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Abstract

Technologies are changing the world around us, and education is not immune from

its influence: the field of teaching and learning supported by the use of Informa-

tion and Communication Technologies (ICTs), also known as Technology Enhanced

Learning (TEL), has witnessed a huge expansion in recent years. This wide adop-

tion happened thanks to the massive diffusion of broadband connections and to the

pervasive needs for education, highly connected to the evolution in sciences and

technologies. Therefore, it has pushed up the usage of online education (distance

and blended methodologies for educational experiences) to, even in lately years,

unexpected rates.

Alongside with the well known potentialities, digital-based educational tools come

with a number of downsides, such as possible disengagement on the part of the

learner, absence of the social pressures that normally exist in a classroom environ-

ment, difficulty or even inability from the learners to self-regulate and, last but not

least, depletion of the stimulus to actively participate and cooperate with lectures

and peers. These difficulties impact the teaching process and the outcomes of the

educational experience (i.e. learning process), being a serious limit and questioning

the broader applicability of TEL solutions. To overcome these issues, there is a need

of tools to support the learning process.

In the literature, one of the known approach to improve the situation is to rely

on a user profile, that collects data during the use of the eLearning platforms or

tool. The created profile can be used to adapt the behaviour and the contents

proposed to the learner. On top of this model, some researches stressed the positive

effects stimulated by the disclosure of the model itself for inspection purposes by

the learner. This disclosed model is known as Open Learner Model (OLM). The

idea of opening learners’ profile and eventually integrate them with external on-line

resources is not new and it has the ultimate goal of creating global and long-run



indicators of the learner’s profile. Also the representation aspect of the learner

model plays a role, moving from the more traditional approach based on the textual

and analytic/extensive representation to the graphical indicators that are able to

summarise and to present one or more of the model characteristics in a way that is

considered more effective and natural for the user consumption.

Relying on the same learner models, and stressing the different aggregation and rep-

resentation capabilities, it is possible to either support self-reflection of the learner

or to foster the tutoring process to allow proper supervision by the tutor/teacher.

Both the objectives can be reached through the graphical representation of the rel-

evant information, presented in different ways. Furthermore, with such an open

approach for the learner model, the concepts of personalisation and adaptation ac-

quire a central role in the TEL experience, overcoming the previous limits related

to the impossibility to observe and explain to the learner the reasons for such an

intervention from the tool itself. As a consequence, the introduction of different

tools, platforms, widgets and devices in the learning process, together with the

adaptation process based on the learner profiles, can create a personal space for a

potential fruitful usage of the rich and widespread amount of resources available to

the learner.

This work aimed at analysing the way a learner model could be represented in visual

presentation to the system users, exploring the effects and performances for learners

and teachers. Subsequently, it concentrated in investigating how the adoption of

adaptive and social visualisations of OLM could affect the student experience within

a TEL context. The motivation was twofold. On one side was to show that the

approach of mixing data from heterogeneous and not already related data sources

could have a meaningful didactic interpretations, whether on the other one was

to measure the perceived impact of the introduction on online experiences of the

adaptivity (and of social aspects) in the graphical visualisations produced by such

a tool.

In order to achieve these objectives, the present work analysed and addressed them

through an approach that merged user data in learning platforms, implementing a

learner profile. This was accomplished by means of the creation of a tool, named



GVIS, to elaborate on the collected user actions in platforms enabling remote teach-

ing. A number of test cases were performed and analysed, adopting the developed

tool as the provider to extract, to aggregate and to represent the data for the learn-

ers’ model. The GVIS tool impact was then estimated with self-evaluation question-

naires, with the analysis of log files and with knowledge quiz results. Dimensions

such as the perceived usefulness, the impact on motivation and commitment, the

cognitive overload generated, and the impact of social data disclosure were taken

into account.

The main result found by the application of the developed tool in TEL experiences

was to have an impact on the behaviour of online learners when used to provide

them with indicators around their activities, especially when enhanced with social

capabilities. The effects appear to be amplifies in those cases where the widget

usage is as simplified as possible. From the learner side, the results suggested

that the learners seem to appreciate the tool and recognise its value. For them

the introduction as part of the online learning experience could act as a positive

pressure factor, enhanced by the peer comparison functionality. This functionality

could also be used to reinforce the student engagement and positive commitment to

the educational experience, by transmitting a sense of community and stimulating

healthy competition between learners.

From the teacher/tutor side, they seemed to be better supported by the presen-

tation of compact, intuitive and just-in-time information (i.e. actions that have

an educational interpretation or impact) about the monitored user or group. This

gave them a clearer picture of how the class is currently performing and enabled

them to address performance issues by adapting the resources and the teaching (and

learning) approach accordingly.

Although a drawback was identified regarding the cognitive overload, the data col-

lected showed that users generally considered this kind of support useful. There

is also indications that further analyses can be interesting to explore the effects

introduced in the teaching practices by the availability and usage of such a tool.
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Chapter 1

Introduction & Aims of the work

This chapter offers an introduction to the field in which the present thesis is concerned with.

After a general overview of the impact that the adoption of Information and Communication

Technologies (ICT) has on the educational field, the context of the work is explored. As well as

presenting the main ideas and the aims of the thesis, the research topics that represented the

basis for the development of the experiments are also described.

1.1 Introduction

Technologies are changing the world around us, and education is not immune from its influence.

The diffusion of digital instruments and tools in classrooms, as well as in every kind of teaching

and learning experience for that matter, is quite evident to practitioners. Most teachers and

students use PCs, tablets and smartphones on a daily basis to search for news or educational

contents and more in general use the capabilities of ICT to manage information and produce

documents. Because of the above it is no longer possible to consider an educational experience

as such without taking into account the digital context in which it is taking place. This is

certainly true even when the teacher is promoting a very traditional, paper-and pencil driven

approach, as it has been observed that learners still rely and use everyday digital tools to

support and enhance their learning.

Another crucial aspect that has to be considered is the wide adoption of distance and

blended methodologies for educational experiences, which are enabled and supported by the

diffusion of digital tools and media. Unfortunately, besides these positive aspects, the broader

diffusion of digital-based educational tools comes with a number of downsides, such as possible

disengagement on the part of the learner, absence of the social pressures that normally exist in
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a classroom environment, difficulty or even inability from the learners to self-regulate and last

but not least depletion of the stimulus to actively participate and cooperate with lecturers and

peers, i.e. to engage in 1-to-1’s and teamwork activities.

For all of the above, the requirement for such tools to be able to effectively support the

learning process is a well known, outstanding issue in the field of Technology Enhanced Learning

(TEL). The latter is aggravated by the limitations existing on communication channels that

are related to the mediation by technologies and the contextual removal of physical co-presence

(Kehrwald 2012). Two different ways of improving this situation can be explored which are

based on the pedagogical model - to either proactively support self-reflection in a more self-

regulated learning context, or to foster the tutoring processes in a way that allows for the

learners’ activities to be properly supervised. Both could be effectively enabled through the

creation of graphical representation of relevant information, i.e. data collected around the

teaching and learning process - number of interactions, quiz results, access to resources etc.

The aggregated information can then be presented to the users in different fashions based on

their profile and role.

The user profiles are normally created using the data collected during the use of the eLearn-

ing platform - the methodologies to gather information regarding the users and their interaction

with the software have in fact reached a significant level of maturity and reliability in the field

of computer science (Fischer 2001). These procedures were originally designed to support de-

velopers in discovering bugs or to analyse the user interaction with the system in order to

improve the overall quality of the application. Procedures range from collecting explicit user

information to gathering user behaviors which is then stored in log files. The latter has become

less common due the diffusion of the personal computers, which make it harder to collect and

distribute user data from personal devices.

Nowadays though, thanks the massive diffusion of broadband Internet connections and thus

the ability to develop programs as web application, collecting user data in the form of interac-

tion logs is back in fashion and is in fact considered as a very valid approach for profiling users.

Because of the above, taking advantage of those Web Server functionalities that collect users’

navigation footprints (Hoppe, Ogata, and Soller 2007) or including explicit mechanisms that

collect user interactions – even at a higher level of aggregation – is finding new interest, par-

ticularly in field of Education Data Mining whose purpose is to parse data-intensive fields and

identify the patterns and rules which are implicitly contained in the data itself. The ultimate
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aim of such an operation is to generate forecasts or extrapolate and identify recurring patterns

(Ferguson 2012) and (Bienkowski, Feng and Means 2012).

The above is particularly important in relation to the fact that most part of Learning

Management Systems (LMS) are web-based (Mazza, Botturi, and Tardini 2006). In fact, in

this context tracking user behavior in the form of data log from Web applications is crucial to

provide support to both learners and teachers, and can with reason be considered one of the

most important data sources to feed monitoring tools with (Mazzola and Mazza 2009a).

A monitoring tool is the system component designated to provide relevant information on

a particular activity. An example is the set of led lamps on a computer case - it is designed to

give the user an indication of the state of specific hardware components (e.g. hard disk activity,

network activity, etc). Logs, on the other end, are normally used to track users’ activities.

Log-based applications work through a process of specific events aggregation which allows to

recognise a complex human activity - or task - within one or more predefined ordered sequences

of elementary activities. Each single entry in a web log refers to an individual event. It doesn’t

contain a great deal of information in itself, but when linked to others logs it makes for a very

powerful way to identify the user context. Example of this can be found in (Courtin and Talbot

2006) and (Mazza, Bettoni, Fare, and Mazzola 2012).

Through the aggregation of information into a single log, based on a model developed

by experts, a user model is created. These models are normally stored internally within the

application without the possibility for the user to scrutinise their personal information. The

existing literature suggest that opening profiles to user inspection, with the so called “Open

Learner Model” approach (OLM), means the possibility of being able to provide information to

the learner about his personal status as derived by the single application, as well as how his/her

actions and interactions are interpreted by the system itself (Dimitrova 2008), (Tanimoto, 2005),

and (Bull and Nghiem, 2002). Other critical issues could also be address by opening personal

profiles. For example, it would be easier to identify problems or assess a lacks of precision in

the profile itself, simply by allowing user inspection (Bull and Kay 2007) and (Shahror and Bull

2008).

The idea of opening learners’ profile and eventually integrate them with external on-line

resources is not new and has the ultimate goal of creating global and long-run indicators on

the lerners’ profiles. There are different possible approaches to make the profile scrutable by

learners, in fact in the literature are well known the approaches based on textual presentation

but many researchers moved towards graphical indicators, considering it as more effective and
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natural for the learner and the actual devices where the courses are offered. The generated

objects, called smart widgets by some researchers (Glahn, Specht, and Koper 2008) – are simple

graphical objects that aims at exposing valuable information to the user. This will take into

account internal and external user data in order to have a more complete and comprehensive

view of the user’s behaviors in the eLearning tools used.

On top of the above it has to be considered that another element plays a major role in this

scenario: the paradigm of Web 2.0. This has in fact changed not only the way we explore and

search in the Internet sea, but also how users expect to interact with online resources. Posting

comments about news in a blog, refining an article in a collaborative wiki, or aggregating

information from heterogeneous sources are features that also affect the eLearning field.

The sum of all these types of activities widely changed the concept of the Computer Mediated

Education, forming the basic bricks for, and enabling a wider definition of Technology Enhanced

Learning (TEL) as the evolving virtual place for formal, semi-formal, and informal learning.

The shift in the model enforced by these interactive tools impacted heavily on the organizational

aspect as well.

Despite some initial attempts to accurately reproduce the face-to-face experience in an

online environment, a new approach has recently emerged. This relies more on the peculiar

characteristics of the electronic medium than the traditional non-digital tools and pushes the

capabilities that the technologies can offer. This shift allowed to reach the objective of providing

a better educational experience (in the sense of better informed, more available and flexible)

while giving the possibility to target and tailor the interactions and educational experience to

the learner needs.

As a consequence, the introduction of different tools, platforms, widgets and devices in

the learning process creates a personal space for a potential fruitful usage of the rich and

widespread amount of resources available to the learner (Klebl, Kramer, Zobel, Hupfer, and

Lukaschik 2010), (Ebner, Holzinger, Scerbakov, and Tsang 2011), and (Conole 2012). In fact,

the availability of many contents and activities not specifically designed to be part of a single

pre-structured and inflexible didactic flow enriches the learning experience, offers teachers the

possibility to prepare additional and alternative paths and also opens up to the introduction of

some Informal Learning activities, thus demonstrating its potential full impact.

Furthermore, with such an open approach, the concepts of personalisation and adaptation

acquire a central role. On the personalisation side, the possibility to choose amongst different

options such as the type of media used (text, audio or video) or the approach adopted in the
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subject presentation (inductive or deductive) allows learners to enjoy an experience which is

better-suited to their stated preferences. On the adaptation side, the students are – either fully

or semi-automatically – provided with the content that is more appropriate to their profile. The

integration between dynamically added sources, heterogeneous tools, devices to support differ-

ent situations, combined with the two processes of personalisation and adaptation, eventually

can create an ideal working space for adaptive learning systems.

Researches in this context have demonstrated that it is useful to consider the richness of the

experiences adopting a holistic approach (McCalla 2004), as it it usually the case with complex

system e.g. a natural ecosystem in ecological analysis. On the adaptive features’ side one of the

most important components is the student model, which is also in charge of keeping track of

the learner’s knowledge and skills acquired during the learning process. As already discovered

(Bull and Kay 2008), in order to increase the level of engagement of learners, to support their

consciousness of the current status and to encourage reflection as learning (Bull 1997), the

student model could be opened to the inspection of learners and instructors. Student models

are usually made available as visual representations, because it simplifies the data interpretation

by human beings (Scaife and Rogers 1996) and (Ferreira de Oliveira and Levkowitz 2003). Since

the user information is not only stored into a specific student model system but also in this new

complex ecosystem, it is often distributed in a number of platforms used for different purposes

(e.g. LMS data, intranet usage data, resources access and so on) and therefore data must be

aggregated from different tools and provided consistently to the interested users, preferably in

visual formats (Dror, Nadine, and Mike 2008).

In the literature, other approaches to the problem of creating Open Student Models in TEL

are “educational mashup” (Esposito, Licchelli, and Semeraro 2004) and “ubiquitous and decen-

tralized user model” (Van Der Sluijs and Houben 2006) and (Heckmann, Schwartz, Brandherm,

and Krner 2005).

Some issues however arise from the adoption of these approaches. In fact, from the user

point of view we have to consider that a high quantity of mashed-up data might cause an

overload problem (Chen 2009) which may become problematic if it ends up distracting from

the learning activity and confuses the learner about the represented data (Ahmad, Basir, and

Hassanein 2004) and (Costabile, De Marsico, Lanzilotti, Plantamura, and Roselli 2005).

A possible mitigation of this issue could be implemented using a minimal impact policy

i.e. presenting a compact, general and summarising indicator in the eLearning tool interface

that works as the access point to a specialised dashboard. The dashboard collects a set of

5



1. INTRODUCTION & AIMS OF THE WORK

visualizations provided to the users for an autonomous exploration on and in-depth analysis.

This approach also allows to stress the message that learners can use this additional tool for

better understanding the personal situation, but that this information is only for self-assistance

and does not represent the subject or the main objective of the educational experience.

On the other side, in order to mitigate the overload issue, the visual representations can be

made adaptive to the role, to the context and to the activities performed by the learner. With

this kind of approach, the adaptation helps creating easier and more understandable indicators.

For example the adaptive dashboards, widely spread in the field of Business Intelligence, (Schutz

2009) are used to represent the most useful and relevant subset of the all information available

for an ongoing task, without restricting the users for enjoying a more in-depth view on specific

data, based on their personal interest or other criteria.

The next section will describe the context of the work, including the aims of the research

and the research questions. Methodology adopted will also be explained.
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1.2 Context of the work

The present section explores the scope of the work and is divided in two parts. The first presents

the basics ideas and underlying concepts while the second focuses on the research questions as

well as the methodologies used to investigate them. The starting point of this research are some

of the requirements identified in an EU FP7 funded project called GRAPPLE, which will be

explained more in detail later on1.

In this context, the collection of interaction data from learners about activities, prefer-

ences and characteristics is a central as well as mandatory task for providing students with a

personalised experience based on adapted contents. The possibility to disclose these data for

supporting users is well known in the literature (Dimitrova, Self, and Brna 2001), (Bull and

Nghiem 2002), and (Bull and Kay 2007) and seems to have effects on self-reflective processes

(Tanimoto 2005) and (Gama 2004).

1.2.1 Ideas

In the TEL context, the creation of a user profile is fundamental for fulfilling some didactic tasks,

such as measuring the degree of participation to a course, the performance around quizzes and

assignments or the degree of commitment to a discussion forum / blog. The procedure involved

with the profile generation is based on the collection of information usually stored as a number

of log files generated by software applications. The tasks dedicated to user profiling are normally

already managed by LMSes, which also provides a way for exploring the collected information.

There is however no way, at present, to target the data usage and presentation or personalise

it based on “semantic” data interpretation. The purpose of this work is therefore to shape and

adapt the visual presentation of the data based on one or more of the different characteristics

defining the learning experience (i.e: the user role, the context, and the device used).

With such an approach, it also becomes possible to think about integration of data com-

ing from different systems. This possibility assumes a higher relevance if we consider the Life

Long Learning (LLL) context, which is the process of personal continuous enhancement and

empowerment that takes place on an on-going basis from our daily interactions with people

and environments. One of its peculiar characteristics is the use of different systems in different

institutions across the whole learning process and the generation of ’isles’ of data that need to

be connected in order to create a unique and possibly valuable learner’s profile. To overcome

1GRAPPLE project website - available online at: http://grapple-project.org
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the limitations that these ’isles’ imply, studies are being devoted to the enhancement of the

procedures related to users’ profile creation, both in term of data source to be used and mean-

ingful integration of heterogeneous sources (Abel, Herder, Houben, Henze, and Krause 2010),

(Abel, Henze, Herder, and Krause 2010), and (Leonardi, Abel, Heckmann, Herder, Hidders,

and Houben 2010).

The idea of opening learners’ profiles, maybe also for integrating them with external on-line

resources, has the ultimate goal of creating graphical indicators for the profiles themselves.

The generated smart widgets (Glahn 2009) and (Glahn, Specht, and Koper 2008) – simple

graphical objects that aim at exposing valuable information to the user – will take into account

the highest possible amount of user data, in order to have a more complete and comprehensive

view of user behaviors in Learning Management Systems. This data can come from the LMS

itself (internal) but can also be collected from other sources (external).

At the same time, this data can be used to create a dashboard for monitoring the status of a

course: in this way teachers and tutors could be supported in achieving a better understanding

of the current status of the class and, possibly, in adapting the resources and the pedagogical

approach accordingly with this information.

Additionally, the Instructional Designers (IDs) (i.e. the pedagogical experts, who are in

charge of specifying the didactic interpretation of the stored data in a specific educational

environment), can be supported by the awareness of the effective usage of resources and the

understanding of which kind of activities are widely adopted, in order to better target their

teaching.

Platform administrators can be also supported by a different use of the same information. In

fact, a compact representation of some users behaviors in the system, e.g. the login frequency,

the preferred time of usage and the kind of resources/activities mainly used on the platform, is

valuable information to correctly set up the hardware and software requirements and to monitor

the correct platform behavior at run-time. Furthermore, manually extracting this type of data

in a just-in-time fashion is normally a difficult, time-consuming, and error-prone task. An

automated approach would therefore reduce risk while increasing performance and accuracy.

1.2.2 Aims

This work aims at investigating how the adoption of a tool for offering adaptive visualisations of

Open Learner Model to the student could affect the user experience in an educational system.

Both the learner’s and the teacher’s sides were investigated in order to achieve a global vision
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on what sort of impact would be generated by its introduction. Part of the job was also devoted

to exploring how the introduction of adaptivity – in the amount of data presented as well as

the information encoding paradigm and the interface – affects its perception.

The analysis was mainly based on two different levels: the possible effects reported by users

after the analysis of the mock–ups and the interaction with the system itself (self–evaluations),

but also on run-time evaluations when feasible, as would be the case for the learner’s side.

Nevertheless, when this was not possible, we relied on feedbacks, provided by final users, and

their opinion about the possible impact they expect.

After the requirements were identified, the research in the GRAPPLE project continued with

the development of a general and configurable tool, called GVIS (GRAPPLE VISualization

tool), to extract, aggregate and provide information to users of online educational experiences.

The development was carried out – for the sake of portability and applicability – using a

very generic approach, i.e. decoupling the technical infrastructure from the data semantics,

stored into configuration files. This approach allows the software to be completely independent

from a specific source or a system using the elaborated information (and in this way to work

smoothly with different Learning Management Systems or environments), but also support it

to be easily portable between different platforms.

Furthermore, the IDs can rely on these configurations to speed up the development of their

own aggregation models without the need of programming skills. The aggregation is the model

that drives the creation of indicators based on the data interpretation.

While specifying a new aggregation template is a task that requires some capabilities and

attention, it also allows for full customisation. This can empower the ID in defining new cases

for data usage through indicators that better fit in with the designed didactic experiences.

The collaboration with experts in the field of pedagogy was fundamental for developing such an

approach. In fact, it allowed to create new general configurations to be used with the tool based

on different pedagogical models. It was also crucial in the interpretation of the quantitative

information that was collected in order to validate the application of the GVIS tool.

The work had two main contributions. The first was aimed at showing that the approach of

mixing data from heterogeneous and not related data sources can have a meaningful didactic

interpretation. This can be achieved through an explicit declaration of the data semantic for

the educational experience.

The second contribution was more related to the perceived impact on online experiences

of the introduction of the adaptivity in the graphical visualisations produced by such a tool,

9
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especially applied to a LLL approach.

An optional objective was the explicit identification of good practices and criteria, if such

things even exist, to develop templates for the implemention of services for learner models,

which could also be empowered by adaptive functionalities. Unfortunately, this was not fully

achieved due to the difficulties in finding teachers with different didactic approaches keen to

take part in the experimentation.

For the first contribution, a number of test cases were created to demonstrate the portability

of the tool among different systems – mainly educational tools – and the possibility to offer

valuable information from heterogeneous and distributed sources.

The second contribution was analysed through a measurement of the impact of OLM adap-

tive representations on the learner’s online educational experiences and through the perceived

impact on teacher. The plan was to also measure it through the level of self-confidence (Ban-

dura 1997) and (Tschannen-Moran and Wolfolk Hoy 2001) provided by the adoption of such a

tool but, as already mentioned, the difficulty in finding enough teachers willing to participate

in the experiments made this non-achievable.

The third potential contribution was directed towards the identification and classification of

the criteria for developing an adaptive learner model. This could have been a more theoretical

contribution to the field. Creating such a taxonomy could speed up the adoption of this kind of

services, by showing the possibility to seamlessly integrate some adaptive behaviors in already

existing externalised models. This was also expected to justify the previous objective and to

propose this open problem to the community for further investigation and research.

1.2.3 Research Questions and Methodology

After demonstrating the generality of the tool and the applicability of the semantic data descrip-

tion approach, the main question driving this research was how an adaptive visual representa-

tion of the Open Learner Model could improve the user involvement in eLearning experiences

without overloading the cognitive aspect.

In order to find an answer, it was first of all necessary to understand how a learner model

could be represented in term of visual presentation to the system users (A). Subsequently, its

effects and performances for learners (B.1) and teachers (B.2) could be analysed. Throughout

the research process to investigate the above, an additional issue was raised which had to

be solved: could general criteria for building adaptive model in the visualisation of OLM be

defined (C)? Most of the Open Source (OSS) eLearning systems that are currently available
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do not internally provide a comprehensive and life-long learner’s model based on the definition

given above.

Thus, as a prerequisite for the experiments, aggregation templates had to be defined to

support the creation of a user model in the learning environment, starting from heterogeneous

sources among which a primary role was once again played by the logs collected from the

learning management platforms in adoption.

This could be achieved – in each tool that has to be connected – through the semantic inter-

pretation, inside GVIS, of logs representing users’ events recorded in the educational platform

and integrated with data coming from other tools used in the educational experiences. This

means the ability to give a meaningful didactic interpretation to the actions performed or the

status achieved by users.

Point A (about possibilities to visually encode the learner model for presentations purposes)

is based on the collection of educational templates that are a good fit for the online experiences

used for runtime testing. The educational templates are sets of instructions codified in a

formal language that describe the data transformation and the information aggregation that

make sense for the didactic approach adopted by the ID. This set was created by reusing

the templates already developed in GRAPPLE1 or through the identification of fresh ones for

each individual case. The set of templates chosen for GRAPPLE by researchers – based on

stakeholder interviews – was instantiated in the GVIS tool and adapted to run the experiments.

In this phase a fundamental contribution from pedagogues/teachers of the university offering

the course of interest has assured the adherence of the aggregation templates to the didactic

approach used in the online course.

A positive side effect was the extension of the set of pre-defined configurations that was

developed inside GRAPPLE. These configurations will be released and a part of them are

attached to the current thesis, as examples, in the appendix.

For the objective B (effects and performances analysis), a quantitative analysis was chosen

as the most suitable option. Point B.1 (for learners) was analysed referring to Kirkpatrick

model (Watkins, Leigh, Foshay, and Kaufman 1998) and exploring the first two levels defined

in the stacked model presented which refer, respectively, to the reactions to the introduction of

1GRAPPLE stands for ”Generic Responsive Adaptive Personalized Learning Environment”. The GRAPPLE

project aims at delivering to the learners a technology-enhanced learning (TEL) environment that guides them

through a life-long learning experience, automatically adapting to personal preferences, prior knowledge, skills

and competences, learning goals and the personal or social context in which the learning takes place. The same

TEL environment can be used/accessed at home, school, work or on the move (using mobile/hand-held devices).

11
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the tool and to the effects on knowledge produced by its usage. The methodology applied was

based on online questionnaires (an effort was made to try and keep them compatible with the

ones used in the initial evaluation of the GRAPPLE project, in order to allow for comparison)

and analysis of the performances of the courses in term of pre/post test (or, when not available,

of self-evaluation one) and grades received by student, if available for the inspection.

For objective B.2 (effects and performances for teachers), the original plan was to apply a

sub-part of the Teacher Self-Efficacy (Bandura 1997) and (Tschannen-Moran and Wolfolk Hoy

2001) questionnaire, in order to allow the emergence of the possible empowerment offered by the

usage of the GVIS tool in the teaching practice of eLearning experiences. Even though the small

amount and insufficient heterogeneity of the teacher participating in these experiments has not

provided us with statistically relevant analysis, we offer some initial considerations based on the

self-evaluation and perception of impact from teachers and tutors involved, collected through

online questionnaires.

Finally, point C – related to the idea of shared processes able to support the design of

templates for creating adaptive visualisation of OLM – was not analysed separately but rather

viewed as a milestone for running the experiments. No general criteria emerged from the work

that was carried out. To tackle this point we had to rely solely on the professional ability and

discretion of the Instructional Designers as the adoption of an explicit external design was not

a doable option.

This work continues as follows. Chapter two explores the state of the art in the field,

analysing the areas of IV, TEL, OLM, and EDM (with some additional consideration about

the possible impact of externalisation). Here the position of this work is also presented in

relation to other researches. In chapter three, the context in which the framework for the

creation of user indicators (called GVIS) initially took shape is presented. Chapter four deals

with the technical implementation of the software tool. Chapter five is around experiments that

were performed using the tool both inside different LMS and Intelligent Tutoring Systems (ITS)

as well as stressing data source coming from different context of activity. In this chapter we also

offer some initial evaluations of the tool, in terms of adherence of the designed functionalities

to the perceived needs on the one side and in terms of the effects generated when applied in

study cases on the other one. Chapter six is composed of three sections: the first one discusses

objectives that were achieved as well as problematic areas or aspects, the second one draws the

overall conclusions, and possible next steps and references are presented in the final section.
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Chapter 2

Background / State of the Art

The background of the current work can be identified as a set of basics thematic areas which

provide, as an overall, the bricks for meaningfully contextualise the experiments done using

the tool developed based on the user requirements. In the section dedicated to Information

Visualization, the usage of techniques and approaches for representing a rich and complex

set of information in a compact and effective ways is explored. In the Technology Enhanced

Learning section the broader context is presented and further expanded – primarily around the

main subject – in the paragraph about Open Learner Models. The reasoning as well as the

association of the data to the semantics is discussed in the area of Educational Data Mining,

where concepts around Learning Analytics (LA) are also described. A description of the possible

effects of the externalisation of the learner model is then presented. Finally, in an additional

section of the chapter, a short introduction to the objectives of the Grapple project is included

as well as the specific context in which the GVIS tool was originally conceived, planned and

developed.

2.1 Information Visualization (IV)

Information Visualization is the field of Computer Science that examines techniques for repre-

senting a vast amount of abstract data in a visual format, so that the data can be comprehended

and interpreted by human beings. It is also defined (Card, Mackinlay, and Schneiderman 1999)

as the art of putting together small data fragments, that taken alone have no real value or

usage, to create a graphical representation that can enhance the reader visual system for the

knowledge processing and acquisition. Binding on this premise, the main goals of visualisations
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as reported in the literature can be divided into three categories: exploration (researching rela-

tionships, trends, and interesting phenomena); confirmation (validating or refuting hypotheses);

and presentation (conveying information to others) (Spence 2007).

