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Abstract

Roughness is everywhere. Every object, every surface we touch or look at, is rough.
Even when it looks smooth and flat, if analyzed at the proper length scale, it will reveal
roughness. Thus, macro-scale, micro-scale, and even nano-scale roughness exist. What
is even more fascinating, is that most of the rough structures, which can be observed
at a given length scale, repeat themselves at smaller length scales, as in a fractal. The
first implication of the rough nature of surfaces is that what we perceive as a full, solid,
and smooth contact area, is in reality a collection of fragmented microscopical contact
patches, composed of single contact points.

Given its intrinsic complexity, the modeling of the real area of contact has been the
subject of a huge amount of studies, which yielded different and contrasting results. As
it is easy to imagine, the real area of contact is crucial for many real-world applications,
such as the prediction of wear and fretting, charge and heat conduction, and frictional
effects. Let alone think of how an acting load is normally believed to be uniformly
distributed over the contact surface, and how variable and uneven it must, in reality,
appear at microscopic length scales.

The importance of roughness, together with our knowledge in parallel computing
and fast solution methods, are the premises of the current work. In this study, we an-
alyze rough contact between realistic surfaces, and we resolve it numerically at micro-
scale, to understand its meso- and macro-scale effects. We do this by means of the
Finite Element Method, in combination with an optimal multi-grid strategy and a spa-
tial decomposition to perform the computations on highly parallel super-computers.
We concentrate on the type of surfaces for which it is believed that molecular and
chemical effects can be neglected.

We simulate the contact between an elastic cube and diverse rigid rough surfaces,
under different loading conditions, and we derive empirical laws which describe the
influence of well known roughness parameters on important features such as contact
evolution and static friction production. We also define bounds on the uncertainty of
our measurements, to make clear the level up to which our predictions have to be
considered reliable and applicable.

Literature on roughness is densely populated by models, approaches, and theoret-
ical predictions about the evolution of the real area of contact. An exhaustive com-
parison of our results with such corpus of works, articles, books, and theses would be

vii



viii

infeasible. We therefore compare our results on the real area of contact to the pre-
dictions of two widely accepted theories (one by B. N. J. Persson, the other by A. W.
Bush, R. D. Gibson, and T. R. Thomas), which have often proved to be interpretable
as asymptotical bounds, for systems at low pressures. For large pressures, and conse-
quent large areas of contact, we also compare our results to the newly developed and
semi-empirical theory by Yastrebov, Molinari, and Anciaux.

Finally, we test our method on the real world problem of tyre-asphalt interactions
on wet roads, comparing the results obtained by our method to data from other studies,
collected on real highways and runways, and to a theoretical model, which is close, in
the assumptions, to our numerical experiments.
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Chapter 1

Introduction: constitutive elements

1.1 Roughness and rough contact

It may seem easy to define roughness: everybody, when asked, should be able to indi-
cate, among two or more surfaces, which one is the roughest, after a simple visual or
tactile inspection. Nevertheless, when given the task of formally describing roughness,
it is difficult to decide on what parameters could characterize it and help classifying
surfaces accordingly.

A common –though not unique– choice for such mathematical characterization is
based on the Power Spectral Density (PSD) of the surface, which therefore decomposed
in wave vectors of different wave lengths, and analyzed in terms of their amplitudes.
The PSDs of most real surfaces have been experimentally found to follow a power law
(an exponential decay with respect to wave number). And this implies the so-called
self-affinity of natural corrugated substrates. Thus, it is possible to prove that, up to
a certain level, the surfaces surrounding us in everyday life are similar to fractals, in
which geometrical features repeat themselves identically, at different length scales, up
to the limits of continuity of matter.

With the sound foundation supplied by this mathematical description, it is possible
to develop contact theories, aiming to predict the results of microscopic interactions
of surface asperities. There exist several models studying microscopic contact mechan-
ics, developed under different assumptions and with diverse methods, which lead to
different results, but share certain common aspects. Their application is of paramount
importance to understand problems such as fretting, wear, and friction production in
engineering and real world applications.

1.2 Framework of numerical experiments

As it is becoming common for many fields of science, numerical studies have been
performed to simulate contact at different length scales, and different methods were
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2 1.3 Brief introduction to friction

employed, from Particle-Based Methods, to Boundary Elements Methods and Finite
Elements Method.

Most numerical simulations in the field are concerned with a flat surface in contact
with a self-affine rough solid substrate, with one of the two bodies being rigid, and the
other one following the material law generally known as linear elasticity. An essential
knowledge about material laws is therefore needed to understand the results of nu-
merical simulations of microscopic contact, and what the applicability of their results
is.

Theoretical frameworks exist, in which contact problems are solved. One of the
classic examples of an analytical solution of a contact is the one derived by Hertz in the
nineteenth century, and concerning the contact of two smooth curved elastic bodies.
A more general model is the so-called Signorini problem, a boundary value problem
equipped with a set of linear constraints, which constitutes the abstract formulation of
a contact between two bodies: one of the bodies is modeled as linear elastic, whereas
the other one acts as a rigid obstacle.

The Signorini problem is often adopted in numerics. Its weak formulation can effi-
ciently be solved with the Finite Element Method, yielding a solution which has been
shown to be a good approximation of reality, when a sufficiently dense discretization
of the bodies is used, and the correct material law is imposed.

1.3 Brief introduction to friction

This work is concerned with roughness and its influence on micro- and macroscopic
quantities generated by contact. One of the quantities we study is static friction, but
since, to the best of our knowledge, the existing analytical models of static friction are
not set in the same framework of our numerical experiments and/or do not take the
full roughness characterization into account, we just briefly introduce key concepts of
friction here, without going into the details of specific models. We instead verify the
results we obtain with real-world data, as it is explained below.

Friction is a term indicating the commonly experienced phenomenon of a resis-
tance force opposing to the reciprocal sliding of two surfaces (which do not have to
be solid: they can also be fluid). It makes car tyres brake on streets, machinery parts
fret and wear, and dissipates energy of any object which is not moving in vacuum.
A good understanding of friction and lubricating technologies is the key for energy
saving and fault reduction, two factors which drive the modern economy, where the
reduction of environmental impact is becoming more and more important. Because of
its importance, many publications are concerned with friction, from contact mechan-
ics books (c.f. [Wri06]), to experimental studies ([Lor12]), to dedicated books, such
as [Per10]. In this section, we will summarize basic notions of tribology, that is, the
science devoted to the study of friction. We start this section with some historical re-
marks, mostly taken from the above mentioned sources, and a more complete treatise



3 1.3 Brief introduction to friction

of the subject can be found in [Dow79]. We then illustrate the principal types of fric-
tion which are encountered in engineering, and list two of the principal mechanisms
which are at their origin. Finally, we will focus on relations which are known –yet not
always understood– between roughness and friction.

1.3.1 Historical remarks and basic concepts

The influence of roughness on friction production has been fascinating scientists since
the beginning of what we consider the scientific thinking, that is, since the age of
Greek philosophers. In fact, the first written pieces of evidence of the notion of fric-
tion, are by Aristotle in his Sense and Senibilia, c.f. the version annotated by G. R. T.
Ross ([Ari06]), and Heron of Alexandria in his tractates on mechanics, c.f. [IMK02].
Both Greek philosphers discussed the importance of roughness in the production of
forces opposing to the reciprocal sliding of interfaces. Even before them, the use of
lubricants to reduce friction was well known to ancient populations. It is believed
that Egyptians experienced friction and mastered lubrication while building the pyra-
mids, and transporting monumental statues, when they learned to pour the correct
amount of water on sand, to ease the sliding of wooden sleds transporting blocks, as
the famous painting of Figure 1.1 seems to suggest, c.f. [FWP+14]. Leonardo Da Vinci
studied friction experimentally and with an engineering appeal, which lead him to the
development of rolling elements to reduce frictional forces and wear. He was the first
to document the apparent independence of friction on nominal area of contact, and
the direct proportionality between load and friction. His results are similar to those
found by Charles-Augustin de Coulomb , who formulated a theory of friction, which is
condensed in the so-called Coulomb’s law (or Amonton-Coulomb law), which relates

Figure 1.1. Egyptian painting dated 1880 B.C., found in a cave at El-Bershed. The
man in front of the statue, seems to be pouring water on sand to ease the sliding of a
wooden sled. The painting was first described in [New95].



4 1.3 Brief introduction to friction

friction force Fµ and the load acting normally across the surfaces FN by

Fµ = µFN (1.1)

in which the coefficient of friction µ is usually determined experimentally, and depends
on the nature of the surfaces in contact. The law, which stood the test of time, is a well-
approximating simplification of the frictional behavior, and is the typical form in which
friction is introduced to high-school students.

Another concept which is an oversimplification, but also a good engineering ap-
proximation, is the distinction between two types of friction, namely static and kinetic,
c.f. [Bla95] and [Sei98]. The best way to understand the difference between static and
kinetic friction is by means of the following two definition:

SF If a body is at rest on another surface, to start its sliding motion, a tangential
force exceeding the static friction force has to be applied to it.

KF If a body is sliding across a surface, to maintain its velocity, a tangential force
in the direction of the motion, and equal in magnitude to the dynamic friction
force has to be applied.

Both types of friction are expressed by (1.1), the only difference being the value of the
friction coefficient. For most non-viscous materials, it is experimentally found that the
static friction coefficient is larger than the kinetic one, and it can be seen by Coulomb’s
law that kinetic friction is supposed to be independent of velocity of the moving body.
This holds generally true for low velocities and non viscous materials. Rubber-like
materials, instead, dissipating energy inside the body as heat, are often subject to
velocity-dependent kinetic friction, which exceeds static friction. A quite counterintu-
itive notion, is that for a wheel rolling on a surface, the friction producing the torque
needed to make the wheel roll, is of static (and not kinetic) type. This happens because
at the contact point between a circle (idealizing the wheel) and a plain (idealizing the
surface), the two bodies are actually still, and it is actually the plane which is rotating
around the contact point, and not the circle (whose center of mass, moves in a direc-
tion parallel to the plane). This obviously only holds in the ideal case, where contact
happens at a single point and there is no slip, that is, when the translational velocity
vT of a wheel of radius R and the angular velocity vA of the same wheel are related by

vT = RvA (1.2)

whereas, in the case of slip, we would have vT < RvA, and dynamic friction would
concur in generating the so-called rolling resistance, c.f. [Per10], [Wri06].

These macroscopic characterizations of friction are what has been used for most
engineering applications during the past centuries, but with the availability of new
technology and the development of new theories, many steps forward were done in
the microscopic description of the phenomenon, aiming to determine what its sources
are, and how they can be controlled to reduce its harmful consequences.
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1.3.2 The nature of friction

Friction stems from different factors. As a starting point, it is useful to classify them
according to the length scale at which they operate. Let us informally define the nano-
scale as the scale of geometric features which are in the order of some nanometers, the
micro-scale for those which are in the order of some micrometers, and the meso-scale,
for millimeters and centimeters. We distinguish between

• Sources of friction acting at the nano-scale.

• Sources of friction acting at the micro- and at the meso-scale.

To the first category belong molecular interactions between boundary layers of
atoms of the bodies. Electro-magnetic forces, molecular and atomic bindings, are
responsible for the adhesive surface forces which make microscopically flat objects
stick together. Such forces are usually measured with atomic force microscopes, as
explained in [Per10]. They can yield unexpectedly large friction forces, such in the
case of diamond surfaces reciprocally sliding in vacuum, where the boundary Carbon
atoms can bind, creating a surprisingly strong force opposed to sliding. The same does
not happen if Hydrogen can saturate the Carbon layer, as it happens in a normal set-
ting (not in vacuum). This is a classic example used in many articles, to show the
importance of adhesion in certain problems. The original source is [vdOF97], and an
follow-up article, relating the force to the sliding direction, is [GCCH07].

The category of forces generated at micro- and meso-scale, is what this work is con-
cerned with, and relates to surface roughness and interactions of substrate asperities.
Thus, the fundamental concept, is that the micro- and meso-textures of the surfaces
can interact, and the forces which are produced by the contact, when opposed to the
movement, are collectively perceived as a macroscopic friction force.

It is clear that both sources of friction can act at the same time, but there are cases
in which one of the two prevails, and this is defined in large part by the surface char-
acterization: for very rough surfaces, adhesive forces can be neglected, whereas for
microscopically flat surfaces, which are rough only at nano-scale, visco-elastic interac-
tions are irrelevant, c.f. [Per02].

The two sources of friction are studied, also with the intent of finding ways to
contrast them, and a classic way of doing so, is lubrication. Lubrication, that is, loosely
speaking, the act of putting a liquid substance between the two sliding surfaces, is
an enormous field, for which a summary, or a review, would be out of the scope of
this work. We point out that most of the lubricating effects act at nano-scale, and are
therefore subjects belonging to nano-tribology and tribo-chemistry, and we refer the
interested reader to [Per10] for a compact introduction to the field.
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1.3.3 Anomalous or not fully understood effects of roughness on friction

Due to its multi-sided nature, friction is still a not completely understood phenomenon.
Models exist, to predict frictional behavior of different materials, but laboratory or field
experiments are still indispensable to obtain correct results. Though, even in controlled
environments, some documented and repeatable results are anomalous and difficult to
explain according to classic models. We list two examples which are related to surface
roughness, and thus are in principle connected to the present work. One of the two
examples turns out to be difficult to prove with our approach, whereas for the other
one, the results we obtain are more easily comparable.

The first example of unexpected behavior is the so-called size-effect, c.f. [BLB81].
By performing friction tests on samples of different sizes, it is possible to observe size-
dependent friction coefficients. This contradicts the classic theory of friction, for which
the area of contact should play no role in building shear resistance. Nevertheless, an
interpretation is given in [CP05; CP08], where the phenomenon is put in relation with
the fractal nature of natural rough surfaces, and a fractal version of Coulomb’s law
is derived. This model seems to work independently of the scale at which friction is
measured, from sliding experiments performed with small rock samples, to geological
fault zones. A reasonable comparison of this model and the numerical results we obtain
employing surfaces which are rough on microscopic scale, would require a large effort
in computing friction at many different length scales. Though, the accuracy of the
numerical results we obtain is strongly affected by the spatial discretization we impose
on the elastic domain, and therefore, measures at much larger or much smaller scales
would either require an infeasible number of unknowns, or be insufficiently accurate.
A different type of approach, with different rough surfaces, could be a suitable solution.

The second phenomenon for which classic friction models are insufficient, is the
tyre-asphalt interactions on wet roads. Limited amount of water, such as those present
on a street during a normal day of rain, can lead to large loss of traction and braking
force, and are responsible for a large increase of car accidents. But the loss of friction
which would be predicted by classic models, for such limited presence of water (in
the order of one fourth of millimeter), is much smaller than what is measured, and
even hydrodynamics effects are not capable of capturing the friction decrease. An
interpretation is given in [PTAT05], and is concerned with the reduction of rubber
viscosity-related effects, which could happen if water was smoothing the road surfaces
only slightly, by filling microscopical pools, where rubber excitation would normally
take place. We tested this assumption with our numerical experiments in Section 5.4.2,
where we interpret our results according to data collected on real asphalt pavements
by different studies.
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1.4 Outline of the present work

We aim to quantify the influence of roughness parameters on microscopic contact evo-
lution and related quantities of interest such as real area of contact and static friction
force.

This work combines the constitutive elements presented in this brief introduction,
and it is organized as follows:

• In Chapter 2, fundamental notions of elasticity and contact problems are given.
Constitutive laws of different models of elasticity are derived, and particular
cases of contact problems are presented.

• In Chapter 3, we collect state-of-the-art knowledge about self-affine rough sur-
faces and rough contact theory. We begin with the characterization of a random
signal developed by Nayak and apply it to the description of self-affinity features
of rough surfaces. We then illustrate different models of rough contact mechan-
ics, briefly comparing their main results.

• In Chapter 4, we give an overview of the techniques and algorithms employed
in our numerical experiments. We describe how we efficiently generate surfaces,
how we solve the contact problem for a highly irregular obstacle, and we illus-
trate the basics of the Finite Element Method applied to the problem we are
concerned with.

• In Chapter 5, we list the outcomes of several experiments we performed with sets
of differently rough surfaces for two types of experiments: normal loading and
shear test. We compare our results to experimental data and to one analytical
theory about friction on wet roads, a setting which has enough points in common
with our assumptions to be approximated accurately by our numerical examples.
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Chapter 2

Fundamentals in elasticity
and contact theory

In this chapter we give an overview of the theory of elasticity and contact problems,
which are constitutive parts of the present work. Section 2.1 is an essential exposition
of the derivation of elastic material laws. Section 2.2 focuses on the abstract formu-
lation of a contact problem in elasticity. We conclude the chapter with the analysis of
the well known Hertzian contact, in Section 2.3.

Tensor, matrix, and vector quantities are denoted by bold symbols, e.g. v, and
their ith component by vi , whereas the Euclidean norm of a vector is denoted by the
name of the vector written in light font, e.g. ‖v‖ = v. We adopt Einstein’s notation:
the partial derivative with respect to x j is abbreviated with the subscript , j .

2.1 Elasticity models

In our numerical experiments, we will always employ an elastic domain (a cube),
which will be modeled as a continuous solid, that is, its internal structure (which
could be at molecular level, but also just at a length scale which is below the observed
one) is homogenized, and the material composing our macroscopic object is assumed
to respond uniformly in every point. The mathematical study of a body under this as-
sumption is called continuum solid mechanics, and it is devoted to the development of
models which describe the reaction of the matter to different stimuli, such as deforma-
tion, motion, variation of pressure, temperature, and so on. The models are developed
starting from classic mechanics principles, that is, conservation of mass, angular and
linear momentum, and energy, which are stated as integral equations on arbitrary sub-
parts of the body. The same principles can then be turned in point-wise equations.

In this section, we derive the basis of models of elasticity, that is, the law according
to which a body always reaches a configuration in which its stresses are minimized,
thus for example, in the absence of constraints and external forces, the body will reach

9
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its nominal initial (stress-free) configuration.
Many text books exist, which treat the subject of elasticity, e. g. [Ogd84], [TT60],

or [Cha99]. In this section, we will follow the approach of [Wri06].

2.1.1 Kinematics

We define a body B as an n-dimensional set of points which are in a region of the
Euclidean space En, with n = 1,2, 3. Such a body, in E3 is commonly defined as a
simple body, c.f. [MH94], and we only consider the three-dimensional case for the rest
of the section. Every point X of B is called a particle, and a configuration of B is a one-
to-one mapping χ : B 7−→ E3 which places the particles of B in E3. Thus, the particle X
can be written with respect to the coordinate system of E3 as x (the so-called material
coordinates), with the relationship x = χ(x). The placement, or deformation of the
body B is the application of the mapping χ to all its points, that is

χ(B) =
�

χ(X )|X ∈ B
	

. (2.1)

The motion of B is a time-dependent family of deformations χt : B → E3. Thus, the
position of the particle X at time t ∈ R is

x= χt(X ) = χ(X , t). (2.2)

We will refer to X = χ0(X ) as the reference configuration of B, where X is the position
of particle X in the current configuration χt(X ). Thus, using (2.2) we can write

x= χ(χ−1
0 (X), t) (2.3)

where the superscript −1 denotes function inversion. To simplify notation, we assume
that X denotes the coordinates of X in the reference configuration (c.f. [TN65]), there-
fore we can write

x= χ(X, t). (2.4)

Let the orthogonal Cartesian basis Ek be the basis of the reference configuration with
origin O. Then, for the position vector X, it holds

X= X kEk (2.5)

where X k are the Lagrangian coordinates of X with respect to Ek. We can now intro-
duce the displacement vector u(X) as the difference in position vectors of a point in
reference and current configurations, that is

u(X, t) = χ(X, t)−X. (2.6)

Figure 2.1 summarizes the quantities we have introduced so far.
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B

χ(B)

u(X, t)

x(X, t)
X

O

Figure 2.1. Configurations of body B

To describe the deformation process locally, we define the deformation gradient F
as the gradient of the motion with respect to material coordinates. Thus, F is a tensor
associating to every material line dX in B the line element dx in χ(B), that is:

F :=∇χ(X, t) =
∂ x

∂ X
=
∂ x i

∂ X k
ei ⊗ Ek (2.7)

where x i denotes the ith component of x, and ei denotes the basis of the spatial or
current configuration.

We define
J := detF (2.8)

where J is usually called the deformation determinant, or Jacobian determinant. The
Jacobian has to be strictly positive, in order to have local admissibility of the deforma-
tion. Given these constraints, the deformation gradient is invertible, and it holds

dX= F−1dx (2.9)

To allow measurement of distances in the deformed configuration, with respect to the
initial configuration B, we introduce the right Cauchy-Green strain tensor C, defined
as

C= FT F. (2.10)

Since in the initial configuration B, the strain is zero (and therefore F = 1 and C = 1,
where 1 denotes the identity tensor), we can introduce the Green-Lagrange strain
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tensor E, defined as

E=
1

2

�

FT F− 1
�

=
1

2
(C− 1) (2.11)

It is possible to show (c.f. [Wri06]) that

F=∇x=∇X+∇u= 1+∇u (2.12)

and therefore we can rewrite (2.11) as

E=
1

2

�

1+∇u+∇uT + (∇u)(∇u)T − 1
�

=
1

2

�

∇u+∇uT + (∇u)(∇u)T
�

(2.13)

and approximating this to leading order (disregarding second order terms), we obtain
the so-called linearized strain tensor ε(u) defined as

ε(u) =
1

2
(∇u+∇uT ), (2.14)

which is used in linear elasticity, under assumption of small deformations.

2.1.2 Balance laws

Balance of mass

The balance (or conservation) of the mass m of a body can be achieved by ensuring that
each subpart of the body B has the same mass in reference and current configurations.
Let B̃⊂ B represent an arbitrary subpart of B, we impose the following condition:

m=

∫

B̃
ρrdX=

∫

χ(B̃)
ρdX, ∀B̃⊂ B (2.15)

where ρr is the mass density in initial configuration, whereas ρ is the density in current
configuration. We can perform the change of variables of the RHS of (2.15), writing
the integral in the reference configuration and obtain

∫

B̃
ρrdX=

∫

B̃
ρJdX, ∀B̃⊂ B (2.16)

and therefore, since this condition hold for any arbitrary subpart of B, we can conclude
that ρr = Jρ.

Balance of momentum

The conservation of linear momentum with respect to a volume element in the current
configuration χ(B) can be written as

divσ+ρb̄= ρv̇ (2.17)
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where v denotes the velocity of a material point in the reference configuration, thus

v(X, t) =
∂ χ(X, t)
∂ t

= χ̇(X, t). (2.18)

In (2.17), ρb̄ represents the sum of volume forces, and ρv is the inertia term, which
can be neglected for static analysis. The Cauchy stress tensor σ relates the stress vector
t to n, which is the vector normal to the surface of χ(B) through

t= σT n (2.19)

which is a linear relation proved by the Cauchy theorem. We omit the derivation
of angular momentum, and we only report that in the absence of polar stresses, the
angular momentum balance is achieved for a symmetric Cauchy stress tensor, thus

σ = σT (2.20)

Equations (2.17) and (2.20) refer to the current configuration χ(B), but it is also
possible to write them with respect to the initial configuration, and this is extremely
advantageous for computational reasons, because it makes possible to carry computa-
tions always on the same configuration. To obtain such relations, we begin by writing
the equivalence of a force in reference and current configurations

∫

∂ χ(B)
σn da =

∫

∂B
σJF−T N dA=

∫

∂B
PN dA (2.21)

where N denotes the normal to the surface of B, and da and dA are the area elements
of χ(B) and B, respectively. The tensor P = JσF−T is called the first Piola-Kirchhoff
stress tensor.

With some algebraic computations, we can write the balance of momentum as

divP+ρr b̄= ρr v̇. (2.22)

Notice that using P to write the conservation of angular momentum, we find that P is
in general not symmetric. Therefore, the second Piola-Kirchhoff stress tensor is defined
as S= JF−1σF−T . The tensor S is symmetric, and it holds P= FS.

Hyperelastic response functions

We finish this section with some brief introductions of hyperelastic constitutive equa-
tions, which allow to model the response of materials, by relating the kinematics to
the continuity equations. We give, as an example, the definition of a Neo-Hookean
material. In our simulations, however, we will employ a simpler linear elastic material
law, that is, we will model the response after Hooke’s law and we show at the end of
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the section, how it is possible to reduce a hyperelastic constitutive equation to a linear
elastic law, by using the linearized strain tensor ε(u) introduced in (2.14).

A material is said to be hyperelastic if the first Piola-Kirchhoff stress tensor P can
be expressed as partial derivative of the strain tensor energy function W with respect
to F, that is

P(F) =
∂W (F,X)
∂ F

(2.23)

or, similarly for the second Piola-Kirchhoff stress tensor:

S(C) = 2
∂W (C,X)
∂ C

. (2.24)

For a homogeneous material, the neo-Hookean strain energy is defined as

W (C ) =
µ

2
[tr(C)− 3]−µ ln(J) +

λ

2
[ln(J)]2. (2.25)

where µ and λ are the Lamè constants, which have to be determined by experiments.
The formulation of (2.25) we employed is given in [BW08], while in [Wri06], a slightly
different, but equivalent, formulation is given. For this energy, we can derive first and
second Piola-Kirchhoff tensors as

P(F) =
∂W
∂ F
= µ

�

F− F−T
�

+λ [ln(J)]F−T (2.26)

S(C) = 2
∂W
∂ C
= µ

�

1−C−1
�

+λ [ln(J)]C−1. (2.27)

There exist many other material laws, such as the Fung model [Fun90] (which is
usually applied in biology), Mooney-Rivlin model [Moo40; Riv48] (a generalization
of the neo-Hookean model), or Blatz-Ko model [FO01], used for compressible rubber
materials (c.f. [Wan96]). As mentioned at the beginning of this section, of particular
interest for this work there is the linear elastic material law. The model is simple,
and the derivation can be found in [TAC+84]. We limit ourselves to reporting the
constitutive law, which can be found, e.g. in [Hau02], and reads

σ =
1

2µ

§

ε(u) +
ν

1− 2ν
tr[ε(u)]1

ª

(2.28)

where ε(u) has been defined in (2.14), µ denotes the shear modulus and ν denotes
the Poisson ratio. This law is also known as Hooke’s law, and sometimes it is expressed
as function of the Young’s modulus E and the bulk modulus K , univocally defined as

E = 2µ(1+ ν) (2.29)

K =
2µ(1+ ν)
3(1− 2ν)

. (2.30)
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We will describe the elastic body of our experiments via E and ν , to have correspon-
dence with the Hertzian theory of contact. The interpretation of E and ν , is the follow-
ing. In case of a uniaxial tension (or compression) loading by means of stress σ, for a
longitudinal strain ε, for the transverse strain εQ it holds

εQ =−νε, (2.31)

whereas the stress-strain relation (similar to the simple mono-dimensional Hooke’s law
for a spring) is

σ = Eε. (2.32)

Differently stated, E determines the stress (or pressure) needed to compress (or elon-
gate) the continuum, imposing a strain ε, whereas ν determines how much the contin-
uum will expand (or compress) in directions orthogonal to the stress axis, as a result
of the uniaxial deformation.

