models bases their risk predictions on historical data

only (these models are henceforth denoted as “classical”). Since statistical analysis on past data

may be not informative about the future dynamics4 of the underlying asset, classical estimates

often turn out to be biased. Thanks to their higher informational content (see Merton (1973)[82]

for a complete review), financial instruments traded in the derivative market can naturally provide

a solution. To date, the use of derivative data in risk management is limited to a small number of

researches (see for instance Christoffersen et al. (2016)[33], Barone Adesi (2016)[7] and Bellini and

Di Bernardino (2017)[17]). Although the option-implied approach of Barone Adesi delivers accurate

risk estimates for several asset classes5, its applicability is restricted only to those underlying assets

with a liquid derivative market and to a limited choice of investment horizons. To date, in the

energy commodities literature the majority of the academic articles have analysed and measured

the impact on natural gas of risks strictly connected to real markets6. Indeed, for a long time

the derivation of financial point risk forecasts in energy markets has been widely overlooked. Few

examples of researches in this field are those by Pedraz et al. (2014)[57], Youssef et al. (2015)[97]

and Pantoja et al. (2017)[87].

The contribution of the article to the existing literature is fourfold. First, the hybrid method-

ology enables one to derive option-implied risk forecasts at any frequency and investment horizon,

even in periods of low trading activity in the option market. Because of these advantages, the range

of applicability of the hybrid approach is very wide and includes financial instruments (for example

individual companies) which do not normally have a high trading activity in the derivative market.

Second, the hybrid methodology is quick and easy to implement. Futures and option data are

publicly available and easy to collect. The model calibration is not time consuming, thus making

possible to perform any risk forecasting exercise on a timely basis. Third, the article presents an

extensive and detailed analysis on the validation and the comparative performance of the hybrid,

option-implied and classical risk metrics. Fourth, the obtained results can be valuable for a wide

set of economic agents. Existing and potential investors can assess the risk associated to a specific

underlying in a simple and effective way. Individual firms can gain insights about their percep-

4See for instance the discussion about the “Peso problem” in Krasker (1980)[71].
5See Barone-Adesi et al. (2016)[13] and Barone-Adesi et al. (2016)[12] for an empirical application on the
oil and the US equity markets, respectively.
6For example, supply/demand-linked risks (Geman and Ohana (2009)[52] ), convenience yield risk and
counterparty risk .

3



tion among the investors and derive alternative risk estimates to those delivered by their internal

models.

The remainder of the paper is as follows: Section 2 presents the methodology - section 2.1 and

2.2 briefly describe the characteristics and limits of the classical and the existing option-implied

risk measures. Section 2.3 presents the hybrid methodology. Section 3 describes the dataset and

its relevant characteristics. Section 5 presents the monthly and 10-days hybrid VaR and CVaR risk

forecasts and section 5 presents alternative risk estimates, namely the monthly Black & Scholes

option-implied VaR and CVaR and the monthly and 10-days VaR estimates under the classical

FHS approach. Section 6 validates all the proposed VaR and CVaR estimates on the basis of

the backtesting results. Section 7 ranks and compares the VaR forecasts across the proposed

methodologies. Section 8 presents conclusions.

2 The Methodology

To date the majority of risk management models derives point risk forecasts based on historical

data under the physical measure. Recently, Barone-Adesi (2016)[7] has extracted the VaR and the

CVaR from derivative securities under the risk neutral measure. This methodology is henceforth

denoted as “option-implied” and is used as a benchmark to evaluate the hybrid approach. The

proposed hybrid methodology shares some similarities both with the classical and the option-

implied approaches. Sections 2.1 and 2.2 outline the definitions of VaR and CVaR under the

physical and risk neutral measures, respectively. Section 2.3 presents the methodology to derive

the hybrid VaR and CVaR.

2.1 The classical VaR and CVaR

The VaR is a measure of downside risk based on the current value of the underlying assets. By

definition, the Value-at-Risk, VaRα,t,τ , is the possible maximal loss associated with a portfolio, S,

occurring with probability (1 − α) at time t and over a given time horizon τ = T − t (see Jorion

(1997)[67]). The estimated loss, L, is defined with respect to the initial investment, S0, and equals

L(S) = S0−S. In this framework, the VaR equals the negative α-quantile of the P&L distribution

VaR|
∫ −V aR
−∞

f(L(S))dS = α (1)
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where f(L(S)) is the probability density distribution of the future P&L based on the value of the

portfolio today, S0, and α is the desired risk level. The high sensitivity of S to the statistician’s

modelling choices makes the probability density function of the future losses the most challenging

element to estimate. Taking into account the magnitude of the losses beyond a specified risk level,

the CVaR is a weighted tail expectation, defined as

CV aR =
1

α

∫ α

−∞
L(S)f(S)dS (2)

where f(S) is the probability distribution function of the future portfolio values. Despite the

advantage of being a coherent risk measure, the lack of elicitability prevents from making reliable

inference and meaningful comparisons with other risk metrics based on the backtesting results.

2.2 The option-implied VaR and CVaR

Following Barone Adesi (2016)[7], this section briefly describes how to derive point risk forecasts

directly from option prices. The option-implied VaR is the difference between the initial portfolio

value, St, and the strike of the European put option7 identified by the desired risk level α. For

continuous distributions,

V aRα,t,τ = St −Kα,t,τ such that

∫ K

−∞
f(S)dS = F (K) = α (3)

where the subscript {α, t, τ} corresponds to quantities estimated at time t with time to matu-

rity/investment horizon τ and identified by the risk level α. In economic terms, K is the strike

price of that put option which investors think will expire in the money with α% probability. By

shifting the lower integration limit to zero8, the option-implied representation of the CVaR follows

CV aRα,t,τ = V aRα,t,τ + erτ
pα,t,τ
α

(4)

From a modelling perspective, the computation of α can be performed either nonparametrically or

parametrically. Following Barone-Adesi and Elliot (2007)[8], α relative to the middle option, α[2],

7The same analysis can be performed using call options contracts.
8It is equivalent to assume a portfolio with limited liability.
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can be computed analytically as

α[2] = erτ
∂p

∂K
= erτ · 1

2

[
p2 − p1

K2 −K1
+

p3 − p2

K3 −K2

]
; (5)

where p1 < p2 < p3 are the prices of three options at time t and with time to maturity τ with

contiguous strikes (K1 < K2 < K3, respectively). Needing data on three options trading at

consecutive strike prices to derive just one estimate of alpha, the applicability of this approach

(henceforth denoted as “Model-Free (MF) methodology”) is limited to underlying assets with a

liquid option market only. Alternatively, under the assumption that the observed option prices are

generated by the Black and Scholes (B&S) model (1973)[20], α equals the probability of a European

put to expire in the money

α = N(−d2) = 1−N

(
ln
(
F
K

)
− σ2

2 τ

σ
√
τ

)
(6)

Even though the resulting α estimates rely on the specification of an option pricing model, this

approach (henceforth denoted as “B&S methodology”) allows one to derive an estimate of α for

each observed option price. The B&S methodology is outperformed by the MF method in terms of

accuracy and precision, but provides a larger amount of VaR and CVaR estimates when the market

liquidity is lower.

2.3 The hybrid methodology

The hybrid methodology shares some common features with both the option-implied and the clas-

sical approaches. Similarly to the former ones, it uses, though requiring a much lower amount,

option prices as inputs and is derived under the risk neutral measure. At the same time, as the

classical approaches, it specifies a stochastic process to model the P&L distribution. Since many

asset classes do not have a highly liquid derivative market, the hybrid methodology can be very at-

tractive. Indeed, even when the derivative market of the underlying asset is not well developed, this

approach enables one to derive forward-looking risk forecasts, squeezing all the informative content

of option data. Moreover, the hybrid approach delivers point risk forecasts at any frequency9 and

at any investment horizon. Indeed, while the option-implied MF and B&S approaches enable one to

derive VaR and CVaR risk estimates only at the investment horizons equal to the time to maturity

9As long as at any observation date few options are traded.
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of the underlying option contracts10; the hybrid methodology can deliver point risk forecasts at any

investment horizon by simulating the underlying asset dynamics up to the desired date. However,

the specification of a mathematical model prevents the hybrid approach to reach the same flexibil-

ity of the option-implied MF and B&S methodologies. The choice of an appropriate mathematical

structure to describe the natural gas futures price dynamics is the most delicate and challenging

task. To gain a better understanding of the characteristics of futures data over the sample period

under consideration, the relevant empirical moments are computed and the existence of correlation

among residuals is tested. Table 1 reports the first four annualized empirical moments of the daily

log-returns on one-month natural gas futures contracts over the years 2012-2016. The high storage

Mean Standard deviation Skewness Kurtosis
2012 0.0765 0.5040 0.3063 3.7025
2013 0.2677 0.3103 -0.0861 3.4043
2014 -0.4010 0.4854 0.0348 5.1702
2015 -0.2497 0.4610 0.1918 4.5270
2016 0.4654 0.4796 0.3016 3.6845

Table 1: First four annualized empirical moments of daily log-returns on natural gas Henry
Hub futures with fixed maturity one month over the years 2012-2016.

costs and the strict relationship with the electricity market (the most volatile energy commodity)

are the major drivers of the large volatility of the natural gas market. The skewness is positive and

the kurtosis is well above 3, thus indicating that the distribution is asymmetric and leptokurtic 11.

As confirmed by the autocorrelation and partial autocorrelation functions12 and by the results of

the Ljung-Box (Ljung and Box (1978)[77]) (LB) test, residuals are autocorrelated. The Lagrange

Multiplier (Engle (1984)[47]) test and the LB test applied to squared residuals are implemented to

test for conditional heteroskedasticity of the residuals. Results confirm that the null hypothesis of

no conditional heteroskedasticity is always rejected.

In light of these results, a GARCH(1,1)13 with filtered historical simulated (FHS)[10] innovations is

selected to model the futures price dynamics and is fitted to the cross section of OTM call and put

options. At each date t, the derivation of the risk neutral density requires a three-steps procedure:

(1) the set of physical GARCH parameters, θPt , is derived by fitting a GARCH(1,1) model to the

10In this specific case, the option-implied estimates have a monthly frequency because they are based on
futures and option contracts with fixed maturity one month.
11It has “fatter” tails than a Gaussian distribution
12Figures are available upon request.
13See Bollerslev (1986)[23].
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historical log-returns of the futures price, (2) using θPt as starting values, the risk-neutral GARCH

parameters, θQt , are found by minimizing the mean squared error of the difference between the

GARCH option prices and the actual prices of the traded options, (3) based on θQt , the futures

price can be simulated and the risk neutral P&L distribution can be obtained via nonparamet-

ric kernel estimation. At each observation date t, under the physical measure the futures prices

dynamics are

log
Ft
Ft−1

= µ+ εt εt = σtzt

σ2
t = ω + βσ2

t−1 + αε2t−1 (7)

where Ft is the futures price at time t, µ is the drift term and zt is the standardized historical

innovation at time t. The simple GARCH(1,1) model captures the conditional heteroskedasticity

of the residuals and ensures a faster convergence to a local maximum compared to its more tailored

specifications14. The FHS distribution enables one to model the relevant high-order moments

features of the data and to use the obtained residuals as a set of empirical innovations for the

underlying asset. Each innovation is sampled from its empirical density function, which is obtained

by dividing the estimated return innovation, ε̂t, by the estimated conditional volatility, σ̂t. The

empirical density function generated by this set of estimated scaled innovations embeds excess

skewness, kurtosis, and other extreme behaviours which would have been neglected under a normal

density estimation. By running a Pseudo Maximum Likelihood estimation, the physical GARCH

parameters are obtained and used as starting values to derive the risk neutral parameters. At each

observation date and for each set of risk neutral parameters, N=50.000 return paths are simulated

up to time t+ τ

Ft+τ
Ft

= exp

(
µ∗τ +

τ∑
i=1

σt+iz[i]

)
= exp

(
τ∑
i=1

σt+iz[i]

)
(8)

where τ is the desired investment horizon, z[i] is the estimated past innovation and µ∗ is the drift.

Following the intuition underneath the “risk neutrality argument” (Cox and Ross (1976)[34] and

Harrison and Kreps (1979)[62]), the drift µ∗ is equal to zero as a consequence of the martingale

property of the futures price. More precisely, the absence of an initial cash outlay to enter the fu-

tures contract from either the long or short sides implies that traders are not entitled to receive any

compensation for their investment. By the same token, the price of any given fixed term futures is

14FOr example, fractionally integrated, nonparametric and multiplicative component GARCH models
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not affected by seasonalities and does not require the modelling of mean-reverting behaviours. Sim-

ilarly, the convenience yield accrues to the holders of the physical commodity, not to the investors

holding a derivative contract written on it. As a consequence, the drift term µ∗, which accounts for

the convenience yield, seasonalities and mean-reversion, does not influence the dynamics of the fu-

tures prices as the premium for holding the risky futures position is already embedded into the risk

neutral measure15. The implementation of the Empirical Martingale Simulation method of Duan

and Simonato (1998)[40] ensures that the martingale condition is fulfilled. Then, the corresponding

put prices are equal to the present value of the average simulated payoff,
∑N

n=1 max(K − Fn,t+τ ),

where K is the strike price and n identifies the n-th simulation16. The risk neutral GARCH pa-

rameters minimize the mean squared pricing error, 1
N

[∑Dt
i=1 ψt(Ki, τ)

]
, where Dt is the number

of options on date t and ψt(Ki, τ) is the difference between the simulated GARCH option prices

and the observed market prices of the OTM options across strikes Ki. For each set of risk neutral

GARCH parameters θQt , 50.000 futures prices at a daily frequency from t to τ are simulated as

in eq. (8). By subtracting to each simulated price at time (t + τ) the value of the natural gas

futures at time t, the conditional profit and loss distribution is obtained via nonparametric kernel

density estimation. Finally, the VaR and the CVaR are derived as in equations (1) and (2), respec-

tively. Differently from the classical point risk forecasts, the hybrid VaR and CVaR are derived

under the risk neutral measure. Since the discounted expectations under the physical and the risk

neutral measures converge to the same state price density when the time to maturity is short, the

option data provide reliable approximations of the VaR and CVaR under the real world measure

(Barone-Adesi (2016)[7]). Supportive evidence is provided in the work of Martin (2017)[80]. Under

the physical measure the probability of observing a crash, αp ∝
[
∂p
∂K −

p(K)
αFt

]
, is always lower than

the corresponding probability under the risk neutral measure, αq ∝ ∂p
∂K . As a result, at a given

risk level the identified option under the physical measure has a higher strike compared to the one

identified under the risk neutral one, thus making the VaR and CVaR estimates under the physical

measure less conservative.

15This no-arbitrage assumption is the necessary and sufficient condition ensuring that futures prices are
unbiased predictors of future spot prices (see chp. 5.3 in Geman (2009)[50]).
16A similar procedure is applied to derive call option prices.
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3 The Dataset

The methodology presented in section 2 is tested on the natural gas futures contracts and the

European put options written on them. Even thought the transformation of natural gas in its

liquid form has substantially reduced the transportation costs and made it possible to reach many

areas/countries without the construction of expensive infrastructures, natural gas still has a very

fragmented market17. Since there does not exist a global reference price for this commodity, this

research considers futures and option contracts traded on the New York Mercantile Exchange

(NYMEX) and written on the Henry Hub natural gas index (for brevity, the Henry Hub specification

in reference to futures and option contracts is henceforth omitted). The choice of the US market

is motivated by the fact that North America was the first natural gas market being liberalized and

its price is determined by the competitive interaction between supply and demand18. The size of

a standard futures contract is 10.000 Million British Thermal Units (MMBTUs) and delivery/sale

occurs at Henry Hub in Louisiana. An option contract is written on one natural gas futures contract

and on any trading day it has a maximal set of 20 strike prices in increments of 0.05$ above and

below the at-the-money (ATM) strike19. Daily one-month fixed-maturity futures prices are from

Bloomberg and monthly option data are from Datastream. The sample period ranges from January

2012 to December 2016 with 1274 total observations for the daily natural gas futures price and 60

observation dates for the monthly option contracts. The choice of this sample period is motivated

by the increasingly important role gained by natural gas over the last years and by the lack of

available option data prior to January 2011. To avoid issues linked to the use of overlapping data,

the monthly VaR and CVaR have investment horizons equal to one month20, with a total number

of 60 monthly observations for the hybrid, B&S and classical methodologies over the sample period

from January 2012 to December 2016. Similarly, the frequency of the 10-days hybrid and classical

FHS VaR is 10 days and the total number of estimates is 123 over the sample period from January

2012 to December 2016. Due to the lack of a sufficiently liquid market for OTM options, the

option-implied model-free approach cannot be implemented over the sample period under study.

17See Geman and Liu (2016)[51] for a detailed analysis of the integration on the natural gas market.
18Also in the United Kingdom natural gas has been liberalized for many years, however, compared to the
US case, its price is much more dependent on the crude oil price. So far in Europe, Russia satisfies about
30% of the natural gas needs. Moreover, six EU countries (Bulgaria, Estonia, Finland, Lithuania, Latvia
and Slovakia) import gas exclusively from Russia, thus being substantially exposed to supplier bargaining
and disruptions.
19The ATM strike is the closest strike to the previous day close of the underlying futures contract.
20Being fixed at τ=1 month, in sections 5 and 5 the subscript τ is omitted.
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4 The hybrid VaR and CVaR estimates

Based on the methodology outlined in section 2.3, this section presents the monthly and 10-days

hybrid VaR and CVaR estimates at multiple risk levels, namely α = 1%, 5%, 10% and 15%, and

over the sample period from January 2012 to December 2016. The hybrid methodology imposes

a structure for the underlying asset dynamics and is not bounded to the availability of a liquid

option market, hence there are no missing observations over the whole sample period. The VaR

and the CVaR are decreasing functions of the risk level and the CVaR is always larger than the

VaR. As a consequence of the high volatility of the natural gas futures price, the VaR and CVaR

vary over a wide support across all risk levels. Indeed, as depicted in figure 3, in the first months

Figure 3: Price of the natural gas Henry Hub futures contracts traded on the NYMEX with
fixed maturity one-month from January 2000 to December 2016.

of 2012 the natural gas futures price dropped below $2, then it more than doubled its value in two

years, with a peak hitting the price of almost $6. In correspondence to this point of maximum in

February 2014, the VaR and CVaR estimates registered a clear upward jump at all risk levels. In

order to deliver point risk forecasts at a higher frequency, the 10-days hybrid VaR is derived over

the sample period from January 2012 to December 2016. The 10-days estimates exhibit a series of

small fluctuations which reflect the volatile behaviour of the natural gas market.
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5 Alternative VaR and CVaR estimates

This section presents the monthly option-implied risk estimates using the B&S approach and the

monthly and 10-days classical FHS VaR estimates at multiple risk levels, namely α = 1%, 5%, 10%

and 15%. The monthly B&S estimates are based on the left tail of the distribution, i.e. using

European put option contracts with fixed maturity one month.