In the educational context, several researchers use visualisation techniques to provide tools

to support more effective learning and instructions (Duval 2011). However, while these visuali-

sation tools could be valuable for both instructors and learners, the majority of research in that

field targets instructors and educational institutions (Dawson 2010), (Dawson, Bakharia, and

Heathcote 2010), (Graf, Ives, Rahman, and Ferri 2011), (Vatrapu, Teplovs, Fujita, and Bull

2011), and (Zhang and Almeroth 2010).

Dawson (2010) proposed a model for capturing and analysing the changes in students behav-

iors and their learning network composition for the purposes of proving educators with visual

information to support their intervention, especially to the ones identified as being “at risk”.

The availability of such a tool – through the usage of the SNA1 applied to engagement data –

allows instructors to make more reasoned and informed choices about their didactic plan and

its evolution.

In the work of Dawson, Bakharia, and Heathcote (2010) a model that tries to recover the

multiple learning hints lost in the online educational experiences in respect of the face–to–

face ones was instantiated in a tool called SNAPP (acronym for Social Network Adapting

Pedagogical Practices). The authors demonstrated that, by stressing the new computational

and storage capacity of the recent IT infrastructures available, the implementation of learner

model became affordable in real–time, this being one of the condition that was previously

preventing the adoption of this kind of approach. The visualisation of this real-time evaluative

data – such as indicators of social network structure and centrality, social interactions and

communication flows representations, connection degrees of learners (nodes), and hub structure

inside the eLearning community – was then able to support the activity of educators both in

intervening for supporting the learners and in better planning didactic activities.

Graf, Ives, Rahman, and Ferri (2011) concentrated their attention on the design of a DSS2

that would overcome the availability of reports based on the very general and limited information

normally provided by the learning management systems adopted by educational institutions.

1SNA is an acronym for Social Network Analysis and is an approach consisting in extracting information

about the relationship that exists in one environment relying on the links that connect its elements.
2DSS stands for Decision Support System which is a typology of software devoted to the aid of the human

decision process, through the offer of additional information, its aggregation at a higher level or the extrapolation

of cubes inside the data.
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They relied on the extracted information about the learning process to support teachers and

course designers in identifying difficulties or inappropriate learning materials. The main contri-

bution they expected to provide was related to the design of improved educational resources and

supporting activities based on the students behaviors during their usage and delivered through

visual hints.

Vatrapu, Teplovs, Fujita, and Bull (2011), on the other end, focussed on the teacher’s

dynamic diagnostic process, as they consider this skill of primarily importance in the teaching

profession. They developed a triadic model of the “teaching analytics” – called TMTA – which

is based on the collaboration of a Teaching Expert (TE ), a Visual Analytic Expert (VAE ) and

a Design–Based Research Expert (DBRE ). The model can be used for planning and evaluating

an instance of the classroom activity. With regards to the application of this model they

proposed a strong coordinated action of these three experts to analyse, interpret and act upon

the real-time visual information (info–graphics) extracted from the learners’ interaction with

the educational platform. Their work does not offer actual visualisations, but rather proposes

a model that has to be instantiated –together with the visualisations – during the planning of

the classroom.

Zhang and Almeroth (2010) analysed the cases in which Information Visualisation is used to

create indicators of the learning activities in conjunction with a well known LMS that provides

only a very limited and fixed set of information about the students’ activities, not fully exploiting

the richness of the collected log. The tool is tailored to instructors and educational researchers

to help them evaluate the contribution of the LCMS 1 to the learning, through the assessment of

the learners’ behaviors and progresses. The present work tries to extend this approach, making

the data extraction and aggregation process independent from a single specific LMS.

Only a minor fraction of projects focus on providing visualisation to students (Arnold and

Pistilli 2012), (Arroyo, Ferguson, Johns, Dragon, Mehranian, Fisher, Barto, Mahadevan, and

Woolf 2007), and (Long and Aleven 2011).

Arnold and Pistilli (2012) concentrated their attention on the development of an early

intervention solution to provide real-time feedback to students. The tool – called Course Signals

– relies on multiple typologies of data about students e.g. grades, demographic characteristics,

past academic history and current effort (as measured by the interaction with the educational

platform). It creates an indicator based on color, adopting the metaphor of the traffic light

1LCMS stands for Learning Content Management System which is usually adopted as an alternative defini-

tion for LMS, based on the fact that historically its main usage was – completely or extensively – just to deliver

educational contents, without the addition of any specific educational activity.
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signal, and delivers it to each student by means of the institutional email to indicate them

how they are doing in respect of the objectives settled by their tutors. Additionally, faculty

members receive a personalised report comprising the status of their students: in this way, the

adoption of the tool has also the effect of sharing the perception of the situation amongst the

different stakeholders in the educational experience.

Arroyo, Ferguson, Johns, Dragon, Mehranian, Fisher, Barto, Mahadevan, and Woolf (2007)

reported the effect of disclosure, in the form of graphical indicators, of the interventions put in

place by an automated tutor to support the learning experience, such as the progress charts that

disclose the evolution of their responses accuracy to the learner. They noticed that students

tend to be disengaged after using a tutorised system for a certain amount of time, but directly

providing them with self-monitoring functionalities could induce a re-engagement, based on the

self-reflection and self-monitoring processes that they will trigger. They stressed this evidence by

implementing an Open Learner Model enhanced with explicit suggestions and encouragements,

based on the specific real–time situation of each learner.

Finally, in the work of Long and Aleven (2011) they explored the perceived impact and the

behaviors induced by the usage of information about the learner profile by the student itself

through surveys and interviews with the learners. They offered simple visualisations, based

on bar-charts, to represent the level of skill mastered by the learner. The teachers’ point of

view, obtained through interviews in the analysis phase, is also taken into account and used as a

reference point. The authors discovered that the possibility to witness the evolution of this very

simple OLM encourages the learning process. Another interesting finding was related to the

discrepancy between the model as calculated and stored inside the system and as self-perceived

by the learner, which ingenerates in the learners a sentiment of mistrust in the system. What

they discovered is that this is reported to happen quite frequently, demanding an intervention

to solve this situation.

This second aspect justifies all the researches on interactive open learner models, in which

the learner can interact and modify the model itself, sometimes simply by indicating a perceived

variation of his/her needs and some other times by proving their competency with question or

supporting evidence.

Finally, they observed that the possibility to inspect these models is not automatically

accompanied by a self-reflective process, but needs to be specifically supported and induced.

This is made possible, for example, by providing a compact visual cue about the current status

16



2.2 Technology Enhanced Learning (TEL)

of the student model and allowing further explorations of the model, through interactions and

the reflection on the specifically provided at a higher level.

2.2 Technology Enhanced Learning (TEL)

The field of Technology Enhanced Learning is related to the usage of digital technologies in the

practice of education. Its main focus is the alignment between the technologies applied and

the different aspects of the learning experience – resources, actions, and objectives – in order

to provide socio-technical innovations in education, independently from time, place and pace

constraints.

Unfortunately some negative side effects are well known, like a higher rate of dropouts (Levy

2007) a feeling of loneliness, isolation and low motivation to learn (Rovai 2002).

Levy (2007) – after a more formal definition of what can be considered a dropout in eLearning

field, which was previously not well defined – explored the possible reasons connected with its

increase in online experiences compared to the on-campus presential ones. The main finding

was that amongst the key–factors considered –namely the academic locus of control and the

student’s satisfaction– only the second one showed to be a reliable indicator, whereas the locus

of control seemed to play no role in the student’s dropout rate. As expected, the author found

a negative correlation between the students’ satisfaction and their dropout rate.

Rovai (2002) on the other end explored the impact of learning communities in educational

experiences, comparing the cases of presential ones to the eLearning ones and positively corre-

lating the sense of being part of a community with a higher level of fulfilment and satisfaction.

This work reached the conclusion that fostering the creation of learning communities in online

courses can facilitate the dialog and decrease the psychological distances amongst the partici-

pants. In the present work this point supports the idea of extending the presented information

to social aspects.

Other authors have also reported that these issues could be reduced by increasing the level

of engagement among students, such as in (Laurillard, Oliver, Wasson, and Ulrich 2009). They

reported the capacity of the new digital media to connect innovation and practices, generating

a natural sense of engagement and curiosity towards the messages encoded on that medium.

In fact, the authors stressed the fact that the adoption of the new digital media can be a

way to improve the students’ capabilities to express themselves, thus allowing them to enhance
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the expressiveness and creativity in the educational process while scaffolding their intellectual

development.

It was also found that an holistic approach demonstrates to be useful in understanding and

tackling these issues (McCalla 2004). The author argued that it is fundamental to contextualise

the eLearning experience, going further into the semantic web1 approach and introducing a

pragmatic dimension, where the user context, intentions and objectives can be captured and

used to induce a reaction in the proposed experience. The sum of these “pragmatic” layers i.e.

the always existing “semantic” level, the user profile and the educational resources create the

ecological approach for the design of TEL empowered systems. This holistic approach, which

uses all of the defined levels as the knowledge base for the mining process, allows for a better

contextualisation of the patterns that emerge inside the learners’ educational experiences and

provides them with a more engaging experience.

Another possible approach is to automatically adapt the learning experience to some of the

learner’s characteristics without relying on a pragmatic layer. Some of the dimensions that can

drive the adaptation are personal preferences, learning goals, personal and social context or a

student model i.e. a profile of the knowledge and skills acquired during the learning process.

Some experiments to create a learner model were conducted by researchers (May, George,

and Prevot 2007) in the context of CMC2 tools (like web discussion forums), where they created

a model for collecting the breadcrumbs3, or in other words procedures for the manipulation of

this data to obtain a profile and an approach to securely store the resulting model. Based

on this collected raw data, they proposed some common analysis to produce the model which

should be also visualised to guarantee optimal usage.

The learner model is also reported to be able to provide some interesting information about

the student mental situation, intended as the processes and cognitive functions specifically

stimulated by the current learning activity. In fact, through the abstraction process and the

Semantic Web approach it becomes possible to also consider the user context and provide infor-

mation better suited for supporting the learners performances in achieving their full potentiality

in online tasks (Heath, Motta, and Dzbor 2005).

1for Semantic Web here is intended an approach to the information published on the Web that, through the

explicitation of the semantic of the hyper-link and the data presented, support the automatic reasoning over

this data and the extraction of new knowledge by programmers.
2CMC stands for Computer Mediated Communications
3breadcrumbs, literally the small pieces of bread created when you cut it, which represent the elementary

fragments of information left online when the user interact with a web-server.
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As stated in the previous section –centered on Information Visualization–, it is commonly

accepted that choosing a graphical presentation could make the interpretation of this complex

data much easier (Dror, Nadine, and Mike 2008). In this paper they proposed a methodology

called VAF – Virtual Apparatus Framework – based on a novel visualisation tool Solution Trace

Graph. With this approach, they were able to develop an intelligently adapted remediation

system in an exploratory learning scenario.

Furthermore, opening this model to the student’s inspection is another option to increase

their level of engagement, stimulating the perception of the current status (as already shown

by other researcher), and to encourage reflection as learning.

Bull (1997) proposed a system, called See yourself Write, that presents a merged picture of

the information about the assignments submitted and the feedback provided by the tutors and

discloses the generated model for reflection on the path completed and the feedback received

by learner.

This specific aspect will be presented in details in the next section, that deals with the

so-called Open Learner Model approach.

While crucially important, OLM is not the only method proposed for solving the problem of

creating and memorising a learner’s profile that support disclosure functionalities. Other ways

to create, maintain, store, and externalise the model gave origin to different approaches, known

as ”educational mash-up” (Esposito, Licchelli, and Semeraro 2004) or ”ubiquitous and decen-

tralized user model” (Van Der Sluijs and Houben 2006) and (Heckmann, Schwartz, Brandherm,

and Kroner 2005).

Esposito, Licchelli, and Semeraro (2004) faced the challenge of creating a student profile

relying on procedures and approaches from IR (Information Retrieval): their Profile Extractor

uses ML (Machine Learning) techniques to discover the preferences, needs, and interests of the

learner. The source of data taken into account to extract the information are the learning

performances, the communication preferences and the online behaviors adopted by students.

Instead Van Der Sluijs and Houben (2006) proposed a semantic approach to collect data from

web application (based on the Semantic Web model) and to retrieve and connect data generated

by the same learner inside different platform, as usually happen in the Web environment.

They elaborated the GUC (Generic User model Component) as an autonomous and pluggable

component for this task.

Another approach – which was lately merged into one with the one above – was ideate by

Heckmann, Schwartz, Brandherm, and Kroner (2005) who proposed to rely on an ontology
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developed by themselves called GUMO (Generic User Modeling Ontology) and on an extension

of XML, called USERML to track, store and exchange information about learner profiles, on

top of a server to store and query the ”global” profiles created.

2.3 Open Learner Model (OLM)

One of the earliest attempts to provide visualisation tools to identify risky students and devise

ways of supporting their learning has been done by Mazza and Dimitrova (Mazza and Dimitrova

2007). CourseVis is a visualisation tool that helps instructors to early identify problems students

may have.

There are two main independent directions of research on open learner models. One direction

focuses on visualising the model to support students’ self-reflection and planning. The other one

encourages students to participate in the modeling process, such as engaging students through

the negotiation or collaboration on the construction of the model (Mitrovic and Martin 2007).

Representations of the student model vary from displaying high-level summaries of the

information included in the model (such as skill meters1) to complex concept maps or Bayesian

Networks2.

A range of benefits have been reported from the opening of the student models to the learners

which range from the increased learner’s awareness on the knowledge development process

to the elicitation of the difficulties encountered (Mitrovic and Martin 2007). Furthermore,

the disclosure seems to have a positive impact on the students’ engagement, motivation, and

knowledge reflection (Bull 2004) and (Zapata-Rivera and Greer 2004).

Dimitrova, Self, and Brna (2001) explored interactive open student modeling by engaging

students to negotiate with the system during the modeling process.

Chen, Chou, Deng, and Chan (2007) investigated active open student models in order to

motivate them to improve their academic performance.

Brusilovsky, Sosnovsky, and Shcherbinina (2004) embedded, inside one of their adaptive link

annotation systems known as QuizGuide, an open learning model in the engine and demon-

strated that this arrangement can remarkably increase the student’s motivation to work with

non-mandatory educational contents.

1a skill meter is generally a very compact indicator of the mastery level on concepts or skills achieved by

learners
2Bayesian Networks is an approach to build an explanation of hidden variables by observing the external

status, stressing their conditional probabilities and causal relationships
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To support social learning, a common approach is to show learners average values of the

group model e.g. the average knowledge status of the group in a given topic. These models fall

into the category of group based student models. Both individual and group based open student

models were studied and the increase in reflection and helpful interactions among teammates

through their adoption was demonstrated.

Bull and Kay (2008) described a framework to apply open user models in adaptive learning

environments and provided many in-depth examples. Open group modeling enables students

to compare and understand their own state among their peers. Moreover, such group models

have been used to support collaboration between learners among the same group, and to foster

competition in a group of learners (Vassileva and Sun 2007). The authors investigated the role

of social visualisations1 in online communities. They concluded that this kind of visualisation

increases social interaction among students, encourages positive competition, and provides stu-

dents with the opportunity to build trust in others and in the group. Bull and Britland (2007)

used their OLM implementation – called OLMlets – to investigate the facilitation problem for

group collaboration and competition. The results showed that optionally releasing the models

to peers increases the discussion among students and encourages them to start working sooner.

The implementation of an Open Learner Model represents a possible solution to bridge

the gap between the functionalities expected by learners and the capabilities offered by the

system, in terms of interaction possibilities and presentation of relevant information in eLearning

systems. It also allows to offer a fully customisable and adaptive interface to the learner’s model

(Brusilovsky 2004) with respect to the users’ characteristics, preferences, knowledge, and tasks

(Mazza and Dimitrova 2007).

Student-related data is collected in the student model, which is a component of adaptive

systems that maintains an accurate representation of the user’s current state, enabling the sys-

tem to perform adaptation based on the information stored in the model (Mitrovic and Martin

2007). The adaptation of the contents to the user’s knowledge and cognitive characteristics

(Bull 2004) is a way to support the current learning needs of the learner. It is also generally

accepted that it is a well-suited approach to increase the learner’s level engagement in the edu-

cational experience (Zapata-Rivera and Greer 2004), thus allowing to offer a truly customised

1A social visualisation is a representation of the traces left by a user in the interaction with the platform

and others that enfatises the social purposes, such as information exchanges, cooperation, dialogs, reciprocal

position in a network, common and different skills and achievements, etc. These kinds of visualisations can be

used to enhance the awareness of one’s social environment or to express cues and patterns which are implicit in

the underlying communication.
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experience. Opening this internal model to user inspection could be useful for different reasons,

and in particular for self-reflection (Dimitrova, Self, and Brna 2001).

In this view, the model is also an useful source of information that can be used to reinforce

the user’s commitment to the online experience and to foster his/her self-reflection processes

(Chen, Chou, Deng, and Chan 2007).

More recently some attention has been devoted to the aspect of social interaction supported

by online platforms, and the relative representations provided by the systems have also been

modified accordingly (Brusilovsky, Sosnovsky, and Shcherbinina 2004). The possibility to in-

clude data from external sources could empower the profiling mechanism in having a model

that also caters of social and affective characteristics of the learners (Vassileva and Sun 2007)

and (Bull and Britland 2007).

2.4 Educational Data Mining (EDM) and Learning Ana-

lytics (LA)

The creation of OLM requires the distillation from a huge amount of raw data of information

and knowledge about one or more characteristics of the learner, such as preferences, interaction

habits, knowledge, skills,and experiences. This task could be supported by data intensive

techniques, such as those developed in the Data Mining (DM) field.

DM techniques comes from fields such as economy or marketing, where they are used to find

the most common pattern or co-occurrence in the buying habits of consumers. This approach

generates rules in the form of precondition => postcondition that are not really devoted to

investigate the causal relationships generating the rule itself, but which is more interested in

the coverage (how many buyers amongst the sampled ones follow that specific pattern) and

support (what percentage of the buyers that have the precondition also have the postcondition)

of the found rule (Agrawal, Imieliński, and Swami 1993).

When specifically applied to the field of education, this approach takes the name of Educa-

tional Data Mining (Romero 2011). The above has been defined as a separated field due to the

specificity of the kind of rule involved and the particular attention paid to the learning domain,

peculiar of its own. In fact, this is especially relevant in order to achieve a better learners’

understanding, but also to explore and offer an in depth interpretation of the learning context

1.

1AA.VV, ”EducationalDataMining.org”, 2010, http://www.educationaldatamining.org/.
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2.4 Educational Data Mining (EDM) and Learning Analytics (LA)

The main objective of EDM is to develop new tools for discovering relevant rules or patterns

in the raw data. When the attention switches to the large scale applications of these techniques,

some researchers call it Learning Analytics, indicating that it is more geared towards the broad

applicability of rules and findings retrieved inside the field (Bienkowski, Feng, and Means 2012).

This is important in order to be able to extend the results of a single or a small number

of experiments that confirm the hypothesis into courses or institutions other than the ones

considered and directly analysed.

Nevertheless, other researchers1 pose the distinction between EDM and LA more on the

methods used for analysis. In their view, LA is more general, as it also takes into account

qualitative methods and human judgment – such as sentiment, influence and discourse analysis,

sense-making model, and Social Network Analysis – whereas EDM seems to be only interested

in relationship of the quantitative data about the educational experience.

Combining EDM and LA it is possible to support tasks for defining learner profiles, tracking

behaviors and finding relevant dimensions to classify and interpret online user activities in TEL

experiences. The main object of the researches developed in this field is to predict a model

to measure the student performance with the idea to recommend improvements to the current

educational practices. Two tasks currently classified inside EDM are particularly relevant to

the present research: “Causal data mining” and “Distillation of data for human judgment”

(Baker 2010), which respectively focus on the elicitation of the generating causal relationship

for some of the rules found and on the distillation of higher level knowledge from a huge

amount of information, in order to better support the human capabilities of judgment and

decision making.

Based on a recent report elaborated by Bienkowski, Feng, and Means (2012) for the U.S.

Department of Education - Office of Educational Technology called ”Enhancing Teaching and

Learning Through Educational Data Mining and Learning Analytics” it is possible to identify

some directions of research in which these approaches could help TEL to offer better experiences

and provide educational results more in line with the requirements of modern education. The

information and knowledge extracted could be re-framed to different time–scales and devoted

to distinct roles, as indicated in Table 2.1.

An aspect normally neglected or underundestimated is the IT costs associated with the

application of these techniques, which are both economic and organisational. In fact, the

application of EDM requires the storage of vast amount of data for the relevant time-frame in

1http://users.wpi.edu/%7Ersbaker/LAKs%20reformatting%20v2.pdf

23

http://users.wpi.edu/%7Ersbaker/LAKs%20reformatting%20v2.pdf


2. BACKGROUND / STATE OF THE ART

Role TimeFrame Scopes

Learner immediate

real-time

– selection of the next problem

– feedback on subject completed

– strong and weak/deficient personal knowledge

weekly – improvements in the last week

– strong and weak personal knowledge areas
semester – improvements in the last semester

– courses passed and not passed

– suggestion for the next semester plan
Tutor some hours – monitoring of learner activities

– near–immediate scaffolding intervention

– providing feedback on the current activities
Teacher daily – next day’s teaching adaptation

weekly – didactic plan advancement

Teacher coordinator monthly

semester

– judging educational progress

– realigning the didactic load

– identifying possible difficulties in learners
School Administrator yearly – overall school improvements

– adaptations for the next school year

– identification of best and problematic cases

Table 2.1: Possible application of EDM and LA, distinguished by the objectives, the optimal

time-frame and the role interested in. Adapted from Bienkowski, Feng, and Means (2012) ’En-

hancing Teaching and Learning through Educational Data Mining and Learning Analytics’.

24
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a quick and reliable fashion, to guarantee prompt access but also to respond to the need to

offer continuous education for the heterogeneous, yet very specialised, professionals that it will

support and to improve and validate the algorithms underpinning the procedures. Not to be

neglected are the security and privacy constraints to be respected alongside with the ethical

obligations related to treating student data.

For an effective and fully meaningful usage of EDM and LA, the authors of the report

suggest some basic directions to be followed:

• Cultural change => Using data for making instructional decision is a process that requires

time and effort and which has to be supported to help Teachers and Instructional Designers

to understand it and make the best of it

• Consider IT => Involve the IT departments in the design phase of the educational expe-

riences as well. Use the suggestions they give to structure the experiments in the best way

possible, also with regards to the collection and further reuse of the data of interest

• Information Usage => Support all the user of the information provided (visual or graphical,

if possible) so that they become smart data consumer i.e. able to explore the information

and to obtain the most useful knowledge

• Pilot => Start with pilot areas where the support of these tools seems more promising and

concentrate the effort on those. Afterwards, progressively extend the successful cases to cover

broader areas

• Communicate => Involve students (and even parents, if the case, such as in compulsory

educations like K-12) reporting to them where, when and how the data is captured and how

it will be used

• Conform => Try to conform to already existing standards and reuse well–known approaches

when feasible, always respecting the technical limitations and the policies regulating the

treatment of the data in the specific institution, environment or state

The authors of this report (Bienkowski, Feng, and Means) also indicate some research di-

rections, whose results can guarantee a future real adoption and positive impact of EDM and

LA in the education sector as one of the pillars of its innovation:

• Usability => Improve the usability aspect of the tool’s design and interface that provide

information to the users
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• Effectiveness => Monitor the effectiveness of the tool, both with internal (i.e didactic results)

and external (i.e satisfaction and willingness of use) drivers

• DSS => Use the extracted information to develop tools able to support the human judgment

and decision process (DSS)

• Extend => Understand how it would be possible to extend predictive models already elabo-

rated in domains/contexts other of the current one

The development of GVIS – and of the semantic data layers (i.e: the formalized description

of sources, operations and encoding steps to be used, that will be explained in details in the

next chapter) – tried to respect these indications and quality measures as much as possible.

Despite these analogies, EDM (and LA) approaches are normally based on computationally

intensive and fully automated data analysis, where GVIS is mainly based on the application

of semantic layers of data that the Instructional Designers provide. This means that the main

difference is the presence of layers that give an interpretation of the data retrieved as well as

of the aggregation operations (semantic approach), upon which the process can rely to extract

interesting information.

This rather different approach provides a way to guarantee a meaningful didactic interpreta-

tion of this data without the need for a further extensive and time–consuming validation phase

as would be the case of a pure EDM approach. Obviously, the definition of the semantic layers

for data extraction, identification, validation, fusion, distillation and representation is a quite

challenging task for Instructional Designers. It requires in fact a good level of experience, a

clear pre-identification of objectives and constraints and a critical thinking approach.

Nevertheless, thanks to these challenging tasks, the results automatically comply, for the

most part, with the must-have objectives of a supportive educational tool i.e. ’Analysis and

visualization of data’, ’Providing feedback for supporting instructors’ and ’Detecting undesirable

student behaviors’, as defined in the work of (Romero and Ventura 2010).

2.5 Possible impacts of learner model externalization

As already stated, Intelligent Tutoring Systems and Adaptive Educational Hypermedia have

a built-in component of the student modeling procedure that maintains a representation of

the learner’s knowledge based on the detailed monitoring of the students’ behavior within the

system.
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Traditional learner models were hidden from students and used exclusively by the system

in a opaque way to adapt its behavior to individual users. However, recent studies in student

modeling argued in favor of Open Learner Models. Bull and Kay (2007) pointed out the

key purpose of presenting the model to students is to support meta-cognitive activities such

as reflection, planning and self-assessment by providing feedback in respect of the students’

learning and knowledge.

Moreover, it is possible to extend the student model with information about their peers.

This type of model is called Open Social Learner Model (OSLM) (Hsiao, Bakalov, Brusilovsky,

and Konig-Ries 2011) and benefits from both meta-cognitive and social aspects of the learning.

In literature, analysis that concentrate or scrutinise the foreseen, or found, impact of OSLM

begin to emerge, such as in (Falakmasir, Hsiao, Mazzola, Grant, and Brusilovsky 2012).

2.5.1 Adaptivity

Many researches have already explored the impact of OLM, both in supporting self-reflective

processes of learners and in empowering the teacher on supervising tasks. Examples of related

findings can be found in the works of McCalla (Bull, Greer and McCalla 2003), (Looi, McCalla,

Bredeweg, and Breuker 2005), and (Tang and McCalla 2004); Kay (Kay and Kummerfeld 2010),

(Kay 2008), (Kay, Reimann, and Yacef 2007), and (Kay 2006); and Bull (Ahmad and Bull 2009),

(Shahrour and Bull 2008), (Bull, Gardner, Ahmad, Ting, and Clarke 2009), (Bull, Dimitrova,

and McCalla 2007a), (Bull, Dimitrova, and McCalla 2007b), and (Bull and Kay 2008). Despite

this massive attention to the theme, no previous work has been specifically concentrated on the

representational aspect of OLM. Rather, each work reported using its own fixed, well-known,

and established paradigm for the visualisation of the learner model information (whether a

network-based, a bar-chart derived, an iconic metaphor or a textual representation).

A remarkable exception is (Mabbott and Bull 2004), where a study is presented in which

individual learner models were presented to student, allowing them to choose which view to

adopt. The learners were able to appreciate this functionality and take full advantage of it.

This assumes a high relevance when interaction with the OLM is individualised.

As a result of this finding in (Mabbott and Bull 2004), there is the need to further explore

the theme of personalisation in the information presentation. A further step in this direction

is the adoption of an adaptive OLM representation, where the model can be automatically

adapted to the learner based on information in the profile, the contextual information of the

user task currently in progress or the general preferences declared.
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A foreseen impact of an adaptive representation could be the limitation of the cognitive

overload1 through the filtration of the amount and complexity of the model presented based

on the current cognitive load as well as the experience of the learner with the system. We

expect that this aspect can be measured indirectly with structured questions about the learner

experience and the perceived usefulness of such a tool. This is an open research question.

2.5.2 Social aspects

The exploration of the effects of social information representation for didactic purposes is a

relatively new theme as found in (Hsiao and Brusilovsky 2012). Some previous research Glahn

(2009) and Kehrwald (2010) stated that is important to increase the learner social presence

inside a LMS or a Virtual Learning Environment (VLE). The most common proposal found is

to replicate the native capabilities of real-world environments inside the learning environment,

such as offering functionalities to learner to compare himself with the class average or to find

other peers who are similar or complementary in terms of strengths and weaknesses.

Study results demonstrated a higher level of engagement by the learner when social capa-

bilities are included in the system. In fact, they tend to spend more time working with the

materials - consulting resources, answering self-assessment questions and working on available

exercises - and, as a result, they seem to achieve higher success rates in comparison to those

without social capabilities.