Linear elasticity can also be extended to include viscosity effects. Viscosity can be
seen as a variation of the stress tensor according to the time derivative of the strain,
thus, loosely speaking, to the speed of the deformation. Rubber, for example, can be
orders of magnitude stiffer, when deformations are “fast” compared to when they are
“slow”, c.f. [Fer61]. Mathematically, the linearization of this property can be modeled
by means of the constitutive equation

σ(t) =

∫ t

−∞
2µ(t −τ)(ε̇D(u,τ)dτ+

¨
∫ t

−∞
K(t −τ) [tr ε̇(u,τ)]dτ

«

1 (2.33)

where ε̇ and εD denote the derivative with respect to time and the deviator of the
linearized strain tensor, respectively, c.f. [Hau02]. The material functions µ(·) and K(·)
are called shear and bulk functions, respectively. Notice that using constant relaxation
functions µ(t) = µ0 and K(t) = K0, (2.33) becomes equivalent to the constitutive
equation of linear elasticity, (2.28). In the case of non-constant relaxation functions,
instead, the stress tensor depends on the so-called strain history, that is, the history of
all strains which have been applied to the material from τ = 0 to τ = t. The stress
tensor can therefore be computed as a sum of increments

∆τσ(t) = 2µ(t −τ)∆εD(u, t) + K(t −τ)[tr∆ε(u, t)]1. (2.34)

Since the stress tensor at time t depends on the strain history, materials which follow
this law are considered to have memory. We refer the interested reader to [Hau02] for
examples of stress tensor increment for different strain histories, and to [WC68] for
an adaptation of this model to a Finite Element setting, whereas [Fer61] and [RC07]
are two books on viscoelasticity of polymers and present many examples of viscoelastic
response functions.
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2.2 Contact problems in elasticity

In this section we give the abstract mathematical formulation of the contact problem
we are studying in our experiments.

We are interested in a contact problem in the frame of linear elasticity, with mixed
Dirichlet and Neumann boundary conditions. In our case, the Boundary Value Problem
(BVP) is defined as:

−∇ ·σ(u) = 0, in Ω (2.35)

u = d, on ΓD (2.36)
∂ u

∂ n
= 0, on ΓN (2.37)

∂ u

∂ n
= f, on ΓC . (2.38)

We define the elastic domain Ω = B = χ(B) and we model it as linear, homogeneous,
and isotropic with strainless reference configuration. Thus, the stress tensor σ(u) is
defined as in (2.28). The symbol ΓD denotes the subpart of the domain boundary
∂Ω on which Dirichlet boundary condition are imposed, and similarly, on ΓN ⊂ ∂Ω,
Neumann conditions are imposed. The subdomain ΓC ⊂ ∂Ω is the surface of potential
contact, that is, where ∂Ω can enter in contact with an obstacle O , the force f is
unknown and represents solely the contact forces arising from the elastic interactions
of the elastic bulk with the rigid obstacle.

We model our problem as a frictionless, adhesion-free, contact problem, therefore,
on ΓC we introduce the following constraints on σ:

σn ≤ 0 (2.39)

σ t = 0 (2.40)

where normal and tangential stress components are denoted respectively byσn andσ t .
Formally σn := σi jn jni and ((σ t)i)1≤i≤3 := (σi jn j−σnni)1≤i≤3. Thus, (2.39) enforces
negative normal stresses (the elastic surface can be pushed, but not pulled, since there
are no adhesive forces) and (2.40) expresses the absence of point-wise imposed fric-
tion, that is, the absence of stress in directions which are tangential to the contact
direction (therefore, points slide freely on the obstacle planar surfaces).

The non-penetration condition of the deformed elastic body domain Ω and the
obstacle O , can be formalized as the kinematic contact condition, (c.f. [Sch02])

int((x+ u)∩O ) = ;. (2.41)

In this form, an implementation of the non-penetration condition would be infea-
sible, therefore we have to introduce dO : R3→ R, the signed distance function to the
obstacle’s boundary

dO (x) = dist(x,O C)− dist(x,O ). (2.42)
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If we assume that the actual zone of contact is ΓC , the non-penetration condition
Eq. 2.41 is equivalent to

dO (x+ u)≥ 0, on ΓC (2.43)

and adding (2.43) to the described set of conditions completes the contact problem.
Notice that we define the distance function to be positive outside the obstacle and
negative inside.

2.2.1 Signorini problem

An efficient implementation of (2.43), is achieved by linearization. The linearized
contact condition

u · n≤ g(x+ u) (2.44)

makes use of the gap function g(·), that is the distance of a point on the contact
boundary to the obstacle. In other words, g is the maximum normal displacement that
a point is allowed to assume.

By adding to our set of constraints the complementarity condition

�

u · n− g(x+ u)
�

σn = 0 (2.45)

which states that there is no normal stress in the absence of contact, and setting the
problem in linear elasticity, we obtain an instance of the well known Signorini problem,
which has been the subject of many studies, such as [Kra09] and [KM11].

We will outline our iterative version (designed for geometrically complex obstacles)
of such problem in Section 4.2.

2.3 Hertzian contact

The nature of contact problems in elasticity is so complex, that analytical solutions
exist only for a small class of examples. Even more difficult are problems where the
two contact surfaces are non-conforming, that is, the contact does not happen between
two flat regions of the bodies. The possibly best known and most widespread theory
of contact is due to Hertz, who derived in [Her82] the analytical solution for the
problem of the contact between two curved bodies, as shown in Figure 2.2. The work,
which was initially conceived to study the interference caused by the deformations
of two lenses in contact, provides a very good prediction of the contact of two non-
conforming smooth solids, with a range of validity that we explain in Section 2.3.3. In
this section, we recapitulate the results of Hertz theory which are relevant to our study,
following the approach of [Joh85], and the interested reader is referred to the same
book for other examples, such as contacts of solids with non-smooth boundaries. Other
simplified exposures and examples of Hertzian contact can be found, e.g. in [LLP86]
and [Pad01]. The results summarized in this section will be of particular interest for
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Figure 2.2. Non-conforming smooth convex surfaces in contact.

the theory developed by Bush, Gibson, and Thomas in [BGT75], which we present in
Section 3.3.

2.3.1 Geometry of contact region

We are interested in the analysis of the contact developing around a single initial point.
Therefore, it is reasonable to identify the origin O of our coordinates system with the
first contact point, with the x y-plane being tangent to both surfaces in O, and the
z-axis lying along the common normal, pointed towards the inner part of the lower
body (see Figure 2.2). We approximate the two contact surfaces with two paraboloids,
with major axes aligned to the coordinate system. The equation of the first paraboloid
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boundary can be expressed through the equation

z1 =
1

2R′1
x2

1 +
1

2R′′1
y2

1 (2.46)

where R′1 and R′′1 are the principal radii of curvature of the surface at the origin, aligned
to the local coordinate system x1, y1, z1. Similarly we define R′2, R′′2 , and x2, y2, z2 for
the second paraboloid, and it holds:

z2 =−
�

1

2R′2
x2

2 +
1

2R′′2
y2

2

�

. (2.47)

In this description, therefore, convex profiles correspond to positive radii of curvature.
We define h as the separation between the two surfaces, therefore h= z1− z2, and we
transform the two local coordinate system to a global one (x , y, z) in which we can
write

h= Ax2+ B y2+ C x y. (2.48)

It is possible to find positive constants A and B such that C = 0 and

h= Ax2+ B y2. (2.49)

This is proved in detail in Appendix A. For the remainder of this chapter, we will simply
define

A=
1

R′
, B =

1

R′′
(2.50)

where R′ and R′′ are the principal relative radii of curvature of the system of interest.
The equivalent radius Re is defined as

Re =
p

R′R′′ =
1

2
p

AB
(2.51)

It can be observed that the contour lines of the separation h given by (2.49) are ellip-
soids, with semi-axes which are in the ratio

p
B/
p

A=
p

R′/R′′.

2.3.2 Point-load, contact area, and pressure distribution

Now we consider the case in which a vertical compressive force P is called a point-
load, because it is applied to the points T1 and T2 (which have to be sufficiently distant
from the contact surfaces, as explained in Section 2.3.3), as depicted in Figure 2.2.
The point-load pushes the two points T1 and T2 towards O, along the z-axis, and their
displacements are d1 and d2 respectively. The dashed lines in Figure 2.2 represent
how the surfaces would overlap if they did not undergo deformation. The two surface
points S1(x0, y0, z1) and S2(x0, y0, z2) are aligned vertically and their separation before
deformation is described by (2.49). The deformation causes the points S1 and S2
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to be displaced (with respect to T1 and T2) by uz1 and uz2 respectively. If after the
deformation the two surface points coincide, we can write

uz1+ uz2+ h= d1+ d2 (2.52)

and defining d = d1+ d2, one can substitute (2.49) in (2.52) and get

uz1+ uz2 = d − Ax2
0 − B y2

0 (2.53)

if the two surface points lie outside the contact area, then

uz1+ uz2 > d − Ax2
0 − B y2

0 (2.54)

We now aim at finding a relation between the point-load P, the parameters A and B,
the area of contact, and the pressure distribution internal to the elastic bodies. To do
so, since we know that contours of h are elliptic, we assume that the contact region
S is an ellipse as well, with semi-axes a and b. Hertz found that the only pressure
distribution imposing uniform normal displacement of an elliptic region of the surface
is given by

σ = σ0

�

1−
� x

a

�2
−
� y

b

�2�
1
2

. (2.55)

To do so, he compared this problem to the mathematically analogous case of an elec-
trically charged elliptical conductor, with charge intensity varying as the ordinate of a
semi-ellipsoid. In such case, the variation of the potential is parabolic, thus, by anal-
ogy, in (2.55), σ is a semi-paraboloid and the displacement imposed by such pressure
distribution on one body, under the assumption of linear elasticity, is

uz =
1− ν2

πE

�

L−M x2− N y2
�

(2.56)

and therefore, for both bodies

uz1+ uz2 =

�

1− ν2
1

πE1
+

1− ν2
2

πE2

�

�

L−M x2− N y2
�

(2.57)

and introducing the equivalent elastic modulus E∗ defined as

1

E∗
=

1− ν2
1

E1
+

1− ν2
2

E2
(2.58)

we can rewrite (2.57) as

uz1+ uz2 =
L−M x2− N y2

πE∗
(2.59)
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which is consistent with (2.53), if

L = dπE∗ =
πσ0ab

2

∫ ∞

0

dw
p

(a2+w)(b2+w)w
= πσ0 bK(e)

M = AπE∗ =
πσ0ab

2

∫ ∞

0

dw
p

(a2+w)3(b2+w)w
=
πσ0 b

e2a2 (K(e)− E(e)) (2.60)

N = BπE∗ =
πσ0ab

2

∫ ∞

0

dw
p

(a2+w)(b2+w)3w
=
πσ0 b

e2a2

�

a2

b2 E(e)−K(e)

�

where e =
p

1− b2/a2 is the eccentricity of the ellipse, with b < a, and K(e) and E(e)
are the complete elliptic integrals of the first and second type, respectively, defined as:

K(e) =

∫ π/2

0

1
p

1− e2 sin2 θ
dθ (2.61)

E(e) =

∫ π/2

0

p

1− e2 sin2 θ dθ . (2.62)

The integrals of (2.60) describe the pressure on the elliptical region, and are derived
from potential theory, but we omit the derivation and refer the interested reader to
[Her82] or to [Joh85] for a deeper analysis. Since the pressure distribution is ellip-
soidal and the total load is P, we can write

P =
2

3
σ0πab (2.63)

that is, P is equal to the volume of a semi-ellipsoid with semi-axes a, b, and σ0.
Finally, to find the ellipse of contact, we write

B

A
=

N

M
=

�a

b

�2
E(e)−K(e)

K(e)− E(e)
(2.64)

and
p

AB =
σ0 b

E∗a2e2

r

�

�a

b

�2
E(e)−K(e)

�

[K(e)− E(e)] (2.65)

notice that it also holds

B

A
=

R′

R′′
,

p
AB =

1

2

r

1

R′R′′
=

1

2Re
. (2.66)

To apply these results to the case of spherical surfaces (surfaces in which R′=R′′=R),
we introduce the equivalent radius c, defined as the geometric mean of the two semi-
axes of the contact ellipse, that is c =

p
ab, which can be computed as

c3 ≡
p

ab
3
=
�

3PRe

4E∗

�

4

πe2

�

b

a

�

3
2
r

�

�a

b

�2
E(e)−K(e)

�

[K(e)− E(e)] (2.67)
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and thus

c =
p

ab =
�

3PRe

4E∗

�

1
3

F1(e) (2.68)

where F1(e) is a correction factor dependent on the eccentricity e, and tends to 1
as e goes to 0. Thus F1(e) can be interpreted as a measure of the deviation of c
from the radius r of the contact circle resulting from the contact of spherical surfaces
under the same loading conditions and with the same Re (notice that in such contact,
1/Re = 1/R1+ 1/R2). Thus, in that case

r =
�

3PRe

4E∗

�

1
3

. (2.69)

The compression d is found from (2.60.1) and (2.63). It holds

d =
3P

2πabE∗
bK(e) =

�

9P2

16E∗2Re

�

1
3 2

π

r

b

a

K(e)
F1(e)

=

�

9P2

16E∗2Re

�

1
3

F2(e) (2.70)

where F2(e) is again a correction factor going to 1 as e goes to 0, and accounting for the
deviation of d from the compression in an equivalent setting, with spherical surfaces.
Finally, the maximum pressure is

σ0 =
3P

2πab
=

�

6PE∗2

π3R2
e

�

1
3

F1(e)
−2 (2.71)

and for the case of spherical surfaces, σ0 is obtained again setting F1(e) to 1.
There are other measures derived by Hertz, such as the internal tangential stress,

but they are not relevant for the rest of this work, and will therefore be omitted.
We reported the results for the area of contact between two paraboloids, but in the
literature it is possible to find different examples, such as contact of cylinders, concave
surfaces, and contact of a paraboloid and a plane, which will be briefly analyze in
Section 3.3.

2.3.3 A remark on validity

Hertz theory is valid only making some assumptions about the area of contact, which
must be small, the curvatures, which must be large, and friction, which must be absent.
These assumptions, more formally, are:

1 The surfaces are continuous and non conforming, that is, r � R.

2 The strains are small, so that linear elasticity can be used as a material law, that
is, r � R.
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3 Each solid can be considered as an elastic half-space, that is, a � R1,2, a � `,
where ` is the height of the elastic body (the depth of the contact surface with
respect to the opposing face of the body).

4 There is no friction acting on the surfaces, that is µ= 0.

These conditions limit the applicability of the theory to real cases. In particular, rubber-
like incompressible materials which undergo large deformation and large strain with
small pressure, are rarely fitted good by Hertz theory. Materials like rocks and metals
(which usually have a Poisson ratio ν < 0.3), instead, are approximated well, as shown
in [Joh85].
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Chapter 3

State-of-the-art models
in rough contact theory

In this chapter we summarize some of the most used and accepted theories of rough
contact, starting from the characterization of random rough surfaces defined by Nayak
in [Nay71] (Section 3.1), continuing with the contact theories developed by Bush,
Gibson, and thomas (Section 3.3), by Persson (Section 3.4), and concluding with the
recently published works by Yastrebov, Anciaux, and Molinari (3.5).

3.1 Nayak’s characterization of a random process

The characterization of rough (or corrugated) surfaces has always been of large inter-
est for scientists, because in the universe, at some length scale, every surface is rough.
Given the complexity and the random nature of such surfaces, a fully deterministic
approach to describe them is infeasible, and one has to rely on statistical measures,
which will hold on average, for sufficiently large sets of surface specimens. Among
the first works which explored the field, there are the ones by M. S. Longuet-Higgins
in [LH57a; LH57b; LH62], which are concerned with describing the oceans’ moving
surfaces, and are a two-dimensional extension of the one-dimensional analysis per-
formed by O. S. Rice in [Ric44; Ric45]. An extended description of random surfaces is
introduced by R. Nayak in [Nay71], and is the one used as a starting point by promi-
nent rough contact theories, such as those we will present in the remainder of this
chapter. One of the reasons of the success of Nayak’s work, a part from the clearness of
the argumentation, is the relation he finds between a surface and its one-dimensional
profiles, which is of high interest for engineers, since such profiles are easily obtained
in laboratories, measuring surfaces with common profilometers. In this section, we
will summarize Nayak’s theory and highlight those points which are most useful for
our work, focussing on isotropic square surfaces, in order to preserve consistency with
the numerical experiments described in Chapter 5. Similarly, Nayak’s notation will be

25



26 3.1 Nayak’s characterization of a random process

adapted to ours.

3.1.1 Characterization of an isotropic random process

We consider a rough surface as a height function h(x , y), assigning to each pair of
Cartesian coordinates (x , y) a value of h, that is, the elevation with respect to a
reference plane, which, for practical reasons, will be defined as the mean plane of
the surface. Thus the mean value of the function h(x , y) over the considered do-
main A = [0, L] × [0, L], denoted by h, will be 0 by construction, and this can be
written as

h= 〈h〉=
1

L2

∫∫ +L/2

−L/2

h(x , y)dx dy = 0 (3.1)

where by 〈· · · 〉 we indicate ensemble averaging. Assuming that the surface is homo-
geneous, i.e. its description is translationally invariant, its autocorrelation function is
defined as

R(x , y) = lim
L→∞

1

L2

∫∫ +L/2

−L/2

h(x1, y1)h(x1+ x , y1+ y) dx1 dy1. (3.2)

Notice that R(x , y) depends on the in-plane distance vector x = (x , y) and not on the
choice of the point (x1, y1), but if the surface is isotropic, then R only depends on
the 2-norm of x, denoted by ‖x‖.

The Fourier transform of R is possibly the most important way of characterizing sur-
faces, and it is called the Power Spectral Density (PSD) or simply the power spectrum
of the rough surface

C(q) = C(qx , qy) =
1

4π2

∫∫ +∞

−∞
R(x , y)exp

�

−i(xqx + yqy)
�

dx dy (3.3)

where qx and qy are the components of the wave-vector q. For isotropic surfaces, C(q)
only depends on the 2-norm of q, ‖q‖, which will also be denoted simply by q. We can
compute the variance of h as R(0, 0). In fact, according to (3.2), we obtain

R(0,0) = lim
L→∞

1

L2

∫∫ +L/2

−L/2

h(x1, y1)h(x1, y1) dx1 dy1

= lim
L→∞

1

L2

∫∫ +L/2

−L/2

h(x1, y1)
2 dx1 dy1 = h2

0 (3.4)

where h0 is the root mean square roughness of the surface. We can introduce the
inverse Fourier transform of C

R(x , y) =

∫∫ +∞

−∞
C(qx , qy)exp

�

i(xqx + yqy)
�

dqx dqy (3.5)
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to obtain the relation

h2
0 = R(0,0) =

∫∫ +∞

−∞
C(qx , qy) dqx dqy (3.6)

which indicates that C(q) is a spectral decomposition of h2
0 into waves with wave-

number q, associated wavelength

λ= 2π/‖q‖ (3.7)

and direction along

θ = arctan

�

qx

qy

�

. (3.8)

3.1.2 Moments of the Power Spectral Density (PSD)

As we have written above, the PSD is one of the most useful and compact ways to
characterize a random surface. Many distinctive features of the rough substrate, such
as height distribution, peak density, or mean slope, can be deduced from the moments
of the PSD. The moment mnx ny

of C , with nx , ny ∈ N, is defined as follows:

mnx ny
=

∫∫ +∞

−∞
C(qx , qy)q

nx
x q

ny
y dqx dqy . (3.9)

By comparison with (3.6) it can be seen that

m00 = h2
0. (3.10)

If a profile is taken in the plane θ = θ0, the height of the profile is a function only of
the distance r from the origin along the profile. For such profile, a definition of the
mono-dimensional PSD, denoted by Cθ0

(q), is given by Nayak, but for our purposes, it
makes sense only to look at its moments. The nth moment of a profile on the plane θ0,
denoted by mnθ0

, is defined as follows:

mnθ0
=

∫ +∞

−∞
Cθ0
(q′)(q′)n dq′ (3.11)

and the following relation exists between mnx ny
and mnθ0

:

mnθ0
= mn0 cosn θ0+ Cn

1 mn−1,1 cosn−1 θ0 sinθ0

+ Cn
2 mn−2,2 cosn−2 θ0 sin2 θ0+ · · ·+m0n sinn θ0 (3.12)

where Cn
m is the binomial coefficient defined as

Cn
m =

�

n

m

�

=
n!

m!(n−m)!
. (3.13)
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From (3.9) and (3.12), one can derive, for isotropic surfaces, the following identities
and relations:

m20 = m02 = m2 (3.14)

m11 = m13 = m31 = 0 (3.15)

m00 = m0 (3.16)

3m22 = m40 = m04 = m4 (3.17)

where the subscript θ0 of the one-dimensional moments is dropped because of surface
isotropy. Therefore, the only relevant moments for isotropic surfaces are m0, m2, and
m4, for which we can derive the following expressions:

m0 = 2π

∫ ∞

0

qC(q) dq (3.18)

m2 = π

∫ ∞

0

q3C(q) dq (3.19)

m4 =
3π

4

∫ ∞

0

q5C(q) dq. (3.20)

Now we assume that h(x , y) can be expressed through an infinite sum of sinusoidal
waves (as in a Fourier transformation), and this sum can be written as following:

h(x , y) =
∑

n
Bn cos(xqxn+ yqyn+φn) (3.21)

where φn is a random phase shift with uniform probability in the range [0;2π[. The
coefficients Bn can be found with the relation

C(q+ x , qy) dqx dqy =
1

2

∑

∆q

B2
n. (3.22)

where the summation is performed over all values of n such that (qxn, qyn) lies in the
area dqx dqy around (qx , qy). From (3.9) and (3.22) we see that

mnx ny
=

1

2

∑

n
qnx

xnq
ny
ynB2

n. (3.23)

3.1.3 Surface statistics

Since the quantities which will be derived in this and the following sections are of
statistical nature, it makes sense to analyze their probability densities. To do this, the
Central Limit Theorem serves as a basis. Let ξ1,ξ2, . . . ,ξn be n zero-mean quantities,
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each of which is the sum of a sufficiently large number of independent variables. Then,
under very general conditions, the joint distribution of ξi is Gaussian in n dimensions:

p(ξ1,ξ2, . . . ,ξn) =
1

p

(2π)n∆
exp
�

−
1

2
Mi jξiξ j

�

(3.24)

where Mi j is an element of the n×n-matrix M, given by

M= N−1 (3.25)

with

N=















ξ2
1 ξ1ξ2 · · · ξ1ξn

ξ2ξ1 ξ2
1 · · · ξ2ξn

...
...

. . .
...

ξnξ1 ξnξ2 · · · ξ2
n















, (3.26)

and
∆= Det (N). (3.27)

Each element of the matrix is defined as

ξiξ j =

∫

. . .

∫ ∫

E

ξi(φ1, . . . , φk)ξ j(φ1, . . . , φk) p(φ1) . . . p(φk)dφ1 . . . dφk (3.28)

where E is the probability space of the independent random variables φ j on which the
quantities ξi depend. As variables ξi we can choose

ξ1 = h ξ4 = ∂
2h/∂ x2

ξ2 = ∂ h/∂ x ξ5 = ∂
2h/∂ x∂ y (3.29)

ξ3 = ∂ h/∂ y ξ6 = ∂
2h/∂ y2

and it is easily observed that, for a sufficiently large amount of surface points, the
variables ξi satisfy the requirements of the central limit theorem. Therefore, their
joint probability density can be expressed through (3.24), and using (3.23), one can
derive N. We omit the full derivation of the entries of N, for which an example in given
in [Nay71], and we simply it as follows:

N=



















m00 0 0 −m20 −m11 −m02

0 m20 m11 0 0 0
0 m11 m02 0 0 0
−m20 0 0 m40 m31 m22

−m11 0 0 m31 m22 m13

−m02 0 0 m22 m13 m04



















(3.30)
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and for isotropic surfaces, using the relations given in (3.14), it becomes

N=





















m0 0 0 −m2 0 −m2

0 m2 0 0 0 0
0 0 m2 0 0 0
−m2 0 0 m4 0 m4

3
0 0 0 0 m4

3
0

−m2 0 0 m4

3
0 m4





















(3.31)

and the inverse is therefore

M= N−1 =







































2m4

∆1
0 0

3m2

2∆1
0

3m2

2∆1

0
1

m2
0 0 0 0

0 0
1

m2
0 0 0

3m2

2∆1
0 0

9∆2

4m4∆1
0 −

3∆3

4m4∆1

0 0 0 0
3

m4
0

3m2

2∆1
0 0 −

3∆3

4m4∆1
0

9∆2

4m4∆1







































(3.32)

with

∆1 = 2m0m4− 3m2
2, (3.33)

∆2 = m0m4−m2
2, (3.34)

∆3 = m0m4− 3m2
2. (3.35)

and (3.27) can be rewritten as

∆=
4

27

�

m2m4
�2 �2m0m4− 3m2

2

�

. (3.36)

Meanwhile, (3.24) becomes

p(ξ1,ξ2, . . . ,ξ6) =
1

(2π)3
p
∆
×

exp

(

−
1

2





2m4ξ
2
1

∆1
+

9∆2

�

ξ2
4+ ξ

2
6

�

4m4∆1
+

3ξ2
5

m4
+

3m2ξ1
�

ξ4+ ξ6
�

∆1
−

3∆3ξ4ξ6

2m4∆1
+
ξ2

2+ ξ
2
3

m2





)

.