By assuming an option pricing model generating the observed prices, the B&S approach suffers

in a limited way from the lower liquidity of the option market over some time intervals and can,

in general, be implemented over the whole sample period. As shown in table 2, across all risk

α = 1% α = 5% α = 10% α = 15%
# Missing observations (%) 3.33 6.66 8.33 11.66

Table 2: Proportion of missing observations in the left tail at α = 1%, 5%, 10% and 15%
under the B&S methodology when τ = 1 month and over the sample period from January
2012 to December 2016 (total obs.=60).

specifications the proportion of missing observations is increasing in the risk level. The positive

relation between α and the number of missing observations suggests that the market of deeply OTM

options is more active than that of OTM options with strikes closer to the at-the-money threshold.

The VaR and the CVaR are decreasing functions of the risk level and the CVaR is always larger

than the VaR. The gap between the two risk forecasts, ∆α, equals the compounded value of the put

price discounted for the probability of that scenario, i.e. alpha. From an economic viewpoint, ∆

represents the additional capital at risk perceived by the market if a specific negative event occurs.

Table 3 reports summary statistics on ∆ under the B&S methodology at α = 1%, 5%, 10% and

15%. At each risk level, the average distance between the CVaR and the VaR is not biased by the

B&S ∆α - τ=1 month (2012-2016)
Min. Max. Mean Median

α = 1% 0.0557 0.3195 0.0999 0.0912
α = 5% 0.0506 0.4218 0.1069 0.0929
α = 10% 0.0457 0.7754 0.1459 0.1099
α = 15% 0.0773 0.7754 0.1772 0.1348

Table 3: Left tail - Summary statistics on the monthly ∆α= CVaRα - VaRα at α =
1%, 5%, 10% and 15% . The monthly VaR and CVaR estimates are obtained under the
assumption that the observed option prices are generated by a Black and Scholes model.

presence of outliers since the median almost coincides with the mean and, on average, ∆ increases
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with the risk level. Keeping alpha fixed, the gap between the CVaR and the VaR is driven by the

put option price identified by the risk level, pα. When alpha is small, the identified price is low as

it corresponds to a deep OTM option. Nevertheless, in periods of uncertainty or turmoil, investors

may become more risk averse, thus willing to pay more to buy hedging positions21.

Since the big majority of risk management models use historical data to produce risk estimates

under the physical measure, the classical VaR estimates are obtained by calibrating a GARCH(1,1)

with FHS innovations (see eq.(7)) on the historical log-returns of the natural gas futures price.

In this way, the underlying asset dynamics can be simulated and the VaRα,τ is derived as the

α-quantile of the simulated P&L distribution up to the investment horizon τ . The resulting VaR

estimates are denoted as “classical FHS” in the rest of the analysis. Compared to other classical

approaches, the FHS methodology models the volatility of the underlying asset in a more accurate

way, without relying on the square-root rule to extend the VaR forecasting horizon. Similarly to

the hybrid approach, the FHS methodology can deliver point risk metrics at any frequency and over

any investment horizon. Besides to the monthly estimates, to increase the number of observation

dates and hence the power of the backtests, the classical FHS VaR at 10-days investment horizon

is derived, backtested and ranked with respect to the corresponding hybrid estimates.

6 Backtesting

The backtesting is a form of model validation procedure, aiming at verifying that the forecasted

losses are in line with the actual losses. Based on the backtesting results, the performance of any

risk metric can be evaluated.

6.1 VaR backtesting

This section presents the five validation tests chosen for the VaR backtesting. First, validation

tests of the VaR are usually based on exceedences count (see Jorion (1997)[67]). An exceedence

occurs whenever the actual losses are above the forecasted ones or, equivalently, when the put

option identified by α expires in the money. The total number of exceedences at a specified α level

21A long put option may be interpreted as buying insurance.
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is defined as

x =
N∑
t=1

I{V aRα,t,τ<Lt,τ} (9)

where Lt,τ is the realized loss in the time interval [t, t + τ ]. Since the power of exceedences-based

tests is low, decreasing the VaR confidence level helps in reducing the probability of type II error22.

To improve the power of the VaR backtesting, the exceedences-count test is performed both at high

(99% and 95%), medium (90%) and low (85%) confidence levels.23.

Second, following McNeil et al. (2015)[81], the VaR is backtested by looking at the process of

realized exceedences, (It)t∈N. At each risk level α, the process I{V aRα,t,τ<Lt,τ} is such that its

conditional expectation up to the information at time (t-1), E(It|Ft−1), is equal to the corresponding

risk level α. This condition can be restated in terms of the calibration function

E(I{V aRα,t,τ<Lt} − α|Ft−1) = 0 (10)

Once the realized amount of exceedences is computed, Ît, the martingale difference property of

equation (10) implies that the number of exceedences follows a Binomial distribution - Bin(N,α)

- where N is the total number of observations. Following Christoffersen (1998b)[30], the coverage

test (CT) on the binomial behaviour can be formulated as a standard likelihood ratio test

LRCT = −2 log

[
(1− α)N−xαx

(1− x
N )N−x

x

Nx

]
∼ χ(s− 1) = χ(1) (11)

where x is the total number of exceedences as defined in eq. (9) and s is the number of possible

outcomes (i.e. 2). Being a two-sided test, rejection of the null implies that the VaR either under-

estimates or overestimates risk. However, as this test considers the total amount of exceedences

only, it has no power in detecting the existence of periods during which the exceedences cluster

in a time-dependent fashion. Third, following Christoffersen (1998b)[30], a likelihood ratio test is

implemented to test for the time independence of the exceedences. The resulting test statistic is

LRIT = −2 log

[
(1− π)(n00+n10)π(n01+n11)

(1− π0)n00πn01
0 (1− π1)n10πn11

1

]
∼ χ((s− 1)2) = χ(1) (12)

22The type II error refers to the probability of accepting an incorrect model
23These confidence levels correspond to α = 1%, 5%, 10% and 15%, respectively.

14



where n00 (n01) is the number of periods with no exceedences followed by a period with no (one)

exceedence, n10 (n11) is the number of periods with an exceedence followed by a period with no (one)

exceedence, π0 (π1) is the conditional probability of observing an exceedence at date t given that

no (one) exceedence occurred at date (t-1) and π is the probability of observing an exceedence at

date t. Being independent on the true coverage, the independence test (IT) provides useful insights

into the interval forecasts dynamics without considering the true error distribution. Fourth, to

gain a complete view, the coverage and the independence tests can be implemented jointly. In the

resulting conditional coverage test (CCT), the null of unconditional coverage is tested against the

alternative of the independence test. The test statistic is directly connected to the CT (eq. (11))

and the IT (eq. (12)), as

LRCCT = LRCT + LRIT ∼ χ(s) = χ(2) (13)

Fifth, to go beyond the backtesting of the specific α-quantile which a VaR measure purports to

calculate, a distribution test is performed in order to assess the accuracy of the predicted loss

distribution as a whole. Since losses are likely to be dependent over time, loss data are transformed

into quantile data by means of the random variable ut = ΦLt(Lt), which identifies the quantile

at which each realized loss occurs24. Conditional on the independence of u1, u2, ..., uT , under the

null hypothesis the quantile loss data are uniformly distributed in the interval (0,1). Following

Berkowitz (2001)[18], an inverse normal transformation is applied to ut, i.e. nt = Φ−1(ut), in order

to obtain a sample following a Normal distribution under the null hypothesis. Normality is tested

by performing the Anderson-Darling (1954)[4] test at 95% confidence level. Rejection of the null

suggests that the VaR loss distribution is not correctly specified.

6.2 CVaR backtesting

To date, there does not exist an agreed way to backtest the CVaR. The majority of the validation

methods focus on the size of the losses beyond the VaR, conditional on the occurrence of a VaR

exceedence. In this research three conditional tests on the CVaR and a joint VaR-CVaR backtest

are implemented. First, following Acerbi and Szekely (2014)[1], the CVaR is directly tested using

24In the transormation Φ is the cumulative distribution function of the losses according to the chosen risk
model.
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the Z-statistic25, Z(
−→
X ), defined as

Z(
−→
X ) =

N∑
t=1

XtIt
NαCV aRα,t,τ

+ 1 (14)

where Xt is the realized loss at time t. This test is sensitive to both the frequency and the

magnitude of the exceedences and is easy and fast to implement, as it does not involve the use

of Monte Carlo simulations. Under the null hypothesis of a well calibrated model, the expected

value of Z is zero. Conversely, if the alternative is true the expected value of Z is negative and

the model underestimates risk. Testing the unilateral alternative only, this test does not discard

models overestimating risk, which involve costs due to the inefficient allocation of the resources. The

statistics Z has a high stability of the significant thresholds across a wide choice of tail distributions

(see Acerbi and Szekely (2015)[2]), hence the cut-off value −zα at 99.9% confidence level can be

considered fixed at -1.826. Second, the CVaR is backtested by computing the average excess loss

beyond the VaR conditional on a VaR exceedance, 1
N

∑N
t=1[CVaRα,t,τ −VaRα,t,τ ]It, The choice to

perform a conditional CVaR test has the objective of removing the effect of the variation and the

estimation error in the VaR through time when computing the expected exceedence. The average

conditional expected and realized excess losses are compared by conducting a nonparametric Mann-

Whitney U test27 on the difference between the two means. Being a two-sided test, the Mann-

Whitney U test enables one to disentangle both a risk under/overestimation of the CVaR. If the

null hypothesis of a zero difference between the two means cannot be rejected, there is no evidence

to reject the null of the CVaR as a correct predictor of future losses. Third, following McNeil et al.

(2015)[81], the CVaR can be tested by defining the calibration function

Kt = h(1)(V aRα,t,τ , CV aRα,t,τ , Lt,τ ) =

(
Lt,t+τ − CV aRα,t,τ

CV aRα,t,τ

)
· It (15)

25See eq.(5) pp.3 of Acerbi and Szekely (2014)[1]
26Since the null states the expected value of Z should be zero, the value corresponding to the location zero
(2nd column) is considered.
27See Mann and Whitney (1947)[78].
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Since (Kt)t∈N is a martingale difference, it is possible to test the null of a CVaR correctly predicting

risk against the alternative of a risk underestimation


H0 : E(K̂t|Ft−1) = 0

H1 : E(K̂t|Ft−1) > 0

(16)

where K̂ is the calibration function obtained from the estimated VaR and CVaR. Following Efron

and Tibisharani (1994)[43], a bootstrap hypothesis test is performed to test the mean-zero hy-

pothesis for K̂t. Fourth, since the VaR and CVaR are jointly elicitable (Lambert et al.(2008)[74]),

McNeil et al. (2015)[81] define the following calibration function

St = h
(α)
2 (V aRα,t,τ , CV aRα,t,τ , Lt,t+τ ) =

It
CV aRα,t,τ

− α (17)

to test whether the VaR and the CVaR jointly predict risk in a correct way. The realizations of

the process, (Ŝt)t∈N, are expected to behave as a series of martingale difference sequences. By

formulating a test as in eq. (16), the alternative of a joint VaR-CVaR risk underestimation can be

tested.

6.3 Backtesting Results

This section presents the backtesting results for all the VaR and CVaR estimates derived in sections

5 and 5. Following the procedure presented in sections 6.1 and 6.2, tables 4 and 5 report summary

statistics on the backtesting results of the hybrid risk forecasts at a monthly and 10-days horizon,

respectively. On a monthly horizon, at each risk level the proportion of exceedences is close to its

Hybrid monthly VaR and CVaR backtesting results - τ = 1 month (2012-2016)
# It (%) ρCT ρIT ρCCT Acerbi Z-stat. ρMW ρK ρS

α = 1% 1.67 0.6161 0.8501 0.8663 0.5336 1.0000 0.7420 1.0000
α = 5% 5.00 1.0000 1.0000 1.0000 1.1639 0.1000 0.9191 1.0000
α = 10% 11.67 0.6160 0.1525 0.3169 0.7266 0.2345 0.9901 1.0000
α = 15% 16.67 0.6498 0.2657 0.4856 0.5396 0.5543 0.9977 1.0000

Table 4: Monthly hybrid CVaR and VaR backtesting summary statistics at α = 1%, 5%, 10%
and 15% when τ = 1 month and over the sample period from January 2012 to December
2016.

theoretical value. This conclusion is confirmed by the p-values of the coverage, independence and
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conditional coverage test , which, being always larger than 5%, allow to reject the null hypothesis at

95% confidence level. When backtesting the entire loss distribution, the p-value of the Anderson-

Darling test equals 0.0078, thus meaning that the null of a correctly specified loss distribution

under the hybrid approach is rejected at 99% confidence level. As concerns the CVaR, at each

risk level the value of the Z-statistic is positive, thus indicating that the hybrid CVaR correctly

forecasts losses at 99.9% confidence level. The p-values of the Mann-Whitney U test indicate that

the predicted and realized excess losses are not significantly different from zero in all cases at 95%

confidence level, thus meaning that the hybrid CVaR does not involve neither costs linked to risk

underestimation nor to risk overestimation. Testing the underestimation alternative only, the p-

values of the bootstrap hypothesis tests on K̂t and Ŝt are always close to 1, thus indicating the

null hypothesis can never be rejected at 95% confidence level. As a consequence, the CVaR and

the VaR and CVaR joint forecasts do not show evidence of being affected by negative biases. The

forecasting power of the hybrid VaR is satisfactory also when the time horizon of the estimates is

shortened. At 10 days investment horizon the proportion of exceedences is close to its theoretical

Hybrid VaR - τ=10 days (2012-2016)
# It (%) ρCT ρIT ρCCT

α = 1% 0.80 0.8972 0.7745 0.8233
α = 5% 5.69 0.9972 0.8513 0.8875
α = 10% 7.31 0.7642 0.7865 0.7774
α = 15% 8.13 0.0201 0.6546 0.4533

Table 5: 10-days VaR backtesting summary statistics under the hybrid methodology at
α = 1%, 5%, 10% and 15% when τ = 10 days and over the sample period from January 2012
to December 2016.

value, except when α = 15%. Nevertheless, being always larger than 5%, the p-values of the

coverage, independence and conditional coverage tests suggest that the hybrid VaR delivers accurate

forecasts of the potential losses across all risk levels.

The same backtesting analysis is implemented on the monthly B&S VaR and CVaR over the

sample period from January 2012 to December 2016. The results are reported in table 6. As

confirmed by the results of the coverage test, the proportion of VaR exceedences is never significantly

different from the corresponding theoretical values. However, the p-values of the independence test

are close to zero, thus meaning that the VaR exceedences cluster over time in a time-dependent

fashion. As a consequence, the null hypothesis of joint independence and correct coverage of the

exceedences is always rejected at 95% confidence level, but at α = 15%. When backtesting the
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B&S monthly VaR and CVaR backtesting results - τ = 1 month (2012-2016)
# It (%) ρCT ρIT ρCCT Acerbi Z-stat. ρMW ρK ρS

α = 1% 3.33 0.1523 0.0042 0.0060 -0.7690 0.6667 0.8705 0.1322
α = 5% 6.67 0.5721 0.0122 0.0368 -1.2542 0.6857 0.5205 0.2961
α = 10% 8.33 0.6586 0.0145 0.0457 -0.2714 0.1508 0.0972 0.4595
α = 15% 13.33 0.7134 0.0457 0.1270 -0.2580 0.1304 0.0817 0.3618

Table 6: Left tail - Monthly B&S CVaR and VaR backtesting summary statistics at α =
1%, 5%, 10% and 15% when τ = 1 month and over the sample period from January 2012 to
December 2016.

entire loss distribution, the p-value of the Anderson-Darling test equals 0.0064; hence the null of a

correct VaR loss distribution is rejected at 95% confidence levels. This result can be a consequence

of the restrictive assumptions underneath the B&S approach (constant volatility and interest rates),

which reduce the flexibility of the model and worsen the accuracy of the forecasts. At each risk

level, the value of the Z-statistic is above -1.8, hence the CVaR forecasts cannot be rejected at

99.9% confidence level. This result is robust to the nonparametric two-sided Mann-Whitney U

test: the p-values are always larger than 5%, hence the null of a correctly calibrated CVaR can

never be rejected. Both tests proposed by McNeil et al. (2015)[81] suggest that the K̂t and Ŝt

behave as martingale differences; hence the CVaR alone and the VaR and CVaR jointly do not

show evidence of risk underestimation.

Table 7 reports the backtesting results on the monthly and 10-days FHS classical VaR. On

FHS method - τ = 1 month (2012-2016) FHS method - τ = 10 days (2012-2016)
# It (%) ρCT ρIT ρCCT # It (%) ρCT ρIT ρCCT

α = 1% 1.67 0.6357 0.8527 0.8786 6.50 0.0020 0.0001 0.0001
α = 5% 5.00 1.0000 0.5707 0.8515 13.82 0.0000 0.0102 0.0003
α = 10% 15.00 0.2256 0.6975 0.4450 17.88 0.0014 0.0625 0.0010
α = 15% 21.67 0.1700 0.4993 0.3104 21.13 0.0031 0.0678 0.0022

Table 7: Monthly classical VaR backtesting summary statistics under the classical
GARCH(1,1)-FHS methodology at α = 1%, 5%, 10% and 15% when τ = 1 month (1st-
4th columns) and 10 days (5th-8th columns) and over the sample period from January 2012
to December 2016.

a monthly horizon the discrepancy between the realized proportion of the exceedences and the

theoretical value is small at α = 1% and 5%, but substantially widens as the risk level increases.

Nevertheless, at 95% confidence level the coverage, independence and conditional coverage tests

do not detect any bias in the classical VaR estimation, as the p-values are always larger than

5% across all risk levels. Conversely, as the investment horizon shortens, the classical FHS VaR
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estimates suffer from severe biases. At ten days horizon the proportion of exceedences is always well

above the theoretical risk level , thus suggesting that the FHS VaR tends to underestimate risk.

The p-values of the coverage and the independence tests indicate that the null of correct coverage

and of time independence of the exceedences is always rejected. The unsatisfactory performance of

the FHS VaR in terms of coverage and independence is reflected in the conditional coverage test,

whose null is always rejected at 95% confidence level.

