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Abstract

Voronoi diagrams and their numerous variants are well-established objects in computa-
tional geometry. They have proven to be extremely useful to tackle geometric problems
in various domains such as VLSI CAD, Computer Graphics, Pattern Recognition, Infor-
mation Retrieval, etc. In this dissertation, we study generalized Voronoi diagram of
line segments as motivated by applications in VLSI Computer Aided Design. Our work
has three directions: algorithms, implementation, and applications of the line-segment
Voronoi diagrams. Our results are as follows:

(1) Algorithms for the farthest Voronoi diagram of line segments in the L, metric,
1 < p < 0o. Our main interest is the L, (Euclidean) and the L, metric. We first intro-
duce the farthest line-segment hull and its Gaussian map to characterize the regions of
the farthest line-segment Voronoi diagram at infinity. We then adapt well-known tech-
niques for the construction of a convex hull to compute the farthest line-segment hull,
and therefore, the farthest segment Voronoi diagram. Our approach unifies techniques
to compute farthest Voronoi diagrams for points and line segments.

(2) The implementation of the L., Voronoi diagram of line segments in the Computa-
tional Geometry Algorithms Library (CGAL)E Our software (approximately 17K lines
of C++ code) is built on top of the existing CGAL package on the L, (Euclidean) Voronoi
diagram of line segments. It is accepted and integrated in the upcoming version of the
library CGAL-4.7 and will be released in september 2015. We performed the implemen-
tation in the L., metric because we target applications in VLSI design, where shapes
are predominantly rectilinear, and the L., segment Voronoi diagram is computation-
ally simpler.

(3) The application of our Voronoi software to tackle proximity-related problems in
VLSI pattern analysis. In particular, we use the Voronoi diagram to identify critical lo-
cations in patterns of VLSI layout, which can be faulty during the printing process of a
VLSI chip. We present experiments involving layout pieces that were provided by IBM
Research, Zurich. Our Voronoi-based method was able to find all problematic locations
in the provided layout pieces, very fast, and without any manual intervention.

thttp://www.cgal.org/
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Chapter 1

Introduction

‘A person who never made a mistake never tried anything new.”
Albert Einstein

The Voronoi diagram [[5] [7,161]] is a powerful geometric object that encodes
proximity information for a given set of simple geometric objects, called sites.
These sites are typically points, line-segments or curves. Voronoi diagrams can
also be defined for complex geometric objects, where a complex geometric ob-
ject is a combination of basic geometric objects.

The nearest neighbor Voronoi diagram of a given set S of n sites in the plane
is a subdivision of the plane into regions, called Voronoi regions, such that all
points within the region of a site s € S, are closer to s than to any other site in
S. Formally, the Voronoi region of a site s is given by:

reg(s) = {x e R? |Vt €S\ {s}, d(x,s) < d(x,t)}, (1.1

where d(x,s) denotes the distance between a point x and site s under a given
metric. The site s is called the owner of the Voronoi region reg(s). The partition-
ing of the plane derived by the union of all such regions formed by the sites in S,
together with their bounding edges and vertices, defines the nearest neighbor
Voronoi diagram of S.

Among many variations of the Voronoi diagram, the simplest and the most
popular one is the Voronoi diagram of points. Figure (a) illustrates the
Voronoi diagram of five points p;, p,, Ps, P4, and ps. The grey shaded region is
the Voronoi region of point p,, which means that all the points in the shaded

1



(b)

Figure 1.1. (a) Example of nearest neighbor Voronoi diagram (in red) of five
points p;, Pa, Ps, Pas Ps in the Euclidean metric, (b) showing the empty circles
on the Voronoi diagram of points.

region are closer to the point p, than to other input points in the example.

In the nearest neighbor Voronoi diagram every input site has a non-empty
Voronoi region. The boundary separating two neighboring Voronoi regions is
called a Voronoi edge and it is equidistant from the corresponding owners. The
locus of points equidistant from two sites is called the bisector of the sites, thus,
Voronoi edges are portions of the bisector of the neighboring owner sites. By
the definition of the Voronoi edge, any circle with center on a Voronoi edge and
passing through (touching at a single point) the two corresponding owner sites,
must be empty (for example, the green circle in Figure (b)), that is it does
not contain other sites in its interior. Voronoi edges meet at a Voronoi vertex.
Any circle with center on a Voronoi vertex and passing through the correspond-
ing owner sites must be empty (for example, the blue circle in Figure (b)).

Another important geometric structure related to the Voronoi diagram is its
dual, known as the Delaunay triangulation. Voronoi [|5, [7]] was the first to con-
sider the dual structure of a Voronoi diagram, where he mentioned that any
two points of the given point set are connected if their Voronoi regions have a
common boundary. Later, Delaunay [|5, [7]] obtained the same by defining that
two points are connected if they lie on a circle whose interior is empty. After his



(a) (b)

Figure 1.2. Example of a Delaunay triangulation of points: (a) empty circle
in black, Delaunay triangulation in blue, (b) Two Delaunay triangulations for
four co-circular points.

name, the dual structure of a Voronoi diagram is called Delaunay tessellation
or Delaunay triangulation. The graph structure of the Delaunay tessellation is
called the Delaunay graph. The Delaunay graph can be defined for any set of
simple geometrical sites, where the sites are the nodes, and any two nodes are
connected by an edge if they share a Voronoi edge. For simplicity we explain
the concept of a Delaunay graph using point sites in general positionﬂ where
the Delaunay graph is simply a Delaunay triangulation. Let P be a set of points
in the general position. Then, three points of P give rise to a Delaunay trian-
gle if and only if their circumcircle does not contain any other point of P in
its interior [/5, [7, 61]] (for example see the circle in the Figure (a)). The
triangulation formed from points of P following the definition of a Delaunay
triangle, is known as the Delaunay triangulation of P (see the triangulation in
blue in the Figure (a)). If more than three points are on the same circle (e.g.
the vertices of a square), then the Delaunay graph is no longer a triangulation,
nevertheless, different Delaunay triangulations are possible (see Figure (b):
each of the two possible triangulations that split the square into two triangles
satisfies the definition of a Delaunay triangle).

INo three points are on the same line that is collinear and no four points are on circle that
is co-circular.



Figure 1.3. Examples of Voronoi diagram (in red) of five points py, ps, P, P4, Ps
in the Euclidean metric: (a) second order, and (b) farthest.

We will now discuss briefly a more general variant of the nearest neighbor
Voronoi diagram. The higher order Voronoi diagram is a generalization of the
nearest neighbor Voronoi diagram. The Voronoi region of a k-order Voronoi
diagram (1 < k < n) is the locus of points closer to a set H C S of k sites than
to any other site t € S \ H. The k-order Voronoi region of H C S, | H |= k:

kreg(H) = {x e R* | Vs € H, Vt € S\ H, d(x,s) < d(x,t)} (1.2)

The partitioning of the plane derived by the union of all such regions formed
by the subsets of S of size k, together with their bounding edges and vertices,
defines the k-order Voronoi diagram of S. Figure (a) illustrates the 2-order
Voronoi diagram of points. Every region in the example has two owners. For
example, the shaded region has owners, p; and p,, which means that all the
points in the shaded region are closer to either p, or p, than to any other input
points.

For k = n — 1, the higher order Voronoi diagram yields the farthest site
Voronoi diagram. The farthest Voronoi region of a site s € S, is the locus of
points which are farther from s than from any other site in S. It corresponds to
the order-(n—1) Voronoi region of S \ {s}.

freg(s) = kreg(S \ {s}) (1.3)



The farthest Voronoi region of a site s can be defined equivalently as:
freg(s) = {x e R* |Vt € S\ {s}, d(x,s) > d(x, )} (1.4)

For point sites the farthest Voronoi diagram has been well studied. In the
farthest point Voronoi diagram, the Voronoi regions are only contributed by the
points on the convex hulﬂ of the input set of points. Figure (b) illustrates ex-
ample of farthest Voronoi diagram of points. The shaded region is the farthest
Voronoi region of the point p,, that means all the points in the shaded region
are farther to p, than any other input point in the given example. Observe that
the point ps does not have any farthest Voronoi region as it is not a part of the
convex hull of the input points in the example (shown by black dashed lines in

Figure [1.3|(b)).

Interestingly, for line-segments the farthest Voronoi diagram illustrates dif-
ferent properties from its counterpart for points [|6]. For example, the far-
thest Voronoi regions are not defined by the convex hull properties, and a line-
segment can have disconnected farthest Voronoi regions. Figure illustrates
an example of farthest Voronoi diagram of line-segments [6]]. The two discon-
nected shaded regions in the figure are Voronoi regions of line-segment s;. We
discuss more on structural properties and construction algorithms of farthest
line-segment Voronoi diagram in Chapter

Voronoi diagrams can be defined for various metrics for various simple sites,
and in different dimensions. In the general L, metric, distance between two

points a = (x,,¥,) and b = (x;,y,) is defined as {/| x, —x, [P + |y, — ¥, |P.
For p = 2, we have, v/(x, —x,)? + (y, — ¥,)?, which is the Euclidean (L,) dis-
tance between a and b. This dissertation focuses on 2-D Voronoi diagrams of
line-segments in the L., metric. The L., distance between two points p =
(x,,¥,) and q = (x,, y,) is the maximum between the horizontal and the ver-
tical distance between p and q, i.e., d(p,q) = max{d,(p,q),d,(p,q)}, where
d.(p,q) =1 x,—x,land d,(p,q) = y,— ¥, |- Figure (a), (b), and (c) illus-
trates the nearest neighbor, 2-order, and the farthest Voronoi diagram of points
in the max-norm. The Voronoi diagram in the L, (Manhattan distance) metric is
equivalent to the Voronoi diagram in the L., metric under a 45 degree rotation.

!The convex hull of a point set & in 2D is the smallest convex set 6 containing . Convex
set 6: Vp;,p; € € the line-segment p;p; is also in 6.



Figure 1.4. Example of a farthest line-segment Voronoi diagram in the Eu-
clidean plane.

Figure 1.5. Examples of Voronoi diagram (in red) of five points p;, ps, P3, P4 Ps
in the L., metric: (a) nearest neighbor, (b) second order, and (c) farthest.



7 1.1 Motivation for working in the L., metric

Ly

do(p,q) = /(Pr — @2)> + (py — ¢)2 doo(p, q) = max(|ps — q.l, Iy — q,)

Figure 1.6. Examples of Voronoi diagram of line-segments: (a) Ly, (b) Lo

This dissertation has the following three directions:

1. Algorithmic and combinatorial properties of the farthest line-segment Voronoi
diagram in the L, metric, 1 < p < oo.

2. Implementation issues of the L., Voronoi diagram of line-segments in
CGAL (Computational Geometry Algorithms Library).

3. Applications of the L., Voronoi diagrams of line-segments in VLSI pattern
analysis. We use the software in item 2] to address the pritability issues of
VLSI patterns.

1.1 Motivation for working in the L., metric

A major portion of this dissertation involves the segment Voronoi diagram in the
L., metric. The L., metric has several advantages, especially when the input
contains many axis-parallel line-segments. Advantages are as follows [|69]]:

1. The L, Voronoi diagram of line-segments consists solely of straight line-
segments, whereas the L, diagram can also have parabolic arcs (see Fig-

ure[1.6).

2. If the coordinates of the endpoints of the input line-segments (sites) are
rational, then the coordinates of vertices of the L., diagram are also ra-
tional. In contrast, in the L, diagram, the coordinates of vertices can be
algebraic numbers of higher degree and square roots could be required
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to denote exactly the coordinates of vertices in the L, diagram, even with
rational input.

3. The degree of an algorithm [52]] is a complexity measure capturing its
potential for robust implementation. An algorithm has degree d if its
test computations involve the evaluation of multivariate polynomials of
arithmetic degree at most d. The degree captures the precision to which
arithmetic calculations need to be executed, for a robust implementation
of the algorithm. Therefore algorithms of low degree are desirable. A
crucial predicate for a Voronoi algorithm is the in-circle test, which checks
whether a new input site is altering or erasing an existing vertex of the
diagram. The L, in-circle test for arbitrary line-segments can be imple-
mented with degree 40 [[13][14]], whereas the corresponding L, test only
with degree 5 [69].

4. The straight skeleton [4] of a simple polygon is defined by shrinking the
polygon by translating each of its edges at a fixed rate, keeping sharp
corners at the reflex vertices. Tracing the vertices during the shrinking
process gives the straight skeleton. All its edges are straight line includ-
ing in the L, metric. It captures the shape of objects in a natural manner.
A straight skeleton is more difficult to compute than a Voronoi diagram.
Straight skeletons do not provide proximity information and therefore
cannot be used in place of Voronoi diagrams. The straight skeleton and
the Voronoi diagram under the L., metric coincide when the input con-
sists of axis-parallel line-segments.

The L, distance is very well suited for applications in VLSI CAD, where
the shapes are predominantly rectilinear. This is because, for rectilinear shapes
the degree of in-circle predicates is 1 (that is no numerical precision issues).
Moreover, the straight skeleton coincides with the Voronoi diagram of polygons
having axis parallel edges. Thus the L., Voronoi diagram of rectilinear poly-
gons gives both proximity as well as shrinking and expansion information. For
properties of bisectors, construction algorithms, and applications in VLSI CAD
of Voronoi diagrams in the L., metric [[62] 63} 64, 68,69, 88 [92]].
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1.2 Implementation of computational geometry algo-
rithms in CGAL

For the last three decades there has been substantial development of efficient
geometric methods and data structures. But the implementation of the sim-
plest geometric algorithm can be a difficult task because of precision prob-
lems (replacement of theoretical model of exact arithmetic by imprecise built-
in floating-point arithmetic), degenerate cases, and requirements for advanced
data structures. Also advanced algorithms are often hard to understand and
hard to code by average programmers. For these reasons, there is need for soft-
ware libraries that provide correct and efficient implementations of geometric
algorithms. CGAL [28,29]] is one such project. This project started in 1996 as a
joint effort of several research groups working on computational geometry, and
was partially funded by European and National Research Agencies. CGAL's cur-
rent release 4.6 consists of over 600K lines of code, organized in 100 packages,
and documented in nearly 4000 pages user and reference manual. The goal of
the CGAL Open Source Project is to provide easy access to efficient and reliable
geometric algorithms in the form of a C++ library.

In this dissertation we describe an implementation of the nearest neighbor
line-segment Voronoi diagram in the L., metric in CGAL (see Chapter [4). We
focus on the implementation of the Voronoi diagram in the L., metric targeting
applications in VLSI CAD. An implementation of the L., line-segment Voronoi
diagram is desirable (see section[1.1)), but, as far as we know, there was none
freely available. The nearest neighbor Voronoi diagram of line-segments is a
well studied geometric structure, but its efficient implementation is not straight
forward due to precision problems and degenerate cases. Instead of building
such an algorithm from scratch, we decided to develop it in the CGAL frame-
work, on top of the existing L, line-segment Voronoi diagram of CGAL [44]]. The
existing CGAL implementation is the first generic and efficient implementation
of the line-segment Voronoi diagram based on the exact computation paradigm,
done by Karavelas [[44]]. The implementation is based on a randomized incre-
mental construction algorithm. The expected running time of the algorithm is
O((n + m)log®n), where n is the size of the input set and m = O(n?) is the
number of points of intersection of the (open) segments in the input set. The
implementation actually computes the Delaunay graph and also provides the
drawing functions to draw the Voronoi diagram.
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1.3 Applications of Voronoi diagrams in VLSI CAD

Voronoi diagrams have practical importance in various areas. In VLSI CAD
Voronoi diagrams can model a variety of problems related to proximity of VLSI
shapes. A concrete example addressed by generalized Voronoi diagram is com-
puting the critical area to predict the yield of a VLSI chip [168, 69]].

The critical area is a measure that reflects the probability of defects in a VLSI
layout during the manufacturing process. The defects can arise due to three ma-
jor failure mechanisms of VLSI circuits, namely, shorts (two design shapes come
closer violating a design rule), breaks(open) and via blocks(open, a continuous
shape is broken resulting in incomplete printing).

There had been different methods to estimate the critical area, such as Grid
based approach, Monte Carlo approach and others mentioned in [69]], but all
these approaches have approximation in their estimation and are slow. Pa-
padopoulou and Lee gave deterministic and fast estimation of critical area for
shorts using generalizations of Voronoi diagrams [[69]. For example, the critical
area of shorts can be computed accurately assuming square defects in O(nlogn)
time [[69]] using 2-order L., Voronoi diagram of layout polygons. Papadopoulou
also described critical area extraction for opens and via blocks in a VLSI layout
62,163}, 164]]. The Voronoi based methods can compute the critical area integral
accurately and fast compared to other methods.

In the application part of this dissertation we focus on analyzing the pat-
terns of VLSI layouts to find probable locations of faults using the line-segment
Voronoi diagram. We came to know about the pattern analysis problem through
personal communication with Dr. Maria Gabrani of IBM Research Zurich. Pat-
tern analysis in VLSI layouts is an important area of research. Currently the
tools in this area faces three main challenges [}, [83] [85]]: (1) Severe timing
challenges, as they may take from hours to days to analyze a single layout, (2)
Reliability, that is to find all the fault locations in the given layout, and (3) A
fully automated tool. We describe all the related terminology in this domain
and our solution based on Voronoi diagram of line-segments in Chapter [5
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1.4  Contributions

In this section we summarize the contributions of this dissertation. This disser-
tation focuses on three directions: First, we study the farthest Voronoi diagram
in the general L, metric, 1 < p < oo; In particular, we study algorithms and
combinatorial properties for this diagram. Second, is the implementation of the
nearest neighbor Voronoi diagram of line-segments in the L., metric in CGAL.
Third, is the application of the line-segment Voronoi diagram addressing some
problems in VLSI pattern analysis. Following is a summary of contributions of
this dissertation:

1. Algorithmic and combinatorial issues of the farthest Voronoi diagrams of
line-segments:

* We introduce the farthest line-segment hull and its Gaussian map for
the general L, metric, 1 < p < oo. The farthest line-segment hull
is a closed polygonal curve that characterizes the faces of the far-
thest line-segment Voronoi diagram similarly to the way an ordinary
convex hull characterizes the regions of the farthest-point Voronoi
diagram.

* We present algorithms to construct the farthest line-segment hull by
adapting standard convex hull construction algorithms to compute
the farthest line-segment hull. We give a simple O(nlogn) divide
and conquer algorithm,where n is number of input line-segments.
Our approach unifies the construction algorithms of farthest Voronoi
diagram for points and line-segments.

* In the L., metric, provided the farthest line-segment hull, the far-
thest Voronoi diagram can be constructed in O(h) time, where h is
the size of the farthest line-segment hull.

* We give improved structural bounds for the farthest line-segment
Voronoi diagram in the Euclidean metric. We prove that the total
number of faces of the farthest line-segment Voronoi diagram of n
arbitrary line-segments is at most 6n—6 which improves the previous
bound 8n + 4, and we also showed the corresponding lower bound
equal to 5n — 6 which improves the previous bound 4n —4.

* The farthest Voronoi diagram in the L., metric has at most n + 8
faces and this is tight. For non-crossing line-segments this number
is 8. A single input line-segment can have at most 5 faces, and this
is tight.
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2. Implementing the line-segment Voronoi diagram in the L., metric in CGAL:

* We describe the implementation issues derived by our effort to make
the L., Voronoi diagram of line-segments available in CGAL. In par-
ticular, we describe the difference in the predicates between the L,
metric and the L., metric used in the randomized incremental con-
struction algorithm for the line-segment Voronoi diagram.

* We give a case analysis of the in-circle predicate for points and line-
segments in the L., metric.

* We present an implementation of the line-segment Voronoi diagram
in the L., metric based on the randomized incremental construction
of the line-segment Voronoi diagram in the Euclidean metric.

» Approximately 17K lines of code is written for the implementation.
The code is accepted and integrated to the CGAL library, and will be
a part of the upcoming version CGAL 4.7. The new version CGAL
4.7 will be released in september 2015.

3. Application of the line-segment Voronoi diagram in VLSI pattern analysis:

* We present our work in VLSI pattern analysis to detect problematic
locations in VLSI layouts using the line-segment Voronoi diagram.
The data for the experiments is provided by IBM Research, Zurich.

— We show our experimental results on small size patterns (10
VLSI shapes). Our method predicts better fault locations in the
patterns than the existing internal methods of IBM.

- We define five different types of locations in the Layout based
on neighborhood information provided by the Voronoi diagram
of the design shapes. We also give a scoring method to prioritize
these locations. The score of a location indicate the probability
of fault at that location.

— We show our results on bigger portion of layout. We find all the
problematic locations in the layout in a minute’s time.

We provide a fast and reliable automatic tool for identifying prob-
lematic patterns in a VLSI layout.

* We also discuss the future utility of our tool. Our tool can generate
a wide range of different locations in the layout. We have a scoring
method for these locations. We require an improved scoring method,
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to support the need of current tools in the area of VLSI pattern anal-
ysis.

1.5 Dissertation overview and list of publications

This dissertation is organized as follows:

In Chapter |2 we review the literature on Voronoi diagram of line-segments.
We also discuss the implementation issues mainly related to nearest neighbor
Voronoi diagram of line-segments.

In Chapter (3] we discuss our study on farthest line-segment Voronoi dia-
grams. We start with the simpler L., metric, describe its structural and combi-
natorial properties. Then, we discuss our study for the general L, metric, which
is also valid in the L, metric, 1 < p < co. We discuss the structural properties,
combinatorial properties, and construction algorithms.

In Chapter 4, we describe our work on the implementation of the line-
segment Voronoi diagram in CGAL. We first give the overview of CGAL, then we
review briefly the existing L, implementation in CGAL. Finally, we discuss in-
teresting issues which arise during our implementation of the L, line-segment
Voronoi diagram.

In Chapter 5 we describe our work in the application domain. We first give
the basic terminology used in the VLSI domain to address the problems of pat-
tern analysis of VLSI layouts, and then we describe our line-segment Voronoi
based solutions for the pattern analysis problem, which are finally validated by
our experimental results.

We summarize the dissertation and discuss the future working directions
from this dissertation in Chapter [6]
Now we list our publications associated with this thesis.

Chapter 3 is based on the following paper:

* E. Papadopoulou and S. K. Dey. On the Farthest Line-Segment Voronoi
Diagram. International Journal of Computational Geometry Applications
23(6): pages 443-460, 2013.
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This publication is based on the following conference papers:

— E. Papadopoulou and S. K. Dey. On the farthest line-segment Voronoi
diagram. International Symposium on Algorithms and Computation,
pages 187-196, 2012.