(3.37)

This joint probability is the main tool used by Nayak to derive statistics about surface’s
heights, summits (local maxima), slopes, and curvatures, always in terms of probability
distributions.
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The probability density p(ξ1), that is, the distribution of h(x , y), can be derived
restricting (3.24) to ξ1, and obtaining

p(ξ1) =
1

p

2πDet
�

N11
�

exp
�

−
1

2
M11ξ

2
1

�

(3.38)

which can be written noting that

M11 =
1

N11
=
�

ξ2
1

�−1
=

1

h2
0

. (3.39)

Thus, we can rewrite p(ξ1) in the simple form

p(ξ1) =
1

p
2πh0

exp

�

−
1

2

�

ξ1

h0

�2�

(3.40)

and it is easily noted that the distribution is, by construction, a zero-mean Gaussian
with variance h2

0.
If we define the norm of the surface gradient as

|∇h|=
�

ξ2
2+ ξ

2
3

�
1
2 =

�

∂ h

∂ x

2

+
∂ h

∂ y

2�
1
2

(3.41)

then it is shown in [LH62] that its probability density reads

p(|∇h|) =
|∇h|
m2

exp

�

−
|∇h|2

2m2

�

(3.42)

and it is straightforward to find the mean value of |∇h|, denoted by |∇h|, as

|∇h|=
∫ ∞

0

|∇h| p(|∇h|) d|∇h|=
�πm2

2

�

1
2 (3.43)

Nayak stresses the fact that the mean gradient (i.e. the mean value of the norm of the
surface gradient) is different from the mean slope measured along a profile line (the
intersection of the rough surface with a vertical plane), which for isotropic surfaces
is independent of the profile orientation, and therefore, for directions aligned to the
axes, it reads

∂ h

∂ x
= ξ2 = ξ3 =

∂ h

∂ y
=
�

2m2

π

�

1
2

(3.44)

and this value is a factor 2/π smaller than the mean gradient found in (3.43). Notice
that, from (3.24) it can be seen that

p(ξ1,ξ2) = p(ξ1)p(ξ2) (3.45)
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and
p(ξ1,ξ3) = p(ξ1)p(ξ3) (3.46)

which means that slope and height are statistically independent.
The last distribution we shall report in this summary is that of summit heights. A

summit is a local maximum of the corrugated surface, thus, for us, it will represent a
possible initial point of contact. To represent a local maximum, the point (x , y) must
fulfill the following conditions:

∂ h

∂ x
=
∂ h

∂ y
= 0, (3.47)

∂ 2h

∂ x2 < 0, (3.48)

∂ 2h

∂ y2 < 0, (3.49)

∂ 2h

∂ x2

∂ 2h

∂ y2 −
�

∂ 2h

∂ x y

�2

≥ 0 (3.50)

which can be rewritten according to (3.29) as follows:

ξ2 = ξ3 = 0, (3.51)

ξ4 < 0, (3.52)

ξ6 < 0, (3.53)

ξ4ξ6− ξ2
5 ≥ 0 (3.54)

If we look in the infinitesimal area dA= d xd y , the probability that the variables ξi at
(x , y) lie in the range (ξ1,ξ1 + dξi) is p(ξ1, . . . ,ξ6) dξ1 · · · dξ6. The increments dξ2

and dξ3 that take place in an area dA are given by

dξ2 dξ3 = J

�

ξ2 ξ3

x y

�

dA (3.55)

where the Jacobian, denoted by J(·), has the value

J

�

ξ2 ξ3

x y

�

=

























∂ ξ2

∂ x

∂ ξ2

∂ y
∂ ξ3

∂ x

∂ ξ3

∂ y

























=













ξ4 ξ5

ξ5 ξ6













= ξ4ξ6− ξ2
5 (3.56)

Therefore a point (x , y) will be a summit of height between ξ1 and ξ1 + dξ if ξ2

satisfy (3.51) and (3.55), and ξi with i = 4, 5,6 take on arbitrary values fulfilling
(3.52), (3.53), and (3.54). The probability of the existence of such a point in the area
dA is

Psum(ξ1)dA dξ1 = dξ1

∫ ∫ ∫

V

p(ξ1, 0, 0,ξ4,ξ5,ξ6) dξ2 dξ3 dξ4 dξ5 dξ6, (3.57)
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where Psum is the probability distribution for summits of height ξ1, and the domain of
integration V is defined by (3.52), (3.53), and (3.54). We can rewrite (3.57) using
(3.55) and (3.56), substituting for p(ξ1, . . . ,ξ6) from (3.37), obtaining

Psum(ξ1) =
exp
�

−m4ξ
2
1/∆1

�

(2π)3
p
∆

∫ ∫ ∫

V

�

�ξ4ξ6− ξ2
5

�

�exp (Ξ) dξ4 dξ5 dξ6 (3.58)

with

Ξ =−
1

2

�

9∆2(ξ2
4+ ξ

2
6)

4m4∆1
+

3ξ2
5

m4
+

3m2ξ1(ξ4+ ξ6)
∆1

−
3∆3ξ4ξ6

2m4∆1

�

. (3.59)

Introducing the new variables

t1 =
�

3

m4

�

1
2 1

2
(ξ4+ ξ6),

t2 =
�

3

m4

�

1
2
ξ5, (3.60)

t3 =
�

3

m4

�

1
2 1

2
(ξ4− ξ6)

and normalizing ξ1 as follows:

ξ∗ =
ξ1
p

m0
=
ξ1

h0
(3.61)

one can write Psum(ξ∗) as

Psum(ξ
∗) =

m4

m2

p

C1(α)

3(2π)3
exp(−C1ξ

∗2)×

×
∫ ∫ ∫ ′

V

�

�t2
1 − t2

2 − t2
3

�

�exp
�

−
1

2

�

C1 t2
1 + t2

2 + t2
3 + C2 t1ξ

∗
�

�

dt1 dt2 dt3,

(3.62)

with

α =
m0m4

m2
2

(3.63)

C1 =
α

2α− 3
(3.64)

C2 = C1

r

12

α
(3.65)
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and the domain of integration V ′ defined as follows

t1 < 0

t2
2 + t2

3 ≤ t2
1.

One can define Dsum as the density of summits per unit of area, and it can be computed
as

∫ ∞

−∞
Psum(ξ

∗) dξ∗. (3.66)

Notice that, since the scaling of ξ1 performed to obtain ξ∗ only affects heights, it does
not influence Dsum, which is independent of ξ1. The integrals of (3.62) and (3.66) can
be evaluated analytically obtaining the following closed form for Dsum:

1

6π
p

3

m4

m2
(3.67)

Using Psum(ξ∗) and Dsum, we can define the probability density for summit heights,
denoted by psum(ξ∗), defined as

psum(ξ
∗) =

Psum(ξ∗)
Dsum

(3.68)

which can be written as

psum(ξ
∗) =

p
3

2π
(Π1+Π2+Π3) (3.69)

where

Π1 = exp
�

−C1ξ
∗2
�

�

3(2α− 3)
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�

1
2
ξ∗, (3.70)

Π2 =
3
p

2π

2α
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�
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2
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�

�

1+ erf (β)
�

(ξ∗2− 1), (3.71)

Π3 =
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2π
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�
1
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¨
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��«

�
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(3.72)

with

β =
�

3

2(2α− 3)

�
1
2

ξ∗ (3.73)

γ=
�

α

2(α− 1)(2α− 3)

�
1
2

ξ∗, (3.74)

where erf (·) denotes the error function, defined as

erf (x) =
2
p
π

∫ x

0

e−t2
dt. (3.75)
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Figure 3.1. Summit distribution for different values of α, with limit cases α→ 1.5
and α→∞. Top: Probability density of summit heights psum(ξ∗). Bottom: Cumlative
density of summit heights qsum(ξ∗).

A remarkable property of psum(ξ∗) is its dependence on one only parameter, namely α.
This parameter is an indicator of the breadth of the PSD: it is larger for broader spectra,
and smaller for narrower ones. Longuet-Higgins has shown in [LH57a] that for any
random surface, α ≥ 3/2, whereas for infinitely broad spectra, α tends to infinity. In
Figure 3.1 distributions of summit heights are plotted for different values of α, includ-
ing the limits α→ 1.5 and α→∞ for which the limits of psum(ξ∗) can be evaluated,
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obtaining the two following results:

lim
α→1.5

p(ξ∗) =











2
p

3
p

2π
exp
�

−1
2
ξ∗
��

ξ∗2− 1+ exp
�

−ξ∗2
��

, ξ∗ ≥ 0

0, ξ∗ < 0
(3.76)

and

lim
α→∞

p(ξ∗) =
1
p

2π
exp
�

−
1

2
ξ∗2
�

(3.77)

It is easy to see that in the case α→∞, psum(ξ∗) follows a perfect normal distri-
bution. In the case α→ 1.5, instead, psum(ξ∗) is not Gaussian anymore and is biased
towards high summits.

The importance of this result is twofold. First, with a single parameter, namely α,
the summits of a surface can be characterized, and this parameter, for real isotropic
surfaces, can be computed using a surface profile (whereas for anisotropic surfaces,
three non parallel profiles are sufficient). Second, for computer generated surfaces,
where a desired PSD is imposed (see Section 4.1), the predicted distribution of psum

can be checked, as a measure of quality of the generating algorithm. Moreover, we will
see in Section 3.5 that α has a strong influence on the variance of the results which are
obtained in rough contact simulations.

It is possible to compute the cumulative density of summits qsum(ξ∗), defined as

qsum(ξ
∗) =

∫ ξ∗

−∞
psum(ξ

′) dξ′. (3.78)

The value of qsum represent the fraction of the total summits for which h/h0 ≤ ξ∗. In
Figure 3.1 we show qsum(ξ∗) for the same values of α used for psum(ξ∗).

We omit other results derived by Nayak, because they are not relevant for our
study. The interested reader is referred to [Nay71] for estimates on mean curvature
distribution and techniques to derive α from measured surface profiles.

3.2 Realistic self-affine rough surfaces

As mentioned in Section 1.1, roughness is a natural concept, which anyone is aware of
and it is perceived as the local deviation of the surface heights from flatness, c.f. [Per01b].
In other words, the more the points on a surface are distant from the mean plane, the
rougher we perceive the surface. But this single measure, which is well represented by
the root mean square roughness h0, defined in 3.1, is not sufficient to mathematically
describe roughness. The easiest way to understand the failure of such single measure,
is to think of one surface with a known h0, and the same surface, shrunk with respect
to x and y directions, but kept constant in z direction: the resulting surface will be
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perceived as rougher (for example after a tactile or visual inspection), but h0 will ac-
tually be the same, as it is only a measure of the standard deviation of h(x) from its
mean value, thus, it is only measured with respect to z.

In this section we collect the basic knowledge about the mathematical description
of real surfaces at micro-scale, their fractal nature, and the experimental evidence
supporting it. The quantity on which we focus is the PSD, which was introduced in
Section 3.1, since it is a commonly accepted way to represent rough surfaces in a
statistical sense.

3.2.1 Self-affinity and randomness of real surfaces

The best known scientist who strongly claimed that natural structures are fractals, is
surely Benoît Mandelbrot, who introduced the concepts of self-similarity and fractional
dimension in [Man67], and, later, the term fractal itself. As it is now well known, a
fractal is a mathematical or geometrical entity showing self-repeated patterns at every
scale, and since a full derivation of their mathematical description would be out of the
scope of this work, we refer the interested reader to, for example, [Man83], [BL80],
or [BS95]. The only quantity of interest for our exposure is the fractal dimension D f ,
for which a good definition is given in [RC07]. Let us assume there exists a geometric
fractal with an area (or a length, or a volume) a, and the minimal circle (or sphere)
circumscribing it has radius r. If we now analyze a subpart of the fractal which can be
circumscribed by a smaller circle, with radius Cr r, and this subpart has area Caa, then
the fractal dimension is defined as

D f =
log Ca

log Cr
. (3.79)

This applies to any n-dimensional fractal, and it is straightforward to understand that
larger D f correspond to higher increase of complexity when observing the fractal at a
smaller length scale. Fractals are relevant to this work because rough surfaces are, up
to a certain degree, self-affine fractals, c.f. [BS95]. For surfaces obtained by fracture
(like rocks) or road surfaces, the fractal dimension D f ≈ 2.2, c.f. [Sil96], [Bou97],
and [Kru97]. Thus, loosely speaking, when observing a rough surface at different
length scales (or different zoom levels), the structures remain topologically the same
and show the same complexity. However, real surfaces are not perfect fractals, and
the reason for this is found in the discrete nature of matter: it is quite straightforward
to imagine that structures stop repeating themselves, at least at atomic scale. Actu-
ally, as argued in [PAT+04], the fractal properties cease to exist at larger length scales
than the molecular one, the micro-scale being a good approximation of such limit for
surfaces with rms roughness h0 > 1 µm. Besides, self-affine rough surfaces are con-
sidered realizations of a random process, c.f. [HPMR04] and [PAT+04], for example.
Thus, every surface is classified according to the parameters of the random process
generating it, and to statistical quantities which are considered to hold on average
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for a sufficiently large set of specimens. In other words, it is assumed that statistical
properties of rough surfaces which are realizations of the same random process, for a
sufficiently large set of surface specimens, tend to an asymptotic mean value. How fast
this limit is approached has been the subject of the investigations of [YAM12], where
these quantities are analyzed not only in terms of mean values, but also of variance. In
the next section, we shall define the quantities which are commonly used to describe
roughness, and their relation to the associated PSD.

3.2.2 Shape of the PSD

The proof of the fractal nature of rough surfaces, has been found experimentally, an-
alyzing their PSD C(q), because self-affinity has a direct influence on its shape. As
pointed out in Section 3.1, C(q) is proportional to the Fourier transform of the random
surface, c.f. (3.21). If we now assume that surfaces are not continuous, but discrete
(again, at least at molecular level), we can reason about the coefficients of the Discrete
Fourier Transform (DFT) of such self-affine fractals. Since the coefficients of the DFT
are the amplitudes of the waves composing the analyzed discrete signal, it is intuitive
to think that geometric structures which are repeating themselves at different length
scales imply wave amplitudes which appear scaled by a constant factor at different
wave-lengths. Given the logarithmic nature of D f shown in (3.79), one can deduce
that a similar relationship holds for the DFT coefficients, and for the values of C(q)
too. Thus, the PSD of a self-affine surface should follow a power law of the form

C(q)∼ q−K (3.80)

with K>0 depending on D f .
We omit the derivation of K , which can be found in [BS95], and we simply report

the result. To this end, let us introduce the Hurst exponent H, also called roughness
exponent, defined as

H = 3− D f . (3.81)

Using H, for the power spectrum of a perfect self-affine surface it holds

C(q)∼ q−2(H+1). (3.82)

Many analyses, e.g. [KP95], [CCI99], and [DAB12], confirm that the PSD of common
rough surfaces (like rock or metal surfaces) indeed follow such a power law, at least in
the observed domain, that is, in the considered q-space. Since we are concerned with
DFT, the length L of the analyzed signal (thus, the length of the rough surface spec-
imen) defines the lower bound of the observable wave-vectors domain. The smallest
possible wave-number will be denoted by qL , to emphasize its connection with L, and
its value is

qL =
2π

L
. (3.83)



39 3.2 Realistic self-affine rough surfaces

Thus, one must ensure that the size of the specimen is large enough to be able to
capture all low frequency waves of the surface. Low frequency waves are important
to describe those components of the surface which are large in space: for example,
for asphalt-like surfaces, one must ensure that the wave-vectors with smallest spatial
frequency can capture objects of the size of the biggest visible rocks, which usually,
have diameter no larger than 1.5 cm, thus L should be at least 3 cm, c.f. [PAT+04].
On the other side, the upper bound of the wave-vectors space is denoted by q1, and
is usually referred to as short-distance cut-off wave number. The connection with the
DFT is again determinant: q1 depends on the sampling frequency of the signal. Let
us assume that the distance between two sampled neighboring points (along x- or y-
direction) is δ, then we know that the largest wave number that the DFT can capture
is

q1 =
2π

δ
. (3.84)

Thus, q1 is strictly connected to the spatial resolution of the measuring instrument,
which should be of the same order of the diameter of the smallest rough detail of the
analyzed surface. For road surfaces, for example, it is argued in [PAT+04] that the
radius of the smallest dust particles is in the order of 100 µm. Now that we have
defined the boundaries of the q domain, we must mention that the power law is not
valid everywhere in the interval [qL , q1]. There exists a third quantity of interest,
namely the long-distance roll-off wave vector q0, with qL < q0< q1. The PSD between

q_L q_0 q_1

k=C(q_0)

log q [1/m]

lo
g

C
(q

)
[m

4
]

k( q
q0

)−2(H+1)

Figure 3.2. Power Spectral Density of a quasi self-affine surface, plotted in full log-
arithmic scale. In the region between qL and q0, C(q) is constant, whereas in the
region between q0 and q1, it follows an exponential decay.
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qL and q0 is typically experimentally found to be constant (or only slightly decreasing,
but we will consider it constant). The region between qL and q0 is often referred to
as the (saturation) plateau of the PSD, and the value C(q0) will be denoted by k. For
values of q larger than q0, C(q) decays exponentially until q1, as in (3.82).

The above description of the PSD leads to the following function:

C(q) =















k, if qL ≤ q < q0,

k
�

q

q0

�−2(H+1)

, if q0 ≤ q < q1

0, else

(3.85)

and its plot is shown in Figure 3.2. Given the relationship between C(q) and the
coefficients of the DFT of a given surface, the estimation of the parameters k, H and q0

is straightforward and in next section, we present the algorithm proposed in [PAT+04],
which we implemented to study the surfaces we generate in silico.

3.2.3 Experimental determination of C(q)

Let us assume we study a surface h(x), extending over the domain [0, L]2. The func-
tion h(x) is known only point-wise, and we assume that the values we know correspond
to the nodes of a square lattice, a grid with uniform spacing δ. Let us further assume
we know the coefficients of the DFT of h(x), which can be easily computed by means
of a Fast Fourier Transform (FFT), for which efficient parallel implementations are
known, c.f. [PA04]. Let B(q) denote the coefficient of the DFT of h(x) associated to the
wave-vector q= (qx , qy), then we can write its Fourier series as (see also (3.21))

h(x , y) =
∑

q

B(q)exp
¦

i
�

qx x + qy y +φ(q)
�©

(3.86)

where i denotes the imaginary unit and φ(q) is the phase shift angle ∈ [0, 2π[. Notice
that the the components of all possible q-vectors, correspond to the coordinates of
another square lattice (in q-space), with lattice constant qL (the smallest possible wave-
number). Thus, all wave-vectors can be written as

q= (mqL , nqL) (3.87)

where 0 ≤ m, n ≤ L/δ, and m, n ∈ N, and B(0) = 0. Wave-vectors which have wave-
number with |q| = q > (L/δ)qL = q1 are expected to have an associated Fourier
coefficient of zero, as they do not belong to the considered wave-vectors domain. Now
we recall (3.2) and (3.3) from Section 3.1

R(x , y) = lim
L→∞

1

L2

∫∫ +L/2

−L/2

h(x1, y1)h(x1+ x , y1+ y)dx1dy1

C(qx , qy) =
1

4π2

∫∫ +∞

−∞
R(x , y)exp

�

−i(xqx + yqy)
�

dxdy;
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Substituting the expression for R(x , y) into the second equation, and then introducing
(3.86) we obtain, after some calculations

C(q) =
1

4π2

∫∫

dxdy
∑

q′
|B(q)|2 exp

n

i
h

�

qx − q′x
�

x +
�

qy − q′y
�

y
io

(3.88)

and in the limit, for infinite (or sufficiently) many q-vectors, we obtain

C(q) =
L2

4π2 |B(q)|
2 . (3.89)

Now that we obtained the 2D coefficients of C(q), this can be reduced to the mono-
dimensional function of (3.85) if the surface is isotropic. In such case, we assume that
the power spectrum depends only on the wave number q, thus

C(q) = C(‖q‖) = C(q) (3.90)

and we have to radially average the values of C(q). By radial averaging, it is meant
that we collect the coefficients associated to any wave vector, and we group them by
their norm according to which wave number q′ = mqL , with m ∈ {1,2, . . . , L/a} which
is the closest. Formally, we will create L/a sets Sq, and distribute the coefficients such
that:

C(q) ∈ Sq′⇔ q′ = argmin
q

�

�

�

Æ

q2
x + q2

y − q
�

�

� . (3.91)

Once that every coefficient is assigned to a set, for each value of q′ we take the mean
value of the coefficients in Sq′ as the value of C(q′). Formally:

C(q′) =
1

Nq′

∑

q
C(q), with q ∈ Sq′ (3.92)

where Nq′ denotes cardinality of Sq′ .
The resulting PSD could have to be smoothed, since its coefficients could suffer

from noise of the measurements, or from the particular geometry of the specimen,
c.f. [PAT+04].

Given the computed values of C(q), it is easy to compute k, as the value of the
PSD in the saturation plateau and h0 with (3.10). The short-distance roll-off vector q0

can be estimated by finding where C(q) starts to decrease exponentially, and the Hurst
exponent can then be computed by fitting the power law of (3.85).

Notice that the inverse of the procedure we have just illustrated, can be used to
generate rough surfaces starting from a desired PSD, and it is how we generate the
datasets employed in our experiments, as we describe in Section 4.1.
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3.2.4 Limitations of the description

The description of surfaces with a mono-dimensional power spectral density assumes
isotropy of the surfaces themselves. When isotropy does not hold, it is possible to use
the two-dimensional PSD, or to compare the PSD’s of surface profiles obtained along
different directions, as it is described in [Nay71].

Moreover, we remark that the PSD description also implies homogeneity of the
surface, that is, the same statistical properties hold in every point x. This is true for
many natural surfaces, as for others it is not. Classic examples are wooden surfaces,
where depending on the point, that is, on the different cells of the wood which are
exposed on the surface, the roughness can be highly different, c.f. [KHB06], [Lei11].
If wooden surfaces have characteristics varying according to x, polishing a surface ob-
tained by fracture will result in a PSD which depends on the height, because polishing
will flatten high areas and summits, while leaving lower areas rougher, as indicated
in [PAT+04]. In all this cases, different PSD can be adopted to describe the differ-
ent roughness typologies, but when deriving contact theories from the power spectral
information, the inhomogeneity of C(q) is almost never taken into account.

3.3 Bush-Gibson-Thomas’s model

A few years after the paper by Nayak summarized in Section 3.1, Bush, Gibson, and
Thomas published [BGT75], in which they make use of a part of Nayak’s work to de-
rive an asperity-based model of rough contact. By “asperity-based” it is meant that the
model starts by assuming that surface summits lie on top of geometrically defined as-
perities. In the case of the Bush-Gibson-Thomas (BGT) model, asperities are modeled
as paraboloids, which is a slightly more accurate approximation than the one used
by Nayak in [Nay73], which was based on spherical asperities (and because of the
similarity with the work presented in this section, we omit it in this work). From the
statistical assumptions made on the distribution of summits, points of initial contact
are identified, and the contact area is predicted according to the acting load, as in a
Hertzian contact (see Section 2.3). The result they found is a linear correlation be-
tween load and area of contact, which is still used nowadays as a mean of comparison
for more recent theories, such as those proposed in [Per01b] and [YAM14], which we
summarize in Section 3.4 and Section 3.5.

3.3.1 Asperity cap modeling

In the BGT model, the cap of each asperity is approximated with a paraboloid having
the same height and curvature as the summit of the asperity (for which the distribu-
tions can be found in [Nay71]). The paraboloids can be described in implicit form
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as:

z0− z

z0− h′
=

�

(x − x0) cosβ + (y − y0)
�2

a2 +

�

(x − x0) sinβ − (y − y0) cosβ
�2

b2 (3.93)

where (x0, y0, z0) are the coordinates of the summit, with z0 = h(x0, y0), β is the angle
formed by one of its principal radii of curvature and the x-axis, and a, b, and h′ are
constants. An example paraboloid is shown in Figure 3.3. From (3.93), one can derive
expressions for the second space derivatives of the paraboloids, obtaining

ξ4 =
∂ 2h

∂ x2 =−2(z0− h′)

�

cos2 β

a2 +
sin2 β

b2

�

ξ5 =
∂ 2h

∂ x∂ y
=−2(z0− h′)

�

1

a2 −
1

b2

�

sinβ cosβ (3.94)

ξ6 =
∂ 2h

∂ y2 =−2(z0− h′)

�

sin2 β

a2 +
cos2 β

b2

�

A plane parallel to Ox y with elevation z = h′ intersects the paraboloid in an elliptic
boundary which possesses the implicit form

�

(x − x0) cosβ + (y − y0)
�2

a2 +

�

(x − x0) sinβ − (y − y0) cosβ
�2

b2 = 1 (3.95)

and the ellipses has semi-axes of length a and b, forming angles of β and β+π/2 with
the x-axis respectively, as shown in Figure 3.3.