7 Model Comparison

The ranking of several methodologies involves a problem of model selection. Following Bayer

(2017)[16], the performance of each methodology is ranked based on the quantile regression (QR)

approach, which assigns the best ranking to the model minimizing the tick loss function28. The

VaR tick loss function is defined as

ρα(u) = (α− I{u≤0})u where ut+τ = rt+τ − β0,t(α)− V aRt+τ |t(α)βt(α)

where rt+τ are the realized losses over the horizon τ , β0,t(α) is an intercept term introduced to

perform a bias correction29 and V aRt+τ |t are the set of VaR estimates of the models to be

compared. The consistency of the loss function ensures that the optimal forecast combination

weights minimize the expected loss of the forecast error,

(β̂0,t(α), β̂t(α)) = argmin
β0,t(α),βt(α)

E[ρα(rt+τ − β0,t(α)− V aRt+τ |t(α)βt(α))|Ft]

The relative ranking among the methodologies is based on the optimal weights βt(α). The largest

is the absolute value of the optimal weight, the highest is the ranking of a model. The QR approach

is implemented on both the monthly and the 10-days risk forecasts. Results show that the B&S

and the hybrid methodologies perform similarly and both outperform the classical FHS VaR in

more than 95% of the cases. This conclusion holds also when conducting a pairwise QR ranking

between classical FHS VaR and any option-implied (hybrid and B&S) VaR. To quantify the costs

28Notice that, since the CVaR is not elicitable, a consistent loss function can not be defined for this risk
metric.
29This term is important when all methodologies taken singularly systematically underestimate or overesti-
mate risk.
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associated to each methodology, the unpredicted losses, L∗j,α,τ , are computed as

L∗j,t,α,τ = [LR,t,τ −VaRj,α,τ ] · It

where j identifies the model and LR,t,τ is the realized loss over the investment horizon τ . Tables

8 and 9 report the minimum, maximum, mean and median of the unpredicted $ losses associated

to one futures contract at one month and 10 days horizons across all the proposed methodologies,

respectively. On a monthly basis, the ranking between the B&S and the hybrid VaR often reverts,

thus meaning that the two estimates perform similarly.

Option-implied B&S L∗ Hybrid L∗ Classical FHS L∗

Min Max Mean Median Min Max Mean Median Min Max Mean Median
α = 1% 0.06 0.18 0.07 0.07 0.11 0.18 0.14 0.13 1.62 1.62 1.62 1.62
α = 5% 0.06 0.08 0.07 0.07 0.07 0.47 0.18 0.26 1.22 1.36 1.30 1.32
α = 10% 0.04 0.31 0.16 0.16 0.01 0.76 0.24 0.06 0.55 1.46 1.02 0.97
α = 15% 0.03 0.46 0.20 0.19 0.04 0.78 0.23 0.13 0.49 1.35 0.85 0.85

Table 8: Summary statistics on the monthly unpredicted losses, L∗, defined as L∗ = LR,τ −
V aRj,τ , where LR,τ is the realized loss over the time horizon τ (i.e. one month) and V aRj,τ

is the forecasted one-month VaR of model j (i.e. B&S, hybrid and classical FHS) over the
sample period from January 2012 to December 2016.

Hence, in general, the hybrid approach achieves the best trade-off between availability and

accuracy. The hybrid methodology always outperforms the classical FHS VaR. Under the classical

FHS methodology the average unpredicted $ losses are from almost 50% up to 300% higher than

those under the hybrid approach. At 10 days horizon the gap between the hybrid and the classical

FHS VaR narrows; nevertheless, the average unpredicted losses under the latter approach still are

from 5% up to 25% higher compared to the hybrid methodology.

Hybrid L∗ Classical FHS L∗

Min Max Mean Median Min Max Mean Median
α = 1% 0.16 0.16 0.16 0.16 0.03 0.32 0.18 0.19
α = 5% 0.02 0.42 0.20 0.18 0.01 0.47 0.21 0.22
α = 10% 0.01 0.48 0.19 0.19 0.02 0.59 0.25 0.20
α = 15% 0.01 0.51 0.20 0.17 0.02 0.66 0.27 0.20

Table 9: Summary statistics on the 10-days unpredicted losses, L∗, defined as L∗ = LR,τ −
V aRj,τ , where LR,τ is the realized loss over the time horizon τ = 10 days and V aRj,τ is the
forecasted 10-days VaR of model j (i.e. hybrid and classical) over the sample period from
January 2012 to December 2016.
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Due to the high unforeseen costs associated to the classical FHS VaR, this approach is inferior

to the hybrid methodology and, more generally, fails to provide an adequate capital protection.

8 Conclusions

The high volatility and the pronounced non-normal features are just few aspects which pose several

modelling challenges when performing a risk forecasting exercise in energy markets. The article

presents a new methodology to derive point risk metrics for the natural gas market. Exploiting the

informative content of derivatives (i.e. futures and options), the hybrid VaR and CVaR estimates

are not bounded to the availability of a liquid option market and are reliable predictors of the

future losses, even during prolonged periods of turmoil. Indeed, the proposed risk metrics can

be implemented on a regular basis, at several time horizons/frequencies and to any underlying

asset with a small number of traded options. Compared to the classical FHS VaR, the hybrid risk

forecasts always obtain a superior ranking and involve unforeseen costs about three times lower in

average terms.
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Part II

A Bayesian Estimate of the Pricing Kernel

1 Introduction

The Pricing Kernel is an asset-independent random quantity which summarizes preferences of an

investor about risk and allows to price any security traded in the market. Under regularity condi-

tions30, a unique PK exists and equals the discounted value of the ratio between the risk neutral

and the physical densities. According to the economic theory, the PK should be a monotonic de-

creasing function of the asset returns. However, empirical evidence shows that the PK is often

locally increasing around the 0% return interval (see Jackwerth (2000)[65]). Documented for the

first time by Bates (1996)[15], this phenomenon, known as “Pricing Kernel puzzle”, implies that

the return of a contingent claim written on the market portfolio stochastically dominates the return

of the market portfolio itself31.

To date, the majority of academics agrees that market incompleteness, deviations from risk aversion

in investors behaviour, misestimation of the investors and/or model misspecification errors are the

three major drivers of the PK puzzle. The presence of at least one of these conditions is sufficient to

break down the monotonicity requirement. First, market incompleteness stems from the presence

of background risks, market frictions and/or differences in traded option volumes due to asymmet-

ric information32. When markets are incomplete, agents may choose different portfolio allocations,

which correspond to distinct pricing kernels. In this context the representative agent does not

exist anymore and the PK is no longer unique, thus being potentially increasing in the complete

subspace. Second, even though investors are risk averse in general, on some return intervals they

show the tendency to gamble (see Kahneman and Tversky (1979)[69]). As a consequence, the

utility function becomes convex, thus allowing in principle for an increasing PK33. Third, investors

30Absence of arbitrage and market completeness.
31There exists a portfolio of Arrow securities delivering the same return of the market portfolio at a lower
price. This empirical fact contradicts the basic principle in economics and finance according to which payoffs
in good states should be higher than payoffs in bad states of the world.
32While there exists a large number of liquid at-the-money options, there are much fewer options for extreme
strikes. Moreover, the liquidity of out-the-money (OTM) options is asymmetric (see Dennis (2000)[38]), thus
increasing the steepness of the option volatility smile.
33Nevertheless, many studies argue that local convexity does not influence the utility maximization problem
(see Levy and Levy (2002)[76]). As an alternative, state-dependent utility functions can be used (see for
instance Kreps and Porteus (1978)[72] and Gul and Pesendorfer (2006)[60]).
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hold incorrect beliefs when the subjective probability weights are different from those estimated

under the objective probability measure. The mismatching is usually originated by misestimation

and/or distortion (i.e. heterogeneous beliefs, framing or other behavioural biases). Misestimation

arises when either the agent and/or the statistician wrongly assign probabilities to the events (see

Chabi-Yo et al. (2007)[28]). Nevertheless, biased or distorted beliefs of the agents in isolation are

in general insufficient to justify an increasing PK (see Hens and Reichlin (2013)[64]). Conversely,

model misspecification can be a major driver of the PK puzzle. Recently Leisen (2014)[75] has

shown how the PK puzzle can be originated by small sample biases in the physical and risk neutral

density estimation. Even thought the consequences of estimation errors of the agent and the econo-

metrician are similar, the latter ones can not be easily detected. Kan and Zhou (1999)[70] show

indeed that one of the major weaknesses of the stochastic discount factor methodology consists in

its low power in identifying misspecified models.

In the context of model misspecification, this article focuses on the discrepancy between the infor-

mation set used in practice to derive the physical density, Ht, and the information set theoretically

required, Ψt. By definition, both the physical and the risk neutral densities should be conditional

to all the available information at a specified time t, Ψt. In practice, a complete information set is

difficult, if not impossible, to achieve. The attempt to reduce the information bias and use infor-

mation sets as complete as possible in the estimation process of both densities is the starting point

of this research. In general, while the risk neutral density is well extracted from option data, the

estimation of the conditional physical density is often rather imprecise34. To date, the majority of

models rely on past returns/prices, which do not include a significant portion of the (required) in-

formation based on which the physical density should be extracted . Compared to historical data,

derivative securities are more informative about the underlying asset dynamics (Bollerslev and

Todorov (2011)[23]), as they naturally embed investors’ expectations about future market scenar-

ios. As a consequence, the combined use of derivative and historical data as inputs in the physical

density estimation enables one to obtain an information set closer to the one theoretically required.

To date, few authors have tried to solve the information bias arising in the PK estimation. Among

them, Ross (2015)[91] with the Recovery Theorem has proposed a methodology to directly extract

the physical density from the risk neutral one. However, this approach requires the transition-

independence of the PK35, a condition rarely fulfilled in real world modelling. Recently, Sala et

34Indeed, the use of historical data only makes this density almost unconditional.
35Transition independence implies that the PK depends on the marginal rate of substitution between future
and current consumption only.
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al.(2017)[92] have estimated the physical density by using a Bayesian Dirichlet process to combine

the information coming from the option market and the historical data. Besides the inability of

the Dirichlet process to capture important characteristics of financial data, the authors impose

several assumptions on the shape of the posterior distribution which undermine the flexibility and

the accuracy of the methodology.

Using a similar approach as starting point, the proposed methodology derives the physical density

using jointly option and historical data as inputs. The weights associated to each information source

are modelled with a Bayesian nonparametric Poisson Dirichlet process. The article is interesting

both at a theoretical and practical level. From a modeling perspective, the proposed methodol-

ogy sheds light on the advantages of setting the PK estimation problem in a Bayesian framework.

From a practical point of view, given the key role of the PK in finance theory and its properties,

estimates of the PK are valuable for asset pricing, as well as for risk and portfolio management

purposes. The contribution of the article to the existing literature is fourfold. First, it proposes

a flexible and accurate methodology to estimate the conditional physical density, modeled as the

posterior distribution of a Poisson-Dirichlet process. Since the Dirichlet process is a special case

of the Poisson Dirichlet one, the proposed approach is a generalization of the methodology used

in Sala et al. (2017)[92]. The PD process allows one to capture a wide range of tail behaviours,

whereas the Dirichlet one allows for tails decaying exponentially only, a pattern not generally fol-

lowed by financial data. As a consequence, the resulting estimates behave in a more regular way in

the tails and respect the monotonicity requirement also for extreme positive/negative returns. This

improvement is crucial especially during high volatility periods and at short time horizons. Second,

this is the first article which proposes a fully Bayesian approach at each step of the PK estimation

process. In the first phase the simulated asset prices under the physical measure are partitioned

into clusters before deriving the Bayesian physical density without imposing any assumption nei-

ther on the PD posterior distribution, nor on the structure of the data. In the second stage, at each

observation date and time to maturity the PD parameters are estimated using a Bayesian Markov

Chain Monte Carlo (MCMC) technique. Third, the derivation of time-varying estimates of the PD

process parameters allows one to formulate predictions about the relationships among the model

parameters, the time to maturity and the market volatility. Fourth, the existence of a monotonic

relation between the PK and the market returns is formally tested by using the Monotonic Relation

(MR) test developed by Patton and Timmermann (2010)[88]. The results validate the predictions:

in almost all cases the PK is monotonic decreasing in the returns, even at investment horizons
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shorter than one month.

The remainder of the article is as follows: section 2 presents the methodology - section 2.1 de-

scribes the estimation procedure of the classical physical and the risk neutral densities and section

2.2 introduces the Bayesian approach and motivates the choice of a Poisson-Dirichlet process for

modelling the physical density. Section 3 describes the dataset and its relevant characteristics. Sec-

tion 4 presents and compares the estimates of the Poisson-Dirichlet parameters using the Maximum

Likelihood and the Bayesian approaches. Section 5 presents the PK estimates on a day-specific

basis and over the whole sample and the results of the MR test on all the obtained estimates. As

a robustness check, section 6 repeats the same analysis based on a more recent sample. Section 7

concludes.

2 The Methodology

If the market is arbitrage-free and complete, the PK equals the present value of the ratio of two

conditional densities. Starting from this definition, the proposed Bayesian PK, M†, equals

M†t,T = e−rt(T−t)

[
qt,T (ST |St,Ψt)

p∗t,T (ST |St,Ψt)

]
(18)

where rt is the risk-free rate at time t, St is the value of the market portfolio at time t, qt,T (ST |St,Ψt)

and p∗t,T (ST |St,Ψt) are the risk neutral and the Bayesian physical densities at time t over the time

horizon (T −t) and conditional on Ψt, the available information at time t. To simplify the notation,

henceforth the conditional risk neutral and physical densities are denoted with q and p∗, respectively.

By definition the set Ψt should contain all the available information at time t. As anticipated in

section 1, at a practical level investors are generally unable to obtain the complete information

set Ψt with the data at their disposal. As a consequence, the set of “achievable” information,

Ht, set is strictly included in Ψt, i.e. there exists an information bias. This article presents a

methodology to reduce the entity and the severity of the information bias. Exploiting already the

superior informative content of derivative securities, the risk neutral density is already conditional

on an information set which can be hardly improved in terms of completeness. Conversely, using

only historical data as inputs, the physical density estimation strongly suffers from the identified
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information bias36. Being more informative about the underlying asset dynamics than historical

records, option data can be helpful in reducing the gap between Ht and Ψt. Mathematically, the

combination of option and past data information is performed by modelling the physical density

as the posterior distribution of a PD process with q∗37 as base distribution and p (the physical

density extracted from historical data) as empirical density. The derivation of M† follows a two-

steps procedure. First, the risk neutral, q, and the physical, p, densities are derived from the

cross-section of OTM options and from the time series of the historical returns, respectively. In the

rest of the paper, p and q are labelled as “classical densities”. Second, the modified physical density,

p∗, is modelled as the posterior of a PD process. Section 2.1 describes the estimation methodology

for the classical densities, p and q, and section 2.2 motivates the choice of the Poisson-Dirichlet

process for modelling p∗.

2.1 The classical densities estimation

The physical and the risk neutral densities are estimated following the methodology proposed in

Barone et al.(2008)[14]. At each observation date t, the physical density p is estimated by fitting

a Glosten Jagannathan and Runkle (GJR)-GARCH (see Glosten et al. (1993)[54]) model to the

historical daily log-returns of the underlying asset. Calibrated on a pre-specified rolling window,

at each observation date t the model under the physical measure is:

log
St
St−1

= rt = µ+ εt (19)

εt =
√
σ2
t zt (20)

σ2
t = ω + βσ2

t−1 + αε2t−1 + Iεt−1<0γε
2
t−1 (21)

where µ is the drift term, εt is the return innovation, zt is the scaled return innovation and Iεt−1<0

is the indicator function controlling for the leverage effect. The use of a GJR-GARCH allows one

to capture the asymmetric impact of the negative shocks: when the innovation in the previous

time period is negative (i.e. εt−1 < 0) the conditional volatility increases more than when a

positive innovation of the same absolute value occurs. The estimates of the GARCH parameters

36Examples of articles using this estimation approach for p and q are those by Jackwerth (2000)[65], Aı̈t
Sahalia and Lo (2000)[3], Rosenberg and Engle (2002)[46], Christoffersen et al. (2013)[31].
37Compared to q, q∗ differs only in the drift term, which is rescaled for the equity premium (details follow
in section 2.1).
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θ̂t = (ω̂t, β̂t, α̂t, γ̂t) are obtained by maximizing the Gaussian pseudo maximum likelihood (PML)

under the assumption of normal innovations. Importantly, even though the true distribution of

the innovations is not normal, the results still remain consistent (see Gourieroux et al. (1984)[58]).

Finally, the physical density p is estimated by smoothing the empirical kernel density obtained from

the simulated prices.

As concerns q, at each observation date t the GJR-GARCH model in equations (19-21) is fitted

to the cross-section of the OTM European call and put options written on the underlying asset.

Based on the risk neutral GARCH parameters, θ∗t = (ω∗t , β
∗
t , α

∗
t , γ
∗
t ), N = 10.000 return paths are

simulated for each holding period,

ST
St

= exp

(
(T − t)µ∗ +

T−t∑
i=1

σt+izi

)
(22)

where zi is the past innovation updating the volatility in the next period, σt+i. In order to exclude

arbitrage violations, the simulated paths are corrected by means of the Empirical Martingale Sim-

ulation (EMS) method by Duan and Simonato (1998)[41], which ensures that µ∗ equals the risk

free rate. In this way, for a given time to maturity τ and strike K, the GARCH call option price

equals the present value38 of the average simulated payoffs, i.e. e−rf (T−t)∑N
n=1

max(SnT−K,0)
N . The

derivation of put option prices follows a similar procedure. The estimated GARCH parameters

θ∗Q = (ω∗, β∗, α∗, γ∗) minimize the mean squared pricing error

1

N

Dt∑
i=1

ψt(Ki, τi) (23)

where Dt is the number of options on date t, ψt(Ki, τi) is the difference between the simulated

GARCH option prices and the observed market prices of the OTM options across strikes Ki and

times to maturity τi. At each observation date t, the derivation of q is performed by running N =

50.000 Monte Carlo simulations and then implementing a nonparametric kernel density estimation.

38All the payoffs are discounted at the risk-free rate.
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2.2 The Bayesian approach

In this analysis, the Bayesian structure is attractive because of its high degree of flexibility, ease

of application39 and suitability in representing the economic intuition behind the proposed model.

The Poisson-Dirichlet process (see Pitman and Yor (1997)[90]) is a stochastic process whose sample

path is a infinite discrete probability distribution, where all the atoms are drawn from the base

distribution G and the weights follow a Poisson-Dirichlet distribution. It includes a wide range of

distributions and enjoys useful properties which make it computationally easy to handle.

