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Abstract

We introduce a new multivariate GARCH model with multivariate thresholds in con-

ditional correlations and develop a two-step estimation procedure that is feasible in large

dimensional applications. Optimal threshold functions are estimated endogenously from the

data, and the model conditional covariance matrix is ensured to be positive definite. We

study the empirical performance of our model in two applications using US stock and bond

market data. The conditional volatility of stock returns exhibits GARCH and threshold

structures, but the conditional correlation dynamics depend on piecewise constant thresh-

olds only. We estimate both threshold and GARCH structures in the conditional correlations

of stock and government bond returns. In both applications our model has, in terms of sta-

tistical and economic significance, higher forecasting power than several other multivariate

GARCH models for conditional correlations.
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1 Introduction

In this paper, we present a new multivariate GARCH model with Dynamic Conditional Cor-

relations (DCC) that extends previous approaches by admitting multivariate thresholds in the

conditional volatilities and correlations of multivariate time series. This extension allows us to

account for rich asymmetric effects and dependencies of conditional volatilities and correlations

which are often encountered - for instance - in financial real data applications. As in the classi-

cal Engle (2002) DCC-model, our model estimation is numerically feasible in large dimensions.

Moreover, the positive definiteness of the conditional covariance matrix is ensured in a natural

way by the structure of the model. Finally, thresholds in volatilities and correlations of our

model are not fixed ex ante but are estimated from the data, together with all other parameters

in the model.

To define the threshold function in our model, we extend the tree-structured state space parti-

tion in Audrino and Bühlmann (2001) to a setting with multivariate thresholds in volatilities and

correlations. As shown in Audrino and Trojani (2006) and Audrino (2006), the tree-structured

threshold construction can incorporate a potentially large number of multivariate regimes in

univariate settings in a parsimonious way. In this paper, we study a multivariate model with

a potentially large number of tree-structured thresholds in volatilities and correlations, and we

develop a feasible estimation strategy that can be applied to estimate the model in large dimen-

sional applications as well. The threshold construction is obtained using a binary tree in which

each terminal node defines a local GARCH-type dynamics for volatilities and correlations over a

partition cell of the multivariate state space. The estimation is performed by a simple two-step

procedure that estimates the number and structure of the underlying thresholds together with

the parameters of the local GARCH dynamics for volatilities and correlations. The optimal

threshold structure is identified by solving a high dimensional model selection problem based on

the Schwarz Bayesian Information Criterion (BIC).

We estimate our model in two distinct applications to US stock and bond market data

and focus on the explanatory power for future conditional correlations, comparing the results

with a set of competing models in the literature: Engle’s (2002) DCC-model, Ledoit et al.’s

(2003) flexible multivariate GARCH model, and Pelletier’s (2006) Regime Switching Dynamic

Correlations (RSDC) model. Like our model, the DCC and the RSDC models can be estimated

by a two-step procedure that separates the estimation of the conditional volatility and correlation

dynamics. In order to measure, where possible, the additional forecasting power for correlations,
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we estimate these models using a set of univariate tree structured GARCH-dynamics for volatility

identical to the one in our model. The flexible multivariate GARCH model cannot be estimated

by a two-step estimation procedure. Therefore, the estimated volatility dynamics are different

from the dynamics of our model. Our model differs from the others in the way it specifies

the correlation dynamics. The DCC and the flexible multivariate GARCH models are single-

regime models for correlations, and the RSDC model specifies a very simple regime structure

for conditional correlations. By contrast, our setting can account parsimoniously for GARCH-

type dynamics and multivariate conditional correlation thresholds without ex ante fixing the

structure and the number of thresholds.

Using our tree-structured GARCH-DCC model, we empirically study the relative importance

of GARCH and threshold effects in the conditional correlation dynamics of US stock and bond

returns. The conditional volatility functions of US stock returns exhibit GARCH and threshold

features, but conditional correlations depend on a piecewise constant threshold function. By

contrast, we find both threshold and GARCH–effects for the correlation process of stock and

government bond returns, with estimated thresholds that are functions of lagged stock and

bond returns. In all applications, the estimated tree-structured partition of the state space

improves the forecasting power for conditional correlations relative to the other multivariate

GARCH models. Out-of-sample improvements are in most cases statistically and economically

significant, based on different criteria recently proposed in the literature, including the test

for superior predictive ability (SPA) introduced by Hansen (2005), the model confidence set

approach of Hansen et al. (2003), and the economic measure of volatility and correlation timing

ability for portfolio allocation in Engle and Colacito (2006) and Bandi et al. (2008). These

findings highlight the importance of flexible multivariate threshold and GARCH structures for

forecasting the conditional correlation of stock and bond markets.

