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Abstract

In this thesis we present a monolithic coupling approach for the simulation of phenomena involving
interacting fluid and structure using different discretizations for the subproblems. For many applica-
tions in fluid dynamics, the Finite Volume method is the first choice in simulation science. Likewise,
for the simulation of structural mechanics the Finite Element method is one of the most, if not the
most, popular discretization method. However, despite the advantages of these discretizations in
their respective application domains, monolithic coupling schemes have so far been restricted to a
single discretization for both subproblems. We present a fluid structure coupling scheme based on a
mixed Finite Volume/Finite Element method that combines the benefits of these discretizations. An
important challenge in coupling fluid and structure is the transfer of forces and velocities at the fluid
structure interface in a stable and efficient way. In our approach this is achieved by means of a fully
implicit formulation, i.e., the transfer of forces and displacements is carried out in a common set
of equations for fluid and structure. We assemble the two different discretizations for the fluid and
structure subproblems as well as the coupling conditions for forces and displacements into a single
large algebraic system. Since we simulate real world problems, as a consequence of the complexity
of the considered geometries, we end up with algebraic systems with a large number of degrees of
freedom. This necessitates the use of parallel solution techniques.

Our work covers the design and implementation of the proposed heterogeneous monolithic cou-
pling approach as well as the efficient solution of the arising large nonlinear systems on distributed
memory supercomputers. We apply Newton’s method to linearize the fully implicit coupled nonlin-
ear fluid structure interaction problem. The resulting linear system is solved with a Krylov subspace
correction method. For the preconditioning of the iterative solver we propose the use of multi-
level methods. Specifically, we study a multigrid as well as a two-level restricted additive Schwarz
method. We illustrate the performance of our method on a benchmark example and compare the
afore mentioned different preconditioning strategies for the parallel solution of the monolithic cou-
pled system.
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1 Introduction

The numerical simulation of the interaction of fluids and structures is an important challenge in life-
science and engineering. The areas of application range from, e.g., blood flow [WRS+05, Hro07,
TYW+02, DHBPS03, KBB09, KNE+08, WSKH04, FOT+06, CLL06, PRK07], parachutes [TO01,
SBTP01, SBC+07], naval architectures [Oha01], aerospace [KS04] to hydraulic engines [SL04].
All of these applications have in common that a fluid interacts with the surface of a structure. In this
interaction the structure is usually deformed and this deformation leads to a changed fluid domain.
In this interplay of fluid and structure both subproblems interact dynamically. From a mathematical
point of view, this means, that neither the fluid nor the structure subproblem can be solved without
considering the other subproblem. Both subproblems are already difficult to solve, since each of
them can be nonlinear, depending on the employed model. The handling of the coupled problem
is even more challenging, because an additional global non-linear problem is created at the fluid
structure interface. The main challenges of fluid structure interaction problems are:

• Formulation of the subproblems (modeling)

• Coupling of the subproblems

• Discretization of the coupled problem

• Design of an efficient and robust solver for the coupled problem.

These main challenges also interact in the sense that a design decision in one part directly influences
the others. In the first step one has to choose models for the fluid and the structure subproblems.
This can be done separately for each field and typically results in a set of differential equations
for both subproblems. In the next step these equation have to be coupled. For fluid structure
interaction problems the coupling takes place at a common interface of fluid and structure. Here
two physically motivated coupling conditions can be derived: The continuity of velocities and the
balance of forces. In a typical fluid structure interaction problem the structure is deformed in the
course of time. The natural way to describe a structure in motion is a Lagrangian formulation,
i.e., the deformation of the material also deforms the computational domain. On the other side of
the fluid structure interface we face a different situation. For a fluid the Eulerian formulation is
the natural choice, i.e., the computational domain is kept fixed and the material points move. In
a coupled simulation the fluid domain is deformed by the structure displacements at the common
interface. At the interface the Lagrangian and the Eulerian formulation clash. Here usually one of
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2

the formulations is (in parts) reformulated to obtain a matching formulation at the interface. Often
an Arbitrary Lagrangian Eulerian formulation is used for a fluid in a moving domain. Therein the
fluid is reformulated and can be Eulerian in a sub-domain of the fluid domain and Lagrangian in
some others. Between the Eulerian and the Lagrangian parts it is a mixture. The motion of the fluid
domain can be formulated as a third problem in addition to the fluid and the structure subproblems.
Therefore the coupled fluid structure problem can be considered as a three field problem consisting
of:

• Fluid subproblem

• Structure subproblem

• Geometry subproblem.

The discretization of the subproblems and coupling conditions at the interface are typically ap-
proached in one of two ways. Either

• separate and usually different fluid and structure discretization methods for the subproblems
or

• the same discretization method for the subproblems

are used. From this point of view one often distinguishes analogously between two main coupling
concepts:

• Partitioned approaches

• Monolithic approaches.

In the partitioned coupled approach, the two subproblems are solved in a staggered fashion with an
unidirectional information transfer at the interface. In the each solution step the information is taken
as a boundary condition for the respective subproblem. However, partitioned approaches have seri-
ous drawbacks, as they usually result in non-matching meshes at the interface during the staggered
solution process and their convergence properties are unclear. On the other hand they profit from
their modularity, where the discretization or the solver for one subproblem can be replaced without
major changes to the other subproblem. The main advantage of partitioned scheme is that existing,
highly optimized, solver can be reused. In contrast, monolithic approaches handle the coupling
implicitly. Here, the governing equations of fluid and structure are discretized and solved simulta-
neously using a single nonlinear solution scheme. The main advantage of this solving strategy is
that monolithic coupled schemes are more robust.

In this work we present a novel coupling approach that combines the advantages of the Finite
Volume method for the discretization of the Navier Stokes equations with the benefits of a Finite
Element discretization for the structure problem on general body-fitted unstructured meshes. The
coupling of different discretization methods is appealing since we can use specially tailored methods
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for each subproblem. In fact, for many applications in fluid dynamics, the Finite Volume method is
the first choice and likewise, for the simulation of structural mechanics, the Finite Element method
is the most popular discretization method. The main contribution of the presented work is the de-
sign of a heterogeneous monolithic coupling scheme as well as the study of efficient and scalable
solution techniques for the arising large-scale nonlinear equations. We model the fluid by means of
the incompressible Navier Stokes equations in an Arbitrary Eulerian Lagrangian formulation, while
we use a pure Lagrangian formulation for the structure. This leads to an additional quantity to be
coupled, a domain velocity for the fluid domain, which we can handle implicitly or explicitly in the
inner of the fluid domain in our coupling scheme. For the discretization in time we use different
implicit time stepping schemes. We illustrate our approach along two applications. First, we present
a patient specific simulation based on geometries derived from clinical data. Second, we discuss an
application in the field of microelectromechanical sensor design. As a consequence of the complex-
ity of the considered geometries, we end up with algebraic systems with a large number of degrees
of freedom, which makes the use of parallel solvers mandatory. Here, a good choice for an efficient
preconditioning strategy is important. Our solver is based on the application of Newton’s method
to linearize the fully implicit coupled nonlinear fluid structure problem. The resulting linear system
is solved with a Krylov subspace correction method. We use different preconditioning strategies
for the Krylov method, namely a geometric multigrid method and a restricted two level additive
Schwarz method based on a hierarchy of unstructured meshes. We illustrate the performance of our
method on a benchmark example and compare different preconditioning strategies for the parallel
solution of the monolithic coupled system.
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2 Outline

In this thesis we present the monolithic coupling of a Finite Element method and a Finite Volume
method for fluid-structure interaction. The text is organized as follows:

• In Chapter three we describe the underlying subproblems. We start with an introduction to
different choices of the frame of reference. For the structure subproblem we introduce lin-
ear elasticity in a Lagrangian framework. For the fluid subproblem we introduce the Navier
Stokes equations in an Eulerian formulation. In preparation for the coupled description, the
Navier Stokes equations are then reformulated in an Arbitrary Lagrangian Eulerian formula-
tion.

• In Chapter four we present different coupling schemes for fluid structure interaction. Here,
we mainly focus on partitioned and monolithic coupled schemes.

• In Chapter five we discuss the coupling conditions for fluid structure interaction. We start
with the physically motivated coupling conditions for velocities and forces. Then we dis-
cuss the additional geometric coupling condition that is required because of the Arbitrary
Lagrangian Eulerian formulation of the fluid. Finally we write the coupled problem as a
coupled geometry, fluid, and structure problem.

• Chapter six is concerned with geometric conservation laws. The Arbitrary Lagrangian Eu-
lerian formulation for the fluid introduces an additional velocity field. This velocity is an
artificial fluid domain velocity, i.e, there is no direct physical interpretation for it. It needs
special attention since conservation laws for this velocity can be derived. The goal is to
achieve mass conservation for a fluid in a moving domain.

• In Chapter seven we present a weak formulation for fluid and structure. Here we start with
the structure subproblem. We use a Finite Element method for the structure subproblem. For
the fluid we use piecewise constant test functions, resulting in a Finite Volume formulation.
In this Chapter we also discuss the weak formulation of the force coupling.

• In Chapter eight we present the time discretization. In this thesis we use time stepping
schemes based on Runge Kutta methods.

• Chapter nine is concerned with the spatial discretization for structure, fluid and the coupling
conditions. The discretization of the structure is done using Finite Elements. For the fluid we
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use a Finite Volume method. In this Chapter we describe the construction of the dual mesh
for the Finite Volume method and the used stabilization. Finally we present the discretization
of the coupling conditions.

• In Chapter ten we describe two different strategies for the treatment of the mesh motion of the
interior of the fluid domain. In the first strategy, we solve the implicit coupled fluid structure
problem by using an auxiliary equation for the fluid domain motion. In the second strategy,
a geometric explicit method, we split the full implicit coupled fluid structure problem into
two subproblems. Here, we have to solve a second problem in order to compute a smooth
distribution for the fluid mesh.

• In Chapter eleven we present the Jacobian matrix of the coupled system and how the coupling
takes place in there.

• Chapter twelve is about solver and preconditioning. We start with an overview about different
iterative solver. We also present the used multigrid and additive Schwarz method.

• Chapter thirteen highlights two applications of our simulation code to real-world problems,
namely the simulation of a fluid metering device and a simulation of an aneurysm are pre-
sented. For the second application we also present the setup of the workflow from the han-
dling of medical data to the simulation of blood flow on a realistic geometry.

• In Chapter fourteen we present a benchmark example and the scaling behavior of the used
preconditioning strategies.



3 Problem description

The equations for fluid and structure are defined in different frameworks. The fluid equations are
usually written in an Eulerian formulation. In contrast to the fluid, the structure equations are usually
formulated from a Lagrangian perspective. In the interplay of fluid and structure, the structure
is deformed at the fluid structure interface, which leads to the fact that the fluid domain is also
deformed in the course of time. Therefore the Eulerian points at the interface and potentially in
the interior of the fluid domain move. A way to deal with this situation is to reformulate the fluid
in an Arbitrary Lagrangian Eulerian formulation. In this chapter we first formulate the structure
in a pure Lagrangian and the fluid in an Eulerian formulation. Then we write the fluid problem in
an Arbitrary Lagrangian Eulerian formulation for the coupled problem. For a more comprehensive
introduction to fluid and structure mechanics in the context of fluid structure interaction we refer to
[Dep04, Nob01, Qua09]

Let Ωt0 be a bounded open reference domain in R3 and its interior be filled with a continuous
substance. We define a smooth mapping

ϕ : Ωt0× (t0,T )→Ωt ⊂ Rd ,

which we call a motion.

3.1 Lagrangian framework

In the Lagrangian framework spatial points coincide with material points. The deformation of
the material can be formulated canonically with the change of the computational domain. This
framework can be seen as the natural choice for the description of deformations of a structure since
a deformation can easily be written as

d(X , t) = ϕ(X , t)−X

for a given X in the reference computation domain. For the Lagrangian framework we define a
family of mappings

L : Ωt0 →Ωt , ϕ(X , t) = Lt(X),

that keeps track of the moving domain in the course of time.

7



8 3.2 Eulerian framework

3.2 Eulerian framework

In the Eulerian framework spatial and material points x ∈Ωt do not coincide. Therefore this formu-
lation can be seen as the self-evident formulation for a fluid. With Gauss’ theorem, mass conserva-
tion laws can easily be described by fluxes over boundaries of (control) volumes. Since the spacial
points do not move we do not have to define a family of mappings for the Eulerian formulation
to keep track of the computational domain.In this section we will use superscripts to distinguish
between a function in a Lagrangian and Eulerian framework. Given a function f L in Lagrangian
framework it can be expressed in the Eulerian framework f E using

f L(X , t) = f E ◦ϕ(X , t)

We have already defined a deformation in the Lagrangian framework and it is easy to derive a
velocity, that is the change of displacement in time

v(X , t) =
∂ϕ(X , t)

∂ t
=

∂d(X , t)
∂ t

.

The time derivative
D
Dt

with respect to a moving coordinate system is called Lagrangian or material derivative. The material
derivative can be seen as a link between Eulerian and Lagrangian descriptions. It describes the time
rate of change of a scalar or a vector field of fluid parcels, or more general a material element, under
the impact of a time and space dependent velocity field. It can be derived by using the chain rule
for f E ◦ϕ

D f
Dt

=
∂ f
∂ t

+ v ·∇ f .

The Reynolds transport theorem gives a similar link between Eulerian and Lagrangian descrip-
tions for the computation of the material derivative of integrals. It can be seen as a higher dimen-
sional Leibniz integral rule. In the Reynolds transport theorem a time-dependent material volume
or (control) volume V (t) is used. The control volume may change in time and we denote the outer
normal vector of the boundary with n. The Reynolds transport theorem then reads

d
dt

∫
V (t)

f dV =

∫
V (t)

∂ f
∂ t

dV +

∫
∂V (t)

f (v ·n) dS

where ∂V (t) is the surface of V (t).

3.3 Conservation of mass

For the derivation of the principle of mass conservation we use the material volume V (t), which is
the amount of all material points which are in the volume V0 = V (t0) at time t0. We introduce a
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density ρ(x, t)> 0 and define the mass of a material volume

m(V ) :=
∫

V
ρ(x, t) dV.

In the following we simplify the notation by omitting (x, t). The assumption of mass conservation
states that mass is neither generated nor destroyed, i.e,

d
dt

m(V ) =
d
dt

∫
V

ρ dV = 0.

Applying the Reynolds transport theorem we get∫
V

d
dt

ρ dV +

∫
∂V

ρ(v ·n) dS = 0.

The assumption of an incompressible fluid states that, even for high pressure, the volume V (t) of
the fluid remains constant. Therefore the condition

d
dt

∫
V

ρ dV = 0

is reduced for constant ρ to

d
dt

∫
V

dV = 0.

3.4 Conservation of momentum

Conservation of momentum states that in a closed system the total momentum is constant. In
continuum mechanics we have to deal with body forces in V and surface forces on ∂V . A Body
forces is given by

FB(t) =
∫

V
ρ(x) f dV

here f (x, t) denotes a force density within the volume. The surface forces are described via the force
density σ acting on a surface element ∂V = ∂V (t)

FS(t) =
∫

∂V
nσ dS,

here n denotes the unit normal vector of the surface element. The stress tensor σ contains already
the properties of the material. In the respective section about fluid and structure we present the used
constitutive equations. Thus the total force equal

F(t) =
∫

V
ρ f dV +

∫
∂V

nσ dS =

∫
V

ρ f +∇ ·σ dV.
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The momentum, which is the product of the mass and velocity, is given by

M(t) =
∫

V
ρu dV.

Newton’s second law states that the change of momentum is directly proportional to the resultant
force applied to an object

d
dt

∫
V

ρu dV =

∫
V

ρ f +∇ ·σ dV.

We apply Reynolds transport and Gauss’ theorem for f = ρu component wise and get

d
dt

∫
V

ρui dV =

∫
V
(
∂ (ρui)

∂ t
+

(∂ρu jui)

∂x j
) dV.