2.5.3 Big, Heterogeneous and Distribute data sources

Some other researches are also relevant from the point of view of information treatment, merg-

ing and usage, struggling with complex and/or extensive data sets that need to be represented,

as in the work of Mazza and Dimitrova (2004) , Van Labeke, Brna and Morales (2007) ,and

Zapata-Rivera and Greer (2004). From this point of view these studies expected to provide

a contribution showing that a general purpose tool could be an option to provide a uniform

externalised representation of the learner model from different and heterogeneous learning plat-

form sources. A theme that has not received sufficient coverage yet is around the application of

profiling methodologies in the context of Life–Long Learning experiences, where the user data

is distributed in different and frequently not connected learning platforms or environments

(Heckmann, Schwartz, Brandherm, and Kroner 2005).

1this term, that derives form the Information Overload concept, indicates the additional effort required by

the users in order to make sense and effectively use the additional information provided by the OLM, which is

usually different from the learning task assigned to him/her.
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In the context of the GRAPPLE project, an analysis of this aspect was performed and, as a

result, a facility was developed which is called GRAPPLE User Modeling Framework (GUMF).

This facility is in charge of receiving data from the sources (here they are represented by different

learning platforms, such as Sakai, Moodle, Claroline, IMS-CLIX and Elex) and create a unified

user profile, as described in some of the project publications (Abel, Henze, Herder, and Krause

2010), (Leonardi, Abel, Heckmann, Herder, Hidders, and Houben 2010), and (Abel, Herder,

Houben, Henze, and Krause 2010).

During the development of the GVIS tool a choice was made to maintain a certain neutrality

with respect to this theme and as a result the software has the capability to connect simulta-

neously to distributed and heterogeneous data sources. This means that the same operation

extraction, aggregation and visualisation could rely on different data sources. Unfortunately,

it is very difficult to find didactically-related data sources that could be connected seamlessly,

mainly due to the following two problems. First of all is the issue of finding an unique user

identification across different systems, and secondly are the privacy and security issues raised

by the transmission and usage of the data outside of the platform that generated it.

In GRAPPLE we tried to tackle both these problems through the creation of a distributed

architecture with federation capabilities (i.e. able to provide centralised, global identificators)

and the adoption of a common broker mechanism to deal with the management of basic privacy

policies.
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2.6 GRAPPLE: context of the work

Figure 2.1: The GRAPPLE General Architecture

The GRAPPLE Project (Generic Responsive Adaptive Personalized Learning Environment)

aims at delivering a TEL environment to learners that guides them through a learning experi-

ence, automatically adapting to personal preferences, prior knowledge, skills and competences,

learning goals as well as the personal or social context in which the learning takes place.

The system includes a user model infrastructure that keeps track of the learner’s knowledge

and skills acquired during the learning process. This knowledge is available to the learners

and instructors by means of interactive visualisations that can be performed in GRAPPLE or

seamlessly included in any other tool that participate in the Personal Learning Environment.

The visualisations take into consideration the learner model, the domain model, and the

adaptation model inside GRAPPLE, but it can also include other data coming from distributed

and heterogeneous sources. The project has two distinct objectives: to directly support the
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2.6 GRAPPLE: context of the work

explorative and self-reflective process of the learner; to help instructors assist the learners. One

of the upsides of this set of visualisations is that they can support learners to be more engaged

in the learning process.

Figure 2.2: How Shibboleth works. Images from http://www.switch.ch

This section lists a number of outcomes of GRAPPLE project, specifically in relation to the

GVIS part1.

The study in the context of GRAPPLE was organized in different phases, each one of them

concluded by the respective document describing the findings and reached objectives. In its

first phase of the study the state of the art in the field of user modeling was analysed. To follow

was a requirements analysis, undertaken with potential users of the systems through a series of

meetings and interviews. An initial description of user model (UM) and domain model (DM)

components (which provided the most relevant input data for the visualisations) were produced

based on the above feeds. An analysis of the possible scenarios of usage was conducted which

1further information about GVIS and the rest of the infrastructure can be found in the public deliverables

section http://grapple-project.org/public-files/deliverables/ on the grapple website.
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would provide a guideline for the following phases of the work. Last but not least, the technical

infrastructure was designed and engineered.

In order to achieve an operational state, the description of the available and useful sets of

data extracted from other GRAPPLE components was defined, the aggregation technique with

the current data set was sketched, the initial visualisations designed and the architecture of the

software created. In last part of the project, the architecture and implementation of the module

was finalised. This was followed by an analysis of the tool, which required the involvement of the

final users. This final step was divided in two phases: an evaluation of the planned visualisation

with the aid of mock-ups, and a different evaluation carried out with the GVIS integrated in

the GRAPPLE infrastructure, as would be the case in a real, adaptive course.

The infrastructure (see Fig. 2.1) comprises the implementation of several components which

are able to support the inclusion of adaptive contents in existing LMSes (here represented as a

set of light purple rounded block, on the left).

Their seamlessly inclusion is achieved through the GRAPPLE Conversion Component (GCC)

that makes contents stored using the GRAPPLE internal format compatible with the format

of others LMS. The GCC also provides the possibility for the LMSes to share controlled sets of

data about their users which are stored in the central GRAPPLE repository GUMF.

As described in Fig. 2.2, the authentication is managed at federated level by a Shibboleth

supported Single SignOn (SSO)1, which supports an Identity Provider (IdP) for every partner

participating in the federation and one SP (Service Provider) for every service registered.

In GRAPPLE, the course contents are built with respect to conceptual domain and adap-

tation structures, based on concepts. The domain model is based on the concepts and their

relationships, which are enriched by the contents that represent the existing concepts and their

relative links. The user model stores, amongst other things, the concepts list and the related

knowledge level, which is a measure of the learner’s knowledge on a specific concept.

Putting together the different models stored in the system – the Domain Model (DM), the

Content Model (CM), and the User Model (UM) – is possible to support the generation of the

actual adapted content to be provided to the user in the specific course.

With the adoption of this process, every concept could be presented to the user using one

of the contents (i.e. a web page, a video or whatever could be represented as an URL) related

to it in the model provided by the instructional designer. The conceptual adaptation model

1Single SignOn is an approach to provide user authentication using a dedicated service, which can be

seamlessly connected with to arbitrary number of systems to manage user authentication on their behalf.
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includes the adaptation policies and rules, the expected knowledge levels for the concepts and

the expected didactic goals. The GAT (GRAPPLE Authoring Environment) is the component

that allows instructional designers and teachers to author courses in the form of concepts of the

Domain Model and adaptation rules. The GALE (GRAPPLE Adaptive Learning Environment)

is the run-time engine that provides the adapted content to the learners.

Figure 2.3: The mechanism of notification adopted in GRAPPLE. GUMF generates a new event

either based on information received directly or by deriving new knowledge through a reasoning

rule; GEB receives an event and broadcasts it to all the subscribed component, which can decide

to ignore it (such as LMS2 in this case) or process it (LMS1). Hidden in the image are also the

Grapple Listener and Broker.

The learning environments are able to seamlessly include the GALE user interface, as showed

in one of the deliverables1. The adapted course is included in the educational platform similarly

1the deliverable D7.1c (Mazzetti, Tenerini, Dicerto, Van der Sluijs, Smits, Rambout, Abel, Pekczynski,
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to any other learning activity.

All the data about learners coming from the educational systems and the GALE facility

is stored through the Grapple Event Bus (GEB) in the GRAPPLE User Modeling Framework

(GUMF), a distributed user modeling facility that enforces the correct interpretation of the

data received and the application of reasoning rules. The notification of availability of updated

information is made possible through a broker-listener mechanism managed by autonomous

subscriptions and by single component, as showed in Fig. 2.3. One of the component involved

in collecting the circulating data is the Grapple visualisation tool (GVIS), even though it relies

mainly on data directly stored in GUMF and queried in RDF format. Nevertheless, since some

other learner data is not directly stored in the internal user modeling framework – and also to

remain open to further integration –, GVIS was designed to collect and aggregate data from

other sources that are not integrated in the GRAPPLE framework, such as data from social

web services, intranet usage data, web navigation footprints and so on.

Mazza, Mazzola, Gaeremynck, Foss, Minne, and Vasilyeva 2011) - Final specification of the operational infras-

tructure, publicly available on the project website (http://grapple-project.org/public-files/deliverables/

GRAPPLE-D7.2c-Data%20models-v1.0.pdf)
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Chapter 3

GVIS: the tool

This chapter is about the requirement elicitation, ideation, and development of the component in

charge of offering the possibility to create adaptive visual representation of the learner model.

In particular, the general structure of the developed infrastructure is presented and a basic

explanation of the configuration XML1 files that encode the semantics of the operations on the

data is provided. Furthermore, a short section about the development process is reported for

completeness.

3.1 The Infrastructure

GVIS – acronym for GRAPPLE Visualization Infrastructure Service – is a module developed

as part of the project to extract data from different sources and enable instructional designers

to easily create adaptive indicators of the learning state for learners, tutors, and teachers.

3.1.1 Concepts

The GVIS module is a three-tier software architecture2 that allows for great flexibility, cus-

tomisation and independence of the source data coming from other system components. It has

been designed to provide the following features:

• Possibility to extract data from different data sources and using different methods (web

services, database queries, Semantic Web (SPARQL) and others)

• Possibility to change or extend the set of source data without having to change the software

1XML stands for eXtensible Markup Language and is one of the well–known and affirmed language for

structured data encode and exchange over Internet services.
2A three-tier architecture normally separates the data level from its semantic and its presentation.
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• Possibility to define, amend or extend data aggregations without the need to rewrite (or

change) the software

• Possibility to include adaptation on the graphical representations through the inclusion

of programmable conditions in the configuration files

This flexibility is achieved through a design that uses XML configuration files to encode all

parameters for data extraction, to define operations on data as well as data aggregations and

to specify adaptation rules on graphical representations, as outlined in Fig. 3.1.

Figure 3.1: The GVIS architecture with the three levels highlighted inside the Engine block:

Extractor, Aggregator and Builder.

3.1.2 Requirements and Design

Data about user activities and status is stored in the form of logs and tracking data inside

the LMS to provide a first elementary user profile and activity report (regardless of whether

other systems already memorised it in the learner model, at a higher level of aggregation and

abstraction). The user profile is then created on the basis of their activities and interactions

in the learning environment. Although many Learning Management Systems already provide

the possibility to explore this user tracking data, in many cases the visual presentation of

the information is not well suited to the users’ specific needs. The exposed data is generally
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provided as a simple list of user activities – or access to course contents – without the possibility

to explore it from an aggregated didactic point of view. For this reason, adding a didactic

oriented view requires an effort that normally requires interactions between different skills, to

cope the objectives of the activities with the technical way of implementing it and interpreting

its logs. This means that the didactic interpretation of the logs, i.e. the meaning to be given to

this data in the educational experience, has to be added by the ID/teacher (in cooperation with

the technicians) each and every time. In case where the learning experience was developed in

a team oriented flavor (teacher, Instructional Designer, tutor, technician are different persons)

this effort can become demanding if multiple refinement recursions are required to reach the

expected results and carries the risk of generating inconsistencies in successive improvement

iterations. In fact, this events exploration feature was originally thought for technicians in

charge of solving technical issues, rather than for instructors or tutors interested in improving

pedagogical aspects.

In other works, the presentation of the data is either limited to a data subset or predefined

by developers and therefore fixed (Mazza and Milani 2004), (Mazza and Milani 2005), and

(Mazzola, Eynard, and Mazza 2010). Notable exceptions in the field of OLM are OLMlets

(Bull, Gardner, Ahmad, Ting, and Clarke 2009), in which the learner can choose autonomously

between seven different representations. Nevertheless they still rely on data coming from a

single system, normally the one on top of which they were developed.

GVIS provides an easy way to create effective graphical presentations of arbitrary data

from different and heterogeneous sources through the three-tier architecture consisting of a

data extractor, a data aggregator and a builder, as shown in Fig. 3.1.

All these levels rely on a configuration file that the instructional designer can amend or

expand to add graphical indicators (in the form of widgets) of one or more interesting charac-

teristics of the user profile. The infrastructure can connect to any data source with different

connection types (e.g. databases, Web services, connection bus) simply through the creation

of a small adapter. The output produced by the tool, as seen by a final user, is a flash based

interface that represents, using one of the available graphical metaphors, the information that

is considered relevant for the user itself aggregated according to a didactic model, which is

the interpretation of elementary actions such as opening a web-page, posting on as forum or

answering a quiz.

In order to achieve this result, it relies on a highly configurable infrastructure based on

layers, each one implementing a level in the model: extraction, aggregation and widget creation.
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Figure 3.2: The GVIS requirements for the general user.

Figure 3.3: The GVIS requirements for the server-related part.

Furthermore, this schema follows a common data processing pattern: retrieve raw data, extract

or derive, and present it in the most suitable way (Mazzola and Mazza 2009a), (Mazzola and

Mazza 2009b). This approach allows the tool to create a sort of educational mash-up1.

1It is called mash-up the software or service that relies mainly on different and not naturally interconnected

sources for providing a higher value service, based on the integration and enrichments of the single data source
adopted; i.e. the fusion of awareness data with representational facility (map), such as in the case of data
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Figure 3.4: The GVIS requirements for the browser-related part.

The requirements are presented in the UML schema included in this section. Fig. 3.2

shows the basics functionalities: the end user can perform three operations (select and view

chart, move chart in the dashboard, and hide chart), whereas an admin user can work with the

configuration, defining rules for the three levels of the tool. Figure 3.3 presents the operational

view, as seen by the core system, offering the capability for request extractions, aggregations

and chart creation based on requests received from an end user. On the other side, Fig. 3.4

offers a view of the dashboard one, which provides a list of all the available widgets and allows

to change their visibility status in order to support the final user interactions.

Finally, Fig. 3.5 represents the logical flow of information for the widget generation phase.

It begins with a request (formulated by the user in the dashboard interface and encoded in

an AJAX1) request that is intercepted by the core-system to invoke the relevant Builder. The

Builder object then takes the control and checks the configuration which, if successfully vali-

dated, invokes the set of Aggregators required one at a time. Each individual Aggregator re-

quests the set of Extractors it requires. Eventually the data is turned into information through

composition and computation and is returned to the builder that, in the final step, maps it to

the chart and returns the newly created object to the dashboard.

regarding current locations of a list of friends provided in textual way, enriched by its representation on a map

with distance (Km) and time required to reach them by car given the current state of the traffic in the area
1The acronym AJAX stands for Asynchronous JavaScript And XML and is a de-facto standard for the

request of a segment of information to be inserted in a answer or in a segment of a web-page once the page is

already loaded in the client browser. It works through the capabilities of the JavaScript implementation in the

browser to react to asynchronous events and to manipulate the Data Object Model (DOM) of the document

rendered and the method HttpRequest for requesting an informative element through the normal http connection.
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Figure 3.5: Data flow in the widget generation.

3.1.3 Mash-up of data in web 2.0

Because Web-services and RDF1 data model play a major role in integrating distributed services

for Web 2.0, we developed an infrastructure with the ability to take into account different types

of data sources by means of configuration profiles. The process of including facilities in a

liquid and adaptable environment requires not only the availability of a standardised way to

namelessly connect the active component to the environment that will host it (known as the

container), but also an effective method – like the JSON 2 data format – to exchange data

between different applications, services and data storage facilities. Fig. 3.1 shows the current

infrastructure of GVIS in a comprehensive fashion and offers further details on the connection

with heterogeneous sources. The system is flexible as the behavior of its main components can

1RDF stands for Resource Description Framework and is a way to represents facts using a triplet i.e. a

subject, an attribute and a value. It is well suited for data merging even if the underlying schema differ.
2JSON stands for JavaScript Object Notation, a string–based and Internet transparent notation for encoding

object to be transmitted through the header or payload of the page
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be easily changed by modifying the related XML configuration files.

Although the tool is designed for usage in the context of a distributed and heterogeneous

environment, for the purpose of a first test case this architecture was applied to a single data

source (represented by a course deployed on an institutional LMS). Even if this case does not

present distributed characteristics, it is important to consider the fact that the single source

of data is external to the tool. On the other aspect, the mash-up of data, it has to be noted

that this requires more than one source that are naturally related to the learning experience

which are not easy to find, except in cases where the educational experience was conceived to

be supported by different tools from the very beginning. As a proof of concept, in the context

of GRAPPLE, the same tool was used in conjunction with a federation of different learning

platforms. In order to test the practical feasibility of mashing up data, other experiences were

designed and implemented that rely on completely different sources of data, like folksonomies

and tracking logs from personal browsing history (Mazzola, Eynard, and Mazza 2010).

In the following subsections a description of every module shown in Fig. 3.1 is presented,

both in term of functionalities provided and basics of the XML configurations.

3.1.4 The Extractor

The extractor represents the lowest level of our application and is in charge of retrieving data

from the sources, as showed in the Fig. 3.6. This piece of software takes care of producing a

syntactical and semantic translation of the data received from a particular source to the internal

format. The semantical part can be used to translate from a measure system to another or to

normalize the data. Both the pull and the push approaches can be implemented to retrieve

and collect data. To achieve this objective they rely on a small amount of formal code that

describes the data structure used by a particular source. The full schema of the configurations

are presented in the Appendix A. The following excerpt of a configuration file is particularly

useful to explain some peculiarities of the module:

[1] <source name="MoodleEvaluationGlobal">

[1.1] <accessinfo>

[1.1.1] <accesstype>DB</accesstype>

[1.1.2] <accesspoint>**IP**</accesspoint>

[1.1.3] <accessmode>mysql</accessmode>

[1.1.4] <accesssource>**DB_name**</accesssource>

[1.1.5] <username>**UserID**</username>

[1.1.6] <password>**PWD**</password>
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Figure 3.6: Actions involved in the Extraction execution step.

[1.1.7] <lifetime>30</lifetime>

</accessinfo>

[1.2] <query>

[1.2.1] <sql>

select GI.userid AS name, GG.finalgrade AS value

FROM mdl_grade_items AS GI JOIN mdl_grade_grades AS GG

ON GI.id=GG.itemid WHERE ... AND GI.courseid=?

ORDER BY finalgrade DESC

</sql>

[1.2.2] <parameters>

[1.2.2.1] <param>course.id</param>

</parameters>

[1.2.3] <resulttype>listofrecords</resulttype>

</query>
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...

</source>

[2] <source name="MoodleEvaluationSingle">

[2.1] <accessinfo>

...

[2.1.7] <lifetime>0</lifetime>

</accessinfo>

[2.2] <query>

[2.2.1] <sql>

...

</sql>

[2.2.2] <parameters>

[2.2.2.1] <param>course.id</param>

[2.2.2.2] <param>user.id</param>

</parameters>

[2.2.3] <resulttype>numeric</resulttype>

</query>

...

</source>

In section [1.1] all the parameters for the connection with the data source are included, in

[1.1.1] the type of adapter class is declared, together with [1.1.3], which refines the previous

indication. Section [1.1.7] defines the buffer lifetime for the extracted information: in the

specific case the value of 30 means that the system will buffer and reuse the data for all the

following requests that will occur within a time-frame of 30 secs. This could be useful for data

sources having a slow response time. If this functionality is not needed, a 0 value can be used

like in fragment [2.1.7]. In the second half of the source configuration a specific query is inserted

(like in [1.2.1]), with one or more parameters (see [1.2.2.1] and [2.2.2.1], [2.2.2.2]). In the final

part is a declaration of the expected output type, whose range could be one of the following:

numeric [2.2.3], record , list or listofrecords [1.2.3].

Figure 3.6 specifies the flow of data extraction: an instantiation of the Extractor, after

positively verifying its configuration (generating a SettingError exception otherwise), reads

all the requests contained in it and executes each one of them, after having associated the

actual parameters to the extraction step. If any unexpected or wrong result is returned to

the instance, an exception is raised (respectively of the type ExtractionError and DBError).

A final normalization step can be applied to the extracted data, if explicitly indicated in the

configuration applied. Finally, if no exception is generated, the end result of the extraction is
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returned to the instance of the invoker at the upper level.

3.1.4.1 The Adapter

As already stated, the Extractor is able to connect to different data sources. This approach

allows our solution to be seamlessly extended with different and heterogeneous data providers.

When a new data provider is added to the infrastructure, a new mapping for the provider has

to be provided as well. This can be done either by writing a new adapter class or reusing an

existing one. An adapter is a class in the code that can be invoked by GVIS in order to deal

with a specific type of data source. It uses the standard fields included in the configuration

for retrieving the data, formatting it correctly and using the most suitable way to query the

source. In the released version some specific classes are included for managing connections with

MySQL (called DB, due to the fact that it can accept almost any source conforming to SQL1

protocol), a specific Web-service interface and a SPARQL2 endpoint interface.

3.1.5 The Aggregator

The aggregator is in charge of filtering raw data collected by the extractor and to apply some

operations to the aggregated data, as clearly shown in Fig. 3.7. The instance starts with a

validity and sanity check (with an exception SettingError which is generated in negative cases),

then invoke the Extractions whose returned data is stored in order to apply the computa-

tions required and either return the results to the upper level or generate an AggregationError

exception in case something went wrong.

This aggregation is based on the teaching and learning objectives that the teacher or in-

structional designer adopted, in fact it represents the information that is useful for learner and

is strictly related to the pedagogical approach provided in the learning experience. This data

aggregation into information – combined with its representation – could play an important

role in supporting the learning process. With such an architecture we expect to offer a cus-

tomised tool that can take into account different design models for didactic experiences. The

use of models (based on XML syntax with an associated Name-space) provides a formal way

for designing the behavior of the aggregator module.

1Standard Query Language is a specialised programming language for managing data in relational database

management systems
2Simple Protocol and RDF Query Language is a specialised RDF query language
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Figure 3.7: Actions involved in the Aggregation execution step.

3.1.5.1 Didactic models

Didactic models are defined by means of configuration files that describe how source data

is aggregated in order to build meaningful and useful indicators. Here we show some XML

fragments of this configuration that primarily describe which data is expected as input (like

[3.1.1] and [3.1.2] or [4.1.1]) and which type of information will be produced as output (as

in [3.3] or in [4.2]). The transformation process from input to output is also described in the

form of a pipeline of operations: the output of a step could be used as input on a following

one, like for the average operation in [3.2.2.1], whose parameter compute is set to true (see

[3.2.2.2.1]). Operations (like in [3.2.1.1] and [3.2.2.1]) are provided by internal classes that

could be extended as required. The class name – like ExtractCol or average in the example –

defines the operation performed and implements an abstract model which defines the expected

properties and methods.
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[3] <source name="getMooEvalAvg">

[3.1] <extraction>

[3.1.1] <toextract>MEvalGlobal</toextract>

[3.1.2] <toextract fix="true">1</toextract>

</extraction>

[3.2] <computation>

[3.2.1] <tocompute>

[3.2.1.1] <operation>ExtractCol</operation>

[3.2.1.2] <parameters>

[3.2.1.2.1] <param>0</param>

[3.2.1.2.2] <param>1</param>

</parameters>

[3.2.1.3] <resulttype>list</resulttype>

</tocompute>

[3.2.2] <tocompute>

[3.2.2.1] <operation>average</operation>

[3.2.2.2] <parameters>

[3.2.2.2.1] <param computed="true">0</param>

</parameters>

[3.2.2.3] <resulttype>numeric</resulttype>

</tocompute>

</computation>

[3.3] <resulttype>numeric</resulttype>

</source>

[4] <source name="getMooEvalSingle">

[4.1] <extraction>

[4.1.1] <toextract>MooEvalSingle</toextract>

[4.2] </extraction>

<resulttype>numeric</resulttype>

</source>

3.1.6 The Builder module

The Visualisation module (a specialisation of the Builder module, specifically devoted to the

representation of the data for the user) is the part that produces the actual visualisation.

While this module has not been fully in its exporting capabilities implemented, other Building

specialisation could be implemented, such as to format the data extracted for the purpose of

connecting to other systems, for providing them the computed information.

The actual implementation – Visualisation – is divided in two components: the initial
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container, called dashboard, and the actual contents, represented by graphical widgets that

map information into the final indicator in a graphical form.

The configuration of the dashboard can be personalised based on some parameters set at

global level in the GVIS instance, like in the following XML fragment that defines the type

([5.1]) and data sources ([5.1.1.1] and [5.2.1.1] ) to be used by the actual widget (such as the

one represented in Fig. 3.12):

[5]<widget name="Note">

...

[5.1] <chart type="hbar">

[5.1.1] <chartsource>

[5.1.1.1] <data>getMooEvalSingle</data>

...

</chartsource>

[5.2.1] <chartsource>

[2.2.1.1] <data>getMooEvalAvg</data>

...

</chartsource>

</chart>

</widget>

The generated widget is in the form of a horizontal bar-chart ([5.1]) and provides two types

of information: the evaluation for the student ([5.1.1.1]) and its comparison with the class

average ([5.2.1.1]).

3.1.6.1 The Dashboard and the Widget generator

The dashboard is instantiated once for each client –the browser of the user that connects to the

platform for accessing the GVIS generated widgets– when the service is started. The actions and

flow of information connected with the Builder invocation is presented in Fig. 3.8, where the

check settings function verifies the configuration and creates all the instances of the Aggregator

needed for the correct execution of the module Builder. The module provides two types of

functionalities. It is a container for all the widgets and it collects all the user interactions

and feedbacks, such as data filtering or widget visibility change. As a container, it provides

a common place for the different widgets, each of which is specialised to represent a specific

aspect; on the other side, by managing the interactions with the user, it acts as a sort of control

panel of the learner situation. The interaction functionality is important because this is the

only level at which the final user can express preferences or partially change the behavior of the
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Figure 3.8: Actions involved in the Building execution step.

whole system. This is particularly relevant for the learner category, that can use this capability

to better target the amount of information received. This approach allows the learner to fulfill

its specific needs in term of richness of the personal feedback channel.

The active widgets are dynamically created at the top of the dashboard: every widget, based

on a graphical template – mainly defined by the builder classes and specialised through the XML

configuration – that defines its main aspects, represents an encoding of a single indicator (i.e. a

piece information that can be relevant for the user activity) for each of the characteristics (one

or more) of the learner profile. Each characteristic follows the presented path, from extraction

to aggregation to being ready and usable for encoding into an indicator. This way, these widgets

are the final outputs of the application.
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3.1.7 Adaptivity

In the current implementation, the two upper layers (aggregator and builder) can be enhanced

with adaptive features. As already mentioned, after the extractor layer has retrieved raw data

from the sources the aggregator takes charge of merging and filtering the data in order to extract

more refined information. This aggregation is based on the model that the instructional designer

wants to provide to the learners and reflects the didactic approach adopted in the course.

With such an architecture, the support to the learning process based on adaptive profile

externalisation can be achieved by adapting the visualisation to the specific didactic model.

The adaptivity is modeled in the configuration files for the two levels (aggregator and

builder) through a simple XML. Its XML schema supports the conditional construct ”IF ...

THEN ... ELSE ... ” which allows the GVIS visualisation to produce a different behavior

with different properties. Furthermore, the schema allows each branch to be a leaf or another

conditional, supporting in this way even a multilevel logic. The next example shows the usage

of two levels. The properties can be any combination of source data values, on which a set

of mathematical and logical operators can be applied. For instance, it can be decided that a

particular widget may show a comparison of the level of knowledge of a student among the class

only if his current knowledge level is greater than a threshold value; or we may want to show

a particular widget only to the course instructor and not to the learners. This is implemented

by including conditional instructions in the XML configuration files of the aggregator and the

builder. The configuration files may contain variables, logical and arithmetical operators i.e. we

have implemented the common comparison operators (more than, less than, equal and different)

and the logical operators AND, OR, XOR (exclusive or), NOT (!).

The following example shows a possible condition:

<cond>

<op>(v1 AND ((A &gt; 3) OR !(z)))</op> // FIRST LEVEL CONDITION

<operands>

<val id="v1">CourseX.Concepts.list</val>

<val id="z">CourseX.Student.count</val>

<val id="A">CourseX.ConceptA.mean.knowledge</val>

</operands>

<true>...</true>

<false>

<op>(h &lt; t)</op> // SECOND LEVEL CONDITION

<operands>
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<val id="t">CourseX.ConceptA.mean.knowledge</val>

<val id="h">CourseX.ConceptA.userH.knowledge</val>

</operands>

<true>...</true>

<false>...</false>

</false>

</cond>

In the code above there are two conditions, and their interpretation is the following:

COND1 => If the list of concepts in course X is not empty and either the average knowledge

of concept A is greater than 3 or there are no students subscribed to the course, then display a

particular widget, otherwise check another condition.

The second condition is related to the knowledge level of the current learner, implemented

in the false branch of the first one, and states the following:

COND2 => If the knowledge level of the current learner is lower compared to the average level

for course X, ...

The construct shown allows for the creation of conditions of varying complexity and can

therefore be used to specify a number of different behaviors at the level of granularity required.

In the conditional expression any variable that was associated in the extractor with an

input of the user model can be used, as well as variables that represent user preferences and

user device configurations, if available and retrieved by the extractor layer.

As a case study, the GVIS software was fed data from different LMSes used in a controlled

experiment, to support a distance learning course.

The following examples show possible configurations enhanced through adaptive segments.