In this paper, we develop a multivariate GARCH model for variances and correlations, which

has good forecasting power and which can be estimated exclusively from information on multi-

variate returns. A completely different approach could instead formulate a dynamic model for

realized volatilities and correlations, using information from intra-day returns when available,

in order to produce even more accurate forecasts; see, for example, Andersen et al. (2003) or

Audrino and Corsi (2009). This empirical strategy produces very good results in univariate

settings. However, its extension to the multivariate context is not straightforward because of

the difficulty of accurately estimating realized correlations under non-synchronous intra-day re-
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turns. It has been shown that this problem can produce high efficiency losses in estimating

high-dimensional realized variance covariance matrices; see, for example, Barndorff-Nielsen et

al. (2008) or Chiriac and Voev (2009). Solving this important issue is a crucial topic of ongoing

research.

Section 2 presents our tree-structured GARCH-DCC model and Section 3 describes the two-

step estimation procedure that can be applied to estimate it. Section 4 presents our empirical

study of the conditional correlation dynamics of US stock and bond returns. Section 5 summa-

rizes the main results and concludes.

2 The model

We consider a multivariate stochastic process (Xt)t∈Z with values in Rd:

Xt = Dtεt, (2.1)

where Dt := diag[σ1,t, . . . , σd,t] and σi,t is the conditional standard deviation of the i−th com-

ponent of Xt at time t− 1. (εt)t∈Z is a zero-mean process in Rd with components having a unit

conditional standard deviation by construction. To simplify the notation, conditional means of

Xt have been set to zero in (2.1). The conditional covariance matrix of εt at time t−1 is denoted

by Rt. Therefore, we obtain the following standard factorization of the conditional covariance

matrix of Xt:

Covt−1(Xt) = DtRtDt, (2.2)

Our tree-structured DCC-GARCH model parameterizes the conditional volatility matrix Dt

and the conditional correlation matrix Rt by means of two parametric threshold functions.

Each diagonal element of Dt is modeled as a univariate tree-structured threshold GARCH(1,1)-

model, as in Audrino and Bühlmann (2001) and Audrino and Trojani (2006). The conditional

correlation matrix Rt is modeled according to a threshold DCC-type model described in more

detail below.

2.1 Tree-structured model for Dt

Let Xt,j be the j−th component of Xt. In principle, the thresholds in the volatility dynamics

of Xt,j may depend on all components of Xt−1. For simplicity of exposition, let us assume that
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they are functions of (Xt−1,1, Xt−1,j). Let Pj = {R1,j , ..,Rkj ,j} be a partition of the state space

G := R2 × R+ of (Xt−1,1, Xt−1,j , σ
2
t−1,j):

Pj = {R1,j , . . .Rkj ,j}, ∪kj

s=1Rs,j = G, Ri,j ∩Rs,j = ∅ (i 6= s).

Given a partition cell Ri,j , we specify the local conditional variance dynamics of Xt,j on Ri,j as

a GARCH(1,1) model. Therefore, threshold function σ2
t,j takes the form

σ2
t,j =

kj∑

i=1

(αij + βijX
2
t−1,j + γijσ

2
t−1,j)I[(Xt−1,1,Xt−1,j ,σ2

t−1,j)∈Ri,j ]
, (2.3)

where I[·] is the indicator function and θ1,j is the parameter vector:

θ1,j = {αij , βij , γij ; i = 1, .., kj}.

To completely specify the conditional variance function (2.3), we have to define the class of

partitions Pj that are admissible in our tree-structured model. The first assumption is that

Pj is composed of rectangular cells Ri,j , i = 1, .., kj , so that they can be easily parameterized

by a set of multivariate thresholds for (Xt−1,1, Xt−1,j , σ
2
t−1,j). The second assumption is that

the potential partition cells satisfy a hierarchical structure that can be mapped one-to-one on a

so-called binary tree by means of an iterative statistical procedure. In this way, the multivariate

threshold function in the model follows the structure of a binary tree Tj in which every terminal

node represents a particular regime.