3.3.2 Probability distribution of asperity density

We can define ph(a, b, z0), that is, the probability distribution of the density (per unit
area) of summits with height z0 intersecting the horizontal plane with z = h′ in an
ellipse with semi-axes a and b:

ph(a, b, z0) =

∫

π
2

0

p
�

z1, 0, 0,ξ4,ξ5,ξ6
�

J

�

ξ2 ξ3

x y

�

J

�

ξ4 ξ5 ξ6

a b β

�

dβ (3.96)
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Figure 3.3. Left: A paraboloid with (x0, y0, z0) = (5, 4,6), a2 = 20, b2 = 10, h′ = 1
and a horizontal plane with z = h′. Right: The intersection of the paraboloid with the
horizontal plane, with the two semi-axes shown in red.

where the Jacobians can be computed using (3.94), obtaining
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and therefore, using (3.24), (3.97), and (3.98), it is possible to analytically solve
(3.96), obtaining

ph(a, b, z0) =
12
p

3
�

z0− h′
�5 �
�b2− a2

�

�

m2
2m4
p

2α− 3π2a7 b7
exp

�

−
αz2

0

(2α− 3)m0
+

6(z0− h′)2

m4a2 b2

3z0(z0− h′)
m2(2α− 3)

�

1

a2 +
1

b2

�

−
9(α− 1)(z0− h′)2

2m4(2α− 3)

�

1

a2 +
1

b2

�2
�

(3.99)
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3.3.3 Bearing area

Now we consider the geometric problem of finding the area of intersection between the
rough surface and a plane at an elevation h′ (remembering that the mean plane of the
rough surface is Ox y). This is equivalent to finding the area fraction A(h′) occupied by
all points of the surface with h(x , y) ≥ h′, called cross-sectional area, or bearing area.
Thus, starting from qsum(ξ), which is the non-normalized version of (3.78), one can
derive

A(h′) = 1− qsum(h
′) =

∫ ∞

h′
p(ξ1) dξ1 =

1

2
erfc





h′
p

2m0



 (3.100)

where erfc (x) denotes the complementary error function defined as

erfc (x) =
2
p
π

∫ ∞

x

exp(−t2) dt (3.101)

It is also possible to compute Ae(h′), that is the bearing area fraction for the surface
where summits are substituted with paraboloids, which is also called the approximated
bearing area. Knowing that the area of an ellipse is πab, and making use of (3.99),
one obtains

Ae(h
′) =

∫ ∞

h′

∫ ∞

0

∫ ∞

0

πabph(a, b, z0)db da dz0 (3.102)

which can be rewritten as

Ae(h
′) =

α
p

3

2π
p

2α− 3

∫ ∞

0

∫ ∞

0

u exp

�

−
(t + u)2

2
−

3α

2(2α− 3)

�

v−
t + u
p
α

�2
�

f (v)dv du

(3.103)
where we introduced

f (v) = v−

r

2

3
exp

�

−
3v2

2

�

Erfi

 r

3

2
v

!

(3.104)

with non-dimensional separation t defined as

t =
h′

h0
(3.105)

and imaginary error function (or generalized error function) Erfi(x)

Erfi(x) =

∫ x

0

exp
�

t2
�

dt. (3.106)

It is not possible to derive an analytic solution of (3.103), but for some special cases,
a good approximation can be found. For t → 0, the approximation is obtained by
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expanding the first three terms of the Taylor series of Ae(t) around t = 0, which results
in

Ae(t) =
1

6π





p

3(2α− 3) + 2π− 2 tan−1

 r

2α− 3

3

!

−
p

α− 1 tanh−1

 
r

2α− 3

3(α− 1)

!



−
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2

Ç

α

3π
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1+

r

3

2α
−

1
p

6

�

loge

�p
3+
p

2
�

+
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2
log2

�p
α+ 1
p
α− 1

��

)

+
αt2

12π
p
α− 1







p

3(α− 1)(2α− 3)

α
− loge





p

3(α− 1) +
p

2α− 3
p
α











+
(2α− 3)t3

36(α− 1)
p

2π
+O(t4). (3.107)

For large t, instead, first one must notice that the integrand of (3.103) is exponentially
small apart from the neighborhood of

v =
t + u
p
α
� 1 (3.108)

whereas for large values of v, for (3.104) it holds

f (v) = v+O
�

v−1
�

(3.109)

therefore, working to leading order of approximation, (3.103) can be rewritten as

Ae(t) =
α

2π

r

3

2α− 3

∫ ∞

0

u exp

�

−
(t + u)2

2

�
∫ ∞

−∞
v exp

�

−3α

2(2α− 3)

�

v−
t + u
p
α

�2
�

dv du

=
1
p

2π

∫ ∞

0

u(t + u)exp

�

−
(t + u)2

2

�

du (3.110)

Finally we can apply Laplace’s method ([Lap86]) and obtain

1
p

2π

∫ ∞

0

exp

�

−
(t + u)2

2

�

du=
1
p

2πt
exp

�

−
t2

2

�

(3.111)

It is also possible to work to second order of approximation, in that case:

Ae(t) =

exp

�

−
t2

2

�

p
2πt

�

1−
α+ 3

3t2 +O
�

t−4
�

�

(3.112)
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3.3.4 Precision of bearing area fraction Ae(t)

The accuracy of the approximation can be studied by means of the ratio Ae(t)/A(t),
which tends to 1, for large values of t, where (3.100) becomes

A(t) =

exp

�

−
t2

2

�

p
2πt

�

1− t−2+O(t−4)
�

. (3.113)

For large values of α, the model loses validity. In fact, for large values of t, one can
estimate the relative error as

Ae(t)− A(t)
A(t)

=−
α

3t2 (3.114)

which means that for a desired tolerance ε we can find the following bound for t:

t >

Ç

α

3ε
(3.115)

Notice that for typical realistic surfaces, α > 50, which means that, to reach 10%
tolerance, the model would be valid only for the critical separation t > 12, which
basically means no contact at all, as one can simply compute via A(t). Moreover, for
for the range α� 1 and t �

p
α, the area predicted by the model is larger than A(t).

Despite the lack of accuracy at small separations, the model gives an estimate of
the area of contact and of its dependence on a load acting normally to push a flat and a
corrugated half-space together. To derive this dependency, Hertzian theory (presented
in Section 2.3) is used, in combination with the results obtained for Ae(t).

3.3.5 Real area of contact through Hertzian contact

Assuming that every asperity acts independently, each contact with the plane can be
modeled as a special case of Hertzian contact.

To be consistent with the notation of Section 2.3, we define the relative radii of
curvature of the paraboloid-plane system, and since for the plane it holds

R′plane = R′′plane =∞ (3.116)

and the equivalent radii of curvature of this system can easily be derived as done in
Appendix A. For the sake of clarity, the semi-axes of the contact ellipse will be denoted
by ac and bc , keeping a and b as the horizontal semi-axes of the paraboloid replacing
the asperity.

We recall (2.53), which is concerned with the displacements of two points in con-
tact S1 and S2 belonging to the first (in our case the paraboloid) and second body
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(the plane), respectively, and aligned with respect to x and y . For them, knowing the
relative radii of curvature, one can write

uz1+ uz2 = d −
x2

2R′
+

y2

2R′′
(3.117)

where uz1 and uz2 are the displacements of S1 and S2, and d is the sum of the displace-
ments of the points on which we apply the load (denoted by T1 and T2 in Section 2.3).

Following the theory of Hertzian contact, one gets to the system of equations
(2.60), which, for the following derivation, has to be written in polar coordinates
and becomes

d =
πσ0ac bc

E∗

∫

π
2

0

dψ
p

a2
c sin2ψ+ b2

c cos2ψ

1

2R′
=
πσ0ac bc

E∗

∫

π
2

0

sin2ψ dψ
p

a2
c sin2ψ+ b2

c cos2ψ
3 (3.118)

1

2R′′
=
πσ0ac bc

E∗

∫

π
2

0

cos2ψ dψ
p

a2
c sin2ψ+ b2

c cos2ψ
3 .

We recall from (2.63) that the total load P is

P =
2

3
πσ0ac bc .

whereas for the paraboloid of (3.95), it holds:

d = z1− h, a2 = 2µR′, b2 = 2µR′′ (3.119)

and therefore, using these results with (3.118), we can write

a2

b2 =

∫

π
2

0

cos2ψ dψ
p

a2
c sin2ψ+ b2

c cos2ψ
3

∫

π
2

0

sin2ψ dψ
p

a2
c sin2ψ+ b2

c cos2ψ
3

(3.120)

and
a2

c

a2 +
b2

c

b2 = 1. (3.121)

Now we follow the path used to derive the bearing area fraction Ae(t) and we
write, for the total contact area fraction Ac(t)

Ac(t) =

∫ ∞

h

∫ ∞

0

∫ ∞

0

πac bc ph(a, b, z1)da db dz1 (3.122)
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that is, the contribution of every contact ellipse is summed to obtain the fraction of
the total area which is in contact. Since (3.120) and (3.121) are in implicit form,
some changes of variables and some algebraic calculations are needed to obtain an
expression of Ac(t) in a form which is suitable for calculations.We omit such derivation
for the sake of compactness, and we report the final result, which is:

Ac(t) = (3.123)

12α

π

r

3

2α− 3
exp

�

−
αt2

2α− 3

�
∫

π
2

0

∫

π
2

ψ=0

∫

π
4

Θ=0

cosφ sin3φ f (θ ,Θ) g(φ,Θ)
dθ

dΘ
dφ

(3.124)

where

tanθ =
a

b
, tanΘ=

ac

ab
, tanγ=

r

m0

m4

r

1

a2 +
1

b2 (3.125)

and f (θ ,Θ), g(γ,θ) are functions which aid in maintaining the expression compact,
and can be found in the original paper [BGT75].

Given the already mentioned limitations of the applicability of the theory, which
only holds for large separation values, it makes sense to derive an approximation of
(3.123) for t � 1. This can be done again with Laplace’s method, obtaining

Ac(t) =
exp
�

1

2
t2
�

2
p

2πt
=

1

2
A(t) (3.126)

the mean pressure P(t), instead, can be computed using equations (2.63) and (3.118.1),
obtaining

P(t) =
2

3
πE∗

∫ ∞

h

∫ ∞

0

∫ ∞

0

(z1− h)ph(a, b, z1)
∫

π
2

0

dψ
p

a2
c sin2ψ+ b2

c cos2ψ

da db dz1 (3.127)

and, again, the asymptotic limit for large values of t is

P(t) =
E∗

2π

Ç

m2

2

 

exp
�

−1
2

t2
�

t

!

. (3.128)

Therefore, using equations (3.126) and (3.128) we can write

lim
t→∞

P(t)
Ac(t)

=
Ç

m2

π
E∗ (3.129)

which can be rewritten as

lim
t→∞

Ac(t) =

r

π

m2

P(t)
E∗

(3.130)
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and implies that, for large separations, the area of contact grows linearly with the
applied pressure. The coefficient of proportionality, which will be rewritten in a slightly
different form when we will compare it to the result obtained by Persson, derived in
the next section, is known as the asymptotic limit of the BGT theory, and is commonly
used by many works as an upper bound for the expected coefficient of proportionality
between load and area of contact. In the remainder of [BGT75], the authors critically
compare their results to those of [GW66] and [Mik74], but since those results are
derived starting from different assumptions (some of which –like plastic limit– are
inapplicable to our experiments), we will not report this comparisons.

Model limitations and extensions

One of the weakest points of the BGT model is the assumptions that asperities act inde-
pendently. This can hold for large separations, but when the pressure is large enough,
the contact islands of different asperities will merge, and the total area of contact will
be smaller than the sum of the separate contributions. This phenomenon is often re-
ferred to as “long distance interaction” of asperities. We will see in Section 5.2.3 that
neglecting long distance interactions result in an overestimation of the coefficient of
proportionality between load and area of contact for rough surfaces with small values
of root mean square roughness. In [PC10] the BGT model is enhanced to include long
distance interactions, thus overcoming its biggest weakness: the coefficient of propor-
tionality is found not to be constant and valid for all surfaces, but strongly influenced
by roughness parameters, and from the bandwidth parameter α.

3.4 Persson’s theory

In the early 2000s, the rough contact theory proposed by B. N. J. Persson in a series of
papers gained remarkable visibility. The theory is based on reasonings about the stress
distribution over the area of contact at different magnification levels, which we will
define formally below, but can be interpreted, loosely speaking, as the “level of zoom”
at which the contact is observed. In fact, the basis of the model is the fractal nature
of the surfaces, and its consequences on how the asperities of the rough surfaces inter-
act: when observed at low magnification levels, the contact will appear full, whereas
decreasing the length scale at which the system is observed, smaller wave length de-
tails are taken into account, and the contact area becomes fragmented and smaller.
Persson often focuses on polymers interacting with road-like surfaces, for which he
derived a complete kinetic friction theory, including effects of rubber viscoelasticity
[Per01b; PAT+04] and temperature increase due to polymer excitation [Per06]. But
the theory applies equally to different problems, such as the computation of leak rates
of rubber seals, [PY08; LP09b; LP10]. Since in this work we only consider static fric-
tion, a complete summary of Persson theory for friction is out of scope, and we will
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limit ourselves to the derivation of the relationships of load and real area of contact
for rough surfaces, c.f. [Per01a; PBC02; Per07; Per08; LP09a], and to a brief exposure
of the formula for kinetic friction, c.f. [Per01b]. Since we will employ a fully elastic,
adhesion-free model, we will also neglect the parts of his theory regarding plasticity
and adhesive forces [MP11; Per02].

3.4.1 Constitutive elements

We consider a rough and rigid half-space in contact with an elastic, flat, square surface,
having Young’s modulus E and Poisson ratio ν . Thanks to (2.58), we know that, for
small deformations, the system is equivalent to one in which both surfaces are elastic,
and have Young’s moduli E1, E2, and Poisson’s ratios ν1, ν2. Moreover, the system
is also equivalent to one with two rough surfaces, if the interfacial gap (the distance
between the two undeformed surfaces) is the same, c.f. [Joh85]. Now we observe
the system at the length scale λ = L/ζ, where ζ is the magnification level, and L is
the lateral size of the elastic surface, which is therefore also the lateral size of the
nominal contact area A0 (also known as the apparent area of contact). We define
the wave vector qL = 2π/L, and write the short-distance cut-off wave vector q1 as
q1 = qLζ. Thus, formally the magnification level is the ratio of the largest to the
smallest considered wave vector. Notice that in the remainder of this section, we will
always assume that the PSD C(q) is 0 everywhere except in

�

qL ,ζqL
�

.

3.4.2 Probability distributions P(σ,ζ) and P(ζ)

The fundamental idea of the model is that any contact which is apparently full and
smooth, when analyzed at higher magnification levels, appears fragmented. This hap-
pens because surfaces are rough at many different length scales, and every increase

Figure 3.4. Contact depicted at different magnification levels, image from [Per01b].
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of the magnification level reveals gaps in areas which are thought to be in complete
contact, as it is depicted in Figure 3.4. We now define the stress probability density
P(σ,ζ), that is, the function assigning, for a given length scale L/ζ, a probability den-
sity to each value of stress intensity σ. Thus, the probability that the stress intensity at
a random contact point x is between σ and σ+∆σ can be expressed by

∫ σ+∆σ

σ

P(σ′,ζ)dσ′. (3.131)

We start by assuming that the contact is complete on all length scales, therefore

P(σ,ζ) =



δ
�

σ−σ1(x)
��

. (3.132)

Where δ(σ − σ0) is the Dirac delta distribution in σ-space, centered at σ0, and the
notation 〈·〉 indicates the ensemble averaging, that is, the averaging over different
realizations of the height function h(x), which is a random process of the type studied
by Nayak (c.f. Section 3.1). Now we assume that increasing the magnification level by
∆ζ, and the stress becomes σ1+∆σ, therefore we write

P(σ,ζ+∆ζ) = 〈δ(σ−σ1−∆σ)〉

=

∫ ∞

0

dσ′〈δ(σ′−∆σ) δ(σ−σ1−σ′)〉

=

∫ ∞

0

dσ′〈δ(σ′−∆σ)〉P(σ−σ′,ζ) (3.133)

where in the last step, we exploited the statistical independence of the different regions
in ζ over which we average. The ensemble average of the Dirac delta function can be
replaced by its Fourier transform

〈δ(σ′−∆σ)〉=
1

2π

∫ ∞

−∞
dw



exp
�

iw(σ′−∆σ)
��

(3.134)

and under the assumption that ∆σ is small, we can expand the integrand to second
order in ∆σ, obtaining

〈δ(σ′−∆σ)〉=
1

2π

∫ ∞

−∞
dw exp

�

iwσ′
�

 

1−w2

¬

∆σ2
¶

2

!

=
1

2π

∫ ∞

−∞
dw exp

�

iwσ′
�

−
∫ ∞

−∞
dw exp(−iwσ′)w2

¬

∆σ2
¶

2

= δ
�

σ′
�

+

¬

∆σ2
¶

2

∂ 2δ
�

σ′
�

∂ σ′2
. (3.135)
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Now we substitute (3.135) in (3.133) and we expand the LHS, under the assumption
of small ∆ζ. We write

P (σ,ζ)+
∂ P(σ,ζ)
∂ ζ

∆ζ=

∫

dσ′P
�

σ−σ′,ζ
�



δ
�

σ′
�

+

¬

∆σ2
¶

2

∂ 2δ
�

σ′
�

∂ σ′2



 (3.136)

and by solving the integral applying integration by parts twice, it is obtained

∂ P(σ,ζ)
∂ ζ

=

¬

∆σ2
¶

2∆ζ
∂ 2P(σ,ζ)
∂ σ2 . (3.137)

If we now assume that at the lowest magnification level (ζ = 1) the stress over the
nominal area of contact is constant and equal to σ0, we can write

P(σ, 1) = P0(σ) = δ(σ−σ0) (3.138)

We can rewrite (3.137) as

∂ P(σ,ζ)
∂ ζ

= f (ζ)
∂ 2P(σ,ζ)
∂ σ2 . (3.139)

with

f (ζ) =

¬

∆σ2
¶

2∆ζ
(3.140)

and it can be observed that (3.139) has the form of a one dimensional diffusion Partial
Differential Equation (PDE), where density (or temperature) is replaced by P(σ,ζ),
the 1D space by the σ-space, the time by the magnification level ζ, and the diffusivity
constant is f (ζ). Thus, as in a normal diffusion, for larger values of time, the density
is more diffused over the space (and the integral is constant), in the same manner,
for larger magnification level, the stress distribution of (3.139) becomes broader with
respect to σ, as shown in Figure 3.5, where larger values of G correspond to larger
magnification levels (the function G(ζ) will be introduced below). The adhesion-free
condition can be expressed through the boundary condition

P(0,ζ) = 0 (3.141)

that means that no contact point can have zero stress, or stated differently, when stress
is zero, we observe detachment, and a rigorous proof of this can be found in [PBC02].
We also impose the obvious boundary condition

P(∞,ζ) = 0 (3.142)

which will be used to solve (3.139), once we will have found a more tractable form for
the diffusivity constant f (ζ).



54 3.4 Persson’s theory

We now multiply (3.139) by σ and integrate over σ, and, after some calculations
on the RHS, we obtain

∂

∂ ζ

∫ ∞

0

dσσP(σ,ζ) = 0 (3.143)

and thus, using the boundary condition (3.138),
∫ ∞

0

dσσP(σ,ζ) = σ0. (3.144)

If, instead, we integrate both sides of (3.139), we obtain

∂

∂ ζ

∫ ∞

0

dσP(σ,ζ) =− f (ζ)
∂ P(0,ζ′)
∂ σ

(3.145)

hence
∫ ∞

0

dσP(σ,ζ) = 1−
∫ ζ

1

dζ′ f (ζ′)
∂ P(0,ζ′)
∂ σ

. (3.146)

We now want to derive an expression for P(ζ), which is a function returning the ratio
of the real area of contact at magnification level ζ to the nominal area of contact A0,
that is

P(ζ) =
A(ζ)
A0
=

A(ζ)
A(1)

. (3.147)

Let us start by defining 〈σ〉ζ as the average pressure over A(ζ) (or, stated differently,
over the apparent contact area on the length scale L/ζ). Since the total force acting
on the surface must remain constant at every magnification level, we can write

σ0A0 = 〈σ〉ζ P(ζ)A0 (3.148)

thus
P(ζ) =

σ0

〈σ〉ζ
. (3.149)

Now, we simply compute 〈σ〉ζ as

〈σ〉ζ =

∫ ∞

0

dσσP(σ,ζ)

∫ ∞

0

dσP(σ,ζ)

(3.150)

and using (3.149), we can write

P(ζ) =

σ0

∫ ∞

0

dσP(σ,ζ)

∫ ∞

0

dσσP(σ,ζ)

(3.151)
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which we can solve using (3.144) and (3.146), obtaining

P(ζ) = 1−
∫ ζ

1

dζ′ f (ζ′)
∂ P(0,ζ′)
∂ σ

(3.152)

In [Per01b], an expression for f (ζ) is derived. We omit the complete derivation and
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Figure 3.5. Stress distribution at different magnification levels, according to equa-
tion (3.157). For G(ζ) = 0, the probability distribution is a Dirac delta distribution
centered at σ0.

we report the two main results. First, a formula for the root mean square normal stress



σz
�

is found to be1




σz
�

=
π

2
E∗2
∫ ∞

−∞
dq q3C(q) (3.153)

where C(q) denotes as usual the PSD of the rough surface. Since q = qL , and ∆ζ is
sufficiently small, we can write

f (ζ) =

¬

σ2
¶

2∆ζ
=

¬

σ2
¶

2∆q
qL =

π

4
E∗2qLq3C(q) (3.154)

1In the cited source, the derivation is done for the complex visco-elastic modulus, but here we use the
normal elastic modulus, for the sake of consistency.
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and for ease of notation we define the function g(ζ)

g(ζ) =
f (ζ)

σ2
0

=
π

4

E∗2

σ2
0

qLq3C(q) (3.155)

and can rewrite (3.139) as

∂ P(σ,ζ)
∂ ζ

= g(ζ)σ2
0

∂ 2P(σ,ζ)
∂ σ2 . (3.156)

The solution of this type of equation can be found in most text books on PDEs, e.g. [Sal08],
and it is shown in [Per01b] to be

P(σ,ζ) =
∞
∑

n=1

2

σY
sin
�

nπσ0

σY

�

sin
�

nπσ

σY

�

exp

�

−
�

nπσ0

σY

�2

G(ζ)

�

(3.157)

where σY denotes the yield stress. We show in Figure 3.5, for different values of G(ζ),
the shape of the resulting stress distribution. To generate the plot, we used n = 105,
σ0 = 1, and σY = 108. The value of the yield stress is chosen to be very large, in order
to simulate the response of a purely elastic material, which is the case which we will
consider in the remainder of this section.

Assuming that the flat surfaced body obeys a purely elastic material law (thus with
no plasticity, i.e. yield stress σY →∞), we can write

P(ζ) =

∫ ∞

0

dσP(σ,ζ) (3.158)

and employing the boundary conditions (3.141) and (3.142), one can solve (3.156),
obtaining

P(ζ) =
2

π

∫ ∞

0

dx
sin x

x
exp
�

−x2G(ζ)
�

(3.159)

where G(ζ) is an antiderivative of g(ζ), which can be written as

G(ζ) =
π

4

�

E∗

σ0

�2 ∫ ζqL

qL

dq q3C(q). (3.160)

Under the assumption of small loads, G(ζ)� 1, it can be noticed that only small values
of x will have considerable influence on (3.159), and for such values x ≈ sin x , thus

P(ζ)≈
2

π

∫ ∞

0

dx exp
�

−x2G(ζ)
�

=
1

p

πG(ζ)
(3.161)

and since G(ζ)∝σ0, we can say that the area of contact is proportional to the load, for
small loads. The general solution of the PDE is reported in [PAT+04] and is

P(ζ) = erf





1

2
p

G(ζ)



 . (3.162)
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3.4.3 Comparison with the BGT model

Persson derived his model following an approach which is completely different from
the one we reported in Section 3.3, and this leads to a generally different result. For
small loads, though, it was first noticed in [HPMR04] that the two theories predict
a very similar result. One can exploit the definition of m2 given in (3.19) to rewrite
(3.160) as

G(ζ) =
1

4

�

E∗

σ0

�2

m2 (3.163)

where we recall that we only consider the portion of the PSD bounded by qL and ζqL .
Thus we can rewrite (3.161) as

P(ζ) =
2
p
π

σ0

E∗
p

m2
(3.164)

and assuming that the real area of contact A is equal to A0P(ζmax), it can be written

A

A0
=

2
p
πm2

σ0

E∗
(3.165)

which we can compare with the final asymptotic result of the BGT model, c.f. (3.130),
rewritten according to the notation of this chapter as

A

A0
=

r

π

m2

σ0

E∗
. (3.166)

Thus, by comparing (3.165) to (3.166), it is clear that the area predicted by Persson is
smaller than the one predicted by the BGT model by a factor equal to

2p
πp
π
=

2

π
(3.167)

Noting that, for isotropic surfaces, the root mean square slope
Æ

¬

|∇h|2
¶

is defined in
[Nay73]

q

¬

|∇h|2
¶

=
p

2m2 (3.168)

in [HPMR04] a unified formula of the form

A

A0
= κ

σ0

E∗

q

¬

|∇h|2
¶

−1

(3.169)

is suggested, and κ assumes the value of
p

8/π for Persson’s model, and
p

2π for the
BGT model.
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3.4.4 Extension to kinetic friction computation for elastomers

One of the most known extensions of Persson’s theory of contact, is the computation
of kinetic friction coefficients for rubber-like materials (which are technically called
elastomers, a contraction of elastic polymers), sliding on hard rough substrates.

The key concept is that for highly viscous materials, the friction force mostly stems
from internal dissipation of contact energy. The short wave length asperities of the
rough surface, would excite rubber periodically at high frequencies, building up the
bulk modulus, that is, the viscous response of the material to variation of strain, which
was introduced in (2.33). The classic way of representing bulk (or loss) modulus, is
to add a complex part to Young’s modulus, obtaining the so-called complex modulus,
c.f. [Fer61], which depends on frequency of the stimulus.

Without going further into details, which can be found in [Per01b], we provide the
therein derived equation which relates friction to roughness

µk =
1

2

∫ ζqL

qL

dq3C(q)P(q)

∫ 2π

0

dθ cosθ Im

�

E∗(qv cosθ)
σ0

�

(3.170)

where Im(·) denotes the imaginary part of a complex number. The functions P(q) and
G(q) have to be re-written for the viscous case, but we omit their expressions here.

Thus, friction is believed to depend only (or mostly) on the loss modulus. A further
extension exists, which considers the contribution of temperature (and especially of
high temperature spots on the rubber surface), and is given in [Per06; Per14].

3.5 Yastrebov-Anciaux-Molinari’s theory

One of the most recent rough contact theories, is the contact evolution law derived by
V. Yastrebov, G. Anciaux, and J. F. Molinari. Their model, which we will call the YAM
model, pursues the goal of bridging the gap between asymptotic predictions for low
and high pressures and is driven mostly by observations of numerical results, obtained
using the Boundary Element Method, [YAM12], [YAM14]. In this section, we give
an overview of the model assumptions and the derivation of the relationship between
load and area of contact, omitting other interesting parts of their works, such as the
analysis of the influence of Nayak’s parameter α on the variance of the results, or the
characterization of the mesh-size related error.