The adaptive behavior can be achieved by the aggregator and the builder, and is driven by

course data (i.e. data not directly related to a single user, such as the number of concepts

in a course) and/or user data (i.e. data about the learner e.g. the activities performed, the

knowledge acquired or preferences expressed). All this data is either collected by the extractor

or it can be explicitly declared by the learner through his/her preferences and personal settings

which are stored in the DB of the educational platform.

The first example, based on user data (see Fig. 3.9), adapts at the aggregation level. It

presents the knowledge achieved by a student over the concepts of the course.

In Fig. 3.9 on the left is a compact view, where the average knowledge level of the learner

(first column) over the concepts of the course is compared to the average knowledge level of the

class (second column).
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Figure 3.9: Example of the produced widgets: different aggregation level of the same data.

Figure 3.10: Example of the produced widgets: different graphical representation of the same

base data, aggregated in different ways.

The right side of Fig. 3.9, on the other end, presents detailed information for each concept

of the course (namely, Star, Planet, Sun, and Earth; each concept is followed by the [it] suffix

to indicate that the content provided was adapted to the user’s preferred language i.e. Italian).

The choice around which of these two widgets should be presented to the user is made by the

GVIS engine on the basis of the number of concepts to display: if the number of concepts is too

large to be represented in the detailed visualisation, GVIS will present the aggregated view. It

is important to notice that GVIS will only present data related to the concepts visited by the

learner. This means that the adaptation rule can change the presented object automatically

as the learner subsequently visits more concepts of the course. The threshold based on which

one of the two alternative visualisations is chosen can be either a constant value in the XML

configuration file or a value that is calculated on the basis of one or more characteristics of the

class or activities done on the LMS, or even based on the device type currently used by the

learner.

Another visualisation we developed, presented in Fig. 3.10, adapts the type of graph to

the user preferences and to the number of concepts, in order to optimize the readability of

the widget. It shows the information in two different formats: on the left hand side, a bar

chart represents the knowledge levels of a learner over the concepts of the course, comparing
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Figure 3.11: Example of the produced widgets: graphical versus textual representation.

these values with the expected knowledge level. On the right hand side, a pie chart offers a

representation of the knowledge for every concept along with their relative weight in the total

knowledge achieved on the course.

The next example, based on course data, is presented in Fig. 3.11 with an adaptation

condition included at builder layer. This means that the data represented – like in the previous

cases – is exactly the same, but here the encoding changes: in this case the adaptation is driven

by either the type of hardware used by the learner or by the connection speed. A textual list

is well suited for mobile phone devices or hand-held based platform, while a graphical widget

(on the left) is more suitable for larger displays and broadband access.

Figure 3.12: Examples of the produced widgets: differential versus absolute representation.

As previously stated, providing a way to open the profile to user inspection is important

in the domain of Life Long Learning: the presentation of information about user activities

and status as an indicator of the learning process is widely accepted as one of the key points

to improve participation and increase the participants’ satisfaction (Shneiderman and Plaisant

2004) and (Shneiderman and Plaisant 2005).

In some cases, the presentation of data is limited to a subset of the available information or

52



3.2 Development

Figure 3.13: The class diagram for the Engine package (with some classes from other packages

that have strong dependencies here).

is predefined by the developers and therefore fixed (Dimitrova 2003).

With GVIS, we aim to provide an easy way to create an effective graphical presentation

of arbitrary subsets of data elements. The small examples of configurations presented and

explained in the next sections are used to create widgets like the one shown in Fig. 3.12.

3.2 Development

In the following paragraphs the internal structure of the GVIS solution will be presented,

describing the logic and presenting the communication mechanism with the environment im-

plemented.

The main element is represented by the Engine, illustrated in Fig. 3.13, where the main class

is represented by the Engine::GenericBuilder which implements the Engine::IBuilder interface.

It relies strongly on the interfaces Engine::IAggregator and Engine::ISettings.

As it can be seen, the development process uses a design-pattern approach and enforces a

clear separation between interfaces and implementing class, allowing for a clear distinction of

the API1 and for functional code. In Fig. 3.13 all the main components of the core – with

1Application Protocol Interface is the signature of the functions implemented and available use and represents

the software interface.
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the three level of Extraction, Aggregation and Building – are depicted together alongside with

the relationship that exists between them: this clearly shows the interfaces they rely on for the

mutual interconnection.

The top level, which is also the single point in charge of interacting with the learning

environment for data exchange, is represented by the Engine::GenericBuilder and implements

a static factory method, allowing for a static instantiation of the class without the need to

create a full instance which would persist in the memory until it is explicitly destroyed. A

generic builder exists in the Engine::GenericBuilder and every class that extends it should call

this method to ensure the correct creation of all the contexts for the generation of a widget.

In adherence with this separation and encapsulation choice, all the classes implementing the

Engine::IOperation interface rely on the same factory method to check the current environment

(variables, configuration flags, parameters for the extraction and computation and so on).

Figure 3.14: The class diagram for the Engine::Builder package.

In Fig. 3.14 a detailed view of the subpart of the Engine related to the Builder level is

shown, highlighting how the Engine::GenericBuilder is specialised by different classes, each

one of them being related to a specific type of widget (Engine::NullBuilder for the single

textual values; Engine::ListBuilder for the textual lists, which requires some styling to be nicely

presented inside an HTML context; and Engine::JSONChartBuilder that is the ancestor of all

the classes used for feeding the chart based on a JSON representation of the data). Finally, the
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Engine::JSONChartBuilder is further specialised by four classes: Engine::JSONScatteredChart,

Engine::JSONBarChart, Engine::JSONPieChart, and Engine::JSONHbarChart. Each one of

these classes format the data in a structure which is well suited to be used for a specific Flash1

based chart implemented with Open-Flash-Chart library 2.

Operator Nr Input Output

OpAverage
1 list number

2 list of lists number

Calculate the average of the list of values given as input

OpAvgComplex - list of lists list of numbers

Calculate the average of the multi-lists of values given as input, generating a list of averages

OpCount
1 list number

2 list of lists number

Count the number of entries in the input data structure

OpCountByField
1 list number

2 list of lists number

Count the number of different fields present in the input parameter

OpDiffer - 2 lists list

Calculate the difference of the lists received, as a set operator ⇒ D = A−B

OpDistance - 2 list list of numbers

Calculate the distance of two lists in term of a list of single distance between corresponding terms

OpExtractColumn - 2 multidimensional list list

Return a list made of a single dimension of the multidimensional received input

OpExtractNameColumn - 2 multidimensional list string

Extracts the names of the dimensions from the array received in input

OpExtractRow - 2 multidimensional list array

Extract a single record from the input multidimensional data structure

OpFlat - 2 multidimensional list array

Transform the multidimensional input into an array

OpFlatIn - 2 multidimensional list list

Transform the multidimensional input into a list

OpLabelling - 2 arrays multidimensional array

Using the arrays received in input as values and names, crate a multidimensional array by merging them

Table 3.1: The list of operators implemented in GVIS at the Aggregation level: part A.

Fig. 3.15 represents the level of Aggregation as another subpart of the Engine. The main

1FLASH is a technology originally developed from Adobe (R) to include active contents in an HTML context.
2Open-Flash-Chart is an open source library used to generate FLASH chart by simply providing the val-

ues and configurations in a object structure, encoded in JSON format – see http://teethgrinder.co.uk/

open-flash-chart/ .
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Operator Nr Input Output

OpIntersection - 2 lists list

Calculate the intersection of the lists received, as a set operator ⇒ I = A ∩B

OpCompress
1 list list

2 list of lists list of lists

Remove duplicates from the input list and return it

OpLimitByNumber - 2 list list

Reduce the length of an input list to a certain number of elements

OpLimitByValue - 2 list list

Reduce the length of an input list by eliminating the entries whose value is inferior to a threshold

OpLimitByField - 2 list list

Reduce the length of a list by maintaining only the elements that match specific field names

OpPassValue - 2 list element

Used to pass a value to the Builder

OpRelativate - 2 list list

Transforms a list to make the values in it a percentage of the highest one

OpRemoveCol - 2 list list

Returns the list received as input bar the dimension to be removed

OpSimplify - 2 list list

Returns the list received as input bar empty or NULL values

OpSum
1 2 list number

2 list of lists number

Returns the sum of the elements in the input parameter

OpSumAbs
1 2 list list

2 list of lists number

Returns the sum of the absolute elements in the input parameter

OpUnion - 2 list list

Calculate the union of the lists received, as a set operator ⇒ D = A ∪B

OpEach - *** ***

A special case operator that allows to iterate on Extractors based on data contained in a Aggregator

Table 3.2: The list of operators implemented in GVIS at the Aggregation level: part B.
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Figure 3.15: The class diagram for the Engine::Aggregator package.

class Engine::Aggregator is an almost empty implementation of the Interface Engine::IAggregator

and has the only objective of including the correct implementation of the Engine::IOperation

interface. This interface represents all the possible operations that the system can perform

internally. The operations that exist are a basic set.

The operations can be categorised by the type of value returned – i.e. number, string or list

– and by the number and type of input expected – i.e. order or unordered mono-dimensional

list or multidimensional list – that cover all the basic needs for simple data manipulation.

In the category that takes a single list as input and a number as output the OpCount exists,

which returns the number of elements contained in the list received as parameter; we also have

the OpAverage that returns the numerical average of the list in input and the OpSum which

behaves in the same way but returns the sum instead. For the type returning a result list we

can enumerate the OpInteraction, the OpDiffer and the OpUnion which respectively return the

common, uncommon and union of the record in the two unordered lists, that can be mono-

dimensional or bi-dimensional (in the latter, the dimension on which to perform the operation

should be declared in the operation configuration).

Tables 3.1 and 3.2 report the complete list of operators implemented, with an indication of

the main data type expected as input as well as returned as output and a very brief explanation

of the semantic of the operator.

Eventually, a special case (called OpEach) is implemented, which requires a list of values and

an Engine::IExtractor instance as input. This operator performs the extraction of the second
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Figure 3.16: The class diagram for the utils package.

values using each one of the values included in the first input, resulting in either a single or

multidimensional list based on the type returned by the Engine::IExtractor operation involved.

As it can be seen from Fig. 3.15 this last operation of the Engine::Aggregator relies di-

rectly on the interface for the extraction step and on a class on the utils package, called

utils::ConcreteDataProducer, that supports the inversion of the normal data flow, which is

usually strictly mono-directional from the extraction to the aggregation (see the next part of

the utils package and Fig. 3.16 for details).

The package utils, whose main structure is depicted in Fig. 3.16, is a collection of helper

classes that supports other packages. It provides common functionalities to all levels, such

as the passage of the data between different levels and the management of unexpected status

through the generation of exceptions.

For the sake of readability, in Fig. 3.16 only a generic utils::userException but not further

specialisation class is depicted instead of the multiple and complex branch representing the

specific exceptions returned by the package.

The most important class of the utils package is the utils::DataBridge singleton1, which

provides full support to the implemented Engine classes whether they need to exchange data

between the levels of Extraction, Aggregation, and Building. In fact, it includes the two sides

of the exchange, represented in the utils::ConcreteDataProducer (that implements the interface

utils::IDataExchangeProducer and its public method addElement for providing new data) and in

utils::ConcreteDataConsumer (implementing the interface utils::IDataExchangeConsumer and

1a singleton is a patter for OO-programming that restricts the number of instances of the object usable to

a single entity.
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its public method getElement for retrieving the data itself). It also allows for the correctness

control of the data exchange on the sender’s side as well as on the receiving ones, thus enabling

a complete decoupling between levels and empowering the exchange mechanism by providing, if

required, the possibility to also connect components that generate data to be used at a different

level of the extraction.

The package config is accessible through the config::ISetting interface which is primarily

implemented by three classes, each one of them dedicated to a specific level of the infrastructure

as represented by the Fig. 3.17. A really useful helper class is the config::ASetting, which was

exclusively designed for internal use – in fact, all of its methods are private – and provides the

basic methods for parsing and binding the internal structure of an XML document.

The config::ExtractorSettings is the implementation of the lower level and provides a method

queryBlock that, thanks to the inclusion of config::-QueryBlockManipulation, can provide a

practical way to query a data source by reconnecting the formal query to the parameters

used in the invocation phase. Moving on to the intermediate level of aggregation, the con-

fig::AggregatorSettings offers the functionalities required to support all of the operations on the

parameters used, based on the inclusion of two classes i.e. config::ExtractBlockManip and con-

fig::ComputeBlockManip. These can handle the operation by either relying on the data coming

from an extraction operation or the one generated from a different aggregation. By doing so

they allow for the creation of a complex chain and enable the implementation of a sophisti-

cated logic. At the top level, the config::BuilderSettings handles all the parameters (through the

config::ChartBlockManip) and data configurations (including the config::PropertiesBlockManip)

When dealing with the XML settings, a special care has to be paid in order to avoid problems

related to the interpretation of XML done by the support class developed in PHP1

Table 3.3 describes the implementation of the XML configuration that considered this issue

by adopting an attribute, called prevquery, on the param tag. This attribute specialises the tag

by indicating whether the parameter contained has to be interpreted as an actual one or if it is

instead the index of the previous query to be used as input.

1PHP is one of the most widespread web programming language. The association of the formal and the

actual parameter is done by positional substitution, which means that the first formal parameter is expanded in

the first actual parameter before the related function is executed. This approach, despite its simplicity, can be

prone to error if the association is not done respecting the order in a strict fashion. The interpretation of the

XML segment is carried out using associative arrays (based on the name), but in the development two different

tags2 were mixed so as to generate two unrelated arrays. Reconstructing the original position of the actual

parameters from this will require an additional meta-data structure, thus unnecessarily complicating the data

structure and the configuration parsing operation.
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Field Value

XML source

<parameters>

<param>concepts.name</param>

<param>knowledge.level</param>

<param prevquery="true">0</param>

<param>users.id</param>

<param prevquery="true">10</param>

</parameters>

Interpretation

[param] => Array

(

[0] => concepts.name

[1] => knowledge.level

[2] => 0

[3] => users.id

[4] => 10

)

Table 3.3: Positional interpretation of the XML parameters encoding.

In the following lines of code an example of the Aggregation and of the Builder are presented

which show some of the peculiarities of the configuration:

<extraction>...</extraction>

<extraction>

%% REF TO THE FIRST VALUE TAKEN IN THE EXTRACTION LAYER %%

<toextract>Src1</toextract>

%% REF TO THE SECOND VALUE TAKEN IN THE EXTRACTION LAYER %%

%% IT IS DEFFERRED, BECAUSE IT DEPENDS ON OTHER EXTRACTOR RESULT%%

<toextract defer="true">Src2</toextract>

</extraction>

The extraction phase takes into account two sources from the Extractor (namely Src1 and

Src2 ): the first one is immediate, whereas the second one is to be delayed to use the parameters

coming from an Aggregation phase (as indicated by the attribute defer=”true”).

<computation>

%% FIRST COMPUTATION %%
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Figure 3.17: The class diagram for the config package.

<tocompute>

<operation>intersection</operation>

<parameters>

%% FIRST VALUE TAKEN FROM THE EXTRACTION LAYER %%

<param>0</param>

%% FIXED VALUE, AS SPECIFIED %%

<param fixed=’1’>1</param>

</parameters>

%% TYPE OF RESULT RETURNED %%

<resulttype>list</resulttype>

</tocompute>

%% END OF FIRST COMPUTATION %%

%% SECOND COMPUTATION %%

<tocompute>

<operation>count</operation>

<parameters>

%% RESULT COMING FROM FIRST COMPUTATION %%

<param computed="true">0</param>

</parameters>

%% TYPE OF RESULT RETURNED %%
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<resulttype>numeric</resulttype>

</tocompute>

%% END OF SECOND COMPUTATION %%

%% THIRD COMPUTATION %%

<tocompute>

<operation>each</operation>

<parameters>

%%RESULT COMING FROM SECOND COMPUTATION %%

<param computed="true">1</param>

%% SECOND VALUE TAKEN FROM THE EXTRACTION LAYER, DEFERRED %%

<param>1</param>

</parameters>

%% TYPE OF RESULT RETURNED %%

<resulttype>list</resulttype>

</tocompute>

%% END OF THIRD COMPUTATION %%

</computation>

The computation is composed of three steps, the first one –using the first data source and

a fixed value and identified by the relative attribute– gives a return type of list through an

intersection. The second step consists of performing a count of the elements included in the list

returned from the previous aggregation step. In the final computation, the XML instructs the

infrastructure to use the results of the second step as an input parameter (one for each call) to

instantiate the extraction known as Src2.

<properties>...</properties>

%%GRAPH TYPE %%

<chart type="bar">

%% FIRST SOURCE TO BE USED FOR THE CURRENT GRAPH %%

<chartsource>

%%ELEMENT OF COMPUTATION TO BE USED %%

<data from="system">StudConCount</data>

%% MAPPING ON THE WIDGET %%

<mapping>values</mapping>

%% LABEL TO USE %%

<label>Selected Student</label>

</chartsource>
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%% OTHER SOURCE TO BE USED FOR THE CURRENT GRAPH %%

<chartsource>

<data from="system">ClassConCount</data>

<mapping>comparison</mapping>

<label>Class</label>

<elementcolor>\#220505</elementcolor>

...

</chartsource>

</chart>

The Builder relies on two different results returned from the Aggregation (namely Stud-

ConCount and ClassConCount) to generate two series, called ”Selected Student” and ”Class”

respectively. The first one acts as the main value series whereas the second ones acts as the com-

parison series. The second series is filled with the color #220505 and the chart type requested

is a vertical bar chart.

Fig. 3.18 and Fig. 3.19 represent the interaction diagrams for the widget generation inside

the environment as seen by the dashboard and a final user of the GVIS tool respectively.

An example of the JSON result1 communicated to the dashboard for the widget instantiation

is presented in the next segment, where a bar chart is requested and returns six results.

{

"elements": [

{

"type": "bar",

"values": [

1,

2,

3,

4,

5,

6

]

}

],

"title": {

"text": "Personal visited concepts count"

}

}

1for the full syntax of the JSON answer see Appendix B.
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Finally the appearance of the dashboard implemented in the original GVIS infrastructure

is depicted in Fig. 3.21. In the next chapters, different usages of the GVIS infrastructure will

be presented and the capabilities and flexibility achieved in the developed code will be shown.
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Figure 3.18: The sequence diagram for the widget creation (as seen internally: Dashboard).
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Figure 3.19: The sequence diagram for the complete widget creation (as seen externally: user).
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Figure 3.20: The dashboard as seen in the original conception of the GVIS infrastructure.

Figure 3.21: Another view of the original conception of the GVIS infrastructure.
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Chapter 4

GVIS: evaluation in GRAPPLE

This chapter presents the evaluations produced based on the experiments that were carried out

on the design and implementation of the infrastructure. The first evaluation was performed

using mock-ups, while practical experiments followed in the next evaluation. The evaluations

performed in this chapter aimed at support the design and initial implementation of the visual-

izations to be provided as the interface of GVIS with the users. On the other end, the feasibility

and integration with other LMS and other heterogeneous data sources will be presented in next

chapter.

4.1 GVIS in the context of GRAPPLE

As already stated, GVIS was developed to become one of the multiple services in the GRAPPLE

infrastructure, and in this precise context the user requirements were gathered, the design was

conceived and a first evaluation was produced. The first step was based on mock-ups, in order to

receive the users comments and feedbacks about the perceived usefulness, the potential issues,

but also suggestions for improving our design.

4.1.1 GRAPPLE User requirements

As part of the initial activities on the GRAPPLE project a number of interviews and meetings

have been conducted on requirement gathering and analysis 1. The questions specifically con-

ceived for the evaluation of the GVIS module were integrated in a questionnaire with a broader

1The results of the interviews conducted with a series of end users involved in the academic and industrial

settings can be found in the GRAPPLE project public deliverables D10.5 (Pekczynski, Steiner, Mazzetti, and

Barak 2011) and D9.1 (Harrigan, Kravcik, Steiner, and Wade 2009).
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objective, including also aspects of adaptivity. For these reasons only a part of the questions

was usable to run an analysis of preferences and needs with respect to visualisation. Neverthe-

less, some of the results obtained are still relevant to the present work. From the analysis of

the open answers and comments documented in the interview summaries, it can be seen that

the visualisation of acquired knowledge and learning progress is considered to be important

(Harrigan, Kravcik, Steiner, and Wade 2009). Many considered the visualisation of the various

stages of learning and how they are adapted an interesting prospect. One learner raised the

question as to how he –or she– can know “if they haven’t missed anything important”. Learners

need a visual map of where they are and where they are going with each important milestone

clearly marked. The training providers and tutors also require a visualisation of the learners

progress and of the structure of the course as it currently stands.

Another characteristic emerged as important is the expected “transparency” of the user

model from the learners side, that should be more similar to a personal notebook than to

a black box used only by one or more adaptive learning systems. This fact could also help

in seeing it under a more positive light, as a learners portfolio. For reaching this objective,

the learner should always be able to inspect its contents, at least to some degree (Pekczynski,

Steiner, Mazzetti, and Barak 2011). The system should be able to point out gaps between what

a learner thinks that he/she knows (perhaps through voluntary questionnaires) and what he/she

actually knows as portrayed by tests and exercises, which can help the learner to identify its

own strengths and weaknesses. The system can also point out the discrepancies (if any) between

an optimal learning path (i.e. the one designed by the instructor) and a preferred learning path

as indicated by the learner (through the followed contents). To a lesser degree, it may also be

used to match the learners with their peers who are strong in areas they are weak in, and vice

versa (Harrigan, Kravcik, Steiner, and Wade 2009).

These findings are in line with results obtained from responses of stakeholders on the adapta-

tion criteria, which showed that the user characteristics deemed most important for adaptation

are learning goals, tasks, and learner knowledge. These are actually the main user model

variables in direct relation to the learning tasks. In addition,an appropriate visualisation can

be assumed to be effectively supportive for the user’s learning process in an adaptive system.

In order for the learning process to be successfully tailored to the variables above, having

appropriate visualisations of the respective information in addition to the adaptation process

itself is certainly a plus. This shouldn’t come as a surprise as it already emerged from the

initial requirements gathering activity conducted with the users. From the above results and
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considerations as derived from the requirements analysis, the following requirements can be

derived: The visualisation has to make clear what the main parts and concepts around

the course are. Important milestones, in terms of learning objectives, should be also clearly

represented. Learners should be able to inspect the content of the user model and see

what their current status is, as well as how they are progressing with respect to the learning

objectives defined by the teacher. Any discrepancies between the learning objectives and the

current status of knowledge of the learner as inferred by the learner model should be clearly

reported by the visualisation. This could help the learner identify his/her strengths and

weaknesses and promote meta-cognition. Tutors and instructors need to access this in-

formation to monitor the learners progress and review the structure of the course as

it currently stands. Peer learner models should be provided. This will help learners find

“complementary” peers who are strong in areas in which they are weak, and vice-versa.

4.1.1.1 Information descriptors

This section contains details about the information that GVIS has to provide to both learn-

ers and instructors. The following information has been compiled taking into consideration

the source data identified in the previous section and the user requirements and analysis de-

fined in the deliverable D4.5a (Mazza, Mazzola, Glahn, Verpoorten, Nussbaumer, Steiner, and

Heckmann 2009). The overall goal of the following information is to support the learners to

acquire meta-cognitive skills and the instructors to monitor the status of their students. For

each information item the following is indicated:

• A short name for the data (column Name) and a code to describe whether the information

represents facts about the learner or about the class (column Type).

– L: about learner and peers

– S: about the class

– X: about both

• The name and a synopsis of the meaning of the data (column Information)

• Target users (column Main target users)

• Description of the required source data (column Required source data)
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• Possible interaction of the users with the visualisations that represent that information

(column User interactions).

Two or more pieces of information described in the following tables (Table 4.5 and Table

4.6) can be combined into a single graphical representation. Moreover, we used the previously

presented coding schema to describe whether the information represents facts about the learner

or about the class.

Two types of visualisations are generated by GVIS: a compact indicator, that can be placed

as side block on the main page of the course, and a detailed visualisation, placed on a special

dashboard that can be accessed by the system users by clicking on the compact visualisation.

4.1.1.1.1 Descriptors for compact indicators The information described in the follow-

ing table will be implemented as compact indicators that the users will see as side block on

the main page of the course in the Learning Management System. A compact indicator can

implement one or more of the items described in the Table 4.1.

4.1.1.1.2 Descriptors for Dashboards views The information described in the Table

4.2 and Table 4.3 is implemented with a special dashboard that can be accessed by users of

the system by clicking on one of the compact visualisations described in the previous section.

The dashboard contains the widgets that implement the items described in already mentioned

tables.

4.1.1.2 Data input

The design of visualisations requires a well-defined information around the type of data to

represent. This is important for three main reasons: the data type determines the visualisation

to be used, the data type determines what data sets can get combined in one visualisation, and

finally the data type partially reflect the meaning of the information provided.

The following input data types were identified:

1. Text - textual information represented as a sequence of characters

2. Number - numerical information, which can be of type Integer or Float

3. List - ordered sequence of data of type Text or Number. List elements are identified as

Integers. It can also be a list of records, where a record is a sequence of Texts or Numbers.
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Name Information Main

target

users (in

order of

rele-

vance)

Required

source

data

Description of the aggrega-

tions

ConVisStud

(L)

Number of con-

cepts visited by a

learner

Learner ConList,

ConVis

Counts the number of concepts

of the course (ConList) visited

one or more times by the learner

(ConVis)

ConVisClass

(S)

Number of con-

cepts visited by

the class

Instructor,

Learner

StuList,

ConList,

ConVis

The average value of concept

visited (ConList, ConVis) per

learner (StuList)

KnowStud

(L)

Overall knowl-

edge acquired by

a learner

Learner ConList,

KnoLev,

KnoRange

The average level of knowledge

level (KnoLev) of the learner per

concept of the course (ConList)

KnowClass

(S)

Overall knowl-

edge acquired by

the class

Instructor,

Learner

StuList,

ConList,

KnoLev,

KnoRange

The average of the overall knowl-

edge level (KnoLev, ConList) per

student of the course (StuList)

ActStud

(L)

Number of activi-

ties performed by

a learner

Learner ActList,

ActVis

Counts the number of activi-

ties of the course (ActList) per-

formed one or more times by the

learner (ActVis)

ActClass

(S)

Number of activi-

ties performed by

the class

Instructor,

Learner

StuList,

ActList,

ActVis

The average of the number

of activities performed (ActList,

ActVis) per learner (StuList)

Table 4.1: Descriptors for GRAPPLE compact indicators
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Name Information Main

target

users (in

order of

rele-

vance)

Required

source

data

Description of

the aggregations

User in-

teractions

GoalStudNum

(X)

Number of learn-

ers that have

achieved a par-

ticular learning

goal

Instructor StuList,

GoalRea

Counts the num-

ber of learners

(StuList) that have

achieved a learning

goal (GoalRea)

KnowConcStud

(L)

Knowledge level

of the learner for

every concept of

the course

Learner,

Instruc-

tor,

Tutor

ConList,

KnowLev,

KnoRange

Given a learner,

it provides, for

each concept of the

course (ConList),

the current level of

knowledge acquired

by the learner

(KnoLev)

Filtering on

concepts.

Sorting by

knowledge

KnowConcClass

(S)

Knowledge level

of the class for

every concept of

the course

Instructor,

Tutor,

Learner

StuList,

ConList,

KnoLev,

KnoRange

Provides the aver-

age knowledge level

(KnoLev) per stu-

dent (StuList) for

any concept of the

course (ConList)

Filtering

on learn-

ers, goals.

Sorting by

knowledge

KnowConcExp

(X)

Expected knowl-

edge level for ev-

ery concept of the

course

Learner,

Tutor,

Instruc-

tor

ConList,

KnoLev-

Exp

Provides informa-

tion about the ex-

pected knowledge

level (KnoLevExp)

for every con-

cept of the course

(ConList)

Filtering on

concepts

KnowConc-

StudHist

(L)

Knowledge level

of the learner in

the past for every

concept of the

course

Learner,

Tutor,

Instruc-

tor

ConList,

KnoHist,

KnoRange

Provides, for each

concept of the

domain (ConList),

the level of knowl-

edge acquired by

the learner at a

particular time in

the past (KnoHist)

Manipulation

of date (eg.

through a

slider)

Table 4.2: Descriptors for GRAPPLE dashboard’s views - part 1
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Name Information Main

target

users (in

order of

rele-

vance)

Required

source

data

Description of

the aggregations

User in-

teractions

KnowConc-

ClassHist

(S)

Knowledge level

of the class in

the past for every

concept of the

course

Instructor,

Tutor,

Learner

StuList,

ConList,

KnoHist,

KnoRange

Provides, for each

concept of the

domain (ConList),

the average level

of knowledge per

student (StuList)

at a particular

time in the past

(KnoHist)

Manipulation

of date (eg.

through a

slider)

SuitConcStud

(X)

Indication about

which concepts

are currently

suitable for the

learner

Learner,

Tutor

ConList,

ConSuit

Indicates which

concepts (ConList)

are currently suit-

able (ConSuit) for

the learner

Filtering on

concepts

SuitActStud

(X)

Indication of

which activities

are currently

suitable for the

learner

Learner,

Tutor

ActList,

ActSuit

Indicates which

activities (ActList)

are currently suit-

able (ActSuit) for

the learner

Filtering

on activity

(activity

type?)