Using this we can write the momentum equation under the assumption of a constant ρ as

ρ
∂

∂ t
u+ρu ·∇u = ρ f +∇ ·σ . (3.1)

3.5 Structure mechanics

For a given mapping ϕ we define a deformation gradient for each material point in Ωt0 as

F = ∇ϕ = I +∇ds.

Its determinant
J = detF

has to be is strictly positive. For the structure we use a Lagrangian framework and get

ρ
s ∂

∂ t
vs−∇ ·σ s

P = ρ
s f s.

For the structure we use vs to denote the velocity field. In the following we usually use for the
structure a superscript s while for the fluid we use f . The stress tensor σ s is written in the current
deformed configuration. However we want to formulate the stresses in the reference configuration,
therefore we introduce the first Piola-Kirchhoff stress tensor

P := det(∇ϕ)σ s
P(∇ϕ)−T .

Since the first Piola-Kirchhoff stress tensor is not symmetric, we moreover introduce the second
Piola-Kirchhoff stress tensor

σ
s := det(∇ϕ)(∇ϕ)−1P(∇ϕ)−T = F−1P.
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With this symmetric tensor a constitutive relation can be easily formulated. Under the assumption
of an isotropic linear elastic material the constitutive relation can be written as

σ
s = λ

s(tr(εs))I +2µ
s
ε

s,

where ε is the Green-Lagrange strain tensor and λ s and µs the Lamé constants. These constants
describe a certain material behavior. Often material properties are specified in terms of the Young
modulus Es and the Poisson number νs. The Young modulus and the Poisson number can be written
in terms of the Lamé constants and vice versa

Es =
µs(2νs +3λ s)

µs +νs ,

ν
s =

λ s

2(µs +λ s)
,

µ
s =

Es

2(1+µs)
,

λ
s =

µsEs

(1+νs)(1−2νs)
.

The Green-Lagrange strain tensor εs is defined as

ε
s :=

1
2
(C− I) =

1
2
(FT F− I),

where C is the right Cauchy-Green-Tensor. The Green-Lagrange strain tensor can be written as

ε
s =

1
2
(∇ds +(∇ds)T +(∇ds)T

∇ds).

However, for small displacements d we can ignore the higher order terms and get the following
strain-displacement relation

ε
s =

1
2
(∇ds +(∇ds)T )

which is called the linearized strain tensor. So finally we can write the structure problem as

∂ 2

∂ t2 ds− 1
ρs

∇ ·σ s = f s,

with additional boundary conditions. Here we will focus on two different types, namely Dirichlet
and Neumann conditions. The first describe displacements on a specific part of the boundary ΓD

t

ds = gD on Γ
D
t .

The Neumann boundary conditions are surface stresses applied on a part of the boundary ΓN
t

σ
s(ds) ·n = gN on Γ

N
t .
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3.6 Fluid mechanics

The fluid subproblem can be described with different models depending on the application. Char-
acteristic features are, e.g., compressibility and viscosity. Air for example has a lower viscosity
than blood and liquid fluids are often modeled as incompressible while air is usually assumed to
be compressible. For modeling air the Euler equations are often chosen because the viscous prop-
erties of this fluid can usually be neglected. For blood or water, where viscous effects can not be
neglected, the Navier Stokes equations are a more appropriate choice than the Euler equation. For
the derivation of the fluid equations we will assume a fixed domain in time and we will derive the
fluid in the Eulerian framework. In a second step we will formulate the Navier Stokes equations in
an Arbitrary Lagrangian Eulerian formulation.

The main difference in the material behavior for the two subproblems is given by the different
stress tensors. Therefore we have to specify the stress tensors in the conservation of momentum
equation also for the fluid. This tensor models the frictional forces inside the fluid: For a Newtonian
fluid, σ f is given in a linear model by

σ
f (u f , p f ) =−p f I +2µ

f
ε

f (u f ),

where p f = p f (x, t) is the pressure. The second part µ f ε f (u) is the viscous part of the stress tensor
and µ f is the dynamic viscosity. Sometimes we use ν f = µ f

ρ f the kinematic viscosity and assume
without loss of generality ρ f = 1. We use the following strain rate tensor

ε
f (u f ) =

1
2
(∇u f +(∇u f )T ). (3.2)

If we insert equation (3.2) in equation (3.1) we get the Navier Stokes equations. We have used
the Eulerian frame to write this equation. For a time independent domain Ω we can write this as a
system with unknowns u f and p f [DR06, Gal94, FMRT08]

∂

∂ t
u f +u f ∇u f − 1

ρ f ∇ ·σ f = f f .

In addition, we need to prescribe an initial state for the fluid, i.e. a given fluid velocity

u f
0(x).

Finally boundary conditions have to be prescribed. These can be, e.g., inflow, outflow, stress and
wall conditions. For the incompressible Navier Stokes equations the density stays constant for all
pressures and mass conservation is given by

d
dt

∫
V

dV = 0.

The incompressibility condition therefore reads

∇ ·u f = 0.
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Finally we get the incompressible Navier Stokes equations on a fixed domain

∂

∂ t
u f +u f

∇u f − 1
ρ f ∇ ·σ f = f f

∇ ·u f = 0.

3.7 Arbitrary Lagrangian Eulerian formulation

The structure is usually formulated in a Lagrangian way, while for the fluid an Eulerian formulation
is used. In this section we will derive the concept of the Arbitrary Lagrangian Eulerian formulation.
We are going to couple an elastic body with a fluid, which means in our case that we have to couple
an Eulerian formulation with a Lagrangian formulation. A very common approach to couple the
formulations is to reformulate the fluid in an Arbitrary Lagrangian Eulerian formulation.

Figure 3.1. Fluid structure interaction problem. The structure remains Lagrangian, while the fluid
is reformulated in an Arbitrary Lagrangian Eulerian formulation. We denote the common interface
between fluid and structure by ΓI

t .

We will enforce that the fluid domain follows the deformation of the structure at the fluid struc-
ture interface. In this case the structure can remain in a Lagrangian formulation, while in the inner
of the fluid domain we have to reformulate the configuration setting of the fluid. For a sketch of
the situation we refer to Figure 3.1. On a non moving part of the fluid domain the fluid remains
in the Eulerian formulation and on the moving part it is both, in the interior, Arbitrary Lagrangian
Eulerian and at the interface fully Lagrangian. The aim of this section is to write the Navier Stokes
equations in an Arbitrary Lagrangian Eulerian formulation. The details on the following description
can be found in [Nob01, Cro11, Pen09]. We introduce a family of mappings (At), and At maps a
point Y from the reference configuration Ωt0 to a point x in the moved domain Ωt

At : Ωt0 →Ωt , x(Y, t) = At(Y ), Ωt × (t0,T ).

The notation Ωt×(t0,T ) is actually an abuse of notation since the space-time computational domain
has a no tensor structure if the spatial domain is time dependent. For the sake of clarity we however
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use the notation Ωt × (t0,T ) instead of
⋃

t∈(t0,T ) Ωt ×{t}. We want to remark that we have chosen
without loss of generality the domain Ωt0 with t0 = 0 as the reference configuration. The mapping is
assumed to be a continuous bijection of the closure of Ω0 onto the closure of Ωt with a continuous
inverse. We also require that the mapping t→At(Y ) is differentiable almost everywhere in (0,T ).
We now take a function in the Eulerian frame

f : Ωt × (0,T )→ R.

We can use the Arbitrary Lagrangian Eulerian map to define the function f in the Arbitrary La-
grangian Eulerian frame

fA : Ωt0× (0,T )→ R fA(Y, t) = f (At(Y ), t).

We introduce the Arbitrary Lagrangian Eulerian derivatives

∂ f
∂ t

(x, t) =
∂ fA
∂ t

(A−1
t (x), t) =

∂ f
∂ t

∣∣∣∣
x
+

∂x
∂ t

∣∣∣∣
Y
·∇x f (x, t),

and we call

w(x, t) =
∂x
∂ t

∣∣∣∣
Y=A−1

t (x)

the fluid domain velocity.
For special choices of At we receive the Eulerian and Lagrangian formulation. For A= I, which

is equivalent to w = 0, we get a pure Eulerian formulation. For A = L, which is w = u (the domain
velocity is the same as the material velocity), we get a Lagrangian formulation. Usually all of these
three cases occur in an fluid structure interaction simulation; for an illustration of this we refer to
Figure 3.2.

Figure 3.2. Fluid field in a moving domain with a domain velocity w. For w = 0 the fluid remains
in an Eulerian formulation, for w = u the fluid is in a Lagrangian formulation and for w 6= u is is in
an Arbitrary Lagrangian Eulerian formulation.
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3.8 Navier Stokes equations in an Arbitrary Lagrangian Eulerian for-
mulation

When dealing with fluid-structure interaction problems a common choice is an Arbitrary Lagrangian
Eulerian formulation for the fluid [KAS08, LY04, BW00, Ngu10] and a purely Lagrangian frame-
work for the structure. Usually, this is achieved by some auxiliary coordinate transformation for the
fluid domain. Within the fluid domain, the Arbitrary Lagrangian Eulerian Navier Stokes equations
are solved on the deforming fluid domain. At the fluid structure interface the motion of the fluid
domain is driven by the displacements of the structure. For the discretization of the Arbitrary La-
grangian Eulerian formulation of the Navier Stokes equations we have to consider some geometric
conservation laws for the deforming fluid domain; for details we refer to Chapter 6.

However a new equation for the fluid domain motion is required, and its dependence on the
solution of the fluid-structure interaction problem introduces an additional nonlinearity with respect
to the motion of the fluid domain. Using the Arbitrary Lagrangian Eulerian derivative we can write
the incompressible Navier Stokes equations on moving domains as

∂

∂ t
u f +(u f −w f ) ·∇u f − 1

ρ f
∇ ·σ f = f f in Ωt × (0,T ), (3.3)

∇ ·u f = 0 in Ωt × (0,T ). (3.4)

Here we already assume some properties for the fluid domain velocity w f . For detail we refer to
Chapter 6.
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4 Coupling schemes

In the last two decades a large number of numerical methods have been developed for the simulation
of fluid structure interaction. In this chapter we sketch an overview of these methods, without
any claim of completeness. The main difficulty for fluid-structure interaction problems from the
numerical point of view is that:

• each of the subproblems is possibly nonlinear,

• the coupling conditions at the interface introduce additional nonlinearities.

Depending of the treatment of the coupling conditions one may distinguish between different meth-
ods, e.g:

• monolithic and partitioned,

• strong and weak coupled,

• implicit, semi-implicit and explicit,

• using conforming and non-conforming meshes.

• . . .

Since there is no agreement in a systematical categorization for fluid structure interaction coupling
schemes, we give an overview in which we will distinguish between two general concepts:

• monolithic coupled schemes,

• partitioned coupled schemes.

In the partitioned approach [BNV09, DHA+10, DBHV10, BvZ03, BQQ08] each field is separately
defined, discretized and solved. The coupling is carried out by transmission and synchronization
of coupled state variables at the interface. Usually the coupled system is solved at every time step
using an iterative method for solving the nonlinear geometry, structure and fluid problems. Highly
specialized codes and solvers for each problem can be used. However, partitioned approaches have
serious drawbacks, like the added-mass effect [För07, CGN05, BQQ08].

The alleged superiority of the partitioned approach is generally attributed to the fact that smaller
and better conditioned sub-systems are solved instead of one large problem. Partitioned methods

17
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Figure 4.1. Partitioned approach.

Figure 4.2. Weak coupled partitioned approach.

can be strong or weak coupled. In a weak coupled method the transfer of the coupling quantities is
usually just done once per time step. In a strong coupled method the transfer is done in an iterative
scheme until some convergence criteria is fulfilled, the two schemes can be found in Figure 4.2 and
Figure 4.3.

We distinguish between two different approaches; Weak and strong coupled. In a weak coupled
partitioned approach the fluid subproblem is solved, then the structure problem is solved using the
forces at the fluid structure interface computed with the fluid solver as boundary conditions. The
structure solver computes interface velocities that are taken as boundary conditions for the fluid
solver in the next time step. These weak coupled schemes tend to be unstable, since there is no con-
vergence control for exchanged quantities. This scheme is shown in Figure 4.2. In a strong coupled
partitioned approach the exchange of coupling variables is done within an iterative method. In one
time step velocities and forces are exchanged several times until a convergence criterium is fulfilled.
Several relaxation methods have been developed for this kind of coupling, that is shown in Figure
4.3. In contrast, monolithic approaches [HWD04, KTZ09, WKHD05, MvBdB05, RRIOn10] treat
both domains simultaneously, i.e. these solution methods lead to a single set of algebraic differential
equations. This approach seems to be advantageous in many situations, since the interface condi-
tions become implicit and there are less restrictions on feasible time steps. However, the monolithic

Figure 4.3. Strong coupled partitioned approach.
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Figure 4.4. Monolithic approach.

approach leads to an ill conditioned Jacobian matrix. Therefore, for solving the monolithic system
obtained after discretization and linearization, one has to set up a good preconditioning strategy.
Monolithic algorithms are also appealing because the transmission conditions are satisfied exactly
by construction and convergence results can be proven. But they are also often dismissed because
it is believed that they are too expensive in terms of memory and computing time. Since nowa-
days increased computing performance is achieved by adding more processors, the solution to this
problem is the development of parallel and scalable solution methods for fluid structure interaction
problems to which the presented work contributes.
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5 Coupling conditions

The coupling takes place at the interface between fluid and structure. Beside the physically mo-
tivated coupling conditions in forces and velocities, we have to formulate a geometric coupling
condition, which arises from the Arbitrary Lagrangian Eulerian formulation. In this chapter we
will first treat the physically motivated coupling conditions and then the so-called geometric cou-
pling condition. The problem can be split into three problems, the fluid subproblem, the structure
subproblem and a geometry subproblem.

5.1 Physical coupling conditions

We consider a structure surrounded by a fluid in a bounded volume. For a viscous fluid we can
assume a no-slip condition for the common interface of the fluid and structure. A no-slip boundary
condition states that at the boundary or - in our case - at the fluid structure interface the fluid has
zero velocity relative to the boundary. In the model concept a particle of the fluid uttermost close
to the boundary surface does not move due to molecular attraction. For a fixed boundary, i.e., the
velocity for a fluid has to be zero, while for a moving boundary the fluid velocity and velocity of the
boundary has to match. This leads to the following continuity of velocities (normal and tangential)
condition

u f =
∂

∂ t
ds on Γ

I
t × (0,T ).

This condition describes the impact from the structure to the fluid. On the other hand the impact of
the fluid to the structure is given by the force on the surface at the interface. The force acting on the
structure is caused by the impulse of the stream of the fluid. For a viscous fluid this force can be
expressed by the normal components of the stress tensor

σ
f ·n f .

The equilibrium condition of the balance of forces is given by

σ
s ·ns +σ

f ·n f = 0 on Γ
I
t × (0,T ).

We conclude that the physically motivated coupling conditions for a general fluid structure problem
are given by means of two transmission conditions, a kinematic and a dynamic one
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Figure 5.1. Lagrangian and Arbitrary Lagrangian Eulerian description.

• the continuity of velocities,

• and the balance of forces.

5.2 Geometric coupling condition

Besides the kinematic and dynamic coupling conditions the continuity of displacements must also
hold on the common interface. This coupling condition can be seen as an artificial coupling condi-
tion arising for the Arbitrary Lagrangian Eulerian formulation of the fluid.

The map Lt =L(·, t), representing the deformation of the structure, and At =A(·, t), describing
the evolution of the fluid domain must coincide on the interface ΓI

t ,

Lt = At on Γ
I
t

for all t. Apart from satisfying the interface constraints, the fluid domain mapping At can other-
wise be chosen arbitrarily. Since the evolution in time of the structure domain is described by a
deformation it is also useful to describe the evolution of the fluid domain in terms of a displacement
field

d f (x0, t) = A(x0, t)− x0,

for any x0 ∈Ω
f
t0 . Therefore, the geometric coupling condition is given by

d f = ds on Γ
I
t ,

since ds(x0, t) = Lt(x0, t)− x0 for any x0 ∈Ωs
t0 . It gives an adhesion condition for the two domains

at the interface. For a viscous flow the adhesion condition is already incorporated in the dynamic
coupling condition for velocities. We want to point out again that the displacements of Ω f at the
interface are determined by the fluid structure interface, while the displacements of the mesh inside
of Ω f can be chosen arbitrarily. A common choice for the extension d f =Ext(ds,Γ

I
t ), is an harmonic

one e.g.