In constructing the binary tree, it is first tested whether a threshold d1 can split the whole

state space into two rectangular partition cells representing two different volatility regimes. In

this case, d1 defines the first node on the binary tree and the first two partition cells represent

the two stems associated with the first node. This tree-structure is preferred with respect to a

model with no variance covariance thresholds if the implied improvement in goodness-of-fit is

large enough. In a second step, it is checked whether one of the two cells identified from the first

step can be further split into two rectangular subcells by an additional threshold d2. The decision

on which subcell can be further split is again based on a comparison of the improvement in the

implied goodness-of-fit. Threshold d2 defines a second node on the binary tree. Two subcells are

associated with this node that define two new stems of the tree and two further volatility sub-

regimes. Such a procedure is iterated until a maximal tree and a maximal number of variance

covariance regimes are obtained. See below for additional details on the model construction

and the estimation procedure. Details on the interpretation of binary trees in the context of

volatility models are provided in Audrino and Trojani (2006).
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Consider, for example, a model with three regimes, i.e., two thresholds, and partitioning

cells R1,j ,R2,j ,R3,j of the form:

R1,j = {Xt−1,j ≤ d1},

R2,j = {Xt−1,j > d1 and Xt−1,1 ≤ d2},

R3,j = {Xt−1,j > d1 and Xt−1,1 > d2},

where the parameters d1, d2 define the two multivariate thresholds in the model. In this case,

R1,j is associated with a regime of low conditioning values Xt−1,j . R2,j corresponds to a regime

with higher conditioning values of Xt−1,j but low values of Xt−1,1. Finally, R3,j implies a

regime in which both conditioning values Xt−1,1 and Xt−1,j are large. For each component Xt,j ,

estimation of (2.3) is achieved by a high dimensional model selection problem that determines

the optimal number and the structure of the relevant thresholds (and hence the partition cells)

in Pj . Details of this estimation procedure for univariate tree structured GARCH(1,1) models

are given in Audrino and Bühlmann (2001) and Audrino and Trojani (2006), Section 2.3.

2.2 Tree-structured model for Rt

Given θ1 = {θ1,j : j = 1, . . . , d}, let:

εt = Dt(θ1)−1Xt,

and:

Rt = Corrt−1(Xt) = Covt−1(εt).

We model Rt by means of a tree-structured model in which conditional correlations satisfy an

Engle (2002)-type local DCC model across several multivariate thresholds. In order to keep the

model tractable, we assume that thresholds in the Rt dynamics depend on εt−1 only via the

average

ρt−1 =
1

d(d− 1)

∑

u6=v

εt−1,uεt−1,v

of the cross products of the component of εt−1. Intuitively, this choice allows us to account

for asymmetric effects in conditional correlations as a function of particular lagged process

realizations Xt−1 and specific movements in average lagged conditional correlation shocks ρt−1.

To define the parametric threshold function Rt in our model, let P = {R̃1, .., R̃w} be a

partition of the state space G̃ := Rd+1 of (Xt−1, ρt−1). We consider the following family of

6



functional forms for Rt:

Rt =
w∑

i=1

ciRitI{(Xt−1,ρt−1)∈R̃i} +

(
1−

w∑

i=1

ciI[(Xt−1,ρt−1)∈R̃i]

)
Idn (2.4)

where c1, . . . , cn ∈ [0, 1], Idn is the d−dimensional identity matrix, and the parametric processes

for Rit, 1 = 1, . . . , n, are given by:

Rit = diag[Qit]−1/2Qit diag[Qit]−1/2 (2.5)

with

Qit = (1− φi − λi)Q + φiεt−1ε
′
t−1 + λiQit−1 , (2.6)

parameters φi, λi ≥ 0 such that φi + λi < 1 for all i = 1, .., w, and Q is, as in the classical

Engle (2002) DCC model, the unconditional covariance matrix of the residuals εt. Given a fixed

partition P, the parameter vector

θ2 = {ci, φi, λi, vech(Q) ; i = 1, .., w}. (2.7)

completely parameterizes the threshold function defining the conditional correlation function

(2.4).