3.5.1 Constitutive elements

In the YAM model, as in the model presented in Sections 3.3 and 3.4, surfaces are
considered to be realizations of a random process of the type studied by Longuet-
Higgins and Nayak, c.f. Section 3.1. Moreover, surfaces are considered to be self-affine,
c.f. Section 3.2, thus as in the previously presented models, the portion of the PSD
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which is considered plays a major role in the estimation of the real area of contact. In
[YAM12], the results of several simulations with different rough surfaces are studied,
initially with a particular focus on small areas of contact (in the order of 10% of the
nominal area), in order to prove or disprove linearity between contact area and load at
low pressure. By analyzing the derivative of the mean contact pressure with respect to
the external pressure, the authors find a power law to be a reasonable fit for the data,
and therefore started the derivation of the contact evolution law from the assumption
that

∂ σ

∂ σ0
= β

�

A0

A

�µ

, with β > 0, 0< µ < 1. (3.171)

3.5.2 Derivation of the contact law

Starting from (3.171), we can introduce the total force F acting on the two surfaces,
and express the mean and the nominal pressure through

σ =
F

A
, σ0 =

F

A0
. (3.172)

We can substitute these expressions in the LHS of (3.171) and then divide the equation
by A0 to get

A− F
∂ A

∂ F
A2 =

β

A0

�

A0

A

�µ

(3.173)

which can be multiplied by A2 and rearranged to obtain

A− F
∂ A
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Separation of variables leads to
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where Ai and Fi can be taken to be the infinitesimal area of contact and force, respec-
tively. Here the YAM model assumes linearity between load and area of contact, and,
moreover, it assumes that the unified formula (3.169) holds (that is, it is assumed that
the only quantities defining the proportionality factor of the relationship are rms slope
and equivalent elastic modulus). Thus

Ai

A0
= κ

Fi

A0E∗

q

¬

|∇h|2
¶

−1

(3.176)

which can be substituted in (3.175) to obtain
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since µ− 1< 0, and
κFi

A0E∗

q
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|∇h|2
¶

−1

� 1 (3.178)

because Fi is infinitesimal, then β in the denominator is negligible, and taking expo-
nential of both sides of (3.177) we obtain
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and reintroducing the nominal pressure σ0 = F/A, we obtain the final result

A
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(3.179)

3.5.3 Comparison with BGT and Persson’s models

The YAM model manages elegantly to extend to medium pressures the asymptotic
results of the BGT and Persson’s models for low pressures. The inheritance of the
linear relation of area and load for low pressures is still visible, since (3.179) in the
limit for σ0 → 0 tends to (3.169). The parameters κ, µ and β have been fitted to
the numerical results obtained by means of a FFT-based Boundary Element Method,
but the authors stress the difficulties which are encountered in the determination of
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such parameters, especially because of the problematic estimation of the contact area
for very low pressures. As comparison with the pre-existing models, the computed
value of κ found in [YAM12] is ≈ 1.145

p
2π, whereas in [YAM14], it is said that

κ § 1.055
p

2π. In both cases, thus, an initial slope larger than the one predicted by
the other models was found. In the same work, it is analyzed the influence that the
bandwidth parameter α of (3.63) has on the fitted parameters, and on the variance of
the numerical results. As a strategy for the identification of κ, β , and µ, the authors
suggest to fit the data to the derivative of (3.179) with respect to σ0, first finding
the minimum value of κ ensuring that all fitted curves are convex, then performing a
non-linear least square to fit β and µ.

3.6 Theories of rough contact, concluding remarks

The overview given in this section, about two prominent and one recent and promising
approach to rough contact mechanics, serves the purpose of showing the main accepted
ideas about the effects of roughness. All analytical models have limited applicability
or reliability, depending on the underlying assumptions. Nevertheless, the asymptotic
predictions are good approximations and useful indicators of general trends, which are
widely known and agreed on.

As it is common in the scientific community, the debate about validity of assump-
tions and of models developed on top of them is quite heated. We point out some works
which compared the reliability of the different theories, such as [ZBBP04], which per-
forms a full study of many different contact models, and [PDM14], in which important
remarks about the impossibility to reach the fractal limit for experimental settings, and
interesting relations of H and σ∗ to possibly applicable correction factors are derived.

In this work, we omitted the derivation of the well-known Greenwood-Williamson
(GW) model, c.f. [GW66], which is considered the first complete treatise of rough
contact, but approximates asperities as spherical bumps of equal radius, with their
summits following a Gaussian distribution. The model predicts an asymptotic evolution
of the area of contact much more similar to the one predicted by Hertz, thus A∝ σ2/3

0 ,
and it is therefore in contrast with the other more sophisticated models we presented,
and with the results of our numerical experiments, see Chapter 5. The interested
reader is referred to the original source for an interesting and historically meaningful
reading. The model was also extended in [Car09], in which a correction factor is
derived, and linear proportionality between load and area of contact is found, whereas
in [CDD06], a discrete version of the original GW model is proposed, to improve its
accuracy.
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Chapter 4

Implementation

In this section, we give a description of the most important numerical techniques we
implemented to simulate rough contact. The only pre-existing tool was the contact
solver, which is implemented in the software toolbox UG/Obslib++, c.f. [BBJ+97;
GK08]. We implemented a parallel self-affine rough surfaces generator, which is de-
scribed in Section 4.1, we extended the contact solver to be used in an iterative fashion,
updating the gap function and computing incremental approximations of the correct
solution, for which the algorithm is listed in Section 4.2, and we also developed an
optimal complexity algorithm to compute the gap function, working for any obstacle
which can be represented as a height function, of which we outline the principal com-
ponents in Section 4.2.3. In Section 4.3, we introduce the Finite Element Method, and
briefly describe the solution method, and the discretization we used in our numerical
simulations. Finally, in Section 4.3.4, we analyze the software performance in terms of
computing time and its scaling with respect to number of processors.

4.1 Rough surfaces generation

We implemented our surface generator following the algorithm described in [PAT+04].
As already mentioned, the algorithm follows the steps of the surface analysis we pre-
sented in Section 3.2.3, thus, we will just outline the procedure, remarking some de-
tails which are missing in the original reference. We first illustrate the algorithm and
then judge the quality of some resulting surfaces, by comparing their PSD to the pre-
scribed one, and comparing their summit heights distribution to the one predicted by
Nayak, see Section 3.1. We point out that different algorithms exist, to generate self-
affine surfaces, such as the one based on modified RMD patches described in [PB11],
but we preferred to implement our own software, to have better control on its behavior.
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4.1.1 Algorithm

The goal of the algorithm is to create a realistic isotropic self-affine rough surface of
size L×L, represented by a triangulated square lattice with constant δO . On the surface
we want to prescribe values for root mean square roughness h0, long-distance roll-off
wave number q0, and Hurst exponent H. We assume that the smallest wave number
qL and the short-distance cut-off wave number q1 are defined as:

qL =
2π

L
, q1 =

2π

δO
. (4.1)

We recall that for the height function h(x) representing the surface, it holds, from
(3.86), that

h(x , y) =
∑

q

B(q)exp
¦

i
�

qx x + qy y +φ(q)
�©

,

where the phase shift φ(q) is random and uniformly distributed over [0,2π[. Using
equation (3.89), we can write

B(q) =
2π

L

p

C(q) (4.2)

where we took advantage of surface isotropy (which translates in radial symmetry of
the PSD), to replace q by its Euclidean norm. Thus, to find the coefficients of the
Fourier transform of h(x), all we still need to find is an analytical description of C(q).
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Figure 4.1. Left: A synthetic surface generated for our experiments. It consists of
300×300 points, and the full power spectrum is used. All measures are in meters.
Right: Logarithmic plot of power spectrum used to generate the surface on the left.
In this case, the following parameters are prescribed: h0 = 710µm, H = 0.7, qL =
2π/0.03 1/m, q0 = 5qL, q1 = 2π/10−4 1/m.
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From Section 3.2, we know that the PSD C(q) of an isotropic rough surface must
have the form

C(q) =















k, if qL ≤ q < q0,

k
�

q

q0

�−2(H+1)

, if q0 ≤ q < q1

0, else

where q denotes the wave number, which corresponds to the Euclidean norm of the
wave vector q = (qx , qy). For ideal self-affine surfaces, it can be assumed that q0=qL ,
but we do not make this assumption, to keep the algorithm more generally applicable.
The first step is the definition of the constant k. In [Per01b], it is assumed to be

k =
H

π

�

h0

q0

�2

, (4.3)

but we found this to be inaccurate. More precisely, when we used such constant, the
surfaces we generated had different h0 than the one we initially imposed, since we
were dropping some of Persson’s assumptions. We show in Appendix B the derivation
of the correct factor, what approximations can hold for special cases, and what error
can be expected, when the wrong approximation is taken. We report here that to
obtain the correct value of h0 is, it must hold:

k =
1

π

¨�

1−
q2

L

q2
0

�

+
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H

�
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�

q0
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�2H
�«−1�

h0

q0

�2

. (4.4)

Now that we have the analytical description of C(q), we can derive the coefficients
of the Fourier transform of h(x), that is, B(q), using (4.2). Thus, we can generate
the surface by summing the sinusoidal waves of (3.86), shifting their arguments by
the random phase φ(q). The full discrete spectrum of the surface is composed of
wave vectors whose components are multiple of qL , therefore, if we represent graphi-
cally every wave vector in the discrete q-space, we obtain a square lattice, with lattice
constant qL , and since we want to impose that the smallest wave number is qL , and
the short-distance cut-off of the surface is q1, we select the nodes of the lattice for
which qL ≤ q ≤ q1, and we call the area they cover the feasible q-space. In Figure 4.2,
we represent feasible wave vectors (wave vectors belonging to the feasible q-space) as
red dots.

Since h(x) is real, it must hold φ(−q) = −φ(q) and B(−q) = B(q), and these
conditions actually make the computations easier, because we can simply sum the
contribution of half of the wave vectors, and then multiply this by 2, to obtain the
correct height function h(x). In Figure 4.2, we added a blue circle around every wave
vector which is used for a surface generation. Notice that wave vectors are selected so
that there exist no couple of vectors (q′,q′′) for which q′ =−q′′.
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Figure 4.2. The full discrete q-space in which we generate the wave vectors. The
lattice constant is qL, and the total amount of points is [2(L/a)+1]2. The red dots are
wave vectors for which qL ≤ ‖q‖ ≤ q1. Blue circles indicate the wave vectors actually
used for the computation, which are one half of all the feasible wave vectors.

Summing over all the selected feasible wave vectors, we obtain a self-affine rough
surface which has the desired PSD C(q), and, moreover, is fully periodic, because we
only used wave vectors for which L is a multiple of their wave length. As a remark,
we point out that instead of the summation, once that the coefficients B(q) and the
phase shifts φ(q) are defined, one can simply apply an Inverse Fast Fourier Transform
(c.f. [PA04]) to obtain the surface. We prefer the algorithm illustrated, as it is more
intuitive and allows for the custom parallelization we describe in next section.

4.1.2 Parallelization in frequency and time

For a realistic surface, the amount of wave vectors to be summed is O(N2), where
N = L/δO , and they have to be computed at N2 points, resulting in a total algorithmic
complexity of O(N4). For example, for one of our surfaces, where δO = 100 µm and
L = 3 cm, the feasible space is composed of roughly 70’000 wave vectors (of which we
use 35’000, as explained above), which have to be evaluated in 90’000 points x. The
computation time of a single surface, for a serial software, is roughly half an hour on
a normal desktop computer. Thus, to reduced computation time, we parallelized the
code which generates the surfaces. The parallelization is hybrid, employing both MPI
([GLHL+98]) and OpenMP ([DM98]).

We used MPI to subdivide the Cartesian space, that is, to every processor, equally
sized subdomains of the surface were given, whereas OpenMP was used to parallelize
the summation in frequency space: to every thread of a single processor, a portion
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of the q-space was assigned. Notice that the algorithm is massively parallel, since
both in spatial frequency and in space, the terms of the summations are completely
independent: this implies that no communication between threads nor processors has
to be executed during the computation. When all threads of a processor have finished
their computations, it is sufficient to sum all their contributions to obtain the correct
height function of the portion of the subdomain assigned to that processor. When all
the processors have finished, the subdomains of the surface are put together, and the
complete periodic surface is obtained.

The most common pitfall in this type of parallelization is represented by random
variables. In fact, to ensure all processors are using the same phase shifts φ(q),
their values (which are random and uniformly distributed by definition) must be pre-
computed and shared by all processors. Otherwise, if every processor computes its
own phase shifts, the waves will be different from one processor to another, and the
different portions of the surface will be inconsistent at the boundaries.

Given the almost complete absence of communication, the parallelization scales
almost optimally, and with two processors, each one running eight threads, the com-
putation time is reduced to two minutes, thus, a speedup factor of approximately 15×
was achieved.

4.1.3 Quality of the generated surfaces

We measure the quality of the generated surfaces in two ways. The first and trivial
one, is checking if the imposed power spectrum can be measured after the generation.
The second, and most sophisticated, consists in checking if the summit heights are
distributed according to the distribution defined by Nayak, see. (3.69).

To analyze the power spectrum, we followed the procedure that we illustrated in
Section 3.2.3, and we can see in Figure 4.3 the comparison between the imposed and
the measured power spectral densities. The two PSDs are basically equal, with the
computed one slightly larger for the exponential decaying part. We observe the same
behavior for all the prescribed PSD.

The summit heights distributions were compared in terms of shape (a simple qual-
itative inspection), mean value and variance to the distributions predicted by Nayak’s
theory. To compute mean value ξ̄∗ and variance σ2

ξ∗
of the summit height distribution,

we used the formulae derived in [Gre84], which read

ξ̄∗ =
4

πα
, σ2

ξ∗ = 1−
0.8968

α
. (4.5)

We then computed the same parameters for groups of 100 surfaces with same statistical
parameters, and obtained the results shown in the bottom plot of Figure 4.4, in which
we see that for larger values of α the surfaces we generate tend to have mean values of
the summits shifted in positive direction, and this can be observed also in the top plot of
Figure 4.4, where the distribution for a group of surfaces with α= 88.9 is shown. The
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Figure 4.3. Analysis of power spectrum of one generated surface.

shape of the resulting distributions is Gaussian, and variance of the summit heights
is close to the theoretical value. Thus, even considering the shifting factor of the
summit heights, we judge our surfaces to be accurate enough to be used for numerical
experiments, also because the bias is almost constant for large values of α, and it could
be easily taken into account to compare our results to those of other studies.
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Figure 4.4. Top: Summit height distribution for surfaces with α = 88.9. The mean
value appears larger than predicted by theory, but the distribution has Gaussian shape,
and the variance is preserved. Bottom: Mean and variance of summit heights: com-
puted (blue dots) and theoretical (green circles) values.
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4.2 Iterative Signorini problem

In this section, we outline the algorithm of what we call an Iterative Signorini Problem.
Its importance is manly due to its capacity to deal with complex obstacles by means of
a sequence of approximate solutions computed with linearized contact conditions.

4.2.1 Generic algorithm

In Section 2.2 we presented a classic Signorini contact problem with linearized contact
conditions. The linearized contact condition (2.41) is not directly applicable to large
deformation and the reason lies clearly in the linearization itself. Let us indicate the kth

node of the mesh by the coordinate vector of its position in reference configuration,
i.e. xk and the elastic cube’s normal pointing outwards from the node as nk. For each
node, the gap function g(xk) contains information about the distance from the node
to the obstacle surface, this distance being computed along nk, which for sufficiently
small separations, approximates the normal of the closest obstacle point.

From a geometrical standpoint, the normal displacement of the node is bounded by
the value of g(xk), whereas the tangential displacement is not limited, as if the node’s
obstacle was a plane, orthogonal to nk and at a distance g(xk) from the node, as it is
depicted in Figure 4.5. Obviously this representation fails to describe a complex obsta-
cle such as a rough surface: when node k does not move only in normal direction, it
might slide tangentially on the virtual plane, penetrating the real obstacle and still not
violating the linearized constraints, as it can be observed in Figure 4.6. For this reason,
we proceed following an iterative approach, and compute a sequence of approximate
solutions which converge to a final configuration in which the constraints correctly rep-
resent the obstacle locally, and the elastic cube does not penetrate the rough surface.

Algorithm 1 Iterative Contact Problem
1: given initial geometry, initial gap function g(x), αc > 0
2: compute u0

3: done← false
4: repeat
5: compute g(xi + ui)
6: compute correction ci

7: ui+1← ui +αcc
i

8: if
‖ui+1− ui‖MΓ
‖ui+1‖MΓ

≤ tol then

9: u f ← ui+1

10: done← true
11: end if
12: until not done
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Figure 4.5. Iterative Signorini problem. In blue, the discretized elastic domain Ω (in
this case, it is discretized with quadrilaterals, whereas in the real simulations tetrahe-
dra were employed). In black the boundary of the rigid obstacle ∂ O representing the
rough surface. In green, the gap function g(x), and the virtual planes which are its
only representation in machine memory. Top: Initial configuration and gap function.
Bottom: Hypothetical solution of contact problem. Note that this solution is feasible,
since constraints are not violated, but we show in Figure 4.6, that the cube penetrates
the original obstacle.
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A
C D

B

Figure 4.6. Top: possible cases of wrong computed intersections, obtained after the
first contact solver step shown in Figure 4.5. Case A, B, and D show nodes which
are penetrating the obstacle, even if they do not violate the linear constraint, whereas
in case C, a node is blocked by the linear constraint, but it could actually go further
downwards. Bottom: the gap function, recomputed for case A, which will be pro-
jected on the obstacle surface at the next iteration. Note that the intersection is found
in negative normal direction.
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The iteration scheme is shown in Algorithm 1, and can be summarized as follows: after
the i th solution ui has been computed, we update the normals n and the gap function
g(xi + ui) accordingly, as sketched in Figure 4.6. Then we solve the problem with the
new constraints, in order to find the correction ci , which we scale by a factor αc (a
damping factor to avoid oscillations) and we add to our current solution ui to obtain
ui+1. We repeat this process, until the norm of c on ΓC , computed with respect to the
boundary mass matrix MΓ, falls below a given tolerance. In our experiments, we set
αc = 0.8, which we empirically found to give the fastest convergence of Algorithm 1.

It must be noted that the normals n are recomputed during contact, when the
elastic cube is deformed, and are, therefore, generally not parallel to the z axis: this
is the reason why we detect forces which have a non-zero projection on the x y plane,
even in the frame of linear elasticity, where elastic forces are always orthogonal to the
contact plane.

4.2.2 Boundary conditions

In our numerical experiments, we distinguish between two types of problems:

• Problem A, Normal Load: Impose vertical displacement on top of the cube,
pushing it onto the surface.

• Problem B, Shear Test: Solve Problem A, then, on the resulting configuration,
impose tangential displacement of the top of the cube.

Problem A serves the purpose of determining characteristic measures of the contact
(real area of contact, separation height, vertical force needed to compress the cube),
whereas by solving Problem B we can compute the forces which are opposed to the
motion, and the elastic energy stored in the deformed elastic cube: the bottom side of
the cube, will be pulled by the elastic shear force in the direction of the displacement
imposed on the top side, but it will also be pushed in the opposite direction by the
shear resistance transferred by the surface asperities.

Formally, the difference between the two problems lies in the values of the Dirichlet
Boundary Conditions. In Problem A, (2.36) can be rewritten component-wise as

ux = 0 (4.6)

uy = 0 (4.7)

uz = dz < 0, (4.8)

whereas in Problem B, it would read

ux = dx 6= 0 (4.9)

uy = 0 (4.10)

uz = dz < 0. (4.11)
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4.2.3 Distance function

In a contact problem, from a computational standpoint, one of the most time-consuming
activity is the identification of the contact itself. In other words, it is not trivial to detect
when a full (in the sense of “not hollow”) body intersects another one, since they are
both discretized with meshes, which are in turn only collections of nodes and edges.
Being it a problem of crucial importance, many strategies exist, and we will present
typical solutions to compute the gap function g(x)which is used in the iterative scheme
described in Section 4.2.

Signed distance functions

Formally, a Signed Distance Function (SDF), is a scalar field of the form

Φ(x) : Rd → R (4.12)

associating to every d-dimensional coordinate vector x a scalar value which represents
the distance of the point with those coordinates from the closest point of a given closed
surface (the rigid obstacle, for us), c.f [OF03]. Usually, as convention, points which are
outside the surface are assigned a positive distance value, and points inside the surface
are assigned a negative value. One of the most important properties of the SDF, is that
its gradient ∇Φ(x), for regions which are sufficiently close to the surface, points to the
closest point on the surface, and, especially, on the surface, it holds

∇Φ(x) =−n(x), (4.13)

where n(x) denotes the outward normal of the surface, at point x.
For static obstacles, the SDF can be pre-computed on a regular grid, at a desired

step-size, and then, the distance from the obstacle of a given point x′ internal to the
grid can be computed by interpolation of the vertices of the grid cell in which x′ is con-
tained. To compute the values of Φ(x) at each grid node, state-of-the-art fast marching
(or sweeping) algorithms exist, such as the one presented in [DE14]. This approxima-
tion is fairly reasonable in many applications, for smooth, continuous surfaces, but we
tested it for our case, and given the complex nature of the rough surfaces we employ,
and the large size of the problem we study, the mesh needed to store sufficient infor-
mation about the surface was too large to fit into the memory of any machine we used.
Therefore, we followed a different approach.

Normal gap and ray-casting

We are interested in finding a good estimate of the normal gap between two surfaces.
That is, given a point xe on the elastic surface Γ = ∂Ω, we want to compute which
point xO on the obstacle surface ∂ O is the closest, at which distance it is, and what is
the normal to it. As it is noted in [Yas13], possible inconsistencies arise for complex
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geometries, especially when the obstacle is not smooth (because the normal to a non-
differentiable point of the surface is not defined), or the obstacle surface is too far
from xe, in which case the distance could be non-unique (for example in case xe is in a
V-shaped valley of the rough surface, exactly on the symmetry axis).

We decided to adopt an approximation which is precise enough, especially in com-
bination with the iterative scheme we describe in Section 4.2, for sufficiently small
separation values. At any point xe, we compute n(xe), and we compute the distance
to ∂ O along that direction. In case of null distance, the node is considered in contact,
and as a normal of the contact we use n(xO ).

Since the obstacle is represented in memory as a height surface, we simply triangu-
late it (following the connectivity of the lattice on which the nodes lie, and connecting
points along the diagonals with dx/dy = 1). Thus, the problem we solve consists in
finding the intersection between the parametric line

r : xe +αn(x) (4.14)

and one of the triangles of O4, which is the triangulated obstacle. This technique,
in graphics, is known as ray-casting, c.f. [PH04], and the test of intersection between
a straight line and a triangle in space can be performed efficiently using the Möller-
Trumbore algorithm described in [MT97]. Obviously, checking the intersection be-
tween all triangles of O4 would be computationally infeasible, also because we con-
sider it a periodic obstacle, therefore the amount of triangles would be infinite, but the
regularity of the lattice, is helpful. Many spatial structures exist, to efficiently search
for objects in space, c.f. [dBCKO08]. In our case, it is sufficient to exploit the lattice
regularity of the obstacle to achieve optimal time complexity. To search for possibly
intersected triangles, we project r on the x y plane, and only check the intersection
between the line and the triangles which belong to cells of the lattice grid which are
visited by the line in 2D. To detect which square cells are visited by the line, another
algorithm which was invented for graphics purposes is optimal, namely the Bresenham
algorithm, c.f. [Bre65]. We refer the interested reader to the original paper for further
details.

If the distance traveled by the “ray” is larger than a user-defined threshold, the
obstacle is considered to be too far away from the point xe. Even if we find an inter-
section, we then search in direction −n(xe), to check if xe has penetrated the obstacle,
in which case the solver will project it back on ∂ O . If the ray intersects the obstacle
both in positive and in negative normal direction, than the minimum of the two is
chosen, and the state of the node at xe (inside or outside the obstacle) is determined
accordingly. Notice that the Möller-Trumbore algorithm can also detect if the ray is
intersecting the outward or the inward face of the obstacle, thus, it is always possible
to understand if the ray was originated inside or outside the obstacle, with respect to
the intersected triangle.

As a last remark, we point out that the algorithm we outlined works for any kind
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of rigid half-space, that is, for any well defined height function h(x) : R2 7→ R. Its
complexity in time, for any ray, since it traverses cells linearly, is O(N

1
2 ), where N

denotes the points of the surface.

4.3 The Finite Element Method

We perform our numerical experiments by means of the Finite Element Method (FEM),
which is one of the most used discretization methods for the numerical solution of
physical problems formulated as PDEs [Qua09; KO88]. We will describe FEM within
the more general class which it belongs to, the class of Galerkin methods.

The basic idea of Galerkin methods is to formulate the variational version of a
Boundary Value Problem, and solve the so-called weak problem in a suitable approxi-
mation Vh of the space V to which the solution belongs.

We will focus on the Galerkin approximation of the BVP we introduced in Sec-
tion 2.2. This section is only an introduction to the topic, and a deeper and more
general analysis of contact problems, also applied to non-linear cases, can be found in
[Sch02] and [KO88].

4.3.1 Galerkin approximation

The problem we are interested in is the BVP defined in (2.35). If (2.35) is satisfied in
each point of Ω then the integral of the dot product of this equation with any arbitrary
test-function v (also called virtual displacement, within mechanics context) over the
body is zero. The converse statement is also true, c.f. [Yas13], thus

∫

Ω
(∇ ·σ) · v dΩ = 0, ∀v ∈ V (4.15)

where V = H1
ΓD
(Ω) is a Hilbert space of functions v ∈ L2(Ω), ∇v ∈ L2(Ω), vanishing

on ΓD. If we now integrate (4.15), we obtain
∫

Ω
σ : (∇v) dΩ =

∫

ΓD

σn · v dΓ+

∫

ΓN

σn · v dΓ+

∫

ΓC

σn · v dΓ, ∀v ∈ V. (4.16)

The integral over ΓD vanishes because of the choice of test functions. And since we
impose null force acting on ΓN , then σn= 0, and the integral on ΓN vanishes too.