First appeared as a short abstract:

E. Papadopoulou and S. K. Dey. On the farthest line-segment Voronoi
diagram. European Workshop on Computational Geometry, pages
237-240, 2012.

- S. K. Dey and E. Papadopoulou. The L.,(L,) farthest line-segment
Voronoi diagram. In 9th International Symposium on Voronoi Dia-
grams in Science and Engineering (ISVD), pages 49-55. IEEE, 2012.

Chapter 4 is based on our code submitted to CGAL. We also published one paper
listed below describing our implementation:

* P Cheilaris, S. K. Dey, E. Papadopoulou: CGAL package is accepted and
is in the final stages of integration with the latest version CGAL 4.7, user
and reference manual can be found at: http://compgeom.inf.usi.ch/
doc_output/Segment_Delaunay_graph_Linf_2/

* P Cheilaris, S. K. Dey, M. Gabrani, E. Papadopoulou: Implementing the
L., Segment Voronoi Diagram in CGAL and Applying in VLSI Pattern Anal-
ysis. International Congress on Mathematical Software (ICMS), pages198-
205, 2014.(also used in Chapter 5)

* S. K. Dey, P Cheilaris, and E. Papadopoulou. Implementing the L., seg-
ment Voronoi diagram in CGAL. USI Technical Report Series in Informat-
ics, 2015.


 http://compgeom.inf.usi.ch/doc_output/Segment_Delaunay_graph_Linf_2/
 http://compgeom.inf.usi.ch/doc_output/Segment_Delaunay_graph_Linf_2/
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Chapter 5 is based on the following paper:

* S. K. Dey, P Cheilaris, N. Casati, M. Gabrani, E. Papadopoulou. Topol-
ogy and context-based pattern extraction using line-segment Voronoi dia-
gram, SPIE Advanced Lithography, Design-Process-Technology Co-optimization
for Manufacturability IX, 2015.

This work received Luigi Franco Cerrina Memorial best student paper award
at SPIE 2015.

* S.K. Dey, P Cheilaris, M. Gabrani, E. Papadopoulou. Topology and context-
based pattern extraction using line-segment Voronoi diagram, Journal of
Micro/Nanolithography, MEMS, and MOEMS (JM3), 2015 (to be submit-
ted).

This paper is in the process of being expanded with more experiments.
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Chapter 2

Related work

“Study the past if you would define the future.”
Confucius

Mathematicians Voronoi and Dirichlet were the first to formally introduce
the concept of Voronoi diagrams [[5][7]]. The concept became popular and found
its usage in many application domains after Shamos and Hoey presented their
work on Closest-point problems in [76]]. For detailed information on algorithms
and properties of different variants of Voronoi diagrams we refer to the surveys
on Voronoi diagrams in [|5, (7, 161[].

In this Chapter, we discuss algorithmic and combinatorial results on Voronoi
diagrams: in particular, nearest neighbor Voronoi diagrams in Section[2.1] higher
order Voronoi diagrams in Section [2.2] farthest site Voronoi diagrams in Section
and the Voronoi diagrams in the max-norm in Section We also discuss
the implementation issues for Voronoi diagrams in Section

2.1 Nearest neighbor Voronoi diagram

The nearest neighbor Voronoi diagram for a given set S of n simple sites in
the plane, is a partitioning of the plane into regions (see Equation |1.1)), such
that each point within the Voronoi region of site s € S, is closer to s than any
other site in S (see Figure (a) for an example of Voronoi diagram of points).
For n point sites in the plane, the structural complexity of the nearest neighbor
Voronoi diagram is linear in the number of sites, that is, it has O(n) number of
vertices, edges, and faces. The interior of the circle centered on a Voronoi edge

17



18 2.1 Nearest neighbor Voronoi diagram

of two points and passing through them is always empty. Also, the interior of
the circle centered at a Voronoi vertex and passing through the three point sites
associated with the Voronoi vertex is always empty. These empty circle proper-
ties are important as they are used in the construction algorithm of the nearest
neighbor Voronoi diagram.

There are several algorithms to construct a Voronoi diagram, such as in-
cremental approaches, divide and conquer and plane sweep. Construction of
Voronoi diagrams by incremental insertion is a very natural idea. Green and Sib-
son [I35] first gave such an algorithm that takes O(n?) time. The incremental
insertion process was described using the dual structure, the Delaunay triangu-
lation. The advantage over a direct construction of the Voronoi diagram is that
there is no need to construct and store the Voronoi vertices that appear in the
intermediate diagrams and not in the final diagram. The randomized version of
the incremental insertion approach takes O(nlogn) expected time [5,[36]. The
main idea of the incremental approach is to locate a face in the existing Voronoi
diagram during the insertion of a new site, such that the new site lies partially
or completely within that face, and then update the diagram locally. During the
insertion of a new site, we may need to do local updates due to conﬂictsﬂ [45].

The divide and conquer approach to compute the Voronoi diagram was pre-
sented by Shamos and Hoey [76]. It is a deterministic worst case optimal al-
gorithm for Voronoi diagram construction that takes O(nlogn) time and O(n)
space.

The plane sweep approach also provides a way of computing the Voronoi
diagram of n points in the plane in O(nlogn) time and O(n) space. The main
idea is to sweep over the plane by an axis parallel line called sweep line. Dur-
ing the sweep process, the information about the Voronoi diagram computed so
far does not change as the sweep line moves forward, except at certain special
points called events. The difficulty is to discover new Voronoi vertices in time.
This is because by the time the sweep line reaches a new point site, it has been
already intersecting the Voronoi edges of this new point site for quite some time.
To handle this difficulty, the sweep line itself is considered as another additional
site, and the Voronoi diagram of all the points to the left of the sweep line and

Let s, be a new site to be inserted in the existing Voronoi diagram. Also let p be a Voronoi
vertex or a point on a Voronoi edge of the current diagram. Then p is said to be in conflict with
s,, if the Voronoi disk (a disk tangent to the associated sites) centered at p includes or intersects
s,. If p is a Voronoi vertex, we call it a vertex conflict, otherwise an edge conflict.
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the sweep line itself are maintained. The boundary of the bisector of the sweep
line and the points to its left are called wavefront. The sweep line status, which
is the wavefront, can be maintained in a balanced binary tree, so that any op-
eration on it will take O(logn) time, where n is the number of input point sites.
The events are maintained in a priority search tree, so that operations on it will
also take O(logn) time in the worst case. Thus, the sweep line algorithm in to-
tal takes O(nlogn) time to construct the Voronoi diagram of n points. Fortune
[30]] was the first to give a plane sweep approach to compute Voronoi diagrams
efficiently.

The nearest neighbor Voronoi diagram of line-segments is also well studied
(see example in Figure (a), shaded region is V(ss)). Most of the earlier al-
gorithms assumed that the line-segments are either disjoint or they are allowed
to intersect only at endpoints. Drysdale and Lee [[51] presented an algorithm
to compute the nearest neighbor segment Voronoi diagram in O(nlog? n) time,
where n is the number of input segments. Kirkpatrick [46]], Lee [50]], and Yap
[93]] showed divide and conquer worse case optimal O(nlogn) algorithms for
this problem. Fortune [[30] described a worst case optimal algorithm, using the
sweep-line paradigm. Boissonnat et al. [[11]] and Klein et al. [48]] presented
O(nlogn) randomized incremental algorithms for computing the Voronoi dia-
gram of line-segments. Karavelas [44]] gave a robust and efficient implementa-
tion of a randomized incremental algorithm for constructing the Voronoi dia-
gram of line-segments.

2.2 Higher order Voronoi diagram

The order-k Voronoi diagram, 1 < k < n—1, of a set S of n sites is a partition-
ing of the plane into regions (see Equation|1.2)), such that each point within an
order-k Voronoi region has the same set of k nearest sites.

For point sites in the plane, the order-k Voronoi diagram has been stud-
ied extensively [5, [18, 50]]. Its structural complexity has been shown to be
O(k(n—k)) [5Q]. The first algorithm to compute the order-k Voronoi diagram
for points was given by Lee [50]. Lee’s iterative algorithm for computing the
higher order Voronoi diagram for points in the Euclidean metric, which com-
putes the diagram iteratively from order 1 to order n — 1, takes O(k*nlogn)
time. A sweepline algorithm was given by Rosenberger [[75]], that also takes
O(k?*nlogn) time. Edelsbrunner et al [[18]] presented the first algorithm that
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constructs the k-order diagram without constructing the lower order diagrams
in O(n%logn + k(n—k)log*n) or O(n?+ k(n—k)log*n) time depending on the
data structures used. There are also many randomized algorithms available,
an output sensitive randomized algorithm given by Mulmuley [/58]] that takes
expected O(k?*nlogn) time, an on-line randomized incremental algorithm of
Aurenhammer et al. [[8] that takes expected O(k?nlogn +nklog® n), a random-
ized divide and conquer by Clarkson [22] that takes expected O(kn'*€),e > 0
time and many others [[2], [17, [74]].

Recently, Papadopoulou and Zavershynskyi [[72]] have analyzed the struc-
tural properties of the order-k Voronoi diagram of line-segments (see example
in Figure (b) for order-2 diagram, where segment pair (s;,s,) have two
disconnected regions shown in grey shade). It is shown that a single order-k
Voronoi region may disconnect to €2(n) disconnected faces in the worst case.
Despite disconnected regions, the overall structural complexity of the Voronoi
diagram of n disjoint line-segments remains O(k(n — k)).

(a) (b)

Figure 2.1. Examples of line-segment Voronoi diagrams (shown in red) in the
Euclidean plane: (a) nearest neighbor, (b) 2-order.
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The order-k Voronoi diagram of line-segments can be constructed in O(k?
nlogn) time by adapting any iterative approach to compute higher order Voronoi
diagrams [[72]]. Papadopoulou and Zavershynskyi [[73]] has presented sweepline
algortihm to compute the higher order Voronoi diagram of line-segments in
O(k?*nlogn) time.

Recently, Zavershynskyi et al [[10] presented a randomized iterative algo-
rithm for the construction of the higher order Voronoi diagram of line-segments
in expected O(k*nlogn) time.

2.3 Farthest site Voronoi diagram

The farthest site Voronoi diagram of S is a subdivision of the plane into regions
(see Equations [1.3|and [1.4) such that the region of a site s € S, is the locus of
points farther away from s than from any other site.

For simple sites, such as points and line-segments, the Voronoi regions are
unbounded and the Voronoi diagram is a tree structure with linear structural
complexity on the size of the input sites. In the farthest site Voronoi diagram,
a circle passing through a site s with its center at any of the associated Voronoi
vertices of s will enclose all the other input sites.

The farthest point Voronoi diagram can be computed using several algo-
rithms given in O(nlogn) time [J5, 49, [76]]. One of the popular algorithm is
divide and conquer. In the divide and conquer approach, first the convex hull
of points is computed, since only the points on the convex hull contribute the
farthest Voronoi regions. Then, the convex hull is partitioned into two chains
(e.g left and right chains considering the dividing vertical line passing through
the point with median x coordinate of the input points, or upper and lower
chains divided by a horizontal line passing through the point with median y
coordinate of the input points). There will be O(logn) partition steps. And
in each partition step, the merging can be done in linear time following Kirk-
patrick’s algorithm [46]].

A randomized construction is provided by Chew [21], 23]] which computes
the diagram in expected linear time. The farthest point Voronoi diagram for
points on a convex hull can be computed by a deterministic linear time algo-
rithm provided by Aggarwal et al [3]].
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The farthest Voronoi diagram for line-segments had not received attention in
the literature for a long time. The farthest line segment Voronoi diagram was
only recently considered in [6]]. Aurenhammer et al [[6]] described the struc-
tural and combinatorial properties. The farthest Voronoi diagram of segments
shows surprisingly different properties from both the farthest Voronoi diagram
of points and the nearest neighbor Voronoi diagram of segments. For an ex-
ample, in the farthest Voronoi diagram of line-segments the regions are not
characterized by convex hull properties as in the case of points [|6]]. Further-
more, the Voronoi regions in the farthest line segment Voronoi diagram may
be disconnected as opposed to the Voronoi regions in the farthest Voronoi dia-
gram of points. In particular, a single line segment can have ©(n) disconnected
faces [|6] (see Figure [2.2). Nevertheless, the number of edges and vertices of
the farthest segment Voronoi diagram remains O(n) [l6] (Aurenhammer el al
[6]] showed the upper bound and the lower bound on the number of faces to
be 8n + 8 and 4n — 4 respectively), regardless of the crossing properties of the
input segments. In contrast, the nearest neighbor Voronoi diagram of segments
has O(n?) vertices and edges in the worst case, where each crossing constitutes
a vertex.

The construction algorithm of farthest line-segment Voronoi diagram pre-
sented in [|6] takes O(nlogn) time using divide and conquer approach paired
with a plane sweep algorithm.

Figure 2.2. Directions indicating towards faces (there are n — 1 disconnected
faces) of s; [6].
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The farthest-polygon Voronoi diagram, was addressed by Cheong et al [20].
Cheong et al provided a O(nlog® n) divide-and-conquer algorithm to construct
the farthest-polygon Voronoi diagram, where n is the total complexity of the
disjoint polygonal sites.

Abstract Voronoi diagram is a high-level framework for Voronoi diagrams
suggested by Klein [[47]]. The definition of Voronoi diagram in the abstract
framework is independent of the concrete geometry, metric space or shapes
of the sites. In the abstract framework the Voronoi diagrams are defined using
bisecting curves. An abstract framework on the farthest-site Voronoi diagram
(which does not include the case of intersecting line-segments) was given by
Mehlhorn et al [[55]]. Mehlhorn et al [[55] provided a randomized algorithm to
construct the farthest site Voronoi diagram in expected O(nlogn) time.

2.4 L, Voronoi diagrams

We have already discussed in the Introduction, that Voronoi diagrams in the
piecewise linear L., metric are computationally simpler than their Euclidean
counterparts, due to the lower degree of geometric predicates in the L., met-
ric. A feature that needs to be handled carefully in L, Voronoi diagrams is the
structure of the bisector. In case of two points along the same horizontal or
vertical line, the bisector consists of a line segment and two unbounded regions
(bisectors are two dimensional). Such unbounded regions can be assigned en-
tirely to one of the points or it can be split among the points. The splitting of
equidistant regions should be handled consistently (e.g. splitting can be done
by the angular bisector) to avoid any discrepancy in the construction algorithms
of L., Voronoi diagrams. A detailed study on the bisectors in L, can be found
in [69]].

The Voronoi diagrams of points in the L., metric can be computed by any of
the existing algorithms for the Euclidean plane (see Section[2.1)). The higher or-
der Voronoi diagrams of points in the L., metric is also well studied. The struc-
tural complexity of the k-order Voronoi diagram in the L ., metricis O(min{k(n—
k), (n—k)?}) [53]. Liu et al [[53] gave an output sensitive algorithm to compute
the L., k-order Voronoi diagram in O((n + m)logn) time, where m is the struc-
tural complexity of the k-order Voronoi diagram.
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Papadopoulou et al[[69]] adapted the classical plane sweep algorithm to con-
struct Voronoi diagram of line-segments in L., metric in O(nlogn) time. Recall
that the degree of an algorithm [[52]] is d if its test computations involve the eval-
uation of multivariate polynomials of arithmetic degree at most d. The plane
sweep algorithm to construct the Voronoi diagram of line-segments in the L,
metric has degree 7 [[69]]. A crucial predicate for a Voronoi algorithm is the
in-circle test (see Section [2.5]), which checks whether a new input site is in con-
flict with existing vertex of the diagram. The in-circle test in the L., metric for
line-segments has degree 5 [69].

The Voronoi region of a line-segment in the nearest neighbor Voronoi dia-
gram can be subdivided in to finer regions by the Voronoi diagram of its neigh-
bor, and thus the 2-order Voronoi diagram can be computed. Papadopoulou et
al[64, 69 showed applications of the L, 2-order Voronoi diagram in VLSI CAD
(see Section|1.3)).

Papadopoulou introduced the Hausdorﬂﬂ Voronoi diagram of rectangles in
the L, metric in [|62]]. The Hausdorff Voronoi diagram of n non-crossing rect-
angles can be computed by a plane sweep algorithm [|62] in O((n + K)logn)
time, where K is the number of interacting rectangles (as defined in [62]]) dur-
ing the plane sweep. The Hausdorff Voronoi diagram of line-segments finds
applications in VLSI design automation [[62, 63 [71]].

2.5 Implementation of Voronoi diagrams

The initial algorithms for the construction of nearest neighbor Voronoi diagrams
were written often assuming a general position of the input point sites, that is,
no three points are collinear and no more than three points are co-circular. An-
other assumption was the ability to compute exactly the basic geometric predi-
cates like the in-circle test. These two assumptions lead to two different prob-
lems at the implementation. One is the problem of special or degenerate cases
which is an algorithmic problem, and the other is the problem of numerical pre-
cision of floating point arithmetic.

!The (directed) Hausdorff distance from a set A to a set B is h(A,B) =
maxgeamingeg{d(a,b)}.  The (undirected) Hausdorff distance between A and B is
dy(A, B) = max{h(A, B), h(B,A)}.
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In this Section we give some basic concepts that are important for the ro-
bust and efficient implementation of Voronoi diagrams, and will mention some
available software for computing Voronoi diagrams of points and line-segments
in the Euclidean metric.

2.5.1 Degree of in-circle test

The basic predicate in any algorithm for computing Voronoi diagrams is the in-
circle test. Let V,,,, be the Voronoi vertex of three sites p, q, and r through which
a circle C,,, passes with no sites in its interior. Then, the in-circle test is defined
as a test to determine whether a fourth site is inside (or intersects), outside (no

intersection), or on the circumference of C,,,.

The robustness of the implementation of any algorithm to compute a Voronoi
diagram depends at least on the degree of the in-circle test. The in-circle test
can be described in the following form of a determinant whose sign determines
the position of a point (x, y) with respect to the circle passing through the three

points (xq, y;), (X, ¥,), and (x3, y3).

x2+y? x y

2 2
X1+_y1 X1 )

1 equals O, on circle

1 . .
5 1= less than O, outside circle

1

2
XotY;, Xa Yo han 0. inside circl
2, 42 reater than inside cir
X24y? x5 ¥ greater than 0, inside circle
The degree of the above computation is 4, that is for point sites the in-circle
predicate in the Euclidean metric can be answered with degree 4.

In the Euclidean metric, the in-circle test for the Voronoi diagram of line-
segments, can be answered correctly with degree 40 [[13]]. Karavelas and Ka-
marianakis et al.[[39] [40]] gave a detailed case analysis of in-circle predicates
for line-segments with improved degree in cases for axis-aligned line-segments.
The in-circle test for line-segments in the L., metric, can be answered with
degree 5 [|69], and for the axis parallel line-segments, can be answered with
degree 1. See section for detailed analysis of degree of the in-circle test
for points and line-segments in the L., metric.
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2.5.2 Robust geometric algorithms

A geometric software using floating point arithmetic can often fall in to traps of
infinite loops, or give incorrect outputs. Robustness means the software should
be able to carry out computations exactly or with in the specified error bounds
and not fall in infinite loops or crash due to degenerate cases. The exact com-
putation [[94] of geometric predicates is important for any implementation to
have a guaranteed correct output. The implementation of algorithms in most
fields may live with numerical approaches like rounding off, or if rounding off is
accumulating undesirable error, then improving the results using standard nu-
merical precision techniques. In contrast, the numerical precision techniques
may not work for implementation of algorithms in computational geometry.
This is because the queries of geometric algorithm requires exact answer, for an
example, the in-circle predicate for points wants to know exactly if the query
point is inside, outside, or on the circle, and the answer is exactly one of the
three choices, an approximate answer in this case may just give a wrong out-
put. The problems of numerical stability for Voronoi diagrams are addressed in
(31, [811].

Exact computation with arbitrary precision is time expensive and thus can
be very slow. For efficiency, many software either choose finite precision with
guaranteed error bounds and give approximate results, or filtering techniques
which allow the tools to use computations with arbitrary precision less often
and give exact results.

The exactness of predicates in the implementations can be achieved using
exact multiple precision integer, rational and floating point numbers. GMP [|34],
MPEFR [132]], and LEDA [|56] are widely used libraries to achieve multiple preci-
sion and hence the exact computation of a given design.

Another approach for having numerically robust geometric algorithms is the
topology-oriented approach [81]]. This approach primarily describes the basic
part of the algorithm in terms of topological and combinatorial computation.
The combinatorial and topological computation is never contaminated with nu-
merical errors and thus guarantees robustness of the algorithm. This approach
often gives non deterministic output. A combination of numerical computation
with this approach may lead to the exact output. However, this approach does
not guarantee a deterministic exact output.
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2.5.3 Software for computing Voronoi diagrams

There are several software available to compute Voronoi diagrams for simple
sites such as points, line-segments, curves, polygons. We list some of them with
their features.

Matlab [[54]

Matlab is a commercial software with many mathematical computation capa-
bilities. It can compute the Voronoi diagram of points. The implementation is
based on Qhull (quick hull [[9] - a standard method to compute the convex hull).
It handles round-off errors from floating point arithmetic. It does not use the
exact computation paradigm.

LEDA [[56]]

LEDA is a software that provides various algorithms and data structures. LEDA
use the exact computation paradigm for accurate results. It provides nearest
and farthest Voronoi diagram of points.

BGL [78]

Boost Graph Library (BGL) is an open source C++ library that has a pack-
age named Boost.Polygon, which provides Voronoi diagrams of points and line-
segments in the Euclidean metric. There are limitations for the type of input.
The input points and end points of input line-segments must be of integer type.
The input line-segments can only meet at end points. Boost uses C++ STL data
structures to deal with memory management issues, and uses multiprecision
computation to avoid numerical instability.

OpenVoronoi [[89]]

OpenVoronoi in an open source software written in C++ with Python bindings.
The software computes the Voronoi diagram of points and line-segments using
incremental topology-oriented design [37, (38| [82]]. OpenVoronoi is currently
trying to incorporate Voronoi diagram for circular-arcs.