ActVisStud

(L)

Indicates which

suitable activities

have been visited

by a student

ActList,

ActVis

Indicates which

activities (ActList)

have been visited

(ActVis) by the

learner

Filtering

on activity

(activity

type?)

GoalStud (L) Indication of

achievement for

each learning goal

Learner,

Tutor,

Instruc-

tor

GoalList,

GoalRea

Indicates which

learning goals

(GoalList) have

currently being

achieved (GoalRea)

by the learner

Filtering on

goal

Table 4.3: Descriptors for GRAPPLE dashboard’s views - part 2
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4.1.1.2.1 Expected input data The data providers are the components in the GRAPPLE

infrastructure where the input data for GVIS is located. We identified two main data providers:

GAT and GUMF. Table 4.4 presents them alongside with a description and connection interface

to the GVIS.

Data

provider

Description Interface to

GVIS

GAT The GAT (GRAPPLE Authoring Tool-set) is the authoring

component of a GRAPPLE course. It is composed by three

elements i.e. DM (Domain Model), CRT (Concept Rela-

tionship Type) and CAM (Conceptual Adaptation Model).

Some of the data from these elements, defined by the au-

thors/instructors by means of these components, are needed

by the visualisations (such as the list of concepts for a course

or the expected knowledge level for specific concepts). The

GAT has an internal repository that contains all the data

structures. Data from this repository can be extracted by

means of specific web-service interface.

GVIS fetches

GAT data

through a

web-service

interface

provided by

the CAM

component

GUMF Contains all the user-related data. It is the main source

of data for GVIS. In particular, GUMF contains the data

generated by GALE, such as whether a concept is currently

suitable for a user or not, the level of knowledge of learner

over the concepts, and by LMSes, such as the role of the

user in a course, the list of students, the list of activities.

GALE and LMS store their user data into GUMF through

the Grapple Event Bus (GEB).

GVIS con-

nects to

the GUMF

GRAPPLE

Event Bus.

Table 4.4: Data providers for GVIS

GVIS is connected to GAT and GUMF by mean of a specialised interface and a general

Event Bus. Every other data provider in GRAPPLE will pass through the GRAPPLE Event

Bus (GEB) and will be stored in the GUMF facility, where GVIS can access it.

In the next paragraphs, the types of information expected are described.

Table 4.5 and Table 4.6 show the data needed by the visualisations. All this data is provided

to GVIS by one of the data providers identified in Table 4.4.

4.1.2 Evaluation on mock-ups

Before starting with the implementation of visualisations, some of the mock-ups of the visualisa-

tions that we have planned to implement for GVIS were conceived. The aim of these mock-ups
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Name Description Data

Type

Data

source

Comments

ConList List of all the concepts of

a course

List GAT

(CAM)

ConSuit Whether a particular con-

cept is suitable for a user

or notation

Boolean GUMF

(GALE)

This information is inferred by

GALE, and then stored into GUMF

ConRel List of existing domain

relationships between two

concepts

List GAT For future use. This source data is

currently not used in information de-

scriptors

StuList List of the student en-

rolled on a course

List GUMF

(LMS)

StuAccess The number of times a

user has accessed a course

Integer GUMF

(LMS)

For future use. This data source is

currently not used in information de-

scriptors

ConVis The number of times that

a user has visited a con-

cept in GALE

Integer GUMF

(GALE)

UsrRole Provides information

about the role of a specific

user on the course (e.g.

teacher, learner, tutor,

etc)

Text GUMF

(LMS)

KnoLevel Knowledge level of the

student on a particular

concept

Number GUMF

(GALE)

KnoHist Knowledge level of the

student on a particular

concept at a particular

point in time

Number GUMF

KnoLevExp The expected knowledge

level of the student on a

particular concept

Number GAT

(CAM)

The expected knowledge level is de-

fined by the instructor and corre-

sponds to the minimum knowledge

level that the learner has to acquire

in order to have a sufficient knowl-

edge of a concept to finish a course.

A default value is be assumed and the

author will replace the default values

with CRTs if he/she wishes to do so

Table 4.5: List of source data for GVIS - part 1
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Name Description Data

Type

Data

source

Comments

KnoRange Range of values (minimum

and maximum values) for

the knowledge level

Numbers GUMF We expect that the range of values for

the knowledge level to be [0.0, 1.0].

However, if the range is different, the

GUMF should provide us with the ad-

justed values

GoalList List of all the goals defined

for a course

List GAT

(CAM)

A goal represents a particular state

reached by the learner during the

learning process. For instance, it

could indicate that a learner reached

a milestone, or acquired enough

knowledge of the course topics. Each

goal corresponds to a particular CRT.

There can be several goals. Goals are

set by the course authors in the CAM

editor. This goal list is by default the

first thing presented to the student

when entering the course. If he/she

does not want to have it displayed

anymore, they can tick the appropri-

ate option. The default implicit goal

is: reach the expected knowledge lev-

els for all concepts. Additional goals

can be set via CRTs

GoalRea Whether a user reached a

particular goal

Boolean GUMF

(GALE)

A goal is defined using a particular

User Model variable. The variable is

defined in the CAM and calculated by

GALE

ActList List of the learning activi-

ties on a course. A learn-

ing activity is an action

in a system or an environ-

ment that is related to the

learning

List GUMF

(LMS)

Currently, only LMSes actions are

tracked into the GUMF

ActVis Number of times that a

user visited a particular

activity (from ActList)

Integer GUMF

(LMS)

Table 4.6: List of source data for GVIS - part 2
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was to evaluate them with the target user groups. Once the evaluation was concluded, the wid-

gets were implemented, taking into account the results of the evaluation run, but also the most

relevant feedbacks received by the users. This process from the conception to the evaluation of

the visualisations will be presented in details in this section.

The original GVIS module supports two kinds of widgets: compact indicators, which are

small widgets integrated into the LMS course/ITS web interface, and widgets, to be placed into

a dashboard, that open a new window in the user interface.

The visualisations can be divided into 3 groups, according to the type of information they

provide:

• Knowledge

• Activities

• Goals

In the next paragraphs, after the indication of the expected input data, the conceived mock-

ups will be presented in details, together with their explanations. Later on in the chapter, an

analysis of the collected feedback is outlined.

4.1.2.1 Knowledge

The knowledge level around concepts of the course is the most important information that

has to be presented to the users by GVIS. It can be presented to the learner but also to the

instructors and tutors. The overall knowledge acquired by a learner could be represented by

the average (either weighted or not) of his/her knowledge level on each concept of the course.

This means that the representation can be a simple average or it can also take into account the

importance of, or the time spent on each subject, to create the weighted ones.

4.1.2.1.1 Views The first type of view is the overall knowledge level. The information

represented by the following views is referred by the information descriptors as:

1. KnowStud: The overall knowledge acquired by a learner

2. KnowClass: The overall knowledge acquired by the class

The pictures presented in Figg. 4.1 and 4.2 encode this information in two forms i.e. a

textual and a graphical form (both available for integration in the education system interface
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Figure 4.1: The overall knowledge level in textual view.

Figure 4.2: The overall knowledge level in graphical view (learners’ version).

where the learning experience is provided with). In order to provide an integration into the

LMS interface (usually web-based applications), the HTML document object model is used. In

fact, the GVIS output uses an HTML segment that works as a proxy, with a twofold objective.

First of all, it is able to create the bridge needed for accessing, in the LMS environment, the

current user and the course data; at the same time, it is capable of allocating the necessary

physical space to contain the visualization.

In the graphical view depicted in Fig. 4.2 we also represent (in yellow) the overall knowl-

edge acquired by the class, where the green bar represents the learner’s knowledge. On the

instructor/tutor view, only the yellow bar is represented. The end point of the line represents

the upper bound of the range of the knowledge level, as defined by the Instructional Designer.

When a user clicks on the widgets a more detailed view is provided. This is primarily

important because more detailed views are in charge of representing the knowledge level for

every concept of a course, allowing autonomous user exploration of this informative space. To

this end, a dashboard is provided to users of the GRAPPLE system that contains more detailed

visualisations and can work as a container for all the widgets provided, regardless of whether

they are automatically represented or called on user request. This solution also allows the user

to resize and reorder the informative widgets in the dashboard area.

In particular, the detailed views provide a way to represent the following information de-

scriptor:

• KnowConcStud: Knowledge level of the learner for every concept of the course.
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• KnowConcClass: Knowledge level of the class for every concept of the course.

• KnowConcExp: Expected knowledge level (target) for every concept of the course.

• KnowStud: The overall knowledge acquired by a learner (as an average of the ones acquired

on each concept of the course by that learner).

The first visualisation we designed is composed of two overlaying bar charts (see Fig. 4.3),

where each vertical bar represents a concept of the domain. The knowledge acquired by the

student is encoded into the green bar while the knowledge acquired by the class is represented

by the yellow bar. If the expected knowledge – i.e. the level that the ID requires for the learner

to achieve for a specific concept covered by the course – is available, then it is represented

with a horizontal, black bold line. The dashed line represents the maximum knowledge level

achievable. The level is expressed as a percentage, if not otherwise stated in the data provided:

this is useful to rescale the bars and gives a global and comparable view on all the concepts.

This view was designed for being available to learners, tutors and instructors.

If historical data is available in one or more data source (in the GRAPPLE case, it could

be the GUMF component), it could be interesting to compare the status of the past knowledge

of a student with his/her current knowledge. The next visualisation (Figure 4.4) was intended

to compare the knowledge level of a student and the class at a particular time in the past

(bar graph series above) with the current status (bar graph series below). This visualization

was mainly intended for learners, but also instructors can take advantage from such a time

comparison through an overview of the single learner/class temporal evolution in terms of

knowledge. Also, the expected knowledge level can vary in time, based on the didactic approach

and the adjustments done by the ID.

A different view was specifically conceived to be provided to tutors, in order to allow a more

specific comparison of concepts and learners. The visualization is based on a matrix, where

the learners are mapped into columns and the concepts into rows (see Fig. 4.5). The level of

knowledge of a student in a concept is mapped into the dimension (in particular, the radius) of

each cell of the matrix. The color of the cell represents whether the student reached (in green)

or didn’t reach (in red) the target knowledge level.

In another visualisation (see Fig. 4.6), the bar graph near the concept names gives an

indication of the overall knowledge of the class on that concept (red bar). The shape of the cell

represents whether the student reached (square) or didn’t reach (circle) the target knowledge

level. The green bar next to the learner names indicates the overall knowledge acquired by the
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Figure 4.3: Knowledge level for a learner and class, as well expected knowledge level, in expanded

form.

Figure 4.4: Knowledge level for a learner and class (with expected knowledge level) with history:

the situation at a previous point in time and, at the bottom, at the present one.
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Figure 4.5: Knowledge level representation as matrix (learners - concepts).

Figure 4.6: Another knowledge level representation as matrix (learners - concepts): here some

average data is also reported for reference purposes.

learner (KnowStud). The arrows can be used to interact with the view to sort the columns or

the rows in either ascending or descending order, according to the knowledge level of student
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per column, or the overall knowledge of the class per rows.

4.1.2.2 Activities

In our definitions, each structured interaction (normally called job) that a user has with the

LMS is classified as an Activity : examples are filling a form, answering a question in a forum,

uploading a document, contributing to a wiki and so on. Another interesting piece of informa-

tion to be represented in a didactic environment is the activities performed by the learners. In

fact, data about the number of activities performed encodes the active behavior of the user in-

side the system and, as an example, this can be used from tutors to get an indication about the

evolution of the learner involvement and to check for possible discrepancies that can suggests

an insufficient final knowledge level acquired by the learners.

4.1.2.2.1 Learner Views In this context, learners can be provided with the information

about the activities visited. A look-and-feel similar to the previous visualisations was adopted.

The following information is included:

• ActStud: Number of activities performed by a learner

• ActClass: Number of activities performed by the class

• ActList: Number of activities available in the course

Figure 4.7: Number of activities visited by a learner in textual form.

Figure 4.8: Number of activities visited by a learner in graphic form. The green bar represents

the student data and the yellow bar represents the class data.

The following representation also includes the average value of activities visited by the

students of the class (in yellow). These last two visualisations are intended to be available as

additional widgets but also for direct integration with the LMS interface.
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The learner, through the following representation, can also explore details about each single

activity. The horizontal bar next to the activity name (in red) represents the percentage

of learners that have accessed that activity, while the vertical bars represent two types of

information: the blue one shows the percentage of the activities accessed by the learner, the

green one the percentage of the activities accessed by the class. The learner can therefore

compare his/her status with the overall class status. The bullet point indicates the fact that

the current learner has visited the activity.

Figure 4.9: Analytic view of the resource viewed by a learner.

In Fig. 4.10, another analytical visualisation is presented. In this version, the bullet points

is substituted by a completion flag that complements the average level of activities, represented

in the main area of the view. The user can rearrange the presentation order simply by clicking

on the appropriate small arrow on the top of the column. Another way to encode the number of

views for each activity is by using the radius of the bullets or adding a new textual description.

4.1.2.2.2 Instructor/Tutor Views Instructors are supported by a view (Fig. 4.11) based

on a matrix which represents the learners (or a selected subset of) in columns and the resources

in rows: the filled circles indicate which resources were accessed by a specific learner. A possible
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Figure 4.10: Alternative analytic view of the resource viewed by a learner.

variation could see the adoption of a scaling mechanism (with the same approach already seen

in Fig. 4.5) to encode the number of times a learner has accessed a particular resource, as

opposed to using a binary variable such as the circle presence/absence. The horizontal bar

beside the activities name encodes the percentage of activities accessed by all students, while

the vertical bar below the student name indicates the percentage of activities accessed by the

student. The graph can be reorganised in either ascending or descending order –using the

two arrows displayed next to the field– on the student names, activities name, values of the

horizontal bars and of the vertical bars.

4.1.2.3 Goals

Learning goals are important indicators of the advancement of the learning process. They could

be represented as a combination of learner characteristics (e.g. the level of knowledge achieved,

the number of activities performed, etc). The list of goals has normally to be defined by the

instructional designer in a dedicated tool using a specialised notation or language (which in

the case of GRAPPLE is the CAM, with its graphical metaphor for an internal XML–based

language). When the user reaches a particular goal, this information has to be detected and

stored in the user model, allowing for its later usage. In the GRAPPLE case, this information is

stored in the GUMF User Model in terms of a boolean flag that GVIS can access as a union (i.e.
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Figure 4.11: Details of resources visited by students.

Figure 4.12: Goals achieved by learners.
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join) between the didactic model (which contains the information about goals) and the user

model (which encodes information about the learners activities). The information represented

by the following views consists of:

• GoalStudNum: The number of learners that have achieved a particular learning goal

• GoalStud: Indication of whether a learner has achieved the learning goals

As previously stated, views are classified based on the stakeholder (i.e. consumer) they are

primarily intended for.

4.1.2.3.1 Instructor/Tutor Views In the instructor/Tutor view a matrix of the goals

achieved by the learners (see Fig. 4.12) is presented for awareness purposes and as also to serve

as an analysis tool, to either identify problematic goals or problematic situations (e.g. a student

failing on all the goals) or to show common patterns.

4.1.2.3.2 Learner Views The learner view presents a list of all the goals settled in the

current course accompanied by the indications about which of them are achieved. This widget

is another candidate to be also made available for direct inclusion in the LMS interface. The

detailed view that will allow the learner to explore the analytical situation is presented in the

left part of Figure 4.13. Like in the previous views (see Figg. 4.9 and 4.10), the bars represent

aggregated data and work as references.

4.2 Evaluation of the Visualisation Mock-Ups

During the course of formative evaluation the visualisation ideas developed have been addressed

in a survey. The visualisation mock-ups have been presented to a sample of users in order to

gather feedback on the perceived benefits, usability and acceptance.

4.2.1 Introduction

The visualisation tools in GRAPPLE are intended for instructors as well as for learners.

Instructors are provided with different –and more detailed in respect of the learner’s ones–

visualisations to get an overview of the learning progress of a class or group of learners. The

expected benefit is an empowerment of teaching by making the instructor aware of the different

needs of different learners.
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Figure 4.13: Goals achieved by the current learner. On the left: the representation of the

compact indicator. On the center and on the right: two possible representations of the detailed

views for the dashboard.

For learners a visual feedback on their own learning and progress as well as on where they

stand in relation to their peers is important in order to promote reflection on their learning

and enhance their knowledge awareness. The expected benefit is therefore empowerment in

relation of learning effectiveness and of collaboration. Usability/suitability and acceptance are

evaluation topics which are relevant for both profiles. Regarding the usability and suitability,

crucial questions are whether the visualisations are suitable for their intended purpose and

whether they are self-descriptive and understandable.

The objective of the survey conducted was to investigate whether the visualisation ideas

feature an appropriate level on all these expected benefits and topics. These aspects could be

investigated for visualisation mock-ups by gathering subjective assessments from users.

Instead of presenting all visualisations (i.e. for learners and for instructors) to all par-

ticipants, it was deemed reasonable to create different paths of the survey according to the

visualisation types. Consequently, learners should only be queried on visualisations intended

for learners and instructors only on visualisations intended for instructors. Respondents who

declared both profiles were offered the full set of questions.

The following sections outline the methods and outcomes defined for visualisation mock-ups

evaluation.
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4.2.2 Method

In this section information about participants and the materials used will be provided, including

the visualisations and the three different questionnaires presented to learners, instructors and

combined profiles.

4.2.2.1 Participants

A total of 45 participants took part in the mock-ups evaluation: 20 males and 25 females.

Participants were recruited by the GRAPPLE project partners from academic environments

of different backgrounds (mainly computer science and psychology). Participants were re-

cruited in the third quarter of year 2008 from “Technical University of Eindhoven”, “Università

della Svizzera italiana”, “Graz University”, “Open University Netherlands”, “Trinity College

Dublin”, and other academic institutions.

Participants were 29.12 years old on average (SD = 6.0), with ages ranging between 22 and

46 years old.

Of the overall sample 13 people identified themselves as learners and filled out the ques-

tionnaire on the student visualisations only. 2 denoted themselves as instructors and filled out

the part related to the instructor visualisations only. The rest (30 people) felts related to both

roles and filled out the complete survey covering both types of visualisations (compare Table

4.7). This is connected with the fact that the first evaluation was run in a research context,

with the majority of respondent interested in evaluating both the interfaces. This sample gave

a total of 42 questionnaires compiled for the profile of student and 32 for the instructor ones,

all of them valid, thanks to the fact that the interfaces for the distinct profiles proposed in the

analysis were independent.

Number Percentage

Learner 13 28.9%

Instructor 2 4.4%

both roles 30 66.7%

Total 45 100.0%

Table 4.7: Sample of the participants at the visualisation evaluation
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4.2.2.2 Material

This section will present the visualisations considered and the questionnaire used for the eval-

uation.

4.2.2.2.1 Visualisations For the purpose of the survey, a collection of visualisations was

selected to be used. In order to make the survey concise and direct to the point, we presented

a unique visualisation for each task identified, called primary. For measuring then the user

considerations about any other variation in respect of the primary one for the task, we simply

asked its perception of an higher level of helpfulness.

Visualisations for the learners For this part, three primary visualisations were ad-

dressed: VisST1 (Fig. 4.2), that describes the comparison between knowledge on a single

concept acquired by learner and class, VisST2 (Fig. 4.3), that presents the knowledge level for

each concept in the course for learner and class in respect of the expected level, and VisST3

(Fig. 4.9), that represents the access to the activity for learner and class. Additionally, four

possible variants of those visualisations were also presented. A question for each one of them

on whether respondents find the specific variants helpful or preferable over the original one was

included in the survey (see Table 4.8).

Variant Question

Variant (I) of VisST1

(Fig. 4.7 )

Would you find a similar visualisation of the num-

ber of activities (i.e. learning objects) visited by a

learner helpful?

Variant (II) of VisST1

(Fig. 4.1 )

Would you prefer a numerical representation over

the graphic form?

Variant (I) of VisST3

(Fig. 4.10 )

Would you prefer the following visualisation over

the one presented above?

Variant (II) of VisST3

(Fig. 4.13, center )

Would you find a similar visualisation of the learn-

ing goals achieved by a learner helpful?

Table 4.8: Variants of the student visualisations.

Visualisations for instructors The instructor part of the survey included two visual-

isations (see Figg. 4.5 and 4.6) and a possible variant, shown in Fig. 4.11. VisI1 (Fig. 4.5)

describes the knowledge level for the class. The visualisation is based on a matrix, where learn-

ers are mapped into columns and concepts into rows. The level of knowledge of a student on
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a concept is mapped into the dimension (in particular, the radius) of each circle of the matrix.

The color in the circle represents whether the student reached (in green) or didn’t reach (in

red) the target knowledge level. A variation (Fig. 4.6) adopts a color scale to represent the

level achieved by each learner on subjects and a shape to encode the reaching of the expected

level – i.e. square for reached and round for unreached/under-expressed.

VisI2 (Fig. 4.11) shows the details of the resources visited by students. A matrix represents

the learners (or a selected subset of them) in columns and the resources in rows: the filled

circles indicate which resources a learner has accessed. The horizontal bars near the activity’s

name encode the percentage of the students who accessed the activity, while the vertical bars

above the student’s name indicate the percentage of activities accessed by the student.

Evaluation Questionnaires In order to potentially segment the set, a short demographic

section had to be filled out by the participants to the questionnaire. In order to reduce the

workload for the respondents and focus more clearly on the relevant part of giving feedback

on the visualisations, the section of the questionnaire about demographic data was designed to

only include questions on gender, age and recruiting project partner.

The questionnaire for Subjective Assessment of Visualisation used in the survey was based

on the Evaluation Guidelines elaborated for GRAPPLE 1, with some small adaptations. The

minor changes related to the explicit distinction between the different visualisation types with

the aim of reducing the workload for participants.

The questionnaire consisted of three main parts referring to usability/suitability, visuali-

sation benefits and acceptance. While the first two areas are covered using lower granularity

indicators, identified in the next list, for the acceptance section a direct approach was adopted

and the participants’ opinion was gathered using a two items global indicator.

• Perceived usability/suitability - in terms of:

– suitability for the task

– self-descriptiveness

• Visualization benefits :

– for student visualisations :

1the GRAPPLE Evaluation Guidelines is the internal document elaborated by UniGraz to guide the interview

and data collection phases for all the project.
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∗ Meta-cognition

∗ Cognitive load

∗ Learning effectiveness

∗ Benefits for peers/collaboration

– for instructor visualisations :

∗ Meta-cognition

∗ Cognitive load

∗ Benefits for instructors (personalised/individualised instruction)

∗ Acceptance

Each aspect of the sub-scales was assessed through two questions, i.e. statements which had

to be answered on a five-point Likert rating scale with the extreme values as “strongly disagree”

(=1) and “strongly agree” (=5). This way, a mean score averaging across the two items could

be calculated for each aspect. Furthermore, an overall usability score could be calculated from

the usability scores for the two aspects of usability. In order to gather information for deriving

of ideas on how to improve the visualisations and their benefit for learners and instructors,

one open question was included for each visualisation in the questionnaire (i.e. Could you

please describe in detail your opinion on this visualisation (i.e. positive/negative aspects, how

to improve it)? ).

The questionnaire was implemented and submitted as an online survey using the LimeSurvey

tool1. The three different branches of the questionnaire corresponding to the perceived role in

the educational process (learner, instructor, or both) were realised through the application of

a conditional question. As a result, depending on his/her answer a respondent was presented

either with the visualisations for learners, for instructors or both2.

4.2.2.3 Procedure

The first evaluation of GRAPPLE visualisations was carried out in March 2010. The procedure

was as follows:

(a) First of all, the demographic questionnaire had to be filled out.

1for more informations please refer to the deliverable D8.1b - ”Refinement and Improvement of Evaluation

Framework” in the section 2.1 - Online Survey Tools on the GRAPPLE website (Steiner and Hillemann 2010).
2The complete questionnaire for both student visualisations and instructor visualisations can be found in

the appendix of the deliverable D4.5c (Mazza, Mazzola, Glahn, Nussbaumer, and Verpoorten 2011)
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(b) This was followed by a short introduction of the goal of the user survey, which ended with

a question on the perceived role. Depending on the respondents answer to this question

the relevant type of visualisation was presented (i.e. learner, instructor/teacher, or both).

(c) Participants were then presented with the first visualisation to be evaluated, which was

accompanied by the explanation around its purpose and other information.

(d) Participants were requested to have a close look at each visualisation and to subsequently

fill out the questionnaire for the respective visualisation.

(e) [if available] They had to provide answers to the questions on variants of the last shown

visualisation.

(f) For the different visualisations to be evaluated, steps (c), (d) and (e) were repeated for each

visualisation. Subsequent to giving feedback on one visualisation, the next visualisation

was provided along with the questionnaires (if available) and answered by the participants,

and so forth.

4.2.3 Results

As previously stated, the possible score for each question spanned between 1 and 5, with

higher values indicating a better result. Values above the middle of the scale were considered,

in accordance with the guidelines defined in the project, as rather good (with higher values

indicating a better result) and values in the lower half of the scale were seen as an indicator of

a low quality of the visualisation.

In the following section, the results for the student visualizations and their variants are first

presented. Subsequently, the results for the instructor visualisations are described. According to

the branched querying mechanism, 43 participants gave feedback on the student visualisations,

while the instructor visualisations were assessed by a total of 32 participants.

4.2.3.1 Results for student visualisations

For VisST1 (see Fig. 4.2) there are medium to good results in all aspects. The average

scores range from 2.95 (SD = 0.73) in the cognitive load scale to 4.14 (SD = 1.04) in the self-

descriptiveness scale. The best results could therefore be found in the general usability scale

(M = 4.06; SD = 0.77) and its two sub-scales suitability for the task (M = 3.98; SD = 0.76)

and self-descriptiveness (M = 4.14, SD = 1.04). Table 4.9 below shows all results in details.
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Sub-scales Nr. Min. Max. Mean S.D.

suitability for the task 43 1.00 5.00 3.98 0.76

self-descriptiveness 43 1.00 5.00 4.14 1.04

usability 43 1.00 5.00 4.06 0.77

metacognition 43 2.50 5.00 3.62 0.69

cognitive load 43 1.00 4.50 2.95 0.73

learning-effectiveness 43 1.00 4.50 3.34 0.84

benefits for peers 43 1.00 5.00 3.42 1.09

acceptance 42 1.00 5.00 3.30 1.16

Table 4.9: Results of the evaluation for the VisST1 widget.

Most respondents (24 out of 42, i.e. 53.3%) found a similar visualisation of the number

of activities visited (see Fig. 4.7) helpful; however, 8.9 % (4 out of 42) of the respondents

expressed the opposite feeling. The other 14 respondents (31,1%) did not have an opinion or

preference on the matter. The majority of respondents i.e. 29 out of 43 people (64,4%), would

not prefer a numerical presentation of the knowledge acquired (see Fig. 4.1) over the graphical

form. On the other hand, 13 people (28,9%) would prefer this numerical kind of presentation.

The answers to all open questions were analysed in terms of contents in order to identify some

general categories reflecting the participants answers and to be able to calculate its recurrence.

Thereby, answer categories were distinguished referring to either positive aspects, negative

aspects and issues for improvement. The results on the open question for VisST1 (Could you

please describe in more detail your opinion on this visualisation (i.e. positive/negative aspects,

how to improve it)? ) are summarised in Table 4.10.

The most prominent feedback was that respondents answered that this visualisation provides

good and useful information (8 people) and it is clear and easy to understand (6 people). Also,

the motivating effect through the comparison with peers was mentioned (5 people).

On the other hand, the comparison to the class was indicated as possibly problematic as it

might negatively affect self-esteem and collaboration (7 people). Upon further analysis of the

answers provided, some of them thought that, specifically with regards to underachievers, this

kind of comparison could be disadvantageous.

The fact that this visualisation features no automatic scaling and provides no explicit ref-

erence space was criticised (respectively 5 people and 5 people). Therefore, in order to better

understand the scale it was deemed desirable to add scaling and to label the bars (3 people).

The real capacity of this view to support the learning was questioned by 5 people whereas
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Positive aspects

Category Number

good/useful information 8

Clear and easy to understand 6

Motivating effect through comparison to the class 5

Support self-awareness/realism 2

Negative aspects

Category Number

Possible neg effects on self-worth or on collaboration different visualisa-

tions for underachievers

7

No scaling, add scaling 5

Reference space/context unclear and information therefore not meaning-

ful

5

Overlapping of bars 5

Support of learning questionable 4

Very broad information more details would be desirable 4

Not self-descriptive 2

Issues for improvements

Category Number

Labeling of bars 3

Improve graphic style, colors 2

Bars should be vertical instead of horizontal 2

Possible pos/neg effects should be investigated 1

Table 4.10: Qualitative feedback concerning VisST1.