Since for any i = 1, .., w, the local model for Qit satisfies an Engle (2002) DCC-type dynamics,

positive definiteness of the resulting threshold model for Rt is easily implied by the model

structure under the above conditions on the model parameters. When P = {G̃}, i.e. the

partition is trivial, we obtain the Engle (2002) DCC model by setting c1 = . . . = cw = 1.

Therefore, this model is nested in our model. Moreover, by setting φi = λi = 0 for i = 1, .., w,

we can write Rt as:

Rt =
w∑

i=1

ciRI
[(Xt−1,ρt−1)∈R̃i]

+

(
1−

w∑

i=1

ciI[(Xt−1,ρt−1)∈R̃i]

)
Idn. (2.8)

where R is a fixed d−dimensional correlation matrix. In this case, we obtain a piecewise constant

correlation matrix defined by a multivariate threshold function over the partition P. In contrast

to the RSDC model in Pelletier (2006), this particular subcase of our model can account for a

flexible description of multiple multivariate regimes in correlations, because the number and the

structure of the regimes in the estimated model does not have to be fixed from the beginning.

Finally, when φi > 0 or λi > 0 for i = 1, .., w and P is not a trivial partition, by setting
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c1 = . . . = cw = 1 we obtain a tree-structured DCC–model locally satisfying Engle’s DCC-

dynamics over the distinct partitioning cells R̃i.

As for the univariate tree-structured volatility dynamics of the last section, we need to define

the class of admissible partitions P for our correlation function. Again, the only restriction we

put on P is that it is composed of rectangular partition cells. Consistent with our assumptions,

these partition cells are delimited by a set of multivariate thresholds for (Xt−1, ρt−1). In order to

construct such rectangular partition cells, we make use of a binary tree in which every terminal

node represents a cell R̃i. Estimation of the threshold function in the correlation dynamics

(2.4) is achieved by a high dimensional model selection procedure that determines the optimal

number and the structure of the relevant thresholds in the underlying partition. This model

selection scheme is not computationally feasible if applied directly to the multivariate time series

(εtε
′
t)t∈Z. A natural way to reduce estimation complexity is to notice that the partition P is

identical to the one implied by a corresponding tree-structured univariate model for the time

series (ρt)t∈Z. Indeed, since Rt = Et−1(εtε
′
t) it follows:

Et−1(ρt) =
1

d(d− 1)

∑

u6=v

Ruv
t

=
w∑

i=1

ci


 1

d(d− 1)

∑

u6=v

Ruv
it


 I

[(Xt−1,ρt−1)∈R̃i]
(2.9)

where Ruv
t (Ruv

it ) denotes the uv−th component of the matrix Rt (Rit). Therefore, the tree-

structured model

ρt = Et−1(ρt) + ηt, (2.10)

where (ηt)t∈Z is a martingale difference process and Et−1(ρt) is given by equation (2.9), defines

a univariate tree-structured process for ρt based on the same partition P as in the correlation

dynamics (2.4). It follows that we can exploit the univariate model (2.10) to estimate the

threshold structure in equation (2.4). In particular, we can develop a model selection procedure

for selecting the optimal threshold structure in the correlation dynamics. The simplest dynamics

arise in the piecewise constant case:

Et−1(ρt) =
w∑

i=1

ci


 1

d(d− 1)

∑

u6=v

R
uv


 I

[(Xt−1,ρt−1)∈R̃i]
(2.11)

where R
uv is the uv−component of the correlation matrix R in the piecewise-constant dynamics

(2.8). This piecewise constant function is the optimal one that has been estimated in our
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applications to the US equity market in Section 4.1. More generally, for c1 = . . . = cn = 1

and λi, φi > 0, i = 1, .., w, we can also encompass the univariate dynamics of ρt that are

consistent with a tree-structured DCC model of the form (2.4) for correlations. This threshold

structure is the one we estimate in our application of Section 4.2, where we model the correlation

between Treasury bond and stock returns. Model selection across this class of potential threshold

functions for Et−1 [ρt] is performed using the BIC-information criterion. Once the partition P in

(2.10) has been estimated, the parameter (2.7) of the multivariate correlation dynamics can be

estimated using a multivariate conditional pseudo likelihood for εt in which the selected partition

P is held fixed. The next section provides additional details on the estimation procedure used

to estimate our tree-structured DCC model.