VRONI [37]

VRONI is a commercial software widely used in industry. The implementation
of VRONI is based on the topology-oriented approach introduced by Sugihara et
al [[82], for the computation of the Voronoi diagram of points and line-segments
in the Euclidean metric. Later, VRONI was upgraded to compute the Voronoi
diagram of circular-arc as well, and was called ArcVroni [38].
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CGAL [|84]

CGAL provides Voronoi diagram of points and line-segments in the Euclidean
metric through a randomized incremental design, developed by Karavelas [[41],
42| [44]]. The package is carefully written to work with exact arithmetic. The
use of exact arithmetic is time expensive thus, it can be very slow. CGAL uses fil-
tering techniques (more discussions in Chapter[4) to make the implementation
efficient. CGAL also provides the Voronoi diagram of disks, the higher order
Voronoi diagram of points, Voronoi diagram of spheres and some other vari-
ants as well. We will discuss more on CGAL basics and the Voronoi package for
points and line-segments in Chapter



Chapter 3

Farthest line-segment Voronoi diagram

“Work without love is slavery.”
Mother Teresa

In this chapter, we discuss our study on the farthest Voronoi diagram of line
segments. The content of this chapter is taken from [|67]]:

E. Papadopoulou and S. K. Dey. On the Farthest Line-Segment Voronoi Di-
agram. International Journal of Computational Geometry Applications (IJCGA)
23(6): pages 443-460, 2013.

The farthest-site Voronoi diagram of a set S of n line segments is a subdi-
vision of the plane into regions such that the region of a line-segment s is the
locus of points farther away from s than from any other line-segment in S. We
define the farthest Voronoi region of a line-segment s; as:

freg(s) = {x €R* |Vt €S\ {5}, d(x,s)>d(x,t)}, (3.1

where d(x,s) denotes the distance between a point x and site s under a given
metric. The partitioning of the plane derived by the union of all such regions
formed by the sites in S, together with their bounding edges and vertices, de-
fines the farthest line-segment Voronoi diagram of S.

We study the combinatorial properties of the farthest line-segment Voronoi
diagram in the L, metric, 1 < p < co. We introduce the farthest line-segment
hull and its Gaussian map. The farthest line-segment hull is a closed polygonal
curve that characterizes the faces of the farthest line-segment Voronoi diagram

29
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similarly to the way an ordinary convex hull characterizes the regions of the
farthest-point Voronoi diagram. The Gaussian map reflects the cyclic order of
the farthest line segment hull (detailed definition in Section[3.2]). We study con-
struction algorithms for the farthest line-segment hull. In particular, we adapt
the standard convex hull algorithms to construct the farthest line-segment hull.
We also give improved combinatorial bounds on the number of faces of the far-
thest line-segment Voronoi diagram.

The farthest line-segment Voronoi diagram finds applications in computing
the smallest disk that overlaps all line-segments in a given set. For example,
line-segments may represent wires in a VLSI layer or in a different type of net-
work, while disks represent defects. In the VLSI critical area extraction problem
[64], random manufacturing defects cause open faults when they overlap en-
tire sets of wires or contacts on a layer under consideration. Thus, the farthest
line-segment Voronoi diagram can be used for computing the Probability of Fail
of a VLSI layer in the presence of random manufacturing defects. It is also nec-
essary in defining and computing the Hausdorff Voronoi diagra of clusters of
line segments, which finds similar applications in VLSI design automation [|64]].

This chapter is organized as follows. We start our study with the simpler L,
metric. In Section[3.Ilwe describe our investigation on the farthest line-segment
Voronoi diagram in the L., metric, which appears as a ISVD conference paper
[25]]. In Section we describe the farthest line-segment Voronoi diagram in
the L, metric, which naturally extends to L,, (1 < p < o0) without changes.
The content of this work first appears as a ISAAC conference paper [65] and
then as a IJCGA journal paper [67]].

3.1 Farthest line-segment Voronoi diagram in L,

We first investigated the structural properties of the L., farthest Voronoi di-
agram for line segments. We coded a demo program in GNUplot to realize
the examples of farthest Voronoi diagrams for segments in L.,. It was a grid
based naive program but it helped us to visualize the diagram and investigate
its properties. Due to limited methods and graphics capability of GNUplot we
again coded in C and OPENGL a GPU demo to get clearer visuals (see Figure

!The (directed) Hausdorff distance from a set A to a set B is h(A,B) =
maxgeamingeg{d(a,b)}.  The (undirected) Hausdorff distance between A and B is
dy(A, B) = max{h(A, B), h(B,A)}.
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Figure 3.1. Farthest Voronoi diagram of segments in L,

3.1) of the diagram for greater number of input segments. This demo helped
to identify various properties of the diagram.

The farthest Voronoi region of line segments in the L., metric is given by
Equation d(x,s) in Equation denotes the distance between a point x
and a line segment s, which is the minimum L., distance between x and any
point on s, that is, d(x,s) = min{d(x,q), Vq € s}. The collection of all such re-
gions together with their bounding edges and vertices, defines the L, farthest
line-segment Voronoi diagram.

A Voronoi edge bounding regions freg(s;), freg(s;) is portion of the bisector
b(s;,s;), which is the locus of points equidistant from s; and s;. In L, b(s;,s;)
consists of a constant number of pieces of straight lines, where each piece is
portion of an elementary bisector between the endpoints and the open line-
segment portions of s; and s;. The L, bisector of two non-parallel lines b(;, [,)
of slopes b, b, consists of two straight line branches of slopes as given in [69]].
If b;, b, are both positive (resp. negative) then one branch is always a line
with slope —1 (resp. slope +1). When two line-segments or their endpoints are
aligned along the same vertical or horizontal line their bisector consists of a line
segment and two unbounded regions. The equidistant region can be assigned
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arbitrarily (or lexicographically) to one of the points and consider the region
boundary only as their bisector. For more information on L., line-segment bi-
sectors, see [69]. Note that the endpoints and the open line-segment portion of
an arbitrary line-segment s can be separated by +1-slope lines of opposite sign
of the slope of s.

A maximally connected subset of a region in FVD(S) is called a face. A half-
plane bounded by an axis-parallel line is called an axis-parallel halfplane. The
common intersection of two axis parallel halfplanes with perpendicular bound-
ing lines is called a quadrant. The following lemma and its corollary is a simple
adaptation of Lemma 1 and Corollary 2 of [6] for the L, metric.

Lemma 1. All faces of FVD(S) are unbounded in one of the eight possible directions
that are implied by rays of slope 1,0, co.

Proof. Let t be a point in an arbitrary face f of FVD(S) belonging to the region
of segment s;. Then there is a square disk D(t) centered at t, touching s;, that is
also intersecting (or touching) all segmentss; € S\{s;}. If D(t) touchess; with a
vertical (resp. horizontal) side let R be a horizontal (resp. vertical) ray starting
at t directed away from s;. If D(t) touches s; with a corner at a single point p,
let R be the £1-slope ray through the incident diagonal of D(t), starting at t and
directed away from p. Since for any point y along R, D(t) € D(y), and D(y)
touches s; in exactly the same way as D(t), D(y) must continue to intersect all
other segments in S and thus, R must be entirely contained in reg(s;) and in
particular f. Thus, face f must be unbounded along the direction of R. O]

Corollary 1. The interior of reg(s;) is non-empty if and only if there exists an axis-
parallel halfplane or a quadrant L which touches s; and intersects (or touches) all
other segments in S. If L is an axis-parallel halfplane then reg(s;) is unbounded in
the direction in L normal to the bounding line of L. If L is a quadrant touching s;
by its corner then reg(s;) is unbounded in the £1 direction away from the corner
of L.

It is clear by Corollary[1]that FVD(S) must always contain four faces, denoted
as north, south, east and west, such that each face is unbounded in one of the
four axis-parallel directions respectively. Each one of these faces is induced by
a halfplane bounded by an axis-parallel line as defined below.

Definition 1. Let [;,i = n,s, e, w be four axis parallel bounding lines of S defined
as follows: Let 1, (resp. L) be the horizontal line passing through the bottommost
upper-endpoint (resp. the topmost lower-endpoint) of all segments in S. Let ,



33 3.1 Farthest line-segment Voronoi diagram in L,

Quadrant2 Quadrantl

(1s,1le) (s, 1)
................ e \, e,

Quadrant3 Ele 1wE Quadrant4

(1n,1le) i (1n,1ly)

Figure 3.2. The axis parallel bounding lines

(resp. l,) be the vertical line passing through the leftmost right-endpoint (resp.
the rightmost left-endpoint) of all segments in S.

Clearly the north, south, east, and west face of FVD(S) is induced by line
L,,l,1,,1, respectively; the L., distance within each face simplifies to the ver-
tical or horizontal distance from the respective bounding line. Figure il-
lustrates the bounding lines. The bounding lines partition the plane into four
quadrants, labeled 1—4, in counterclockwise order as follows (see Figure (3.2):
Quadrant 1 is formed by (I,,l,) and faces north-east, Quadrant 2 is formed by
(I, 1,), Quadrant 3 by (l,,1,), and Quadrant 4 by (l,,1,,) facing south-east. The
closed rectangular regions induced by the four bounding lines is denoted by R.

It is clear, by Corollary I} that no segment s that lies partially or entirely in
the closed rectangular region R can have a non-empty Voronoi region in FVD(S).
Thus, these segments can be immediately discarded. Among the remaining
segments, it is clear, by definition, that no such segment can have endpoints
in the four quadrants. The quadrants are thus, either empty of the remaining
segments, or there are segments that straddle them entirely.

Definition 2. Let E;,i = 1,2, denote the upper envelope of the set of line segments
straddling Quadrant i. Let E;, j = 3,4 denote the lower envelope of the segments
straddling quadrant j. In case no segments straddle quadrant i, i = 1,...,4, let
E; = O,, where O; is the corner point (origin) of Quadrant i.

We now define the farthest line-segment hull of S, a closed polygonal curve
that characterizes the regions and the unbounded bisectors of FVD(S). Figure
illustrates FH(S) for an arbitrary set of segments in its standard form.

Definition 3. The farthest line-segment hull of S (in short farthest hull, denoted
FH(S)) is the closed polygonal curve obtained by Eq,ly, Ey, 1., Es, L, E4, L/, where
l;; denotes the segment along bounding line l; between its two incident envelopes.
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Figure 3.3. The L, farthest-hull of an arbitrary set of segments
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Figure 3.4. Farthest point Voronoi diagram in L4

For a set of points or a set of axis-parallel segments, the farthest-hull simpli-
fies to the rectangle R of the bounding lines. In the case of points, R coincides
with the minimum enclosing rectangle of the given set of points, which is well
known to characterize the L, farthest point Voronoi diagram (see Figure [3.4).
For a set of axis parallel segments, the farthest-hull simplifies to the rectangle
R induced by the bounding lines, however, the placement of the bounding lines
need not always be standard, i.e., [,, may lie above [ or [, to the right of [, as in
Figure Figure illustrates similar non standard situations. The farthest
hull is defined in the same way in all cases.

By Corollary[1] and the definition of the farthest hull we conclude.

Lemma 2. A line segment s; in S has a non-empty Voronoi region in FVD(S) if
and only if it appears on the farthest hull, either explicitly as a segment on some
envelope or implicitly by defining a bounding line. Voronoi faces are circularly
ordered following the order of the farthest hull.

Let e;, e; be two edges of the farthest hull corresponding to segments s;,s;.

Let [;,1; denote the lines through s; and s; respectively and let H(e;), H(e;) de-
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Figure 3.5. The L, farthest hull for different positions of 1, L, [, and [,,. (a)
Standard position (b) [, lies above [ (c) [, lies to the right of [, (d) I, lies
above [, as well as [, lies to the right of [,
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Figure 3.6. FVD(S) of axis parallel segments, where [, is right of [,.
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Figure 3.7. The unbounded bisectors corresponding to vertices on the farthest-
hull.

note the corresponding halfplane on the side of [;,[; containing R. The un-
bounded bisector of e;, e;, denoted b’(e;, e;), is the portion of b(l;, ;) that is rele-
vant to FVD(S), that is, b’(e;, e;) is the ray of b(l;,[;) in H(e;) N H(e;). In Figure
unbounded bisectors of consecutive farthest hull edges are indicated by
arrows.

Lemma 3. There is a 1-1 correspondence between the unbounded Voronoi edges
of FVD(S) and the vertices of the L, farthest hull. All unbounded Voronoi edges
are rays of slope £1 partitioned into four groups, one group for each envelope of
the farthest hull, each group being a set of parallel rays.

Proof. Let v, V,,..., Vv, denote the list of vertices along FH(S) in, say, counter-
clockwise order, starting at E; N[,,. Each vertex v; corresponds to an unbounded
bisector b’(e;, e;,,), where e;, e;,, are the farthest hull edges incident to v; (see
Figure [3.7). By definition of the farthest hull, the quadrant L induced by any
vertex v on the farthest hull that contains R must touch the two segments that
explicitly or implicitly define v and it must intersect all other segments in S.
Thus, every vertex of FH(S) corresponds to an unbounded Voronoi edge. Con-
versely, for any unbounded Voronoi edge of FVD(S), portion of bisector b(s;,s;),
there is a quadrant L that touches s;,s; and intersects all other segments in S.
In all cases the corner point of L corresponds to a vertex of the farthest hull (by
the definition of the farthest hull). O

As shown in [6] for the Euclidean case, the graph structure of FVD(S) is
connected and corresponds to a tree. This property clearly remains valid in
L, /L, following the same arguments. By the above discussion we conclude.



37 3.1 Farthest line-segment Voronoi diagram in L,

1
'le Lu!
Quadrant2 : : Quadrantl
(1s,1e) ! ! (1s,1lyw)
E E,
2 | lS
E; E, 1n
1 1
Quadrant3 ! : Quadrant4
1
(1n,1le) 1 1 (1n,1y)
1 1
1 1
(a)
1 1
Quadrant2 : Quadrantl OQuadrant2 : Quadrantl
(1s,1e) E (1s,1lw) (1s,1le) ! (1g,1ly)
1
1
1g E, : E, 1g
- _m e m - Q- mm - — =
1n ! 1n
E, 1 E,
1
1
Quadrant3 Quadrant4 Quadrant3 : Quadrant4
(1n,1le) (1n,1y) (1n,1le) : (1n,1w)
1 1
(b) (c)

Figure 3.8. Examples showing degenerate farthest hulls. (a) [, and I, coincide
(farthest hull degenerates to a line-segment). (b) [, and [, coincide as well as
l, and [, coincide, and the quadrants are straddled. (c) [, and [ coincide as
well as [, and [, coincide (farthest hull degenerates to a point)
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Figure 3.9. Constant size farthest-hull for a simple polygon

Theorem 1. The L., farthest segment Voronoi diagram consists of exactly one
unbounded face for each edge of the farthest hull and has size O(h), where h is the
size of the farthest hull that can vary from O(1) to O(n).

Remarks. The L., FVD(S) always consists of four faces, facing north, south,
east, and west, each induced by one bounding line, [,,[,1,,[, respectively. In
addition, for any non-trivial envelope, it contains one face for each segment
of the envelope, always bounded by parallel slope-+1 rays. A segment may
contribute to at most two different envelopes and thus, it may appear twice on
the farthest hull. It may also contribute to both a bounding line and its incident
envelope or induce a number of the bounding lines. Degenerate instances of the
farthest-hull may arise, when parallel bounding lines coincide (see e.g Figure
[3.8). For non-crossing segments the envelopes can clearly consist of at most
one segment each, thus, the L., FVD(S) has O(1) size. Figure [3.9]illustrates the
farthest hull of non-crossing segments forming a simple polygon.

Corollary 2. The region of a segment in FVD(S) may consist of a constant number
of disjoint faces. The maximum number of disjoint faces for a single segment is five.

Proof. A segment may contribute an edge to at most two envelopes and it may
induce at most four bounding lines. However, any two edges of the farthest
hull that are adjacent produce neighboring regions in FVD(S), which, if they
are induced by the same segment, correspond to a single face. By definition, a
segment may contribute to two envelopes only if it contributes their first or last
edge. Thus, the maximum number of disjoint faces for a single segment is five,
at most four for the bounding lines, plus one for a single potential envelope
edge that is not incident to bounding lines. O
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Figure 3.10. Example showing a segment (in purple) whose farthest Voronoi
region consists of five disconnected faces.
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Figure 3.11. Example of n = 6 segments producing n + 8 disjoint faces.

Figure illustrates an example of a segment having exactly five disjoint
faces, where four of those five faces are the standard faces of the bounding lines.

This segment induces all four bounding lines plus it contributes one edge to
an envelope that is not adjacent to any bounding line.

Theorem 2. The L, farthest Voronoi diagram of n arbitrary line segments may
have at most n + 8 faces and this is tight. For non-crossing segments this number
is eight.

Proof. The total number of faces of the diagram is four (for the bounding lines)
plus the total number of edges along the envelopes of the farthest hull. A seg-
ment may contribute an edge to at most two envelopes. However, only the first
and the last edge of a pair of envelopes may be attributed to the same segment
(by definition of an envelope). Thus, the total number of edges along the en-
velopes is at most n+ 4 and the total number of faces in the diagram is at most
n + 8. This bound is tight as shown in Figure [3.11, where four line segments
produce eight disjoint faces, each one contributing to exactly two non-adjacent
envelope edges. The segment in purple induces all four bounding lines plus
one envelope edge that is not incident to any bounding line, thus, it produces
5 disjoint faces. Any other segment can be placed to contribute exactly one
face. O

In the presence of multiple segments or multiple segment endpoints aligned
along the same axis-parallel line, there may be a number of segments inducing
a bounding line. Let S([;) be the set of segments inducing [;, where i = n,s,e, w.
Then reg(l;) is equidistant from all segments in S(I;). In this case, a convention
regarding the ownership of the region may be adapted. For example, we can
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Figure 3.12. Farthest Voronoi diagram of segments in L.

assign reg(l;) to one segment in S(I;) arbitrarily or to one segment according to
a lexicographic order. Alternatively, we can attribute reg(l;) to [; and charac-
terize it as a region common to all segments in S(I;). The choice of convention
depends on the needs of the application. Our choice is the latter convention as
it avoids any artificial partitioning of equidistant regions.

Construction algorithm:
Following [l6], the algorithm to construct FVD(S) (for example see Figure|3.12)
proceeds in two steps:

1. Construct the farthest hull FH(S). Given FH(S), construct the circular list
C of all unbounded bisectors

2. Given C, construct FVD(S).

Step |1{takes O(nlogh) time, where h is the size of the farthest hull. In par-
ticular, the bounding axis parallel lines [, [, [,, and [, can be constructed in
O(n) time. The envelopes of the segments straddling the four quadrants can be
constructed by any convex hull type algorithm, thus, in O(nlogh) time follow-
ing [[16]. The circular list C of all unbounded bisectors is derived in additional
O(h) time. Step |2| can be constructed in O(h) time as a simplification of the
algorithm in [6] for the L., metric.
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Algorithm 1 CONSTRUCT-FVD(S)

INPUT: A set S of n arbitrary line segments.

OUTPUT: FVD(S).

CONSTRUCT-FVD(S)

1. Compute the farthest-hull of S, FH(S).

2. From FH(S) construct the circular list C of unbounded
bisectors.

3. Identify the four pairs of intersecting neighboring
bisectors, compute their intersection point, and insert it
in the intersection set V.

4. While (C is not empty)

4.a. Report the intersection point (Voronoi vertex) in V
with maximum weight. Let b7, b, be the two
bisectors in C inducing the intersection

4.b. Compute a new bisector b;, as defined by the
two non-common edges of the farthest hull
inducing of b} and by,

4.c. Compute the intersection points of the new bisector
with its two neighboring bisectors, choose the one
of maximum weight and insert it in V.

4.d. Delete b, b, from C and insert b, in their
position.

end While
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Figure 3.13. Farthest hull in the L; metric

The algorithm in [|6] is based on the observation that vertices of FVD(S) can
be discovered in order of decreasing weight, where the weight of any point v
along FVD(S) is the radius of the disk (a square in L) centered at v passing
through the line segments whose bisector induces v (see also [[70]]). Intuitively,
the tree structure of FVD(S), denoted T(S), can be regarded as a rooted tree,
rooted at the point of minimum weight v_;, (in L, v,,;, may be an entire axis-
parallel segment), where v, is the locus of centers of the minimum size disk
intersecting all segments in S. Along any path of the rooted T(S) (except the
root in L) the weight of nodes is strictly increasing. Thus, we can compute
T(S) in a bottom up fashion, always proceeding in order of decreasing weight,
until the node of minimum weight is reached.

In the L., metric the implementation is particularly simple: There are only
four pairs of neighboring bisectors that may intersect; all other unbounded
bisectors are parallel rays of slope +1. As a result, the intersection of maxi-
mum weight can be determined in O(1) time. We simply maintain a set V of
size four of all possible intersections. Given a node of maximum weight v let
b'(e;,e;) and b’'(e, e;) be the neighboring bisectors inducing v. Once v is se-
lected, delete b’(e;,e;) and b’(e, ;) from C and substitute them with the new
bisector b’(e;, e;); compute the intersections of b’(e;, e;) with its two neighbor-
ing bisectors in C, choose the one of larger weight, and insert it in V. The
algorithm is summarized in Algorithm [1| Its asymptotic complexity is clearly
optimal in the worst case.

Theorem 3. Given a set of arbitrary segments S, the farthest hull of S can be con-
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d b

(b)

Figure 3.14. The farthest line-segment hull of segments in Figure and its
Gaussian map.

structed in O(nlogh) time. Given the farthest hull, the L., (L) farthest segment
Voronoi diagram of S can be constructed in additional O(h) time, where h is the
number of edges on the farthest hull. h can vary from O(1) to O(n).

It is well known that the L; metric is equivalent to L, under 45° rotation.
Figure illustrates the farthest hull of S in the L, metric. Unbounded bi-
sectors in the L, version of FVD(S) are axis-parallel rays. The construction is
equivalent.

3.2 The farthest line-segment Voronoi diagram in L,
(1<p<o0)

We study the structural properties, define the farthest hull and its properties in
Subsection We describe the improved combinatorial bounds in Subsec-
tion and the construction algorithms for the farthest line-segment hull in
the L, metric (which also holds true in any L, metric, 1 < p < 00) in Subsection

3.2.1 Defining the farthest-hull and its Gaussian map

The farthest hull is a closed polygonal curve that encodes the faces and the
unbounded bisectors of FVD(S) while it maintains their cyclic order. The cyclic
order of the farthest hull is reflected by its Gaussian map. In the following, we
define these concepts.
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Definition 4. A line { through the endpoint p of a line-segment s € S is called a
supporting line of S if an open halfplane induced by {, denoted H({), intersects
all segments in S, except s (and possibly except additional segments incident to p).
Point p is said to admit a supporting line and it defines a vertex on the farthest
hull. The unit normal of £, pointing away from H({), is called the unit vector of
¢ and is denoted v({). If the line £ through s is supporting, i.e., H({) intersects all
segments in S \ {s}, line-segment s is said to admit a supporting line and it defines
a segment on the farthest hull of unit vector v(s) = v(£), which is called a hull
segment.