Let us now identify the (linear elastic) stored energy by the function W : Ω ×
R3×3→ R, as done in [Kra09]. Then, the total energy functional J (u) is composed of
the elastic and the potential energy, i.e.

J (u) =
∫

Ω
W (x,∇u(x)) dx−

∫

ΓC

f̃(x)u(x)da (4.17)
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where f̃(x) represents the surface force density acting on the contact boundary, as result
of the contact deformation. Thus, to solve the problem, one has to minimize J under
the non-penetration constraint introduced in (2.43), that is

dO (u)≥ 0, on ΓC . (4.18)

4.3.2 Finite element discretization

We now derive the FEM as an instance of the Galerkin method, in which the space Vh

is chosen as a subset of a space of polynomial interpolation.
Let Th be a face-to-face triangulation of the domain Ω, that is a coverage of Ω with

tetrahedral elements. The elements are required to be non-overlapping, i.e., given two
elements K , H ∈ Th, with K 6= H, then

K̇ ∩ Ḣ = ;. (4.19)

If the domain is a polytope, the elements cover it completely, i.e.

Ω =
˙⋃

K∈Th

K .

We define hK the diameter of K and h=max(hK). We now introduce the interpolation
space

Xh = {vh ∈ C0(Ω) : vh|K ∈ P1,∀K ∈ Th} (4.20)

where P1 is the space of linear polynomials functions over K . The FE discretization
consists in choosing in (4.22) the discrete space

Vh = V ∩ Xh. (4.21)

Thus, we can define the Finite Element Method, as the method to find an approximate
solution uh ∈ Vh of (4.15), where Vh is a family of subspaces of V that depends on a
positive discretization parameter h.

Hence we aim to solve the following Galerkin problem within the Finite Element
framework:

find uh ∈ Vh such that

uh = argmin
vh

J (vh) (4.22)

and
dO (uh)≥ 0, on ΓC . (4.23)

Let {ϕ i} denote the set of the Lagrangian basis functions, then the approximate
solution can be expressed in the basis {ϕ i} as
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uh(x ) =
Nh
∑

j=1

u jϕ j(x ),

where u j are unknown coefficients, and Nh = dim(Vh). Thus, the problem defined by
(4.22) and (4.23) corresponds to the algebraic problem

u= argmin
v

1

2
vT Av (4.24)

in which the constraint (4.23) must hold. We denote by

• A the matrix whose entries are Ai j = a(ϕ j , ϕ i),

• u the vector whose elements are the coefficients u j .

The matrix A is called stiffness matrix and in the case of linear elasticity it is symmetric
and positive definite. The algebraic formulation offers the possibility to efficiently
represent the problem in a numerical software, and several solution methods exist, to
find the solution of such algebraic systems.

4.3.3 Solution method and discretization

To compute the solution, we employ our parallel implementation of the conforming
non-linear multigrid method as in [Kra09]. The elastic body is distributed among dif-
ferent threads (see Figure 4.7) and the solution is kept consistent over the subdomains
boundaries. As a base solver we use an exact LU decomposition and as a smoother we
use a non-linear Gauss-Seidel solver.

A complete description of the solution method can be found in the dedicated publi-
cation [KRS15]. In Algorithm 2 we report the main steps, mainly to support the reader
to grasp the basics of its mechanics, since its application in the field of rough contact
is novel. In the algorithm description we introduce `, which is the discretization in-
dex of the sequence of finite dimensional subspaces of the appropriate Hilbert space
H, (S `)`≥0, which approximate H. In our case, the spaces S ` are the finite element
spaces, which are originating from a family of nested and shape regular meshes, with
mes size parameter h0 > h1 > · · ·> hL , with L > 0 being the index of the finest level un-
der consideration. The functional for which the solution u is sought is (J +ϕL+χK L ),
where J is a quadratic convex functional and ϕL is assumed to be convex and lower
semi-continuous. The third part of the functional, i.e. χK L ) is the nonsmooth and
nonlinear (but convex) characteristic functional representing the constraints, which,
on level ` are given by the closed and convex set D`ū. Finally, X `

ū denotes the possibly
dependent ansatz space of level `, Qū` is a quadratic approximation of J +ϕ, and P L

is a nonlinear projection operator which combines the solutions of each one of the m`
subspaces of (S `)`≥0.
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Thus, the algorithm first computes parallel approximate solutions cL
i , then com-

bines them in cL and computes coarse grid corrections in an approximate quadratic
space. Finally a sequence of nonlinear but local subproblems is solved along the bound-
aries, in order to synchronize the solutions.

Algorithm 2 Parallel Nonsmooth Multigrid Method

1: Initialize u0.
2: for ν = 0, . . . ,νmax do
3: Compute in parallel approximate solutions cL

i to the following problems:
find wL

i ∈W L
i such that

(J +ϕL +χK L )(uν +wL
i )≤ (J +ϕ

L +χK L )(uν + v), ∀v ∈W L
i .

4: Nonlinear synchronization: cL = P L(cL
1 , . . . ,cL

m`
).

Set ū= uν + cL .
5: for ` < L do
6: Choose subspace X `

ū , convex set D`ū, ū ∈ D`ū and functional Q`ū.
7: Parallel coarse grid correction:

Find c` ∈ D`ū, such that
Q`ū(ū+ c`)≤Q`ū(ū+ v) , ∀v ∈ D`ū.

8: Synchronization: c` = P`(c`1, . . . ,c`m`).
9: end for

10: Set uν+1 = ū+
∑

`<L c`.
11: end for

The elastic cube is discretized by means of tetrahedra, the mesh is adaptively re-
fined, therefore it is finer on the contact boundary than in the rest of the domain. A
common rule of thumb, when choosing the mesh size of the elastic body at the contact
boundary, is to employ a mesh with the lattice constant which is one half of that of
the rigid obstacle, i.e., if δΓC

and δO denote the lattice constants of the elastic con-
tact boundary and of the rigid obstacle respectively, one would set δΓC

≈ 1/2δO . This
choice of δΓC

ensures that every rough surface asperity is in contact with at least one
complete boundary element of ΓC . We show in Section 5.3.1 that, even though this
choice can lead to a sufficiently good approximation of the contact area for small nor-
mal loads, it lacks precision when computing the friction force, for some choices of the
roughness parameters. In fact, experiments suggest that the δΓC

should be no larger
than 1/4δO , for most rough surfaces, to accurately predict friction and area of contact
in sheared configurations, but the precision of the results can be greatly improved with
finer meshes, especially for some particular roughness parameter.

Since rough surfaces are represented in memory as a height map consisting of
300×300 nodes, it is easy to understand that the amount of nodes needed to discretize
the elastic cube is huge, and this, in practice, forces us to employ several processors and
massively parallel implementations of the solving routines, to avoid memory issues.
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Figure 4.7. Lateral and bottom views of final configuration for one of our experiments.
The bottom of the cube remains anchored to the rough surface, due to forces orthog-
onal to the load produced by the asperities in contact. Left: Typical contact stress
intensity on the bottom side of the surface, for large loads. Right: Subdivision among
parallel threads. The load balancer assigns to each thread the same contact area.

4.3.4 Software performance

In this section we analyze the performance of our implementation, in terms of compu-
tation time and its scaling with respect to number of processors.

The spatial decomposition was performed subdividing the elastic cube only along
x and y directions. This choice does not optimize communication time, because the
communication surface grows faster than the number of processors, but it ensures
that the contact surface is equally distributed among all processors. The motivation
for this choice is straightforward: the computation time is largely dominated by the
calculations performed on the contact boundary, whereas solving the linear elastic
response occupies only a small fraction of the total time. In Tables 4.1, 4.2 and 4.3,
we report the scaling results we obtained employing different mesh sizes to discretize
the elastic cube. In all settings, first the cube is discretized uniformly, then the contact
surface is refined uniformly five times, leading to a graded adaptive refinement in the
elastic body, as it can be observed in Figure 4.8. In the tables we list the total time
needed to solve the problem, and we compute the efficiency of the ith parallelization
as

Effi =
Timeb · Procsb

Timei · Procsi

where Procs denotes the number of processors, Time the computation time, and the
subscript b denotes the reference case (the first listed in each table). In the tables, it
is shown that the total number of iterations (denoted by It) is only mildly influenced
by the number of processors. Notice that the total number of iterations includes the
amount of iterations needed for the contact boundary stabilization (denoted by CBS in
the tables), which shows stability with respect to the number of nodes, too.
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Procs Time Speedup Efficiency It CBS
32 1824.98 1 1 42 27
64 1018.37 1.79 0.90 45 29
128 563.71 3.24 0.81 48 30
256 339.97 5.37 0.67 52 33

Table 4.1. Scaling results for elastic cube (880k nodes) in contact with rough sur-
face. “It” denotes total number of iterations, and includes iterations needed for contact
boundary stabilization (CBS).

Procs Time Speedup Efficiency It CBS

128 2094.12 s – – 46 35
256 1204.62 s 1.74 0.87 48 37
512 726.51 s 2.88 0.72 53 39

1024 450.98 s 4.64 0.58 57 42

Table 4.2. Scaling results for elastic cube (3.5M nodes) in contact with rough sur-
face. “It” denotes total number of iterations, and includes iterations needed for contact
boundary stabilization (CBS).

Procs Time Speedup Efficiency It CBS

512 2’219.29 s – – 43 33
1’024 1’241.56 s 1.79 0.89 55 38
2’048 864.86 s 2.57 0.64 49 36
4’096 556.92 s 3.98 0.50 54 40

Table 4.3. Scaling results for elastic cube (14.2M nodes) in contact with rough sur-
face. “It” denotes total number of iterations, and includes iterations needed for contact
boundary stabilization (CBS).
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Procs Time Speedup Efficiency It CBS
32 962.15 1 1 35 8
64 480.19 2 1 38 7

128 250.85 3.84 0.96 40 8
256 140.45 6.85 0.86 42 8

Table 4.4. Scaling results for elastic cube (880k nodes) in contact with flat surface.
“It” denotes total number of iterations, and includes iterations needed for contact
boundary stabilization (CBS).

Procs Time Speedup Efficiency It CBS
128 1’179.34 1 1 39 9
256 640.87 1.84 0.92 41 9
512 334.56 3.53 0.88 43 10

1’024 180.88 6.52 0.82 45 11

Table 4.5. Scaling results for elastic cube (3.5M nodes) in contact with flat surface.
“It” denotes total number of iterations, and includes iterations needed for contact
boundary stabilization (CBS).

Procs Time Speedup Efficiency It CBS

512 1’337.41 – – 39 9
1’024 665.18 2.01 1.01 41 10
2’048 389.33 3.44 0.86 44 11
4’096 229.54 5.83 0.73 47 12

Table 4.6. Scaling results for elastic cube (14.2M nodes) in contact with flat sur-
face. “It” denotes total number of iterations, and includes iterations needed for contact
boundary stabilization (CBS).



83 4.3 The Finite Element Method

Figure 4.8. Close-up of elastic cube in contact with typical road-like surface for the
case δΓC

≈ 1/2δO . Color denotes Von Mises stress.

The identification of the contact nodes for such a complex rough obstacle requires
a huge computation time. As means of comparison, we report the results obtained for
the same experiments, in which the rough surface is replaced by a plane. We show the
scaling results for this case in Tables 4.1 4.5 and 4.6, and it can be observed that the
algorithm scales almost perfectly for such simple obstacles.
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Chapter 5

Numerical studies
of microscopic rough contact

During our study, we performed a large amount of numerical experiments, to under-
stand what roughness parameters influenced real area of contact evolution and friction
production. The goal was to exclude parameters with only marginal influence from fu-
ture studies, to restrict the number of tests one has to perform to have statistically
meaningful results. In this section, we illustrate all the results we obtained, and we
give remarks about trends and their possible interpretation.

This chapter is subdivided in three main sections. In Section 5.1, we describe the
datasets on which we performed the numerical experiments, we give details about
surface and cube parameters we varied. Section 5.2 contains the results obtained
from experiments performed under vertical (normal) loading conditions, which are
compared to the state-of-the-art theories for real area of contact evolution presented
in Chapter 3. Section 5.3 concerns the results of our shear tests, in which, after an
initial vertical loading, the top of the elastic cube is displaced tangentially, and the
shear resistance transferred by the rough surface is measured. The goal is to obtain
an estimate of the quantity of static friction force which is produced solely by elastic
interactions. Section 5.4.2 illustrates an example of a real-world application of our
method: we simulated the effect of water presence rain on a typical road surface,
and we computed the difference in friction for different quantities of water, under the
assumption of no hydrodynamic interactions, as suggested by [PTAT04; PTAT05]. The
results of these specific tests are compared to those of experiments obtained on real
roads and runways by other studies.

5.1 Datasets

We begin with a description of the domains on which we performed our experiments.
In every experiment, a linear elastic smooth (not rough) cube was used in combination

85



86 5.1 Datasets

with a rigid corrugated half-plane obstacle.
The choice of linear elasticity is mostly based on two reasons:

• In the most known rough contact models, such as the GW, BGT, Persson’s, and
YAM models, second order effects are neglected, c.f. [GW66; BGT75; Per01b;
YAM14]. To be able to compare our results to such models, we prefer to use the
same assumptions.

• Other papers which study the contact with numerical techniques, such as [KA01;
ZBBP04; KSK06; XBR07; HPMR04; PB11; YDPC11], employ linear elasticity. In
some works, plasticity is also taken into consideration, but results are anyhow
comparable.

• Computation time for linear elastic models is low, compared to other models,
which require iterative Newton methods to find a solution. We had to run a total
amount of approximately 400 numerical experiments on massively parallel su-
percomputers, with an estimated total computation time of 500’000 CPU hours.
With more sophisticated models, the computation time would have been at least
three times as large. We reserve such costly experiments to more focussed (with
narrower parameter range) studies.

Moreover, results obtained by the mentioned numerics-based works support the valid-
ity of the choice of linear elasticity, since it is shown they are in acceptable agreement
with real-world experiments.

5.1.1 Rough surfaces characterization

We performed our experiments on three datasets, and in each dataset we generated
surfaces according to a PSD following the definition given in Section 4.1. In each
dataset one single parameter was varied, whereas the other were kept identical for
every surface. For every value of the parameters we employed, ten statistically iden-
tical surfaces were generated. The three datasets are characterized by the following
parameters, which we list together with the range in which we chose them (see also
Table 5.1):

A Root mean square roughness h0 ranging from 53 µm to 0.71 mm. Fixed Hurst
exponent H = 0.7.

B Hurst exponent H ranging from 0.5 to 0.9. Fixed root mean square roughness
h0 = 0.71 mm.

C Long-distance cut-off wave number ranging from 2π/δO to 2π/(8δO ), H = 0.7,
root mean square roughness varying accordingly (see below for a detailed expla-
nation).
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The other parameters are the same across all datasets: linear sample size L = 3 cm,
points vertically aligned to the nodes of a square grid, with lattice constant δO =100 µm,
smallest wave number qL = 2π/L, long distance roll-off wave number q0 = 5qL .

The described values of the parameters have theoretical and physical meanings.

• The range of h0 used in Dataset A covers the rms height values of surfaces like
rocks, asphalt, concrete, and also off-road surfaces, as it is described in [PAT+04]
and [Lor12], and H was set to a value which is typical for surfaces obtained
by fracture, or cracking, as several studies show, see for example [BBCC01],
[IIIC03], [CCI99], [DAB12], [Bou97], [Per01b], [PAT+04].

• The root mean square roughness for Dataset B was chosen to maximize the ef-
fects of the different fractal dimensions.

• In Dataset C, the long distance cut-off vector was varied to see the effect of
low-pass filtering of the PSD on the contact area evolution, and on the variance
of the results we obtain: this is intended to be compared to the recent studies
published in [YAM12], where similar experiments were performed to understand
the importance of the bandwidth parameter α c.f. (3.63). To generate surfaces
of Dataset C, we employed the low-pass filtered PSD of a surface with h0 =
0.71 mm. The low pass filter simply cuts high frequencies off completely. The
resulting surfaces have, therefore, a slightly diminished rms roughness, which
was computed a posteriori, using (3.10). The resulting range for h0 is shown in
Table 5.1. When discussing the results obtained with Dataset C, q1 will denote
the employed short-distance cut-off wave number, whereas by q̂1 will be denoted
the theoretical maximum value, therefore q̂1 = 2π/a.

We show examples of surfaces belonging to datasets B and C in Figure 5.1, because the
influence of H and q1 is less intuitive than that of h0 (Dataset A).

Dataset H [-] h0 [m] q1/q̂1 [-]
A 0.7 5.3 · 10−5− 7.1 · 10−4 1

B 0.5− 0.9 7.1 · 10−4 1

C 0.7 6.9 · 10−4− 7.1 · 10−4 1
8
, 1

4
, 1

2
, 1

Table 5.1. Parameters range of generated surfaces. Every surface consists of 300×300
points, spanning 3 cm ×3 cm, therefore L = 0.03 m and δO = 0.1mm. The short
distance cut-off wavelength q̂1 = 2π/δO , and in Dataset C we use different fractions
of it. For all datasets, the smallest possible wave-length qL is 2π/L and the roll-off
wave number q0 is 5qL.
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Figure 5.1. Surfaces of datasets B (Left) and C (Right). Every plot is a one fourth of the
original surface it belongs to.
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5.1.2 Characterization of the elastic cube

To analyze boundary and size effects, we performed a subset of the normal load ex-
periments on three perfect cubes, differing for their lateral size. The first cube has
lateral size LM

c = 3 cm, which is equal to the sample linear size (the smallest period of
the rough surface): this ensures that the contact is representative for the surface, that
is, every point of the rough surface domain can theoretically get in contact with the
elastic cube. Smaller cubes are not considered, as their results could be biased by the
local geometry of the corrugated substrate with which they would be in contact. The
geometry of a portion of a specimen could be not representative of the whole surface.
The second cube has lateral size LL

c = 6 cm, and for the third it holds LXL
c = 12 cm.

The superscripts M, L, and XL, will be used to refer to the corresponding elastic cubes.
When not specified differently, cube M was employed.

To account for spatial discretization error, on the contact surface we employed four
different mesh step-sizes δΓC

: 100 µm, 50 µm, 25 µm, and 12.5 µm. Notice that these
step-sizes correspond to δO , δO /2, δO /4, and δO /8, respectively. When not specified,
δΓC
= 50 µm. For each discretization, it always holds that the tetrahedra which have

a side on ΓC have three edges of length δΓC
, oriented along x , y , and z axes. The

remaining edges have length
p

2δΓC
. As pointed out in Section 4.3.4, since the contact

side is refined more than the rest of the cube, the resulting mesh is denser when close
to ΓC and this is shown in Figure 4.8.

The Young modulus E was chosen unitary, since in a linear elasticity static setting
with Dirichlet boundary conditions and zero Neumann boundary condition, it plays
the only role of linearly scaling all forces.

Finally, to judge the influence of the Poisson’s ration ν , introduced in Section 2.1,
we performed a set of experiments varying its value from 0.05 (almost purely com-
pressible material) to 0.45 (nearly incompressible material), with an intermediate
value of 0.25. When not specified, ν was set to 0.45, as we are more interested in
incompressible materials, than in compressible ones.

5.2 Normal load: validation against state-of-the-art models

The first phase of the numerical study, consisted in a series of normal load experiments
(denoted as Problem A in Section 4.2.1), to study the evolution of the contact area
with respect to the applied force, in different settings. There are two motivations for
such experiments:

• as presented in Chapter 3, different contact laws exist to predict the results of
normal loading, and some of their results have been shown to hold in real-world
experiments, under certain conditions;

• the normal load setting is useful to characterize the contact type with known
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measures such as separation height and real contact area, and this serves as a
preliminary result for shear tests.

We illustrate the strategy we adopted and we start by analyzing contact at low
pressures, where asymptotic linear behavior is expected, then we analyze the full nor-
malized pressure range, proposing a polynomial law for which the coefficients show
sufficient stability to allow for predictions in an appropriate range of the parameters.

5.2.1 Normal load strategy

The goal of these experiments is to observe the contact evolution for the whole possible
pressure range. To do this, we displaced the top of the cube with uniform increments,
until the total load σ0 ≈ E was reached. We are aware that linear elasticity is not
completely reliable at such high pressures, but nevertheless, the results we found pro-
vide some useful bounds on the contact evolution. The step-size s of the incremental
displacement is proportional to the root mean square roughness of the corrugated ob-
stacle employed in the simulation, and it holds

s ≈
L i

c

LM
c

2h0. (5.1)

We note that we tested different incremental steps, but this did not have any influence
on the computed results, and we decided for an increment size which was optimizing
computational costs, but still giving a reasonable amount of points to perform model
fitting.

5.2.2 Summary of the results

We plot all results of the experiments, to emphasize differences and similarities be-
tween the measured responses of the system. Figures 5.2, 5.3, 5.4, and 5.5 show the
evolution of the contact area with respect to the normalized pressure, defined as

σ∗0 =
σ0

E∗

�q

¬

|∇h|2
¶

�−1

(5.2)

In all plots, two key points result evident:

1 Full contact is not always achievable, especially for very rough surfaces (h0 >

0.3 mm), for which it is not even possible to arrive to a saturation of the area,
because of the limitations of linear elasticity.

2 The evolution of the contact area at large pressures is very difficult to predict
by analyzing the low pressure regimes. In fact, initial slopes are similar for
the majority of the datasets, even when divergence of the final configurations is
observed.
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Figure 5.2. Normal load results for Dataset A, with cubes of different sizes. Top: cube
M. Middle: cube L. Bottom: cube XL. In the plots, results have been subsampled, for
graphical purposes.
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Figure 5.3. Normal load results for Dataset A, with different values of the Poisson
ratio ν . Top: ν = 0.05. Middle: ν = 0.25. Bottom: ν = 0.45. In the plots, results have
been subsampled, for graphical purposes.
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Figure 5.4. Normal load results for Dataset A, with nearly incompressible material
and cubes of mesh step sizes. Top: δΓC

= 50 µm. Bottom: δΓC
= 25 µm. In the plots,

results have been subsampled, for graphical purposes.
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Figure 5.5. Top: Normal load results for Dataset B, and almost compressible cube
ν = 0.05. Middle: Normal load results for Dataset B and nearly incompressible cube
ν = 0.45. Bottom: Normal load results for Dataset C, and nearly incompressible cube.
In all plots, δΓC

= 50 µm.
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5.2.3 Contact evolution at low pressures

Persson’s theory and the BGT model derive a linear law for contact at low pressures,
where the real contact area A is below 15% of the nominal contact area A0. As pointed
out by equation (3.169), the two laws can be written as

A

A0
= κ

σ0

E∗

�q

¬

|∇h|2
¶

�−1

where σ0 is the nominal pressure. The equivalent elastic modulus E∗ is defined as

E∗ = E/(1− ν2), with E being Young’s modulus and ν Poisson’s ratio. By
Æ

¬

|∇h|2
¶

it is denoted the root mean square slope of the surface. The value of the constant κ
is the only difference between the results of the two theories: it is

p

8/π ≈ 1.6 for
Persson, and

p
2π ≈ 2.5 for the BGT model. We will denote the two limits as κP and

κBGT respectively.
To study the influence of h0 on κ, we simulated the contact with Dataset A, and

performed a linear regression on the low pressure range data, obtaining the results
visible in Figures 5.6 and 5.7. All the results, show a clear positive correlation between
h0 and κ, in other words, the magnitude of κ is proportional to that of h0, even though
a mathematical relation seems difficult to be derived. The values found for κ grow
from slightly more than κP (for small h0) to slightly less than κBGT (obtained for large
h0), a part for the cases in which ν ≤ 0.25, in which κBGT is exceeded. These results are
in general agreement with [HPMR04], where a similar test for ν = 0 was performed.

We propose an interpretation for this trend, which is based on the underlying as-
sumptions of Persson and BGT theories. The theory suggested by Persson is based on
the idea of a homogeneous diffusion of the stresses over the rough surface, driven by
the load, which is something happening for small root mean square roughness values,
because the summits are small and close, the contact area grows uniformly inside the
nominal contact area, and contact patches tend to merge. The BGT model, instead,
considers asperities individually and sums their contributions, neglecting interactions
of different peaks (so-called long distance interactions). Although the premise of the
BGT model is not met in general, it can be observed that for very rough surfaces (with
large h0), the asperities are higher and more distant from one another (compared to
smoother surfaces), and they therefore act almost independently, indenting the elastic
cube: contact regions are isolated and rarely merge. We think that surfaces with values
of h0 contained between the two limits of the studied range correspond to mixed cases,
in which both model apply only partially, and this seems to be confirmed by the values
of κ we find, which are convex combinations of κP and κBGT.

The top plot of Figure 5.6 shows the influence of the size of the elastic cube: larger
cubes correspond to smaller relative contact areas. This might happen because the
pressure distribution imposed by the Dirichlet conditions is parabolic (as in Hertzian
contact), and at the boundaries of the cube, when the size of the cube is sufficiently
large, it might become too weak to achieve full contact. The same phenomenon is
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Figure 5.6. Value of κ, obtained by means of linear regression on the results of normal
load tests performed on Dataset A at low pressures. Top: Influence of cube size with
δΓC

. Bottom: Influence of mesh size on a cube M.
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Figure 5.8. Value of κ, obtained by means of linear regression on the results of normal
load tests performed on Dataset C at low pressures.

observed for every value of h0. The bottom plot of Figure 5.6 shows the influence of
the mesh size: reducing the mesh step-size, the area of contact results smaller. The
same phenomenon is observed for every value of h0, except for the case in which
h0 = 0.53 mm, in which the two values of κ coincide. In our simulations, the area
is computed as the ratio between contact and total nodes, thus, when the mesh is
finer, every node represents a smaller area, and the approximation of the real area is
expected to be more accurate. In Section 5.3 we will face the same effect, and we
will use four different mesh sizes, to understand the convergence of the mesh-related
error. Finally, Figure 5.7 shows the influence of the Poisson’s ratio. It can be observed
that the minimum value of κ at each value of h0 is achieved for ν = 0.45, thus for a
nearly incompressible material, whereas the maximum is obtained for ν = 0.25 and the
case of an almost compressible material with ν = 0.05 results in an averaged value.
This is in contrast with the almost linear positive correlation between area fraction
and Poisson’s ratio found in [HPMR04], and we suggest a possible interpretation of
this difference in Section 5.2.5. We ran experiments on Dataset B and found that H
plays a marginal role, as observed in the top plot of Figure 5.7, and this is confirmed
in [HPMR04]. From the experiments on Dataset C, it is evident that cutting the last
half of the power spectrum has a larger influence than successive reductions of q1, see
Figure 5.8, but the effect seems anyhow to be moderate, as suggested in [YDPC11].
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5.2.4 Contact evolution at medium and large pressures

When pressure is increased, and area of contact is larger than 20%, the linear relation
is not reliable as an approximation. The result of Persson’s theory given in (3.162) can
be rewritten in terms of normalized pressure, and it becomes

A

A0
= erf







σ0

E∗

s

2
Æ

¬

|∇h|2
¶






. (5.3)

For the YAM mode (Section 3.5), contact is described by means of a power-law rela-
tionship, which we write again, for the sake of comprehension:

A

A0
=






β +







Æ

¬

|∇h|2
¶

κσ0







µ





− 1
µ

.