First, the process is fully characterized by three parameters only: the base distribution, G, the

discount parameter, d, and the strength (or concentration) parameter, α. The base distribution is

directly linked to the first moment and represents the mean of the process. The discount parameter

controls the tail behaviour and its support ranges in the interval [0, 1). When d is equal to 0 the PD

process collapses to the Dirichlet process, according to which tails can only decay exponentially.

Increasing values of d in the interval (0, 1) imply a higher probability of observing values in new

clusters (i.e. values less close to the mean of the process). In the limit case of d converging to 1, the

model produces a high number of small clusters consistently with a power law distribution. The

strength parameter controls the weight associated to the base distribution and its support ranges

in the interval (−d,∞). Large values of α imply distributional shapes concentrated around the

mean of the process. Second, being nonparametric, the process does not impose any restriction on

the functional form of the PK, thus ensuring a satisfactory degree of flexibility. Third, the process

is conjugate. This feature implies that given the random distribution H following a PD process

with parameters (G,α, d) and the sequence of independent draws θ1, θ2, ..., θn from H, the posterior

distribution given the observed parameters still follows a Poisson-Dirichlet process with updated

parameter (G,α∗, d), where α∗ = α + Nd. The conjugacy property makes the process very easy

to handle analytically, as the posterior distribution can be derived in closed form. Mathematically,

the modified physical density, p∗, equals the posterior distribution of a Poisson-Dirichlet process

p∗ =
α+Kd

α+N
G+

N∑
i=1

(1− d)

α+N
δX∗

i
(24)

where α and d are the concentration and the discount parameters, G is the base distribution, N is

the number of observations, K is the number of clusters and δX∗
i

is the dirac mass function applied

39Tractability issues linked to the shape of the posterior distribution can be largely overcome by means of
Markov Chain Monte Carlo (MCMC) algorithms.
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to each unique simulated price X∗i . The base distribution is the risk neutral density rescaled for

the equity premium, q∗, which differs from q in the drift term only

dq
∗

t = dqt + πt; where dqt = rf,t − divt

where dqt is the drift under the risk neutral measure, rf,t is the risk free rate, divt is the continuously

compounded dividend and πt is the equity premium. This drift correction is required in order to

rule out any arbitrage opportunity.

3 The Dataset

The methodology presented in section 2 is tested on the cross-section of the OTM European call

and put options (SPX) traded on the S&P 500 with time to maturity ranging between 10 days

and one year. Options data and S&P 500 prices are from OptionMetrics. Being among ones of

the most traded financial assets, mispricings are likely to occur rarely and the degree of liquidity

is always satisfactory. Figure 4 reports the volumes of the OTM European call and put options

written on the S&P 500 index from 1998 to 2014. Option volumes have followed an increasing trend

over the recent years and the amount of OTM call options has always been lower compared to the

put options one. Starting from January 2002 to December 2004, the sample period consists of 157

Figure 4: Evolution of OTM options volume on the S&P500 from 1998 to 2014.
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weekly observations. The choice of this sample period stems from the willingness to make a direct

comparison between a fully specified nonparametric Bayesian model and the hybrid40 Bayesian

approach proposed in Sala et al. (2017)[92]. The frequency is weekly in order to limit the high

computational time intensity of the optimization problem, which involves a large cross-section of

option contracts at each observation date. The use of Wednesday data aims at reducing both the

probability of losing observation dates because of holidays and the incidence of day-of-the-week

effects.To estimate the classical physical density, a GJR-GARCH is fitted on a rolling window of

14 years41 of historical log-returns. The GJR-GARCH model provides a good fit when residuals

are auto-correlated, and thus when volatility clusters, in time-series regressions. The model and

the length of the log-returns time series used for the calibration are validated from the results of

the Lagrange Multiplier ARCH test (Engle (1982)[48]). By interpolation, daily risk-free interest

rates are obtained from the time series of US treasury zero coupon yield curve downloaded from

OptionMetrics. For each time-to-maturity (τ), the previous (τ−) and next (τ+) time period zero-

coupon whose values straddle the time τ are linearly interpolated. The time series of discrete S&P

500 dividends from January 2002 to December 2004 are from CRSP and used to compute the

continuous daily dividend yield.

4 Parameters Estimation

This section presents the initial assumptions and the methodology to derive the base distribution,

the concentration and the discount parameters. Differing from q in the drift term only, the es-

timation of the rescaled risk neutral density follows the methodology outlined in section 2.1 and

also requires the estimation of the equity premium. The equity premium, π, is defined as the

historical average differential return of the market portfolio (i.e. the S&P 500 index) over risk-free

debt42. Following Merton (1980)[82], across its most common specifications in terms of risk-free

security (T-bills or long term government bonds) and type of average differential return (geometric

or arithmetic), the equity premium on the S&P 500 ranges between 4% and 8% and is assumed to

40Data are not clustered when deriving the Dirichlet posterior distribution and the strength parameter of
the process is estimated empirically from option data.
41The choice of this time window is motivated by the intention to exclude the period of turmoil during the
oil crisis in 1987.
42Given that the investors consider the same time interval and market index, the historical equity premium
should be unique.
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vary as a deterministic function of the unconditional annual GARCH long run volatility43 under

the risk neutral measure. Table 10 reports the equity premia and the starting values of the PD

parameters associated to the three identified volatility regimes, describing a low (σt ≤ 17%), normal

(17% < σt ≤ 22%) and high (σt > 22%) volatility environment, and used to initialize the maximum

likelihood algorithm. Since investors require a higher remuneration when the uncertainty increases,

in the high volatility scenario π equals its highest value.

Low Vol. (σi,j ≤ 17%) Med. Vol. (17% < σi,j ≤ 22%) High Vol. (σi,j > 22%)
τ = 24 τ = 73 τ = 185 τ = 24 τ = 73 τ = 185 τ = 24 τ = 73 τ = 185

π 4% 4% 4% 6% 6% 6% 8% 8% 8%
Poisson-Dirichlet parameters

α0 0.75 0.75 0.75 1.5 1.5 1.5 2.25 2.25 2.25
d0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 10: Starting values for the Maximum Likelihood algorithm for each volatility regime
(defined as a deterministic function of the unconditional GARCH volatility σi,j at time i
using innovations j = FHS,Gaussian) and time to maturity (τ)).

The strength and the discount parameters are derived using both the Maximum Likelihood (ML)

and the Bayesian MCMC techniques. Both methodologies start from the PD posterior distribution,

defined as in eq. (24). The specification of a feasible set of starting values (ML approach) and an

informative prior distribution (Bayesian method) for α and d relies on the economic interpretation

of the PD parameters. Using the estimation results in Sala et al. (2017)[92] as starting point,

for each time to maturity τ an initial value for the strength parameter, α0
44, is readily available.

Following the intuition that in periods of turmoil historical data are not helpful in modeling the

underlying asset future dynamics, α is further assumed to be positively correlated with the volatility

level. The relationship is formalized in the model by setting increasing starting values of α from

the lowest to the highest identified volatility regimes. The parameter d controls the number of

clusters generated by the process and its support ranges between 0 and 1. Reflecting the choice of

43The long run GARCH volatility at time t equals

σt =

√
ωt

1− αt − βt − γt
2

Notice that σt and the corresponding regime identification at time t are deterministic once that the GARCH
parameters have been estimated.
44The estimates of α are derived empirically under the assumption of a Dirichlet process driving the data
distribution. Once that the time to maturity is fixed, α is assumed to be constant across all the sample
period.
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an uninformative prior, the starting value of d is always set equal to 0.545.

4.1 The Maximum Likelihood estimators

Following Carlton (1999)[26] and generalizing the two-parameter Ewens Sampling Formula to a

sample of size N , the likelihood function is

LN (α, d;x1, ..., xN ) =
N(a)

(α+ 1)N−1

k−1∏
l=1

(α+ ld)

n∏
j=2

[(1− d)j−1]ajI

 N∑
j=1

jaj = N

 (25)

where A = (a1, a2, ..., an) is the counting vector46, aj is the number of clusters with exactly j

elements inside, N(a) = N !∏N
j=1(j!ajaj !)

is the number of the sample orderings prescribed by a, k =∑N
j=1 aj and (x)n is the forward product Γ(x+N)

Γ(x) . Taking the logarithm of eq.(25), the log-likelihood

is:

l(α, d) = logLN (α, d; a)

= logN(a)− log(α+ 1)N−1 +
k−1∑
l=1

log(α+ ld) +
N∑
j=2

aj log(1− d)j−1

= logN(a)−
n−1∑
m=1

log(α+m) +

k−1∑
l=1

log(α+ ld) +

N∑
j=2

aj

j−1∑
i=1

log(i− d) (26)

And the first partial derivatives with respect to d and α respectively are:

ld(α, d) =

k−1∑
l=1

l

α+ ld
−

N∑
j=2

aj

j−1∑
i=1

1

i− d

lα(α, d) = −
n−1∑
m=1

1

α+m
+
k−1∑
l=1

1

α+ ld

45This value is the mean of the (uninformative) Uniform prior distribution over the support (0,1).
46The counting vector summarizes all the information of the sample and it is subject to the following
restrictions: (1) (a1, a2, ..., an) are non-negative and integer-valued and (2)

∑N
j=1 aj = N .
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Beyond the first order conditions, the joint derivation of the ML estimators 47, (α̂, d̂), requires the

determinant of the Hessian matrix, |H|, to be positive. The Hessian matrix, H, equals:

H =

ldd lαd

ldα lαα


where

ldd = −
k−1∑
l=1

l2

(α+ ld)2
−

n∑
j=2

aj

j−1∑
i=1

1

(i− d)2
lαα =

n−1∑
m=1

1

(α+m)2
−
k−1∑
l=1

1

(α+ ld)2

and ldα = lαd = −
k−1∑
l=1

l

(α+ ld)2

By definition the determinant of H equals |H| = lddlαα − (lαdldα). Hence, to ensure the positivity

of |H| it is sufficient to verify that:

lαα = −
l2dα
|ldd|

Table 11 reports the average values48 of the Maximum Likelihood estimators for each volatility

regime. While the ML estimates of α do not deviate much from the starting values, the estimated

discount parameters are significantly below the corresponding values of d0. Low estimates of d

imply that the process generates a small number of clusters, a result in contrast with the power

law nature of the data.

Maximum Likelihood Poisson-Dirichlet parameters (α̂, d̂).
Low Vol. Med. Vol. High Vol.

τ = 24 τ = 73 τ = 185 τ = 24 τ = 73 τ = 185 τ = 24 τ = 73 τ = 185

(α̂G, d̂G) (2.8, 0.7) (1.19, 0.6) (1.48, 0.7) (2.31, 0.7) (1.19, 0.6) (0.99, 0.7) (1.81, 0.7) (0.81, 0.6) (0.55, 0.7)

(α̂F , d̂F ) (2.85, 0.6) (2.8, 0.7) (2.8, 0.7) (2.2, 0.65) (2.7, 0.75) (2.7, 0.7) (1.99, 0.6) (2.8, 0.7) (2.8, 0.7)

Table 11: Average Maximum Likelihood estimates (α̂, d̂) under Gaussian (G) and FHS (F)
innovations for τ = 24, 73 and 185 days over the sample period Jan.2002 - Dec.2004.

47Estimates when one of the two parameters is assumed to be known are available upon request.
48We compute the mean conditional on the convergence of the Maximum Likelihood algorithm (30% of the
observation dates).
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4.2 The Bayesian approach

The Bayesian approach integrates the information contained in the likelihood function with the

subjective beliefs about the parameters distribution. The posterior distribution, π(α, d|x), has the

following structure:

π(α, d|x) ∝ L(α, d|x) · p(α) · p(d);

α ∼ NTrunc(α0, σ) d ∼ U(a, b)

where θ = (α, d), L(α, d|x) is the likelihood function as in eq.(25) and p(·) is the prior distribution.

Given the data characteristics, αi is assumed to follow a Truncated Normal distribution with mean

α0,i and standard deviation σ = 249 over the support [−d0,i,+∞). Choosing for an uninforma-

tive prior, the discount parameter is uniformly distributed on the support (0, 1). Complexity and

precision can be further enhanced by assuming a prior distribution also on the PD model hyper-

parameters.Using the Metropolis-Hastings algorithm (see Hastings (1970)[63]), samples from the

posterior distribution are generated and, to guarantee the convergence of the chain to the true value

of the parameter, the degree of mixing of the simulated chains is checked by looking at the auto-

correlation plots50. Finally, under the assumption of a squared-error loss function, the Bayesian

estimators are computed as the mean of the simulated values.

Bayesian estimates of the PD parameters (α†, d†)

For each volatility regime and time to maturity, the first rows of table 12 present the average

strength and discount parameters, (α†, d†).

Bayesian Poisson-Dirichlet parameters (α†, d†)
Low Vol. Med. Vol. High Vol.

2002-2004 τ = 24 τ = 73 τ = 185 τ = 24 τ = 73 τ = 185 τ = 24 τ = 73 τ = 185

(α†G, d
†
G) (5.28, 0.83) (5.31, 0.83) (5.44, 0.84) (5.45, 0.87) (5.45, 0.85) (5.45, 0.95) (5.47, 0.92) (5.46, 0.95) (5.54, 0.96)

(α†F , d
†
F ) (5.42, 0.85) (5.44, 0.87) (5.46, 0.86) (5.43, 0.89) (5.48, 0.88) (5.49, 0.89) (5.44, 0.94) (5.49, 0.95) (5.54, 0.97)

Table 12: Average Poisson-Dirichlet parameters (α†, d†) when τ = 24, 73 and 185 days using
Gaussian (G) and FHS (F) innovations over the sample period Jan.2002 - Dec.2004.

The estimates are validated by the results of the convergence analysis. At each observation date

as the number of lags increases, the autocorrelation converges to zero after a reasonable number

49This is a common choice for an informative prior.
50In general, the simulated draws of α and d induce an autocorrelation converging to zero after a reasonable
number of draws.
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of lags, thus indicating that the chains have a satisfactory degree of mixing. The concentration

parameter α† is always above its proposed starting values, thus suggesting that, in general, the

weight assigned to the prior information should be higher than what predicted under the Dirichlet

Process in Sala et al. (2017)[92]. For each time to maturity, α† is a positive function of the volatility.

Indeed, during periods of turmoil historical data have a limited informative content and the benefits

of exploiting the forward-looking contained in option data become greater. The average discount

parameter is always close to the upper bound of its support, thus showing that the process generates

a large number of clusters, independently on the volatility environment. Even thought there is not

a clear trend within each volatility regime, across all times to maturity the discount parameter is

a positive function of the GARCH long run unconditional volatility and always fluctuates in the

upper bound of its support.

5 Results

Based on the methodology explained in section 2, the following sections present the PK estimates

on a day-specific basis using the Bayesian estimators, α† and d†, as inputs in the derivation of p∗51.

At each date and for selected times to maturity, the PK estimates are derived both using Gaussian

and FHS innovations in the GJR-GARCH model calibration. Section 5.1 presents and compares

the PK estimates under the Dirichlet and the Poisson-Dirichlet process on a day-specific basis. At

fixed times to maturity, sections 5.2 and 5.3 present the PK estimates across the whole sample and

the results of the corresponding monotonic relation test.

5.1 Day-specific PK Estimates

For each volatility regime two sample dates52 are randomly selected and the corresponding PK

estimates under the PD and Dirichlet53 are presented. As anticipated in section 2.2, the PD process

collapses to the Dirichlet one when the discount parameter is equal to zero. The Dirichlet process

generates a low number of clusters and the posterior distribution is concentrated around the a priori

mean, i.e. the base distribution. Conversely, increasing values of d generate an increasing number

51The PK estimates using the ML estimators are available upon request.
52Under the risk neutral measure the unconditional GARCH volatility changes with the innovations type,
therefore, for each volatility regime one (different) sample day must be selected.
53Estimates of the concentration parameter are as in Sala et al. (2017)[92]
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of small clusters and values less close to the mean of the process. While the Dirichlet and the

PD processes share many characteristics and properties54, the modeling of the tails of the posterior

distribution can be very different. More precisely, the PD process captures a wide variety of patterns

in the tail behaviour, whereas the Dirichlet process enables one to model distributions which stay

very concentrated around their a priori mean only. The consequences are immediate: even though

the Dirichlet process can be a good choice in periods of financial stability, it is unsuitable during

high volatility periods, when extreme fluctuations become more likely and a correct PK modeling

is needed the most. For each volatility regime, the day-specific results are reported at multiple

times to maturity, namely τ = 24, 73 and 185 days. When the volatility is low55, the first row of

figure 5 presents the estimates under the Dirichlet and the PD processes. Even though in a low

volatility environment the gap between the Dirichlet and the PD should not be remarkable56, for

medium/long times to maturity (τ = 185 days and to some extent τ = 73 days) the PK estimates

exhibit some differences. The estimation exercise at long time horizons naturally embeds more

uncertainty57, as the dynamics of the underlying asset must be forecasted up to a date further

in the future. As a consequence, even though the initial volatility is low, the underlying price

can deviate in a substantial way from its mean, thus making the Dirichlet process inadequate at

long investment horizons. When τ = 185 days, the Dirichlet PK estimates are locally increasing

in the left tail of the distribution, thus being unable to solve the PK puzzle. On the contrary,

the PD process performs similarly to the Dirichlet one at short time horizons and, at the same

time, delivers consistent PK estimates also at longer time horizons. The gap between the two

processes is driven by the discount parameter, which impacts on the expected number of clusters

and regulates the tail behaviour of the distribution. Under normal market conditions58, the second

row of figure 5 plots the PK estimates at τ = 24, 73 and 185 days. As in the low volatility case, the

PK estimates under the PD process ensure better results in terms of monotonicity in the left tail

of the distribution. In the case of FHS innovations the gap with the Dirichlet process is remarkable

across all times to maturity. While the estimates under the two processes are very close around the

0% return interval 59, the Dirichlet PK estimates are increasing when returns are negative, thus

54Both the processes are conjugate and include a wide range of distributions.
55On the 155-th Wednesday of the sample, the unconditional risk neutral GARCH volatilities under FHS
innovations, σQ155,FHS , is equal to = 12.97%.
56As the underlying should not largely deviate from its mean.
57Compared to estimations performed at short τs.
58The selected observation date is the 122th Wednesday, on which σQ122,FHS = 19.65%.
59At each given date, the spot price of the S&P500 is indicated with a black star (*) on the x-axis of each
graph.
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Figure 5: Day-specific PK estimates under the Dirichlet and Poisson-Dirichlet processes in
the case of FHS innovations during the sample period Jan.2002 - Dec.2004).

being inconsistent with the classical theory. The ability of the PD process to model the PK as a

decreasing function across almost all return intervals sheds light on the possibility to solve, or at

least to substantially reduce, the PK puzzle by means of an accurate model choice and calibration.