A single line-segment s may result in two hull segments of two opposite unit
vectors. This is the case when the line through s intersects all segments in S.

Definition 5. The line-segment pq joining the endpoints p, q, of two line segments
$;,5; € S is called a supporting segment if the open halfplane induced by the line
{ through pq, at opposite side of { than s;,s;, denoted by H(pq), intersects all
segments in S, except s;,s; (and possibly except additional segments incident to
P,q). The unit normal of pq pointing away from H(pq) is called the unit vector

of g, v(pq)-

Aurenhammer et al.[[6] showed that a segment s; has a non-empty farthest
Voronoi region (unbounded in direction ¢) if and only if there exists an open
halfplane (normal to ¢) which intersects all segments in S buts;. Thus, freg(s;) #
@ if and only if s;, or an endpoint of s;, admits a supporting line. The unbounded
bisectors of FVD(S) correspond exactly to the supporting segments of S. Let C
denote the circular list of unit vectors of all the supporting and hull segments of
S following their angular order. The angular ordering of C implies an ordering
in the set of supporting and hull segments of S that corresponds exactly to the
cyclic ordering of the faces of FVD(S) at infinity. Figure (b) illustrates the
ordering of C for the set of segments whose farthest Voronoi diagram appears

in Figure

Theorem 4. Let S be a set of line-segments in the plane. The sequence of the hull
segments and the supporting segments of S, ordered according to the angular order
of their unit vectors, forms a closed, possibly self-intersecting, polygonal curve.

We call the polygonal curve, subject of Theorem (4, the farthest line-segment
hull of S (for brevity, the farthest hull), and denote it by f-hull(S). Figure|3.15
illustrates the farthest hull for the Voronoi diagram of Figure Its ordering
is revealed by the angular order of unit vectors in Figure [3.14|(b).
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(b)
Figure 3.15. Proof of Theorem .

Proof. Consider the circular list C of the unit vectors of S. By Defs. [4] and
unit vectors are unique, i.e., no two different supporting lines or supporting
segments of S can have the same unit vector. Let v; = v(e;), viy; = v(ei11)s
V.o = v(e;,.,) be three consecutive unit vectors in C in say clockwise order,
wheree;, e;,, e;,, are their corresponding supporting segments or hull segments
(see Figure[3.15). Consider the line through e;. By the definition of a supporting
line or a supporting segment, there must be an endpoint m of e;, such that if we
rotate the line £,, through e;, infinitesimally clockwise around m, £, will become
a supporting line through m (see Figure (a)). Vertex m is chosen among
the endpoints of e; according to whether e; is a hull segment or a supporting
segment. As we rotate {,, clockwise around m it must remain a supporting line
of S, leaving the segment s,, incident to m lying entirely in the complement
halfplane of H({,), until »({,,) = v,.;. At that time, since unit vectors are
unique, {,, must be the line through e,,;, and thus, e;,; must be incident to m
(by Defs. [4], [5). However, if we continue to rotate £,, clockwise past v, 1, £,,
stops being a supporting line. Thus, e;,, cannot be incident to m. Note thate,,,
must be incident to the other endpoint of e,, ;, denoted as m’ in Figure (b).

We showed that by the argument above, any two consecutive edges on f-
hull(S) must be incident to the same vertex while no three consecutive ones
can. Thus, f-hull(S) must form a closed polygonal curve. The vertices of the
polygonal curve may repeat, that is, multiple vertices of f-hull(S) may corre-
spond to the same point in S. Two different hull edges may correspond to the
same segment. ]

Remarks. The vertices of the farthest hull are exactly the endpoints of S that
admit a supporting line. The edges are of two types: supporting segments and
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hull segments. Recall that two different hull segments may correspond to a
single segment in S, and that several hull vertices may correspond to the same
segment endpoint. A supporting line of S is exactly a supporting line of the far-
thest hull. Any maximal chain of supporting segments between two consecutive
hull segments must be convex. If the line-segments in S degenerate to points,
the farthest hull corresponds exactly to the convex hull of S.

Consider the Gaussian map, for short Gmap, of the farthest hull of S onto the
unit circle, denoted as Gmap(S). This is a mapping of the farthest hull onto the
unit circle K, such that every edge e is mapped to a point on K, as obtained by its
unit vector v(e), and every vertex is mapped to one or more arcs as delimited by
the unit vectors of the incident edges (see Figure [3.14). The Gaussian map can
be viewed as a cyclic sequence of vertices of the farthest hull, where each vertex
is represented as an arc of K,. Recall that multiple vertices of the farthest hull,
and thus, several arcs of the Gmap, may correspond to the same endpoint in
S. Each point along an arc of the Gmap reveals the unit vector of a supporting
line. The Gaussian map provides an encoding of all the supporting lines of
the farthest hull. It also provides an encoding of the unbounded bisectors, the
regions of the farthest line-segment Voronoi diagram, and the directions along
which every face of the diagram is unbounded. It can be readily obtained by
the circular list of unit vectors C.

Corollary 3. FVD(S) has exactly one unbounded bisector (unbounded Voronoi
edge) for every supporting segment of f-hull(S), which is unbounded in the di-
rection opposite to its unit vector. Unbounded bisectors in FVD(S) are cyclically
ordered following exactly the cyclic ordering of Gmap(S).

By Corollary [3] there is a 1-1 correspondence between the faces of FVD(S)
and maximal arcs along the Gmap between pairs of consecutive unit vectors of
supporting segments. There are two types of maximal arcs along the Gmap:
segment arcs, which consist of a segment unit vector and its two incident arcs
of the segment endpoints, and single-vertex arcs, which are single arcs bounded
by the unit vectors of the two incident supporting segments. A segment arc
corresponds to one hull segment while a a single-vertex arc corresponds to one
occurrence of a hull vertex between two supporting segments.

Using the Gmap we can easily define the upper (resp., lower) farthest hull
similarly to an ordinary upper (resp., lower) convex hull. In particular, the
portion of the Gaussian map above (resp., below) the horizontal diameter of
the unit circle is referred to as the upper (resp., lower) Gmap. We can define the
upper (resp., lower) farthest hull as the portion that corresponds to the upper
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Figure 3.16. Example of a line-segment s; and its dual. The lightly shaded
region is the lower wedge, and the dark shaded region is the upper wedge.
The red point in the dual plane is the supporting line of the line-segment s;.

(resp., lower) Gmap, which is similar to an ordinary upper (resp., lower) convex
hull.

In Definitions[4} [5| we used the unit vectors of supporting lines and segments
pointing away from the farthest hull in order to simulate a convex hull. Alterna-
tively, we could use the unit vectors in their exact opposite direction and derive
an equivalent map on the unit circle in mirror direction, which reflects exactly
the faces of FVD(S) at infinity, their unbounded directions, and the unbounded
bisectors of FVD(S).

3.2.2 Improved combinatorial bounds

In this subsection, we give tighter upper and lower bounds on the number of
faces of the farthest line-segment Voronoi diagram for arbitrary line-segments.
To start our approach for computing the combinatorial bounds on the number
of faces of FVD(S), we use the standard point-line duality transformation T [6]],
that maps a point p = (a, b) in the primal plane to a line T(p) : y =ax —b in
the dual plane, and vice versa. A line-segment s; = uv is sent into the wedges
w; and w’ that lie below and above respectively both lines T(u) and T(v), re-
ferred to as the lower and upper wedge respectively (see Figure [3.16). Note
that wedges w; and w; must contain the vertical ray that emanates from their
apex and is directed to —oo and to oo respectively. Define E to be the boundary
of the union of the lower wedges w,...,w, (see Figure and E’ to be the
boundary of the union of the upper wedges w’,...,w’. Then as shown by Au-
renhammer et al. [|6]], the faces of FVD(S), which are unbounded in directions
0 to 7 in cyclic order, correspond to the edges of E in x-order [|6]]. Respectively
for the edges of E’ and the Voronoi faces unbounded in directions 7t to 27r.
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Let a start-vertex and an end-vertex respectively stand for the right and the
left endpoint of a line-segment. In terms of a lower wedge, a start-vertex is
the left ray of the wedge and an end-vertex is the right ray. Let an interval
[a;,a;,,] denote the portion of the lower Gmap between two consecutive (but
not adjacent) occurrences of arcs for segment s, = (a’,a), where a,a’ denote
the start-vertex and end-vertex of s, respectively. Interval [a;, a;,,] is assumed
to be nontrivial i.e., it contains at least one arc in addition to a, a’. The following
lemma is easy to derive using the duality transformation.

Lemma 4. Let [a;, a;,,] be a nontrivial interval of segment s, = (a’,a) on lower
Gmap(S). We have the following properties:

1. The vertex following a; (resp., preceding a;,,) in [a;,a;,,;] must be a start-
vertex (resp., an end-vertex).

2. If a; is a start-vertex (resp., a;,, is end-vertex), no other start-vertex (resp.,
end-vertex) in the interval [a;, a;,, ] can appear before a; or past a;,, on the
lower Gmap, and no end-vertex (resp., start-vertex) in [a;,a;,,] can appear
before a; (resp., past a;,,) on the lower Gmap.

To count the number of vertex re-appearances along the lower Gmap we
use the following charging scheme for a nontrivial interval [a;,a;,;]: If q; is
a start-vertex, let u be the vertex immediately following a; in [a;,a;,;]; the
appearance of a;, is charged to u, which must be a start-vertex, by Lemma
If a;,, is an end-vertex, let u be the vertex in [a;, a;,; ] immediately preceding
a;,,; the appearance of a; is charged to u, which must be an end-vertex, by
Lemma 4]

Figure 3.17. Example of union of dual wedges [6].
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(a)

Figure 3.18. (a)Lower Gmap of 3n—2 arcs. (b)Gmap of 5n—6 arcs.

Lemma 5. The re-appearance along the lower Gmap of an endpoint of a segment
S, is charged to a unique segment endpoint u (a start-vertex or an end-vertex of
the lower Gmap) such that no other re-appearance of a segment endpoint on the
lower Gmap can be charged to u.

Proof. Let [a;,a;,,] be a nontrivial interval of the lower Gmap and let u be the
endpoint that has been charged the re-appearance of a;,; (or a;) as described
in the above charging scheme. By Lemma |4} all occurrences of u must be in
la;,a;,,]. Suppose (for contradiction) that u can be charged by the reappear-
ance of some other vertex c. Assuming that u is a start-vertex, ¢ must also be a
start-vertex, and an interval [cu...c] must exist such that cu € [a;,a;,,]. Thus,
[cu...c] € [a;,a;,,]- But then u could not appear outside [cu...c], contradict-
ing the fact that u has been charged the reappearance of a; ;. Similarly for an
end-vertex u. O

By Corollary (3, the number of faces of FVD(S) equals the number of sup-
porting segments of the farthest hull, which equals the number of maximal arcs
along the Gmap between consecutive pairs of unit vectors of supporting seg-
ments.

Lemma 6. The number of maximal arcs along the lower (resp., upper) Gmap, and
thus, the number of faces of FVD(S) unbounded in directions O to 1 (resp., T to
21), is at most 3n-2. This bound is tight.

Proof. Consider the sequence of all occurrences of a single segment s, = (a’, a)
on the lower Gmap. It is a sequence of the form

..a...aad’...a’... or ...a...a...a...a ...
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The number of maximal arcs involving s, is exactly one plus the number of
(nontrivial) intervals involving the endpoints of s,. Summing over all segments,
the total number of maximal arcs on the lower Gmap is at most n plus the total
number of vertices that may get charged due to a nontrivial interval (i.e., the
reappearance of a vertex). By Lemma |5} a vertex can be charged at most once
and there are 2n vertices in total. However, the first and last vertices along the
lower Gmap cannot be charged at all, thus, in total 3n — 2. Similarly for the
upper Gmap.

Figure illustrates an example, in dual space, of n line-segments (lower
wedges) whose lower Gmap (boundary of the wedge union) consists of 3n —2
maximal arcs. There are exactly n hull segments plus 2n — 2 charges for vertex
(wedge) reappearances. O

Theorem 5. The total number of faces of the farthest line-segment Voronoi dia-
gram of a set S of n arbitrary line-segments is at most 6n — 6. A corresponding
lower bound is 5n — 6.

Proof. The upper bound is derived by Lemmal6|and Corollary[3] A lower bound
of 5n — 6 faces can be derived by the example, in dual space, illustrated in
Figure [3.18b. A set n line-segments are depicted as lower and upper wedges
using the point-line duality. There are 2n hull segments, 2(n —2) + 1 charges
for vertex reappearances on lower wedges, and n—1 charges on upper wedges.
Thus, a total of 5n—4, minus the two common elements of the upper and lower
Gmap. [

Theorem [5| improves the 8n + 4 upper bound and the 4n — 4 lower bound
on the number of faces of the farthest line-segment Voronoi diagram given by
Aurenhammer et al.[[6], based on results of Edelsbrunner et al.[27]]. For disjoint
segments the corresponding bound is 2n — 2, which is tight.[20]

3.2.3 Algorithms for the farthest line-segment hull

Using the Gmap, we can adapt most standard techniques to compute a convex
hull with the ability to compute the farthest hull, within the same time complex-
ity. For example, we can adapt Chan’s output sensitive approach and compute
the farthest hull in output sensitive O(nlogh) time, where h is the size of the
hull. As a result, the farthest line-segment Voronoi diagram can be computed in
output sensitive O(nlogh) time. Recall that h equals the number of faces on the
farthest line-segment Voronoi diagram. Our goal is to unify techniques for the
construction of the farthest-point and farthest line-segment Voronoi diagram.
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In this section we give algorithmic details for a divide and conquer technique
to compute the farthest hull.

Divide and conquer construction of the farthest hull

We list properties that lead to a linear-time merging scheme for the farthest
hulls of any two sets of segments, L, R, L "R # 0, and their Gaussian maps.
The merging scheme gives an O(nlogn) divide-and-conquer approach and to
an O(nlogn) two-stage incremental construction. Recall that the farthest hulls
of L and R may have O(|L| + |R|) supporting segments between them.

For farthest-hull edge e € L, let the R-vertex of e be the point v in R such that
v(e) falls along the arc of v in Gmap(R). Respectively for e in R. A supporting
line, an edge or a vertex of the farthest hull of L or R and their corresponding
unit vector or arc are called valid if they remain in the farthest hull of L UR.

Lemma 7. A a farthest hull edge e in f-hull(L) of unit vector v(e) remains valid
in f-hull(L UR) if and only if its R-vertex lies in the halfplane H(e).

Proof. Let e be an edge of f-hull(L) and let g be its R-vertex. Suppose e remains
valid in f-hull(L UR). Then the line £(q), parallel to e, passing through g, must
be supporting to f-hull(R). Consider H(e). If g € H(e) then £, must be contained
entirely in H(e). Since £(q) is supporting to f-hull(R), H(e) must intersect all
segments in R. Since H(e) must also intersect all segments in L, except those
inducing e, e must be valid. If g & H(e), then £, lies entirely outside H(e) and
thus, the segment incident to g cannot not intersect H(e), that is, e must be
invalid. [

Corollary 4. If v(e) in Gmap(L) is invalid, its R-vertex must be valid.

Proof. If e is invalid, then its R-vertex q ¢ H(e). Thus, H({,), where {, is the
line parallel to e passing through g, must intersect all segments in L and all
segments in R except the one incident to q. Thus, ¢ must be valid. O

Lemma 8. An arc in Gmap(L), i.e., a hull-vertex m of f-hull(L), remains valid in
Gmap(L UR) if and only if either an incident unit vector remains valid, or m is the
L-vertex of an invalid unit vector in Gmap(R).

Proof. A vertex incident to a valid farthest hull edge must clearly be valid. By
Corollary if m is the L-vertex of an invalid edge in f-hull(R) then m must be
valid.
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(b) (c)
Figure 3.19. Proof of Lemma .

Conversely, suppose that m is valid but both incident unit vectors v; and
v, in Gmap(L) are invalid. Since m is valid, there is a supporting line of L U
R passing through m, denoted £,, such that v({,,) is between v, and v, on
the arc of m (see Figure [3.19|(a)). Let u;,u, be the R-vertices of v, and v,
respectively. Since v,, v, are invalid, u; ¢ H({;) and u, ¢ H({,), where {,, {,
are the corresponding supporting lines of L. Since m is valid, £,, is a supporting
line of L UR, thus, u; and u, must lie in H(l,,) " H'(£,) and H(l,,) N H'({,)
respectively, where H’(1) is the complement of H(l). But these regions, which
are shown shaded in Figure (a), are disjoint, therefore, u; # u,. Thus, there
is a unit vector separating the arcs of u; and u, in Gmap(R), whose L-vertex is
m.

Let u be the R-vertex of v(£,,) in Gmap(R). Let v’1 and v’z denote copies of
unit vectors v; and v, in Gmap(R). Let v be a unit vector in R bounding the
arc of u between v’l and v’z, i.e, v has m as its L-vertex. Such a unit vector
must exist in Gmap(R) by the argument above. Since {,, is valid, by Lemma
u must be in H(¢,,). Consider the line £, parallel to [,, passing through u (see
Fig [3.19(b)). It lies entirely in H({,,). If we rotate £, slightly clockwise and
counterclockwise around u into lines £/ and £/ respectively, it is clear that m
cannot be contained in both H(¢;) and H({.,) (see Figure[3.19|(c) where H(£; )N
H({!) is shown shaded). Thus, not both ¥(¢/) and ¥(£/') can be valid. If we
continue the rotation around u we will reach the unit vectors bounding the arc
of u in Gmap(R), among which one may be v| or v,. For the same reason, not
both bounding vectors can be valid. Since both v or v, are valid in Gmap(R),
an invalid unit vector must be between them. O]

Let Gmap(L)UGmap(R) denote the circular list of unit vectors and arcs de-
rived by superimposing Gmap(L) and Gmap(R). We can determine valid and
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Figure 3.20. (a) Gmap(L). (b) Gmap(R). (¢) Gmap(LUR), merge vectors are
inserted between consecutive valid vertices in different sets.

invalid unit vectors as well as valid and invalid hull vertices (arcs) using Lem-
mas|7|and (8 Then Gmap(L)UGmap(R) represents a circular list of the vertices
in f-hull(L UR). Recall that by Lemma [8| any invalid vector represents a valid
vertex in the opposite set. For any pair of consecutive vertices, one in L and one
in R, a new unit vector, referred to as a merge vector, needs to be inserted cor-
responding to the new supporting segment between the two hulls joining these
two vertices. After inserting the merge vectors into Gmap(L)UGmap(R), all in-
valid vectors can be deleted, and we obtain Gmap(L UR). The merging process
is illustrated in Figure Merge vectors are indicated by longer arrows. The
merging process is clearly linear. We thus, conclude.

Lemma 9. Gmap(L) and Gmap(R) can be merged into Gmap(L U R) in linear
time.

The merging process implies a simple O(nlogn)-time divide-and-conquer
algorithm to compute the farthest hull of S.

In an incremental process the merging phase is performed such that one set
is a single segment. In this case, say R = {s}, the merging process can be refined
as follows: Let v,(s) be the unit vector of s in its upper Gmap. (1) Perform
binary search to locate v,(s) in the upper Gmap(L); (2) Move counterclockwise
along the upper Gmap(L) sequentially, to test the validity of the encountered
unit vectors, until either a valid start-vertex of x-coordinate smaller than the
start-vertex of s is found or the beginning of upper Gmap(L) is reached; and
(3) Move clockwise along the upper Gmap(L) until either a valid end-vertex of
x-coordinate larger than the end-vertex of s is found or the end of the upper
Gmap(L) is reached. In the process, all relevant supporting segments in the
upper Gmap are identified. Similarly for the lower Gmap.



95 3.3 Summary

Some other standard convex-hull techniques such as Jarvis march, quick
hull, and an output sensitive Chan’s algorithm [[16]] can also be adapted to con-
struct the farthest line-segment hull with same time complexity [[671].

3.3 Summary

In this chapter we have studied combinatorial properties and construction al-
gorithms of the farthest line-segment diagram in the general L, metric, 1 <
p < 0o. The most interesting ones are the L., (max-norm) and the L, metric
(Euclidean). The results in the L, metric extends easily to the L, metric. The
contents of this chapter appear in research papers [[66], [25]], [[65]], [67].

We introduced the farthest line-segment hull and its Gaussian map in the L,
metric. The farthest line-segment hull encodes the faces and characterizes the
unbounded Voronoi edges.

We improved the combinatorial bounds on the number of faces of the dia-
gram. For the L, metric, we improved the upper bound from 8n + 4 to 6n —6
and the lower bound from 4n—4 to 5n—6. We also proved exact bound for the
Lo, (L;) metric, which is n + 8. In the L., (L;) metric, for a set of disjoint line
segments this bound is constant and is equal to eight.

In the L, metric, the unbounded Voronoi edges have constant number of
directions, and thus given the farthest hull, the farthest Voronoi diagram can be
constructed in O(h) time, where h is the size of the farthest hull.

We gave a divide and conquer algorithm to construct the farthest hull in
O(nlogn) time.

The derivation of results on the farthest line-segment Voornoi diagram has
been a joint work with major contribution from Prof. Evanthia Papadpoulou.
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Chapter 4

CGAL implementation of the
line-segment Voronoi diagram in the
L oo metric

“Out of clutter, find simplicity.”
Albert Einstein

The CGAL project was founded in 1996 [128]] with the following goal:

" Make the large body of geometric algorithms developed in the field of compu-
tational geometry available for industrial application "

The current version of CGAL which is CGAL-4.6 [[90] is released on April
2015 and consists of approximately 600K lines of C + + source code. It con-
tains various geometric algorithms and data-structures such as convex hull al-
gorithms, triangulations, Voronoi diagrams, arrangement of curves, and many
more.

The major portion of the content of this chapter is published in the Interna-
tional Congress on Mathematical Software (ICMS) 2014 [19]. The development
of the software package for the line-segment Voronoi diagram in the L., metric
is a joint work Dr. Panagiotis Cheilaris. Our software package is accepted and
integrated to the upcoming version of the library CGAL 4.7, and will be released
in September 2015.

o7
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Line-segment Voronoi diagrams encode proximity information between polyg-
onal objects. In many applications, proximity is most naturally expressed with
the Euclidean distance, but there are applications, particularly in integrated cir-
cuits design and manufacturing, for which the L, distance provides a good and
simpler alternative. A detailed motivation for using the L., metric is given in
the Section [1.1] of the Introduction of this dissertation.