2 people thought that it is able to support self-awareness and realism in the learner. Some

respondents (4 people) suggested to concentrate more on the information represented – or

provide more information – and 2 people also deemed the information as non self-descriptive.

Finally, suggestions to improve graphic style and colors was reported (2 people), along with an

indication to tilt bars from a horizontal to a vertical position (2) and one person requested to

better investigate the trade–off between positive and negative effects.

Similarly to the first visualisation, the second mock-up for the student visualisation (VisST2,

see Fig. 4.3) also received medium to good results in all aspects (compare Table 4.11). On

the whole, however, most mean scores lie slightly below the results for VisST1. The scores

range from 2.89 (SD = 0.84) for cognitive-load to 3.83 (SD = 1.08) for suitability for the task.

Similarly to VisST1, the highest scores were reached on the usability sub-scales suitability for

the task with value 3.83 (SD = 1.08) and self-descriptiveness with value 3.61 (SD = 1.27). The
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average usability score is 3.73 (SD = 1.06).

Subscales Nr. Min. Max. Mean S.D.

suitability for the task 38 1.50 5.00 3.83 1.08

self-descriptiveness 38 1.00 5.00 3.61 1.27

usability 38 1.25 5.00 3.73 1.06

metacognition 38 1.50 5.00 3.63 0.91

cognitive load 38 1.00 4.50 2.89 0.84

learning-effectiveness 38 1.50 5.00 3.60 0.86

benefits for peers 38 1.50 5.00 3.41 1.00

acceptance 37 1.00 5.00 3.12 1.31

Table 4.11: Results of the evaluation for the VisST2 widget.

With respect to this visualisation a question was also included on whether a similar variant

showing the number of activities visited would be helpful. The participants opinion on this

visualisation variant on the number of activities visited was not that clear. Still, 17 out of the

39 people (37.8%) that answered this question indicated such a visualisation as being helpful,

10 people (22.2%) did not think so and 12 people (26.7%) did not have an opinion.

The results on the qualitative feedback gathered through the open question are presented

in Table 4.12. The most frequent answer (11 people) was that this visualisation provides useful

information, concerning the relation to the maximum knowledge achievable and the learning

progress and 4 people appreciated the simplicity and clarity of the visualisation.

On the other hand, respondents indicated that the information is arranged and shown in a

very complex way and is therefore hard to interpret and understand (7 persons).

Moreover, the possible negative effect on self-esteem due to the direct comparison to the

class was mentioned once again. Participants would like to see the graphic and color of the

visualisation improved and they would add scaling and explanations (2 people for 2 people

respectively).

Another reported substantial aspect was the visualisation positive effect on improving the

learning through awareness of the goals (2 people), even if one of them reported that the value

for learning is questionable and the one that there is lack of details for this objective to be

reached.

Critical comments were provided about the difficult to interpret the meaning of the hori-

zontal lines, on the overlapping bars and on the unclear labeling of the axis (respectively 4, 1

and 1 people).
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The presence of enough information was appreciated by 2 people and the compactness of the

visualisation by another one. Finally, some suggestions for improvements were about providing

explanations, enhancements of labeling and description in the visualisation. A person suggested

that no contextual information from the class should be provided to the learner for the maximum

efficacy.

Positive aspects

Category Number

Useful information in relation to max. knowledge, progress 11

Simplicity, clarity 4

Awareness of goals may enhance learning 2

Differentiation, more details 2

Lots of information in a compact representation form 1

Negative aspects

Category Number

Complexity, hard to interpret/understand 7

Possible neg. effect on self-worth 5

Horizontal lines hard to interpret/understand 4

Lack of details 1

Value for learning questionable 1

Overlapping bars 1

Axes not labeled - unclear 1

Issues for improvements

Category Number

Improve graphic and color 2

Add scaling 2

Explanations important 2

Include labeling/description 1

Only individual learning performance should be visible 1

Table 4.12: Qualitative feedback concerning VisST2.

The results for the student visualisation 3 (VisST3, see Fig. 4.9) depicted a different picture

than those for the two previous visualisations. The evaluation resulted in rather low to medium

average scores on all aspects (see Table 4.13). The least favorable results (i.e. lowest scores)

could be found for self-descriptiveness with 2.06 (SD = 0.93) and user-acceptance with 2.08

(SD = 1.06). The best result was reached on the sub-scale benefits for peers with a score of

3.06 (SD = 0.80).

The visualisation variant of this mock-up representing the activities visited by a check mark
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Subscales Nr. Min. Max. Mean S.D.

suitability for the task 40 1.00 4.50 2.55 1.07

self-descriptiveness 40 1.00 4.00 2.06 0.93

usability 40 1.00 4.00 2.30 0.95

metacognition 40 1.50 5.00 2.84 0.80

cognitive load 40 1.00 4.00 2.24 0.78

learning-effectiveness 39 1.00 4.50 2.82 0.87

benefits for peers 39 2.00 4.50 3.06 0.80

acceptance 38 1.00 5.00 2.08 1.06

Table 4.13: Results of the evaluation for the VisST3 widget.

(see Figure 4.10 ) would be preferred by the majority of the respondents (32 out of 41, i.e.

71.1%); only 5 respondents (11.1%) expressed the opposite opinion. A similar visualisation of

the learning goals achieved by a learner (see the right part of Figure 4.13) was found helpful

by 15 people out of 39 (38.5%). 10 respondents (25.6%) did not agreed and 14 (35.9%) did not

express any opinion. The results for the qualitative feedback are summarised in Table 4.14.

Contrary to VisST1 and VisST2, many of the participants attribute the complexity of this

third visualisation to too much information covered (17 people). In line with this, some of the

respondents explicitly expressed the wish for more simplicity (3 people).

A comparison between the student visualisations showed that for all aspects both VisST1

and VisST2 achieve better results than VisST3. Only for the sub-scale benefit for peers no

significant differences could be identified, as can be clearly seen in Table 4.15.

4.2.3.2 Results for Instructor Visualisations

The Instructor visualisation mock-up VisI1 (see Figure 4.5) received medium to good results

in all aspects (see Table 4.16 ). The lowest average score was 2.86 (SD 0,80) for cognitive load.

The best result was on the benefit for instructors aspect with a mean score of 3.74 (SD 0.93).

Regarding the qualitative feedback (see Table 4.17) most of the respondents think that

this visualisation is clear and useful (10 people), although 5 persons also indicated that they

find it too complex and therefore difficult to understand. The use of the circle dimension to

indicate the knowledge level was considered problematic by 3 respondents. Suggestions around

improvements of the visualisation mentioned were the improvement of the general style of the

visualisation, as well as the realisation of additional explanations and last but not least, more

simplicity (2 answers and 2 answers respectively).
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Positive aspects

Category Number

Depicting information more objectively 2

Motivating effect 1

Overview on a lot of information at one time 1

Negative aspects

Category Number

Complexity, too much information 17

Not-self-descriptive 3

Horizontal and vertical bars are confusing 2

Not visually appealing 2

Negative effect of comparison to others 2

Comparison to others on activity level not necessary 1

Uses visual guitar metaphor but is not explainable this way 1

Arrows not understandable 1

Issues for improvements

Category Number

Simplify 3

Add text/explanation 1

Different symbol for visualising visited activities 1

Use different (better distinguishable) colors 1

General remark: the other visualisations provide better informa-

tion/comparison

1

Table 4.14: Qualitative feedback concerning VisST3.

Two respondents liked the visibility of the learning progress and 2 more reported a preference

for this one over VisST2 and VisST3 (despite the fact they are intended for different profiles, so

not meant to be compared), whereas 2 people reported that the absence of explicit information

in the visualisation could be problematic. Finally, one person indicated that the labellings of

the axis could improve the widget.

Regarding the instructor visualisation VisI2 (see Fig. 4.11) we registered average scores

ranging from 2.57 (SD = 0.75) on the cognitive load scale to 3.28 (SD = 0.82) on the benefit

for instructors scale. This can indicate a medium to low quality of the visualisation. The mean

scores on all aspects are lower compared to the first instructor visualisation. The best result

was reached on the benefit for instruction (3,28, SD 0,82). The results on all sub-scales can be

found in Table 4.18.

The qualitative analysis showed that the 24.4% of the participants (11 out of 26) would find
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VisST1 VisST2 VisST3

Subscales NR. Mean S.D. NR. Mean S.D. NR. Mean S.D.

suitability for the task 43 3.98 0.76 38 3.83 1.08 40 2.55 1.07

self-descriptiveness 43 4.14 1.04 38 3.61 1.27 40 2.06 0.93

usability 43 4.06 0.77 38 3.73 1.06 40 2.30 0.95

metacognition 43 3.62 0.69 38 3.63 0.91 40 2.84 0.80

cognitive load 43 2.95 0.73 38 2.89 0.84 40 2.24 0.78

learning-effectiveness 43 3.34 0.84 38 3.60 0.86 39 2.82 0.87

benefits for peers 43 3.42 1.09 38 3.41 1.00 39 3.06 0.80

acceptance 42 3.30 1.16 37 3.12 1.31 38 2.08 1.06

Table 4.15: Comparison of the results of the evaluation amongst the widgets VisST1, VisST2,

and VisST3.

Subscales Nr. Min. Max. Mean S.D.

suitability for the task 29 1.00 5.00 3.62 1.01

self-descriptiveness 29 1.00 5.00 3.48 1.18

usability 29 1.25 5.00 3.55 1.02

metacognition 29 2.00 5.00 3.50 0.79

cognitive load 29 1.00 4.00 2.86 0.80

benefits for instructors 29 2.00 5.00 3.74 0.93

acceptance 28 1.00 5.00 3.41 1.41

Table 4.16: Results of the evaluation for the VisI1 widget.

a similar visualisation for the learning goals achieved (compare 4.12) helpful; 17.8% (8 out of

26) did not agree on that and 15.6% (7 out of 26) did not express an opinion. Noticeable for

this question was the low response rate – 42.2% (19 out of 45) – meaning that the majority of

the participants did not provide any answer.

In the qualitative feedback almost half of the responding instructors (9 people) deemed

this visualisation as too complex. They would improve the style and make it more up to date

and less technical (4 people). Only two of the respondents explicitly stated that they found

this visualisation useful. Some respondents indicated that the visualisation is not appealing (4

people). Another critical point indicated by a single person was about the lack of legend and

explanations, and the difficulty in understanding the function of the arrows.

Someone declared (as already stated for VisI1) that the simplest visualizations i.e. VisST1

and VisST2 were preferable; some improvements suggestions consisted in offering a 2-step

overview with the possibility to zoom in and simplify the view (1 person and 1 person respec-
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Positive aspects

Category Number

Clear and useful 10

Learning progress visible 2

Preferred over VisST2 and VisST3 2

Negative aspects

Category Number

Too complex, difficult to understand 5

Circle dimension for depicting knowledge level not optimal 3

No explanation 2

Issues for improvements

Category Number

Improve style (web2.0, 3d-model) 2

Add explanation/text 2

More simplicity 2

Add axes labels 1

Table 4.17: Qualitative feedback concerning VisI1.

tively).

For more detailed information about the answers received refer to Table 4.19.

A comparison between the instructor visualisations suggested that there was no important

difference in any aspect between the two visualisations, rather just a generalised preference for

VisI1.

4.2.4 Discussion on the evaluation of mock-ups

The evaluation results for the first two student visualisations indicate a medium to good quality

of visualisation in respect to all the aspects for both VisST1 and VisST2.

The aspect of usability/suitability – with its two sub-scales suitability for the task and self-

descriptiveness – reached the highest values. This result suggests that these visualisations

are suitable for their intended purpose and also largely self-descriptive and understandable.

Learners think that this visualisation is suitable for getting an overview of the current status

in the learning process. According to the participants the qualitative feedback for the two

visualisations is easy to understand and not unnecessarily complex.

With regards to the third student visualisation, VisST3, the results are significantly lower

than those obtained for the two other visualisations. The reason for this could be that this
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Subscales Nr. Min. Max. Mean S.D.

suitability for the task 29 1.00 5.00 3.00 0.94

self-descriptiveness 29 1.00 5.00 2.66 1.22

usability 29 1.25 4.75 2.83 0.94

metacognition 29 1.50 5.00 3.17 0.88

cognitive load 29 1.00 4.00 2.57 0.75

benefits for instructors 29 1.50 5.00 3.28 0.82

acceptance 28 1.00 5.00 2.46 1.29

Table 4.18: Results of the evaluation for the VisI2 widget.

Positive aspects

Category Number

Useful 2

Negative aspects

Category Number

Too complex 9

Not appealing 4

Arrows not understandable 1

VisSt1 and VisST2 would be preferred 1

No legend/explanation 1

Issues for improvements

Category Number

Improve style (more up to date, less technical and cold) 4

2-step overview with the possibility to zoom in 1

Simplify 1

Table 4.19: Qualitative feedback concerning VisI2.

visualisation covers a lot of information and is not as simple as the previous two. This fact led

to the desire for more simplicity by the participants.

For the two student visualisations VisST1 and VisST2 the results on visualisation benefits

also indicated a medium to good quality. On the one hand learners think that the visualisations

are able to help learners reflect on their own learning progress and accomplish their goals. On

the other hand, the visualisations are also assumed to help learners to better understand their

learning through comparison with other learners.

Some respondents, however, indicated that the comparison with the class might be prob-

lematic and negatively affect self-worth and collaboration. A few respondents hereby indicated

that, specifically for underachievers, this kind of comparison could be disadvantageous. They
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suggested that it would be more desirable to offer a comparison with one self own prior perfor-

mance only. This aspect would require more studies to be assessed.

On the instructor visualisations, VisI1 reached medium to good results in all aspects. VisI2

reached lower results in all aspects. While the most prominent qualitative feedback for VisI1

was that it is clear and useful, for VisI2 it was especially emphasised that its visualisation is too

complex. Nevertheless, when it come to these instructor visualisations, respondents think that

– in spite of their complexity – the visualisations are able to allow instructors to adapt their

teaching to their students peculiarities by better understanding the students’ needs. In fact,

both visualisations achieved the best result on the relevant sub-scale i.e. benefit for instructor.

For VisI2 and VisST3, which use a similar representation for either an individual or a

whole group of learners, the evaluation outcomes were similar. Both visualisations – who

adopt a representation paradigm based on a matrix for depicting the activities visited and

some contextual additional bars – received the least favorable results in their groups. These

visualisations are probably perceived as representing too much information at a time.

In order to improve the self–descriptiveness of these complex visualisations some expla-

nations or a legend describing the single components of the visualisation (e.g. the arrows in

VisST3) should be added. Furthermore, the graphical style should be improved, for example by

integrating different and better distinguishable colors. This way not only the usability of such

rather complex visualisations could be enhanced but their acceptance could also be improved.

User acceptance ratings for the current version of VisI2 and VisST3 were rather low, while

acceptance scores for the other visualisations (i.e. VisI1, VisST1, and VisST3) were of medium

to good quality. Both students and instructors, would make use of these visualisations in their

work and they would also recommend them to others.

On the whole, the simpler visualisations were better perceived (e.g. providing useful infor-

mation and an overview as well as being clear and easy to understand) while the visualisations

covering a lot of information were stigmatised as complex and covering too much information

and led to the wish for more simplicity. Both learners and instructors expressed the wish to

improve the design and scrutability of the visualisations (e.g. integrating different and bet-

ter distinguishable colors, adding more explanations and navigational facilities). Labeling or

adding legends in the visualisation would be useful in order to improve the self-descriptiveness.

The aim of this first evaluation of the visualisation mock ups was to gather initial informa-

tion through subjective assessment regarding usability aspects, visualisation quality and users

acceptance of the visualisations. The evaluation results were used, among other things, to drive
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further improvements of the visualisation tools in their final implementation. In fact, the visu-

alisations implemented and used in the project, and also in the experiments outside GRAPPLE

presented in the next chapter, were selected amongst the higher rated ones or improved starting

from them and using the received suggestions and feedbacks. Examples of these improvements

are the simplification of the visualizations automatically provided to the user in the LMS inter-

face, the possibility for autonomous exploration by the single learner of more analytical ones

on needs, the choice of the class as the natural reference for the learner current status, and so

forth. This approach was expected to maximise the benefit brought by their integration and

use in an adaptive learning environment.

A further step of evaluation was then carried out based on the current implementation of the

visualisation tools in other contexts than the GRAPPLE system, as will be presented in the next

chapter. This also allowed to get a better understanding around additional qualitative aspects

of the visualisations (e.g. actual learning performance, meta-cognitive abilities by contrasting

objective and subjective learning outcome, perceived cognitive load).
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Chapter 5

GVIS: experiments outside

GRAPPLE

In this chapter the experiments conducted outside GRAPPLE are presented. In its first part

a few experiments are described which are more directly related to LMS and ITS, whereas in

the following section a number of cases with data integration occurring from outside a learning

platform are detailed.

5.1 GVIS connected to LMS/ITS

A first application was developed on a Master course which was offered in blended mode. The

GVIS application was integrated into the Moodle Learning Management System (see Fig. 5.1):

it is the bottom block on the right-hand side column.

5.1.1 An Experiment with the Moodle LMS

The initial pilot was conducted by applying the GVIS architecture to the ”Educational Com-

munication and eLearning” course held during the winter term of the 2009-2010 academic year

by prof. Cantoni at the Politecnico di Milano, in Italy, as part of the MS degree in Engineering

in Computer Science (see Fig. 5.1).

Although for the purpose of this test we did not aggregate data from different sources, our

visualisation infrastructure facilitated the aggregation of data coming from different tables in

the Moodle database as well as the visual represention of contextual information about both the

course and the learners. On top of the above, we developed a specific widget for representing the

number of logins and the messages posted in a forum. An interesting outcome was the graphical
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Figure 5.1: The output of the GVIS module when plugged into a Moodle course (the bottom

block on the right-hand side column).

Figure 5.2: The output of GVIS module: numbers of logins and forum contributions.

comparison between the learner’s specific information and the average value achieved by the

class, which can work as reference for the self-monitoring process of the user’s progress (Woolf

2009). We also implemented functionalities to support the learner: Fig. 5.2 shows the number

of messages posted onto the forums by the current user as well as the count of the accesses to

resources by the student throughout the course. The widgets also allows for the comparison

with the class average and, in the first case, with the level expected by instructor as well. Both

these pieces of information are considered important by the teacher assistant, who in this case

also played the role of instructional designer and developed – relying of some technical support–

the online part of the course. All the widgets were implemented on the basis of the requests
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and suggestions that came from the instructor and the teacher assistant. Others widgets that

were developed for this pilot study are the number of logins onto the course grouped by date

and by student as well as the number of forum entries posted by date (grouped by the number

of people that posted each day, the total number of posts per day and per single student).

Fig. 5.2 shows a mix of accesses to the course/resources done by students as well as forum

posts, which are the activities that are considered to be important by the Instructional designer,

who developed the online part of the course. As it can be seen, the result is a graphical

comparisons between the learner’s specific information and the average value achieved by the

class, which can work as a contextual reference to monitor the user’s progress.

Some functionalities for the teacher assistant have been implemented in order to support

the tutoring, as shown in Fig. 5.3, where a collage of two of the widgets provided is reported.

Figure 5.3: The GVIS module for instructor. A classification of the posts based on the submission

date - Early, OnTime, Late and Uncompleted - is presented (on the left), accompanied by the

related evaluation (on the right).

More specifically (see Fig. 5.3), groups of messages posted in the same date ranges and

based on different deadlines, are depicted using different colors in the pie chart. Each slice of

the pie represents a category based on the posting date with respect to the deadline set by the

instructor. This can be: early, on time, late, or uncompleted. The size of the slice indicates

the number of messages into each posting category. The instructor may assign a grade to

each of the messages posted in the forums, depicted on the right-hand side of the bar chart.

In this visualisation, bars represent the distribution of grades given by the instructor to the
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Figure 5.4: The graph of the grades for two different students from two distinct classes.

postings, and the color of bars represent the posting specific category (e.g. early, on time, late,

or uncompleted).

5.1.1.1 The ”grade” widget

In the online course there are different activities that have to be performed by the learners over

specific intervals of time which have to be graded by the tutor throughout the semester.

For this reason a specific widget was developed to present the individual state as the average

grade achieved by a student until that moment. This information, specific to every learner, is

compared with the overall average grade of the class. This is particularly important because

the student can autonomously check his current average grade at any point in time and not only

at the end of the course. Because of the above, this can be safely considered as an awareness

tool (Romero, Tricot, and Mariné 2009).

In Fig. 5.4 two screenshots are presented which refer to different learners in distinct classes

and that are useful to make the students aware as to whether they are aligned with the rest of

their colleagues.

110



5.1 GVIS connected to LMS/ITS

5.1.1.2 Evaluation

An initial evaluation that allowed the learners to provide feedback on their experience with the

system was implemented. This was composed by a questionnaire containing 16 questions on a

5-point based Likert-scale and it was submitted at the end of the course as an online survey.

The possible answers ranged from complete disagreement (1 - SD) to full agreement (5 - SA)

with the concept expressed.

The first interesting result was that 22 students out of 45 answered within the time-frame

allocated. The first impression seemed promising, even though some experiments with a higher

number of students and longer time-frame would be certainly needed to confirm these initial

results, due to the very limited impact of the current one (i.e. only one course during a single

semester).

Based on their very small number and the impossibility to group them coherently, it was

not thought meaningful to include the non-quantitative answers received. After providing some

introductory information about the aims and the scope of the survey, the questionnaire collected

demographic data, such as age, gender and role of the respondents. Unfortunately, probably

due to the context of the course and the predominance of male students (36 over a total of 45,

means 75%), we collected no feedback from female ones. The average age value is 23.77 - with

variation from a minimum of 22 to a maximum of 32 - and all of them compiled the survey as

learners.

Table 5.1 reports an analysis of the results. For ease of interpretation we converted all the

answers into a positive scale i.e. we inverted the scale for those questions that were asked in

a negative form (i.e. marked by an asterisk). This process also allowed to group variables in

order to perform a number analysis on them. The resulting sets were named respectively C1,

C2, C3 and C4 based on the percentage of positive versus negative answers provided and on

the standard distribution measure.

In the first group, the most positive one C1, was collected the questions USD1, USD2, and

VBBI1 that are related to the easiness of understanding the visualizations, and to its capability

of helping instructor in tailoring the teaching to individual learners.

In set named C2 - composed by the questions called UST1, UST2, VBM1, VBLE1, VBBP2 -

the rate of positive answers is predominant, however some learners reported that the dimension

were not so well suited. The topics explored in this group are related to the capability of offering

a suitable overview of the current status, to the absence of irrelevant information, to the level

at which the visualisation can support the users reflection (also in comparison to the peers)
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Cod Question nr MIN MAX Mean SD

C1 USD1 It is easy to understand this vi-

sualisation

22 3 5 4.23 0.8125

USD2 * I find this visualisation unneces-

sarily complex

22 2 5 4.05 0.8439

VBBI1 I think this visualisation would

help instructors in tailoring their

teaching to individual learners

21 2 5 3.90 0.8891

C2 UST1 I find this visualisation suitable

for getting an overview on the

current status in the learning

process

22 2 5 3.86 0.7102

UST2 * I think the visualisation provides

irrelevant information

22 2 5 3.86 1.0372

VBM1 I think this visualisation can help

learners to reflect on their learn-

ing

21 2 5 3.71 0.7838

VBBP2 I think this visualisation can help

learners to better understand

their learning through compari-

son with other learners

21 1 5 3.71 1.0556

VBLE1 * I think the use of this visualisa-

tions will not make a difference

on learning performance

21 1 5 3.62 1.0713

C3 VBM2 * I think this visualisation will not

significantly promote the learn-

ers’ understanding and aware-

ness of their learning progress

21 2 5 3.57 1.0282

VBBI2 * I don’t think that this visuali-

sation can help teachers in bet-

ter understanding their students’

needs

21 1 5 3.57 1.3628

C4 VBCL1 I think this visualisation is able

to leverage mental workload

21 2 4 3.14 0.7270

VBBP1 * I think this visualisation would

hinder collaboration among

peers

21 2 5 3.10 1.1360

VBCL2 * I think interpreting this visuali-

sation would put additional cog-

nitive effort on the learner

21 1 5 3.00 0.8891

Table 5.1: The results of the survey about the OLM visualisation implemented in the experiment

within the course ”Educational Communication and eLearning”: statistical analysis.
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about their learning experience and the expected impact of the visualisation on their learning

performances.

The following two groups share the fact that negative answers grow to a significant rate,

positioning them between the (possibly or almost certainly) problematic aspects.

Group C3 comprises the questions named VBM2 and VBBI2, which are respectively related

to the possibility of promoting learners understanding and awareness of their learning progress

and to help instructors in better understanding the students’ needs. Here the percentage of

negative answers reached important levels.

C4, the most problematic set, is represented by the VBCL1, VBCL2, and VBBP1 questions

which investigated the capability to leverage mental workload using GVIS as well as the addi-

tional cognitive effort imposed by the tool and the possibility that it may prevent collaboration

amongst peers.

On the whole, the first test case demonstrated a good acceptance of the functionalities that

were made available. There is however a need for more analysis and refinements in order to

avoid side effects, especially in the areas covered by questions from groups C3 and C4.

5.1.2 An Experiment with Adapt2

The case with Adapt2 was a project developed in cooperation with the research team lead by

prof. Peter Brusilovsky from the University of Pittsburgh. Throughout this work we explored

the potential of presenting the students with a social visualisation of their performance. The

visualisation tool that was developed as part of the project can be considered as an Open Social

Student Model because it represents the student model alongside with a replica based on the

class average. We compared the online learning behavior of two groups of students, on the

same course and with the same instructor, over two different semesters. We showed that the

students using visualisation were more engaged in the learning activities and achieved a better

performance in self-assessment quizzes. We interpreted these facts under the light that the

students are more conscious and serious when they are equipped with a visual representation

of their performance. We also showed that the students in second group made more consistent

efforts –measured as numbers of accesses to learning resources, but also to the self-evaluation

quizzes– throughout the semester, and particularly so at the beginning of the semester.
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5.1.2.1 The problem of engaging the students

According to the information provided in the website of Next Generation Learning Initiative

[ (http://www.nextgenlearning.org/the-program/) ], only 42% of young people in the US who

enroll in college complete a bachelors degree and just 12% of them complete an associate degree.

On the other side, the panelist contacted to retrieve this data highlighted that, by the year 2018,

63% of all U.S. jobs will require some sort of postsecondary education. There is no reason to

doubt that this will be the case for other developed countries too. This fact demonstrated the

importance of engaging college students in learning. The present study showed that providing

students with social performance visualisation could improve their engagement in learning and

positively impact on their performance.

5.1.2.2 The Proposed Solution

Figure 5.5: Initial mockup of the Student View for the implementation of KnowVis interface.

The feedback received induced us to simplify and reduce the amount of information shown on the

page and provide, instead, some navigational capabilities on the data.

Based on the theory of social comparison and social translucence (Erickson and Kellogg
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2001) (Erickson, Halverson, Kellogg, Laff, and Wolf 2002) motivational visualisations can be

used to encourage user participation in online communities. In this study the results of using

a visualisation tool on students’ engagement in online learning activities is presented. This

visualisation tool exploited the actual web usage data of students in a learning support por-

tal (KnowledgeTree) for C programming. KnowledgeTree (Brusilovsky 2004) is an adaptive

repository of distributed learning resources that enables the instructors to present the learning

material from different sources in a hierarchy of course objectives. These resources included

lecture slides, program examples, instructor comments, self-assessment quizzes, etc. The portal

carefully stores all the student activities and provides a fruitful resource for our student mod-

eling engine. In this research the usage pattern of learning resources available in the learning

portal between two groups of students was compared. The first group had access to a basic

form of social navigation support (control group) while the other group was provided with an

explicit form of social visualisation (in the form of Gauge, BarChart, TreeMap) to monitor their

progress and compare themselves against the class average.

5.1.2.3 The Approach

To investigate the impact of social performance visualisation on students’ performance, a so-

cial visualisation tool KnowVis was developed and deployed in the context of a C programming

course. The visualisation tool was developed using a specialisation of the GVIS framework called

KnowVis and it was made accessible to students through the course portal, KnowledgeTree

(Brusilovsky 2004), which also provided access to a range of interactive learning resources de-

livered by activity servers QuizGuide (Brusilovsky, Sosnovsky, and Shcherbinina 2004), WebEx

(Brusilovsky 2001), and NavEx (Yudelson 2001). QuizGuide provided the adaptive navigation

support for self-assessment quizzes, while WebEx supported learning from annotated examples

and NavEx provided the adaptive navigation for annotated examples.

KnowVis gathered student data by retrieving the student usage and performance logs main-

tained by the activity servers. After extracting the learning activities from such servers,

KnowVis calculated the confirmed knowledge of each individual and of the group, based on

the answers from the self-assessment quizzes.

To respect the principles of abstraction and progressive evaluation, the tool was structured

on two levels. The first set of visualisations in KnowVis contained two gauges to indicate,

respectively, the student’s attempts and confirmed knowledge (Upper part of Fig. 5.6).
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The variable called Attempts measured –through the number of tries on the self-evaluation

quiz at the end of each elementary topic– the total number of accesses to learning objects

performed by the student. On the other hand, the confirmed knowledge variable summarised

the student’s current knowledge as known by the ITS i.e. based on the answers provided in the

self-assessment quizzes.