−∆ d f = 0 in Ω
f

d f = ds on Γ
I
t
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We give an overview of different possible extensions and the smoothing schemes that are used in
this thesis in Chapter 10.

5.3 Coupled fluid structure problem

The coupled problem can be written as a set of three subproblems with coupling conditions. All of
the subproblems themselves may be nonlinear depending on the constitutive equations. The strong
form of the fluid-structure problem in the actual domain reads as follows:

1. Geometry subproblem: Find the fluid domain displacement such that

xt(x0) = x0 +d f (x0, t),

w f =
∂

∂ t
d f ,

Ω
f
t = At(Ω

f
0).

2. Fluid subproblem: Find velocities and pressure such that

∂

∂ t
u f +(u f −w f ) ·∇u f − 1

ρ f ∇ ·σ f = f f in Ω
f
t × (0,T ),

∇ ·u f = 0 in Ω
f
t × (0,T ). (5.1)

3. Structure subproblem: Find displacement such that

∂ 2

∂ t2 ds− 1
ρs ∇ ·σ s = f s in Ω

s
t .× (0,T ), (5.2)

4. Coupling conditions:

u f =
∂

∂ t
ds on Γ

I
t × (0,T ),

σ
s ·ns +σ

f ·n f = 0 on Γ
I
t × (0,T ),

d f = ds on Γ
I
t × (0,T ),

together with boundary conditions on the non-interaction boundaries of the subproblems.

Additionally to the possible nonlinearities of the subproblems, the coupled problem introduces dif-
ferent kinds of nonlinearities, e.g.:

1. the dependence of fluid displacements to the structure displacements,

2. the nonlinearity of the domain velocity of the fluid field formulation w f ·∇u f

3. the nonlinearity of structure displacements in dependence of the fluid velocities and pressure
at the interface,
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4. the dependence of the fluid velocities and the structure velocities at the common interface.

In a standard strong coupled monolithic approach all non-linearities are treated implicitly. This,
often called fully implicit [Bar09, DP07, CDFQ11, KGF+10, GV03, LTM01, BCHZ08, HHB08,
Hro07, TSS06] approach, leads to a robust scheme in terms of time-step size but it is also the
most expensive one. However some of the nonlinearities can be handled explicitly. In [BQQ08] a
Geometry-Convective Explicit scheme is suggested. We also use a similar strategy for an explicit
treatment for the inner fluid domain displacements. The used method is described in Chapter 10.



6 Geometric Conservation Laws

The Arbitrary Lagrangian Eulerian formulation introduces a domain velocity term in the convective
term of the Navier Stokes equations. The order of the time discretization of the moving computa-
tional domain of the fluid can only be preserved if one considers additional conservation laws to
compute the additional term. The Geometric Conservation Law was first introduced by Thomas
and Lombard [TL79]. The main idea is that the way the fluid domain velocity for a moving mesh
is computed should reproduce a constant fluid velocity solution or, less strictly, at least a resting
fluid on a moving mesh. The meaning of the Geometric Conservation Law, that is also sometimes
referred to as discrete Geometric Conservation Law, is still topic of ongoing research. It has been
show by Guillard and Farhat [GF00] and Farhat et al. [FGG01] that a moving domain can lead
to a less stable and accurate numerical scheme compared to the respective fixed frame approach.
Formaggia and Nobile [FN04] and Boffi et al. [BG04] have proven several results on the relation of
the stability and the Geometric Conservation Law.

The conservation of mass condition for an incompressible fluid in an Arbitrary Lagrangian
Eulerian formulation is given by

d
dt

∫
V

dV +

∫
∂V
(u−w) ·n dS = 0,

for an arbitrary volume V of the fluid. The volume conservation law states that the domain velocity
w has to fulfill an additional conservation law. This conservation law can be directly derived using
the conservation of mass in Arbitrary Lagrangian Eulerian formulation with a zero fluid velocity

d
dt

∫
V

dV −
∫

∂V
w ·n dS = 0.

A second conservation law, the so called surface conservation law, can be derived [ZRTC93] using
a constant fluid field in a an arbitrary direction a∫

∂V
a ·n dS = 0.

For details we refer to [ZRTC93, Nob01, FP99], but we want to remark that this second conservation
law gives some restrictions for the computation of the normals of the moving surfaces of the volume
V surfaces. A violation of the geometric conservation laws may lead to an error in the mass balance
of the fluid computation. A simple example shown in Figure 6.1. Here one can see a sub-control
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Figure 6.1. Arbitrary volume, where one surface is moved in normal direction. The yellow part on
the right indicates the volume that was added, due to the moving surface.

Figure 6.2. Volume with a moving surface. Using the old configuration to compute the swept volume
would lead to an divergence error (green).

volume where one surface is swept equally in normal direction of the surface. One can imagine
more advanced examples, where the mesh nodes of a surface are moved in arbitrary directions. If
one simply uses the nodal grid velocities of the fluid domain to calculate the mass flux over the
volume surface, conservation of mass is not necessarily ensured [FP99].

The use of the surface and the normal of the surface in the start configuration to compute∫
∂V

w ·n dS

result in a divergence error, that is illustrated by the green volume in Figure 6.2. In the discrete
setting we can achieve mass conservation, if the method to compute∫

∂V
w ·n dS

fulfills a discrete version of the Geometric Conservation Laws. Among several different other strate-
gies the computation of averaged quantities can resolve this problems [FG04, GF00]. The averaged
configurations have to be adjusted to the used time discretization. For an incompressible fluid the
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Geometric Conservation Law has an additional consequence, namely the preservation of the original
mass conservation condition. To see this we apply the volume conservation law

d
dt

∫
V

dV −
∫

∂V
w ·n dS = 0

in the mass conservation and here the first terms of the mass conservation in ALE form

d
dt

∫
V

dV −
∫

∂V
w ·n dS+

∫
∂V

u ·n dS = 0

cancel each other and the usual mass conservation equation remains∫
∂V

u ·n dS = 0.
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7 Variational formulation

In the next chapters we use triangulations build out of tetrahedron or hexahedron. An admissible tri-
angulation fulfills the following properties: We use K tetrahedron or hexahedron with the properties
that

• Ω =
⋃K

k=1 Ωk

• Ωi∩Ω j = /0 for i 6= j

• Ωi∩Ω j = {a common node, edge or side of Ti and Tj} for i 6= j.

In the following we introduce the weak form for both subproblems, and we write the coupled prob-
lem in variational formulation.

7.1 Structure subproblem

We multiply equation (5.2) by vs ∈ V s = {vs ∈ H1(Ω)}. For sake of simplicity we ignore for
now any modifications for Dirichlet values. We use the standard definitions for Hilbert, Sobolev
and Lesbesgue spaces, for details we refer to [Bra07]. After integration by parts together with
appropriate boundary conditions and splitting up the right hand side we we obtain the following
variational problem: Find displacements ds such that,

∫
Ωs

t

ρ
s ∂ 2

∂ t2 ds · vsdV +

∫
Ωs

t

σ
s : ∇vsdV =

∫
Ωs

t

ρ
s f s · vsdV +

∫
∂Ωs

t

ρ
sts · vsdS. (7.1)

7.2 Fluid subproblem

For the weak formulation of the fluid we use test and ansatz spaces on the current deformed do-
main. Therefore both are driven in time by the ALE mapping At . We start again with multiplying
equations (5.1) by v f ∈V f = {v f = v̂◦A−1

t |v̂ ∈H1(Ω f
0)}. As for the structure subproblem we omit

any modifications for Dirichlet boundaries. After integration by parts we get
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∂

∂ t

∫
Ω

f
t

u f · v f dV +

∫
∂Ω

f
t

{−ν
f (∇u f +(∇u f )T )n+(u f −w f )(u f )T n+ p f n} · v f dS

−
∫

Ω
f
t

−ν
f ((∇u f )+(∇u f )T )+(u f −w f )(u f )T + p f ·∇v f dV −

∫
Ω

f
t

f f · v f dV = 0 (7.2)

and for the continuity equation∫
∂Ω

f
t

u f ·n · v f dS−
∫

Ω
f
t

(u f )T ·∇v f dV = 0. (7.3)

For different choices of the test function space we obtain either a Finite Element discretization
for the fluid or a Finite Volume discretization. For a H1 continuous test function with compact
support and v(x) = 0 for all x∈ ∂Ω

f
t the boundary integral terms vanish and we get a Finite Element

method, where we have to find a solution for u, p such that.

∂

∂ t

∫
Ω

f
t

u f · v f dV −
∫

Ω
f
t

−ν
f (∇u f +(∇u f )T )+(u f −w f )(u f )T + p f ·∇v f dV −

∫
Ω

f
t

f f · v f dV = 0

and

−
∫

Ω
f
t

(u f )T ·∇v f dV = 0.

In contrast, one can see the Finite Volume method as a Petrov-Galerkin Finite Element method
with constant test functions V f := {v f = v̂◦A−1

t |v̂∈ L2(Ω f
t )|v̂|Ω ∈P0(Ω

f
t )} [Bey98, Hau10]. With-

out loss of generality we chose P0 = {1}.
For this choice equation (7.2) simplifies as follows

∑
k

∂

∂ t

∫
Ω

f
k

u f · v f dV +
∑

k

∫
∂Ω

f
k

−ν
f (∇u f +(∇u f )T )n+(u f −w f )(u f )T n+ p f n dS

−
∫

Ω
f
k

f f dV = 0 (7.4)

and for equation (7.3) ∑
k

∫
∂Ω f

u f ·n dS = 0 (7.5)

and therefore for every k holds

∂

∂ t

∫
Ω

f
k

u f dV +

∫
∂Ω

f
k

−ν
f (∇u f +(∇u f )T )n+(u f −w f )(u f )T n+ p f n dS−

∫
Ω

f
k

f f dV = 0

∫
∂Ωk

u f ·n dS = 0.
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7.3 Variational formulation of the coupled FSI Problem

In the following we will give a variational formulation for the coupled FSI problem. In particular we
will apply the continuity of the stress coupling condition in the variational formulation to enforce a
strong coupling for this condition. We have already introduced the weak structure subproblem∫

Ωs
t

ρ
s ∂ 2

∂ t2 ds · vsdV +

∫
Ωs

t

σ
s : ∇vsdV =

∫
Ωs

t

ρ
s f s · vsdV +

∫
∂Ωs

t

ρ
sts · vsdS,

as well as the weak fluid subproblem

∂

∂ t

∫
Ω

f
k

u f dV +

∫
∂Ω

f
k

−ν
f (∇u f +(∇u f )T )n+(u f −w f )(u f )T n+ p f n dS−

∫
Ω

f
k

f f dV = 0

∫
∂Ωk

u f ·n dS = 0.

Formally we will use the continuity of the stress coupling condition as a Neumann boundary
condition for the structure and we apply the kinematic coupling condition as a Dirichlet boundary
condition for the fluid as done in [Bar09]. The concept is motivated by the fact that the fluid acts
as a force on the structure while the structure provides the deformed configuration of the fluid
boundaries. However we want to stress that these conditions are not boundary conditions, but
coupling conditions at the interface.

The sum of the two terms ν f (∇u f +(∇u f )T )n and p f n at the fluid structure interface has the
physical interpretation of a force acting on the structure, i.e.,∫

ΓI
t

ν
f (∇u f +(∇u f )T )n− p f n dS =

∫
ΓI

t

t f dS.

In a partitioned coupling scheme it is possible to compute the fluid interface load as a residual
of the fluid variational formulation. In the context of our monolithic approach we directly assemble
a force from the fluid in the structure equation. The strong coupling of the force may lead to an
unstable numerical coupling [FLLT98, LTM01] depending on the used discretizations.

A numerically stable coupling can be achieved choosing matching test and shape functions at
the fluid structure interface [Nob01, Cro11, Ast10] We replace

∫
ΓI

t
t · vsdS in the equation for the

structure problem and use the fact that the forces acting on the fluid structure interface cancel since∫
ΓI

t
tsdS =

∫
ΓI

t
t f dS. We then obtain the following

∫
Ωs

ρ
s ∂ 2

∂ t2 ds · vsdV +

∫
Ωs

σ
s : ∇vsdV =

∫
Ωs

ρ
s f · vsdV +

∫
∂Ωs\ΓI

ρ
sts · vsdS+

∫
ΓI

t

σ
f n f · vsdS. (7.6)

Since we use different discretizations for fluid and structure, we want to draw attention to the
fact that in equation (7.6) the structure test function have to be used in the last addend. The force
coming from the fluid acting on the structure can then be applied by using σ f (u f , p f ) = −p f I +
2ν f ε f (u f ), which in three dimensions is given by
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σ
f (u f , p f ) =

−p f 0 0
0 −p f 0
0 0 −p f

+ν
f


2 ∂u f

1
∂x

∂u f
2

∂x +
∂u f

1
∂y

∂u f
3

∂x +
∂u f

1
∂ z

∂u f
1

∂y +
∂u f

2
∂x 2 ∂u f

2
∂y

∂u f
3

∂y +
∂u f

2
∂ z

∂u f
1

∂ z +
∂u f

3
∂x

∂u f
2

∂ z +
∂u f

3
∂y 2 ∂u f

3
∂ z

 .

The velocity coupling is mainly driven by the assumption of a no-slip condition. In the case of
a stationary interface this condition reduces to the standard no-slip condition. In case of a moving
interface the condition is given the velocities of fluid and structure have to match at the interface

u f =
∂

∂ t
ds.

This coupling condition is enforced node by node as a Dirichlet like condition in the fluid. Again,
however we remark that since this is an interface condition it depends on the respective velocity
variable of the structure. We have used different frameworks for fluid and structure and as a conse-
quence we have to deal with an additional coupling condition, that is a no penetration condition at
the interface for a possible auxiliary problem

d f = ds.

This coupling condition is also enforced node by node as a Dirichlet like condition for the auxil-
iary fluid domain problem. As for the velocity coupling, this interface condition depends on the
respective deformation variable of the structure.



8 Time discretization

In Chapter 7 we have introduced the weak formulation of the coupled fluid structure interaction
problem. From a mathematical point of view, this problem is a set of algebraic differential equations
for an unknown u. In its general form we can write this problem as

∂u
∂ t

+N(u) = f on Ωt × (0,T )

A(u) = 0.

N is a non-linear operator and u a vector. We use reduction of order for the structure equation,
therefore we have two first order differential equations for the structure. In the following we ignore
the term A(u) = 0, for simplicity of notation, since this constrained can be easily incorporated for
an implicit time discretization. In this chapter we will introduce different time integration schemes
that have been implemented for the coupled fluid structure interaction problem. Furthermore we
will discuss restrictions to some of these time stepping schemes for both, in a moving and a fixed
framework.

In computational fluid dynamics and structure simulations many different time schemes are
used, from one-step methods to multistep methods. The first decision for a time discretization
scheme is the choice of an explicit or implicit method. An explicit method has the benefit that
it is less expensive per time step than an implicit method, where a system of equation has to be
solved. For fluid problems, one can show that the maximum stable time step is bounded by a
Courant-Friedrichs-Lewy (CFL) Condition. For the incompressible Navier Stokes equations the
CFL condition in the one dimensional case reads as the following

uτ

h
≤ 1

where h denotes the mesh size and τ the time step size. In an implicit and A-stable method the time
step size is not bounded by the CFL condition. However it is well-know that also an implicit scheme
can be restricted in the time-step size. The Crank-Nicolson Scheme for example, an implicit second
order scheme, is restricted in the time-step size on a fixed domain [HR90, For73]

τ ≤ ch2/3

with a c constant c. For higher order schemes on moving domains instabilities due to the Arbitrary
Lagrangian Eulerian formulation have been observed [FGG01]. In Wick [Wic13] one can find
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a result on the stability for the incompressible Navier Stokes equations in Arbitrary Lagrangian
Eulerian formulation using the Crank-Nicolson scheme.