In this chapter, in Section[4.1]we briefly discuss the basic terminology used in
CGAL, structure and architecture of CGAL, and important fundamental concepts
used in CGAL. Then in Section[4.2)we review the existing implementation of the
line-segment Voronoi diagram in the Euclidean plane. Finally, in Section[4.3|we
discuss our implementation of the L., segment Voronoi diagram in CGAL.

4.1 CGAL preliminaries

The geometric algorithms and data structures in CGAL are implemented under
the design goals of robustness, genericity, flexibility, efficiency, and ease of use
[28] 29]]. These design goals are fulfilled in CGAL by choosing C++ generic
programming, using template classes, and function templates. The high level
block diagram of C++ Standard Template Library (STL) architecture is shown
in Figure In STL the algorithms are de-coupled from the containers (data-
structures) using iterators [80] (iterators are used to traverse data-structures),
and the functionality of an algorithm is provided using functors [180]. CGAL
follows the STL style of coding (see Figure with some more modifications.
For an example, apart from iterators, CGAL has circulators, which is a natural
need for geometric software, where many objects are closed (you would like to
circle around the object) like convex hull.

Genericity and flexibility: Genericity and flexibility are achieved by concepts
and models in the generic programming paradigm. A concept is a set of re-
quirements that must be satisfied by a class. A model of a concept is a class
that fulfills those requirements. For example, the iterator concept enables the
use of the same algorithms for different containers (data structures). In CGAL,
all algorithms are passed with a special template parameter called a traits class
[59]. A traits class represents a concept and so has a corresponding set of re-
quirements that define the interface between the algorithm and the geometric
(or numeric) primitives it uses. Any concrete class that serves as a model for
this concept is a traits class model for the given algorithm or data structure.
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Iterators Generic Algorithms

Container:

Algorithms

Figure 4.1. The STL design in C++.

Bundle of functors:
Predicates and functions

The use of traits concept as template parameters allows for the customization
of the behavior of algorithms without changing their implementations. At least
one model for each traits concept is provided in CGAL. Users can also provide
their own traits class satisfying all the requirements of traits concept.

Predicates and constructions: There are two types of geometric computations,
one is a predicate which is associated with a branching decision in the algorithm
and determines the flow of the algorithm, and the other is a construction which
is associated with generating the output of the algorithm. Any approximation
in the predicate computation can cause incorrect branching of the algorithm
and can lead to failure of the implementation. Any approximation in the con-
struction computation is acceptable as long as the maximum absolute error is
within the resolution required by the application as well as the approximation
also gives a geometrically consistent result. Passing the approximated results
of construction to the predicate can cascade the error and again fall in an un-
acceptable state.

Exact arithmetic and floating point filters: The use of exact arithmetic to han-
dle the problems incurred due to the use of floating point arithmetic is discussed
by Yap in [[94]]. Geometric algorithms can be written using integer or rational
number types, but the required bit length even for the simplest geometric com-
putation can exceed the built in machine precision. This is handled in CGAL by
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Generic Algorithms

Iterators/Circulators:
Sequence

Data Structures:

Graph
Boost lib

Algorithms

Figure 4.2. The CGAL design.

Geometric traits:
Bundle of functors

using multiple precision software packages such as GNU Multiprecision Package
(GMP) [I34], LEDA’s integer and rational number types [[56]]. The CGAL kernel
is template parametrised by number types, so there is a flexibility of using the
number type depending on the application. The use of exact arithmetic in a
naive way may result in slow execution time.

In many cases we do not need exact arithmetic as the floating point arith-
metic can give correct results. To handle computationally intensive predicates,
CGAL uses two different kinds of filtering techniques: geometric filtering and
arithmetic filtering. The geometric filtering technique amounts to performing
simple geometric tests exploiting the representation of data, as well as the ge-
ometric structure inherent in the problem, in order to evaluate predicates in
seemingly degenerate configurations. Geometric filtering can be seen as a pre-
processing step before performing arithmetic filtering. Geometric filtering can
help by pruning situations in which the arithmetic filter will fail, thus decreasing
the number of times one needs to evaluate a predicate using exact arithmetic.
Arithmetic filtering first tries to evaluate the predicates using a fixed-precision
floating-point number type (such as double), and at the same time keeps error
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Figure 4.3. Structure of CGAL [29].

bounds on the numerical errors of the computations performed. If the numeri-
cal errors are too big and do not permit to evaluate the predicate, it switches to
an exact number type, and repeats the evaluation of the predicate. This way
CGAL keeps the speed of a multiple of floating point arithmetic and degrades
to exact arithmetic only when it is necessary. There are three types of floating
point filters.

1. Static filters [|31]], where the error bounds are computed at compile time
and need specific information on the input data. Static filters are very
efficient as they only require comparison with the already computed error
bound at run time.

2. Semi dynamic filters [|56]], which bound the size of the operands at run
time, and some factors are computed at compile time.

3. Fully dynamic filters [56]], where the error bound is computed fully at
runtime. Interval arithmetic [[12] can also be used as a fully dynamic
filter, first all computations are done using interval arithmetic, then the
computation is repeated in the second step only if the computed intervals
do not allow reliable comparisons.

Overview of the CGAL structure: The library is structured into three layers
(see Figure [29]: the core library with basic non-geometric functionali-
ties, the geometry kernel with basic geometric objects and operations on the
geometric objects, and the basic library with more complicated algorithms and
data structures. There is also a support library that deals with visualization,
number types, streams, and STL extensions. In CGAL we can choose the un-
derlying number types and arithmetic. We can choose implementations with
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_ - Delaunay graph

Figure 4.5. L., Voronoi dia-
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for interiors of segments and their end- ones filled and infinite ones
points. unfilled).

fast but occasionally inexact arithmetic or implementations guaranteeing exact
computation and exact results. Since there are more applications in 2-D, 3-D, as
compared to general dimension, CGAL provides separate kernel representations
for 2-D, 3-D, and general dimension objects.

4.2 Reviewing L, segment Voronoi diagram in CGAL

The 2D segment Delaunay graph package provides a randomized incremental
construction of the L, segment Voronoi diagram. The input S is a set of points
and segments (supports intersecting line-segments). The package supports in-
tersections of segments by computing internally the arrangement .</(S) of the
input sites (segments and points). Internally, each “closed” input segment AB
is converted to three sites, namely its two endpoints A, B and the “open” part
of the segment (AB). For example, for input S = {AB,CD}, where the two
segments cross at their interior at point E, the diagram is computed for the
arrangement ./ (S) = {A,B,C, D, E,(AE),(EB),(CE),(ED)}. This increases the
combinatorial complexity of the diagram by a constant factor, Computing the
Voronoi diagram over the arrangement guarantees all bisectors in the Voronoi
diagram to be one-dimensional and all Voronoi cells to be simply connected. As
a result, the resulting diagram is an abstract Voronoi diagram [[47]], which can be
efficiently computed. The expected cost of inserting n sites is O((n+m)log® n),
where m is the number of intersections of the n input segments and points.
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,,,,,,,,,,,,,,,,,,,,,

 Triangulation 2<...>

,,,,,,,,,, prT
Segment Delaunay graph 2<GT,...> | SDGL2

I
Segment Delaunay graph hierarchy 2<GT,...> | SDH

Figure 4.6. Previous algorithm classes for SDG L, package.

The dual graph of the segment Voronoi diagram is also a plane graph and is
called the segment Delaunay graph. Faces of the Voronoi diagram correspond to
vertices (or sites) in the Delaunay graph. Vertices of the Voronoi diagram corre-
spond to faces in the Delaunay graph. Edges of the Voronoi diagram correspond
to edges in the Delaunay graph. It is typical to always include an additional site
Seo at infinity, as it simplifies the construction algorithms [[48]]. See Figure
As its name suggests, the Segment Delaunay graph package of CGAL computes
in fact the segment Delaunay graph (SDG) under the L, distance. The package
also provides drawing functions that can convert each edge of the Delaunay
graph to the corresponding dual edge of the Voronoi diagram and this is how it
is possible to draw the Voronoi diagram.

The SDG L, package contains two algorithm template classes (see Figure[4.6))
to construct the SDG.

1. The segment Delaunay graph class Segment Delaunay graph 2 (abbrevi-
ation: SDGL2) is derived from a triangulation class (from the 2D Triangu-
lation package of CGAL). Among other things, it contains the functionality
to maintain and update the arrangement of the input sites. It also con-
tains functions to construct duals of edges of the SDG, i.e., edges of the
Voronoi diagram.

2. The segment Delaunay (graph) hierarchy class
Segment Delaunay graph hierarchy 2 (abbreviation: SDH) is derived
from the SDG class. It builds a hierarchy of SDGs and uses it to achieve
faster insertion of a new site in the segment Delaunay graph. This is an
implementation with better worst-case complexity than the SDG class (for
details, see [24, [44]).

Both template classes have a mandatory template argument (denoted by
GT in Figure[4.6)), that must be instantiated with a geometric traits class, which
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contains geometric predicates related to the L, diagram (like the in-circle test).

1. The geometric traits class, which provides the basic geometric objects,
geometric predicates and constructions involved in the algorithm.

2. The segment Delaunay graph data structure, which stores the planar sub-
division generated by the algorithm. The Triangulation data_structure 2
in CGAL is the default value for the corresponding template parameter.

The predicates required for the computation of the segment Voronoi diagram
can be computationally intensive [[13] [39, [40], depending on the input. This
package uses both geometric and arithmetic filtering for fast and robust com-
putation. The requirements of this traits class are elaborated in the CGAL
SegmentDelaunayGraphTraits_2 concept [[43]]. There are four different geo-
metric traits implementations, (a) supporting intersections or not and (b) using
a user-supplied filtering kernel or not:

Segment Delaunay graph traits 2,
Segment_Delaunay graph_traits without_intersections 2,
Segment Delaunay graph filtered_traits 2, and

Segment_Delaunay graph_filtered traits without_intersections_2.

4.3 Lo segment Voronoi diagram in CGAL

The use of traits classes as a template parameter allows the customization of the
behavior of algorithms without changing implementations. We have written the
traits classes that define basic predicates and basic constructions needed for the
construction of the segment Voronoi diagram in L.,. Although algebraically the
predicates in the traits class are simpler in L, than in L,, they are non-trivial
as there are many cases, which need a careful analysis before implementation.

4.3.1 Design and relation with SDG L,

In this section, we explain how we implement the segment Delaunay graph
under the L., distance (SDG L.,) in CGAL, trying to reuse as much code as
possible from the existing SDG L, package of CGAL. Ideally, we would like the
situation to be as follows: We only write a geometric traits class containing the
L. -related predicates (and constructions) and supply it as the GT template ar-
gument of the SDG algorithm template classes of Figure In any case, the
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most significant part of the algorithm, like the maintenance of the arrangement
of input sites and the high-level incremental construction of the Delaunay graph
is the same under both the L, and the L., distance. Unfortunately, since the
SDG L, algorithm classes were not designed with provision for other distances,
there is some L,-specific code in them, the most significant being the code for
drawing dual edges for the Voronoi diagram. Fortunately, these hard-coded L,-
specific functions in the algorithms are few; most of the functionality is indeed
in the L, geometric traits class. To be more specific, the segment Delaunay
graph class (SDGL2) contains the L,-specific code, whereas the segment Delau-
nay hierarchy class (SDH) does not contain any L,-specific code, except the fact
that it is derived from SDGL2 (see Figure |4.6).

We make the following design decisions related to the existing SDG L, im-
plementation.

* We keep the same interface for users of the SDG L, package, so that ex-
isting user code does not have to be changed.

* We change the existing SDG L, code as little as possible.
* QOur changes preserve the efficiency of the SDG L, algorithms.

Therefore, we implement a few local changes in the code of the SDG L,
CGAL package. These changes are mostly in the SDGL2 class and are explained
later in this section. These changes allow us to implement Segment Delaunay
graph Linf 2 (abbreviation: SDGLinf) as a class derived from SDGL2 (see Fig-

ure [4.7).

The existing hierarchy class SDH is hard-coded to use only instances of
SDGL2 at its levels, we alter SDH so that it has an additional optional template
parameter SDGLx (with default value SDGL2), which is the segment Delaunay
graph class that is used in every level of the hierarchy (and from which SDH is
derived).

In Figure the altered classes SDGL2 and SDH are shown with gray, to-
gether with the new class SDGLinf. Since SDGLx is an optional parameter with
default value SDGL2, there is no change for old user code of the L, segment
Delaunay hierarchy. By setting SDGLx to SDGLinf in the SDH template, we ob-
tain the segment Delaunay hierarchy under the L., distance, for which we also
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\ SDGL2<GT,...> \ SDGLx<GT,...>

1
SDGLinf<GT,...> \ SDH<GT,...,SDGLx=SDGL2>

SDHLinf<GT,...> = SDH<GT,...,SDGLinf>

Figure 4.7. New algorithm classes for SDG L, and L., packages.

create an alias template class Segment Delaunay graph hierarchy Linf 2 (ab-
breviation: SDHLInf) (see Figure [4.7), for easy access to the user.

A user of the SDG L, package has access to two template algorithm classes

Segment Delaunay graph Linf 2<GT,...> and
Segment Delaunay graph_hierarchy Linf 2<GT,...>,

where the GT template argument should be instantiated with one of the follow-
ing L., geometric traits classes:

Segment Delaunay graph Linf traits 2,
Segment Delaunay graph Linf traits without intersections 2,
Segment Delaunay graph Linf filtered_traits 2, and

Segment Delaunay graph Linf filtered traits without intersections 2,

which are analogous to the corresponding L, geometric traits classes.

Apart from the library classes, we also provide a GUI demo, examples, and
an ipelet for the L, segment Voronoi diagram. Our package is currently under
review for inclusion in the CGAL library.

4.3.2 1-Dimensionalization of L., bisectors

One important difference in the L, setting (in comparison to the L, setting) is
that in some special non-general position cases the L., bisector between two
sites can be bi-dimensional. The choice of considering an input segment as three
objects (two end points and an open segment) excludes bi-dimensional bisec-
tors in the L, setting, but not always in the L., setting. Since the incremental
construction algorithm [48]] expects uni-dimensional bisectors, we resort to a
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Figure 4.8. The L., bisector between Figure 4.9. The L, bisector between
two points with the same y coordi- a vertical segment and one of its end-
nate and its 1-dimensionalization. points and its 1-dimensionalization.

1-dimensionalization of these bisectors, by assigning portions of bi-dimensional
regions of a bisector to the two sites of the bisector. This way it is also easier to
draw the Voronoi diagram. We remark that this simplification of the diagram is
acceptable in the VLSI applications, where the L., diagram is employed [[69].

If two different points p, g share one coordinate, then their L., bisector is bi-
dimensional, as shown in Figure In this special case, we 1-dimensionalize
the bisector, by taking instead the Euclidean bisector of the two points.

Similarly, the L., bisector between the interior of an axis-parallel segment
and one of its endpoints is also bi-dimensional, as shown in Figure We
1-dimensionalize this bisector by taking instead the line passing through the
endpoint that is perpendicular to the segment, which is also the Euclidean bi-
sector.

4.3.3 The Lo, parabola and SDGLinf

The L, parabola is the geometric locus of points equidistant under the L, dis-
tance from a line ¢ (the directrix) and a (focus) point p ¢ £. In contrast with the
standard L, parabola, the L., parabola consists of a constant number of linear
segments and rays [|69]].

In the SDGL2 package the input sites are only segments and points, not
lines. Therefore, only bounded parabolic arcs appear as edges of the L, seg-
ment Voronoi diagram and never a complete parabola. See Figure On the
other hand, unbounded L, parabolic arcs can survive in the corresponding L .,
diagram. Even complete L., parabolas can survive (see Figure 4.10).
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Figure 4.11. The bisec-
Figure 4.10. Only bounded parabolic arcs sur-  tor that passes through g
vive in the L, diagram, whereas even complete  touches the parabolic arc

L., parabolas can survive in the L., diagram. at the parabolic arc’s por-
Arrows point to distinct infinite edges of the  tion which is parallel to
diagrams. this bisector.

The existing SDGL2 code is not ready to support the peculiarities of the L,
parabolas. For example, the Voronoi region of any segment is expected to have
0, 1, or 2 infinite edges (these are edges with the infinite site s.,). While this is
true in the L, setting, it is not true in the L, setting, where the aforementioned
number of infinite edges is unbounded in general. For example, in the L, di-
agram of Figure there are six distinct infinite edges neighboring with the
region of the open segment.

Several problems may occur when a new point site q is inserted in the inte-
rior of an existing segment s. We remark that this operation is needed when, for
example, a newly inserted segment crosses an existing segment. The algorithm
checks the neighbors of s in the segment Delaunay graph, splits the site of s to
two sites s; and s, and adds the site q to the diagram. In the L, setting this
has to be done more carefully than in the L, setting. For example, when the
site g shares a coordinate with a point p for which there is an L., parabolic arc
in the diagram, we have to be careful, because the bisector that passes through
q might touch a portion of the L., parabolic arc that is parallel to this bisector
(see Figure [4.11)). Our solution is to derive SDGLinf from SDGL2 and override
some SDGL2 member functions in SDGLinf, in particular the ones that insert a
point in the interior of a segment.
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4.3.4 Changes in the existing SDGL2 class

Here, we discuss some minimally intrusive changes in the existing SDG L, code,
so that we can build the SDGLinf class on top of it.

Functions drawing L, Voronoi edges are hard-coded in the existing SDG L,
algorithm class. For the L., design, we decide to keep the algorithm class sep-
arate from drawing L., Voronoi edges, and we include the L., Voronoi edge
construction functions in the L., geometric traits. We could move the L, con-
structions to the L, geometric traits, but we do not do this, because we do
not want to change the specification (and documentation) of the L, geometric
traits (remember our design goals). Instead, we implement the algorithm class
to check if the geometric traits contain construction functions for drawing and
only then use them, otherwise (if traits are not found) use the hard-coded ones.
The check was first implemented with template metaprogramming, using the
Substitution failure is not an error (SFINAE) principle [80]. Currently the choice
of bisector constructions is done by a tag (Tag_has_bisector constructions that
can be set to either Tag true or Tag false of CGAL) in the geometric trait class.
The tag is set to Tag false for the L, traits, and need to set as Tag_true for the
L, traits.

Moreover, the existing code has the types (linear segments, rays, lines, and
parabolic arcs) of the Voronoi edges hard-coded in the SDGL2 class. Since the
L., Voronoi edges are polygonal chains, we also change the code to work with
any type of edge.

In the existing L, code, when there are two points in the diagram and a
third one is inserted, the resulting Delaunay graph construction is based on the
orientation test for three points p, g, r (i.e., whether the three points make a
left, a right turn, or they are collinear), which is very specific to the L, case.
To make the code work for both L, and L., we substitute the orientation test
with a call to the vertex conflict predicate from the corresponding L, or L.,
geometric traits class.

4.3.5 The Lo, geometric traits

In this section, we discuss some issues related to the L., geometric traits. Like
in L,, the traits contain predicates resolving whether a new site conflicts with
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an existing Voronoi vertex (vertex conflict) or an existing edge (edge conflict,
which can be none, partial or complete). These are the predicates needed by
any (randomized) incremental construction algorithm [48]. There are also spe-
cial conflict-like predicates used when a new point site is inserted in the interior
of a segment. Remember that, in addition to the predicates, our L, traits also
contain functions for constructing L., bisectors that are conditionally selected
by the algorithms.

Voronoi edge conflict: Determining if a Voronoi edge is in conflict due to the in-
sertion of a new site is different in L.,. Let p, g, and r be three consecutive sites
on the convex hull in clockwise order. Consider two circles in L,, C,,, (square in
L, D,,) touching sites p and q, and C,, (square in L, D,,) touching sites q
and r, with their centers at infinity. Also assume C,, and C,, do not contain any
other sites. Now we insert a new site ¢, such that t € C,, N C,,. In L,, insertion
of t will force q out of the convex hull. However, in L, this is not always true.
If D,, N D,, is a bounded rectangle and ¢t € D,, N D,,, then q remains on the
Lo, convex hull. Thus the conflict in Voronoi edges between sites p and g and
between sites q and r due to insertion of t should be handled differently in L,
and L. Let us take other simple examples as shown in Figure where we
show different cases of edge conflicts due to insertion of a point in the Voronoi
diagram of a segment site. Figure (a) shows that the finite edges between
a axis parallel segment site and its end points are in conflict which is similar to
L, case, Figure (b) shows that none of the finite edges between a non-axis
parallel segment site and its end points are in conflict but the infinite edgeE]
associated with the interior of the segment site is in conflict, Figure (c) is
same as (b) but the L., parabola is asymmetrical, Figure (d) shows that
one finite edge is in conflict and the other is not, and Figure (e) shows
that both the finite edges between a non-axis parallel segment site and its end
points are in conflict which is absolutely opposite to case (b) and (c). Depend-
ing on the configuration of the sites, we evaluated all possible differences from
L, metric.

Voronoi vertex conflict: The vertex conflict predicates are also known as in-
circle tests (detailed discussion in subsection [4.3.€)). The in-circle test in L, is
analog to an “in-square” test in L.,. A new site is tested for containment in
the minimum shape (circle or axis-parallel square) that touches the sites asso-

L An infinite Voronoi edge is an edge between the region of a site and the region of the site at
infinity.
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(e)

Figure 4.12. Examples showing different L., parabolas which can have differ-
ent cases of edge conflicts.

ciated with an existing Voronoi vertex. The computation of an in-square type of
predicate is numerically simpler than the in-circle predicate. For example, in L,
the circle that touches three non-collinear points is unique and its center corre-
sponds to the Voronoi vertex. In L., however, the analog axis-parallel square
might not be unique (see Figure [4.13). Again our 1-dimensionalization comes
to the rescue, since we can define the Voronoi vertex to be the intersection of
L, bisectors of these three points and then the square becomes unique. Deter-
mining if a Voronoi vertex is in conflict due to insertion of a new site is done
differently in L.,. We determine the Voronoi vertex by computing the intersec-
tion between the two suitable bisectors. The suitable bisector is determined by
the configuration of sites in question. For example, let p, g and r be three sites
such that p is an end point of g, and r is a point site which is not the same
as p and is also not an end point of g. Then we choose the bisector between
p and q and the bisector between p and r as suitable bisectors to determine
the Voronoi vertex v,,, of p, g and r. Now let ¢ be the new site to be inserted.
Then we compare distances dqu“p (distance between v,,,, and p) and dqur,t (dis-
tance between Vogr and t) to answer if the Voronoi vertex Vpqr 18I0 conflict or
not. In L,, they determine the sign of simplified algebraic expressions. Our
initial technique of using intersection of L, bisectors is inefficient compared to
having simple arithmetic expressions whose sign would answer the predicates
correctly. There are too many cases that should be carefully taken care of in

order derive simple expressions for L, in-circle predicates.