These two variables are then adjusted to the current class situation and divided by the

class average. This way, these two succinct indexes not only represented the students’ current

performance on the course, but they also pointed out where they were standing in respect

to the class as a whole. Each index represented on the gauge can be put through two other

different visualisations, a BarChart (lower part of Fig. 5.6) and a TreeMap (lower part of Fig.

5.7). For example, once the BarChart Attempts is selected, each detailed learning activity

will be presented by means of a bar representing the actual value. To give the students the

opportunity to quickly locate their deficiencies and reflect on them, KnowVis also presented

them with two side-by-side TreeMaps, one representing the performance of each individual

student in the class and the other presenting the average performance of class. These detail

views provided the opportunity for students to closely monitor their learning progress in a more

fine-grained fashion and to effortlessly compare it against the class average.

5.1.2.4 Result: Basic Statistics

We expected that providing the students with social performance visualisation would increase

their awareness of how they are doing in comparison to their peers and enable them to become

more engaged in online learning activities. The main finding about this study was that the

percentage of students that undertook self-assessment quizzes almost doubled, with an increase

from 47% to 78%. We also found that the overall number of activities they performed on the

system increased throughout the whole semester and that the students were more engaged while

using the system. Table 5.2 shows the overall statistics on application usage within the system.

The reason why we separated the QuizGuide from the other applications in the table is that

there is an interesting pattern regarding the student’s behavior on self-assessment quizzes (line

Average number of attempts for the QuizGuide application). As we can see from the table, the

average number of attempts to answer the self-assessment quizzes has significantly decreased for

the students using visualisation i.e. from 335.28 to 186.93. In an effort to investigate this more

deeply, we calculated the average time that the students spent on quizzes and their success rate.

The overall statistics about the student performance in QuizGuide is summarised in Table 5.2.
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Figure 5.6: Student View of KnowVis.

The data showed that the average amount of time spent on self-assessment quizzes for each

user increased by 20%. More importantly, the average success rate (number of correct answers

divided by number of attempts) also increased by 9%.

We can consider these results as a sign that the students paid more attention and were more

committed when they approached the system and spent more quality time solving the problems

as they knew that it would directly affect their Progress visualisation. We can also assume that

the social visualisation tool not only made them spend more time on the system but also created

a sense of competition between them that resulted in a higher accuracy. Despite the fact that

the above seems expression of an opposite feeling to the one presented in the previous case, it
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Without Visualisation With Visualisation

Fall 2010 Spring 2011

QuizGuide

#Users 7 out of 17 (41%) 15 out of 19 (78%)

#Attempts 2347 2804

Average 335.28 186.93

Other Apps

#Users 17 19

#Records 9921 16081

Average 583.59 846.37

Table 5.2: Overall statistics of application usage - part I

was the only way the students’ behavior could be explained.

The results of the study demonstrated that the students are likely, as showed by the analysis

of the log interaction with the system, to review their confirmed knowledge level as provided

by the system and to perceive a sense of comparison between their progress and their peers’.

This could be explained by the theory of social comparison.

We also investigated the number of sessions during which the students accessed the systems

and the average time they spend in each session. The average number of sessions increased

from 8.87 to 11.71 and average time spent by the students inside the system almost doubled,

raising from 1679.84 seconds to 3314.41 seconds.

5.1.2.5 Result: Deeper Analysis

Although there were improvements in the system usage by the students, the basic statistic

results did not show any significant improvement on the impact of KnowVis. Consequently, we

tried to analyse the student data more deeply and to consider their usage pattern throughout

the whole semester. In order to achieve this, we made a comparison between students of two

course editions: Fall 2012 and Spring 2011.

The QuizGuide system –one of the course implementation done using the Adapt2 platform–

was introduced to both groups of students at the beginning of the semester and both of them

accessed to the system during the whole semester. The Fall 2010 group (without visualisation)

accessed the system in a 94 days period and had one midterm exam on day 45. The Spring

2011 group (with visualisation) accessed the system in a 92 days period and had one midterm

exam on day 44. We tried to investigate the daily behavior of the students during the semester.

Each semester consists of 14 weeks.
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Figure 5.7: TreeMap Visualization of Attempts.

Fig. 5.8 shows the number of records for both groups as a weekly breakdown. Table 5.3

shows the results of the investigation. As it is shown by the data presented in the table, it’s

worth mentioning that the use of visualisation also improved the daily activities of students,

even though not in a significant way. Looking at Fig. 5.8, we noticed that there is a sudden

increase in the usage data from students in the group without visualisation (graph in the lower

part) after midterm. This led us to looking at the students’ usage data before the midterm and

we found some significant increase before the midterm exam. Table 5.4 shows a brief summary

of the results. As we can see from the table, the daily usage of the system within the first part

of the semester (before midterm) significantly improved at all levels for the group that used
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visualisation.

This result could be interpreted as follows i.e. the early instalment of the social performance

visualisation encourages consistent efforts –in term of system usage for studying purposes–

particularly early on in the semester, which is really important because in that period of time

the students have enough time to reflect on their weaknesses and keep up with their course

load as efficiently as possible. As a result the students were better prepared during the whole

semester, and in fact this hard work resulted in a higher success rate in answering the self-

assessment quizzes.

Daily Usage Report
Without Visualisation With Visualisation

Fall 2010 Spring 2011

Sum. # Attempts 12280 18887

Avg. # Attempts 129.26 198.81

p value 0.07 > 0.05 (not significant)

Sum. # Sessions 167 217

Avg. # Sessions 1.76 2.28

p value 0.09 > 0.05 (not significant)

Avg. # Users 1.17 1.60

p value 0.014 < 0.05 (significant)

Table 5.3: Daily usage record (whole semester)

Daily Usage Report
Without Visualisation With Visualisation

Fall 2010 Spring 2011

Sum. # Attempts 2091 18887

Avg. # Attempts 53.62 203.21

p value 0.0006 < 0.05 (significant)

Sum. # Sessions 75 130

Avg. # Sessions 1.92 3.33

p value 0.007 < 0.05 (significant)

Avg. # Users 1.23 2.03

p value 0.0017 < 0.05 (significant)

Table 5.4: Daily usage record (before midterm)

5.1.2.6 Evaluation

To evaluate our visualisation tool, we conducted a thorough evaluation analysing the logs

collected by the system adopted and the student results, of a semester-long classroom study. The
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Figure 5.8: Weekly Distribution of Activities (Top with Visualization and Bottom without

Visualization).

study was performed on an undergraduate Introduction to C Programming course, offered by the

Community College of Allegheny County (PA), USA in the Spring Semester of 2011. To assess

the impact of our visualisation tool, we compared the student usage data against a comparable

class taught by the same instructor, with the same course structure and same personalised

learning platform but without the visualisation tools, as previously stated. This group used

the same learning resources bar the visualisation in the Fall Semester of 2010. All students

had access to the same learning activity servers (QuizGuide, WebEx, and NavEx) through the

KnowledgeTree course portal. All student activities within the system were recorded, including

every student attempt to answer a question, read an example, study a line of the codes, etc.

The system also stored a timestamp, the user’s name, session ids, and the results of answers to

the self-assessment quizzes (i.e. right or wrong).

To sum up, the visualisation provided presented a quite extensive usage: the number of

sessions was around 150 and the tool provided was used by 30 distinct users along the whole
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Without Visualisation With Visualisation

Fall 2010 Spring 2011

Total # Attempts 2347 2804

Total # Questions 179 179

Average # Sessions 4.6 4.42

Average Time Spent 3013 2728.18

Average # Attempts 335.28 186.93

Average # Success 127 88.66

Average Success Rate 39% 48%

Std. Dev. Success Rate 0.089 0.13

Table 5.5: Overall statistics of application usage - Part II

semester. This was particularly interesting considering that the tool was not particularly mar-

keted to students as a fundamental component across the extensive set of all the activities

provided on the course throughout the semester, but rather it was just inserted –alongside the

other course materials– in the reference page as one of the available resources for autonomous

usage.

From the log analysis, three distinct general patterns stood out with regards to usage: some

learners explored the capabilities of the tool at the very beginning, then monitored the evolution

of their status with the compact indicator and, eventually, used the specialised treemaps and

bargraphs to understand strength and issues of their profiles. Other learners just used the tool

as a reference at the beginning and at the end of the subject study; they were not referring to

it for controlling the evolution of their profile and they were using the other materials provided

in the meantime. Finally, a number of learners used only the general compact indicators to

gain an indication of the global status and their position in respect of the class average, and

accessed it on a more or less regular basis.

When we consider all the learners involved in the study that accessed the tool at least once

(i.e. 15 people), each one of them generated an average of 4.93 sessions (i.e. contiguous sets

of actions, typically connected to a single study session), with an average page number access

of 3.99 and accessing 1.71 of the capabilities provided (of the 5 globally available, that are the

compact indicator and the 4 specific views: two for numbers of accesses and the others two

for the confirmed knowledge) . The average number of pages visited per session is 1.92 with a

length of each stay of around 71 seconds. These numbers demonstrate the learner perception

of interest in the tool, that presents an average stay of 24 seconds for each page visited.
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We believe that the lack of significant differences on the commonly acceptable level of

p < 0.05 was caused by a relatively low number of students participating in the study.

5.2 Other application of GVIS outside LMS/ITS

Another test case that was carried out on the infrastructure did not involve any LMS or ITS,

but aimed at practically demonstrating the possibility to use the GVIS tool for mashing up data

from distributed and heterogeneous sources. For this example application we have mashed up

URLs1 from the user browsing history with tags coming from del.icio.us2. The resulting output,

represented as a pie chart (see Figg. 5.14 and 5.15), shows the most relevant topics followed

by a user. It can be consider as a sort of personal browsing profile. As an intermediate step

we developed two simplified applications that rely on a subpart of the processing configuration.

The first one builds a website profile starting from the tag associated to it, while the second

presents the temporal evolution of these website profiles in order to evaluate the topics users

perceive associated to it over time.

5.2.1 Ideas for another test case

A previous work from (Gwizdka and Bakelaar 2009) had already proposed to use a visualisation

of the user navigation history in terms of interest areas based on a folksonomy. On this basis

the present test case added a fully customisable approach for visualising it. As one would

expect, some other approaches have already appeared in literature to represent the learner

profile. Furthermore, the use of visual representations based on tag-cloud metaphors are quite

common for presenting data based on keywords classification (Moulaison 2008).

More recently some attention has been devoted to the aspect of social interaction supported

by online platforms, and as a result the representations provided have been modified accordingly

(Mazzola and Mazza 2009a).

1Uniform Resource Locator, is the standard adopted to identify global resources also in Internet. It is also

often called, improperly, the web address.
2del.icio.us is a social bookmarking service which allows logged in users to save resources identified by specific

URLs by associating them to one or more tags as label to identify, classify and retrieve them at a later stage.

It is sometimes referred to as Delicious, as will be the case throughout the rest of the chapter. The project has

now been closed but some dumps are available for study and research purposes.
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5.2.2 The approach

For this experiment part of users profiles was disclosed to the users themselves, showing infor-

mation related to their browsing habits. It was decided to work on URLs as they represent a

type of data which is very easy to mash-up between different systems: every URL points to

one specific Web resource, and there is already plenty of metadata available about them on the

Internet.

Creating mash-up required, first of all, to identify the main data sources. In order to analyse

users browsing habits a minimum of two different sources were required: a collection of logs

capturing the visited URLs and some kind of classification of the matching Web pages.

Within an E-Learning system (where user clicks are normally collected by the system for

tracking and debug purposes) it may not be so difficult to obtain both the data sources. As-

suming that the pages used inside the platform are stable and local, the classification –given

the limited size of the system (associable to a closed corpus of documents)– could be built

top-down, as a taxonomy.

However, the task could became more complex when captured URLs represent generic pages

on the Web, such as external links provided within the system itself (associable to a open

corpus of documents): in this case a top-down approach is not suitable, while a bottom-up

categorisation, such as the one provided by a folksonomy, might offer better results.

For this particular project it was decided to tackle the problem of generic URLs, for a

number of reasons. First of all, most of the public Web pages (that we define ”in the wild”

Internet), as opposed to the ones within the E-Learning system, can be assumed to be accessible

from anywhere. This is mostly untrue for the other case, especially if the system provides

restricted access. Even if metadata is available for pages in a closed environment (they are still

represented by valid URLs, so annotations are possible), there may just not be enough of it to

make it statistically relevant. Finally, datasets for generic URLs are easily available as they are

automatically saved by most browsers in the ”browsing history”. To make the work easier, it

was chosen to use just one browser and to collect Firefox history database for the tests. With a

generic browsing history as data source, to use folksonomies as a source of metadata seemed the

most suitable choice. In these systems (named after folks and taxonomies) users can associate

freely chosen tags to web resources, producing knowledge which is useful for them but also

made available to the entire community (Quintarelli 2005).

As the work of categorisation is performed by the users themselves, folksonomies are demo-

cratic, scalable, current, inclusive and have a very low cost (Kroski 2005).
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Of course, this bottom-up process has some drawbacks too: due to the absence of a unique,

coherent point of view, tags cannot be easily organised in a hierarchy. Also there is no synonym

control and systems might lack both in precision and recall (Halpin, Robu, and Shepard 2006).

Aware of both advantages and limits of folksonomies, it was decided to adopt Delicious as

the tag provider due to the facts that it already has a huge quantity of metadata and is able

to provide results which are statistically good.

5.2.3 System Infrastructure

The output of the tool as seen by the final user is a flash object that represents, with a pie chart

metaphor, the relative frequency of every tag. The extractor configuration for the database

source only requires three different kinds of parameters: the authentication credentials, a SQL

query and the format desidered for the output, which is piped to the aggregator module.

Similarly, the extractor configuration for the SPARQL source, used to access the folksonomy,

only requires the endpoint access information, a SPARQL query and the output format.

Figure 5.9: The operation pipelines applied to the actual examples: C1 is the part which is

common to all the applications developed for this test case.

Delicious did not provide access to its tags through a SPARQL endpoint, rather it exposed

an API1 which, given an URL, returns a list of the latest tags that have been used to categorise

it. The information returned by the API was structured and serialised in a standard format

(JSON), however it did not share its schema with other tag-based systems, nor there were any

plans to implement this in the future. As a result, there would be the need to write a new

adapter for GVIS every time it was necessary to access tags using another Web service.

However, what we wanted was to be able to change, at a later stage, the source of the

folksonomy without having to write a new GVIS class adapter for the specific API offered by

1Application Program Interface is the signature of the methods that can be called by any external system

that wants to communicate with it. It exposes the methods and the parameters required to obtain a certain

function.
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the newly chosen source. To address this problem, a more generic conversion tool was built

which took Delicious API results as an input, converted them into RDF on the fly (following

a given ontology schema), and finally exposed them as a SPARQL endpoint (using Joseki,

http://www.joseki.org). The advantages of this tool were manifold: first of all, it allowed GVIS

to access tag information from a generic SPARQL endpoint, using the same query regardless

of which folksonomy was being queried. As a result, information was not only independent

from the data source but it was also easier to merge inside one single place, thus providing

something that was not previously available (the union of different tag-based systems). Finally,

as its code was not bound to this particular application, it could have been reused for other

purposes (as it was actually done while developing the prototype for a semantic annotation

system). Furthermore, with the development of a SPARQL adapter GVIS became capable of

replacing the existing folksonomy data-source (Delicious) with any other one that conforms to

SPARQL by simply allowing for the query to take the new source semantic into account.

5.2.3.1 Data Aggregation

GVIS provided a set of operators to support data aggregation “out of the box”. These operators

implemented some common aggregation patterns such as group by, filter by threshold, order

by, etc.

Once the raw data was available, the following step consisted of applying a subset of opera-

tors in charge of expressing the transformation logic from source data to final information. The

sequence of operations had a basic common part (named C1, see Figure 5.9), used to retrieve

del.icio.us tags from the SPARQL endpoint as well as a part which was specific to the browsing

history, shown as C2 in Fig. 5.10.

Figure 5.10: The operation pipelines applied to the first examples: C2 represents the logical

operations to produce the browser history navigation chart (the starting point is the browsing

history provided by the user; here the USER in input represents his identification).
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C1 only contained a grouping operator, which allowed tags to be grouped and counted

when information about a single URL was requested. C2 was more complex and it was used

to categorise the whole browsing history: it first used a filter operator, following the extraction

of visited domains from the DB, to filter the most visited ones. It subsequently applied a loop

operator to get tags related to every single URL in the list and, after completing the aggregation

of common entries (tags), it applied another threshold to remove the less important tags (ie: the

ones with low numerousness). Finally, an order by operator was used to return the tags ordered

by occurrences (needed by the visualisation component to show the pie slices in decreasing order

of magnitude).

5.2.3.2 Visualization

The visualisation was implemented using a pie chart metaphor, as shown in Fig. 5.11.

Figure 5.11: An analysis on a website: the case of http://corsi.elearninglab.org (the eLearning

platform of the university of Lugano).

This choice represented one of the possible visualisations available within the system, as

provided by an open source library called Open Flash Chart. Of course, thanks to the modu-

larity of the tool, it would have been possible to import other libraries to provide more common

metaphors for tags such as tag clouds or weighted lists.
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However, for this particular case the pie chart seemed to be the most suitable metaphor, as

it does not just show magnitudes but also indicates a relative weight between different interests

in the user profile. Moreover, the particular widget chosen offers the possibility to interactively

explore the detail of every single result by presenting more data on user interaction, such as

the number of times the specific tag was counted.

5.2.4 Some examples

Exploiting the operands described in the data aggregation section we built two different types

of applications. The first one was simpler, accepting a single URL as input and returning a pie

chart depicting its most frequent tags as output. The second one was more complex: its input

was the whole browsing history of a specific user and, exploiting the component previously

described as C2, it returned a pie chart depicting the user’s main areas of interest.

5.2.4.1 Websites

The first application, that can be used to have a quick glance at the main tags characterising

a website, was very simple and comparable, in terms of information provided, with the original

delicious web interface.

Figure 5.12: An analysis on a website: the case of http://www.ieee.org (the IEEE organisation

institutional website): the issue of the overabundance of data to represent is clearly evident.
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This was however enriched by a graphical presentation of the data, an alternative to the

classical tag cloud: at a first glance, it gave an immediate idea of what the most important

keywords were, along with their related weights; then, moving the mouse on a pie slice, it

was possible to see how many tags had been returned by the system and which percentage

of the whole set they covered. In Figures 5.11 and 5.12 two different websites are compared.

The figure 5.11, with a relatively low number of keywords, is characterised by a very effective

visualisation.

Conversely, in figure 5.12 an unfiltered view of a more notorious portal is depicted, showing

how the number of tags returned by the system can negatively affect visualisation, both from

a technical perspective (the library was not capable of dealing with all that data) and also

from the users point of view (information was unreadable or too much dense to be correctly

interpreted).

This result justified the use made of threshold levels in order to simplify the output i.e.

trying to dig out useful information emerge from a huge amount of data. Another experiment

made with single URLs was around transient behaviors: the evolution of a newly created website

for a conference was monitored and followed in its growth, at intervals of one month’s time,

using the tool.

Figure 5.13: The ENTER2010 conference website (http://www.enter2010.org) analysed in three

different moments: (from left to right) an early one, just after the conference announcement, after

a month and two months from creation.

Figure 5.13 shows three screen-shots taken at three different times: the first one corresponds

to an early stage of life of the websites, the middle one was taken after a month, and the last

one after two months. The three images show an interesting result: as time passed, the most

important subjects of the conference emerged. However, in the long run the relative weights of

the main areas seemed to remain stable.
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5.2.4.2 Browsing history

Figure 5.14: The browsing history for one user: a person with interest in economy and trekking

(later recognized to be associated with an adult investing and that likes mountains).

The second application developed showed the most relevant topics, in terms of tag frequency,

characterising some users browsing habits. While the visualisation appears identical to the

previous one, the process required to build it was much more complex. To test the system with

real data, various users were asked to supply a copy of their Firefox history files.

To protect personal information, the user data was anonymised by mapping potentially

sensible URLs (containing user-dependent parameters) to their matching domains and the final

result was built from this anonymised data. The anonymised data was then connected with the

tags associated to it in the folksonomy chosen and their number was counted.

Figures 5.14 and 5.15 show two profiles in which the most interesting topics for each users

were quite evident (in the first one - Fig. 5.14 - finance and mountain/trekking, while in the

second one - Fig 5.15 - video streaming resources). Through the following phase –where the

created profile was shown to the user it belongs to– we also had the chance to learn that the

first one is an adult while the second one is a younger person.

As one would expect, other less personal tags were also present such as google, search, email,

and web2.0 (meaning that these users were not actually interested in these topics per se but
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Figure 5.15: The browsing history of another user: an individual mainly watching movies on

streaming (probably a young person, as it was later confirmed through user self-disclosure).

rather they used the related search engines, email web clients and social websites).

In another sub–experiment, the charts obtained from two ”high tech” profiles (i.e. people

working with ICT to provide advanced services for university institutions) were compared. The

peculiarity of this experiment was that both users had a huge history file and the resources

they browsed were normally bookmarked by many people. As a result, the total number of tags

collected was much higher than in previous examples.

In spite of the similarities between the two users (and despite the filters we had to apply

to avoid ending up with too many tags to visualise) it was still possible to identify profiles

specificities: in one widget an interest in open source emerged (with keywords –extracted from

a categorisation of the delicious tags– like “opensource”, “ubuntu”, “linux”, “free”, “distros”,

and so on) together with software development in the form of scripting languages (tags: “shell”,

“programming”, “scripting”, “zsh”), while in the other widget a less specific profile emerged

which was characterised by a higher number of tags related to areas like “Linux”, “Moodle”

and “XML”, but with no predominant one.
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5.2.4.3 The ”reverse profile” of a domain name

Another application that was developed took into account the outlinks from a specific website

to create a profile of its most relevant areas of interest: it worked like a sort of visual pagerank .

The idea behind this experiment was that, for some categories of websites such as blogs, outlinks

might express interest in some specific URLs from the user. In less personal websites, instead,

outlinks could still provide information about the main topics they deal with.

The most interesting aspect was that, in both cases, data was freely available on the Web.

Outlinks can be collected in many different ways, i.e. by running crawlers that visit single

Web pages or traverse full websites. To quickly build a prototype we relied on an existing

service i.e. the one provided by Bing with the ”linkfromdomain” search parameter, which

easily allows to retrieve all the outlinks from a given domain. A limitation of this operator is

that it only accepts first-level domains, meaning that it was not possible to use websites with

more complex addresses or subdomains branches as search parameter. However, this intrinsic

limitation imposed by the tool wasn’t much of an impediment as the most interesting cases

with respect to this analysis were represented by first-level domains.

In order to create the application, a new operational pipeline C3 was developed (see Figure

5.16) which was quite similar to C2, except for one characteristic: the initial seed was a domain

address that was passed to an extractor module specifically designed to call the search engine,

perform the out-links search and parse its results.

Even though the theoretical number of websites the tool can be tested against was reduced

by the aforementioned limitation of Bing, and despite the fact that the validity of such an

approach has yet to be fully demonstrated, some initial tests showed that this approach offers

both an alternative and complementary view to the one described in the second experiment.

While the former experiment showed an explicit classifications made by the users about a

website, in the latter it was possible to obtain an implicit description of a site according to the

classification offered by the tags of other pages it was linked to. The process worked in the

very same way by collecting, adding up and filtering by numerousness the tags associated to

the out-links found, to ultimately create the final topics profile.

5.2.5 System Evaluation

As the purpose of this case study was to both show the methodology for the creation of graphical

mashups and to describe its application to a specific case, we divided the evaluation in two
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Figure 5.16: The operations pipeline applied to the actual examples: C3 encodes logical opera-

tions to produce the domain-related topics association chart.

different parts: the first one which mainly deals with the performance, stability and ease of

implementation of the system, and the second one which is primarily concerned with the user’s

impression on the graphical representations obtained. With regards to the system, the new

tool has been created with less than 180 lines of XML code, of which about 60 belonged to the

extraction module, 90 to aggregation and 30 to visualisation. The fact that the aggregation part

is bigger does not come as a surprise as it implements the pipeline of operators that group and

filter URLs and tags. Of course the Delicious conversion tool has to be taken into account too,

but it is worth noticing that the only operation it performed was to convert information from

a structured format to another (albeit more expressive) one. As an added value, by applying

this additional step we gave the system the capability to merge tags belonging to different

folksonomies. The system was stable and reactive enough to create any profile in a time-frame

of about five minutes in almost all the cases.

5.2.5.1 System Performances

System performance were also meeting our expectations, especially considering that no caching

mechanism was implemented, which means that retrieving metadata for each URL required a

new independent connection to the Delicious API.

Table 5.6 shows information related to the creation of user profiles representations. The

table columns detail, respectively: the user ID, the number of domains considered (i.e. must

have been accessed at least 10 times), the average number of del.icio.us tags for each selected

domain and the average time required to collect all the data over ten successive executions. We

only focused on download time as it accounted for most of the processing time (experimentally

estimated as being more than 90% of the total execution time on a normal office workstation

on a corporate/university Internet connection).
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User Domains Tag/Domain Time (sec) Sec/Domain

01 70 52 211 3.01

02 125 37 200 1.60

03 223 39 385 1.73

04 23 33 32 1.39

05 49 20 60 1.22

06 84 34 130 1.55

07 89 38 125 1.40

08 11 72 27 2.45

09 12 42 17 1.42

10 72 37 116 1.62

Table 5.6: Performance Evaluation of the Tag-retrieval component. It is solely responsible for

the most part of the total execution time.

As shown by the last column of the data table, there was a positive correlation between

the number of selected domains and the total download time (as each domain required a Web

connection). This was also influenced by the number of tags that matched every single domain

(as the downloaded data increased with tags). Of course, there were other factors that this

analysis did not take into account, such as the quality of the Internet connection, the load on

the accessed servers and so on. In conclusion it can be said that the overhead introduced by the

real-time access to external sources did not significantly affect the visualisation of a individual

website, whereas showing a large user history might required up to several minutes.

5.2.5.2 Visualisations

To test the effectiveness of the visualisation a heterogeneous group of users was first created

which was composed of ten people of different ages and with diverse interests and they were

asked to supply their Firefox history for analysis. The panel was composed of students, techni-

cians, and researcher at the eLab –the laboratory for e-learning applications of the University

of Lugano– and it was recruited in the summer semester of the 2009 academic year. After each

single profile was processed, the resulting pie chart was shown to each one of them and they

were prompted to provide feedback on its accuracy and representativeness as well as on the

interest/usefulness as perceived by the single user. The result was that all of them recognised

their most relevant areas of interest on the pie chart, but not all of them showed full confidence

in the results. Some were surprised about the presence in their profile of some specific tag key-

words while others indicated, even though less frequently, the absence of one that was expected.
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Almost all of the panel members demonstrated a vivid interest in the graph and indicated that

this kind of visualisation could be useful to have as it would allow people to reflect on their

interests and navigation habits, if purged from the noise generated by the less personal/more

general tags.

A deeper analysis was performed on the most technically skilled individuals. Besides con-

firming the validity of the generated profile, they told us they were already aware that most of

the tags presented can be associated to their profile. Nevertheless they expressed interest for

the full global “picture” offered by their navigational habits.

Despite the positive aspects, there were still a couple of issues that had to be addressed to

make the tool actually useful. Given the demonstrative purpose of the experiments, we decided

not to proceed to solve these issues but rather we just to take the feedback provided onboard for

reflection purposes. The first item of feedback received has to do with visualisation: as shown

in Fig. 5.12, pie charts suffer information overload and become very difficult to read when the

number of different tags characterizing either a website or a browsing history becomes too high.

A number of solutions exist for this problem, which either deal with the widget itself or

with the filters applied to the data that is being visualised. With regards to the widget the

adaptive configuration feature provided by GVIS could be applied: depending on the quantity of

information available, different widgets could be used to always show results in the best possible

way. The only limitation is that the widget library does not provide valid alternatives to pie

charts, which would be required in case of huge quantities of data. Based on this limitation

it was decided to apply a filtering solution, hiding the tags that were less used i.e. below

pre-defined thresholds, which are deemed as less relevant in the profile composition.

Another interesting experiment was devoted to understand how to use the visualisation

produced to explore the space of the folksonomies that the crowd would associate to a website.

An example of the above is presented in Figure 5.17, where some of the synonyms, languages

translations and variations in the tags set associated by the user (in Delicious) to the analysed

website are evident (i.e: {italy, italia, italian, italia.it}; {portale, portale turistico, tourism,

turisti}; {sito, sito web, web}; {informazioni, reference, official}; etc.). Here another possible

improvement emerged i.e. the possibility to merge these sets into a representative unique tag

–working as the centroid of the cluster– and to use this new vocabulary to create the profile,

thus relying on a more abstract sets of topics.