The last row of figure 5 presents the PK estimates in the high volatility regime60. During periods

of turmoil the probability of observing extreme events increases and a correct modeling of the

tails becomes crucial. In this context the PD process outperforms the Dirichlet one thanks to

its ability to capture and model in a more flexible way specific patterns of the data in the tails

of the distribution. When the innovations are filtered historical simulated the estimates under

the Dirichlet process exhibit a puzzling upward slope in the left tail, thus failing to meet the

60The selected date is the 60th Wednesday of the sample, date on which the volatility under FHS innovations
is 25.29%.
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monotonicity requirement. Conversely, even though some irregularities are still present, the PD

process provides a set of estimates closer to the predictions of the classical theory.

5.2 The PK Estimates across the whole sample

To gain a complete overview of the estimation results, this section presents the three dimensional

plots of the PK estimates across the whole sample period when the innovations are filtered histor-

ical simulated61. The analysis considers the same times to maturity used in section 5.1. At each

observation date, figure 6 plots the PK estimates under the PD process under FHS innovations

when τ = 24 days. Across the whole sample period the slope of the PK is decreasing but almost

Figure 6: PK estimates across all sample in the case of FHS innovations (τ = 24 days).

flat and the PK fluctuates around 1, thus meaning that the risk neutral and the modified physical

densities are almost equal. In the left tail of the distribution, the frequency of the irregularities

is still quite high (especially in the case of FHS innovations), nevertheless deviations from mono-

tonicity are always bounded. As concerns the right tail, the PK distribution presents some spikes,

which are partially driven by the lack of a dense amount of OTM traded call options which makes

statistical inference on some sample dates unreliable.

61Results under Gaussian innovations are available upon request.
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Consistently with the theoretical result on the divergence between risk neutral and physical densi-

ties, as the time horizon gets longer M†t increases under both types of innovations. Figure 7 presents

the estimation results in the case of FHS innovations when τ = 73 days. Bounded spikes are still

Figure 7: PK estimates across all sample in the case of FHS innovations (τ = 73 days).

present in the tails of the distributions; nevertheless they only locally affect monotonicity for small

and extreme return intervals. As shown in figure 8, when τ = 185 days M†t exhibits a monotonic

decreasing shape across the whole sample period.

This result confirms the findings in the literature, according to which for long time horizons the

monotonicity assumption of the PK cannot typically be rejected. Few isolated irregularities still

remain in the right tail of the distribution due to the lack of a liquid market for OTM call options.

Importantly, the isolated deviations from monotonicity are always bounded, hence the model is

helpful in reconciling the PK estimates with the observed option prices.

5.3 Monotonicity test

In this section the monotonic relation between PK and market returns is formally tested using

the Monotonic Relation (MR) test by Patton and Timmermann (2010)[88]. The MR test presents

several attractive features. First, being a nonparametric test, it does not impose any assumption
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Figure 8: PK estimates across all sample in the case of FHS innovations (τ = 185 days).

neither on the returns distribution nor on the functional form of the relation between the returns

and the PK. Second, the design of the test substantially reduces the probability of the type II

error. Indeed, under the null hypothesis the MR test states that the PK is identical or weakly

increasing in the returns, while under the alternative it is monotonically decreasing. In this way

the theoretical prediction of a monotonic decreasing relation is confirmed only if the data contain a

sufficiently strong evidence to support it. Differently from other widely used tests which entertain

monotonicity under the null hypothesis (see Wolak (1989)[94] and Gourieroux et al. (1982)[58]), a

rejection of the null of the MR test represents a strong empirical endorsement of the theory62.

For each investment horizon and innovations type, the PK estimates are tested over the whole

sample period. The first two rows of table 13 report the number of times the null hypothesis

is rejected at 95% confidence level when the Bayesian PK is derived using FHS and Gaussian

innovations, respectively. In the big majority of the cases (at least 93% of the observation dates),

the null is rejected, thus implying that the data support the decreasing monotonic relation between

the Bayesian PK and the market returns63. Differently from recent findings in the literature64, the

62The same conclusion is not valid for aforementioned tests, whose results can be biased by limited power
issues. Indeed, short time series of observations or noisy data may increase the probability of a type II error.
63The relationship is tested over a sufficiently wide range of market returns, namely ±20%, ±30% and ±40%
when τ = 24, 73 and 185 days.
64See Cuesdeanu and Jackwerth (2016)[35].
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% cases H0 is rejected
τ=24 τ=73 τ=185

2002-2004 (FHS) 95% 93% 94%
2002-2004 (GAUSS) 94% 94% 96%
2012-2014 (FHS) 68% 89% 97%

Table 13: Proportion of observation days on which the null hypothesis of the MR test is
rejected over the sample periods Jan.2002 - Dec. 2004 and from Jan. 2012 to Dec. 2014.

monotonic relation is still valid on investment horizons shorter than one month, thus corroborating

the consistency of the obtained PK estimates with the classical theory.

6 A more recent sample

This section presents an out-of-sample analysis in order to assess the validity of the proposed

methodology in a different market situation. Following the same procedure, the PK estimates are

derived on the same underlying but on a more recent sample period.

6.1 The Dataset

Starting from January 2012 to December 2014, the sample period consists of 154 weekly observa-

tions. To derive the risk neutral density, European call and put options written on the S&P500

with time to maturity ranging between 10 days and one year are downloaded from OptionMetrics.

The time series of the S&P500 is from the same database. Given the atypical market situation

characterized by negative interest rates, the risk free rate is extracted from at the money option

prices using the put-call parity relation. Discrete dividends are downloaded from CRSP and used

to derive the continuous dividend yield for each observation date. The choice of a GJR-GARCH

model is validated by the Lagrange Multiplier ARCH test (Engle (1982)[48]). In this part of the

analysis innovations are assumed to be filtered historical simulated only.

6.2 Parameters calibration

The model parameters are derived following the Bayesian technique presented in section 465. As

before, conditioning onto the unconditional long run GARCH volatility, three regimes and their

65Given the impossibility to derive a consistent set of estimates under the Frequentist approach, Maximum
Likelihood estimates are not considered in this part of the analysis.
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corresponding starting values of the equity premium π are identified. Volatility thresholds and

starting values for the PD parameters and the equity premium are defined as in the first sample

and are presented in table 10. Similarly, the prior distributions of α and d are assumed to be the

same of section 4.

Table 14 reports the Bayesian estimates, (α†, d†), at multiple time horizons.

Bayesian Poisson-Dirichlet parameters (α†, d†)
Low Vol. Med. Vol. High Vol.

2012-2014 τ = 24 τ = 73 τ = 185 τ = 24 τ = 73 τ = 185 τ = 24 τ = 73 τ = 185

(α†F , d
†
F ) (0.14, 0.84) (0.18, 0.88) (0.20, 0.92) (0.17, 0.84) (0.19, 0.88) (0.22, 0.93) (0.19, 0.89) (0.25, 0.90) (0.27, 0.94)

Table 14: Average Poisson-Dirichlet parameters (α†, d†) when τ = 24, 73 and 185 days using
FHS (F) innovations over the sample period Jan.2012 - Dec.2014.

The discount parameter always fluctuates in the upper bound of its support and it is positive

function both of the volatility and of the time to maturity. Consistently with the theoretical

result on the convergence between physical and risk neutral densities as τ approaches 066, the

concentration parameter is negatively correlated with the time to maturity. Hence, the weight

assigned to q∗ decreases with τ as the option market contains less additional information to be

included in the physical density estimation and the asymmetry between the information sets under

the two measures shrinks. Compared to the results based on the first sample, the estimates of α†

are lower. Being so close to zero, the concentration parameter assigns little weight to the prior

distribution, i.e. the option-based information. This difference stems from the different market

outlook in the two samples. From January 2002 to December 2004 the S&P 500 index dropped

from above $1150 to $776 in October 2002 and then rose again to above $1200. Conversely, from

January 2012 to December 2014 the US market maintained a positive outlook and the S&P 500

index constantly rose from $1277 up to above $2000. During periods of turmoil the discrepancy

between the information contained in the historical prices and that embedded in the option data

naturally increases, thus becoming necessary the integration of option data in the information set

under the physical measure. Conversely, in periods of stability or with a continuing positive trend

the option-based information plays a minor role, the estimated values of α† decrease and historical

data can be a sufficient and satisfactory input for the modeling of the modified physical density.

These differences in the general market outlook are naturally reflected in the Poisson-Dirichlet

parameters estimates, and are confirmed by the obtained (α†, d†) reported in table 12. While the

general period of uncertainty during the first sample implies estimates of α† fluctuating around 5,

66This conclusion follows from the fact that Mt converges to 1 as the time to maturity shortens.
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the stability of the US market from 2002 to 2004 induces a sharp decrease of the concentration

parameter estimates, which converge to 0 across all sample dates.

6.3 Results

As in section 5, for the same times to maturity (τ = 24, 73 and 185 days) the PK estimates are

derived on a day-specific basis and over the whole sample. For each volatility regime, one sample

date is randomly chosen and the corresponding PKs are plotted at multiple τs. The monotonicity

requirement around the 0% interval is met across all specifications. For τ = 24 days, especially

when the volatility is in the low and medium regime, some irregularities are still present in the tails

of the distribution and are motivated by the lack of a dense amount of deep OTM options. As τ

increases, the OTM option market becomes more dense, irregularities vanish and the PK estimates

are consistent with the classical paradigm also for extreme positive and negative returns. Compared

to the day-specific results of the first sample, the estimates behave in a more regular way in the tails

thanks to the increasing amount of traded OTM call and put options (see figure 4) over the recent

years and to the different market conditions characterizing the two periods. More precisely, during

the first sample period the S&P 500 experienced a larger upward/downward movements which

made the estimation exercise more challenging. Similar conclusions can be inferred by observing

the estimates based on the whole samplewhen τ = 24, 73 and 185 days. Due to the lack of a

dense amount of OTM options trading at short times to maturity, the estimates for τ = 24 days

present many irregularities in the tails and do not generally respect the monotonicity requirement.

As options expiration date gets further in the future (τ = 73 and 185 days), the option market

becomes more liquid and extreme movements in the tails are ruled out. As shown in figures 9

and 10, for medium and long times to maturity the estimated PK is monotonically decreasing in

the returns around the 0% interval with few and bounded spikes in the distribution occurring at

extreme positive/negative returns.

The null hypothesis of identical or weakly increasing PK against the alternative of a monotonic

decreasing relationship is tested by using MR test. As reported in the last row of table 13), when

τ = 24 days the MR test has the lowest acceptance rate, as the PK estimates are consistent with

the classical theory in almost 70% of the cases only. Conversely, at longer investment horizons the

PK respects the monotonic decreasing relation with the market returns for more than 89% and

97% of the sample observations dates when τ equals 73 and 185 days, respectively.
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Figure 9: PK estimates across all sample (τ = 73 days).

Figure 10: PK estimates across all sample (τ = 185 days).
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7 Conclusions

The implementation of a nonparametric Bayesian approach in the physical density estimation and

the parameters calibration steps allows one to enhance the precision and the accuracy of the PK

estimates. The Bayesian approach perfectly adapts to the setting under consideration without

imposing any additional assumption on the functional shape of the PK. The Poisson-Dirichlet

parameters capture specific characteristics of the financial data under study and enable one to

model in a flexible way the PK dynamics both during high and low volatility periods. In agreement

with the economic theory, the concentration parameter, α, is negatively correlated with the time to

maturity and implies the convergence of the physical and risk neutral densities when the investment

horizon gets shorter. The estimates of α are positively correlated with the volatility level; hence,

as expected, the contribution of option-based information becomes more relevant during periods

of turmoil. The estimated discount parameter is always close to the upper bound of its support,

consistently with the (unconditionally) power law nature of the data under study. The PK estimates

gain precision either in the tails of the distribution, thus delivering results consistent with the

observed option prices, either in the interval around the 0% return, thus reducing, at least locally,

the entity and the severity of the PK puzzle. In the tails of the PK distribution some deviations

from monotonicity are still present and can be attributable to the lack of a dense OTM call market.

The proposed fully Bayesian methodology to estimate the physical density allows one to eliminate

the identified key driver of the PK puzzle, i.e. the information bias. At each observation date,

the proposed methodology delivers estimates of the PD parameters and of the PK consistent with

findings in the literature and with the economic intuition underneath the model. The estimation

procedure is reliable also when applied to a recent sample period. Compared to previous results

in the literature, the PK estimates are always monotonic decreasing around the 0% interval and in

the tails in general67, thanks to the ability of the PD discount parameter to correctly model the

tails of the data distribution. Hence, results are consistent over a larger support (i.e. a wider range

of returns) and the PK estimates are reconciled with the observed price dynamics. To conclude,

the results provide supportive evidence to the classical theory postulating the PK monotonicity,

thus showing that the PK puzzle is, at least partially, an expression of the information bias.

67Some exceptions still occur for short times to maturity for extreme positive/negative returns.
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Part III

S&P 500 Index, an Option-Implied Risk Analysis

1 Introduction

Thanks to their ease of application and to several empirical and theoretical convenient features68,

the Value at Risk (VaR) and the Conditional Value at Risk (CVaR) have emerged and still are the

most widely used risk measures in the finance community. Summarizing the market risk in a single

number, both risk measures assess the maximal loss at a specified probability level over a fixed time

horizon. The risk management literature proposes a wide variety of approaches to estimate the VaR

and CVaR. Nevertheless, to date, most of proposed models infer their estimates from past returns

(henceforth: “statistically-based” models), a backward-looking type of input, which often poorly

predicts the dynamics of financial markets, especially during crashes. Following the last financial

crisis, the recent efforts of regulators and governments to provide more solid and comprehensive

risk models best demonstrates how the statistically-based risk measures are still far from providing

a reliable capital protection.

Being a direct expression of investors’ future beliefs, option prices are by construction forward-

looking and market-based financial assets. Using option market data as inputs and adopting a

nonparametric approach, this paper tests if the option-based (henceforth: “option-implied”) VaR

and CVaR deliver more accurate risk forecasts. Performing well, both at short and long time

horizons and at different risk levels, our results show that a comprehensive capital protection

scheme should include forward-looking information in the analysis. Or, alternatively, that “option-

implied” risk measures can be considered as valid alternatives to the classical “statistically-based”

risk metrics.

While the role of both the VaR and CVaR is theoretically well understood, the existing statistically-

based models deliver estimates suffering from several economic and econometric biases. First, even

though at different extents, all statistically-based risk models involve errors in the modelling of

the underlying asset volatility, thus being exposed to the “risk that the risk will change” (Engle

(2009)[44] and (2011)[45]). Second, the statistically-based risk models often use historical data as

inputs, thus making the resulting estimates almost unconditional. More formally, at each trading

68Refer to Dowd (1999)[39], Duffie and Pan (1997)[42] and Penza and Bansal (2000)[89] and Jorion (2007)[67]
for a complete overview on the topic.
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day only one price/return is observable. Being just a single scalar, it is thus not possible to make

proper inference out of it. To tackle this problem, a large amount of past data is often used in the

estimation process. Unfortunately, when piling up many historical returns to estimate the future

profit and loss (P&L) distribution, the last values become almost uninformative. As a consequence,

also in presence of efficient and informative markets, the obtained statistically-based risk measures

turn out to be almost unconditional with respect to the actual market situation and strongly

dependent on the time window used in the estimation process. Third, it is well-known69 that the

statistical properties of market prices depend on the general market outlook. In stable periods, the

heterogeneity among investors’ behaviour increases, whereas during high volatility periods agents’

actions become more similar (e.g.: bank runs and flight to safety). As a consequence, the statistical

analysis conducted in stable periods can rarely be helpful during highly volatile ones, and viceversa.

Fourth, short-time horizons risk measures70, although more robust and easier to extract than those

at longer horizons, might not be helpful if one has to liquidate a large (and possibly illiquid)

financial position. Risk estimates over longer term time horizons are then needed but, as shown by

Brownlees et al. (2011)[25], while the performances of most of risk measures are more or less good

at short time horizons, they become highly unsatisfactory in the long term.

Option market data are helpful in order to overcome the aforementioned problems. First,

compared to historical records, option market data have a superior informative power, especially

as concerns the modelling of the underlying asset volatility71. Second, at each trading day the

implied moments of the daily option surface reflect investors’ expectations, thus being a naturally

forward-looking indicator of investors beliefs. Third, at each observation date, option data have

a matrix structure from which is more informative in the derivation of the P&L distribution. By

pricing several states of the world in terms of strikes and times to maturity, the initial dataset is

naturally richer than the one based on historical data and directly delivers estimates at longer time

horizons 72. Surprisingly, despite the increasing attention of academics and practitioners on the

predictive content of derivative securities, the use of option data in the risk management context

is still widely unexplored. To the best of our knowledge, only Äit-Sahalia and Lo(2000)[3], Bali

69See e.g.: Danielsson (2002)[37] and references therein.
70One day ahead estimates.
71From Merton (1973)[83] this is a large and still very dynamic and open stream of literature.
72Directly observing the market prices of call/put options enables one to extract option-implied risk forecasts
with time horizon equal to the time to maturity of the underlying option contract.
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et al. (2011)[6], Samit (2012)[93] and Mitra (2015)[85] relate to the topic in a similar manner73.

After presenting the option-implied methodology developed by Barone Adesi (2016)[7], this paper

proposes an extensive empirical analysis on how the option-implied risk measures perform compared

to the statistically-based ones. Several backtesting results show that the option-implied VaR and

CVaR estimates are accurate in the short (weekly) and long (monthly) term, independently on

the tail of the distribution used in the estimation process. On a relative level, the option-implied

methodology outperforms the statistically-based one using an AR(1) - GJR GARCH (1,1) model

with filtered historical simulated (FHS)[11] innovations. The choice of this benchmark model stems

from Brownlees et al. (2011)[25], who shows that, for the S&P 500, the asymmetric GJR GARCH

(1,1) model is the best performer among a big family of different risk models74. The option-implied

risk forecasts are fully market driven and nonparametric; hence, the lack of liquidity or the existence

of mispricings may potentially bias the final results. Results could be of interest for regulators,

central banks and single companies. Regulators and central banks can derive risk estimates of

large companies75 without knowing the precise composition of their portfolio. Large companies can

compare the option-implied estimates with those delivered by their internal models.

The remainder of the article is as follows: section 2 reviews the VaR and CVaR risk measures.

Section 3 derives the option-implied VaR and CVaR. Section 4 describes the dataset and its relevant

characteristics. Section 5 presents the option-implied nonparametric (model-free) and parametric

(Black and Scholes) VaR and CVaR. Section 7 presents the statistically-based VaR and CVaR

estimates using a GJR-GARCH model with FHS innovations. Section 8 analyses and compares the

backtesting results for all the aforementioned risk estimates. Section 9 concludes.