In the following we give a short introduction to the numerics of ordinary differential equations,
with an emphasis on Runge Kutta methods. An ordinary differential equation for an initial value
problem is given by

y′(t) = f (y, t)

with some initial values y(0) = y0. Let τ > 0 be the time step size and let ti = t0 + iτ be the i-th
time step. For the sake of simplicity we use equidistant time stepping, but of course adaptive time
stepping is also possible. Starting with

y(tn+1) = y(tn)+
∫ tn+1

tn
y′(t)dt

we use a quadrature rules with nodes c1, ...,c2 and weights b1, ...,bs

y(tn+1) = y(tn)+ τ

s∑
i=1

biy′(tn + ciτ).

Inserting the ordinary differential equation y′(t) = f (y, t) we get

yn+1 = yn + τ

s∑
i=1

bi f (yn,i, tn,i)

Here we set tn,i = tn + ciτ and yn,i = y(tn,i). For each step in the Runge Kutta scheme one has to
compute

yn,i = yn +

∫ tn,i

tn
y′(t)dt

using quadrature rules with nodes c1, ...,c2 and weights ai j

yn +

∫ tn,i

tn
y′(t)dt = yn + τ

s∑
j=1

ai j f (yn, j, tn, j)

Now we can write the Runge Kutta method as

yn+1 = yn + τ

s∑
i=1

bi f (yn,i, tn,i),

yn,i = yn + τ

s∑
j=1

ai j f (yn, j, tn, j).
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The coefficient for Runge Kutta method can be written in a Butcher array

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

For example for s = 1 we get the backward Euler method

1 1
1

or written as an equation:

yn+1− yn = τ f (yn+1, tn+1).

For s = 2 we get the Crank-Nicolson method with the following choice for the coefficients

0 0 0
1 1

2
1
2

1
2

1
2

or written as an equation

yn+1− yn =
τ

2
( f (yn, tn)+ f (yn+1, tn+1)).

For a different choice of coefficients we can get another second order scheme, which is a so called
DIRK (Diagonal Implicit Runge Kutta scheme).

α α 0
1 1−α α

1−α α

with α = 1− 1
2

√
2. This scheme is computed in two separate sub-time steps. In this thesis we have

implemented the implicit coupled fluid structure problem for the three presented time discretization
schemes. Special care is need for the discretization of the fluid domain velocity. For details we refer
to Chapter 6.
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9 Spatial discretization

As mentioned in the last chapter, we deal with a non-linear partial differential equation of the form

∂u
∂ t

+N(u) = f on Ωt × (0,T ).

In this chapter we discretize the non-linear operator N(u). The most popular methods are the Fi-
nite Difference, the Finite Element and the Finite Volume method. They all have in common that
the computational domain is subdivided by a grid. The Finite Difference method is the oldest dis-
cretization method of those mentioned above. Here usually the space is equally decomposed and
the operator N(u) is approximated with finite differences. The solution vector is usually collocated
at the grid nodes. For complex geometries however this approach is not very suitable, since for
unstructured or non-uniform grids assembling the finite difference operator is rather complicated.
However, when a structured grid can be employed, high order Finite Difference methods are still
often used. Finite Element and Finite Volume methods are often applied in combination with un-
structured grids. For Finite Elements an extensive mathematical theory was developed during the
second half of the last century. The Finite Elements method, just as the Finite Volume method, is
based on a weak or variational formulation. As already discussed in Chapter 7 the operator is multi-
plied with a test function. After integration by parts and using Greens formula the special properties
of the test functions are used. For the Finite Element formulation we get volume terms, for the Fi-
nite Volume discretization we get boundary terms for the operator N(u). These boundary terms are
usually approximated by the computation of fluxes over control volumes. Since the Finite Volume
method can be also seen as a Petrov-Galerkin Finite Element method it shares many of the features
of Galerkin Finite Element methods [Ode91]. One of the most considerable advantages of the Fi-
nite Volume method compared to the Finite Element method is the (local) conservation property of
the numerical fluxes, which is, that the numerical flux is conserved between neighboring control
volumes [Bey98]. Therefore this method is used in many fields where conservation of physical
quantities is needed, such as heat and mass transfer as well as fluid mechanics. Standard Galerkin
methods usually do not have a local conservation property [Hir07]. For convection dominated prob-
lems with steep gradients Finite Elements and Finite Volumes tend to produce numerical solutions
with oscillations [Joh09, QV08, RST08]. So-called upwind stabilization methods for convection
dominated problems have been developed [Joh09, RST08, GR05] to avoid these oscillations. Many
of them can be used for both Finite Element an Finite Volume methods. However, for Finite Vol-
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Figure 9.1. Finite Element mesh (left) and Finite Volume mesh (right) with the constructed dual
mesh on the right hand side.

umes schemes specially tailored schemes have been also developed [LDV96] using e.g artificial
diffusion and a variation of standard upwind methods. For both the Finite Element and the Finite
Volume method the discretization of the Navier Stokes equations result in a non symmetric stiffness
matrix. The fully coupled fluid structure interaction system is also non symmetric. We use different
preconditioning strategies, a multigrid and a two-level additive Schwarz method. The development
of robust solver for this kind of problems is challenging [BW97, Pfl99, HP97]. For details on the
solver strategies used in this work we refer to Chapter 12. In this work we use different discretiza-
tion schemes for the structure and fluid. On the fluid domain we use the Finite Volume method
while on the structure domain we apply a Finite Element discretization. In this chapter we discuss
the discretization of the structure equation and the fluid equations using their respective discretiza-
tion technique. For the fluid we also describe the employed stabilization. Finally we describe the
discretization of the coupling terms for velocities and forces.

For both, the Finite Element method and the Finite Volume method, we use the same ansatz
functions. Since the structure is formulated in Lagrange coordinates, the shape functions do not
change in time. Due to the Arbitrary Lagrangian Eulerian formulation of the fluid the shape func-
tions on the fluid sub-domain are driven by the Arbitrary Lagrangian Eulerian mapping. However,
for a fixed time t they meet the same properties as in the non moving case. Therefor and for sim-
plicity we use the same notation in this chapter for the time independent and time dependent shape
functions. We use linear independent basis functions φ1,φ2, ...,φn to define Vh

Vh := span{φi}
np
i=1

here np is the number of grid nodes. These piecewise linear or trilinear functions, depending on the
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element type have the following properties:

• φi has compact support, i.e. it is non zero only in the neighboring elements of the node xi,

• φi is continuous and bounded,

• φi(x j) =

{
1, for i = j
0, else.

For the sake of simplicity we do not use the superscripts s and f in this chapter whenever it is clear
to which subproblem the variables belong.

9.1 Structure - Finite Elements

On the structure sub-domain we use a Finite Element discretization. Finite Element methods are the
discretization techniques often used in structural mechanics. For a detailed description of the Finite
Element method we refer to [Cia02]. In contrast to, e.g., a Finite Difference method, a Finite Ele-
ment method is suitable for complex geometries with curved boundaries. The basic idea in a Finite
Element method is to use a weak formulation for the problem and one looks for an approximation
of the solution in a finite dimensional space. We start from the variational formulation introduced
in Chapter 7.1

∫
Ωs

ρ
s ∂ 2

∂ t2 ds · vsdV +

∫
Ωs

σ
f : ∇vsdV =

∫
Ωs

ρ
s f · vsdV +

∫
∂Ωs

ρ
sts · vsdS.

First, we split the boundary force term into two terms according to a decomposition of the
boundary into the fluid structure interface and its complement. The first term is the usual structure
boundary where the externally applied force acts. The second is at the fluid structure interface,
where a force from the fluid acts on the structure∫

∂Ωs
ρ

sts · vsdS =

∫
∂Ωs\ΓI

ρ
sts · vsdS+

∫
ΓI

ρ
sts · vsdS.

In Chapter 7 we replace the last term by the acting force of the fluid on the structure∫
∂Ωs

ρ
sts · vsdS =

∫
∂Ωs\ΓI

ρ
sts · vsdS+

∫
ΓI

σ
f n f · vsdS.

For the discretization of the last term we refer to the force coupling section of this chapter.
We define

Ks(ds,vs) :=
∫

Ωs
σ

s : ∇vsdV,

and

Ms(ds,vs) := ρ
s
∫

Ωs
ds · vsdV.
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For the external forces we define the linear form

f s(vs) :=
∫

Ωs
ρ

s f s · vsdV +

∫
∂Ωs

ρ
sts · vsdS.

With this notation we can write the whole system in matrix form

Msd̈h +Ksdh = f s
h ,

using the representation

dh =

np∑
i=1

diφi

in terms of the basis functions {φi} j.
For hexahedron e we can write the local nodal displacement vector

de =



de1

de2

de3

de4

de5

de6

de7

de8


where dei is the local displacement vector at node i and therefore each dei contains three components.
We define the element shape function matrix as

N =
(

N1 N2 N3 N4 N5 N6 N7 N8

)
,

where each Ni is given by local shape functions

Ni =

φi 0 0
0 φi 0
0 0 φi

 .

The element mass matrix is computed using the element shape function matrix

Me =

∫
Ωe

ρ
sNT N dV.

In a similar way we define a strain matrix

B =
(

B1 B2 B3 B4 B5 B6 B7 B8

)
.
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The element stiffness matrix is computed using the strain-displacement matrix

Bi =



∂φi
∂x 0 0
0 ∂φi

∂y 0

0 0 ∂φi
∂ z

∂φi
∂y

∂φi
∂x 0

0 ∂φi
∂ z

∂φi
∂y

∂φi
∂ z 0 ∂φi

∂x


.

The element stiffness matrix contribution is then given by

Ke =

∫
Ωe

BT EB dV

where E is the elasticity matrix, containing the Lamé constants

E =



λ s +2µs λ s λ s 0 0 0
λ s λ s +2µs λ s 0 0 0
λ s λ s λ s +2µs 0 0 0
0 0 0 µs 0 0
0 0 0 0 µs 0
0 0 0 0 0 µs


.

For the element force vector holds
fe =

∫
∂Ωe

NT f dS.

9.2 Fluid - Finite Volume

The Finite Volume approach is the natural choice when dealing with conservation laws of physics,
e.g. the conservation of mass, energy or momentum. We chose a collocated arrangement for ve-
locities and pressure. Without stabilization this usually results in an (unphysical) checkerboard
distribution for the pressure, therefore we use a stabilization proposed by Schneider and Raw
[Raw85, SR87] which was later extended by Karimian and Schneider [KS95]. The description
of the incompressible Navier Stokes equations using the stabilization of Schneider and Raw with
the stabilization extensions used in this thesis is based on the description used by[Näg04, RR96] .
In the literature about Finite Volume methods on can find several different variants

• Vertex-centered Finite Volume methods,

• Cell-centered Finite Volume methods,

• Cell-Vertex centered Finite Volume methods.
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Figure 9.2. Construction of control volumes for the Finite Volume method. Left: cell-centered.
Right: vertex-centered.

The main difference between these variants lies in their way of constructing control volumes, for a
sketch we refer to Figure 9.2 and Figure 9.3. In the following we give a summary of the discretiza-
tion of the collocated arrangement of unknowns in our vertex centered Finite Volume method and
the used stabilization. In this discretization all degrees of freedom are located in the nodes of the
standard Finite Element grid. The basic idea is to decompose the domain Ω f into k sub-domains,
called control volumes, each containing a node of the grid. There are different ways to construct
such a tessellation. In two dimensions we can use the normals of the edges of the original grid to
construct a dual box-grid. This method is restricted to the case where all interior angle are smaller
or equal to π

2 for details we refer to [Bey98]. In an alternative approach we can use the center of
gravity and the midpoint of the edges of an element. This method works for all interior angles and
can be applied in three dimensions. In this scheme a triangle is split up into three commensurate
parts.

The integration over a control volume is written as the sum over the belonging sub-control
volumes (SCV ). Accordingly the integral over the boundary of a control volume is the sum over all
sub-control volume surfaces (SCV F) of the control volume. Figure 9.3 shows the used quantities
for the Finite Volume discretization. The so-called integration points ip are located on the center of
mass at the sub-contol volume surfaces. We denote a node of the triangulation by x. We want to
remark that the following terms depend on values at x and ip. Later we will give a short overview
how these terms can be modified with upwind strategies.

In the following for the sake of simplicity a normal n j on a sub-control volume surface is scaled
with the area of the sub-control volume surface and nSCV denotes the number of sub control volumes
belonging to a specific node. Although we write all terms as sums over the nodes, the implemen-
tation of the assembling routines is carried out over the elements. This means we compute the
contribution to a node for each element and its contribution to the global matrix. In the following
we approximate each term of equation 7.4 and equation 7.5 for details on this we refer to [Näg04].
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Figure 9.3. We use a vertex centered Finite Volume scheme with control volumes based on dual
boxes. We generate for each node sub control volumes that are combined to a control volume (blue)
for a node p . We introduce on the sub control volume boundary faces additional integration points
(red). The assembling process is carried out on the underlying Finite Element grid. On each element
we compute a contribution to each node, that is added to the global mass and stiffness matrices.

• The first fluid term which is approximated by computing the sum of the sub control volumes,

∂

∂ t

nSCV (k)∑
j=1

∫
SCVj

u dV ≈ ∂

∂ t

nSCV (k)∑
j=1

|SCVj|u(xi).

• Diffusion

−
nSCV F(k)∑

j=1

∫
SCV Fj

−ν(∇u+(∇u)T )n dS≈−
nSCV F(k)∑

j=1

np∑
i=1

ν(∇φi(ip j)u(xi)+(∇φi(ip)u(xi))
T )n j.

• Pressure gradient

nSCV F(k)∑
j=1

∫
SCV F j

pn dS≈
nSCV F(k)∑

j=1

np∑
j=i

φi(ipi)p(xi)n j.

• Source term

nSCV (k)∑
j=1

∫
SCVj

f dV ≈
nSCV (k)∑

j=1

|SCVj| f (xi).
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Figure 9.4. Tetrahedral element and the corresponding sub-control volume for a node.

• Continuity equation

∂

∂ t

nSCV F(k)∑
j=1

∫
SCV Fj

u ·n dS≈
nSCV F(k)∑

j=1

u(ip j) ·n j.

• Convective term

nSCV F(k)∑
j=1

∫
SCV F j

(u−w)uT n dS≈
nSCV F(k)∑

j=1

(u(ip)−w f (ip))u(ip)T n j.

We use upwind techniques to formulate these terms depending on a value at the corresponding node.
For details we refer to upcoming section about different upwinding schemes and the modifications
for the convective term. There are several methods to compute a divergence free fluid domain
velocity. The exact computation is expensive, therefore approximation strategies have to be used in
practice because the computation of an approximation for the swept boundaries of the sub control
volumes is often cheaper. Besides the exact computation of swept volumes we use an approach
where we use averaged geometric quantities [KF99, FGG01, FG04] to construct a schemes which
satisfies the geometric conservation laws. For the computation of the grid velocity and normal for
the Crank-Nicolson scheme we use: First, we compute an averaged normal na

na =
n(xt)+n(xt+τ)

2

then we compute w ·n using the averaged normal

w ·n =
xt+τ − xt

τ
·na
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Figure 9.5. Hexahedral element and the corresponding sub-control volume for a node.

To compute the velocities at the integration points we use the standard shape functions. For de-
tails and schemes for different time discretizations we again refer to [KF99, FG04] and references
therein.