Some in-depth analyses we carried out in this field can be found in the following publications

(Dattolo, Eynard and Mazzola 2011) and (Eynard, Mazzola, and Dattolo 2012).
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Figure 5.17: The www.italia.org website (http://www.italia.org) analysed in respect of the

most frequent labels associated in the del.icio.us service by the users: the synonims, languages

translations or variations present in the tags set are evident

5.2.6 Comments

This section presented some application examples related to the possibility to open up profiles,

focusing on a specific aspect of user profile represented by the browsing history. A synthetic

view of users main interests was built through the display of a pie chart visualising the main

tags associated with the most visited URLs. A set of users who have tested the system with

their own browsing histories reported that they were able to recognise themselves in the profiles

that were presented to them. Some final remarks were focused towards two different directions:

one related to the GVIS system as a whole and how it performed in this particular application,

and another one which is more related to the application itself.

From the system perspective, GVIS performed well as an aggregator of heterogeneous

sources, allowing to build the two examples previously shown simply by specifying a few lines

of XML. The system was versatile enough to access different families of data sources (such as

SQL databases, SPARQL endpoints and web services) and expressive enough to provide the

operators needed to group, order, filter and mash up the results coming from the two sources

queried. On the other hand, the long timeframes required to collect tags from the users’ brows-
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ing history databases clearly demonstrated the need for a caching system or a tool to answer

parallel queries.

With regards to the specific application developed with GVIS, the results seemed encour-

aging and worth further introspection. In particular, future efforts could be devoted towards

the following directions:

• information visualisation – learn how to better exploit the information retrieved and

computed in order to provide a compact yet expressive graphical representation of a user

profile

• tag semantics – understand how to use it to cluster tags together and into families that

can better describe the users’ interests

• an in-depth user evaluation – rely on structured interviews, which should not only provide

information about the correctness of the profile widgets but also on its usefulness in the

context of the specific system they are embedded into.
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Chapter 6

Conclusion

6.1 Discussion

The main aim of this work was to investigate how the introduction of an adaptive visualisation

tool for Open Social Learner Models is perceived by the user and how it could impact on

the learner’s experience within an educational context. In order to achieve this objective, a

tool called GVIS was designed and developed and a number of test cases – both on possible

aspects/capabilities and on the implemented functionalities – were designed and executed. By

relying on the data collected during the experiments it was possible to get an initial idea about

the impact that the introduction of such a tool would bring.

First of all, the application of the developed tool demonstrated to have an impact on the

behavior of online learners when used to provide them with indicators around their activities

(for self-reflection purpose) [see section 4.2.3.1 for results on mock-ups evaluation and 5.1.1.2

for an implementation experiment results], especially when enhanced with social capabilities,

such as the one to show the learner’s status with respect of the rest of the class/group [see

5.1.2.4, 5.1.2.5, and 5.1.2.6 for the experiment results].

The effects appear to be amplified in those cases where the widget usage is as simplified as

possible, with the possibility to be expanded and explored by the single user on an autonomous

basis [see paragraph 4.2.3 on user feedback on mock-ups]. One of the possible drawbacks

we identified is that cognitive overload can be generated on the new learners by this adjunct

information. Despite the above, the data collected with post usage questionnaires shows that

users generally consider this kind of support useful, as shown on paragraph 4.2.3.

On the tutor/teacher side there is an open issue around analysing impact and consequences
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to provide instructors with some sort of monitoring board. An initial attempt was made, al-

though informally, in the experiment described in section 5.1.1. Even though the data collected

in such a fashion does not allow us to draw any conclusions, it still confirms that the direction

taken is promising, at least with regards to giving them a sense of what is happening on the

online course in a prompt and immediate way.

All in all, this kind of approach demonstrated to be useful to create indicators [see sections

5.1.1, 5.1.2.2, and 5.2.6], even though the data collected seems to support this conclusion

more for learners than for tutors/teachers. The first piece of evidence supported the idea –in

adherence with what suggested by the mock-up feedbacks– that simpler and immediate widgets

showed a higher impact, as presented by the experiments carried out with Moodle [paragraph

5.2.1] and Adapt2 [paragraph 5.2.2].

On the teacher/tutor side, even though the amount of feedback and usage data collected

was lower than expected but we can still provide an initial idea about the effort required and

the issues faced in the course preparation/adaptation activity to make it suitable for inclusion

of the GVIS tool. The initial experience seems to indicate a positive perception, regardless of

the difficulties connected with the need to elicit the semantic description of the data (i.e. XML

configuration files) extracted or received from the environment. In an effort to avoid this issue,

we wrote a number configurations for different systems, thus demonstrating the flexibility and

adaptability of the tool in respect of the system it is connected with (LMS or ITS) too.

In one of the experiment performed (see paragraph 5.1.2.5), the data collected through

self-evaluation questionnaires and pre-post test confrontations seem to also indicate a possible

positive impact on the concept acquisition on the autonomous-learner side. Possible draw-

backs that could emerge need to be explored such as the gaming of the system1 or the social

engineering2 based on the social data disclosed.

The results obtained can be summarised as follows:

• A service that integrates and represents data – extracted from eLearning platform logs–

seem to be potentially useful for an online educational environment as it would empower

1it is defined as system gaming when a learner tries to understand and make a better use of the internal

mechanism of the system to obtain better result in the evaluations or quizzes, without acquiring more knowledge

on the topic but rather just by knowing the rules that regulate the automatic evaluations carried out by the

system, i.e. for a quiz evaluated through the points collected in the most recent tentative, trying the tests several

times and memorise the correct answer to each question.
2it is defined as social engineering the secondary usage of social information to gain some sort of advantage,

such as following the most performing learner and supporting/reusing the information they provide in a forum

to build a cumulative paper around the topic, or showing friendliness to obtain support on the assignments to

be delivered in the course.
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it with social motivation and other aspects.

• An XML-based approach of ”semantic” description about sources, data, operation and

graphical mapping is in line with the objective of empowering the Instructional Designer

with a useful way to interact and design the widgets to implement smart indicators of

one or more user activities, with the possibility to check the formal validity of the con-

figuration files produced through the usage of the DTDs presented at the end of this

work, in Appendix A. Furthermore, this approach provides a set of predefined and shared

configurations for different didactic models on well known and widespread educational

infrastructures which allows to reduce the barriers to entry when it comes to start using

the system. Despite these efforts, we are aware that a piece is lost to make the solution

really useful: a graphical interface that supports two main functions. Firstly, it will allows

the ID to define and check the configurations without the need of writing an XML piece

by hand, where on the other side it can validate step-by-step at run-time the generated

configuration using the provided DTD.

• Learners seem to appreciate the presence of personal visual indicator of their experience

both in their perception of usefulness and in the commitment demonstrated towards the

online experience, resulting in a moderate impact on the learning gain as showed by the

self-evaluation test results in pre and post experience scenarios.

• The statistics in paragraph 5.2.1.5 (even though they are just initial results) suggest that

the presence of these “smart indicators” (in the way they are defined in the work of Glahn

2009) could work as a social pressure tool by means of data collection and representation

of the learner’s actual status in the educational environment, for example when compared

with their peers. This effect could be stressed and used to engage the learner since the

earliest phase of the online educational experiences.

• Introducing adaptivity in the smart indicator can help reduce the cognitive overload

generated by this new data source made available to the user and can enable them to

fully enjoy the informative richness that can only be offered “on request” as they become

familiar with the tool.

• The presence of this kind of visualisations assumes a higher relevance when we move

towards a life-long PLE, working as a possible direction and feedback channel for learners

and supporting them as a self-awareness tool. At the same time, they can act as a social
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mirror - in the way considered in the following IBM researches, and others (Erickson and

Kellogg 2000), (Erickson, Halverson, Kellogg, Laff, and Wolf 2002), and (Bongwon, Chi,

Kittu, and Pendleton 2008) ) i.e. providing controlled information about the status of

the class and the relative positioning of the learner in respect of his peers.

Some of the issues that lead to the development of GVIS were recently covered by a new

standard for learning experience tracking called TinCanAPI, whose specifications are publicly

available on the website http://tincanapi.com. It is an evolution of the SCORM standard1

and it was first publicly released in mid 2013 (taking the name of xAPI ).

Figure 6.1: The xAPI (former TinCanAPI) working schema: all the Activity streams flows to

the Learning Record Store (LRS) that then can be used to feed any reporting system.

An image that represent the behaviour that xAPI can offer is represented in Fig. 6.1. This

solution addresses some of the issue presented in the current work, as depicted in the above

graph. The behaviour is as follows – multiple sources of Activity streams sets are generated,

in the form of <subject - verb - object>, independently from the server. The flows are then

communicated to one or more Learning Record Store (LRS) for storage purposes. The same

LRSes can then be queried to retrieve all the information previously archived, which can be used

to feed any reporting system. Despite the advantages mentioned, and while GVIS maintains its

1Sharable Content Object Reference Model is a set of reference specifications for web based e-learning

materials. It specifies the communication between the learning material and the hosting platform but also the

format for the portable packaging of the learning object.
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validity and usability in the domain, the current standard does not address the aspects related

to adaptivity and graphical representation of information.
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6.2 Recap

Throughout the present work an infrastructure was presented for the aggregation of information

coming from different sources to create adaptive graphical presentations aimed at supporting

the teaching and learning needs in technology enhanced learning environments. In the context

of Life Long Learning, the presentation of this contextual information to the learners and to

the teachers or tutors assumes a significant importance as it allows for a greater awareness of

the learning situation and helps promoting participation. The possibility to include adapta-

tion in the generation of the widgets could help avoiding the informative overloading, which

is a critical aspect of the learning context. The encoding of this information in a graphical

format is also important in order to make it useful and usable during the learning process. The

architecture described seems to be useful to enable instructional designers to create graphical

representations of one or more characteristics of the learner model. The semantic is expressed

through a number of configuration files that drive the behavior of the component. We collected

feedbacks from learner about their experience and it was clear that they felt that the tool is able

to achieve the declared objectives. In an effort to provide an evaluation of the impact of this

learning approach, both from a self-reflection and awareness point of view, and of its instruc-

tional effectiveness, we ran some autonomous experiments, each devoted to stress one aspect of

the expected impact of the tool developed. First, we carried out a set of two test cases devoted

to explore the impact of an adaptive externalisation of the learner profiles. In this context,

we collected data using structured questionnaires. The evaluation of the quantitative answers

seems promising, even if some minor problematic aspects still exists. A parallel experiment

explored the feasibility and foreseen impact generated by the mash-up of information from het-

erogeneous and distributed sources: in this case, the evaluation consisted of a simple, informal

chat to the people that decided to participate to the study and who provided their personal

navigational information. Finally, the last experiment we designed was devoted to explore the

motivational effect of providing a social visualisation for autonomous learners in the context of

extra-curricular courses. From this experience a possible increase in the commitment and in

the outcome result could be seen, as measured by self-evaluation quizzes.

To sum things up, the contribution of this work is twofold: in the orchestration domain on

the one hand, and in the support for the sustainability of TEL solutions on the other:

• On the former, three concurrent factors could positively influence the learner experience:

the adaptability, in order to reduce the cognitive overload required for the information
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interpretation, the support of meta-cognitive skills through self-reflection processes oper-

ated by the learners and the engagement induced by the social aspects supported by the

tool.

• On the latter, an enhancement of the awareness around the learning experience through

the visualisation for presenting information can play a major role in supporting the tu-

tor duties and enabling teachers to improve the design of the learning experience and

activities, based on real usage data and learners interactions.

We are aware of the possibility to achieve negative effects through the application of our

infrastructure to TEL experiences, which range from unexpected behaviors in groups with a low

level of participation or riding phenomenons1, to the impact of this data on learners with a less

active attitude to interact and collaborate and to the informative overload for newly comers.

We will present these aspects and possible directions for facing them in the next section.

1It is defined riding the phenomenon in which one or more persons use and take advantage of the work of

someone else without providing any contribution and claiming that as collective/group shared work.
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6.3 Future Possible Enhancements

One of the main issues concerned with the creation of a truly usable tool regards the provision

of an easy and intuitive interface to set parameters and write configurations. The absence of an

editor for the XML configuration layers for the specification of the semantics and operations to

be applied to the data is in fact an open argument. The idea of integrating the editing interface

with the GUI of the GRAPPLE Authoring Toolkit (GAT) is a possibility. Due to time limit

and formal end point of the project, it was decided not to explore this direction. The decision

was reinforced by the fact that GVIS is designed to be used with any kind of data source and

in any kind of educational infrastructure/environment, making the integration with a specific

environment a less than ideal solution. A possible improvement (which can be substantial for

the real adoption and spread of the solution across different and heterogeneous environments,

like the one characterising a PLE) is the integration of a graphical editor. Prerequisite for this

step is the creation of a graphical language to encode the single operations of extraction, aggre-

gation and encoding of pieces of information into widgets, based on the DERI Pipes project at

http://pipes.deri.org (Morbidoni, Polleres, Tummarello, and Le-Phuoc 2007), (Phuoc, Polleres,

Tummarello, and Morbidoni 2008), and (Daniel and Matera 2009), where a web-based interface

was developed to connect and aggregate semantic sources from the Internet through a smart

graphical interface based on gas pipes metaphors.

Another possible improvement on the interface issue would consist in providing more filtering

and data reordering procedures through an easy visual interface to facilitate the exploratory

navigation of the information.

Another open point is the creation of a repository to store common and useful configurations,

from which new users would especially benefit. This will in fact reduce the time required to

familiarise with the instrument and allow the newbie to achieve some initial results in a shorter

time-frame. Considering that this task would normally be considered as complementary to the

main task of the Instructional Designers or teachers, it is crucial to make sure the learning

process takes as little as possible of their time and focus. The idea is that once they quickly

familiarise with, these users will be able to develop their usage skills on a step-to-step basis

and eventually be able to effortlessly create their own model and configurations. This kind of

approach has also emerged from the system users feedback as being the preferred one.

Providing a set of adaptation templates could simplify the usage of these capabilities by the

Instruction Designers and also give them the seeds for thinking about the possible impact the
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system can play in the context of their own educational model and experiences.

Another improvement would see a more extensive and structured testing of the tool, both

to understand its full potential and threats and to analyse more in depth the impact that a

visualisation (in all its form: adaptive, social and others) can have on different type of education

models, from blended courses to completely online ones or from single course to fully online

degree.

While the above could open up interesting and new perspectives, it is beyond the scope of

the present work and will therefore not be explored further.
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Appendix A

XML Schema

In this appendix, the Schema for the XML configuration of the three levels are included for

reference. For the explanation of the meaning of the fields included, please refer to the chapter

about the Tool implementation.

extraction schema.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://vmelab10.usilu.net/GVIS/extractor"

xmlns="http://vmelab10.usilu.net/GVIS/extractor"

elementFormDefault="qualified">

<xs:element name="extraction">

<xs:complexType>

<xs:sequence>

<xs:element ref="source" maxOccurs="unbounded" minOccurs="1" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="source" type="elementBlock" />

<xs:complexType name="elementBlock">

<xs:sequence>

<xs:element ref="accessinfo" maxOccurs="1" minOccurs="1" />

<xs:element ref="sensibility" maxOccurs="1" minOccurs="0" />

<xs:element ref="query" minOccurs="1" maxOccurs="unbounded" />

<xs:element ref="resulttype" />

</xs:sequence>
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<xs:attribute name="name" type="xs:string" />

</xs:complexType>

<!-- information about the access point -->

<xs:element name="accessinfo" type="accessinfoT" />

<xs:complexType name="accessinfoT">

<xs:sequence>

<xs:element ref="accesstype" maxOccurs="1" minOccurs="1" />

<xs:element ref="accesspoint" maxOccurs="1" minOccurs="1" />

<xs:element ref="accessmode" maxOccurs="1" minOccurs="0" />

<xs:element ref="accesssource" maxOccurs="1" minOccurs="0" />

<xs:element ref="username" maxOccurs="1" minOccurs="0" />

<xs:element ref="password" maxOccurs="1" minOccurs="0" />

<xs:element ref="lifetime" maxOccurs="1" minOccurs="1" />

</xs:sequence>

</xs:complexType>

<!-- the data-storage type i.e. DBMS or WebService -->

<xs:element name="accesstype" type="xs:string" />

<!-- the server instance where to get the data -->

<xs:element name="accesspoint" type="xs:string" />

<xs:element name="accessmode" type="xs:string" />

<!-- the database where to get the data -->

<xs:element name="accesssource" type="xs:string" />

<!-- username to connect to the DB -->

<xs:element name="username" type="xs:string" />

<!-- password to connect to the DB -->

<xs:element name="password" type="xs:string" />

<!-- the source lifetime before refresh data -->

<xs:element name="lifetime" type="xs:integer" />

<xs:element name="sensibility" type="sensibilityList" />

<xs:complexType name="sensibilityList">

<xs:sequence>

<xs:element ref="filter" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:element name="filter" type="filterT" />

<xs:complexType name="filterT">
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<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="name" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="concept" />

<xs:enumeration value="activity" />

<xs:enumeration value="user" />

<xs:enumeration value="course" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:element name="query" type="queryT" />

<xs:complexType name="queryT">

<xs:sequence>

<xs:element ref="sql" maxOccurs="1" minOccurs="0" />

<xs:element ref="operation" maxOccurs="1" minOccurs="0" />

<xs:element ref="parameters" maxOccurs="1" minOccurs="0" />

<xs:element ref="normalize" minOccurs="0" maxOccurs="1" />

<xs:element ref="resulttype" />

</xs:sequence>

</xs:complexType>

<!-- the sql string -->

<xs:element name="sql" type="xs:string" />

<!-- the operation structure : WS querying -->

<xs:element name="operation" type=’operationT’ />

<xs:complexType name="operationT">

<xs:sequence>

<xs:element ref="function" minOccurs="1" maxOccurs="1" />

<xs:element name="header" type="headerT" minOccurs="0" maxOccurs="1" />

<xs:element ref="request" minOccurs="1" maxOccurs="1" />

</xs:sequence>

</xs:complexType>

<!-- function to call in WS invocation -->
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<xs:element name="function" type="xs:string" />

<xs:complexType name="headerT">

<xs:sequence>

<xs:element name="h" type="spaceT" minOccurs="1"

maxOccurs="unbounded" />

<xs:element name="s" type="xs:string"></xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="spaceT">

<xs:sequence>

<xs:element name="pref" maxOccurs="1" minOccurs="1" type="xs:string"/>

<xs:element name="space" maxOccurs="1" minOccurs="1" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<!-- parameters for calling WS -->

<xs:element name="request" type="xs:string" />

<!-- the dynamic part of WHERE clause -->

<xs:element name="parameters">

<xs:complexType>

<xs:sequence>

<xs:choice minOccurs="1" maxOccurs="unbounded">

<xs:element ref="param" minOccurs="1" maxOccurs="unbounded" />

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<!-- name of dynamic value from an other level for the WHERE clause -->

<xs:element name="param" type="paramT" />

<xs:complexType name="paramT">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute use="optional" name="prevquery" type="xs:boolean"

default="true" />

</xs:extension>

</xs:simpleContent>
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</xs:complexType>

<!-- normalization of the result is needed by which value -->

<xs:element name="normalize" type="xs:string" />

<!-- the returned pseudo type of that extraction -->

<xs:element name="resulttype">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="numeric" />

<xs:enumeration value="string" />

<xs:enumeration value="list" />

<xs:enumeration value="record" />

<xs:enumeration value="listofrecords" />

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:schema>

aggregation schema.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://vmelab10.usilu.net/GVIS/aggregator"

xmlns="http://vmelab10.usilu.net/GVIS/aggregator"

elementFormDefault="qualified">

<xs:element name="aggregation">

<xs:complexType>

<xs:sequence>

<xs:element ref="source" maxOccurs="unbounded" minOccurs="1" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="source" type="elementBlock" />

<xs:complexType name="elementBlock">

<xs:sequence>

<xs:element ref="extraction" maxOccurs="1" minOccurs="1" />

<xs:element ref="computation" maxOccurs="1" minOccurs="0" />

<xs:element ref="resulttype" maxOccurs="1" minOccurs="1" />
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</xs:sequence>

<xs:attribute name="name" type="xs:string" />

</xs:complexType>

<!-- extraction resources block -->

<xs:element name="extraction" type="extractionT" />

<xs:complexType name="extractionT">

<xs:sequence>

<xs:element ref="toextract" maxOccurs="unbounded"

minOccurs="1" />

</xs:sequence>

</xs:complexType>

<!-- aggregations computation block -->

<xs:element name="computation" type="computationT" />

<xs:complexType name="computationT">

<xs:sequence>

<xs:element ref="tocompute" maxOccurs="unbounded"

minOccurs="1" />

</xs:sequence>

</xs:complexType>

<!-- name of extraction block -->

<xs:element name="toextract" type="extractT" />

<xs:complexType name="extractT">

<xs:simpleContent>

<xs:extension base="xs:string">

<!--

this attribute defines if the extraction has to be performed

immediatly or not

-->

<xs:attribute name="defer" default="false" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="true" />

<xs:enumeration value="false" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>
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</xs:complexType>

<!-- what to do after the extraction -->

<xs:element name="tocompute" type="computeT" />

<xs:complexType name="computeT">

<xs:sequence>

<xs:element ref="operation" maxOccurs="1" minOccurs="1" />

<xs:element ref="parameters" maxOccurs="1" minOccurs="0" />

<xs:element ref="resulttype" maxOccurs="1" minOccurs="1" />

</xs:sequence>

</xs:complexType>

<!-- an existent operation in the command-pattern -->

<xs:element name="operation" type="xs:string" />

<xs:element name="parameters">

<xs:complexType>

<xs:sequence>

<xs:element ref="param" maxOccurs="unbounded" minOccurs="1" />

</xs:sequence>

</xs:complexType>

</xs:element>

<!-- the number of extracted element from zero -->

<xs:element name="param" type="paramT" />

<xs:complexType name="paramT">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute use="optional" name="computed" type="xs:boolean"

default="true" />

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<!-- the returned pseudo type of that aggregation -->

<xs:element name="resulttype">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="numeric" />

<xs:enumeration value="string" />

<xs:enumeration value="list" />
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<xs:enumeration value="record" />

<xs:enumeration value="listofrecords" />

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:schema>

building schema.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://vmelab10.usilu.net/GVIS/builder" xmlns="http://vmelab10.usilu.net/GVIS/builder"

elementFormDefault="qualified">

<xs:element name="building">

<xs:complexType>

<xs:sequence>

<xs:element ref="widget" maxOccurs="unbounded" minOccurs="1" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="widget" type="elementBlock" />

<xs:complexType name="elementBlock">

<xs:sequence>

<xs:element ref="properties" maxOccurs="1" minOccurs="1" />

<xs:element ref="chart" maxOccurs="1" minOccurs="1" />

</xs:sequence>

<xs:attribute name="name" type="xs:string" />

</xs:complexType>

<!-- widget static properties -->

<xs:element name="properties" type="propertiesT" />

<xs:complexType name="propertiesT">

<xs:sequence>

<xs:element ref="title" maxOccurs="1" minOccurs="1" />

<xs:element ref="backcolor" maxOccurs="1" minOccurs="1" />

<xs:element ref="elementcolor" maxOccurs="1" minOccurs="1" />

<xs:element ref="xaxis" maxOccurs="1" minOccurs="0" />

<xs:element ref="yaxis" maxOccurs="1" minOccurs="0" />

</xs:sequence>
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</xs:complexType>

<!-- displayed title -->

<xs:element name="title" type="xs:string" />

<!-- the color of the widget’s background -->

<xs:element name="backcolor" type="webcolor" />

<!-- the color of the chart elements -->

<xs:element name="elementcolor" type="webcolor" />

<xs:simpleType name="webcolor">

<xs:restriction base="xs:string">

<xs:length value="7" />

<xs:pattern value="#([a-fA-F0-9]){6}" />

</xs:restriction>

</xs:simpleType>

<!-- axes labels -->

<xs:element name="xaxis" type="xs:string" />

<xs:element name="yaxis" type="xs:string" />

<!-- elements block to insert into the chart -->

<xs:element name="chart" type="chartT" />

<xs:complexType name="chartT">

<xs:sequence>

<xs:element ref="chartsource" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

<!-- the type of the chart such as: bar, pie, scatter and so on -->

<xs:attribute name="type">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="bar" />

<xs:enumeration value="hbar" />

<xs:enumeration value="pie" />

<xs:enumeration value="scatter" />

<!-- This tell to the builder code this widget is not graphic -->

<xs:enumeration value="text" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>
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</xs:complexType>

<!-- block to get data and relative association -->

<xs:element name="chartsource" type="chartsourceT" />

<xs:complexType name="chartsourceT">

<xs:sequence>

<xs:element ref="data" maxOccurs="1" minOccurs="1" />

<xs:element ref="mapping" maxOccurs="1" minOccurs="1" />

<xs:element ref="label" maxOccurs="1" minOccurs="0" />

<xs:element ref="elementcolor" maxOccurs="1" minOccurs="0" />

</xs:sequence>

</xs:complexType>

<!-- data from the aggregation layer -->

<xs:element name="data" type="dataT" />

<xs:complexType name="dataT">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="from">

<xs:simpleType>

<xs:restriction base="xs:string">

<!-- This means the builder gets data from aggregation -->

<xs:enumeration value="system" />

<!-- This means the builder gets data from session environement -->

<xs:enumeration value="session" />

<!-- This means the builder will use the string in the setting -->

<xs:enumeration value="string" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<!-- mapping of data to graphical element -->

<xs:element name="mapping">

<xs:simpleType>

<xs:restriction base="xs:string">

<!-- This means map to chart elements -->

<xs:enumeration value="values" />

<!-- needed by Pie chart -->

158



<xs:enumeration value="total" />

<!-- This means map as a second chart values -->

<xs:enumeration value="comparison" />

<xs:enumeration value="string" />

<xs:enumeration value="number" />

</xs:restriction>

</xs:simpleType>

</xs:element>

<!-- The label needed by eventually single value results -->

<xs:element name="label" type="xs:string" />

</xs:schema>
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Appendix B

JSON messages

In this appendix, the structure of the JSON messages returned from the GVIS architecture to

the instance of the dashboard for the final composition of the widgets is presented. For the

meaning of the fields included, please refer to the chapter about the Tool implementation.

+ROOT

|

| +ARRAY: "elements"

| |

| | -STRING: "type"

| |

| | -BOOLEAN: "gradient-fill"

| |

| | +ARRAY: "animate"

| | |

| | | -STRING: "type"

| | |

| | | -INTEGER: "distance"

| |

| | +ARRAY: "values"

| | |

| | | - INTEGER: "value"

| | |

| | | - STRING: "label"

| | |

| | | - STRING: "colour"

| |

| | - STRING: "tip"

|
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| + OBJ: "title"

| |

| | -STRING: "text"

|

| - STRING: "bg_color"

|

And an example of the JSON message used can be the following one:

{

"elements":[

{

"type":"pie",

"gradient-fill":true,

"animate":[

{

"type":"bounce",

"distance":10

}

],

"values":[

{

"value":142,

"label":"XXX",

"colour":"00AA00"

},

...

...

{

"value":19,

"label":"YYY",

"colour":"AA00AA"

},

{

"value":10,

"label":"ZZZ",

"colour":"00AAAA"

}

],

"tip":"#val# - #percent#"

}
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],

"title":{

"text":"Delicious Keywords (clustered) about EgidioM firefox History"

},

"bg_color": "#FFFFFF"

}
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Switzerland, March 7-10, pp.372- 380, ISBN 978-88-6101-010-9 .

[103] McCalla, G. (2004). The Ecological Approach to the Design of E-Learning Environments:

Purpose-based Capture and Use of Information About Learners.In Journal of Interactive

Media in Education, 2004 (7).

175



REFERENCES

[104] Mitrovic, A., Martin, B. (2007). Evaluating the Effect of Open Student Models on Self-

Assessment. Int. J. of Artificial Intelligence in Education 17(2), pp. 121-144.

[105] Morbidoni, C., Polleres, A., Tummarello, G., and Le-Phuoc, D. (2007). SemanticWeb

Pipes. Technical Report. Available online at http://pipes.deri.org/

[106] Moulaison, H.L. (2008). Social tagging in the web 2.0 environment: author vs. user tag-

ging. Journal of Library Metadata 8 (2), pp. 101–111.

[107] http://www.nextgenlearning.org/the-program/ Accessed online last time on 2012-07-12

[108] Pekczynski, P., Steiner, C., Mazzetti, A., and Barak, N. (2011) Second empirical evalua-

tion report in corporate settings. Grapple D10.5 Deliverable, Version, 1.

[109] Phuoc, D.L., Polleres, A., Tummarello, G., Morbidoni, C. (2008). DERI Pipes: visual

tool for wiring Web data sources.

[110] Quintarelli, E (2005). Folksonomies: power to the people. June 2005. http://www-

dimat.unipv.it/biblio/isko/doc/folksonomies.htm.

[111] Romero, C. (2011). Handbook of educational data mining. Chapman & Hall/CRC - data

mining and knowledge discovery series, 2011, Boca Raton, FL.
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