2 VaR and CVaR

Defined as the quantile of the projected profit and loss distribution, the VaR (α,t,T) is the loss

at time t, associated with a generic portfolio value (St,T ), at a given time horizon (T<∞) and at

(1 − α) confidence, where α ∈ [0, 1] defines the chosen risk level. In this framework the V aRαt,T is

73Less directly related but still worth mentioning, Bali and Murray (2013)[6], Xing, Zhang, and Zhao
(2010)[95], and Yan (2011)[96] show how option-implied skewness or jump risk measures have significant
explanatory power in pricing the cross-section of asset returns.
74We also performed the same analysis on many other models like the variance-covariance model, the histor-
ical model, the expected weighted moving average model and many different ARCH specifications. Results
confirm the findings of Brownlees et al. (2011). For ease of space we only propose the AR(1)-GJR GARCH
(1,1) estimates but all the additional results are available upon request.
75Those companies with a sufficiently liquid derivative market to implement the option-implied methodology.
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defined as the α-quantile of the return distribution:

VaRα
t,T =

∫ K

−∞
f(St,T )dSt,T = α (27)

where f(St,T ) represents the probability distribution function of the future portfolio values based

on its value today, St, and projected at the future horizon T ≥ t. Because of its forward-looking

nature, the pricing probability distribution of the future portfolio values, f(St,T ), is the most

challenging element to estimate. Although empirically robust and easy to implement, the lack of

convexity and the quantile nature of the estimation makes the VaR an unsatisfactory and unreliable

risk measure in controlling for tail risks. The lack of sub-additivity76 implies that the VaR is not

weakly coherent77 and may discourage diversification.

Also known in literature as expected shortfall, expected tail loss or average value at risk, the CVaR

has been proposed by Artzner et al. (1999)[5] and strongly supported by the Basel Committee as

an alternative to overcome the VaR limitations. The CVaR is defined as the conditional expected

loss determined in eq. (27):

CVaRα
t,T =

1

α

∫ K

−∞
L(St,T )f(St,T )dSt,T L(St,T ) = St − St,T (28)

where L(St,T ) defines the future loss function. Unfortunately, the lack of elicitability (Gneiting

(2011)[56] and Ziegel (2014)[98]) of the CVaR makes it inferior with respect to the VaR when

performing a backtesting analysis78.

3 Linking VaR and CVaR to the option market

This section shows how to derive the option-implied VaR and the CVaR. As a main advantage,

extracting the cross-section of risk measures from the option surface allows one to derive economic-

grounded risk measures.

As defined in equation 27, the VaR is a quantile, a single numeric value determined at a specific

76It is well known that the VaR is sub-additive only if all marginals of the joint distribution are elliptical. This
condition coincides with the assumption underneath the 1952[79] Markowitz’s variance-minimizing portfolio,
which makes the VaR calculations not even required once that the variance is known.
77A risk measure is defined as weakly coherent if it lacks of the positive homogeneity (for details see Carr et
al. (2001)[27]).
78According to Acerbi and Skezely (2015)[? ] the CVaR is only backtestable if the profit and loss distribution
is known.
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threshold over the cumulative distribution of the profit and losses. Under the Arrow-Debreu rep-

resentation and following Breeden and Litzenberger (1978)[24], the first derivative of a put price,

p = e−rT
∫K

0 (K − S)f(S)dS, over its strike price, K, is:

dpt,T
dK

=
d[e−rt,TT

∫K
0 (K − ST )f(St,T )dSt,T ]

dK
(29)

= e−rt,TT
∫ K

0
f(ST )dSt,T (30)

= e−rt,TTF (K) (31)

= e−rt,TTα (32)

where rt,T is the risk-free rate over the time interval (T-t). With no loss of generality, the lower

bound of the integral has been changed from −∞ to 0, reflecting the assumption of holding a

portfolio with limited liability. As defined in section 2, α represents the risk level (i.e. 1 - confidence

level). It follows that at each observation date t, the option-implied VaRα
t,T is the difference between

the initial portfolio value and the strike price of a European put option at level α:

VaRα
t,T = St −Kα

t,T (33)

where Kα
t,T is the strike price of the option contract traded at time t with time to maturity T and

identified by the risk level α. Being alpha proportional to the probability that the portfolio value

is below Kα
t,T , the obtained VaR is naturally forward-looking and directly linked to the perceived

future market’s beliefs. The use of put options is related to the analysis of the left tail of the

distribution. By the same token, the use of call options leads to similar results, but linked to the

right tail of the distribution. It follows that the VaR of a short position is:

VaRα
t,T = Kα

t,T − St (34)

where Kα
t,T is now the strike price identified by α of an European call option79.

Following the same intuition, it is possible to derive the option-implied CVaR. Starting again

79A natural knowledge of the upside risk is of extreme importance in the commodities market, where sellers
(buyers) are mostly affected by the downside (upside) risk.
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from the definition of a put option:

pt,T = e−rt,TT
∫ Kt,T

0
(Kt,T − ST )f(St,T )dSt,T (35)

and setting the today stock value of the loss function as St = Kt,T +St−Kt,T , from equations (27),

(28) and (35) it follows that the option-implied CVaR based on the left tail (downside risk)80 is

CVaRα
t,T = VaRα

t,T + ert,TT
pαt,T
αt,T

(37)

where pα is the price of the put option contract identified by the risk level α. Just relying on the

option market data, the option-implied CVaR equals the sum of the corresponding VaR and an

additional term, which equals the market put price compounded at the risk-free rate and divided

by the probability of that negative scenario, i.e. alpha.

It is worth noting that all the quantities in eq. (33), (34), (36) and (37) are easily accessible

and readily available in the market. The only parameter to be estimated is the risk level αt,T ,

which can be computed either nonparametrically, e.g.: using more or less sophisticated numerical

differentiation approaches, or parametrically, e.g.: by specifying an option pricing model. In this

paper αt,T is derived (i) nonparametrically using the interpolation method of Barone-Adesi and

Elliot (2007)[8] and (ii) parametrically under a Black and Scholes economy. While the parametric

method has the advantage of being less data demanding, the nonparametric one provides more

reliable and accurate results. For the nonparametric approach the time series of alpha at different

risk levels are extracted from the daily cross-section of put/call options. Free of any distributional

assumption, the estimates based on this methodology are denoted as “model-free (MF)” option-

implied risk measures. From equations (29-32), the MF alpha is defined as the average of the first

order condition of three contiguous option prices with maturities equal to the desired investment

80By the same token, the upside risk (right tail) is defined as:

CVaRα
t,T = VaRα

t,T + ert,TT
cαt,T
αt,T

(36)
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horizon T :

αt,T = ert,TT

[
1

2

(
dpUP

t,T

dKUP
+

dpDOWN
t,T

dKDOWN

)]
(38)

= ert,TT
[

1

2

(
p3 − p2

K3 −K2
+

p2 − p1

K2 −K1

)]
(39)

where p3 > p2 > p1 and K3 > K2 > K1. In presence of non equidistant option prices, eq. (39)

can be easily generalized by performing a weighted average. Finally, as defined in eq. (32), αt,T is

corrected for the daily market risk-free rate, rt,T . Two major advantages make the MF approach

numerically efficient and accurate. First, it eliminates the first-order error in the Taylor expansion

of the derivative. Second, it eliminates the first-order error due to the implied volatility changing

across strike prices. The dataset used in our empirical exercise as already sufficiently rich to exclude

the necessity of any interpolation/smoothing of the available data81. Differently from the MF

approach, the option-implied parametric methodology implicitly assumes that the observed option

prices are generated from a Black and Scholes model (henceforth denoted as “B&S”). Following

Black and Scholes (1976)[21], αt,T is the probability that the today option contract will expire in

the money at expiration T , hence:

αt,T = Pr(ST < Kα
t,T )

= N(−d2)

= 1−N

 ln( St
Kt,T

) + (rt,T −
σ2
t,T

2 )(T − t)

σt,T
√

(T − t)

 (40)

The values of αt,T obtained numerically in eq. (39) are compared with the ones derived in eq. (40)

at the same confidence level. As presented in the empirical section, the nonparametric nature of

the MF approach delivers more reliable estimates, while the B&S is a valid alternative in periods

of low liquidity of the option market. Econometrically, the proposed option-implied MF and B&S

risk estimates are obtained from a finite number of option prices, a characteristic which makes the

resulting estimates more accurate with respect to those ones based on the VIX and SKEW indexes,

which require the existence of an infinite amount of put and call options. In real world modelling

such a dense support of prices is rarely available. As a result, the aforementioned measures are

affected by large truncation errors which become larger in the tails estimation, where the liquidity

81Nevertheless,these techniques are easy to implement and might be a solution in case of liquidity problems.
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dries up quicker.

4 Dataset

Supported by the evidence82 that a large class of investors holds the market as a form of investment,

the underlying asset of the analysis is the S&P 500 index. The methodology presented in section

3 is tested on the European options (SPX) traded on the S&P 500 with 7 and 30 days time to

maturity. The 7-days and 30-days maturity83 options are used to estimate the weekly and monthly

risk metrics, respectively. Sharing similar patterns over time, the proposed risk forecasts show that

weekly and monthly options are integrated markets. To propose a broader analysis, the risk levels

used for the weekly time horizons are 1%, 2.5% and 5%, while for the monthly time horizons are

5%, 10% and 15%84. To lighten the notation in sections 5 and 6, the subscript T of the VaR and

CVaR estimates is omitted and assumed to be equal either to 7 or 30 days85 for the weekly and

monthly estimates, respectively.

Starting from January 1, 2012 to August 31, 2015 the sample period of the weekly estimations

consists of 159 weekly observations. While introduced by the CBOE in October 2005, it is only from

the beginning of 2012 that the liquidity of the S&P 500 weeklies is sufficiently high to implement the

option-implied methodology. Although it took a while for the market to become mature, nowadays,

some weekly options (i.e. Fridays, Wednesdays and Mondays expirations) account for more then

40% of the total options daily volume traded on the market86. The monthly analysis allows us to

extend the sample period (2005-2015) and to verify the performance of the estimates during the

2007-2009 financial crisis. Given the monthly expiration convention, the presented risk measures

refer to the third Thursday of each single month. Going from very short, to very long (LEAPS)

82As reported by different surveys, a big fraction of U.S. investors relies on indexing policies for investment.
Analyzing 60 years of market data, Bogle (2005)[22] shows how, since 2000, index funds account for roughly
one-third of equity fund cash inflows and represent about one-seventh of the total amount of equity fund
assets.
83The VIX, probably the most famous options-based risk measures, also has a 30 days time horizon. Its port-
folio composition and the auction system at the base of the index determination make this index not totally
reliable. Among the others, possible truncation, discretization, expansion, and maturity interpolation errors
(Jing and Tian (2007)[66]) and manipulations (Griffin and Shams (2018)[59]) are under deep investigation.
84While omitted for space reason we have performed the analysis over the entire set of risk levels - from 1%
to 15% - and for both time horizons. Results are available upon request to the authors
85It will be made clear if we will refer to a short (7 days) or a long (30 days) time horizon estimation.
86The great success of the S&P 500 weekly options convinced the CBOE to propose other similar products,
e.g.: new even shorter expirations (2/3 days) and new underlying assets (weekly VIX). For more details, see
the CBOE website.
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time horizons, option market data allows for a very natural and broad risk analysis at different

time horizons87. All contracts have strike price intervals of 5$ and 25$ for at-the-money and out-

the-money (ATM and OTM) options and deeply OTM options, respectively. To discard possible

mispricings, prices violating classical no-arbitrage lower bounds are excluded from the dataset:

pt,T ≥ max[Kt,T e−rt,TT −St + dt, 0] (41)

ct,T ≥ max[St −Kt,T e−rt,TT −dt, 0] (42)

where dt is the continuously compounded dividend at time t.

From the time series of the daily zero coupons, the curve of the daily risk-free interest rates is

obtained by numerical interpolation. For each time-to-maturity (T − t), the previous (T − t)− and

next (T − t)+ period zero-coupon whose values straddle the time (T − t) are linearly interpolated.

Finally, the time series of S&P 500 index dividend yield from January 1, 2012 to August 31, 2015

(weekly) and from January 1, 2005 to August 31, 2015 (monthly) are used to compute the ex-

dividend spot index level.

To validate the option-implied VaR and CVaR, the same risk measures are compared with the

statistically-based VaR and CVaR derived using the Filtered Historical Simulation approach. For

the GARCH estimations used in the FHS approach, the 2005-2015 time series of closing prices (top

part of figure 11) is extended in order to include the previous 15 years of observations and the

corresponding log returns are derived (bottom part of figure 11). All data are from OptionMetrics.

5 Model-free (MF) option-implied CVaR and VaR

Following the methodology presented in section 3, the weekly and monthly option-implied MF

CVaR and VaR are derived based on the left and right tails of the distribution. For the entire

analysis the risk levels are set at 1%, 2.5% and 5% (5%, 10% and 15%) for the weekly (monthly)

estimates. In this section the time series of αt,T is estimated nonparametrically as in eq. (39).

The weekly estimates do not substantially vary across the whole sample period, except for a high

spike on August 2015, in correspondence of the so-called China’s ”Black Monday” which carried

a correction of about 10% on the S&P 500 value. As concerns the monthly estimates, during the

87While omitted for space reason, our analysis has been performed also at very short (2 days) or longer than
30 days time horizons. Results are available upon request to the authors.
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financial crisis period (from June 2007 to December 2009, according to the NBER) the MF CVaR

and VaR exhibit several pronounced upward spikes across all risk levels, thus reflecting the negative

outlook of the US market in that period. The CVaR is always larger than the VaR and the distance

between the two measures, defined as ∆α,t = CVaRα,t−VaRα,t, represents the future market beliefs

with respect to the negative scenario occurring with α% probability. The decomposition of eq. (37)

shows that ∆α,t represents the compounded put option price divided by the corresponding α level.

This quantity is highly sensitive to the future market expectations. In periods of market turmoil,

for example, investors are more risk averse and the prices of put options are likely to increase, thus

implying a larger difference between the CVaR and VaR estimates. The upper part of table 17

and 18 report basic statistic information about the weekly and monthly ∆α,t, respectively. As the

option-implied methodology strongly relies on the liquidity of the option market, the upper part of

table 15 reports the proportion of missing values for each risk level.

Model-Free approach α = 1% α = 2.5% α = 5%
% missing observations (Left) 1.26 0.00 0.00

% missing observations (Right) 1.88 1.25 18.23
Black and Scholes approach α = 1% α = 2.5% α = 5%

% missing observations (Left) 0.00 0.00 0.00
% missing observations (Right) 0.00 0.00 2.52

Table 15: Proportion of missing observations at α = 1%, 2.5%, 5% under the model free
(MF) methodology (upper part) and the Black and Scholes approach (lower part) for both
the left and right tails of the distribution.

Over the sample period under consideration the liquidity of weekly put option contracts (1st

row) is always satisfactory as the proportion of missing estimates is above 1% only for the lowest

risk level. The same analysis is then repeated using call options, thus assuming a portfolio of

Model-Free approach α = 5% α = 10% α = 15%
% missing observations (Left) 6.25 9.38 13.28

% missing observations (Right) 9.38 7.81 12.50
Black and Scholes approach α = 5% α = 10% α = 15%

% missing observations (Left) 0.78 0.00 3.13
% missing observations (Right) 1.56 1.56 4.69

Table 16: Proportion of missing observations for α = 5%, 10%, 15% extracted with the model
free (MF) methodology (upper part) and the Black and Scholes approach (lower part) for
both the left and right tails of the distribution.
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short positions. The derivation of the risk measures based on right tail of the distribution has

Left Tail Model-Free Black and Scholes
CVaR-VaR Min Max Mean Median Min Max Mean Median
α = 1% 2.00 122.51 38.13 36.66 14.95 56.61 26.30 25.23
α = 2.5% 3.00 140.00 41.44 38.00 13.57 86.95 22.92 21.44
α = 5% 14.37 123.00 32.49 30.00 12.40 76.48 20.26 18.67

Right Tail Model-Free Black and Scholes
CVaR-VaR Min Max Mean Median Min Max Mean Median
α = 1% 7.50 610.02 25.48 20.00 5.03 30.01 8.44 7.97
α = 2.5% 6.66 53.75 14.61 13.75 11.56 69.16 28.53 27.16
α = 5% 6.66 54.44 12.46 11.70 21.26 84.27 38.57 36.54

Table 17: Summary statistics of ∆α=CVaRα-VaRα at α = 1%, 2.5%, 5% under the Model-
Free and the Black and Scholes methods for the left (upper portion) and right (lower portion)
tails of the distribution.

two interesting properties. First, it provides a benchmark for the estimates obtained using the left

one. Second, it allows to make a density free inference on the degree of tail asymmetry in the

underlying return distribution. Based on the right tail of the distribution, both the CVaR and

the VaR are decreasing in the risk level and display similar patterns to the corresponding metrics

based on the left tail, both on a weekly and monthly basis. However, keeping α fixed, both the

Left Tail Model-Free Black and Scholes
CVaR-VaR Min Max Mean Median Min Max Mean Median
α = 5% 2.36 150 55.34 49.42 22.44 82.07 40.35 40.24
α = 10% 27.35 142.35 56.08 54.55 22.18 84.99 41.65 41.17
α = 15% 28.51 129.45 59.48 49.43 23.22 88.03 43.14 42.66

Right Tail Model-Free Black and Scholes
CVaR-VaR Min Max Mean Median Min Max Mean Median
α = 5% 11.94 114.24 24.78 22.51 10.07 75.80 20.84 19.05
α = 10% 11.53 117.68 23.67 21.36 11.79 83.53 24.01 21.58
α = 15% 12.31 59.94 24.23 23.03 13.22 90.35 26.94 24.48

Table 18: Summary statistics on ∆α=CVaRα-VaRα for α = 5%, 10%, 15% under the Model-
Free and the Black and Scholes methods for the left (upper portion) and right (lower portion)
tails of the distribution.

weekly and monthly MF VaR and CVaR based on the right tail are almost always below those

obtained from the left one. This result can be motivated by the shape of the pricing distribution.

As for the left tail, the second rows of table 15 and 16 and the left lower portion of table 17 and
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18 report the proportion of missing data and the summary statistics on ∆α,t for the weekly and

monthly estimates, respectively. In almost all cases the number of missing observations is larger

compared to the one in the left tail, thus confirming the higher degree of liquidity of OTM put

options compared to OTM call contracts. It is also worth noting that, for each α level, the average

∆α,ts are much lower than the ones based on the left tail. For α fixed, this discrepancy is driven by

the price of the identified option, thus confirming that OTM call options are, on average, cheaper

than the corresponding OTM put ones.