9.2.1 Stabilization of the fluid discretization

We use a Finite Volume method where all unknowns are located at the nodes. This results in an
unstable discretization for the fluid, if the values at the integration-points are only interpolated with
shape functions. We use a stabilization that was developed by Schneider and Raw [SR87] and later
extended by Schneider and Karimian [KS95]. Therein the interpolation is done using the depen-
dence of velocity and pressure arising from the momentum equation. In the following we give
a short summary of the used methods. Details and comparison of the methods of Schneider and
Raw and Schneider and Karmian can be found in [NW07]. The code we use is based on an imple-
mentation by [RR96, Näg04]. In the following we give an overview of the possible stabilizations
variants that are included in our fluid structure implementation. For the stabilization of the discrete
system we use upwind methods. There are various approaches specially tailored for e.g Finite El-
ements [GR05, QV08] or Finite Volumes [BBFS90, LDV96, LeV02]. As suggested in Karminan
and Schneider [KS95] we apply a local momentum equation to interpolate the values at the nodes
to the integration points. With the modification from Schneider and Raw [SR87] we get

∂ui

∂ t
+u j

∂ui

∂x j
−ν

∂ 2ui

∂x j∂x j
+

∂ p
∂xi

= ui div(u). (9.1)

The crucial point is the development of an appropriate dependence of velocities and the pressure.
The stabilization approach of Schneider and Raw consists of two parts. First a finite difference
approach is used to discretize the momentum equation and then the linearization of the convective
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term using an upwind scheme. The right hand side of equation 9.1 can be written as

ui div(u) = u j
∂ui

∂x j
−

3∑
j=1, j 6=i

(u j
∂ui

∂x j
−ui

∂u j

∂x j
).

We follow [NW07, Hau10] and discretize and approximate on each node via shape functions to
obtain

ui div(u)≈ ||ũ||u
dn
i −uup

i
Ld

−
3∑

j=1, j 6=i

np∑
k

(ũ j
∂φk

∂x j
ui(xk)− ũi

∂φk

∂x j
u j(xk)).

Here Ld is the distance between the upwind point introduce the upwind and downwind points yup to
the downwind point ydn and ||ũ|| is the absolute value of the solution of the velocity of the last time
step. The velocity uup denotes the velocity at the upwind point yup, for a sketch of the used upwind
points we refer to Figure 9.6. A downwind point is the equivalent to an upwind point in downwind
direction. The local momentum equation now can be written as

ui−ut−1
i

τ
+ ||ũ||ui−uup

i
Lc

−ν

∑np
k=1 φkui(xk)−ui

L2
d

+

np∑
k=1

∂φk

∂xi
p(xk)−||ũ||

udn
i −uup

ip

Ld

+
3∑

j=1, j 6=i

np∑
k=1

(ũ j
∂φk

∂x j
ui(xk)− ũi

∂φk

∂x j
u j(xk)) = 0.

(9.2)

Here Lc and Ld denote the distance of the convective and diffusive up and down point and ut−1
i is

the solution of the velocity of the last time step.

9.2.2 Diffusion term

For the diffusion term

ν

∑np
k φkui(xk)−ui

L2
d

in equation 9.2 we use the stabilization that was introduced by [SR87] and modified by [Näg04] and
[RR96] to compute L2

d

1
L2

d
=

2||nmin||2

‖SCV0‖2 +
8

3||naverg||2
.

Here, ||nmin||2 is the minimum of the norms of the normal that belong to an element and||naverg||2 =
1

nco

∑nc
k=1 ||nk||2. Finally we end up in a formulation for the nodal quantities of the form

ui(ip) =
np∑
k

(Cu(xk)ui(xk)+Cp(xk)
∂ p
∂x

(ip)+Ct(xk)ut−1
i (xk)),

where the constants Cui , Cp and Ct denote the dependencies of the integration point velocities on the
nodal velocities, for details we refer to [Näg04].
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Figure 9.6. Full upwind scheme (UDS).

9.2.3 Upwind strategy

The discretization of the convective term may end up with some zero entries on the diagonal. If the
time-step size is small enough this is compensated by entries of the mass matrix and the diffusive
terms. However, for convective dominant flows this may lead to difficulties and to oscillations in the
solution. When we compute the contributions at an integration point with bilinear shape functions,
the sum is weighted equally in all directions. For convective problems this does not take into
account the physical anisotropy. Using upwind techniques one can weight upstream nodes more
than downstream nodes. One can derive upwind method using Tailors expansion

uip = uup +(xup− xip) ·
∂u
∂x
|up +O(||xup− xip||2)

In a full-upwind scheme one choses the point as an upwind point that belongs to the sub-control
volume that is in upstream direction. This scheme is simple but introduces an artificial diffusion.
We can construct second order schemes by adding a correction term to the upwind integration point,
which is at least a first order approximation of the derivative of u

uip = uup +(xup− xip) ·
∂u
∂x
|up = uup +∆uip

In literature one can find several second order schemes, e.g. central difference scheme, where the
derivation of u is approximated using a combination of a left and right finite difference scheme. For
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Figure 9.7. Skewed Upwind scheme (SKP).

a special choice of weights one results in the so-called Quick scheme. In upwind schemes the up-
stream point usually gets a bigger weight than the downstream point. For some choices this results
in negative weights or in unphysical dependencies of downstream integration points. Especially for
unstructured grids the implementation of a Quick scheme, that introduces dependencies to neigh-
boring elements can be quite demanding. In the following we present the approaches used in this
work.

• The first scheme we employ is a very simple one. The strategy here is to look for the upwind
point constructing a line in downstream direction. This line intersects an element side. The
closest node in upstream direction to this intersection is used as upwind point. This situation
is shown in Figure 9.6. We call this scheme full upwind scheme (UDS).

• The second scheme used in this work is the Skewed Upwinding (SKP). The strategy here is
to look for the upwind point constructing a line in upstream direction. This line intersects an
element side, the closest node to this intersection is used as upwind point. A sketch is shown
in Figure 9.7

• The third skew scheme is Linear Profile Skewed Upwinding (LPS). Here an intersection with
the upstream element side is computed as in Figure 9.8. In a second step the surrounding
node of the element side are weighted according to the values of the shape functions of the
upwind point. Usually this results in a stable upwind scheme, however for some special cases
this can introduce negative coefficients.
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Figure 9.8. Linear Profile Skewed Upwinding scheme (LPS).

• The last upwind scheme in this work is the Positive Upwinding (POS). Here the mass-flux
at each integration point is computed. The basic idea is that for an incompressible flow the
outflow of a control volume is just driven by the inflow. For this upwinding scheme we can
distinguish between three cases:

– In the first case min = 0. Therefore the flow direction has to point from the node in the
sub control volume. in that situation we choose this node to be the upwind point.

– In the second case 0 < min
mout

< 1 we have to weight between the nodes and the integration
point.

– In the last case min
mout
≥ 1 we put all upwind contribution to the inflow integration point.

for details and the meaning of min and mout we refer to Figure 9.9.

9.2.4 Convective Term

The convective term without the fluid domain velocity is discretized by
nSCV F(k)∑

j=1

∫
SCV F j

uuT ndS≈
nSCV F(k)∑

j=1

u(ip)u(ip)T n j.

We want to remark that the domain velocity of the fluid domain gives an additional contribution
to the velocity u. The contribution from the domain velocity is computed as a nodal quantity and
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Figure 9.9. Positive Upwinding scheme (POS).
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then subtracted from the stabilized velocity using standard shape function for the interpolation to
the integration point velocities. The fluid domain velocity gives an additional contribution to each
integration point. As suggested in [Näg04, RR96] we use a physical advection correction (PAC) for
the convective term. The PAC scheme is a scaled version of pure upwinding. Again the idea is to
solve local Navier Stokes equations to couple the nodal values and the integration point values. We
can rewrite the relation given by equation (9.2) as

ui(ip) = (
1
τ
+

ν

L2
d
+
||ũ||
Lc

)−1 ||ũ||
Lc

uup
i +

(
1
τ
+

ν

L2
d
+
||ũ||
Lc

)−1(
ut−1

i
τ

+
ν

L2
d

np∑
k=1

φkui(xk)−
np∑

k=1

∂φk

∂xi
p(xk)).

We simplify the notation using

uup
i = (

1
τ
+

ν

L2
d
+
||ũ||
Lc

)−1 ||ũ||
Lc

uup
i

and

δui = (
1
τ
+

ν

L2
d
+
||ũ||
Lc

)−1(
ut−1

i
τ

+
ν

L2
d

np∑
k=1

φkui(xk)−
np∑

k=1

∂φk

∂xi
p(xk)).

This approach can be seen as a skew upwind method

ui(ip) = uup
i +δui,

for details we refer to [RT74, Näg04]. In this work a convex combination of two approaches is used

ui(ip) = ωuup
i +(1−ω)

np∑
k=1

φk(ip)ui(xk).

For details on this scheme we refer to [RR96]. In this scheme uup
i may be either a pure upwind

method or the upwind approximation of the PAC upwind scheme. The parameter ω can be chosen
for each element depending on the relation of convection and diffusion, i.e.,

ω =
Pe2

5+Pe2

with the Peclet number Pe = unL
ν

.

9.3 Boundary conditions

Our implementation can handle different types of boundary conditions. On the structure subprob-
lem, one can apply time dependent displacements and forces. These Dirichlet and Neumann con-
ditions are standard for Finite Elements in structure mechanics. The Dirichlet boundary conditions
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Figure 9.10. At the boundary each node has just a half control volume (orange) compared to an
inner node with a full control volume (blue). Therefore additional integration points (green) are
constructed. The boundary integration points however can be treated as the normal integration
points.

is enforced by replacing the respective row of the algebraic system with a trivial condition. The
Neumann values are assembled into the right hand side.

The fluid discretization is based on a vertex-centered approach. The control-volumes are based
on the dual grid. When dealing with boundary integrals we have to take into account a different
situation compared to the inner control-volumes. At each boundary control-volume we have to in-
troduce additional boundary integration points as shown in Figure 9.10. These boundary integration
points can be and are handled as normal integration points, i.e., the boundary integration points
provide a contribution to the flow over the boundary of a sub-control volume. So the fluxes over the
surfaces of a control volume are computed as,∫

∂CV
uni dS≈

∑
ip

uni +
∑
bip

uni,

where bip denotes the boundary integration points. We use no-slip conditions for the velocities at
the walls Γwall

t . The velocity at Γwall
t is directly set as a Dirichlet condition at the nodes. In case of

a non moving wall we enforce
u(xi) = uwall(xi).

For a moving wall we set the according relative velocity.
Inflow boundary conditions are given by Dirichlet constrains at the boundary. The inflow bound-

ary is given by a flow profile, i.e. a given mass flux. The pressure at the boundary is free, in the
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Figure 9.11. At the fluid structure interface (red polygon) we are in a similar situation as at the
domain boundary. Here we also construct additional fluid structure interface integration points
(green), that are used as boundary integration points.

sense that it is independent of the given inflow velocity. In the equation of momentum of the Navier
Stokes equations the inflow value for the specific boundary node is directly used

u(xi) = uin(xi) on Γ
in
t .

For most of the computations we use a pressure outflow condition, i.e., set a Dirichlet value for
the pressure

p(xi) = 0 on Γ
out
t .

For a laminar flow this outflow condition assures an equal outflow.

9.4 Discretization of the coupling conditions coupling

Since we use conforming meshes, the degrees of freedom for fluid and structure are located at the
same places and we can enforce the coupling conditions at the same nodes. The velocity coupling
at the fluid structure interface can be seen as a special case of a wall condition of the fluid. In
this case we modify the entries in the matrix, without setting a value on the right hand side. The
corresponding value is set by the coupling assembler that modifies also the entry for the respective
structure velocity. For these modifications we refer to Chapter 11. For the dynamic coupling we
assemble an additional term that acts as a force of the fluid on the structure. For clarity we want to
remark that this is not a boundary condition, but an interface condition

∫
ΓI

σ
sn · vs dS =−

∫
ΓI

σ
f n · vs dS (9.3)

(9.4)
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The following term is assembled on the fluid structure interface∫
ΓI

ν(∇u f +(∇u f )T )n+ p f n dS =

∫
ΓI

t f dS. (9.5)

Since we use the same shape function for the Finite Element and Finite Volume discretization the
shape function stays the same. Although this term is a fluid force, it is multiplied with the same
test function as used in the structure domain. The force is composed of a velocity and a pressure
component

σ
f (u, p) =

−p 0 0
0 −p 0
0 0 −p

+ν


2∂u1
∂x

∂u2
∂x + ∂u1

∂y
∂u3
∂x + ∂u1

∂ z
∂u1
∂y + ∂u2

∂x
2∂u2
∂y

∂u3
∂y + ∂u2

∂ z
∂u1
∂ z + ∂u3

∂x
∂u2
∂ z + ∂u3

∂y
2∂u3

∂ z

 .

The nodal forces for an structure element at the interface are therefore assembled as∫
ΓI

σ
f n · vs dS (9.6)

where for n we use the outer normal of the structure domain and σ f denotes the discrete viscous
stress tensor. This term is assembled using the same quadrature rules as are used for the local
structure stiffness matrix.

9.5 Summary of the discretization

We have introduced different time stepping schemes in Chapter 8, the Backward Euler, the Crank-
Nicolson, and a second order DIRK scheme. For the discretization of the fluid domain velocity we
use a geometric averaging approach. This is suitable for all three time stepping schemes.

In this chapter we have presented the spacial discretization for structure and fluid. The assembly
for both subproblems is performed element by element. Our implementation supports tetrahedra and
hexahedra organized in an unstructured conforming multi-level grid structure. Especially tetrahedra
in an unstructured grid are suitable for real word problems, since almost arbitrary shaped geometries
can be meshed. We use a conforming mesh for fluid and structure, that contains the same type of
elements. The discretization of the structure is done using standard P1 Finite Elements. For the fluid
we use a specially tailored discretization. We compute a dual mesh, that provides a control volume
for each node. On these control volumes we use a Finite Volume method for the discretization
of the fluid. The specific feature of this discretization is that the degrees of freedom for the fluid,
velocities and pressure, are all located at the nodes. Due to this non-staggered scheme a stabilization
is needed. We use a stabilization based on an idea of Schneider and Raw [SR87], that was later
improved by Karimian and Schneider [KS95]. Here a local momentum equation is solved at each
element. This gives a relation between the degrees of freedom for the fluid velocity and the pressure
at the nodes and the integration points. The diffusion is discretized using an idea of Raw [Raw85].
Some improvements were suggested in the work of Rentz-Reichert [RR96] and Nägele [Näg04].
Furthermore we have presented a special upwind method based on physical advection correction
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for the convective term. The stabilization adds an additional term to the continuity equation. For a
uniform grid with mesh size h, this would add a term of the form

Ch2
∆p

with a constant C that depends on the treatment of the convective term.
The force coupling condition is discretized as a stress acting on the structure using standard

Finite Element shape and test functions. For the velocity coupling we modify the entries in the
system matrix as the handling of Dirichlet conditions. This is done for both fluid and structure. A
similar modification is done for the coupling of the geometry problem to the structure.
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10 Mesh motion and geometric coupling

The fluid structure interface moves in the course of time. There are different techniques available
to keep track of the interface e.g Immersed Boundary method or Arbitrary Lagrangian Eulerian
method. The Arbitrary Lagrangian Eulerian method is widely used and maybe the most popular
method for fluid simulations on moving domains. In the Arbitrary Lagrangian Eulerian formulation
the boundaries of the computational domain for the fluid may move and the positions of the mesh
nodes in the inner of the computational domain have to be updated to avoid tangled or inverted
elements and to maintain a reasonable mesh quality. This mesh update is not prescribed and can be
constructed in manifold ways.

In the following we give a short overview of possible strategies for the fluid domain mesh
update. For a more comprehensive overview we refer to [Wic11] and the references therein. The
main goal in the arbitrary movement of the inner of the fluid domain is to keep a valid mesh with
good properties. The meaning of good properties for a mesh are not immediately clear and depend
on the application. Usual criteria are smoothness, local mesh angles, aspect ratio, and orientation.
The main task for the mesh movement process is to retain the properties of the initial mesh as good
as possible. Our solver strategy for the full coupled fluid structure interaction problem is based on
the use of iterative solvers. The rate of convergence of iterative solvers depends on the spectral
radius of the matrices constituting the system of equations. A poor mesh quality affects directly
the spectral radius of this matrices and will therefore have an impact on the solver efficiency in the
simulation.