4.3.6 The in-circle predicate in the Lo, metric

The basic predicate in any algorithm for computing the line-segment Voronoi
diagram [[14,44,93]] is the Incircle test [13][39]40]. Let p, g, and r be the three
sites defining a circle ¥. Then, the Incircle test is defined as a test to determine
whether a fourth site is inside €, or outside €, or on the €. In case of the L
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r

(a) (b)

Figure 4.13. (a) p, ¢, and r define a unique circle, (b) p, g, and r may not
define a unique square.

metric the test is done with respect to a square 2 defined by p, g, and r.

We consider the square 2 defined by the three sites p,q, and r, such that
when we walk on 9, the sites p, g, and r appear in the counter-clockwise direc-
tion. The square 2 is bounded by the Voronoi vertex of p,q, and r, V(p,q,r).
For a query site t, the in-circle predicate Incircle(p, q, 1, t) determines the rel-
ative position of t with respect to 2. The in-circle predicate can return three
answers, positive when t is outside the 2, negative when t is the inside 2, and
zero when t is on the 2. The in-circle predicate has four arguments, as the first
three arguments under circular rotation do not contribute to new configura-
tions, there can be in total eight possible distinct configurations namely, PPPX,
PPSX, PSSX, SSSX [[40]], where P stands for point, S stands for line-segment and
X stands for either P or S. The in-circle predicates for the Voronoi diagram of
line-segments in the Euclidean metric are well studied in [[13} /39, 40]. We will
give the degree for in-circle predicates for the L., Voronoi diagram of general
and axis aligned line-segments separately for seven of the eight configurations.
The degree for the SSSS configuration is already proved to be 5 [[69].

Let s;, i = 1,2,3 be the three sites defining a square 2. Let (X;,Y;) and
(X,,Y;) denotes the bottom-left corner and the top-right corner of 2 respec-
tively. Although the three sites may define more than one square but the test is
performed for the one corresponding to a given Voronoi vertex. Let p = (p,, p, )
and s denotes the query point and the query line-segment respectively. Let e,
and e, denotes the end point of s and [ denote the supporting line of s with line
equation ax + by + ¢ = 0. We need to answer the following predicates:

* Predicate 1: Incircle(sy,$,,53,p) =X, —X; > 0AX,—X, >0AY,—Y; >
OAY,—Y,>0

* Predicate 2: Incircle(s,, s, s3,5) = Incircle(s,, s,, 53, ;) V Incircle(sq, s, S5, €5)
V (P; AP,)
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Where, P; = aX; + bY; + ¢ < 0 and P, = aX, + bY, + ¢ > O for negative
slope of [ and P; = aX; + bY, + ¢ < 0 and P, = aX, + bY; + ¢ > O for
positive slope of [.

* Predicate 3: For axis aligned line-segments, Incircle(s;, s,,3,5) = P, A P;.
For a vertical line-segment s, P, = X, —X; > 0AX,—X, > 0and Ps; =
Y, —Y,>0if Y, —Y, > 0, otherwise, P; = Y, —Y; > 0. Similarly,
for a horizontal line-segment s, P, =Y, —Y; > 0AY,—Y, > 0 and
Ps=X, —X; >0if X, —X, >0, otherwise, Ps =X, —X; > 0.

We have summarised the degree of Incircle predicates for all different configu-
rations in Table

PPPP PPPS | PPSP PPSS | PSSP PSSS | SSSP  SSSS

General L, [[13]] 4 8 12 24 16 32 32 40
Axis-aligned L, [40] 4 6 6 6 4 4 2 2
General L, (this thesis) 1 2 2 3 3 4 4 5

General L, (this thesis)
(intersecting line-segments)

Axis-aligned L, (this thesis) 1 1 1 1 1 1 1 1

Table 4.1. Maximum algebraic degree for eight type of Incircle predicates in
the L, metric and the L., metric

The PPPX case

Let p,q, and r be three points. In Fig. black rectangles are bounded by
D,q, and r, and the red dotted square is formed by extending the sides of the
black rectangle depending on the configuration of p,q, and r. Vertices of the
square can be directly obtained by coordinates of p,q, and r. We assume the
degree of the input coordinate of a site to be 1, thus the degree of vertices of
the square will also be 1.

From Predicate 1 the Incircle(p, q, 1, t) will have degree 1 when ¢ is a point,
from Predicate 2 the Incircle(p, g, r, t) will have degree 2 when ¢t is a general
line-segment, and from Predicate 3 the Incircle(p, q, r, t) will have degree 1
when t is a axis aligned line-segment.
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r P r

P

r

................ s . * *
(a) (b) (c) (d) (e) (£)

Figure 4.14. Square formed by three point sites depending on their configu-
ration.

The PPSX case

Let p and q be two points and r be a line-segment. Let t be a query point. Then
Incircle(p, q, r, t) which is a PPSP case can be reduced to simpler PPPS case
Incircle(p, q, t, r) (see Fig. for illustration). The point t must lie with in
the L formed by axis parallel lines passing through p and ¢ moving in counter
clockwise direction from p to q as in Fig. (a) and (b). Let this L be denoted
by L,,. For the case when t is outside the L, the Incircle(p, q, 1, t) will have
degree 1, we do not even need to perform Incircle(p, q, t, r). We simply need
to check the position of t in the isothetic staircase formed by p, g and t (see
Fig. (c) and (d)). When t is in the middle of the staircase, Incircle(p, q, T,
t) < 0, otherwise Incircle(p, q, r, t) will be positive or zero. Thus, the PPSP case
will have degree atmost 2. When r is axis aligned line-segment the PPSP case
is reduced to PPPP case. This is because, in the L., metric a point is equivalent
to a horizontal or a vertical line segment.

(a) (b) (d)

Figure 4.15. Reducing Incircle PPSP to Incircle PPPS, (a) Incircle(p, q, r,
t) = Incircle(p, q, t, r) > 0, (b) Incircle(p, q, r, t) = Incircle(p, g, t, r) < 0,
(¢) Incircle(p, q, r, t) = Incircle(p, q, t, r) > 0, and (d) Incircle(p, q, r, t) =
Incircle(p, g, t, r) < 0.

Let us now assume t is a line-segment, and we analyze the PPSS case. The
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L,, can be obtained by traversing from p to q isotheticaly in counter clockwise
direction. Let the corner of L, be denoted by C. This C is one of the vertex of
9 the other vertex can be obtained by intersection of a horizontal line, or a ver-
tical line, or an ortho-45 line through the corner C with the line-segment r (see
Fig.[4.16). We can solve system of linear equations to obtain this other vertex.
Let the known vertex ¢ be (X;,Y;) (see Fig. (b)). Let the other vertex that
we will compute be (X,,Y,). Let the line equation of r be ax + by + ¢ = 0 and
we are shooting a ray of slope +1 from C to r. Then, we solve the following
system of linear equations:

Az-c,whereA—(_1 1)’2_(Y2)’ andc-( )

Then we obtain the following formula for X, and Y;:
X, = %, where N, =—c—b(Y; —X;),and D =a+b

Since X; and Y; is know from input coordinates of p and q, their degree is
1, and thus the degree of X, and Y, will be 2. Now we substitute coordinates
of 9 in to predicate 2, and we have the degree of the PPSS case equal to 3.

C
b oy r
X r
D p
c P
q q p
1 ©7q p °© T q
P C
(a) (b) (c) (d)

Figure 4.16. Square formed by two points and a line-segment depending on
their configuration, (a) r has negative slope and two cases are shown with
c = (X;,Y,) and ¢ = (X,,Y;), (b) r has negative slope and two cases are
shown with ¢ = (X;,Y;) and ¢ = (X,,Y;), (c) r has positive slope and a case
is shown with ¢ = (X,,Y;), and (d) r has positive slope and a case is shown
with ¢ = (X;,Y;)
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The PSSX case

Let p be a point. Let q and r be two line-segments. Let a;x + b; +¢; = 0 and
a,x + b, + ¢, = 0 be the line equation of line-segments q and r respectively.
Depending on the configuration of the sites p, g, and r we can obtain vertices
of 9 by a similar process as mentioned in the PPSS case (see Fig. (a), (b),
and (c)). There is one configuration of p, q, and r in which we cannot obtain
full coordinates of any vertices of 9 directly from coordinates of p, g, and r (see
Fig. (d)). The only know value in this case is Y, which is basically equal
to the y coordinate of the point p. For the case shown in Fig. (d) we will
obtain the the values of X, Y;, and X, by solving the following system of linear
equations:

Az =¢
a, 0 b,
Where A, =| 0 a, b, |,
-1 1 1
X4 —C;
z,=|X, |,and¢; = | —c,
Y, Y,
Then we obtain the following formula for X;, X, and Y;:
X, = %,

Where Nl - _C1a2 + C1 b2 - b1C2 - a2b1Y2,

X, =12,

Where N2 - _a1C2 - bzalYZ + C2 + bZYZ
_ M

Yl —_ F,

Where M; = a,a,Y, + a;c, —¢;a,

Since Y, is know from the input coordinate of p its degree is 1, and thus the
degree of X, X, and Y; will be 3. Now we substitute coordinates of 2 in to
predicate 2, and we have the degree of the PSSS case equal to 4.

The SSSX case

Let p, g, and r be three line-segments. The Incircle(p, q, 1, t) when t is a line-
segment is given in [69] and the degree of the SSSS case is proved to be equal
to 5. The coordinates of 9 is obtained by solving system of linear equations.
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(a) (b) (c) (d)

Figure 4.17. Square formed by two line-segments and a point depending
on their configuration, (a) g and r both have negative slope and corner c is
(X,,Y,), (b) g and r both have positive slope and corner ¢ is (X;,Y5), (¢) g have
positive slope and r have negative slope, and two corners of 2 are ¢ = (X;,Y,)
and ¢’ = (X,,Y,), and (d) q have negative slope and r have positive slope, and
corners of 9 are not obtained directly.

Coordinates of 2 are equivalent to evaluating algabraic expression of degree 3.
When t is point and we substitute the coordinates in Predicate 1, we obtain the
degree of the SSSP case equal to 4.

The in-circle test for inputs having intersecting line-segments

Let input line-segments may intersect with each other. The intersecting point
of two line-segment never participate in Incircle test in the L, metric but it can
participate in forming a square with other input sites in the L., metric (see
Fig. [4.18). Let a;x + by +¢; = 0 and a,x + b,y + ¢, = 0 be equations of
two intersecting line-segments such that their intersecting point is (X;,Y;) (see
Fig. (a)). Then X, and Y; is given by solving the following system of linear
equations:

Az = ¢, where A= (al bl), zZ= (Xl), and ¢ = (_Cl)
a, b, Y —C

Then we obtain the following formula for X; and Y;:
X1 == %, Where Nl = _C1b2 + C2b1, and D == albz _a2b1

The square can be defined by two intersecting segments and another in-
put site which may be a point or a segment. We will first analyze the Incircle
predicate when the other site contributing in defining the square is an input
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point p, p = (X,,,Y,), which is the PSSX case (see Fig. (a). The other
coordinate of the square is X, = X, and Y, =Y, + X, —X; = w, when

D

X, —X;)—(Y,—Y;)>0or, D(X,—Y,)+(M; —N;) > 0. We can compute the
Incircle predicates by substituting X;, Y;, X,, and Y, in Predicates 1, 2, and 3.
For the SSPP case the degree will be 3 from Predicate 1, for the SSPS case when
the query segment is non axis aligned the degree will be 4 from Predicate 2, and
when the query segment is axis aligned the degree will be 3 from Predicate 3.
Now we will consider the other input site contributing in defining the square is
a line-segment r (see Fig. (b)) with line equation a;x + b;y +c¢; = 0. The
line-segment r will bound one of the other three vertex of the square (X;,Y,), or
(X,,Y;), or (X,,Y,). When r bounds (X;,Y,), we have, Y, = _a?’f:_% = _a32’31;c3D
Similar is the case when r bounds (X,, Y;). When r bounds (X,, Y,), we can have
X, and Y, from the following system of linear equations:

b X _
e () C) R P

Then we obtain the following formula for X, and Y;:
X2 == ]Dlj’ WheI'e N2 = C3 - b3(X1 - Yl) == w, and Dl == _a3 - b3

_ M _ a3(N;—M;)+Dcy
Y, = 32, where M, = ==—51——=

For the SSSP case the degree will be 4 from Predicate 1, for the SSSS case
when the query segment is non axis aligned the degree will be 5 from Predicate
2, and when the query segment is axis aligned the degree will be 4 from Predi-
cate 3. Thus the Incircle test for different configurations remains the same (see
Table [4.1)). For inputs having only axis aligned line-segments the degree of In-
circle test in all different configurations also remains the same. This is because
of the fact that the intersection point can be directly obtained from the input
line-segments without any extra algebraic computations.

.......

(a) (b)

Figure 4.18. Intersecting point i may participate in forming a square with
other input site.
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Input | Time (seconds) for L, | Time (seconds) for L
10K points 0.33 0.13
100K points 1.49 1.30
40K segments 0.95 1.04
400K segments 8.32 9.26

Table 4.2. Comparison of runtime between L, and L,

Speed-up using better in-circle tests

One of the goals for any software is to be efficient (faster). It is a big challenge
to make the code faster, and having efficient in-circle tests in code design for
Voronoi diagrams, is one of the most important factor towards this goal. This
motivated us to do the detailed analysis of the in-circle tests. We have run our
code on typical benchmark of CGAL containing around 40K line-segments on a
MacBook Pro 2.2 GHz Intel i7 with 4 GB RAM. Our code runs in 2.57 seconds,
where as the L, version runs in 2.70 seconds (given time is average value of
10 runs). We compared runtimes with some more random inputs of points and
segments and the results are shown in Table Currently, our code is not fully
optimized but the run time is already comparable with the L, version and ever
faster in case of points. Nevertheless, our main goal of having a reliable software
package for constructing the Voronoi diagram in the L., metric is achieved.

4.4 Summary

Voronoi diagram of line segment in the L., metric finds various applications
in the area of VLSI CAD. The L., metric is well suited for VLSI shapes which
consists of line segments that are generally axis parallel or have slopes of £1.
An open source availability of an implementation for constructing the diagram
was long waited.

In this chapter, we presented an implementation of the line-segment Voronoi
diagram in the L., metric based on the L, Segment Delaunay graph package of
CGAL.

The implementation involved three parts: (1) a generalization of the al-
gorithm for existing segment Delaunay graph package to adapt it for the L,
segment Delaunay graph, (2) the implementation of the traits classes contain-
ing predicates and constructions for building Voronoi diagram of segments and
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points under the L., metric, and (3) the development of GUI demo, examples
and ipelet for the package.

Our goal was to provide a CGAL package. We have submitted the code to
the CGAL editorial board along with user and reference manual for its inclusion
as a CGAL package. Currently, the code has successfully passed the CGAL test
suite for verification of the code. And our package is accepted and integrated to
the upcoming version CGAL-4.7 that will be released in september 2015. The
lines of code required for our implementation was approximately 17K (see Ta-
ble A.1. in Appendix A).

We have also used our implementation for pattern analysis of VLSI shapes
as described in Chapter 5

The development of this software has been a joint work with Dr. Panagiotis
Cheilaris and Prof. Evanthia Papdopoulou. I would like to specially thank Dr.
Panagiotis Cheilaris, who also wrote some portion of the code for this software.



Chapter 5

Application of Lsg line-segment
Voronoi diagram in VLSI pattern
analysis problems

“Simplicity is the ultimate sophistication.”
Leonardo da Vinci

Integrated circuits (chips) are the heart of all the modern day electronic
gadgets. An integrated circuit is basically an electronic circuit made on a semi-
conductor material. VLSI is acronym for Very Large Scale Integration, is the
current level of integrated circuits, that contains millions of transistors in a sin-
gle chip. The process of printing chips on a semiconductor material is called
lithography. For printing the chips, lithographers prepare mask patterns. See
examples in Figure [5.1)). If we see the top view of a VLSI chip, we will see a
collection of shapes closely matching the mask patterns. In the latest chips the
patterns are mostly rectangular in shape. The two main features that deter-
mine proper printing of patterns are width of a pattern, and space between the
neighboring patterns. A critical distance of a chip would be the minimum value
of width or space. Lower is the critical distance, higher is the difficulty level of
printing.

With the increase in miniaturization of current VLSI patterns (lowering of
the critical distance), there is a significant rise in printability problems of such
patterns, during the photolithography process, and their error-free printing
challenges the chip manufacturing industry. The analysis of patterns to find
faults or error-prone locations, is of prime importance to the manufacturing

81
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Figure 5.1. Examples of VLSI patterns.

V

/

Open (Pinch)

Short (Bridge)

Figure 5.2. Two types of faults that occur during printing VLSI patterns.

process.

There are mainly two kind of faults that can occur during printing: a pinch
and a bridge (see Figure [5.2). A pinch corresponds to an open fault and oc-
curs due to incomplete printing of a shape or due to discontinuity in printing
of a shape. A bridge corresponds to a short fault and occurs when two printed
shapes are touching each other.

Patterns of interest (POI) : The analysis of a complete layout for finding faults
or error-prone locations is difficult and very time-consuming. The printability of
a layout is related to the clips or patterns that it contains. Therefore, pattern se-
lection should be done in such a way that analysis of the selected set of patterns
should be sufficient to assess the quality of the whole layout. In other words,
it is important to identify clips, known as patterns of interest (POI), which are
more prone to faults. A lower number of POIs (that cover sufficiently the whole
layout) allows for a faster but still effective analysis of the layout. However,
achieving an optimal set of POIs is a big challenge in this domain. The success
of printing a POI is verified by taking several measurements (such as critical dis-
tance) on potentially critical areas of scanning electron microscope (SEM) images
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of the printed pattern. Therefore the location of measurement is very important
for proper evaluation of a POL.

Hotspot identification and gauge suggestion problem: The measurement
location in each pattern is called a gauge [86]. The gauge is generally repre-
sented by a line in the VLSI pattern around where a critical distance is measured.
Therefore, gauge locations must be meaningful, i.e., the critical distance mea-
surement around the gauge location should be the correct measurement for the
pattern. Current gauge suggestion techniques are rule-based or they are done
manually by VLSI designers. The suggested gauges very often miss the location
of critical distance or the location of faults on the clip. The actual location of
faults within the clip or POI is known as a hotspot. The gauges are the markers
within the pattern that help to categorize a pattern as POI and also to locate
hotspots within the pattern. With good gauge suggestions, the evaluation of a
pattern becomes better, and there will be a possibility of achieving an optimal
set of POlIs.

In the literature, many variants of hotspot identification methods have been
suggested, like, machine learning algorithms [126), 33]], image recognition tech-
niques [T}, 160}, [86/], a design based approach[95]], pattern matching techniques
[79, 91]], and topology oriented techniques[77]. For machine learning tech-
niques, the learning time is high and there is a need for already available hotspots
to be used as training sets. Image recognition techniques need to go over the en-
tire layout for hotspot detection, which is very time consuming. Pattern match-
ing techniques work on a predefined set of hotspot patterns, and thus, there
is a limitation of detecting unseen hotspots. The design based approach has
also been observed to be very time consuming as it needs to analyze the entire
design. In general, the random nature of layout patterns is difficult to predict
in all these methods. Topology oriented pattern extraction techniques [77] can
be useful to handle random patterns, however, the existing technique [[77]] does
not claim to be general enough to detect all the hotspots in a layout. In this
chapter, we introduce a new topology oriented technique for pattern extrac-
tion, based on the geometric information of layout shapes.

The set of POI and the predicted hotspots are of prime importance to address
printability problems. After obtaining such a set, designers modify the mask
designs with the goal of improving the level of yield. For verification, VLSI de-
signers have developed several models based on POI, including the model-based
optical proximity correction (MB-OPC) [[1},/83,186l]. Hotspots give feedback to the
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OPC process for better yield. An optimized MB-OPC demands an optimal set of
problematic patterns, but identifying such a set in a time efficient manner is very
hard. Currently, reliable OPC models are mostly based on image parameters of
the test patterns [[1, [83] [86], however, techniques involving image parameters
are computationally expensive. Another problem is the automatic identification
of problematic patterns. In many cases, the expertise of lithographers and de-
sign engineers provides the problematic patterns by manual inspection of the
layout. Some new automatic approaches [[15][87]] use a combination of param-
eters. These techniques sample the full spectrum of patterns, and thus, tend to
be computationally expensive.

To provide feedback to OPC models, VLSI designers have developed tools to
identify optical rule violation in the simulated lithographic patterns. An Optical
rule checker (ORC) [57] is a program that encodes and verifies the rules for
ideal simulated lithographic patterns. Given the lithographic processing condi-
tions, an ORC run generates markers on the violation of an ORC rule. Therefore,
the problematic patterns in the layout are around the ORC markers. These sets
of patterns can be feedback to OPC for better yield in manufacturing.

In Chapter [4we have explained our work on the implementation of the line-
segment Voronoi diagram in the L., metric in the CGAL environment. In this
chapter we discuss an application in VLSI pattern analysis, in particular, a fast
automatic approach to derive a near optimal set of problematic patterns for a
layout, using our code for the L, line-segment Voronoi diagram. These sets of
patterns can also potentially be used for calibration and verification of MB-OPC.
We discuss the potential of using the L., segment Voronoi diagram to identify
critical locations in a VLSI pattern and verify the effectiveness, which is, if the
identified locations practically corresponds to problematic locations in a VLSI
layout or not.

We first find gauge locations, using the line-segment Voronoi diagram of
layout shapes, and give priority to the gauges depending upon the shape and
proximity information of the design polygons. The gauge locations are then
used to extract windows from the design layout. We extract one window per
gauge location. The windows contain patterns which are potentially problem-
atic. Finally, we verify the usefulness of the extracted windows by comparing
the coverage of the problematic patterns with respect to the ORC generated
markers. We observe that the set of patterns extracted by our tool covers all the
ORC generated markers for the given layout.
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Figure 5.3. Different gauge suggestions.