6 Black and Scholes (BS) option-implied CVaR and

VaR

In this section we repeat the same analysis, but under the assumption that the observed option

prices are generated by a Black and Scholes pricing model. As a consequence, the parametric α

is derived as in eq.(40). First, for both put and call options, the option-implied volatilities are

backed-out by numerical inversion from the daily S&P 500 option market prices:

σIVt = f(St,Kt, rt, qt, τ, pt/ct) (43)

where St represents the time t price of the S&P 500 Index, Kt is the time t strike price, rt the daily

risk-free rate, qt the time t dividend, T is the time-to-maturity (which is always fixed to 7 or 30

days) and pt/ct the market prices for European put (pt) and call (ct) options, respectively.

Then, the probability of the underlying asset of being below a predetermined threshold Kt is com-

puted as in equation (40). The same holds for the call options, with Pr(ST > Kα
t,T ) = N(d2). Once

that the time series of αt is derived, the weekly and monthly B&S VaR and CVaR are computed as

in equations (33) and (37). The biggest advantage of this approach, as for most of the Black and

Scholes results, is the existence of a closed-formula solution for the value of the threshold α. Not

requiring any contiguous option price for the interpolation, each alpha value can be derived as soon

as there is at least one market price. The lower part of table 16 reports the proportion of missing

values for the entire sample. As expected, the proportion of missing data across all α specifications

is almost zero and always much smaller than that obtained under the MF methodology (upper

part of table 16). The higher stability of the B&S values conflicts with the accuracy of the final

results. Indeed, the B&S paradigm implies larger estimation errors when compared with the MF
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method. A reduced smile effect is remarkable into the deepest area of the tails, where the B&S

model provides approximative estimates. Among the others, these effects can be summarized by

the difference of alpha under the two methodologies, Γt = αMF
t − αBS

t . Table 19 shows summary

statistics of Γt for both the weekly (upper part) and monthly (lower part) observations. For both

Γt Mean Median Min Max
Left tail (W) -0.0156 -0.0072 -0.2026 0.2225
Right tail (W) 0.0201 0.0113 -0.1790 0.2513
Left tail (M) -0.0035 -0.0096 -0.3390 0.2430
Right tail (M) 0.0284 0.0229 -0.2027 0.2481

Table 19: Summary statistics on Γt = αMF
t − αBS

t when using options with weekly(W) and
monthly(M) time to maturity.

time horizons and tails, the behaviour of the estimates is overall comparable both in terms of mean

and median values. As expectable, the min-max range is larger, thus confirming the non-normality

of the dataset. Interestingly, also the highest and lowest statistical values show a similar behaviour

across the sample for both put and call options and for both short and long time horizons.

Graphically, the evolution over time and risk level of the weekly VaR and CVaR estimates confirm

most of the MF results, but at different magnitudes. At α = 1%, the B&S VaR and CVaR present

a few large spikes, which are motivated by the high (possibly irrational) put prices on that dates.

No similar spikes are detected at other risk levels, but for the very last one (end of 2015), which

is present in all graphs (although at different magnitudes). The B&S VaR and CVaR are accurate

risk predictors over the financial crisis. Indeed, the NBER recession period from June 2007 to

December 2009 coincides with the highest VaR and CVaR values. It is worth noting how, also

with a parametric α, option prices are able to forecast the quiet pre-crisis period and anticipate the

subsequent crisis. As a confirmation, the biggest spike within the recession area represents the pre

and post Lehman Brother failure (September 15, 2008). The subsequent jumps correspond to the

downward S&P 500 movements of June 2010 (S&P 500 down of $200 at $1022.58 from $1217.28 of

two months before) and the period of turmoil from July to November 2011 during which the S&P

500 index dropped from above $1300 losing more than $200. At the rightmost part of the figure,

also the crisis of Summer 2015 is well identified. Similar results hold for the estimates based on the

right tail of the distribution.

Compared with the MF results, while the mean and median values of the weekly ∆s are compa-

rable, the min-max range substantially differs. Keeping alpha and the compounding effect fixed,
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the two methodologies work differently into the tails of the distribution, with the B&S approach

that deals with higher values. As expectable, this results confirms that the MF approach better

estimates the tails of the distribution, while on average also the parametric B&S approach might

work well.

Both the weekly and monthly estimates, once compared with the nonparametric approach (pre-

sented in the right part of tables 18 and 17) show, as expectable, a more “conservative” behaviour.

At most levels in fact the extreme values are less dispersed and the central moments are lower than

non-parametric results. At all levels, values that differ from the log-normal distribution implied

by the Black and Scholes approach are evidence in favour of a non-parametric and non-normal

distribution of returns, thus justifying the use of a data driven MF approach. For the monthly

estimates, as αt grows, the B&S VaR and CVaR estimates decrease and the distance between the

two measures, ∆, increases.

7 Statistically-based Risk Estimations

Economically, the main difference between the option-implied and the statistically-based historical

risk measures stems from the risk premium. It is well known that the risk premium is unobserv-

able and that its estimation is still a very open debate in the finance community (Damodaran

(2016)[36]). Indeed, investors are generally not risk neutral and the ex-ante quantification of their

risk preferences is not a trivial task to perform, as their subjective probabilities are unobservable

quantities. It follows that, under the physical measure, the absence of a reliable methodology to

estimate the risk premium is the main drawback faced by any risk metric. While the difference

between the risk neutral and the physical measures is theoretically well known, their distance is

indeed small and almost negligible at short time horizons. In fact, by definition, the pricing kernel

converges to unity as time to expiration shrinks:

S = erT q · 1 = eRT p · 1 (44)

where S is the risk-neutral expected payoff both of a contingent claim, q, and of the relative

physical measure, p. If the no arbitrage assumption applies, the risk-neutral value grows at the

risk-free rate, r, whereas the physical value grows at the risk-adjusted risk-free rate, R. As the

time to maturity T approaches zero, both quantities converge to the same state price density, S;
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conversely, when T increases their divergence increases at the rate (R − r)T . The impossibility to

directly observe the physical measure and the risk premium makes the estimation of the pricing

kernel rather problematic. If follows that, as long as T is not too big, adopting a model-free risk-

neutral approach, which avoids any numerical implementation and parametrization to model future

dynamics of the underlying asset, may be a convenient choice. Supportive evidence is provided

in the work of Martin (2017)[80]. Under the physical measure the probability of observing a

crash, αp ∝
[
∂p
∂K −

p(K)
αFt

]
, is always lower than the corresponding probability under the risk neutral

measure, αq ∝ ∂p
∂K . As a result, at a given risk level the identified option under the physical measure

has a higher strike compared to the one identified under the risk neutral one, thus making the VaR

and CVaR estimates under the physical measure less conservative. We test the above assertion by

comparing the option-implied VaR with the statistically-based VaR calibrated on an asymmetric

Glosten, Jagannathan and Runkle (1993)[55] AR(1) - GARCH model using FHS innovations.

To capture the clustering and the heteroskedastic feature shared by the market returns, an

asymmetric autoregressive model with filtered historical simulation (FHS) innovations is fitted to

the historical log-returns of the S&P 500 index. Starting from January 20, 2005 the estimation

window goes back up to 10 years of daily observations (January 2, 1996 for a total of 2279 daily

observations, see figure 11)88. The GJR-GARCH model is defined as:

log
St
St−1

= rt = a+ ρrt−1 + εt (45)

εt =
√
σ2
t zt (46)

σ2
t = ω + βσ2

t−1 + αε2t−1 + γIεt−1<0ε
2
t−1

where Iεt−1<0 describes the indicator function accounting for the leverage effect (Black (1976)[19]).

Table 20 shows summary statistics on the estimated physical parameters θt = (ωt, αt, βt, γt) ob-

tained by performing a Gaussian Pseudo Maximum Likelihood (PML) estimation. Among the wide

family of autoregressive specifications, the choice of using an AR(1) GJR GARCH (1,1) model is

motivated by its capacity of fitting the S&P 500 data well (see Ghysels et al.(1996)[53] and Christof-

fersen and Jacobs (2004)[32]) and by the results of the Lagrange Multiplier ARCH test by Engle

(1984)[48]89. With no loss of generality, the same approach can be also performed under other

88The Portmanteau test of Ljung and Box and the Lagrange Multiplier (MA) ARCH test present evidence
that the proposed model and the number of observations used are robust.
89Results are omitted but available upon request.
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Figure 11: Daily closing prices and log returns of S&P 500 Index over the period 1996-2015.

ARCH specifications. From the set of estimated physical parameters, i90 log-returns are simulated:

Ŝi,t = Stexp

(
Drift−

σ̂2
t,sim

2

)
dt+ σ̂2

t,simdWt (47)

where St represents the S&P 500 price at day t, the drift input accounts for the risk premium,

σ̂2
t,sim is the simulated stochastic variance, dt is fixed at one day and dWt represents the canonical

Brownian motion. As anticipated above, the physical measure strongly depends on the risk pre-

mium estimation, which directly impacts the drift. Following Merton (1980)[84], the drift is set

at daily fixed percentages, namely 4%, 6% or 8%. From the estimated log-returns the simulated

probability density functions (pdf) and cumulative density functions (cdf) are extracted by means

90Where i represents the number of simulations. The choice of this parameter is subjective and constrained
by the available computing power.
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Year ω α β γ Persistence
2005 2.43e-06 2.20e-13 0.91 0.15 0.98
2006 1.56e-06 1.16e-13 0.92 0.15 0.99
2007 1.16e-06 3.35e-10 0.93 0.12 0.99
2008 1.24e-06 1.24e-13 0.93 0.12 0.99
2009 1.21e-06 1.37e-13 0.93 0.13 0.99
2010 1.15e-06 1.24e-13 0.93 0.12 0.99
2011 1.25e-06 1.10e-13 0.93 0.12 0.99
2012 1.68e-06 2.45e-10 0.91 0.14 0.98
2013 1.85e-06 9.54e-14 0.91 0.15 0.98
2014 2.08e-06 1.43e-13 0.90 0.17 0.98
2015 2.37e-06 2.45e-13 0.90 0.15 0.98

Table 20: Yearly average values of the physical GARCH parameters θt = f(ω, α, β, γ) cal-
ibrated each third Thursday of the month over the sample period from January 2005 to
December 2015.

of kernel regressions91. Over the sample period the distance between CVaR and VaR is more stable

than under the option-implied approaches, thus denoting a lower sensibility for changing market

scenarios. Indeed, being linked to a stream of past returns, the empirical innovations and the

volatility of the asymmetric GARCH model slowly react to market changes.

8 Backtesting

To test the validity of our estimates we perform different types of backtests. Backtesting refers

to the validation of an estimated risk measure based on realized losses. The chosen backtesting

measures for the VaR are: the number of times that the options expire in the money, the Binomial

test (Bin), the Traffic Light (TL) test, the Proportion Of Failure (POF) test, the Time Until

First Failure (TUFF) test, the Conditional Coverage Independence (CCI) test, the Conditional

Coverage (CC) test, the Time Between Failure Independence (TBFI) test and the Time Between

Failure (TBF) test.

At a specified α level,
∑N

t=1 I[ST<Kα,t] and
∑N

t=1 I[ST>Kα,t] deliver the number of option contracts

expiring ITM based on the left and right tail of the distribution, respectively. where ST is the price

of the underlying asset at the maturity of the option contract (i.e. T = 7, 30 days for weekly and

monthly estimates, respectively), Kα,t is the strike price of the option contract identified by the

risk level α set at date t, I[·] is the indicator function and N=128 is the total number of observation

91Extra details concerning the estimation in Barone Adesi et al. (2008)[9] and Sala et al. (2016)[92].
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dates. For all tests: R means rejection and A acceptance. The only exception is the output of the

TL test which has three possible outcomes (details follow). The Binomial test of Jorion (2011)[68]

compares the observed with the expected number of exceedances through the following test statistic:

Bin =
I −Np√
Np(1− p)

(48)

where I represents the number of exceedances observed, p is a positive value between 0 and 1 and

is defined as p = 1− α, and N is the total number of observations.

Proposed by the Basel Commitee (1996)[86], the Traffic Light test compares the number of observed

and expected exceedances. Given a number of exceedances, I, this test computes and ranks the

probability of observing up to I exceedances. While the Binomial test - as well as all other tests -

only gives two mutually exclusive results, this test classifies risk into three regions: red, yellow and

green (R, Y and G respectively92).

The POF and TUFF refer to the Proportion Of Failure and the Time Until First Failure tests of

Kupiec (1995)[73]. Starting from the Binomial test and adding a likelihood ratio test, the POF test

suggests that the VaR estimates can be rejected if the likelihood ratio exceeds a given critical value.

Asymptotically distributed as a chi square with one degree of freedom, the POF test statistic is

defined as:

POF = −2Log

(
(1− p)N−IpI(

1− I
N

)N−I ( I
N

)I
)

(49)

Still based on the likelihood ratio - but with a geometric distribution - the TUFF test checks when

the first exceedance has occurred through the following statistic:

TUFF = −2Log

(
p(1− p)d−1(
1
d

) (
1− 1

d

)d−1

)
(50)

where d accounts for the number of days until the first rejection. Also this statistic is asymptotically

distributed as a Chi squared distribution with one degree of freedom.

The CCI and CC refer to the Conditional Coverage Independence and the Conditional Coverage

of Christofferesen (1998)[29]. Both tests check if the observed failures are among them dependent

between consecutive days. Asymptotically distributed as a χ2 with one degree of freedom, the CCI

92The red region is linked to a number of exceedances whose probability goes over 99.9%, the probability of
the yellow are goes from 99.9% up to 95% while the green area refers to all values below the yellow area.
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test statistic is defined as:

CCI = −2Log

(
(1− π2)dnn+dyn π

dny+dyy
2

(1− π0)dnnπ
dny
0 (1− π1)dynπ

dyy
1

)
(51)

where all powers account for the different combinations of d days with no failures, n, or with

failures, y, thus producing four possible combinations. The probabilities are so defined:

• π0: probability of having a time t failure given no t− 1 failure: π0 =
dny

(dnn+dny)

• π1: probability of having a time t failure given a t− 1 failure: π1 =
dyy

(dyn+dyy)

• π2: probability of having a time t failure: π2 =
(dny+dyy)

(dnn+dny+dyn+dyy)

The CC test is defined as:

CC = POF + CCI (52)

and is asymptotically distributed as a chi square with two degrees of freedom.

The TBFI and TBF refer to the Time Between Failure Independence and the Time Between Failure

of Haas (2001)[61]. While the TUFF checks only for the first exceedance, thus possibly leaving

important information out of the analysis, the TBFI of Haas (2001)[61] considers all exceedances.

Asymptotically distributed as a chi square with I degrees of freedom, the TBFI test is defined as:

TBFI = −2
I∑
i=1

Log

 p(1− p)di−1(
1
di

)(
1− 1

di

)di−1

 (53)

As a crucial modification with respect to the TUFF test, d is enriched with the subscript i, which

accounts for the number of exceedances between i and i− 1. As for the CC test, the POF can be

used jointly with the TBFI test to define the TBF statistic:

TBF = POF + TBFI (54)

which is asymptotically distributed as a chi square with I + 1 degrees of freedom.

As concerns the CVaR, three backtests are performed. First, the average predicted excess loss
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beyond the VaR based on the left (eq. (55)) and right (eq. (56)) tail of the distribution:

Lexp =
1

N

N∑
t=1

[CVaRα,t −VaRα,t] I[St+T<Kα,t] Left tail (55)

Lexp =
1

N

N∑
t=1

[CVaRα,t −VaRα,t] I[Kα,t>St+T ] Right tail (56)

is compared with the average realized loss conditional on the observation of a VaR exceedance,

Lreal = 1
N

∑N
t=1 [−(ST − St)−VaRα,t] I[St+T<Kα,t]. When computing the expected excess loss,

the choice of performing a conditional test has the objective to remove the effect of variation

and estimation error in the VaR through time. The mean conditional expected excess loss is

compared with the mean conditional realized loss exceeding the VaR by conducting a nonparametric

MannWhitney U93 test (Mann and Whitney (1947)[78]) on the difference between the two means.

If the null hypothesis of a zero difference between the two means cannot be rejected, the option-

implied CVaR forecasts future losses in a consistent way.

Second, following McNeil et al. (2015)[81], the null of a correctly calibrated CVaR is tested against

the alternative of a risk underestimation through the following calibration function:

Kt = h
(α)
1 (V aRα,t, CV aRα,t, Lt) =

(
Lt − CV aRα,t
CV aRα,t

)
· It (57)

where VaRα,t and CVaRα,t are the time t VaR and CVaR at the risk level α, Lt is the realized

loss and It is the indicator function of a VaR exceedance. Under the null, the expected value of

Kt conditional to the information up to time (t − 1), E(Kt|Ft−1), is equal to zero. Under the

alternative, E(Kt|Ft−1) is strictly positive, thus suggesting that the CVaR has a negative bias.

Third, since the VaR and the CVaR are jointly elicitable (see Lambert (2008)[74] and Fissler et al.