We distinguish between two different approaches for the geometry subproblem: A geometric
implicit and a geometric explicit one [BTT13, CDFQ11]. In both cases the physically motivated
coupling conditions and the geometric coupling are treated implicitly. The difference is in the
treatment of the fluid mesh motion of the interior mesh nodes. In the geometric implicit case the
mesh update is computed simultaneously with the physical coupling for fluid velocities and structure
displacements and velocities. For the implicit handling of the domain movement one can find
different strategies in literature, based on solving a Laplace problem [Bar09, Wic11], an elastic
equation [Wic11, BS06, STB03, TBMJ92] or biharmonic equation [Wic11, Hel03]. The strategy
of solving an additional elastic equation for the fluid motion has been found to be able to deal
with moderate and large deformation, if the material parameter are chosen in a reasonable way.
This usually means that the more closer to the fluid structure interface the more stiffer material
parameters for the auxiliary elasticity problem should be chosen. However, the use of an Laplacian
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strategy for the mesh adaptation is also suitable for many applications of interest, such as blood flow
simulation [Bar09]. The geometric explicit case is different to these mesh adaptation procedures.
It is based on an extrapolation for the fluid domain displacements, primarily to avoid tangled and
distorted elements on the first layers of elements at the moving boundary or interface.

10.1 Geometric implicit strategy

For the implicit handling of the fluid domain motion we follow two different strategies. In the
first, the mesh displacements have to satisfy the Laplace equation. In the second one an elasticity
equation is used. In the first case we assemble a Laplace problem into the system matrix

−∆d f = 0

with the coupling conditions
d f = ds on Γ

I
t .

For the second strategy a stationary elasticity problem is assembled, with the same coupling condi-
tion as for the Laplace problem. In this approach we can use different elastic material parameter,
which may have a large impact on the mesh deformations, especially close to the fluid structure
interface. Here we solve a problem of the form

−∇ ·σ(d f ) = 0

and the coupling condition
d f = ds on Γ

I
t .

Both the Laplacian and the elasticity auxiliary problem are used in a weak sense and we use Finite
Elements for the discretization. For the details of the used Finite Elements discretization we refer
to Chapter 9.

10.2 Geometric explicit strategy

In the geometric explicit approach we split the monolithic problem in to two sub-systems that can
be solved independently. Similar methods have been previously successfully applied for fluid struc-
ture interaction simulations [BTT13, BQQ08, CDFQ11]. Instead of solving an auxiliary problem
for the fluid mesh motion we fix displacements in the inner of the fluid domain. The interface dis-
placements are computed fulfilling the geometric coupling condition. In a second step we compute
an update in the interior of the fluid domain and an extrapolation of the new positions of the fluid
mesh. The mesh adaptation is carried out using the Mesh Quality Improvement Toolkit (Mesquite)
[BFDK+03]. Mesquite is a mesh quality improvement tool for tetrahedral, hexahedral, and hybrid
structured and unstructured meshes. In our implementation the mesh adaptation uses different mesh
optimization algorithms and provides parallel smoothing and untangling. For our purposes we get
the best performance by alternating the use of swapping and smoothing methods. We use multilevel
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Figure 10.1. Undeformed fluid domain (top) and implicit smoothed fluid domain with warped
deformation, the color scale indicates magnitude of the fluid domain deformations (below). One
can see that the deformations at the boundary are propagated to the interior of the domain.
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methods for the preconditioning of the iterative solver, therefore we can apply the mesh adaptation
process on different levels. This makes the geometric explicit method even more appealing in the
case of moderate displacements in a time step. The smoothing can be used very efficiently on the
coarsest level while the computed deformations are interpolated to the finer grids. In addition, the
geometric explicit method reduces the number of Newton steps. For details we refer to Chapter 14.
In summary a time step has the following structure:

1. Compute an extrapolation for the fluid domain velocities using the displacements at the fluid
structure interface. We compute the extrapolation for the fluid domain velocity using the
structure interface displacements

ds
t = d f

t on Γ
I
t

We smooth the distribution of nodes in the fluid domain, which provides new positions in
Ωt+1 and correspondingly a displacement vector d f

t+τ

wt+τ =
d f

t+τ −d f
t

τ

2. Solve the coupled problem with coupling conditions at the interface

u f
t =

∂

∂ t
ds

t

σ
s
t ·ns

t +σ
f

t ·n
f
t = 0

ds
t = d f

t

3. Next time step

Finally we want to remark that the geometric explicit strategy restricts the deformation at the fluid
structure interface per time step. For larger deformation of the layer of elements of the fluid domain
at the interface, we get usually in increase of linear iterations in the solution process or even worse
tangled elements.



11 Fully coupled system

In this chapter we consider the structure of the discretized monolithic coupled system in more
detail. We always use the implicit coupling for the kinematic and dynamic coupling condition. The
displacement coupling is also done implicitly but we use different strategies for the fluid domain
displacements. For the fully implicit treatment of the fluid domain displacements we use either
a stationary linear elastic auxiliary problem (with different material properties, depending on he
problem) or we solve a vectorial Laplace problem. For the explicit treatment of the fluid domain
displacements we split the solving process into two separate steps. In this chapter we will explain
the differences in the coupling schemes in detail using the Jacobian of the Newton method.

11.1 Implicit coupled system

We use a fully implicit coupling for the two physical coupling conditions and the displacement
coupling conditions. The coupling of velocities is carried out by employing a trivial modification
in the system matrix for the velocities at the fluid structure interface. The force coupling is done
by assembling stresses that act on the structure. The fluid domain displacement problem is coupled
by enforcing the equality of positions at the fluid structure interface to the displacements of the
structure. The following system gives an overview of the coupling concept

 Fluid 0 Velocity coupling
0 Fluid geometry problem Fluid displacement coupling

Force coupling 0 Structure


u f

t+τ

d f
t+τ

ds
t+τ

=

 f f

0
fs

 .

In this schematic representation we have summarized the structure of degrees of freedom to the
single variable ds and all fluid degrees of freedom to the variable u f . In the following we will keep
the notation for the fluid degree of freedom u f , while we use for the geometry fluid domain problem
d f and split the degrees of freedom for the structure into displacements ds velocities vs. The system
contains 10 degrees of freedom for each mesh node, three for the fluid velocities, one for the fluid
pressure, three for displacements of fluid and structure and three for structure velocities.

After linearization of the non-linear problem we get a linear system. The following system is
obtained using a backward Euler time discretization. The force coupling is carried out by assem-
bling a block matrix for the stresses of the fluid that act on the structure [Bar09]. In our formulation
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Figure 11.1. System matrix for the geometrical implicit coupled system ordered by equation: red
is the fluid system, green the Laplace equation for the fluid domain smoothing process, blue the
structure domain. The non diagonal blocks are the coupling terms, starting from top with the
velocity coupling (magenta), then the position coupling (yellow) for the fluid domain smoother and
finally the force coupling (black).
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we ignore the derivatives of the fluid with respect to the fluid domain displacements. The removal
of some matrix entries leads to a quasi Newton method and we lose the quadratic convergence be-
havior of the Newton method. Especially the derivatives of the fluid to the fluid domain motion can
be computationally expensive [Cro11]. The full sparsity pattern of the coupled system of a simple
test case is shown in Figure 11.1. In the following equation the degrees of freedom are ordered by
equations and we use the same color as we use in equation Figure11.1.

F f f F f ΓI
0 0 0 0 0 0

0 IΓI
0 0 0 0 0 −IΓI

0 0 G G 0 0 0 0
0 0 G G 0 −I 0 0
0 0 0 0 Mss MsΓI

τMss τMsΓI

0 0 0 0 MΓIs MΓIΓI
τMΓIs τMΓIΓI

0 0 0 0 −τKss −τKsΓI
Mss MsΓI

0 τA f 0 0 −τKΓIs −τKΓIΓI
MΓIS MΓIΓI





u f
t+τ

u f ΓI

t+τ

d f
t+τ

d f ΓI

t+τ

ds
t+τ

dsΓI

t+τ

vs
t+τ

vsΓI

t+τ


=



f f

f f ΓI

0
0
f s

f sΓI

f s

f sΓI


.

The red block is the fluid system, green the geometry problem for the fluid domain smoothing
process, blue the structure domain block. The non diagonal blocks are the coupling terms, starting
from top with the velocity coupling (magenta), then the position coupling for the fluid domain
smoother (yellow) and finally the force coupling (black). The structure blocks are obtained using
reduction of order for the structure equation.

11.2 Geometric explicit system

We have to deal with different kind of nonlinearities in the coupled system. In our experiments we
have observed that the geometry implicit coupling introduces a strong nonlinear behavior for many
examples. Therefore, we have implemented a geometric explicit coupling. The following equation
shows the modified system in the geometric explicit case

F f f F f ΓI
0 0 0 0 0 0

0 IΓI 0 0 0 0 0 −IΓI

0 0 I I 0 0 0 0
0 0 0 I 0 −I 0 0
0 0 0 0 Mss MsΓI

τMss τMsΓI

0 0 0 0 MΓIs MΓIΓI
τMΓIs τMΓIΓI

0 0 0 0 −τKss −τKsΓI
Mss MsΓI

0 τA f 0 0 −τKΓIs −τKΓIΓI
MΓIs MΓIΓI





u f
t+τ

u f ΓI

t+τ

d f
t+τ

d f ΓI

t+τ

ds
t+τ

dsΓI

t+τ

vs
t+τ

vsΓI

t+τ


=



f f

f f ΓI

0
0
f s

f sΓI

f s

f sΓI


.

Here we use the strategy which is already explained in Chapter 10. For clarity we repeat the
basic ideas. At the fluid structure interface we employ the coupling of displacements to the fluid
domain as we do in the implicit case. However, in the interior of the fluid domain we keep the
position fixed. In our method we use extrapolated positions of the fluid domain vertices using all
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positions and an extrapolated velocity of the fluid domain. In each time step we use a Laplacian
smoother (Mesquite) to retain the mesh quality of the fluid domain(

−G −G
0 I

)(
d f

t+τ

d f ΓI

t+τ

)
=

(
0

f f ΓI

)
.

The use of a geometric explicit coupling is beneficial to reduce the number of Newton steps.
For details and a detailed comparison to the full implicit coupling we refer to Chapter 14.



12 Solver and preconditioner

In this chapter we address solution methods for the coupled algebraic system presented in Chapter
11. Especially in three dimensions design of a scalable solution process for the monolithic coupled
algebraic system is very demanding, because the system is large and it is usually ill conditioned.
The main challenge is to find a suitable preconditioning strategy for a parallel solver method. In
Chapter 8 we have introduced a class of Runge Kutta methods for time propagation. In each time
step at least one nonlinear system has to be solved. In this work Newton’s method is used for the
linearization of the nonlinear problem and an iterative method to solve the linearized problem. We
use a Krylov subspace method and different multilevel methods for preconditioning. In Algorithm
1 the general solution process is sketched. We start without loss of generality with t = 0 and use
one of the time stepping schemes introduced in Chapter 8.

Algorithm 1 Sketch of the employed solution algorithm
t = 0
while t ≤ T do

for n = 1 , . . . , max nonlinear steps do
assemble nonlinear defect dk

if dk ≤ tolnl then
break

else
solve linear problem
compute new correction c
update solution

end if
end for
t = t + τ

end while

In the following we give a detailed overview of this solution process.

65



66 12.1 Quasi Newton method

12.1 Quasi Newton method

The discretization of the coupled system leads to a large system

N(x) = b

with a nonlinear Operator N(x), that has to be solved in each time step. We define the nonlinear
defect

d(x) := N(x)−b = 0

We can now use Taylor expansion to approximate the function F(x) = N(x)−b in the vicinity of x0

with a function L(x). For the construction of L(x) we use

L(x) := F(x0)+ J(x0)(x− x0)

where J(x)is the Jacobi matrix with entries

(J(x))i j =
∂Fi

∂x j
(x).

With the the notation ck := xk+1− xk, which is the correction, we can write the k-th iteration of the
Newton method as

Jkck =−dk.

The computation of the Jacobi matrix and the defect depends on the used time discretization scheme.
We compute the approximation of the Jacobi matrix J analytically. In our experiments we use an
approximation for the Jacobi matrix, where we neglect some of the terms, for details we refer to
Chapter 11. The matrix consists of two parts

Jn = smJM
n+1 + saJA

n+1

where JM is a mass matrix and JA the stiffness matrix contribution. The parameters sm and sa are
determined by the time discretization scheme and can be calculated using the Butcher arrays in
Chapter 8. The defect d is recomputed in every nonlinear iteration

dn+1 = N(xn+1)−b.

For a more robust convergence behavior we sometimes use a damping strategy, where the next
iterate is computed as

xk+1 = xk +λck,

with a parameter λ ∈ (0,1], that can either be given as fixed valued or can be computed with a line
search strategy. We use a simple strategy that uses the error reduction rate, after the solution of a
time step. We compare the new defect d = d(λ ) with the old defect dold

‖d‖
‖dold‖

≤ ε, ε ≤ 1.

We can double λ up to λmax until either the ε criteria or a chosen λmax is reached.
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12.2 Splitting methods

We want to solve the equation
Ax = b

where A is a given n×n non-singular matrix. Splitting methods, as the Jacobi method or the Gauss-
Seidel method, use a splitting of the matrix A, i.e.,

A = M−N,

where M should be an approximation of A, that can easily be inverted. The iteration procedure is
then given by

xn+1 = xn +M−1(b−Axn).

We get the Jacobi method when choosing M as the diagonal of A. For the Gauss-Seidel method
A is decomposed into a lower triangular matrix L and a strictly upper triangular matrix U . The
Successive Over-Relaxation (SOR) method can be written in the form M = 1

ω
D+L where ω is a

relaxation factor.
Likewise, the incomplete LU decomposition can be derived using a decomposition of A. For

sparse matrices we usually get a fill-in in L and U . The idea of the incomplete LU decomposition is
to reduce the fill-in and put some of the entries of A into a matrix R, i.e,

A = LU−R.

The use of Jacobi or Gauss-Seidel method usually leads to poor convergence rates. However, the
block version of Jacobi or Gauss-Seidel methods are popular and robust preconditioning techniques
[HS91]. A different class of iterative methods are Krylov subspace methods that we introduce in
the following.

12.3 Krylov subspace correction methods

Krylov subspace methods are well established iterative methods for linear systems with large sparse
matrices. In a Krylov subspace correction methods one constructs an m dimensional Krylov space

Km = span{r0,Ar0, . . . ,Am−1r0},

for a given matrix A and a residuum r0 = b−Ax0. The original problem Ax = b is projected to
the lower dimensional Krylov subspaces and we get a series of lower dimensional problems. An
iterative process minimizes the defect dm = b− Axm in a certain norm in Km. An introduction
and detailed description of Krylov methods can be found in [BBC+94]. The main design feature
and difference between Krylov methods is the choice of the minimizer as well as the number of
iterations carried out. Choosing the energy norm one obtains the Conjugate-Gradient method. For
a symmetric positive definite matrix A we can construct a functional

F(x) =
1
2

xT Ax−bT x
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with
∇ F(x) = Ax−b =−r.

The minimizer of the functional is equivalent to the solution of the original problem Ax = b. The
minimizer is constructed using the steepest descent direction under the condition that the direction
is A-conjugate with respect to the old directions. We start with a first basis vector p0 that is the
negative of the gradient of the functional F at the initial guess x0 ,i.e,

p0 = b−Ax0.

For the k-th step of this process we can compute a residual

rm = b−Axm.

We want to remark that the directions of the basis vectors are constructed conjugate to each other.
The next descent direction is built of the current residual and all previously computed search direc-
tions

pm = rm−
m−1∑
i=0

α j p j

with coefficients

α j =−
(Arm, p j)

(Ap j, p j)

with j = 0, . . . ,m−1 and pm is constructed incrementally as

pm = rm−
(Arm, pm−1)

(Apm−1, pm−1)
pm−1.