The rest of this chapter is organized as follows. We describe the gauges
and their scoring method in Section We describe our method to detect
potentially critical locations in the VLSI design layout using the segment Voronoi
diagram and then describe our pattern selection procedure in Section We
discuss our experimental results in Section

5.1 Gauge suggestion using the segment Voronoi dia-
gram

We use the L., segment Voronoi diagram to suggest good gauge locations, based
on proximity information among the shapes of a pattern, such as the space be-
tween shapes and the extent of interaction between neighboring shapes. We
suggest five types of gauges, internal, external, sandwich, comb and T, as illus-
trated in Figure Figure [5.4] illustrates different gauges in a portion of a
design layout. Following is the description of the five gauge types.

1. Internal gauge (inside a shape), G;: This gauge lies on the center of a
Voronoi edge in the interior of the polygonal shape of minimum width in
the pattern (see G; in Figure[5.3). The position of G; is a probable location
for a pinch, when printing the pattern.

2. External gauge (between different neighboring shapes), G,: This gauge
lies on the center of the Voronoi edge between the two shapes that are
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5.1 Gauge suggestion using the segment Voronoi diagram

closest in the pattern (see G, in Figure(5.3)). The position of G, is a proba-
ble location for the formation of a bridge between the two corresponding
shapes, when printing the pattern.

. Sandwich gauge,, G,: This gauge lies on the center of the Voronoi edge in-

side a polygonal shape P; that is “sandwiched” between two other shapes
P, and P; for which the distance between P, and P, is the minimum in the
pattern (see G, in Figure[5.3). There is a probability of a pinch happening
at P; around G, because of the influence of P, and P;.

. Comb gauge, G.: This gauge lies on the center of the Voronoi edge inside

a long polygonal shape, which is the base of the comb and it has close to
it and on one side of it a number of polygonal shapes which are the teeth
of the comb. We report the gauge for the configuration where the base of
the comb shape is closer to the teeth in the pattern (see G, in Figure[5.3).
The position of G, is dangerous for a pinch, when printing the pattern.

. T gauge, G,: A comb gauge at a minimum must contain one tooth and

a base. We call such a minimal comb gauge a T gauge (see G, in Figure
5.3). The position of G, is a probable location for a pinch, when printing
the pattern.

We introduce a scoring method for gauges, which is used for prioritizing the

gauges to determine problematic patterns efficiently. The score associated with
a gauge determines its affinity towards the printing problem. It indicates the
potential of failure around the location of the gauge, when printing the related
pattern.

5.1.1 Scoring method for gauges

For each type of gauge we defined scores as follows:

* Score of an internal gauge: Let P; be a shape in the design layout. The

score of an internal gauge is the minimum width value in P; (see w in Fig-
ure (a)). In case there are shapes with the same width, we break ties
using the extension parameter. The extension parameter is the length of
the Voronoi edge associated with an internal gauge. The extension param-
eter does not change the value of the score; it is just used to change the
order of the gauge in the priority list in case of ties. The gauge associated
with the longer shape that is having a greater value of associated exten-
sion parameter gets more priority and will be ranked higher in the ordered
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Figure 5.4. Showing different gauge locations in a portion of design layout:
shapes in grey are design polygons, Voronoi diagram of design polygons is
shown by dashed lines.

list of internal gauges. Lower width implies a thinner and a greater ex-
tension implies a longer shape; a thin long shape has more probability to
give rise to a pinch.

Score of an external gauge: Let P, and P, be two neighboring shapes in
the design layout. The score of an external gauge associated with P, and
P, is the separating distance (s in the Figure (b)) between P, and P,.
This is encoded by the associated Voronoi edge between P, and P,. When
there are gauges with the same score, we break ties using the extension
parameter. The gauge whose associated Voronoi edge is longer gets higher
priority, as the longer edge implies more interaction between the shapes,
and thus, higher probability of a bridge.

Score of a sandwich gauge: Let P,, P,, and P, be three shapes in a design
layout such that P, is sandwiched between P, and P,. We define the score
for the sandwich gauge equal to the 0.5x d (see Figure (c)), where
d is the distance between the Voronoi edges E,, and E,, (see Figure
(c)). If there are (Px,Py,PZ) triples with the same score, we use the
overlap parameter to break ties; a sandwich gauge with a greater overlap
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Figure 5.5. An example showing different gauges with their scoring formula:
(a) internal gauge with score = w, (b) external gauge with score = s, (c)
sandwich gauge with score = 0.5 x d, and (d) comb gauge with score =
0.75xd,,, the score of a T gauge is computed similarly with score = 0.80xd,;,.

parameter gets higher priority. The overlap parameter is the measure of
the length of the overlapping portion of Voronoi edges E,,, E,, and E,,
associated with the sandwich configuration (see Figure ().

* Score of a comb gauge: For the score of comb gauges, we first define
the distance d,, between the tooth (P,) and the base (P,) as the distance
between the Voronoi edges E,, and E; (as shown in Figure (d)). The
Voronoi edge E,, is associated with an edge of the base and an edge of the
tooth, and the Voronoi edge E, is an edge associated with the base of the
comb. The score of a comb gauge is then defined as 0.75 x d,;. In case,
we have comb gauges with same score, we break ties by the measure of
overlap between E,; and E,. We give priority to the comb gauge where
tooth has more overlap with the base.

* Score of a T gauge: For T gauges the score is defined as 0.80 x d,,. The
ties for T gauges are broken in the same way as for comb gauges.

The lower the score of a gauge, the higher is the probability of getting a
problematic pattern around that gauge. When gauges of the same type get the
same score, we break ties by the extension and overlap parameters described
above. A higher value of these parameters gives a higher priority to the gauges.
If two different types of gauges have the same score, we break ties using the
context parameter, which reflects complexity of the pattern associated with the
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gauge. We have simply considered a hard coded order of context parameter,
C,> C,> C, > C, > C;, where C;,C,, C,,C,, and C, is the context parameter of
the internal, external, sandwich, comb and T gauges respectively. For example,
if a sandwich gauge G, and an internal gauge G, have the same score, then G, has
higher priority, because C, > C;. The scoring method along with the parameters,
provide us a priority-based ordered list of gauges. Figure illustrates each
type of gauge with its scoring formula.

5.2 Pattern selection based on the scoring method

We use the gauge locations as derived in Section to extract windows and
patterns from the design layout. We feed our pattern selection tool with two
inputs (see Figure : (1) A design layout, (2) A set of markers for the design
layout. A marker is a region in the design that indicates a problematic area that
has high probability of faults. It is generally given in the form of rectangles.
For a given design layout, we first obtain the ordered list of gauge locations
according to their priority, and we traverse it to extract patterns, one pattern
per gauge. Following are the steps of our Voronoi based pattern selection tool:

1. Compute all possible gauge locations in the given layout. Sort the gauges
according to the scoring function.

2. For each gauge, consider a window of 5—8 pitches with the gauge location
as the center of the window.

3. For each window, check if it covers any marker. Select a window only if
it covers some marker that has not already been covered by a previous
window; otherwise discard it. A marker is considered covered in three
different ways (A,B,C) as defined below.

As we do not desire overlapping windows, we prune any windows that cover
markers that have already been covered, and thus, we obtain a set of disjoint
windows for a layout. In step [3| we consider a marker to be covered in three
different ways: (A) when the geometric center of the marker is strictly inside
the corresponding window of a gauge, in which case we say that the gauge
covers the marker; (B) when the whole marker rectangle is completely inside
the corresponding window of the gauge; and (C) when the marker rectangle
overlaps with the gauge window. The results of our experiment for the three
different methods (A), (B), and (C) of marker covering are shown in Section
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Figure 5.6. Block diagram of flow for the pattern selection using Segment
Voronoi diagram.
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Table Table and Table 5.4 respectively. Note that method (B) may
miss many markers because a long or a wide marker may not completely fit
inside the windows we considered.

To analyze the quality of our gauges we further investigated the number of
windows required to cover all the markers. We tried to put gauge locations at
close proximity into one window, by using the following heuristic. The heuristic
takes a window size and goes over the layout to cover the markers, while it
discards unnecessary windows. The input to our heuristic algorithm is a set
of points P, derived by the set of marker centers or the set of gauge locations,
and the output is a set of windows, which covers the input set of points. The
description of the heuristic algorithm follows:

1. Find the bottommost point in P. Let this point be (b,, b,). Construct a
window W with (b, —1, b, —1) as its bottom left corner; remove from P
all points that lie inside W.

2. If P # 0, increment the window counter by 1 and repeat step 1; otherwise
report the window counter as the number of windows required to cover
all points in the given set.

3. Output the windows generated by step 1.

To further reduce the number of patterns, we apply this heuristic to the
obtained gauge locations. The next section provides experimental results.

5.3 Experimental results

We first validated the usefulness of these gauges by experiments on patterns of
small size. After getting motivating results, we then performed our experiments
on bigger portion of layouts.

5.3.1 On small size patterns

We have performed experiments on a few patterns provided by IBM Zurich Re-
search Laboratory, in order to assess the quality of gauges suggested by our code
based on the L., segment Voronoi diagram. These patterns were hand-picked
by engineers at IBM and for most of them the existing gauge suggestion is not
optimal and misses the critical location in each pattern. Each pattern is a rep-
resentative of a wide set of patterns with similar behavior. We run experiments
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on ten patterns: A, B, C, D, E, E G, H, I, J (Figures[5.7H5.16)). For each pattern,
we have a figure in which we show three images: (a) in the left, the pattern
and the existing gauge suggestion; (b) in the center, the SEM image around
the existing suggested gauge and the location of the critical distance measure-
ment with a cyan arrow; (c) in the right, the pattern together with the gauge
suggestions provided by our tool based on the L., segment Voronoi diagram.
We denote the gauge of each type with a specific symbol at its center and with
colored arrows as follows: G;: A, blue; G,: O, red; G,: o, green; G.: ¢, purple.
In many cases (A, C, E, G, H, I), the internal and the sandwich gauge coincide.
This is due to the fact that each pattern that we obtained is relatively small and
with small variation.

For each pattern we measure the distance in pixels in the corresponding
SEM image for each of our suggested gauges and we take the minimum. We
show the comparison with the existing measurements in Table For patterns
A and E, we have essentially the same suggestion as the existing one and there-
fore the same measurement. For all other patterns, we have an improvement
over the existing gauge. Most of the best gauges suggested are either internal
or external. In particular, the external gauges suggested for patterns B, D, G,
E I, J capture interactions between different shapes that could be printed too
close and improve on the existing suggestions. In pattern C, the vertical internal
gauge that we suggest is more critical (the rectangle is thin along this direction)
than the horizontal external existing gauge suggestion. In pattern E, we have a
gauge G, suggested by a sandwich configuration (which coincides with the G;
suggestion). In pattern H, we have a gauge G. suggested by a comb configura-
tion, which allows us to detect a pinch in the SEM image.

We claim the improvement in gauge suggestion for each pattern by inspect-
ing the corresponding SEM image of the pattern. This experiment shows that
the L., segment Voronoi diagram can be used effectively to identify potentially
critical locations of VLSI layouts.
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Pattern | old measurement | type of our gauge | our measurement | improvement

A 17 internal 17 (same) 0%
B 58 external 10 83%
C 52 internal 18 65%
D 31 external 21 32%
E 16 sandwich 16 (same) 0%
F 27 external 18 33%
G 86 external 13 85%
H 35 comb (pinch) 0 100%
I 47 external 10 79%
J 28 external 8 71%

Table 5.1. Comparison of CD measurement at different gauge locations

IRINIninl

gl

Figure 5.7. Pattern A:
with G (o, green)

Figure 5.9. Pattern C: our suggestion: G; coincides with G, (o, green), im-
proves on existing gauge
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Figure 5.10. Pattern D: our suggestion: G, (O, red) improves on existing
gauge

Figure 5.11. Pattern E: our suggestion: G, (o, green, same as existing gauge)
coincides with G;.

I
I

Figure 5.12. Pattern F: our suggestion: G, (O, red) improves on existing
gauge

O

Figure 5.13. Pattern G: our suggestion: G, (O, red) improves on existing
gauge

Figure 5.14. Pattern H: our suggestion: G. (¢, purple) detects a pinch, im-
proves on existing gauge
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Figure 5.15. Pattern I: our suggestion: G, (O, red) improves on existing gauge
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]

Figure 5.16. Pattern J: our suggestion: G, (O, red) improves on existing gauge
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5.3.2  On bigger portion of a layout

We have done experiments for pattern selection on portion of a 22nm random
logic design layout, provided with a state of the art markers for the correspond-
ing layout. The 22nm layout had 38584 design polygons, and 7079 markers.
The experiments are executed on a MacBook Pro 2.2 GHz Intel i7 with 4 GB
RAM.

Marker coverage

We check the quality of the gauges by counting the number of gauges needed to
cover all the markers. We considered four window sizes (in pitches x pitches),
5x%x5,6x6,7x7,and 8 x 8. We observed that the smaller windows were not
able to cover all the markers. As we increased the window size the covering of
markers increased. Our results are summarized in Tables and and
graphs shown in Figures[5.17,[5.18] and [5.19]

The notation in Tables and [5.4] are as follows: W, = window size
= pitches x pitches, M. = Number of markers covered, G, = Number of gauges
used, r, = Normalized range of scores of useful gauges (normalized gauge score
= & where g, is the score of a gauge, and H; is the highest recorded score
amosng all considered gauges), G; = Number of gauges failed to detect any
marker, r; = Normalized range of scores of failed gauges, p; = Probability of
detection of markers by the provided gauge set = 71(\)4769 x 100, p,, = Probability
that markers will be missed by the given gauge set will be 1—pg, u, = percent-
age of useful gauges those detect at least one marker (this basically evaluates
the scoring function) = Guiqu x 100, and T = Time taken to run the experiment
on a MacBook Pro 2.2 GHz Intel i7 with 4 GB RAM.

In Table we show results of our experiment, implementing the method
(A) of marker covering. Recall that for method (A), a marker is considered cov-
ered, if the geometrical center of the marker is within some window. The gauge
utilization, that is, the percentage of gauges that successfully covered some
marker, increases with the increase in the window size. The larger window has
greater chance to cover more marker centers. Windows in our experiments are
chosen with priority, based on the priority of the gauges, which in turn depends
on shapes and the proximity information of the shapes in the design. The prob-
ability of marker coverage increases with the increase in the window size. We
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Table 5.2. Covering of marker centers by windows generated by gauge set

W (pitches x pitches) | M, | G, | ry | Gr | T | DPd | Ug | T
5x5 6968 | 5708 [0.05-1.0] 1638 | [0.05-0.1] 98.43% 77.70 % | 18.208 sec
6x6 7070 | 5306 | [0.05-0.55] 675 [0.05-0.1] | 99.87 % | 88.71% 17.666 sec
7x7 7079 | 5029 [0.05-0.2] 383 [0.05-0.1] 100% 92.92% 16.768 sec
8x8 7079 | 4767 | [0.05-0.16] | 354 | [0.05-0.1] 100% 93.08% | 16.056 sec

observe 100% marker coverage for window sizes 7 x 7 and 8 x 8. The run time
of the experiment decreases with the increase in the window size. For all the
different window sizes the run time is within 20 seconds.

Table shows the result for method (B) of marker covering, in which a
marker is considered covered, if the marker area is completely within some
window. The marker coverage increases with the increase in window size. The
gauge utilization first increases with the increase in window size (from 5 x 5 to
7 x 7), and then decreases as we further increase the window size (from 7 x 7 to
8 x8). This is because a bigger window has potential to cover more markers but
we need to check with a larger number of windows, as there are many windows
which do not completely contain any marker. In this case also we observe that
the probability of marker coverage increases with the increase in window size.
We were not able to cover 100% of markers, mainly due to the fact that some
markers were very long or wide and were not fitting in within any acceptable
window size. The best case was 99.08% for the window size of 8 x 8. For all
the different window sizes the run time is within 70 seconds.

Table shows the result for method (C) of marker covering, in which a
marker is considered covered, if the marker area is overlapping within some
window. The probability of marker coverage increases with the increase in win-
dow size. We observe 100% marker coverage for the window size of 7 x 7 and
8 x 8. For all the different window sizes the run time is within 4 minutes. The
time taken in this case is more compared to the other two cases as the predi-
cate to determine overlap between window and design shapes takes more time
that the predicate that determines if a point is inside a window or a rectangle
is completely inside a window.

We observe that the window size of 7 x 7 and 8 x 8 gives fairly acceptable
results in terms of marker coverage in all cases. All types of gauges have the
most critical gauge score of highest priority (0.05). A clear observation from
the range of scores for G, is that, with the increase of window size, there is a
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Table 5.3. Covering of marker rectangles by windows generated by gauge set

W (pitches x pitches) | M, | G, | ry | Gr | T | Dd | Ug | T
5x5 6101 | 5202 [0.05-0.6] 2278 | [0.05-0.1] | 86.18% | 69.54% | 68.63sec
6x6 6711 | 5263 | [0.05-0.55] | 691 | [0.05-0.1] | 94.8% | 88.39% | 61.93sec
7x7 6908 | 5126 [0.05-0.4] 334 [0.05-0.1] | 97.58% | 93.88% | 59.21sec
8x8 7014 | 4899 [0.05-0.2] 370 [0.05-0.1] | 99.08% | 92.97% | 57.12sec

Table 5.4. Covering (overlapping) of marker rectangles by windows generated
by gauge set

W, (pitches x pitches) | M, | G, | T | 6, ] Ty | pa | u | T
5x5 7011 | 5607 [0.05 - 0.6] 1627 | [0.05-0.1] | 99.03% | 77.50% | 3m 57s
6x6 7073 | 5180 [0.05 - 0.4] 341 [0.05-0.1] | 99.91% | 93.82% | 3m 44s
7x7 7079 | 4910 [0.05-0.2] 319 [0.05-0.1] 100% 93.89% | 2m 25s
8x8 7079 | 4686 | [0.05-0.16] 339 [0.05-0.1] 100% 93.25% | 1m 28s

decrease in the requirement of low priority gauges. In all cases the range of
score for G; is [0.05 - 0.1], which suggests that the gauge (which belongs to
G;) locations are critical and there is a possibility of finding a problematic pat-
tern around these gauges, although in this specific layout they did not cover any
ORC marker. The range of scores for G, in all cases indicates that the scoring
method captures the pattern criticality and is also able to capture more patterns
that may be needed to minimize the probability of missing problematic patterns.

The variation of marker coverage with window size for all cases are shown
in Figure The variation of useful gauges with window size for all cases
are shown in Figure We compare the runtime of the experiments based
on three different ways of marker covering in Figure[5.19

Gauge distribution

We performed experiments to find out the distribution of gauges covering the
markers. Results are reported in Tables and In Table we give
detailed results on the marker coverage by the different types of gauges. We
observe that all types of gauges are useful, as there are at least some gauges of
each type covering some markers. For this particular design layout, the sand-
wich gauge turned out to cover most of the markers. In Table we give the
distribution of gauges which fail to cover any marker. We observe that the failed
gauges are of the extra or the sandwich type. The internal and T type of gauges
have no failure.
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Table 5.5. Gauge distribution for marker covering: A, B, C are gauge dis-
tribution for three different ways of covering markers that is, marker center
inside the window, markers are completely inside the window respectively, and
markers are overlapping with windows. Notations in the table: r;,r,,r,, and
r, are normalized range of scores of internal, external, sandwich and T gauges
respectively. N;,N,, N;, and N, are number of internal, external, sandwich and

T gauges respectively.

W | N; | r | N, | Ie | N; | T | N, | re | Total
A 5x5 (30| [02-04] | 38 [0.05 - 1.0] 5388 | [0.075-0.3] | 252 | [0.16-0.32] | 5708
6x6 | 6 | [0.2-0.4] | 13 | [0.05-0.55] | 5240 | [0.075-0.1] | 47 | [0.16-0.16] | 5306
7x7 | 1 |[02-02]| 7 | [0.05-0.1] | 5005 | [0.075-0.1] | 16 | [0.16-0.16] | 5029
8x8 0 [0-0] 6 [0.05-0.05] | 4753 | [0.075-0.1] 8 [0.16-0.16] | 4767
B 5x5 |57 |[02-04] [ 56 | [0.05-0.6] | 4686 | [0.075-0.3] | 403 [ [0.16-0.16] | 5202
6x6 | 12 | [0.2-0.4] | 18 | [0.05-0.55] | 5141 | [0.075-0.2] | 92 | [0.16-0.16] | 5263

[

[

[

[

[

[

7x7 | 4 | [0.2-04]| 9 | [0.05-04] | 5078 | [0.075-0.2] | 35 | [0.16-0.16] | 5126

8x8 | 1 |[02-02]| 7 | [0.05-0.1] | 4880 | [0.075-0.1] | 11 | [0.16-0.16] | 4899
C 5x5 | 15 | [02-0.4] | 29 | [0.05-0.6] | 5424 | [0.075-0.2] | 139 | [0.16-0.32] | 5607
6x6 | 4 | [02-04] | 11 | [0.05-0.4] | 5135 | [0.075-0.1] | 30 | [0.16-0.16] | 5180
7x7 | 1 | [02-02]| 7 | [0.05-0.1] | 4888 | [0.075-0.1] | 14 | [0.16-0.16] | 4910
8x8 | 0 [0-0] 6 | [0.05-0.05] | 4673 | [0.075-0.1] | 7 0.16-0.16] | 4686

We have not included information on comb type of gauges in the tables.
This is because comb gauges were not used to cover any marker and no comb
gauge failed to cover a marker. The range of normalized gauge score for comb
gauge is [0.15 - 0.15]. The score range of comb gauges suggests that they are
useful. They did not appear in the distribution of useful gauges because they
cover markers, which have already been covered by gauges of higher priority
(normalized score < 0.15).

Reduction of patterns by a simple heuristic

We tried to obtain a lower bound on the number of windows required to cover
all the marker centers, using the simple heuristic algorithm of Section For
this we took a list of geometrical centers of all the markers as an input to the
heuristic. It would be desirable to reach the bound mentioned in the W,, col-
umn of Table with our gauge locations.

We tried to further reduce the number of patterns using the simple heuristic
algorithm of Section We took the set of gauge locations corresponding to
the set of windows obtained in our experiment using method (A), as an input
to the heuristic algorithm. We observe a reduction in the number of patterns by
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Table 5.6. Distribution of gauges do not covering any markers.