3 Estimation of the tree-structured DCC model

Estimation of our tree-structured model is accomplished in two steps. In the first step, an

estimate of the volatility process Dt is obtained by performing d estimations of the univariate

tree-structured conditional volatility dynamics σt,1(θ1,1), .., σt,d(θ1,d) implied by the specification

(2.3). The resulting point estimate D̂t := Dt(θ̂1) is used to compute the estimated scaled

residuals

ε̂t := D̂−1
t Xt. (3.12)

The scaled residuals ε̂t are used in the second step of our procedure to estimate the tree-

structured conditional correlation dynamics (2.4).

3.1 Estimation of tree-structured univariate GARCH-dynamics

Estimation of the d tree-structured univariate volatility functions (2.3) is achieved by a high-

dimensional model selection problem that determines the optimal structure of the relevant

thresholds in any partition Pj of the univariate volatility dynamics (2.3), j = 1, .., d.

In a first step, a largest univariate tree-structured GARCH model is estimated for any

j = 1, .., d, given a fixed maximal number Mj of possible thresholds in (2.3). This first step

delivers a maximal possible partition Pmax
j of the relevant state space G in the univariate

volatility dynamics (2.3).

In a second step, a tree-structured model selection procedure for non-nested models is applied

that selects the optimal subpartition Pj ⊂ Pmax
j out of the maximal one. Model selection is
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performed according to the BIC information criterion implied by a conditionally Gaussian log

likelihood for any process coordinate Xt,j , j = 1, .., d. The resulting optimal tree-structured

volatility model minimizes the BIC information criterion across all tree-structured sub-partitions

of Pmax
j . The complete algorithm used to estimate univariate tree-structured GARCH(1,1)

models is given in Audrino and Bühlmann (2001) and Audrino and Trojani (2006).

The construction of the largest partition Pmax
j proceeds as follows: We first fix a maximal

number Mj + 1 of partition cells in the tree. Because of the tree-structured construction of

Pmax
j , this first step implies a maximal number Mj + 1 of conditional volatility regimes (i.e.,

the number of terminal nodes in the binary tree). A parsimonious specification of the maximal

number Mj of thresholds ensures a statistically and computationally tractable model dimension.

Moreover, it avoids (over) fitting an overly flexible model dynamics, which would result in a poor

out-of-sample forecasting power. For any coordinate axis of the multivariate state space that has

to be split, we search for multivariate thresholds over grid points that are empirical α-quantiles

of the data along the relevant coordinate axis. We fix the empirical quantiles as α = i/mesh,

i = 1, ..,mesh − 1, where mesh determines the fineness of the grid on which we search for

multivariate thresholds. We choose mesh = 8 because, as has been shown in different empirical

studies in the literature, this value leads to reliable forecasting results. The partition of the

state space G = Rd×R+ into a maximal number of Mj + 1 cells is performed as follows. A first

threshold d1 ∈ R or R+ in one coordinate indexed by a component index ι1 ∈ {1, 2, . . . , d + 1}
partitions G as

G = Rleft ∪Rright,

where Rleft = {(Xt−1, σ
2
t−1) ∈ Rd × R+; (Xt−1, σ

2
t−1)ι1 ≤ d1} and (Xt−1, σ

2
t−1)ι1 denotes the

ι1−component of the tuple (Xt−1, σ
2
t−1). Rright is defined analogously using the relation ‘>’

instead of ‘≤’. In a second step, one of the partition cells Rleft, Rright is further partitioned

with a second threshold d2 and a second component index ι2, in the same way as above. We

then iterate this procedure. For the m−th iteration step, we specify a new pair (dm, ιm), which

defines a new threshold dm for the coordinate indexed by ιm, and an existing partition cell that

is going to be split into two sub-cells. For a new pair (d, ι) ∈ R × {1, . . . , d + 1} refinement of

an existing partition P(old) is obtained by picking Rj∗ ∈ P(old) and splitting it as

Rj∗ = Rj∗,left ∪Rj∗,right . (3.13)
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This procedure produces a new (finer) partition of G, given by