The convergence of the CG method is assured only for a symmetric positive definite matrix A. The
Bi-Conjugate-Gradient (BiCG) method is also suitable for non symmetric matrices. In the BiCG
method we build two sequences of orthogonal vectors

rm+1 = rm−αmAT pm,

r̃m+1 = r̃m−αmAT p̃m

with

αm =
(rm, r̃m)

(Apm, p̃m)

The corresponding search directions are computed by

pm+1 = rm−βm pm,

p̃m+1 = r̃m−βm p̃m

with

βm =
(rm+1, r̃m+1)

(Apm, p̃m)
.
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For all residuals and the search directions the following biorthogonality holds for all i 6= j

(r̃i,r j) = 0

and
(p̃i,Ap j) = 0.

The BiCG method has the disadvantage that no minimizer is computed. In the solution process
this results in unbalanced convergence behavior. In the computation of the two series of residuals a
multiplication with the transposed matrix of A is required. In the Bi-Conjugate-Gradient Stabilized
(BiCGStab) method the residual vector is computed using a polynomial P of A

rm = Pm(A)r0

and
r̃m = Qm(A)P(A)r0.

Here Qm is a polynomial of the form

Qm(A) = (I−ω1A)(I−ω2A) . . .(I−ωmA).

The constants ωi minimise r̃m = (I−ωmA)sm with sm = r̃m−1−αiAp̃i. We use a preconditioned
version of the BiCGStab method, for details we refer to [BBC+94].

12.4 Multilevel methods

Krylov methods tend to have an irregular and slow convergence behavior depending on the condition
and the eigenvalues of A. We can get an considerable improved convergence behavior using a good
preconditioning strategy [Näg04]. We use a left preconditioner M for the system Ax = b and get

M−1Ax = M−1b.

This is an appropriate strategy if the Krylov method has a better convergence behavior for the matrix
M−1A. However, we have to solve an additional system

My = z

within each iteration. Preconditioning can be combined with iterative methods. We use a special
class of preconditioning techniques based on multilevel techniques, a geometric multigrid and a
restricted additive Schwarz method. In a multilevel method we use iterative solver on meshes with
different mesh sizes. Standard iterative solver have the ability to reduce high frequent error com-
ponents very fast. In the context of multigrid methods these solvers are called smoother. The basic
idea of a multigrid is to use the smoothing property of iterative solvers on a fine level and then
restrict the smoothed defect to a coarser level, i.e a coarser mesh, and repeat the procedure. For
details on multigrid methods we refer to the books of Hackbusch [Hac85] and Wesseling [Wes04].



70 12.4 Multilevel methods

Figure 12.1. The uniform refinement of a curved surface.

Figure 12.2. The uniform refinement of a curved surface. We use an adaptation of the generated
nodes to get a better representation of the curved surface.
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The basic idea of the additive Schwarz method is to split the domain into smaller sub-domains.
We partition the domain into overlapping or non-overlapping sub-domains. On these subdomains
we can solve the problem independently. However, we have to do this in an iterative way since
we have to exchange the solution at the boundaries between neighboring sub-domains. To im-
prove the additive Schwarz method we use a two level concept. The second level is used to enable
fast exchange of information between non-neighboring sub-domains and therefore to speed up the
convergence of the whole method. In the next sections we will introduce the main tools for the
geometric multigrid and the two-level additive Schwarz method. Finally we introduce the methods
themselves.

The hierarchy for a multilevel method is created by uniform refinement of a coarse mesh. As
an example a sequence of two refinements can be found in Figure 12.1 However, for many cases
standard nested mesh hierarchies lead to a very poor description of the boundary and interfaces of
the computational domain. To avoid a large number of mesh nodes to resolve curved surfaces on
the coarsest level, we use an adaptation strategy where we adjust the boundary and interface nodes
on the refined meshes. The mesh sequence corresponding to the example in Figure 12.1 can be
found in Figure 12.2. In this process we generate new positions for the corresponding nodes using
a high resolved description of the computational domain. On each level l we can write the algebraic
problem as

Alxl = bl, l = 0, ...,L.

For the transfer of information between the different levels, we use restriction and prolongation
operators that are introduced in the following.

12.5 Grid transfer

We introduce a prolongation and a restriction to transfer information between different levels of the
multilevel hierarchy.

Figure 12.3. We use a uniform refinement strategy to build mesh hierarchy. Here we show the
weights for the interpolation between a parent and child elements.
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We define a map from the coarse level l− 1 to the finer level l. This interpolation operator is
also called prolongation: Pl : Vl−1→Vl and a simple way to construct a prolongation operator is to
use the already introduced basis functions. An example for a triangle is shown in Figure 12.3. The
operator from the fine level to the coarse level is called restriction and is given by the adjoint

Rl = (Pl)
T .

We use these prolongation and restriction operators to transfer nodal values from a coarse mesh to
a finer mesh and vice versa.

12.6 Multigrid method

We have already introduced the major tool for the geometric multigrid method. In the following we
use

• Mesh hierarchy,

• Transfer operators,

• Coarse problem solver,

• Iterative solver, that we also call smoother in the context of multigrid methods,

to set up the geometric multigrid.
The basic idea of a multigrid method is to use the smoothing ability of iterative solvers to reduce

the high frequency error in the solution on each level. The iterative method is therefore only applied
for a few iterations on one level. The residual is then restricted to a coarser level. Here again
some iterations of the smoother are carried out. This procedure is usually repeated until the mesh is
coarse enough to use a direct solver. The coarse solution is interpolated to the finer level. Whenever
necessary post smoothing steps, again with an iterative method, are performed.

In Algorithm 2 we describe a multigrid method. Here the parameters k and l specify the number
of pre and post smoothing steps. For γ = 1 we get a so call V -cycle, while for γ = 2 we get a so
called W-cycle. For the differences between a V and a W cycle we refer to Figure 12.4.

12.7 Additive Schwarz method

The additive Schwarz method is a domain decomposition [SBG04, QV99, SBG96, Woh01, Xu92,
XZ98] strategy. Domain decomposition in general is a preconditioning technique which is very
well suited for parallel implementation. The basic idea is to split the solution domain into smaller
sub-domains. Formally we first partition the domain Ω into N overlapping or non-overlapping sub-
domains Ωi, i = 1, ...,N. An often used method in this class of domain decomposition techniques
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Algorithm 2 Multigrid algorithm, for γ = 1 we get a V -cycle and for γ = 2 we get a W -cycle

if level = coarsest then
Compute coarse grid correction

else
Apply k pre-smoothing steps
for i = 1, . . . ,γ do

Compute residual
Restrict residual
Call this algorithm on the coarser level to solve the residual problem on the coarser grid.
Correct the fine solution

end for
Apply l post-smoothing steps

end if

Figure 12.4. Different multigrid cycles. Left: V -cycle. Right: W-cycle.
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are additive Schwarz methods [Lio78, Cai91, DSW93, FS98, SBBN00, NS02, TW10]. We write
the additive Schwarz method as a Richardson method

xk+1 = xk +(
N∑

i=1

Qi)(b−Axk)

with a preconditioner

M = (
M∑

i=1

Qi) = (
N∑

i=1

RT
i A−1

i Ri).

Here, on each sub-domain Ωi an operator Ai is constructed, which is the restriction of the ma-
trix A. Additive Schwarz methods are well analyzed for elliptic problems. For other problems
theoretical results are not very well developed.

To improve the additive Schwarz method, we use a two-level concept. The basic idea of the two-
level approach is to enable fast exchange of information between non-neighboring sub-domains. For
example, if there are k sub-domains between sub-domain Ωi and sub-domain Ω j, in the one-level
Schwarz method it can take up to k iterations to propagate information from sub-domain Ωi to sub-
domain Ω j. In a two-level approach a coarse grid is constructed on which the solution process is
less expensive but on which the global structure of the solution can still be represented well. The
restricted additive two-level approach is then given by

Mad = (R0)
T A−1

0 R0 +
N∑

j=1

(R0
j)

T A−1
j R j

where R0 is the restriction from the fine grid to the coarse grid and R0
j is a restriction that does not

include overlap. Our implementation of the two-level restricted additive Schwarz methods consists
of several components. According to the first term we solve a coarse grid problem with the methods
mentioned above for the coarse grid problem. Then we interpolate the solution using the prolonga-
tion operators, that we also use for the multigrid. Here, we also use the mesh hierarchy transferring
the solution of the coarse mesh level by level to the finest mesh. We use the restricted one-level
additive Schwarz method to solve the fine problem. Our restricted additive Schwarz solver is based
on PETSc [BGMS97, BAA+14a, BAA+14b].

12.8 Assembling

We can distinguish between two different ways the matrices on the different level can be computed.
A usual strategy to construct a multilevel hierarchy is to use a Galerkin process. Here one uses
transfer operators Pl and Rl to compute the stiffness matrices on the other levels. When using
standard operators for P and R the upwind schemes behave like central differences upwind schemes
on coarser levels. We mentioned already in the Chapter 9 that, especially for convection dominant
flow problems, central difference scheme have several disadvantages. The second way is a direct
assembly of the matrices on every level in the level hierarchy. The assembly of the stiffness and
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mass matrix scales quite well, since all elements are uniquely distributed to different processors and
the assembling can be done without communication. For details we refer to Chapter 14. Therefore
we can efficiently use direct assembling on different levels instead of using a Galerkin approach.

12.9 Ordering of unknowns

The system that has to be solved consists of different variables, velocities, pressure and displace-
ments for the fluid, displacements and velocities for the structure. The order of these equations
has a significant impact on the solving process. In general we can distinguish at least between two
concepts:

• ordering the Jacobi matrix by sub problem as shown in Figure 11.1,

• ordering by nodes, which results in a vector of blocks with size 10. Corresponding to that the
system matrix has a block structure of size 10 as well.

In the ordering by sub problems we would get a matrix with rather big blocks. The second ordering
(by node) results in smaller blocks which can be handled more efficiently [Bar09, Näg04, Met04].

12.10 Coupling implementation

In order to keep the modularity of the subproblems, the assembler of the fully coupled system is
implemented as a wrapper. Therein the different element assembler for the specific fields are called.
For the fluid a Stokes and a Navier Stokes assembler are currently implemented. On the structure
side we have implemented a Finite Element assembler for linear elastic problems. The coupling
consists of three assembler

• one for the velocity coupling,

• the assembler for the force coupling,

• and the assembler for the geometry coupling.

For the geometry coupling various options have been implemented, such as the already mentioned
implicit and explicit method, but also geometric matching and non-matching coupling at the inter-
face is implemented. However, this was not used for the examples presented in this thesis.

The implementation of assembling is not optimized for reducing the total assembling time, but
it provides additional flexibility for changing the sub-assembler routines for fluid, structure and
coupling conditions. Therefore the underlying models for fluid can be changed without touching
the other routines. For the scaling behavior of the assembler we refer to Chapter 14.
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12.11 Fluid mesh smoothing

We have already discussed the geometric explicit coupling of the fluid structure interaction problem.
In this scheme we solve two problems. First the fully implicit coupled fluid structure interaction
problem is solved where we enforce the nodes of the mesh in the inner of the fluid domain to stay
on their geometric positions. In a second step, we apply a smoothing procedure to the fluid mesh.
Since our solver already uses a multilevel hierarchy, we can also use the nested mesh hierarchy for
an efficient computation of a smooth distribution of the fluid mesh. Depending on the underlying
geometry the smoothing of the mesh can often be carried out on the coarsest mesh. Since the dis-
tribution of the mesh can be chosen arbitrarily in the interior we can simply interpolate the solution
to the finer levels. For more demanding geometries an intermediate level for the smoothing process
can also be chosen. In this case the smoothed mesh displacements are restricted and interpolated
to other levels of the hierarchy. Usually it is not necessary to use the finest level for the mesh
smoothing process.
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In this chapter we present two different applications in fluid structure interaction and in which the
developed code was already used. We start with an example from blood flow simulation. The
second example is about flow sensor optimization.

13.1 Blood flow simulation

In the last years computational fluid structure interaction has been seen more and more in the field
of blood flow simulation. This includes the simulation of implants and blood pumps, flows through
different type of vessels and many more. The typical Reynolds number for flow in blood vessels
varies from a few hundred to a couple of thousand directly at the heart. However, the flow is usually
laminar. The vascular wall is viscoelastic and may be exposed to large deformations. In most
simulations simplified models for the structure are used. For simple blood vessel simulations often
also a linear elastic model is assumed. We are aware that much more sophisticated models for blood
flow simulation exist. On the fluid side the use of a Finite Volume methods in general have been
shown to be advantageous and reliable [MAFB+10].

One distinguishes different kinds of blood vessels: arteries, the aorta, arterioles, venules, cap-
illaries and veins. The diameter varies from up to three centimeter to several micrometer. In very
small vessels, e.g, venules, the flow of blood can neither be modeled using a Newtonian fluid nor
can the Navier Stokes equations be used as a reasonable model. Blood is composed mainly of blood
cells and blood plasma. Blood plasma consists mostly of water. Blood cells can be subdivided into
three categories, red blood cells (erythrocytes), white blood cells (leukocytes) and platelets (throm-
bocytes). They have an elastic behavior and undergo large deformation when passing through capil-
laries and venules. In these small vessels the behavior of blood is non Newtonian since the relation
between the shear stress and the shear rate is not linear. However, for larger vessels, i.e larger than

Figure 13.1. Workflow set up for the simulation with patient specific geometries.
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0.1 cm, blood can be assumed as a Newtonian fluid in most cases. The fluid can thus be simulated
employing the incompressible Navier Stokes equations. Within this thesis we have set up a full
work flow using medical data. The intermediate steps of the work flow are shown in Figure 13.1.
Medical data coming from MRI or CT scan are usually provided in DICOM format. In the follow-
ing segmentation process, to each voxel a material is assigned. In our workflow AMIRA [SWH05]
is used for the segmentation. In Amira the segmentation can be done manually, automatically or
by means of semi-automatic tools. The final result of the segmentation procedure is a surface de-
scription of the domain. Usually we use a triangulation for the surface representation. The surface
representation, since it bases on a voxel representation, requires additional smoothing. In this step
of the workflow a high resolution model of the surface is generated. This high quality representa-
tion is later used to adapt the boundary and interface nodes of the refined meshes in the multilevel
solver method to get a better geometry representation within the mesh hierarchy. Finally we use
CUBIT [Tea] for the mesh generation process. Usually a comparatively coarse mesh is created that
is refined to build up a mesh hierarchy. As already mentioned we modify the mesh positions on the
finer level to get a better geometry representation.

For a sample simulation we have used real patient data from the DICOM image sets of OsiriX
[RSR04]. Figure 13.2 shows an aneurysm of the thoracic aorta. The simulation of aneurysm
and haemodynamics in general is quite demanding and topic of current research [BHZ+10, dL09,
CDFQ11, CRD+11]. In this work we realized the full work flow for realistic biomechanical simu-
lations. The validation of the blood flow simulations is not part of this work.

13.2 A bionic flow sensor for hydrodynamic metering

In collaboration with the center of advanced european studies and research (caesar) in Bonn, Ger-
many, our implementation was used for the simulation of a sensor for evaluation of the flow rate of
fluid in a micro canal. Within that project the code was used for optimizing the shape of a prototype
sensor.

As a biological model, the electrosensory and lateral line mechanosensory systems of fish is
used. The main aim at the Institute of Computational Science in Lugano was the optimization of
the shape of a capacitive sensor under certain restrictions. The sensor, which is embedded in a flow
canal is deformed by the fluid impact. The general design of the sensor and the canal can be seen
in Figure 13.3. The sensor consists of a brick or cylinder shaped bar, which is the main obstacle
in the fluid flow. This bar is located on top of a capacitor. The capacitor is segmented in different
parts where a positive or negative change in the capacity of a specific area of the capacitor can
be measured. For the optimization of the sensor different shapes of the canal, the bar and of the
capacitor were tested. The force of the fluid acting on the bar and the capacitor result in a change
of the capacity of the sensor. After some delay the next sensor is deformed. Using the delay in the
signal peak of the different sensors, one can compute the fluid velocity. In Figure 13.4 two extremes
of a simplified version of a model sensor are shown. Here one can easily see that the different shape
of the bar has a crucial impact on the deformation of the capacitor.