W, | N; | r; | N, | Te | N | T | N, | T, | Total

A 5x5| 0 |[0-0]]| 3 |[0.05-0.05]]| 1635 |[0.1-0.1]| O [[0-0] | 1638
6x6| 0 [[0-0]| 3 [[0.05-0.05]| 672 | [0.1-0.1]| O |[0-0]| 675
7x7 ] 0 [[0-0]| 3 [[0.05-0.05]| 380 |[0.1-0.1]| O |[0-0]| 383
8x8 | 0 |[0-0]| 3 |[0.05-0.05]| 351 |[0.1-0.1]| O [[0-0] | 354

B 5x5| 0 [[0-0]| 3 |[[0.05-0.05] 2275 | [0.1-0.1]| O | [0-0] | 2278
6x6| 0 [[0-0]| 3 [[0.05-0.05]| 688 | [0.1-0.1]| O |[0-0]| 691
7x71 0 [[0-0]| 3 |[0.05-0.05]| 331 [[0.1-0.1]| O | [0-0]| 334
8x8 | 0 |[0-0]| 3 | [0.05-0.05]| 367 |[0.1-0.1]| O [[0-0] | 370

C 5x5| 0 [[0-0]| 3 |[0.05-0.05]]| 1624 [ [0.1-0.1]| O |[0-0]| 1627
6x6| 0 [[0-0]| 3 [[0.05-0.05]| 338 | [0.1-0.1]| O |[0-0]| 341
7x71 0 [[0-0]| 3 [[0.05-0.05]| 316 | [0.1-0.1]| O |[0-0] | 319
8x8| 0 |[0-0]| 3 |[0.05-0.05]| 336 |[0.1-0.1]| O [[0-0] | 339

Table 5.7. Covering of gauge locations and marker centers by our heuristic
algorithm. Notations in the table: W, = Number of windows before using
heuristic, W, = Number of windows obtained after using heuristic, W,, =
Number of windows required by heuristic to cover marker centers, R,, = Re-
duction in windows from W, to W,.

W, (pitches x pitches) | wy | w, | R, | W,
5x5 5709 | 4102 | 28.14% | 4442
6x6 5306 | 3555 | 33.00% | 4146
7x7 5029 | 3221 | 35.95% | 3934
8x8 4767 | 3013 | 36.79% | 3783

around 30%. We have not evaluated the usefulness of reduced set of gauges.
We report the results in Table

Similarity of failure patterns

We compare the patterns which failed in a layout in terms of context and prox-
imity. The patterns extracted by our experiments is based on the score of gauge
locations. The score of a gauge location and the type of the gauge encodes the
context and proximity information of the problematic location. We get a rep-
resentative set of patterns (R,) for a layout by clustering the gauges based on
their score and type. Each element is the representative set indicates a group
of gauges (or patterns) with same score and type. We consider the set of gauge
locations corresponding to the set of patterns obtained in our experiment using
method (A) with window size 7 x 7. We report the results in Table For
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Table 5.8. Representative gauges Notations in the table: R, = Representative
gauge, S, = Normalized score, N, = Number of gauges of same type with
same score, & Similarity percentage.

Re| Su [ N, | ¥

i | 0.2 1 [0.0198%
e, | 005 | 6 |0.1193%
e, | 0.1 1 | 0.0198%
s; 0075 | 1 |0.0198%
s, | 0.1 | 5004 | 99.50%
t, | 016 | 16 | 0.3182%

our given layout we have one internal guage representative (i;), two external
gauge representatives (e; and e,), two sandwich gauge representatives (s; and
s,), and one t gauge representative. The similarity percentage % is computed
as Wgauges x 100, which indicates percentage of gauges of a type with same
score. It can be observed that vast number of gauge locations are identical
with respect to their topological context, which effectively reduces the number
of patterns for analysis. There are only 6 representative gauges for the 5029

gauge locations in our considered layout.

Similarity measure of two layouts

We compare two layouts and give a similarity measure based on their represen-
tative set of gauges. Let L, and L, be two layouts with set of markers M; and
M, respectively. Let R, = {P/,P,,--- ,Ppl} and R, = {Q?,Q3, - ,QE} be the set
of representative gauges for L; and L, respectively. Then, L, has p representa-
tives and L, has q representatives. The total number of gauges in L, and L, for
covering markers is given by N} = > |P!| and N? = >.'_ |Q?| respectively.
Let S;; denotes the set of similar gauges in P! and Q] then S;; = P! NQ7, where
1<i<pand1l<j<q. Wegive the percentage similarity measure between
I;:l Z?:l |Sij| x 100.

two layouts L, and L, by S;, = NTiNZ

For a sample experiment we obtained L, and L, by partitioning our given
layout in to two parts, and M; and M, by partitioning the given ORC marker’s
list in to two parts. The partioning of the given layout is done with respect
to a vertical line passing trough a x-coordinate, which is computed as (x,,;,, +
Xmax)/2 (Where x,,;, and x,,,, are the minimum and miximum x-coordinate
among all the points in the given layout). Similar is the partitioning of the
marker’s list. We considered method (A) with window size 7 x 7 for obtaining
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Table 5.9. Representative gauges in L, and L, Notations in the table: R}g =
Representative gauge in layout 1, Rz = Representative gauge in layout 2, S, =
Normalized score, N; = Number of gauges of same type with same score in

layout 1, and N, gz = Number of gauges of same type with same score in layout
2.

1 1 1 1
Rg | Rg | Sn | Ng | Ng

i | 2] 02 0 1
e} | ef | 0.05 4 2
s; | s7 ]0.075 1 0
s; | s2 | 0.1 2883 1998

t!h [ ¢2 ] 0.16 7 9

1 1

N! =2895 | N? = 2000

gauges. We report our results in Table The similarity measure S;, for L,
and L, is approximately 82% which is computed from the data provided in Table
The similarity measure between two layouts will considerably reduce the
inclusion of redundant patterns for analysis.

5.4 Summary

In this Chapter, we described problems in VLSI pattern analysis and our ap-
proach to address them. We discussed a new method to select a set of prob-
lematic patterns, which is based on topological information extracted from the
Voronoi diagram of layout shapes. We use the line-segment Voronoi diagram
to identify a variety of gauge locations. We also introduced a scoring method
for the identified gauge locations which allows to obtain a priority based sorted
list of gauges. We then extract one pattern per gauge location. Our method
is fast and gives an automatic way to discover the potentially problematic ar-
eas when printing VLSI layout patterns. We verified our windows by covering
ORC-generated markers. Using our pattern selection tool, we covered 7079
ORC markers for a design layout of 38584 design polygons using nearly 5000
extracted patterns. The patterns extracted covered all the ORC markers. Ap-
plying a simple heuristic algorithm we further reduced the number of patterns
by approximately 30%. We also measured the similarity between the layouts
based on their representative gauges. We also derived a similarity measure be-
tween patterns and between layouts with respect to the gauges. The similarity
measure helped to obtain representative gauge locations for a layout and thus
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potentially decrease the number of effective patterns for analysis. The reduc-
tion is approximately by 99.8% for the layout considered in our experiment.

We believe that our line-segment Voronoi based tool for pattern analysis
can be enhanced to address optical proximity correction (OPC) problem, which
is currently highly rated important topic of research in the domain of design
for manufacturability in VLSI CAD. OPC is used in lithography to increase the
achievable resolution as well as to increase the layout-to-wafer fidelity for inte-
grated circuit (IC) manufacturing. More specifically, the goal of OPC is to find
a mask design such that the final pattern remaining after complete lithography
process is as close as possible to the desired pattern on the wafer. For this, OPC
must be able to reliably identify the possible problematic patterns causing fail-
ure of the design. The main reason to support our case is the ability of the tool
to generate a great variety of gauges that has potential to extract topology and
context based interesting features of patterns.

The main requirement of OPC is to have a clear classification of good, pos-
sibly faulty and faulty patterns. Our tool can generate a wide range of gauges,
and with the scoring method we are able to prioritize them. We can incorpo-
rate a set of rules for optical error checks in the patterns specified by the chip
designers and lithographers, in our scoring method. Then we should be able
to partition our prioritized set of gauges into three different sets of good, fault
prone and faulty patterns. Nevertheless, the choice of threshold of scores for
partitioning can be a tricky process and requires an extensive experimentation
work. This lays a foundation for future work to obtain a set of patterns for cali-
bration and verification of MB-OPC (model based optical proximity correction).

The development of this application has been a joint work with Maria Gabrani
of IBM Research Zurich, Dr. Panagiotis Cheilaris, and Prof. Evanthia Pap-
dopoulou.



Chapter 6

Conclusion

“Your purpose in life is to find your purpose
and give your whole heart and soul to it.”

Gautama Buddha

Our research focused on three major aspects in computational geometry,
that is, theory, implementation, and application.

In the theoretical front, we described the structural properties of the farthest
line-segment Voronoi diagram in the general L, metric, 1 < p < o0. In partic-
ular, we introduced the farthest line-segment hull and its Gaussian map. The
farthest line-segment hull is a closed polygonal curve that fully characterizes
the faces of the farthest line-segment Voronoi diagram.

We gave improved structural bounds for the farthest line-segment Voronoi
diagram in the Euclidean metric. We proved that the total number of faces
of the farthest line-segment Voronoi diagram of n arbitrary line-segments is at
most 6n — 6 which improved the existing bound 8n + 4, and we also showed a
corresponding lower bound equal to 5n—6 which improved the existing bound
4n—4. In the L, metric, we proved that the farthest Voronoi diagram has at
most n + 8 faces and this is tight. For non-crossing line-segments this number
is eight. We also showed that a single input line-segment can have at most 5
faces, and this is tights.

We presented algorithms to construct the farthest line-segment hull. We
adapted some of the standard Convex hull techniques to construct the farthest-
line segment hull. This implied that the farthest line-segment hull for n line
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segments can be constructed in O(nlogn)time and also in O(nlogh) time by
an output sensitive algorithm, where h is the size of the farthest line-segment
hull. This unified the techniques to construct the farthest site Voronoi diagram
of points and line segments.

In the L, (L;) metric, provided the farthest line-segment hull, the farthest
Voronoi diagram of line segments can be computed in O(h) time.

We implemented the L., Voronoi diagram of points and line-segments in
the CGAL environment, in a way that is robust, correct, extendable, flexible,
reusable and easy to use. We also discussed all the in-square predicates, which
can make the implementation faster. The open source contribution increases
possibilities of its usage in practice. Our code is accepted and integrated as a
package in the upcoming CGAL-4.7 version and will be released in September
2015.

In the application front, we discussed a new method to identify the gauges in
a VLSI layout and select a set of problematic patterns, which is based on topo-
logical information extracted from the Voronoi diagram of the layout shapes.
Our method is fast and gives an automatic way to discover the potentially prob-
lematic areas when printing VLSI layout patterns. We verified our windows by
covering ORC-generated markers. Our tool helps in analyzing the printability
problem in the VLSI domain. The variety of gauges has a potential to extract
topology and context based interesting features of patterns which motivates the
future work on improving the tool to facilitate MB-OPC in terms of reliability
and time.

6.1 Future directions

“The future depends on what you do today.”
Mahatma Ghandhi

In this section we discuss some future directions of research from this dis-
sertation. In particular, we mention possibilities of research in farthest line-
segment Voronoi diagram, higher order line-segment Voronoi diagram and its
implementation in CGAL, and also about utility of line-segment Voronoi dia-
gram in OPC modelling.
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Closing the bound on number of faces of farthest line-segment Voronoi
diagram:

The lower bound and the upper bound on the number of faces of farthest
line-segment Voronoi diagram are 5n — 6, and 6n — 6 respectively. It would be
interesting to close the gap. We believe the tight bound is 5n — 6.

Algorithm for the L., k-order Voronoi diagram for points and segments:
As mentioned in Chapter 2, there is an iterative approach for computing
order-k Voronoi diagrams which computes the diagram iteratively from order
1 to order n — 1. Iterative approaches are good for small values of k. For large
k the approach is not efficient [[18]]. Existing iterative algorithms do not do
justice for higher order (k > n/2, where n is the number of input points) dia-
grams. Our goal is to develop an algorithm which can compute the higher order
Voronoi diagram iteratively from order n — 1 to order 1, targeting an efficient
iterative construction for large k. First step is to derive the algorithm for points
and axis-parallel segments in the L., metric, and then generalize for arbitrary
line segments. The goal would be to compute the k-nearest neighbor Delaunay
graph [53]] iteratively from order 1 to order n—1 or iteratively from order n—1
to order 1 depending on the size of k. Once the k-nearest neighbor Delaunay
graph is constructed, we can also construct the order-k Voronoi diagram.

CGAL implementation of L., higher order line-segment Voronoi diagram:
The second order segment Voronoi diagram has shown to be very useful in
VLSI applications. Since, we already have the first order Voronoi, we can go for
an iterative approach to construct the second order, and consequently higher
order diagrams can also be computed. We have some of the ingredients for the
implementation, like the in-circle predicates, point location structures, triangu-
lation data structure for storing the diagram. A clear design of the algorithm
and its implementation in CGAL can be an interesting future research work.

CGAL implementation of a plane sweep algorithm for L., line-segment
Voronoi diagrams:

It will be interesting to investigate a CGAL implementation of a plane sweep
algorithm for computing L., Voronoi diagrams for points and segments. In
Figure we show a high level view of the components involved in the sweep-
line algorithm. We have already implemented the component geometric traits
that involves geometric objects such as point, segment, line, ray, polygon and
operations (predicates and constructions) on geometric objects. The topology
traits provide a data structure to update and store the segment Voronoi diagram



108 6.1 Future directions

computed by the plane sweep algorithm.

: Topology Event . L
gig?its:rlc Traits Priority Statusline Visitor

(DCEL) Queue structure

b+ Fity b f

Segment Voronoi diagram ° Sweepline framework

Figure 6.1. High level view of the components in the implementation.

What remains is the modification and adaptation of the topology traits pro-
vided in the CGAL packages. The components event queue and the status-line
structure are both balanced binary search trees, and are provided in C++ STL.
The visitor component needs to be implemented to provide call backs at strate-
gic points of the sweep-line algorithm. The visitor component will be used to
provide output of the sweep-line algorithm. The component sweep-line frame-
work is only meant for a sweep-line algorithm to construct L., segment Voronoi
diagrams and is not a general framework for other sweep-line algorithms. In-
vestigation of the Kinetic framework and Kinetic Data structures provided in
CGAL to check for their suitability to have a plane sweep construction of Voronoi
diagrams is also interesting. Although completing such a package is by far a
non-trivial task and could be an important research work.

Facilitating the OPC modeling by using the line-segment Voronoi diagram:
As discussed in Chapter |5} printability problem of VLSI shapes appear largely
due to interactions between neighboring shapes. Proximity among VLSI shapes

Design Layout |  Calibration
set, of patterns

: : -
line-segment Voronoi » Separator MB-OPC
based tool — —>

A 4

»  Verification |
Set of patterns set of patterns

Figure 6.2. High level block diagram for supporting MB-OPC.
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is a key factor in variability sensitivity (deviation of a shape from desired form
during printing) and failure susceptibility. It is important to identify the prob-
lematic locations in the VLSI layout for correct calibration and verification of
the VLSI layout. The variety of gauges that we identify using our Voronoi tool
has a potential to extract topology and context based interesting features of pat-
terns. This lays a foundation for this future work to obtain a set of patterns for
calibration and verification of MB-OPC.

A high level description of our idea is shown in Figure The block of
design layout in the form of a file containing all the design polygon with its
coordinates is the input to our tool. The heart of the the tool is the line-segment
Voronoi diagram which will feed in the design polygons, and reports a set of
pattern based prioritized by context and proximity information of a pattern.
The set of patterns obtained from the Voronoi based tool is then passed to the
separator block. The separator block must have a formula or rule to divide the
set of patterns in to two parts the calibration set and the verification set. The
calibration set contains the non faulty patterns, where as the verification set
contains the faulty ones. Finally the calibration and verification set of patterns
are feed to the OPC tool.
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Appendix A

CGAL

1. The trait requirements for L., segment Voronoi diagrams, that we have
already developed are the following (For the complete set of trait re-
quirements and their reference manual, please see the CGAL Manual 4.6.

[90]):

(@

(b)

(o)

(d)

(e)

SegmentDelaunayGraphLinfTraits 2:: Intersections tag

Indicates if the intersecting segments are supported or not. Although
for VLSI application the input segments are non intersecting, but we
support intersecting segments also. This indicator helps in geometric
filtering.

SegmentDelaunayGraphLinfTraits 2:: Site 2

The sites are point or segments in 2-d.

SegmentDelaunayGraphLinfTraits 2:: RT

A type for the ring number type for the arithmetic. There is also FT,
a field number type which supports square-root and divisions. For
L., the arithmetic is simpler and RT is sufficient.

SegmentDelaunayGraphLinfTraits_2:: Object 2

A type representing different types of objects in two dimensions,
namely: Point 2, Site 2, Line 2, Ray 2and Segment 2. No parabolic
arcs are required in L.

SegmentDelaunayGraphLinfTraits_2:: Construct_svd_vertex 2

A constructor for a point of the L, segment Voronoi diagram equidis-
tant from three sites. Must provide Point 2 operator()(Site 2 s1,
Site 2 s2, Site_2 s3), which constructs a point equidistant from the
sites s1, s2 and s3. Which is basically center of the minimum enclos-
ing square.
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SegmentDelaunayGraphLinfTraits _2:: Orientation 2

Must provide Orientation operator()(Site_2 s1, Site_2 s2, Site_2 s3),
which performs the usual orientation test for three points s1, s2 and
s3.

SegmentDelaunayGraphLinfTraits 2:: Oriented_side_of bisector 2
Must provide Oriented_side operator()(Site 2 s1, Site 2 s2, Point 2
p), which returns the oriented side of the bisector of s1 and s2 that
contains p. Returns ON POSITIVE SIDE if p is closer to s1 than s2;
returns ON NEGATIVE SIDE if p lies closer to s2 than s1; returns ON
ORIENTED BOUNDARY if p lies on the bisector of s1 and s2.

SegmentDelaunayGraphLinfTraits 2:: oriented_side_of square

Must provide Oriented_side operator() (Site_2 s1, Site_2 s2, Site_2 s3,
Point_2 p), which returns the oriented side of the minimum square
formed by s1, s2, and s3 containing point p.

SegmentDelaunayGraphLinfTraits _2::bounded_side_of square

Must provide Bounded_side operator() (Site_2 s1, Site_2 s2, Site_2 s3,
Point_2 p), which returns the bounded side of the minimum square
formed by s1, s2, and s3 containing point p.

SegmentDelaunayGraphLinfTraits 2:: Vertex_conflict 2

Must provide Sign operator()(Site_2 s1, Site 2 s2, Site 2 s3, Site 2
q), which returns the sign of the distance of q from the Voronoi
square of s1, s2, s3. Must provide Sign operator()(Site_2 s1, Site 2
s2, Site 2 q), which returns the sign of the distance of g from the
degenerate Voronoi square of s1, s2, with its center at infinity.

SegmentDelaunayGraphLinfTraits 2:: Finite_edge interior conflict 2
Must provide bool operator() (Site 2 s1, Site 2 s2, Site 2 s3, Site 2
s4, Site 2 q, Sign sgn). The sites s1, s2, s3 and s4 define a Voronoi
edge that lies on the bisector of s1 and s2 and has as endpoints the
Voronoi vertices defined by the triplets s1, s2, s3 and s1, s4 and s2.
The sign sgn is the common sign of the distance of the site q from the
Voronoi square of the tripletss1, s2, s3 and s1, s4 and s2. In case that
sgn is equal to NEGATIVE, the predicate returns true if and only if the
entire Voronoi edge is in conflict with q. If sgn is equal to POSITIVE or
ZERO, the predicate returns false if and only if q is not in conflict with
the Voronoi edge. Must also provide bool operator() (Site_2 s1, Site 2
s2, Site 2 s3, Site 2 q, Sign sgn). The sites s1, s2, s3 and the site at
infinity soo define a Voronoi edge that lies on the bisector of s1 and
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s2 and has as endpoints the Voronoi vertices V55 and v; o, defined by
the tripletss1,s2, s3 and s1, soo and s2 (the second vertex is actually
at infinity). The sign sgn is the common sign of the distance of the
site q from the two Voronoi squares centered at the Voronoi vertices
Vi3 and V; o5. Must finally provide bool operator() (Site_2 s1, Site 2
s2, Site 2 q, Sign sgn). The sites s1, s2 and the site at infinity soo
define a Voronoi edge that lies on the bisector of v 5., and v;.
s1 and s2 and has as endpoints the Voronoi vertices defined by the
triplets s1, s2, soo and s1, soo and s2 (both vertices are actually at
infinity). The sign sgn denotes the common sign of the distance of
the site q from the Voronoi squares centered at v;5., and v;o5-

SegmentDelaunayGraphLinfTraits_2:: Infinite_edge_interior_conflict 2
Must provide bool operator() (Site 2 s1, Site 2 s2, Site 2 s3, Site 2
g, Sign sgn). The sites so0, s1, s2 and s3 define a Voronoi edge that
lies on the bisector of sco and s1 and has as endpoints the Voronoi
vertices Voo1, and Vo3, defined by the triplets soo, s1, s2 and soo,
s3 and s1. The sign sgn is the common sign of the distances of q
from the Voronoi squares centered at the vertices Vo,1, and Vegs;.-
If sgn is NEGATIVE, the predicate returns true if and only if the en-
tire Voronoi edge is in conflict with g. If sgn is POSITIVE or ZERO,
the predicate returns false if and only if q is not in conflict with the
Voronoi edge.
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Lines of code | Comment lines | Filename
96 35 Orientation_Linf 2.h
530 126 Polychain_2.h
11 1 basic.h
1466 197 Basic_predicates_C2.h
529 105 Bisector_Linfh
892 174 Constructions_C2.h
273 118 Filtered_traits base 2.h
1036 128 Finite_edge_interior_conflict C2.h
496 85 Infinite_edge_interior_conflict C2.h
135 8 Orientation_Linf C2.h
349 59 Oriented_side_C2.h
248 30 Oriented_side_of bisector C2.h
19 1 Predicates C2.h
624 42 Segment_Delaunay graph_Linf 2_implh
839 185 Segment_Delaunay graph_Linf hierarchy 2 impl.h
83 38 Traits_base_2.h
1034 186 Vertex_conflict C2.h
36 23 Voronoi_vertex C2.h
3169 253 Voronoi_vertex_ring C2.h
3533 608 Voronoi_vertex_sqrt_field new_C2.h
288 41 Segment_Delaunay_graph_Linf 2.h
189 15 Segment_Delaunay _graph_Linf filtered_traits 2.h
45 4 Segment_Delaunay graph_Linf hierarchy 2.h
106 15 Segment Delaunay graph_Linf traits 2.h
495 35 Side_of bounded_square_2.h
118 17 Side_of oriented_square 2.h
17252 2694 Total

Table A.1. Lines of code used for implementing the Voronoi diagram of line
segments in the max-norm
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