We attempted to fit both laws to our results, but the results are not satisfactory. Pers-
son’s model seems to be unable to predict the medium and large pressure behavior,
also because of its insensitivity to every roughness parameter except for the root mean
slope, and for its asymptotic result for infinite pressure, where A→ A0, which is rarely
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Figure 5.9. Error of interpolating polynomials ε= 1−R2 plotted against degree of the
polynomial, for experiment with nearly incompressible cube M and mesh size 25 µm.
Notice that for moderately rough surfaces (log10 h0 ≤ −3.5), after fourth degree, the
error does not substantially decrease. The quality of the fit depends on the possibility
to reach the saturation plateau with linear elasticity.
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h0 Π Ω Λ κ 104 · ε
-4.27 -0.06 0.45 -1.32 1.82 0.01
-4.02 -0.07 0.47 -1.34 1.82 0.07
-3.77 -0.14 0.74 -1.65 1.93 0.25
-3.52 -0.32 1.07 -2.02 2.16 0.07
-3.27 4.31 -3.24 -1.87 2.51 0.35
-3.15 -20.68 14.30 -6.34 2.86 3.42

Table 5.2. Coefficients of reference polynomial for Dataset A.

observed in our experiments. The YAM model, instead, can be fitted, and the coef-
ficient of determination R2 (c.f. [Ric06]) is sufficiently high (R2 > 99.9% for most
datasets), but for large pressures, the relative area largely exceeds the measured one.
Since we are interested in an interpolation of the data, to perform a simplified analy-
sis of the behavior, we tried different interpolating functions (logistic, Gudermannian,
different types of sigmoidals), and the best fits were given by polynomials of fourth
degree. The constant term of the polynomial was found to be always smaller than the
other coefficients by three orders of magnitude, thus, we chose to work with polynomi-
als without constant term. Notice that in most cases, even for experiments with more
than 50 results, for the polynomials it holds R2 > 99.9995%. Adding further orders to
the interpolation, does not produce a better approximation, as it can be observed in
Figure 5.9, where the error of the fit, computed as 1− R2 is plotted against the order
of the polynomial, for different surfaces.

In Figure 5.10 the two interpolations are shown for one dataset, and in the close-
ups, it can be observed how the polynomial fitting follows the data more closely, es-
pecially for very small and very large pressures. The results are plotted against the
normalized pressure σ∗ defined in (5.2). We can write our empirical polynomial law
as

A

A0
= Πσ∗4+Ωσ∗3+Λσ∗2+κσ∗ (5.4)

where we kept κ to denote the coefficient of the linear term, because of the similar-
ity (though, not equality) to the asymptotic coefficient of proportionality of the other
models. We find a good stability of the parameters for moderately rough surfaces, ex-
cept for the cube XL, where boundary effects seem lead to instability of the parameters,
as shown in the top plot of Figure 5.13. With respect to ν and to δΓC

, the parameters
show a consistent and predictable behavior, as it can be observed in Figures 5.12, 5.13,
and Figure 5.11, which we show at the end of this section.

As a reference, in table Table 5.2, we list the values of the coefficients we find for a
cube M with ν = 0.45, δΓC

= 50 µm, and the complete list of the coefficients we found
for the different settings is given in Appendix C, together with the error ε= 1− R2 for
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Figure 5.10. Comparison of YAM contact law, Persson’s model and polynomial fit.
Relative area of contact plotted against normalized pressure σ∗. Top: the full pressure
range. Bottom: close-ups of specific regions of the pressure range, where the fits
diverge (notice that in the top left plot, Persson’s model overlaps with the polynomial
interpolation). Experimental results are displayed as red dots.
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every fit. In the appendix, it can be noted that the precision of the polynomial fit of
problems of the same size and spatial discretization increases for

• lower values of h0

• lower values of q1

• lower values of ν .

Thus, the quality of the polynomial interpolation is inversely proportional to the per-
ceived roughness of the surface, and to the Poisson’s ratio (therefore to the transversal
expansion of the cube).

We remark that the polynomials we find are a good interpolation of experimental
results, but they are generally not good for extrapolation for larger pressures than
those for which data points are measured. Anyhow, for moderately rough surfaces,
where the plateau region can be reached, all the polynomials possess a maximum,
which is located at a pressure which is slightly larger than the limit one we used in our
experiments. We think that the value of σ∗ where the area of contact would reach the
maximum could be a good estimate of the end of the validity range of the polynomial,
and after that value, the area can be considered constant, according to our results.

5.2.5 Differences from other studies

Even though at low pressures, our results are compatible with the asymptotic pre-
dictions of other models, and with numerical results of other studies, when going to
larger pressures, we observe a slightly different behavior. A possible source of dif-
ference, from works like [HPMR04], resides in the behavior at the boundaries of the
contact area.

In our experiments, given the null Neumann conditions of (2.35), the cube can
expand in x and y directions. On distant (expanded) boundaries, the vertical pressure
is less than in the center of the area of contact (since, macroscopically, the pressure
distribution is parabolic), and this could result in a different contact pressure, which
in turn influences the maximum achievable area of contact.

We also notice that we mostly studied nearly incompressible solids, whereas it
seems that in other studies, e.g. [YAM12], a low value of ν is usually employed, to
limit transversal expansion. We remark that large values of ν make the numerical
problem harder to solve, which is a well known issue of FEM simulations: for example,
in a typical run, the time to compute the correct (iterated) solution of one single step,
can double, when going from ν = 0.25 to ν = 0.45.

The boundary effects caused by transversal expansion are not included in any ana-
lytical theory that we have presented. At low pressures, for small values of ν , they can
be neglected, but for materials like rubber, which undergo large strains, it might be an
inaccurate approximation.
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5.2.6 Periodic boundary conditions

To mitigate the effect of transversal expansion, it was suggested to apply periodic
boundary conditions on the elastic cube, in x and y direction. This could in princi-
ple work for normal load experiments, but there exists the possibility it gives rise to
numerical instabilities, because of the rough nature of the obstacle. In fact, let x′ be
a point on ΓC and let it further be on one lateral side of the cube, for example on the
side facing negative x direction, so that x′ = (0, y ′, z′), in a periodic setting. Now let us
assume x′ is in contact with the obstacle O . Then, at every solution step, the point x′ is
in contact with point on ∂ O , but since we are enforcing periodicity, x′ also corresponds
to the point on the other side of the cube x′′ = (L, y ′, z′). Thus, only if the periods of
the cube and of the rough surface correspond exactly, it is theoretically possible that
the contact is solved correctly, because in that case, the points on ∂ O which are in con-
tact with x′ and x′′ are exactly at the same height (being them at distance L), and thus
the contact is solved correctly. But as soon as machine error is present, the coordinates
of the contact points could differ slightly, and cause instabilities in the solver. More-
over, in the shear tests we present in Section 5.3, we observe compression of the cube
with respect to x , thus the two points of contact would not be at distance L anymore,
resulting in inconsistency of closest obstacle point, and impossibility of convergence.

5.2.7 Conclusive remarks

In this section, we measured the influence of roughness parameters both on the low
and on the high pressure ranges. We showed that full contact is not always reachable,
especially for incompressible solids, at least using linear elasticity. We also showed that
low pressure predictions are less influenced by roughness characteristics, thus, linear
regressions show stable values of the parameter κ.
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5.2.8 Plots of polynomial coefficients for different numerical settings

We provide plots of the polynomial coefficients we found as fits of the different numer-
ical results. When possible, we plot ranges in which the parameters show stability, or
predictable and consistent behavior. A complete list of the parameters is to be found
in Appendix C. We recall that the we employed a fourth order polynomial without
constant term, of the form Πσ∗4 +Ωσ∗3 +Λσ∗2 + κσ∗. An error estimation of each
polynomial regression can be found in Appendix C, where it is scaled by 104, to repre-
sent its first significant digits.

−4 −3 −2 −1 0 1

−20

0

20Π

−4 −3 −2 −1 0 1
−20

0

20
Ω

−4 −3 −2 −1 0 1
−8

−4

0Λ

−4 −3 −2 −1 0 1
2

2.5

3

κ

q1
q̂1

Figure 5.11. Value of the polynomial coefficients obtained by fitting the fourth order
polynomial to the results of Dataset C, for a cube with δΓC

= 0.5 µm and ν = 0.45.
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5.3 Computation of elastostatic friction
by means of shear tests

As mentioned in Section 1.3, friction is a very complicated phenomenon. It is still not
fully understood, and its effects are sometimes unpredictable. Many factors concur to
build friction, and we recall that, among these, those which are believed to be the most
influent are:

F1 Viscoelastic response of the materials in contact.

F2 Macro- and micro- texturing of the surfaces.

F3 Chemical, or atomic-scale physical interactions between boundary atoms.

A full study of such a complicated phenomenon is too ambitious for the present work.
We therefore focused on one particular instance of friction, in which less factors in-
tervene, setting the problem in a simpler framework, which is suitable for our FE
approach.

Thus, in this section, we aim to numerically measure elastostatic friction, between
moderately rough and highly rough surfaces. In the quasi-static setting, F1 can be
neglected, as we are studying a system evolving at infinitesimal speed (or, equivalently,
we assume infinite relaxation time), thus the constitutive law for linear viscoelastic
behavior (2.33) becomes identical to that of linear elasticity, (2.28), and viscous effects
do not show up. Using large values of h0, we limit ourselves to micro-scale roughness,
disregarding roughness at the nano-scale, and we are in a setting in which adhesive
forces should be negligible, as stated in [Per01b], thus, F3 can also be neglected, and
we will mathematically characterize F2 and quantify its influence.

5.3.1 Experimental setting and results

In the unconstrained case, a prescribed displacement of the top of the cube results
in the same displacement of the bottom face (as in a rigid body translation), and we
observe the same behavior if we use a flat surface as obstacle. Due to the contact
constraints and to the surface roughness, the solution of Problem B is a configuration
of the cube in which the elastic shear force induced by the displaced top is balanced by
the sum of the forces transferred by the rigid asperities on the bottom side of the cube.

Our experiments are subject to some feasibility limits. As explained in Section 5.1,
we investigated the influence of the mesh size on the experimental results. We believed
this mesh size had to be related only to the lattice constant of our rigid obstacles, but
we found that there is a strong correlation between the convergence of our results
and the rms roughness h0. As it turns out, for datasets with h0<0.3 mm, the needed
mesh size of the elastic cube is one eighth of the obstacle lattice constant, and this
implies that, for obstacles which are represented by 300×300 points, we need to
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solve a non-smooth contact problem with approximately 45M unknowns. We note
that such computations are possible only thanks to our parallel implementation of an
optimal multi-grid solver (c.f. [Kra09]), but one single complete shear test, performed
on 2048 processors, can last up to 24 hours. For this reason, we decided to perform
a limited amount of simulations for such finer meshes, and studies of variance for
intra-set measurements are performed only for coarser meshes.

Another limitation to our approach comes from the fact that we employ a linear
elastic material, but to obtain measurable friction forces on almost smooth surfaces
(h0 ≈ 0.0001 m ≈ δO ), we need to apply a large load on top of the cube. Thus, we
decided to impose a fixed displacement for all experiments, and based on the expe-
rience we earned on the normal load experiments, we set the normal displacement
to 9 mm, which results in an area of contact larger than 20-30% for all datasets. We
stress again that we are using a purely elastic material law, with infinite yield stress:
thus no viscosity or plasticity effect will be produced.

The surface datasets are those described in Section 5.1, and the Poisson’s ratio for
all tests is 0.45.

General trends

We will treat every dataset separately and describe its results in a separate section, but
some trends are common to all samples.

The mesh size has a larger influence on the results of the shear tests, than on those
of the normal load experiments. This is due to the fact that the final configuration in
the shear tests highly depends on the frictional response, because for sufficiently large
friction forces, the trailing part of the bottom face of the cube (the so-called “tail” of
the footprint) tends to detach from the obstacle: larger friction forces correspond to
bigger tails, thus to smaller areas of contact. This also means that the area in which
indenting forces are applied is smaller and, locally, much larger micro-forces (which
can cause fretting and cracks) can be predicted. These effects are relevant especially
for surfaces with small h0, as the one used for the experiments shown in Figure 5.15

As it can be expected and is well-known from practice, in shear tests the stress
concentrates in the front part of the footprint. Locally, around each asperity, the front
part of the contact is weaker, because the elastic surface is pulled away from the rigid
obstacle, whereas in the rear part, stress is larger, because the two surfaces are pushed
together. These effects are relevant especially for surfaces with large h0, as the one
used for the experiments shown in Figure 5.14.

Dataset A and the influence of root mean square roughness

As already stated, Dataset A serves the purpose of determining the influence of the root
mean square roughness h0 on the contact area and on the friction force. It also shows
clearly that the discretization size of the elastic cube must be chosen considering h0.
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Figure 5.14. Bottom side of the elastic cube at the end of shear tests performed with
different meshes, for a surface with h0 = 710 µm. Even with δΓC

= δO (top left
image), the asperities of the rough surface block the cube, which is deformed. By
increasing the mesh density by two (top right), we predict a final configuration which
is already qualitatively identical to the one obtained with δΓC

= 1/4δO (bottom left)
and δΓC

= 1/8δO (bottom right). Blue areas are not in contact with the rough surface.



110 5.3 Computation of elastostatic friction by means of shear tests

Figure 5.15. Bottom side of the elastic cube at the end of shear tests performed with
different meshes, for a surface with h0 = 53 µm. With δΓC

= δO (top left image), the
cube slides freely, undergoing only small deformation. With δΓC

= 1/2δO (top right),
a detached region (in blue) is visible. Increasing the mesh density, friction becomes
larger and the detachment of the cube from the obstacle grows bigger, because of the
increased deformation (bottom left image is obtained with δΓC

= 1/4δO , and bottom
right with δΓC

= 1/8δO ).
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Quantitative Analysis Two phenomena can be observed, performing the experiments
on Dataset A. First, the area of contact at the end of the normal test, shown in the
top plot of Figure 5.16, shows a clear trend: it decreases monotonically with respect
to h0. Shear tests, instead, require sufficiently fine meshes, because for very small
values of h0, results are misleading when δΓC

is 1/2δO or larger, and this can be
observed in Figures 5.16 and 5.17. We studied the full range of h0 for a mesh size
of 1/4δO . To interpolate the predicted value of the friction coefficient with respect
to h0 we employed MATLAB’s function polyfit and fitted a quadratic polynomial,
which attains a maximum friction value at h0 = 2.36 · 10−4 m.

For the feasibility limits described in Section 4.3.3, we studied only a subset of
the dataset with a mesh size of 1/8δO . Quantitatively, results differ more relevantly
for smaller than for larger values of h0 and this can be seen in Figures 5.16 and 5.17.
Based on the previous observations, we again fit a quadratic polynomial to the resulting
friction and observe larger values for small values of h0. The maximum value of this
polynomial is attained at h0 = 2.07 · 10−4 m. We speculate that for values of h0 which
are smaller than those we studied, a much finer mesh would have to be employed, but
we recall that with that type of roughness, adhesion would not be negligible anymore.
We stress the fact that larger friction coefficients obtained on finer meshes influence the
area of contact of the sheared configuration, since it can make the detached footprint
tail larger, as observed in Figure 5.15.

The contact type can vary significantly when we solve problems for obstacles span-
ning more than one order of magnitude for h0. A surface with h0 ≈ 10−4 m is smooth,
compared to one for which h0 ≈ 10−3 m. With the same imposed displacement on top
of the cube, the contact for the former is almost complete (neglecting the detached
tail), whereas for the latter it happens in small, fragmented areas. The vertical reac-
tion force opposed by smooth surfaces is large, because of wide almost flat areas, and
the horizontal force produced by the asperities will be small, compared to the normal
load applied on top of the cube. Nevertheless, the frictional response is significantly
different from zero even for surfaces with h0 ≈ δO .

Statistical Analysis For the computed friction coefficients and areas of contact, we
studied the coefficients of variation (computed as the ratios of the standard deviation
to the mean value of a distribution) and we found it to be less than 3% across the
whole range of h0. These results are listed in Table D.1 of Appendix D. We recall that
the variance tests were done on the cube with mesh size 1/2δO : ten surfaces with
statistically equivalent roughness parameters were created and the same experiment
was performed on each of them.
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Figure 5.16. Top: Real area of contact for normal load test preceding shear phase,
showing a clear trend for all refinement levels. For small values of h0, the contact
is almost complete, whereas for large values it reaches 15% of the nominal contact
area. Bottom: Real area of contact after shearing test. For finer meshes, the computed
frictional resistance force is larger, and this results in a larger detached footprint tail,
which diminishes the total area of contact.
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Figure 5.17. Friction computed for shear tests, varying the root mean square rough-
ness of the obstacle and the mesh size of the elastic cube.

Dataset B and the influence of Hurst exponent

As described in Section 5.1, all surfaces belonging to Dataset B have the same statistical
characteristics, except for the Hurst exponent H, which assumes values ranging from
0.5 to 0.9.

Quantitative Analysis With respect to Dataset A, we observe that refining the mesh
does not change the predicted behavior: trends are correctly identified already for
the mesh size of 1/2δO , and results only suffer a minor discretization error, when
compared to those obtained with a mesh size of 1/4δO . This can be observed in
Figure 5.18, where we took one surface for each Hurst exponent and compared the
results obtained with two differently mesh step-sizes.

We find friction to be monotonically increasing with respect to H, as it can be ob-
served in Figure 5.19. This effect seems to be a direct consequence of different sizes
of the area of contact, shown in the top plot of Figure 5.19: for smaller H (larger D f ),
the amount of microscopic asperities on the surface is larger, thus the contact is frag-
mented into small areas, which act with weaker intensity on the cube’s elastic surface.
When we fit a quadratic polynomial through the mean values of µ of every subgroup
we obtain an approximation, which is visible in Figures 5.18 and 5.19.
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Statistical Analysis To study the uncertainty, we again employ ten different realiza-
tions of the random surfaces for each parameter setting and the mesh size of the elastic
cube is 1/2δO , and we obtained coefficient of variations which are less or equal to 3%
for both friction and area of contact, these results are listed in Table D.2 of Appendix D.

Dataset C and the influence of the short distance cut-off wave vector

We recall that in Dataset C, we reduce the short-distance cut-off vector. To do so, we
simply filter out high frequencies of the PSD. As a consequence, h0 is decreased. The
resulting range of the root mean square roughness is listed in Table 5.1: the highest
deviation we obtain from the original h0 is less than 2%, and it is obtained for q1 =
q̂1/8.

Quantitative Analysis The low-pass filter influences both µ (bottom plot of 5.20) and
A (top plot of Figure 5.20). By cutting high frequencies off, we smoothen the surfaces,
filtering out small asperities. This reduces the rms roughness and enlarges the area of
contact, as visible in Figure 5.20, because the fragmentation due to micro-asperities
is eliminated, and contact happens in big smooth islands, or “patches”. Friction coef-
ficient is affected by the filtering too, and for narrower powers spectral densities, we
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Figure 5.18. Friction computed for shear tests on Dataset B, varying the mesh size of
the elastic cube.
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obtain larger friction coefficients, as seen in Figure 5.20.

Statistical Analysis Results collected for the subgroups with the smallest cut-off wave
vectors show larger variances and coefficients of variations, as listed in Table D.3 of
Appendix D, and this can be observed for both measured quantities, friction and real
area of contact. We give an interpretation of this phenomenon according to the theory
of random, gaussian signals.

The results of Dataset C show that low-pass filtering has a relevant influence on
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Figure 5.19. Top: Measured real area of contact for Dataset B. Left: The real area of
contact fraction for the final (sheared) configuration of our numerical experiments.
Each box represents a subgroup of ten specimens with same statistical measures.
Right: The average area of contact for each subgroup. Bottom: Friction results for
Dataset B. Left: Box plot of the computed friction coefficient µ, obtained as the ratio
between horizontal and vertical forces induced by the displacement of the top of the
cube. Each box represents a subgroup of ten specimens with same statistical mea-
sures. Right: Average friction coefficient µ for the different subgroups and quadratic
fit.
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the simulations, and the differences in the results of the four subgroups can not be ex-
plained in terms of the reduced h0, for which the variation is less than 2%. We suggest
an interpretation according to the theory of Nayak, presented in Section 3.1, and to
some observations about variance of the numerical results, made in [YAM12]. We com-
puted the value of Nayak’s parameter α = m0m4/m

2
2: for every subgroup of Dataset

C, and the results are listed in Table 5.3. We computed the summit heights probability
densities for the four subgroups and obtained the results visible in Figure 5.21, where
limit distributions for α → ∞ and α → 1.5 can also be observed. We recall that for
α → ∞, that is, for an infinite bandwidth, the summit heights would be distributed
according to a normal distribution and that for an isotropic random surface α ≥ 1.5.
The case of α→ 1.5 is the one giving rise to the distribution which deviates the most
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Figure 5.20. Top: Computed real area of contact for Dataset C. Left: The real area of
contact fraction for the final (sheared) configuration of our numerical experiments.
Each box represents a subgroup of ten specimens with same statistical measures.
Right: The average area of contact for each one of the four subgroups in a semilog-
arithmic plot. Bottom: Friction results for Dataset C. Left: The friction coefficient µ
for different short distance cut-off wave vectors q1. Each box represents a subgroup of
ten specimens with same statistical measures. Right: The mean values of the friction
coefficients for the different subgroups.
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q1/q̂1 m0 m2 m4 α

1 5.001 · 10−7 4.146 3.055 · 109 88.895

1/2 4.984 · 10−7 2.624 5.039 · 109 36.469

1/4 4.939 · 10−7 1.620 8.308 · 108 15.627

1/8 4.831 · 10−7 0.958 1.367 · 107 7.1916

Table 5.3. Principal power spectrum moments and bandwidth parameter α defined
in (3.63), for the four subgroups of Dataset C.

from the normal distribution. In Figure 5.21 is observable how the low-pass filtering
of the power spectrum increases the probabilities of high peaks of the corresponding
surface.

We suppose that the presence of very high smooth summits makes long-distance
interactions between summits more relevant, since such interactions depend on the
reciprocal positions of the peaks, which is random and varies strongly in the different
realizations of the random process generating surfaces. These variations are a source
of uncertainty in our global measures (area of contact and shear resistance). Further
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Figure 5.21. Probability density function of summit relative heights (psum(ξ∗)) for
surfaces of Dataset C, compared to the perfect Gaussian obtained for α→∞ and the
limit distribution obtained for α→ 1.5.
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evidence of the importance of long distance interactions is provided in [YAM12], where
a deeper analysis of cut-offs is also performed, and the resulting surfaces are classified
as representative or non-representative, based on how close their height distribution
is to a Gaussian probability distribution. The representativity of surfaces which are
distant from a Gaussian distribution is low, meaning that many specimens are needed
to compute a reasonable mean value for rough contact quantities, and this is exactly
what happens for surfaces with narrow bandwidths, that is small ratios of q1 to q0.

5.3.2 Conclusive remarks

In this section, we showed that all roughness parameters have a significant influence
on area of contact and friction for shear tests. This should be kept in mind, when
performing real experiments, and all roughness parameters should always be listed,
or at least, computable (by means of Fourier analysis on a digitalized sample of the
real surface, or with other measures). From a numerical standpoint, much attention
has to be paid to the choice of the mesh step size, which has to be sufficiently small,
for small values of h0. We also proved that wave vectors with high frequencies have
an importance for both the mean and the variance of the computed quantities, thus,
in simulations and in practical experiments, the full spectrum should be employed, or
measured.

A comparison of our results to existing analytical models of static friction (e.g.
[CEB88], [MF94], and [KE04; LET10]), or to analytical models of kinetic friction (such
Persson’s one, see (3.170)), is hard, as the premises of other models are different (such
as plastic deformations of asperities, or viscoleastic materials) and a full study of the
influence of each roughness parameter, to the best of our knowledge, has not been
done by other studies.
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5.4 Verification

The classic paradigm of computational science is composed of three phases:

CS1 Development and implementation of a model.

CS2 Validation of results against known theory.

CS3 Verification of numerical predictions with real world data.

Phase CS1 was done in the very beginning of this work, and it is obviously the basis
from which the results could be obtained. Phase CS2 was mostly performed for the
normal load experiments, where theories which are set in frameworks comparable to
the one within which we performed our experiments are present and well established.
For phase CS3, we needed to find large datasets of results, obtained with real exper-
iments, in labs, or controlled settings. For the same results, we also needed to have
access to a good characterization of the rough surfaces, in terms of PSD. Since one of
the fields in which friction is more relevant is the automotive industry, a natural choice
seemed to be the tyre-road interactions. We know that we are not in the perfect setting
for studying elastomeric response to excitation, since we are neglecting temperature
and viscosity effects, but at the same time, we think it is interesting to understand if at
least a part of the tyre-road friction can be explained by the purely elastic interactions
of rubber with the hard corrugated substrate, which is supposed to undergo negligi-
ble plastic deformations, as it is harder than low excited rubber by three orders of
magnitude, c.f. [TZU10]. As we have pointed out, our samples have statistical charac-
teristics similar to road-like surfaces, especially those surfaces which are in the middle
of the h0 range of Dataset A. Thus, we searched for some valuable, unbiased and freely
accessible data of friction on roads.