The capacitance C0 of a capacitive displacement sensor with two parallel conductive plates, with
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Figure 13.2. Left: MRI image and segmented geometry. Right: Streamlines of the flow in an
aneurysm. The color of the stream lines indicates the pressure distribution. The color of the struc-
ture shows Mises stresses.
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Figure 13.3. Canal with sensor.

Figure 13.4. Two simplified version of a sensor with warped deformations.
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a separation of size d between, is given by the flowing relation

C0 =
ε0KA

d
.

Here ε0 is the permittivity of free space constant, K is the dielectric constant of the material between
and A is the area of the parallel conductive plates. The computation of the capacity change of the
capacitor can be done using the deformation of the capacitor plates [Elg99]. In the computation of
the capacitance we ignore any contribution of fringing fields since the deformation of the gap of the
two parallel conductive plates are small compared to the area of the plates. The upper conductive
plate is deformed by the fluid flow, while the lower plate remains undeformed. The change of
capacitance ∆C between the deformed plate and the undeformed plate can be calculated as

∆C =C−C0 =

∫
A

ε0K
d−w(x,y)

dA− ε0KA
d

and w(x,y) is the deformed plate deflection.
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14 Numerical results

In this chapter we compare different preconditioning strategies for the coupled fluid structure in-
teraction problem using the proposed geometric implicit and geometric explicit discretizations. In
the first section we describe the test example used in this chapter, then we give a comparison of the
scaling behavior of the solver.

14.1 Setting

We use a cuboid flow canal with an inserted brick. The canal is 4 meter long and has a width and
height of 2 meter. The brick is inserted 1.5 meter behind the inflow surface. It is 0.5 meter long
and has a height and a width of 1 meter. The setting is show in Figure 14.1. The inflow has a mean
velocity of 6 m

s . We use a backward Euler with a constant time step size of 0.001 seconds and a
viscosity of ν = 0.01 m2

s . At the outflow boundary we set a zero pressure condition.
This example was chosen for two reasons:

• The number of Newton steps does not vary much from time step to time step, and

• the generation of a series of hexahedral meshes were we double the number of mesh nodes is
rather simple.

For the weak scaling tests we need a sequence of meshes to keep the ratio number degrees of freedom
number processors

constant. We start with a coarse mesh, that is refined in just one spacial direction, keeping the
resolution in the other spacial directions constant. We repeat this procedure for the next mesh using
another spacial direction, the generated sequence is shown in Figure 14.3. This strategy doubles the
number of mesh nodes in the sequence of meshes. However two-thirds of the constructed meshes
are anisotropic meshes. In this Chapter we compare two different preconditioners for the BiCGStab
method. The absolute tolerance of the linear solver is set to 10−6 while the tolerance for the Newton
method is 10−5. The coarse grid solver is a Block Jacobi in combination with an incomplete LU
decomposition were we use a tolerance of 10−6. The pre and postsmoothing processes also uses
the Block Jacobi in combination with an incomplete LU decomposition with a relative tolerance
of 10−3 and a maximum of 30 smoothing steps. With this setting we usually perform 25 to 30
smoothing steps on each level. For the two-level restricted additive Schwarz method we also use a
Block Jacobi in combination with an LU decomposition as coarse grid solver.
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Figure 14.1. Geometry of the scaling benchmark simulation.

Figure 14.2. Illustration of the flow in the scaling test case. The flow directions are given by arrows
colored with the pressure distribution. We show warped structure displacements and color indicates
the displacements distribution.
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Figure 14.3. Sequence of meshes: Non uniform refined just in one spacial direction.
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Figure 14.4. Strong scaling for the multigrid solver in the geometric implicit case. Left: solution
time. Right: Average number of linear iterations per Newton iteration.

14.2 Scalability

In this section we will compare scalability results of different preconditioning strategies. For the
computations we use the Cray XE6 "Monte Rosa" at the Swiss National Supercomputing Center
with 2 × 16-core AMD Opteron Interlagos 2.1 GHz. For strong scaling we start with an amount
of 16 nodes and use the lowermost mesh depicted in Figure 14.3 that fits in memory after two
uniform refinements. On the finest level for the strong scaling test we get 364.650 degrees of
freedom. We use a BiCG-Stab solver with different preconditioning strategies. In the following
we compare the multigrid with the two-level restricted additive Schwarz method with an overlap of
one for the geometric implicit and explicit handling of the fluid domain motion. For the multigrid
we get good strong scaling up to 256 computing nodes. The solver times and number of linear
iterations per Newton step can be found in Figure 14.4. For the geometric explicit discretization we
see a very irregular convergence behavior of the multigrid, therefore we use the geometric explicit
discretization just with the restricted additive Schwarz method. The strong scaling results for the
two-level restricted additive Schwarz in the geometric implicit case can be found in Figure 14.5.
Here we get almost perfect scaling up to 512 computing nodes. The behavior of the geometric
explicit restricted additive Schwarz is shown in Figure 14.6. Compared to the geometric implicit
version, more linear solver steps are needed, but the number stays rather constant in the range of
128 to 512 computing nodes and we get an considerable decrease, up to 50 percent, in the solver
time. This is due to a decrease of the needed number of Newton steps.

For the explicit treatment of the fluid domain displacement degrees of freedom we observe a
signifiant difference in the number of Newton steps needed to solve the system. The geometric
explicit case typically reduces the number of Newton steps by up to sixty percent. For the stabiliza-
tions LPS, SKW and UDS we get a similar behavior as shown in Figure 14.8, were we have chosen
the UDS stabilization to be representative for LPS and LPS as well. The POS stabilization shows a
different behavior that is also shown in Figure 14.8. For this stabilization the reduction of Newton
steps in the geometric explicit case is usually less than for the other stabilization. We also see this
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Figure 14.5. Strong scaling for the additive Schwarz in the geometric implicit case. Left: solution
time. Right: Average number of linear iterations per newton iteration.

Figure 14.6. Strong scaling for the additive Schwarz in the geometric explicit case. Left: solution
time. Right: Average number of linear iterations per newton iteration.
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Figure 14.7. Strong scaling results for the geometric implicit and explicit additive Schwarz method
and the multigrid for different upwind schemes.
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Figure 14.8. We compare number of Newton steps per time step for the geometric implicit and
explicit case for the UDS and the POS stabilization for two different coarse meshes. The coarse
meshes are refined four times and we use the restricted additive Schwarz for solving the system. The
first row shows the the number of Newton steps for the first mesh shown in Figure 14.3. The second
row shows the the number of Newton steps for the second mesh shown in Figure 14.3. Both meshes
are refined two times.

behavior for more complex computational domains. In Figure 14.7 we compare the solution times
for the proposed upwind schemes for all three different preconditioning methods. We see a similar
behavior for all upwind schemes with some small differences in the solution times. Up to 256 com-
puting nodes the multigrid is the most efficient preconditioning strategy. For 512 computing nodes
we get a notable increase in the number of linear iterations. This mostly comes from the smoothing
process within the multigrid method.

The matrix and defect assembly can be done mostly in parallel without any communication
between processors. This is due to the fact that the load balancing is based on distributing elements
to processors. The assembling of mass and stiffness matrix is carried out element by element. The
computed element contributions are finally added to a global matrix, only this last step requires
communication along processor interfaces to obtain a consistent matrix. The assembling is done in
four steps: fluid, fluid geometry, structure, and the assembling of the coupling. This strategy is not
optimized for maximal performance, but it provides flexibility for the replacement and extension
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Figure 14.9. Assembling times for the test example for the first ten time steps of the benchmark
example. Left: Geometric implicit. Right: geometric explicit.

Figure 14.10. Weak scaling of the assembler for geometric implicit and explicit.

of the existing assembling routines. In Figure 14.9 we show a typical time distribution for the
assembling process. The assembly phase in the geometric explicit case is faster than the geometric
implicit case, because in the geometric explicit assembly we set simply a trivial condition to the
displacements degrees of freedom for the fluid domain. The speedup clearly depends on the fluid
structure domain ratio. In Figure 14.9 the weak scaling behavior of the assembler is shown.

For the weak scaling test we keep the ratio

number degrees of freedom
number processors

constant. As before we use the sequence of meshes shown in Figure 14.3. The resulting number of
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Figure 14.11. Weak scaling for the multigrid in the geometric implicit case. Left: solution time.
Right: Average number of linear iteration per newton iteration.

degrees of freedom for the meshes is given the following table:

number of processors degrees of freedom
32 187850
64 364650
128 707850
256 1404810
512 2767050

1024 5450250

For the multigrid we observe a large variation in the number of linear solver steps and in the
solution time for different aspect ratios of the elements of the mesh, shown in Figure 14.11. A
similar behavior of the multigrid is reported for the pure fluid discretization [Näg04]. For 64 and
512 computing nodes we get a (local) peak in the number of Newton iterations. These two meshes
have the same aspect ratio for the elements of the mesh. For a small number of processors, up to 128,
we get a good weak scaling behavior for the multigrid preconditioning. For the two-level restricted
additive Schwarz method we observe in the geometric implicit case a more equal behavior in the
number of linear solution steps for the LPS, SKW and UDS upwind methods. The POS method
however shows an increase in solution time for 256 processors as can be seen in Figure 14.12.
The two-level restricted additive Schwarz method in the geometric explicit case shows a similar
behavior for the number of linear solution steps for all upwind methods. In comparison to the
geometric explicit case we need about one third more linear solver steps per Newton iteration. For
details we refer to Figure 14.12 and Figure 14.13.

For a comparison of the solution time of the multigrid and the two-level additive Schwarz
method in the geometric implicit and explicit case we refer to Figure 14.14. Here we see that
the multigrid is the fastest preconditioning method up to 128 or 256 processors depending on the
upwind scheme. For more processors the additive Schwarz method is more robust than the multi-
grid. In the range of 256 to 1024 computing nodes the geometric explicit case is more efficient
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Figure 14.12. Weak scaling for the additive Schwarz in the geometric implicit case. Left: solution
time. Right: Average number of linear iteration per Newton iteration.

Figure 14.13. Weak scaling for the additive Schwarz in the geometric explicit case. Left: solution
time. Right: Average number of linear iteration per Newton iteration.
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Figure 14.14. Solution time for different upwinding schemes.
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Figure 14.15. We compare the average number of Newton steps for different upwinding schemes.
In the first row we compare the geometric implicit case. Left: Multigrid, Right: Two-level restricted
additive Schwarz. In the second row the number of Newton steps for the geometric explicit case for
the two-level restricted additive Schwarz is shown.

than the geometric implicit using the two-level additive Schwarz method. For the POS upwinding
scheme we see again a more irregular behavior compared to the other upwinding schemes.

In the following we compare the two-level restricted additive Schwarz in the geometric implicit
and explicit case for different overlaps for the Schwarz method. In this comparison we use the
UPS, SKW and LPS upwind schemes. In Figure 14.12 we present the results for the geometric
implicit case and an overlap of two. We see a decrease in the number of linear iterations and a
smoother behavior in the number of Newton steps for the SKW upwind scheme compared to an
overlap of one. In the geometric explicit case that is shown in Figure 14.17, we can see an almost
perfect scaling up to 1024 processors. As in the geometric implicit case we see a decrease in the
number of linear iterations and a very similar behavior in the number of Newton steps compared to
an overlap of one. For an overlap of three this behavior continues. We compare the different upwind
schemes for an overlap of one, two and three in Figure 14.16 and Figure 14.17. The number of linear
iterations decrease, but with an increase of solution time. In Figure 14.20 we compare the solution
time for different overlaps and upwind schemes. For all upwind schemes the geometric explicit
two-level restricted Schwarz method with an overlap of 1 is the fastest preconditioning strategy.
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Figure 14.16. We compare different upwind schemes for the geometric implicit case using the
additive Schwarz method with an overlap of two. In the first row on the left we show solution times,
on the right we show number of linear iterations per Newton step. In the second row we present the
average number of Newton steps.

The solution times for UDS, SKW and LPS behave similarly for all all overlaps. We may conclude
that the stabilization of the fluid and the aspect ratio of the elements has a significant impact on the
convergence rates of the geometric multigrid. Our results show that the two-level restricted additive
Schwarz method is a robust and efficient preconditioning strategy for the coupled fluid structure
interaction problem. Especially in combination with the geometric explicit discretization we get a
good scaling behavior up to 1024 computing cores.
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Figure 14.17. We compare different upwind schemes for the geometric explicit case using the
additive Schwarz method with an overlap of two. In the first row on the left we show solution times,
on the right we show number of linear iterations per Newton step. In the second row we present the
average number of Newton steps.
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Figure 14.18. Weak scaling for the additive Schwarz method in the geometric implicit case with
an overlap of two. Left: solution time. Right: Average number of linear iterations per Newton
iteration.
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Figure 14.19. Weak scaling for the additive Schwarz method in the geometric explicit case with
an overlap of two. Left: solution time. Right: Average number of linear iterations per Newton
iteration.
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Figure 14.20. Comparison of different upwind schemes for the geometric implicit and explicit case
using different overlaps.
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15 Conclusion

In this thesis we present a coupling scheme that combines different discretizations in a monolithic
approach for fluid structure interaction problems. A major challenge in fluid and structure interac-
tion is the transfer of forces and velocities at the fluid structure interface in a stable and efficient
way. The use of two different discretizations has so far been restricted to partitioned coupling con-
cepts, where for many applications the design of a stable coupling is far from trivial. In a monolithic
scheme the coupling is stable by design, since it is done in an implicit way. However, so far mono-
lithic coupling schemes have only employed one type of discretization - typically the Finite Element
method - even though the use of different tailored discretizations is very attractive in this context
as well. The main contribution of the present work is the demonstration of a complete simulation
framework that enables the scalable solution of large-scale fluid structure interaction problems using
a heterogeneous monolithic coupling scheme.

In our method for the fluid discretization we use a vertex centered Finite Volume method where
all unknowns are collocated at the mesh vertices. The structure is discretized using Finite Elements.
The developed implementation was used for two different real world applications. First we describe
an application from the field of bionics, where we consider the optimization of a sensor for the
measurement of flow velocities. Second we describe an example in blood flow simulation. Since
we simulate real world problems, as a consequence of the complexity of the geometries, we end up
with algebraic systems with a large number of degrees of freedom. Therefore we have combined
scalable solvers for the heterogeneous coupled problem. We use Newton’s method to linearize the
fully implicit coupled nonlinear fluid structure problem and apply a Krylov subspace method. For
the Krylov method we present two different preconditioning strategies: a geometric multigrid and
a restricted two-level additive Schwarz method based on a hierarchy of unstructured meshes. We
model the fluid by means of the incompressible Navier Stokes equations in an Arbitrary-Eulerian-
Lagrangian formulation. This leads to an additional quantity to be coupled, displacements for the
fluid domain. For the arising fluid domain displacement problem we presented two strategies. In
the first we solve the fluid domain problem using a Laplacian or an elasticity auxiliary problem,
which is also fully implicitly coupled. In a second approach the fluid domain displacements in
the interior of the fluid domain are handled explicitly, while the deformations of the fluid domain
at the interface are handled fully implicitly. The geometric explicit strategy leads to a significant
decrease in the number of Newton iterations compared to the geometric implicit coupling. We
presented a comparison of the two preconditioning strategies in combination with the geometric
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implicit and explicit coupling of the fluid domain deformations for a benchmark problem. The two-
level restricted additive Schwarz with the geometric explicit coupling approach is a robust solver
and shows good scaling behavior up to 1024 processors.

Our implementation has been designed with modularity in mind such that the replacement or
extension of subproblems is straightforward. A possible extensions for the structure subproblem is
the use of a model for large displacements. As part of future work a turbulence model could be
incorporated into the fluid subproblem or the compressible Navier Stokes equations could be used
to model additional phenomena.

In our work we have developed a fully implicit heterogeneous coupling method for the simula-
tion of fluid structure phenomena discretized with a mixed Finite Volume/Finite Element discretiza-
tion. This thesis covers all aspects from the modeling to the scalable parallel solution of the arising
problems with multi-level and domain decomposition techniques. The implementation developed
for this work provides a solid foundation for further research.
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