(2015)[49]), the joint calibration function:

St = h
(α)
2 (V aRα,t, CV aRα,t, Lt) =

It
CV aRα,t

− α (58)

enables to test the null hypothesis of a correct joint calibration of the VaR and CVaR. Rejection of

the null implies that the VaR and/or the CVaR underestimate risks. As for Kt, St is expected to

behave as a martingale difference (i.e. E(Kt|Ft−1) = 0) under the null and to be strictly positive

93In risk management, forecasted losses smaller/larger than the realized ones are both undesirable. While
the former ones imply a risk underestimation and hence an inadequate capital protection, the latter ones
induce an inefficient allocation of the resources.
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under the alternative. Table 21 presents basic results for the nine aforementioned VaR tests (Bin,

TL, POF, TUFF, CCI, CC, TBFI and TBF). Based on both tails of the distribution, the upper

and lower parts of the table report the acceptance/rejection results for the weekly and monthly

VaR, respectively. As shown in the upper part of table 21, the weekly MF VaR based on the

Weekly VaR estimates
Model α Bin TL POF TUFF CCI CC TBFI TBF

MF 1% A/R G/R A/R A/A A/A A/R A/R A/A
MF 2.5% A/R G/Y A/R A/A A/A A/R A/A A/A
MF 5% A/A G/G A/A A/A A/A A/A A/A A/A

Monthly VaR estimates
Model α Bin TL POF TUFF CCI CC TBFI TBF

MF 5% A/A G/G A/A A/A A/A A/A A/A A/A
MF 10% R/A G/G R/A A/A A/A A/A A/A A/A
MF 15% A/A G/G A/A A/A A/A A/A A/A A/A

Table 21: Backtesting results of the Model Free (MF) VaR computed for the left (right) tail
using put (call) options.The upper (lower) part of the table refers to the weekly (monthly)
estimates. On both horizons, the first/second values refer to the test results on the MF VaR
based on the left/right tail of the distribution.

left tail of the distribution perfectly performs across all the proposed tests, thus showing that the

MF approach delivers accurate results over short investment horizons and at multiple risk levels,

namely 1%, 2.5% and 5%. To further investigate over these results, tables 22, 23 and 24 present

detailed statistics on all the proposed tests. In all cases the corresponding p-values are almost

MF VaR Traffic Light Probability Type I Increase
α = 5% Green 0.0981 0.95 0.00
α = 2.5% Green 0.2473 0.91 0.00
α = 1% Green 0.2112 1.00 0.00

Table 22: Detailed backtesting results of the Traffic Light test for the MF VaR based on the
left tail of the distribution at short (weekly) time horizon.

always substantially larger that the threshold level 5%, thus corroborating the soundness of the MF

estimates. When α=5% two exceedances occur at close dates at the end of 2014, thus potentially

undermining the time independence among the VaR exceedances. Nevertheless, the detailed results

of the independence (CCI) test (see first three rows of table 24) show that the p-values (4th column)

are always larger than 5%. As a consequence, the null of time-independent exceedances cannot be

rejected at 95% confidence level. The upper left part of table 25 presents the backtesting results on
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MF VaR Bin Z Score P Value Test Level
α = 5% Accept -1.4236 0.077281 0.95
α = 2.5% Accept -0.9936 0.1602 0.95
α = 1% Accept -1.2553 0.1047 0.95

MF VaR POF Likelihood Ratio P Value Test Level
α = 5% Accept 2.4559 0.11708 0.95
α = 2.5% Accept 1.2023 0.27286 0.95
α = 1% Accept 3.1357 0.0766 0.95

MF VaR TUFF Likelihood Ratio P Value Test Level
α = 5% Accept 3.5780 0.0585 0.95
α = 2.5% Accept 1.8368 0.1753 0.95
α = 1% Accept – – 0.95

MF VaR CC Likelihood Ratio P Value Test Level
α = 5% Accept 2.6651 0.2638 0.95
α = 2.5% Accept 1.2539 0.5342 0.95
α = 1% Accept 3.1357 0.2085 0.95

MF VaR POF Likelihood Ratio P Value Test Level
α = 5% Accept 2.4559 0.1171 0.95
α = 2.5% Accept 1.2023 0.2728 0.95
α = 1% Accept 3.1357 0.0766 0.95

Table 23: Detailed backtesting results of the Bin, TUFF, CC an POF tests for the MF VaR
based on the left tail of the distribution at short (weekly) time horizon.

MF VaR CCI Likelihood Ratio P Value N00 N10 N01 N11 Test Level
α = 5% Accept 0.2091 0.6474 149 4 4 0 0.95
α = 2.5% Accept 0.0516 0.8203 158 2 2 0 0.95
α = 1% Accept 0 1 155 0 0 0 0.95

MF VaR TBFI Likelihood Ratio P Value Min/Max Q1 Q2 Q3 Test Level
α = 5% Accept 6.7574 0.1493 3/83 18 35 60 0.95
α = 2.5% Accept 1.8478 0.39697 36/120 36 78 120 0.95
α = 1% Accept – – –/– – – – 0.95

Table 24: Detailed backtesting results of the CCI and TBFI tests for the MF VaR based on
the left tail of the distribution at short (weekly) time horizon.

the weekly MF CVaR based on the left tail of the distribution. Being conditional on the occurrence

of a VaR exceedance, the p-values of the Mann-Whitney test (ρMW ) and of the two tests proposed

by McNeil (ρK and ρS) are not available at α = 1%, as no VaR exceedances occur at the lowest risk

level. At α = 2.5% and 5%, the results of all tests suggest that the MF CVaR estimates provide

good forecasts of future risks.
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Left tail Weekly Model-Free Weekly Black and Scholes
% It Lexp Lreal ρK ρS % It Lexp Lreal ρK ρS

α=1% 0.00 – – – – 0.00 – – – –
α=2.5% 1.26 26.77 10.89 0.88 1.00 0.00 – – – –
α=5% 2.52 29.61 21.16 0.85 1.00 0.63 19.46 44.11 0.10 1.00

Right tail Weekly Model-Free Weekly Black and Scholes
% It Lexp Lreal ρK ρS % It Lexp Lreal ρK ρS

α=1% 6.29 23.37 16.54 0.66 0.01 1.26 6.12 29.01 0.13 0.23
α=2.5% 6.29 12.51 24.04 0.08 0.03 5.03 26.33 17.09 0.85 0.12
α=5% 5.66 10.67 21.64 0.03 0.18 6.92 39.91 19.79 0.98 0.41

Left Tail Monthly Model-Free Monthly Black and Scholes
% It Lexp Lreal ρK ρS % It Lexp Lreal ρK ρS

α = 5% 1.56 43.22 46.26 0.35 1.00 0.78 38.84 46.81 0.11 1.00
α = 10% 4.68 50.90 46.77 0.43 1.00 2.34 44.32 52.38 0.14 1.00
α = 15% 6.25 55.99 30.42 0.92 1.00 7.03 43.75 41.34 0.41 1.00

Right Tail Monthly Model-Free Monthly Black and Scholes
% It Lexp Lreal ρK ρS % It Lexp Lreal ρK ρS

α = 5% 2.34 30.07 55.96 0.87 1.00 3.91 22.30 26.11 0.12 0.72
α = 10% 4.68 26.92 41.73 0.96 1.00 5.46 24.73 57.14 0.15 1.00
α = 15% 6.25 23.09 37.79 0.88 1.00 7.81 28.93 55.86 0.09 0.96

Table 25: The upper portion of the table reports the backtesting results of the weekly option-
implied VaR and CVaR under the MF and B&S methodology at α = 1%, 2.5%, 5% based
on the left and right tail of the distribution. The lower portion of the table reports the
backtesting results of the monthly option-implied VaR and CVaR under the MF and B&S
methodology at α = 5%, 10%, 15% based on the left and right tail of the distribution.

On a monthly basis, figure 12 indicates with black stars the dates on which a monthly VaR ex-

ceedance occurs in the left tail under the model-free methodology. Tables 26, 27 and 28 present

detailed statistics on the tests proposed in table 21. At a monthly horizon, even taking into account

the number of missing data and for both tails, the proportion of exceedances is always below the cor-

responding α level (see the first three rows in the 1st column of table 25). For α = 5%, 10%, 15%, the

MF VaR Traffic Light Probability Type I Increase
α = 5% Green 0.0666 0.9815 0
α = 10% Green 0.0195 0.9929 0
α = 15% Green 0.0603 0.9686 0

Table 26: Detailed backtesting results for the Traffic Light test for the MF VaR based on
the left tail of the distribution at long (monthly) time horizon.

proportion of exceedances equals 1.56%, 4.68% and 6.25% for the left tail and 2.34%, 4.58%, 6.25%
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Figure 12: VaR exceedances on the left tail monthly MF VaR at α=5%, 10% and 15%.

for the right one. The proposed VaR risk measures are then conservative forecasts of the potential

losses. This result is reflected in the p-values of the Binomial and POF tests (see the first six

rows in the 4th column of table 27). The discrepancy between the proportion of exceedances and

their corresponding theoretical values drives down the p-values of the Binomial and POF tests,

whose null hypothesis are rejected when the risk level is 10%. Conversely, at α = 5% and 15%

the difference between the proportion of realized and theoretical exceedances is not statistically

significant and the null of correct coverage cannot be rejected at 95% confidence level. According

to all the other tests and across each risk level, the monthly MF VaR correctly predicts risk. The

lower left part of table 25 presents the backtesting results on the monthly MF CVaR based on the

left tail of the distribution. When α equals 5% and 10%, the null hypothesis cannot be rejected

at 99% confidence level. The estimated CVaR thus provide an adequate capital protection. Con-

versely, at α = 15% the null is rejected. Being a two-tailed test, the MannWhitney U test does not

provide information whether the CVaR is under/over-estimating the actual losses. At α = 15%,

the difference between the sample means of the expected and the realized losses is largely positive

(i.e. 25.57$). This result implies that the option-implied CVaR is a conservative risk metric and is

overestimating future losses at 95% confidence level. The right upper part of table 25 reports the
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MF VaR Bin Z Score P Value Test Level
α = 5% Accept -1.6189 0.05274 0.95
α = 10% Reject -2.0647 0.01947 0.95
α = 15% Accept -1.638 0.05071 0.95

MF VaR POF Likelihood Ratio P Value Test Level
α = 5% Accept 3.4707 0.0624 0.95
α = 10% Reject 5.3160 0.0211 0.95
α = 15% Accept 3.0313 0.0816 0.95

MF VaR TUFF Likelihood Ratio P Value Test Level
α = 5% Accept 1.6679 0.1965 0.95
α = 10% Accept 0.2846 0.59367 0.95
α = 15% Accept 0.6252 0.4291 0.95

MF VaR CC Likelihood Ratio P Value Test Level
α = 5% Accept 3.5415 0.1702 0.95
α = 10% Accept 5.7666 0.0559 0.95
α = 15% Accept 4.1933 0.1228 0.95

MF VaR POF Likelihood Ratio P Value Test Level
α = 5% Accept 3.4707 0.0625 0.95
α = 10% Accept 5.3160 0.0211 0.95
α = 15% Accept 3.0313 0.0816 0.95

Table 27: Detailed backtesting results of the Bin, TUFF, CC an POF tests for the MF VaR
based on the left tail of the distribution at long (monthly) time horizon.

MF VaR CCI Likelihood Ratio P Value N00 N10 N01 N11 Test Level
α = 5% Accept 0.0708 0.7902 111 2 2 0 0.95
α = 10% Accept 0.4506 0.5020 106 5 5 0 0.95
α = 15% Accept 1.1620 0.2811 88 8 8 2 0.95

MF VaR TBFI Likelihood Ratio P Value Min/Max Q1 Q2 Q3 Test Level
α = 5% Accept 1.8394 0.3986 13/57 13 35 57 0.95
α = 10% Accept 0.9089 0.9695 12/18 12 13 16.5 0.95
α = 15% Accept 12.4840 0.254 1/17 2 4 10 0.95

Table 28: Detailed backtesting results of the CCI and TBFI tests for the MF VaR based on
the left tail of the distribution at long (monthly) time horizon.

backtesting results of the weekly B&S CVaR based on the left and right tails. At α = 1% and 2.5%,

no exceedances occur; hence, the conditional CVaR backtests deliver no results. At α = 5%, the

proportion of the exceedances (0.63%) is much lower than its theoretical value (5%). The expected

excess losses are substantially lower than the realized ones, thus suggesting that the B&S CVaR

may underestimate risk. Nevertheless, being this conclusion based on just one VaR exceedance, the
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statistical power is not sufficiently high to assess that in general the weekly B&S CVaR forecasts

risks in an inadequate way.

The right lower part of table 25 reports the same backtesting statistics for the B&S CVaR and for

both tails of the distribution at a monthly and weekly investment horizon. On a monthly hori-

zon, figure 13 graphically shows when the VaR exceedances occur in the left tail under the B&S

methodology. For the left tail of the distribution and for α = 5% and 10%, the proportion of

2005 2006 2008 2009 2010 2012 2013 2015
0

200

400
α=5%

2005 2006 2008 2009 2010 2012 2013 2015
0

100

200

α=10%

2005 2006 2008 2009 2010 2012 2013 2015
0

100

200

α=15%

 

 

VaR VaR exceedance

Figure 13: VaR exceedances on the left tail monthly B&S VaR at α=5% , 10% and 15%.

exceedances (upper part of 6th column) is always lower under the B&S assumption than the MF

approach. Based on the right tail and at each risk level, the proportion of VaR exceedances (middle

part of 6th column) under the B&S approach is always larger. The B&S methodology then delivers

less conservative risk forecasts. The MannWhitney U test based on the left tail of the distribution

always rejects the null hypothesis at 95% confidence level. Compared to the MF methodology and

for α = 15%, the difference between the expected and the realized losses is close enough to zero (i.e.

2.40$) to fail to reject the null. Based on the right tail of the distribution, the null of a correctly

specified risk metric cannot be rejected at any risk level. When performing the tests proposed

by McNeil et al. (2015)[81], ρK and ρS (see 9th and 10th columns) are substantially lower than

those obtained under the MF methodology. Nevertheless, for both tails of the distribution at 95%
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confidence level, the p-values suggest that the B&S CVaR and the B&S VaR and CVaR jointly do

not underestimate risk.

To conclude the analysis we present the backtesting results for the statistically-based measures.

While the list of risk estimates that can be classified under the name of statistically-based histor-

ical models is huge, as a benchmark model we consider the Filtered Historical Simulation (FHS)

approach presented in section 7. Detaching from the parametric approach of the Gaussian model,

and trying to combine the main advantages of the Historical Simulation, the EWMA and different

Monte Carlo approaches, the FHS has emerged as the leading model to detect the short time risk

on the S&P 500 94. Table 29 presents backtesting results for the VaR estimated using the FHS ap-

proach at weekly (left) and monthly (right) level. Figure 14 graphically plots the VaR exceedances

over the sample period.
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Figure 14: VaR exceedances on the monthly FHS VaR at α=5%, 10% and 15%.

Confirming Brownlees at al. (2011)[25] the risk measures estimated with the FHS approach

work well for almost all tests in consideration. There are in fact no rejections at the weekly horizon.

94As already mentioned in the introduction, we performed many other test with other statistical-based
models. Confirming the literature most of these models fail in detecting the risk at different confidence levels
and above all at long time horizons. Results are here omitted for reason of space.
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Things change at longer time horizons where the monthly VaR are rejected at 5% for the POF

test and at 15% for the TBF. This evidence shows the ability of the option-implied approach for

long time horizons forecasting, where the speed of reaction of a GARCH based volatility could

be sometimes suboptimal. As it concerns the VaR, at α = 5% and 15%, the proportion of the

exceedances (see the 1st column of table 29) is slightly higher compared to the VaR backtesting

results in the left tail under the option-implied methodology, both when using the MF and the

B&S approaches (see 1st and 6th columns of table 25). The VaR risk forecasts are rejected in just

Weekly VaR estimates
Model α Bin TL POF TUFF CCI CC TBFI TBF
FHS 1% A G A A A A A A
FHS 2.5% A G A A A A A A
FHS 5% A G A A A A A A

Monthly VaR estimates
FHS 5% A G R A A A A A
FHS 10% A G A A A A A R
FHS 15% A G A A A A A A

Table 29: Backtesting results of the weekly (upper part) and monthly (lower part) FHS VaR
under the physical measure.

two cases (at α = 5% the null of the POF test is rejected and at α = 10% the null of the TBF test

is rejected). Besides to the backtesting approaches already presented, the statistically-based CVaR

is further backtested by using the Z-statistic proposed by Acerbi and Szekely (2014)[1]95.

At a specified α level, the Z-statistic equals:

Z(
−→
X ) =

N∑
t=1

XtIt
NαCV aRα,t

+ 1 (59)

where Xt is the time t realized loss, It is the indicator function of a VaR exceedance, α is the risk

level, CVaRα,t is the time t CVaR simulated from the GJR-GARCH model with FHS innovations

and N is the total number of observation dates. The proposed statistic does not test directly the

CVaR, but it is subordinated to a preliminary (positive) VaR test96. Under the null hypothesis

that the forecasting model correctly predicts the risk, the Z-statistic is equal to zero. When

the alternative is true the expected value of Z is negative and the CVaR underestimates risk97.

95See eq.(5) pp.3 of Acerbi and Szekely (2014)[1]
96To compute a backtesting measure for the CVaR at least one VaR exceedance must occur.
97Being a one-sided test, it does not enable to detect a risk overestimation.
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Given the high stability of Z across a wide variety of tail distributions98 (see Acerbi and Szekely

(2014)[1]), the cut-off value at 99.9% confidence level can be considered fixed at 1.8. Table 30

reports the backtesting statistics for the weekly (upper part) and monthly (lower part) FHS CVaR

at each risk level. At both investment horizons, since the value of the Z-statistics is always above

Weekly FHS CVaR Monthly FHS CVaR
α % It Acerbi Z-stat. ρK ρS α % It Acerbi Z-stat. ρK ρS

1% 0.63 1.80 0.82 0.63 5% 4.69 0.13 0.86 0.61
2.5% 1.26 1.91 0.77 1.00 10% 5.47 0.40 0.19 0.97
5% 2.52 1.92 0.81 1.00 15% 10.94 0.30 0.66 0.94

Table 30: Backtesting results of the weekly (left part) and monthly (right part) FHS CVaR
under the physical measure.

the threshold −1.8, the null of correct FHS CVaR forecasts cannot be rejected at 99.9% confidence

level. There is no clustering of the exceedances in our backtests, supporting the validity of the

tested risk models with the possible exception of their VaR results at 15% during the crisis period,

with the option-implied measures performing marginally better. The p-values of the tests on Kt

and St (3rd and 4th columns) are always larger than 5%, thus suggesting that the FHS CVaR alone

and the FHS VaR and CVaR jointly do not underestimate risk.

9 Conclusions

This article presents and compares the backtesting results of the short and long time horizons VaR

and the CVaR computed on the S&P 500 Index and estimated under two different methodologies,

namely the option-implied and the statistically-based approaches. For the long time horizons, the

option-implied risk measures perform similarly to those obtained under the physical measure when

modelling the dynamics of the underlying asset with an AR(1) - GARCH(1,1) model with FHS

innovations. Option-implied risk measures are quick and easy to implement and are naturally

forward-looking. As a drawback, they are fully data driven. At a monthly horizon, findings

are of particular interest over the 2007-2009 financial crisis period. While almost all statistically-

based measures did not always provide an adequate capital protection, the proposed option-implied

measures delivered marginally better results. At a weekly horizon, the option-implied risk estimates

forecast risk in an accurate way, thus being valid alternatives to statistically-based risk metrics.

98Namely, Gaussian and t-Student with 3,5,10 and 100 degrees of freedom.

75



Being free of any modelling assumption and very simple to implement, the proposed approach can

be useful to regulators, single companies and investors. The former ones can quantify the specific

risk of a firm without needing to know what is on (and off) its balance sheet. Firms can either

gain an overview of their perception among the investors and derive market-based risk metrics to

be compared with those obtained by internal models. Finally, investors can assess and evaluate the

risk of their existing and potential investments.
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