P(new) = {Rj ,Rj∗,left,Rj∗,right, j 6= j∗}. (3.14)

In this partition, the tuple (d, ι) describes a threshold d and a component index ι such that

Rj∗,left = {(Xt−1, σ
2
t−1) ∈ Rj∗ ; (Xt−1, σ

2
t−1)ι ≤ d}. Rj∗,right is defined analogously, with

the relation ‘>’ instead of ’≤’. The whole procedure finally determines a partition Pmax
j =

{R1,j , . . . ,RMj+1,j}. This partition can be represented and summarized by a binary tree in

which every terminal node represents a partition cell of Pmax
j . To select the specific thresh-

old and component index (d, ι) in each iteration step of the above procedure we optimize the

corresponding conditional negative (pseudo) log-likelihood in the model.

3.2 Estimation of tree-structured DCC-dynamics

In the first step, we estimate the optimal partition P using the tree-structured model (2.10) for

ρt and the scaled estimated residuals ε̂t. In the second step, we fix the partition P̂ estimated

for the univariate model (2.10), and estimate the parameter θ2 in (2.7) by a multivariate pseudo

maximum likelihood estimator.

(i) Estimation of the univariate tree structured model (2.10). Let

ρ̂t =
∑

u 6=v

ε̂t−1,uε̂t−1,v/[d(d− 1)]. (3.15)

The following tree–structured model for ρ̂t is estimated; compare with equation (2.10):

ρ̂t = Et−1(ρ̂t) + ηt, (3.16)

where (ηt)t∈Z is a martingale difference sequence and

Et−1(ρ̂t) =
w∑

i=1

ci


 1

d(d− 1)

∑

u6=v

R̂uv
it


 I

[(Xt−1,ρ̂t−1)∈R̃i]
. (3.17)

In this equation, R̂it denotes for i = 1, . . . , n a constant correlation matrix when the tree-

structured model for correlations implies a piecewise constant correlation matrix. It then follows

in this case that the conditional mean of ρ̂t is simply a piecewise constant threshold function.

More generally, for c1 = . . . = cn = 1 and φi > 0 or λi > 0, where i = 1, . . . , w, the local

conditional correlation matrix R̂it is simply defined in the same way as Rit in equation (2.5) and

(2.6), but with ε̂t−1 replacing εt−1 in equation (2.6).
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We apply to the series ρ̂t the same estimation procedure given in the last section for individual

conditional variances. First, we estimate a largest univariate tree-structured model for ρ̂t, given a

fixed maximal number M of possible thresholds in (2.10). In all our empirical applications, we fix

the maximal number of candidate thresholds in model (2.10) at M = 4. A tree-structured model

selection procedure for non-nested models is then applied that selects the optimal subpartition P
out of the maximal one. Model selection is performed according to the BIC criterion implied by a

conditionally Gaussian pseudo log likelihood for ρ̂t; see again Audrino and Trojani (2006), section

2.3, for details on this estimation procedure. In our empirical study, we find that this procedure

offers a simple and effective way to reduce the computational costs implied by the estimation of

our multivariate tree-structured model. In particular, in the applications of Section 4 a piecewise

constant conditional correlation function is estimated for equity returns and different types of

bond returns. However, local DCC-type structures are found to better model the conditional

correlations between equity and bond returns.

(ii) Estimation of the tree-structured conditional correlation function Rt. In the second step of

our estimation procedure, we fix the partition P̂ estimated in step (i) and we estimate the pa-

rameter vector θ2 in (2.7) by a pseudo maximum likelihood estimator θ̂2 for θ2, under a Gaussian

multivariate conditional pseudo likelihood for ε̂t. If in step (i) the optimal threshold function

does not imply piecewise constant correlations, we estimate the matrix Q in the dynamics (2.6)

by doing correlation targeting, as proposed by Engle and Sheppard (2001) and Pelletier (2006).

If in step (i) a piecewise constant correlation structure has been selected, in the second step we

estimate a piecewise constant correlation process of the form (2.8). In such a case, we estimate

the constant matrix R by doing correlation targeting in a rolling window of one year of data.

The piecewise constant correlation structure significantly reduces the number of parameters over

which the likelihood function has to be maximized.