5.4.1 A real world example: simplified tyre-road dynamics on wet asphalt

We found suitable studies in [HPB+00], [Ame08], and [Mee09], which are publi-
cations related to studies commissioned by different American departments of trans-
portation. In [Mee09], the skid number SN40R, which is a measure of the friction
coefficient on a wet road, was computed. As we will explain better in Section 5.4.2,
wetting of surfaces is possibly accountable for the loss of hysteretic response of rubber
sliding on asphalt, thus, a slightly wet surface is somehow more similar to our setting,
since it reduces the bulk of the tyre treads, but keeps the elastic interactions with large
asperities unaffected. Therefore, we compared the results we obtained for surfaces
which are similar to the ones used in [Mee09] (we use the surfaces of Dataset A), and
obtain the result shown in Figure 5.22. Even though there are some differences, our
results are compatible with measured data, with a tendency to give higher values of
friction, but a recognizable trend. Notice also that the maximum friction measured on
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roads, is located close to where we found it, near a mean profile depth of 0.8 mm, or
a root mean square roughness of 0.2 mm.

Obviously, information about the road surfaces is incomplete, and the origin of the
discrepancy between the values could stem from this factor, from a different loading
condition, or from the difference between the values of static and dynamic friction
coefficients, because in the absence of viscosity, static friction coefficient is usually ex-
perimentally found to be larger than the kinetic one. However, considering that we
have not taken viscous effects into account, but a part of them should be present in
data collected in real experiments, it is possible that the amount of friction due to
elastic interactions that we compute overestimates the real value. We anyhow con-
sider the results encouraging, and we believe they demonstrate that our approach is
indeed reasonable and can predict, with acceptable limitations, realistic results. We
remark that in all publications mentioned above, the friction coefficient on wet roads
is measured between 0.4 and 0.65. For this reason, in next section we compare our
assumptions and our results to the theory developed in [PTAT04; PTAT05], for wet
tyre-road interactions.

For a deep analysis of the influence of friction on tyre-road dynamics, the interested
reader is referred to [Pac06] and [SG04] for two models which are used as reference
by the automotive industry.

5.4.2 Comparison with analytical theory

The loose term aquaplaning (or hydroplaning), refers to the loss of control experienced
while driving a vehicle on a very wet road. The most common and important effects of
aquaplaning (c.f. [Ame08]) are

E1 severe reduction of braking force, with consequent increase of braking distance;

E2 loss of traction power, with consequent impossibility of steering, and controlling
the vehicle.

Aquaplaning starts when the tire grooves can not channel the water present on the
road out of the contact area, and three major factors concur in triggering this situation,
c.f. [HPB+00]:

F1 the size and the composition of the road texture;

F2 the height of the water present on the road;

F3 the rolling speed of the wheel.

Usually, the phenomenon is analyzed empirically, based on road tests, and the
purposes of the studies are usually to design better road surfaces (understanding the
best texture and composition to use for road pavement), better tyres (maximizing the
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Figure 5.22. Top: Results obtained on Dataset A, plotted against Mean Profile Depth
of surfaces. Bottom: Measurements obtained on two different types of roads in New
Jersey, image taken from [Mee09]. The skid number SN40R is obtained multiplying µk

by 100. Note the different ranges for the MPD between numerical and experimental
surfaces.

channelling capacity of the grooves), and to give advices to drivers (in terms of limit
speeds where aquaplaning begins, and of practices to avoid when asphalt is wet).

Analytical models describing aquaplaning are, to the best of our knowledge, rare,
and consider hydrodynamical effects which are beyond the scope of this work, but the
interested reader can find a very good reference in [CYA+01].

We will focus on a simplified model which links roughness to the wet road dynam-
ics, but in conditions where aquaplaning does not start, and E1 and E2 are limited in
magnitude. The model is described in [PTAT04], [PAT+04], and [PTAT05]. It is based
on Persson’s theory for friction of elastomers on rough surfaces, and takes into account
the power spectrum of typical road surfaces. Note that in terms of friction reduction,
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it is commonly accepted that at slow velocities, the drop in the friction coefficient for
a wet surface is approximately 20-30%, c.f. [MW83] and [Hei03].

The model is based on three assumptions:

A1 the power spectrum of the road surface is decreased over the q-domain, because
tyre rubber seals water “pools” present on the surface (preventing water from
leaking out), and short wavelength details are smoothened out;

A2 the friction reduction experienced on wet surfaces is due to reduction of the bulk
modulus, and this reduction is caused by the smoothing of short wavelength
asperities, which usually excite rubber and dissipate energy internally to it, cre-
ating most of the tyre-road friction;

A3 hydrodynamic behavior of water can be neglected, because of the speed at which
the contact happens: water acts like a rigid substrate, when the pools containing
it are sealed by the tyre rubber.

It is interesting to notice that the study we used to validate our results in Section 5.4,
is based on data collected on wet surfaces, in a situation similar to the one assumed by
this very model.

Even though our numerical experiments do not account for viscosity, we can par-
tially test the assumptions A1-3, by means of a simple experiment: we can simulate
the presence of various water coverages on road-like surfaces and use the wet surface,
in which water acts as a solid wall, to perform our shear tests. In this way, we will
be able to understand if the presence of water has an influence on the static friction
measured in the shear tests.

Figure 5.23. Two-dimensional example of water filling. The rough profile is repre-
sented by the black line, the light blue dashed line is the initial water with constant
depth, the solid blue line is the resulting water configuration. Surface pools are filled
with water up to the maximum depth, or to the maximum level of water prescribed
by the user.
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To simulate the presence of water on the surfaces, we implemented an algorithm
which fills all pools which have a depth d smaller than a user-defined value dmax.
Notice that not all water surfaces will have the same height, as there will be water
pools standing on top of “hills”, and other ones will be at the very bottom of the rough
surface. The algorithm simply starts assuming that there is an equal amount of water
dmax over all the surface, and then removes water which is higher than the boundaries
of the pools in which it is contained. Figure 5.23 clarifies the algorithm for a simple
two-dimensional example. In Figure 5.24 it is shown the limit water distribution we
get for a typical road-like surface: in such conditions, the total water coverage of the
surface is around 40%, and any added water will flow out of the surface. To simulate
water flowing out of the surface, but still be able to consider the complete specimen
wet, one can not simply impose that the water level at the boundaries is zero, because
this will dry pools on the boundaries, which in a periodic setting, should just be filled
like other pools. Thus, to remove excess water, we simulated the water configuration
on a much larger surface, in which we used our specimens as tiles, and built a 3×3-tiles
surface, on which we imposed zero-boundary conditions. Then, we took as final result
the water configuration on the central tile, and replicated it periodically to obtain the
obstacle used in our simulations.

A typical result of the algorithm can be observed in Figure 5.24, and in [PTAT04],
a result qualitatively equal to ours is shown for a scan of a real road surface, filled
numerically with water.

We simulated contact with a surface with parameters close to the ones measured in
[Lor12] for asphalt roads, thus we took a surface from Dataset A, with h0 ≈ 0.3 mm,
for which, in our shear tests, the static friction coefficient µ = 0.54. We will employ
the same load used in the shear tests of Section 5.3, hence, the displacement on top of
the cube will be 9 mm.

With the water limit distribution, we found the friction coefficient to be equal to
the dry case. This lead us to try to add more water to the system, simulating standing
water, as it can be encountered on very wet roads, or where puddles caused by pave-
ment depressions are present. To do this, we added periodic boundary conditions to
our water-road system. We simulated coverages of up to 80% of the projected area,
and the results for the static friction coefficients are shown in Figure 5.25. It can be
observed that the static friction coefficients starts to decrease, only when the covered
surface is more than 40%.

In a study of airplane accidents due to wet runways ([CAHS09]), commissioned
by the British Air Accidents Investigation Branch, the normal slipperiness due to wet
asphalt (the one we are concerned with in these experiments) is called viscous hy-
droplaning, and it is said that it can occur for water coverages with depths of less than
0.25 mm, and this is the mean value of the water pool depth we observe for cover-
ages around 60%. For deeper pools, the real dynamic hydroplaning is supposed to
start. We note that these two intervals roughly correspond to the intervals in which the
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Figure 5.24. Realistic self-affine rough surface covered with water, imposing zero-
boundary conditions on a larger domain. The total water coverage in this case is 40%
of the surface projected area.

computed elastic static frictional forces are or are not appreciably affected.

We propose an interpretation of these results. We know from the results of our
experiments, that the initial area of contact for the shear test, is ≈ 40%, thus, when
water covers a smaller fraction of the total rough surface, the wet areas do not enter in
contact with the elastic solid, a part for the smaller higher pools, which anyhow do not
prevent the interaction with large asperities. Only when the fraction of surface covered
by water is overlapping with the original area of contact, friction begins to decrease.

Thus, we can say that the purely elastic component of friction, for roads with no
water stagnation, is not influenced, and can not be accounted responsible for viscous
hydroplaning (normal slip due to wet roads). In contrast, when water is so much that
large asperities are covered (like on a flooded runway), it is possible that hydrodynam-
ics effects (which are not simulated here), can prevent elastic interactions, and lead to
total loss of traction and braking force.

If we now compare our results to those obtained in [PTAT04], it can be assumed
that the hysteretic, bulk, friction is responsible for most of the tyre-road resistance (the
friction coefficient for rubber sliding on dry asphalt is usually measured around unity),
and it could effectively be reduced by the water smoothing effect.
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Figure 5.25. Ratio of elastostatic friction coefficient on wet surface to coefficient on
dry surface, expressed as percentage, against water coverage. The limit coverage for
zero-boundary conditions is 40.45%. Larger coverages are obtained by stagnation
(periodic boundary conditions).

As a remark, we would like to compare the PSDs of the surfaces for different water
coverages, as it is done in [PTAT04]. If we measure the PSD of a rough surface which
is covered with water, we obviously observe a decrease over the whole q-space, as it
can be seen in Figure 5.26. This is clearly due to the presence of flat water surfaces.
Though, the differences in the PSD are not sufficient to explain the variation in the
friction coefficients: for example, for a 70% coverage, the friction coefficient is one
third of that measured for the dry surface, but the root mean square roughness is
0.1 mm, and with such a surface, according to our calculations, the friction coefficient
should be reduced by at most 10%. This inconsistency is caused by the PSD failing in
measuring the real effects of roughness, for surfaces which are not homogeneous.

5.4.3 Conclusive remarks

In this section, we compared our friction prediction to real-world data and to an an-
alytical model of tyre-road interaction in wet conditions, a setting in which water is
supposed to reduce the viscous response of rubber, but not to prevent contact of tyre
treads and asphalt.

The comparison of our results with the real world data seems to confirm that the
presence of small amounts of water on surfaces might drastically reduce hysteretic
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Figure 5.26. PSD of wet surfaces with different water coverages, notice that increasing
the coverage, the PSD decreases over all the q-space.

rubber effects, and that our experiments possibly overestimates slightly the amount of
friction produced by elastic forces.

Though, it seems that the simple measure of the PSD of the wet surface is not
sufficient to predict the new friction coefficient, as it homogenizes the description of a
surface in which roughness varies locally.

We remark that rubber sliding on dry asphalt has a friction coefficient of 0.9-1
(c.f. [Com11], [Pac06], or any mechanical engineering, or automotive engineering
book), and the difference in magnitude between this value and the one which we
compute can therefore partially be explained in terms of viscous energy dissipation, a
phenomenon we do not include in our experiments by design.



Chapter 6

Conclusions

In this work, we showed that a part of static friction can be numerically computed by
means of a Finite Element Simulation of an iterative version of the classic Signorini
contact problem.

We studied the influence that different roughness parameters have on macroscopic
contact features such as friction and real area of contact, and we empirically computed
bounds on the uncertainty of the values we obtained.

We studied the effects of different numerical choices, such as the mesh step size and
the spatial dimension of the problem, as well as the influence of the chosen Poisson’s
modulus on the results.

We found good agreement of our results with state-of-the-art theories for rough
contact at low pressures, whereas for large pressures, our results tend to diverge from
analytical models.

We gave our interpretation of observed phenomena, and described the results by
means of the coefficient of a polynomial function, which is capable of interpolating
results of normal loading experiments with a sufficient accuracy, especially for certain
acceptably large ranges of roughness, domain size, and elasticity parameters.

We compared the results obtained in our experiments to real world data of tyre-
road interactions, obtained for settings in which our assumptions are partially valid,
that is, where viscosity and plasticity have smaller influence. Our results slightly over-
estimate measured data, but the trends are clearly recognizable, even if information
about the real experiments is not complete. We find a reasonable approximation of the
limit quantity of water needed to start the phenomenon of aquaplaning, which finds
confirmation in reports and measurements on the phenomenon.

We compared the same results to an analytical theory of tyre slipping on wet roads,
and found that the validities of our approach and of the analytical theory rely on a
similar set of assumptions, and thus, our approach can quantify the amount of friction
produced by purely elastic interactions with a reasonable accuracy.

Given the promising results, many possibilities are open for future development of

127



128

this theory. Surely, several other numerical experiments will be performed, employ-
ing different material laws, and experimental settings, but further development of our
model will be possible only with experimental data collected in controlled environ-
ment, with information about the surfaces and the materials involved.



Appendix A

Relative radii of curvature R′ and R′′

In this section we derive closed forms for the relative radii of curvature R′ and R′′ used
in Section 2.3. We proceed step by step, following [Her82], [Joh85], and [LLP86]. For
the sake of completeness, we shall add the steps of the proof which are not present in
any of the references we cited.

Let us again recall we are concerned with two smooth curved paraboloids in con-
tact, with equations

z1 =
1

2R′1
x2

1 +
1

2R′′1
y2

1

z2 =−
�

1

2R′2
x2

2 +
1

2R′′2
y2

2

�

We define h as the separation between the two surfaces, therefore h = z1 − z2. Notice
that x1 and y1 form an angle ϑ with x2 and y2 respectively, whereas z1 ≡ z2. We can
now transform the coordinates in which we express h to a system x , y, z, where x form
angles α and β with x1 and x2 respectively. This corresponds to rotating the local
coordinate systems, and the transformations are

¨

x1 = x cosα+ y sinα
y1 =−x sinα+ y cosα

¨

x2 = x cosβ + y sinβ
y2 =−x sinβ + y cosβ

(A.1)

which allow us to rewrite z1 and z2 as

z1 =
1

2R′1

�

x2 cos2α+ x y cosα sinα+ y2 sin2α
�

−
1

2R′′1

�

x2 sin2α− x y cosα sinα+ y2 cos2α
�

(A.2)
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and

z2 =
1
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x2 cos2 β + x y cosβ sinβ + y2 sin2 β
�

−
1

2R′′2
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. (A.3)

We can therefore write h in the form

h= z1− z2 = Ax2+ B y2+ C x y (A.4)

with
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which, with the help of trigonometric transformations, become

A=
1

4

�

1

R′1
+

1

R′2
+

1

R′′1
+

1

R′′2
+

�

1

R′1
−

1

R′′1

�

cos 2α+

�

1

R′2
−

1

R′′2

�

cos2β

�

B =
1

4

�

1

R′1
+

1

R′2
+

1

R′′1
+

1

R′′2
−
�

1

R′1
−

1

R′′1

�

cos 2α−
�

1

R′2
−

1

R′′2

�

cos2β

�

(A.6)
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The only condition we impose, is that C = 0, so that (A.4) can be rewritten as

h= Ax2+ B y2 (A.7)

It can be observed in (A.6.3) that

C = 0 ⇔
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(A.8)

and this condition is satisfied by the triangle shown in Figure A.1, for which we can
compute the length of the side w as

w = v cos2α+u cos2β =
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Figure A.1. The triangle satisfying (A.8).

but w must also obey the law of cosines for the triangle it belongs to, that is:
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therefore, using (A.9) and exploiting properties of cosine, we can state the condition
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and, it is easy to see that
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Finally we can define an angle τ, such that

cosτ=
A− B
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(A.13)

and we get the closed forms
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The principal relative radii of curvature are then defined as

1
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= A,
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= B, (A.15)

hence
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Appendix B

Factor k for rough surface
generation

We want to investigate the validity of the Persson’s formula 1 for the scaling factor k of
the isotropic power spectral density which is stated in [Per01b] as

C(q) = k
�

q

q0

�−2(H+1)

, if q0 < q < q1, (B.1)

where

k =
H

π

�

h0

q0

�2

. (B.2)

Our considerations will show that this formula for k is a limit case of a refined,
more general one taking into account the roll-off effect at q0, as well as the upper (q1)
and lower (qL) cut-off wave vectors.

As introduced in Section 3.2, it holds

C(q) =















k , if qL ≤ q < q0,

k
�

q

q0

�−2(H+1)

, if q0 ≤ q < q1

0 , else

.

From Section 3.1 we know, by (3.10) that

h2
0 = 2π

∫ ∞

0

qC(q) dq

1We note that Persson’s definition of h0 in [Per01b] is different from ours by a factor of 2, since he
defines h2

0/2= 〈h
2〉. For the sake of consistency, in this Appendix we will conform to our notation, where

h0 = 〈h2〉.
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Directly from definition we have
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Substituting this result in the RHS of (3.10), we get

h2
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Herein we see that as long as qL 6= q0 there is a permanent influence of the plateau
region on h0. Now we can find the value of k from (B.4).
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which is the value ensuring that all surfaces possess the prescribed h0.
If we approximate (B.4) for the case q1� q0, we get
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0 ≈ πkq2
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and the resulting solution for k is
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If qL and q0 are close, the influence of the plateau vanishes. In case qL = q0, from
(B.4) the mean square roughness of the surface becomes

h2
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πkq2
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(B.8)

If we now also add q1� q0 we get approximately

h2
0 ≈

2πkq2
0

H
. (B.9)

Consider now (B.5) in the case qL = q0 where the power spectral density below q0

does not influence h0 (as assumed in [PAT+04]). Then we get
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Assuming additionally that q1 � q0 we get the approximated value of k suggested in
[Per01b]

k ≈
H

π

�

h0

q0

�2

. (B.11)

To compute the error induced by the approximated value of k, we computed
p

m0

for the PSD of surfaces with different Hurst exponents, keeping the other parameters
identical, as in Dataset B (c. f. Section 5.3). In Figure B.1 one can see that with the k
proposed by Persson, h0 is different from the one we prescribed, and this difference is
clearly correlated to H. Relative deviation can be as high as 100%, as H → 1. If we
use our corrected factor k, the h0 value we get is exactly the same we prescribed. This
deviation can be explained by the fact that in the surfaces we generate qL 6= q0.
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Figure B.1. Comparison of the computed h0 value on numerically produced surfaces
with different Hurst exponents, for corrected and uncorrected (Persson’s approxima-
tion) factor k.
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Appendix C

Computed coefficients of the
interpolation polynomials

In this appendix, we list all the parameters we found for the polynomial interpolation
given in (5.4), which relates real contact area fraction and normalized pressure for
normal load experiments, along with the error ε= 1 − R2 scaled by a factor 104, to
display its first significant digits. In each captions, the numerical setting is reported.

h0 Π Ω Λ κ 104 · ε
-4.27 -0.06 0.45 -1.32 1.82 0.01
-4.02 -0.07 0.47 -1.34 1.82 0.07
-3.77 -0.14 0.74 -1.65 1.93 0.25
-3.52 -0.32 1.07 -2.02 2.16 0.07
-3.27 4.31 -3.24 -1.87 2.51 0.35
-3.15 -20.68 14.30 -6.34 2.86 3.42

Table C.1. Dataset A. Cube M, δΓC
= 50 µm, ν = 0.45.

h0 Π Ω Λ κ 104 · ε
-4.27 -0.05 0.38 -1.19 1.73 0.01
-4.02 -0.05 0.38 -1.19 1.73 0.06
-3.77 -0.11 0.65 -1.58 1.89 0.14
-3.52 -0.33 0.77 -1.82 2.13 0.30
-3.27 -9.78 8.66 -4.97 2.60 2.25
-3.15 50.24 -25.47 -0.08 2.36 1.75

Table C.2. Dataset A. Cube M, δΓC
= 25 µm, ν = 0.45.
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h0 Π Ω Λ κ 104 · ε
-4.27 -0.05 0.40 -1.23 1.77 0.01
-4.02 -0.07 0.46 -1.28 1.74 1.01
-3.77 -0.13 0.69 -1.58 1.88 0.18
-3.52 -0.12 0.64 -1.78 2.10 0.37
-3.27 0.64 -1.22 -1.99 2.42 0.22
-3.15 10.02 -6.24 -2.32 2.54 4.53

Table C.3. Dataset A. Cube L, δΓC
= 50 µm, ν = 0.45.

h0 Π Ω Λ κ 104 · ε
-4.27 -0.12 0.63 -1.44 1.78 0.21
-4.02 -0.15 0.70 -1.49 1.78 0.45
-3.77 -0.72 1.60 -2.01 1.91 0.10
-3.52 -0.23 0.77 -1.89 2.13 0.10
-3.27 4.26 -5.37 -0.83 2.36 0.26
-3.15 9.80 -9.36 -1.21 2.44 1.21

Table C.4. Dataset A. Cube XL, δΓC
= 50 µm, ν = 0.45.

h0 Π Ω Λ κ 104 · ε
-4.27 -0.06 0.48 -1.44 1.93 0.04
-4.02 -0.06 0.49 -1.44 1.92 0.05
-3.77 -0.08 0.56 -1.56 2.00 0.06
-3.52 -0.10 0.66 -1.82 2.21 0.03
-3.27 0.16 -0.10 -2.13 2.60 0.07
-3.15 -1.70 1.76 -3.42 2.80 0.24

Table C.5. Dataset A. Cube M, δΓC
= 50 µm, ν = 0.05.

h0 Π Ω Λ κ 104 · ε
-4.27 -0.07 0.56 -1.58 2.02 0.05
-4.02 -0.09 0.60 -1.61 2.01 0.06
-3.77 -0.12 0.74 -1.80 2.11 0.10
-3.52 -0.23 1.00 -2.18 2.36 0.07
-3.27 0.90 -0.65 -2.45 2.79 0.21
-3.15 -1.57 0.79 -3.50 2.94 0.32

Table C.6. Dataset A. Cube M, δΓC
= 50 µm, ν = 0.25.
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H Π Ω Λ κ 104 · ε
0.50 -8.03 8.38 -6.65 3.19 0.76
0.60 2.89 -1.75 -2.99 2.81 0.52
0.70 -1.70 1.76 -3.42 2.80 0.24
0.80 1.20 -1.54 -1.61 2.48 0.30
0.90 -0.03 0.23 -2.15 2.49 0.10

Table C.7. Dataset B. Cube M, δΓC
= 50 µm, ν = 0.05.

H Π Ω Λ κ 104 · ε
0.50 112.91 -48.32 1.09 2.80 0.75
0.60 13.62 -9.45 -1.92 2.69 1.70
0.70 -20.68 14.30 -6.34 2.86 3.42
0.80 2.34 -2.52 -2.01 2.50 0.98
0.90 -2.33 3.07 -3.53 2.59 3.11

Table C.8. Dataset B. Cube M, δΓC
= 50 µm, ν = 0.45.

q1/q̂1 Π Ω Λ κ 104 · ε
1.00 -20.68 14.30 -6.34 2.86 3.42
0.50 2.89 -2.90 -2.25 2.52 1.00
0.25 13.58 -12.43 0.88 2.22 2.80
0.12 2.04 -1.97 -1.73 2.47 2.17

Table C.9. Dataset C. Cube M, δΓC
= 50 µm, ν = 0.45.
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Appendix D

Statistical analysis of shear tests

In this section, we give details about the statistical analysis performed on the results
of the shear tests presented in Section 5.3, to compute static friction. For the listed
quantities (friction coefficient µ and relative area of contact A/A0 = A′), mean values
(indicated by the bar above the relative symbol), standard deviations (denoted by s)
and coefficients of variation (s∗) are shown. All experiments were performed with an
elastic cube of edge length L and δΓC

= 1/2δO (50 µm), hence, mean coefficient of
friction and area of contact are not accurate for small values of h0.

log h0 -4.14 -4.02 -3.89 -3.77 -3.64 -3.52 -3.39 -3.27 -3.14

µ̄ 0.2508 0.1737 0.2312 0.2919 0.3534 0.4282 0.4634 0.4401 0.3275

sµ 0.0024 0.0043 0.0024 0.0059 0.0029 0.0042 0.0070 0.0054 0.0056

s∗µ 0.0096 0.0248 0.0102 0.0202 0.0083 0.0097 0.0150 0.0124 0.0172

Ā′ 0.6837 0.6535 0.5490 0.4577 0.3858 0.3180 0.2689 0.2253 0.1535

sA′ 0.0018 0.0040 0.0033 0.0054 0.0027 0.0043 0.0039 0.0029 0.0044

s∗A′ 0.0026 0.0061 0.0061 0.0119 0.0069 0.0134 0.0147 0.0129 0.0289

Table D.1. Results obtained with experiments performed on Dataset A.
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H 0.5 0.6 0.7 0.8 0.9

µ̄ 0.2848 0.3275 0.3692 0.4020 0.4291

sµ 0.0048 0.0056 0.0037 0.0064 0.0067

s∗µ 0.0169 0.0172 0.0101 0.0158 0.0157

Ā′ 0.1327 0.1535 0.1707 0.1891 0.2210

sA′ 0.0039 0.0044 0.0052 0.0044 0.0042

s∗A′ 0.0291 0.0289 0.0308 0.0232 0.0189

Table D.2. Results obtained with experiments performed on Dataset B.

q1/q̂1 1/8 1/4 1/2 1

µ̄ 0.4005 0.3925 0.3751 0.3692

sµ 0.0110 0.0063 0.0073 0.0037

s∗µ 0.0274 0.0162 0.0195 0.0101

Ā′ 0.2539 0.1980 0.1763 0.1707

sA′ 0.0110 0.0057 0.0068 0.0052

s∗A′ 0.0432 0.0290 0.0386 0.0308

Table D.3. Results obtained with experiments performed on Dataset C.
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