3.3 Consistency

Proofs of the consistency of our model selection procedure are very difficult to obtain for the

case where the true model is in the class of tree-structured GARCH-DCC models. Analogously

to the standard Classification and Regression Trees (CART) procedure introduced by Breiman

et al. (1994), it is possible to prove theorems that study the behavior of the prevailing parameter

estimators when growing the tree. However, such results do not imply model selection consis-

tency. Furthermore, it is quite unlikely that the “correct” generating process in our example
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and other similar ones with real data is indeed exactly a tree-structured model for volatilities

and correlations. For this reason, it is more important to prove consistency of the estimators

for the parameters of a tree-structured model under a model misspecification than it is to prove

consistency of the model selection strategy under the assumption of a correctly-specified, tree-

structured model. Such consistency results can be found in Audrino and Bühlmann (2001).

Based on these results, consistency of the two-step estimates (θ̂1, θ̂2) in the tree-structured

DCC-GARCH model under a possible model misspecification can be derived in the standard

way under mild regularity conditions; see, for instance, Newey and McFadden (1994). Moreover,

efficient estimates can be obtained by performing a further one step Newton-Raphson estima-

tion of the full likelihood, using as starting values the parameter estimates obtained from the

two-step procedure (see, e.g., Pagan, 1986).

4 Results

In this section, we test the in-sample and out-of-sample explanatory power of our tree-structured

GARCH-DCC (TreeDCC) model in two different applications involving the econometric analysis

of US stock and bond returns. We compare our model with several multivariate GARCH models

that have been recently proposed in the literature. Some of these models are nested in ours and

can be estimated by a two-step estimation procedure:

• The CCC-GARCH model, as proposed by Bollerslev (1990); this model is nested in our

model.

• The DCC-GARCH model, as proposed by Engle (2002); this model is nested in our model.

• The RSDC-GARCH model with switching regimes in conditional correlations, as proposed

in Pelletier (2006). This model is not formally nested in ours.

Since the individual volatility processes are estimated separately from the correlation dynamics

in these models, in our empirical study we can easily focus on the additional explanatory power

for conditional correlations, which is the main topic of this paper. To achieve this goal, we

estimate volatility processes identical to those in our tree-structured DCC-GARCH setting. The

volatility processes are all specified as univariate tree-structured GARCH(1,1) processes. We

also study the performance of our model relative to the flexible multivariate GARCH setting in

Ledoit et al. (2003), which does not include thresholds in volatilities or correlations and is based
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on a more general correlation dynamics than the one implied by the Engle (2002) DCC model.

Therefore, this model is not nested in our setting. Flexible multivariate GARCH models have

been shown by Ledoit et al. (2003) to describe the dynamics of stock returns quite accurately.

Therefore, they are further natural competitors of our approach, especially in applications that

study the multivariate dynamics of stock markets, as in our first empirical example.

To quantify and compare the in-sample and out-of-sample fit of the different models, we com-

pute several goodness-of-fit statistics for conditional covariances. Since the individual volatility

processes are identical for all but the flexible multivariate GARCH model, this comparison allows

us to investigate the additional explanatory power of our model for explaining the correlation

dynamics. We consider the following goodness-of-fit measures:

• The multivariate negative log-likelihood statistic (NL),

• The multivariate version of the classical mean absolute error statistic (MAE),

• The multivariate version of the classical mean squared error statistic (MSE).

The last two performance measures require the specification of sensible values for the unknown

true conditional covariance matrix. A powerful way of computing good proxies for this matrix is

by means of the so-called realized covariance approach, which is the natural multivariate version

of the realized volatility approach proposed, among others, by Andersen et al. (2001, 2003) and

Barndorff-Nielsen and Shephard (2001, 2002a). We follow this approach in our two real data

applications, in which we collect tick-by-tick return data to compute the realized covariance

between returns using the methodology proposed in Corsi and Audrino (2007). Using such an

accurate proxy for the unobservable conditional covariance matrix allows us to avoid possible

misleading results implied by an unfortunate choice of the loss function used to quantify the

goodness-of-fit and, therefore, a wrong ranking of the different models under investigation; see

Laurent et al. (2009) for more details. All estimated models also include a linear autoregressive

conditional mean function modeled by a simple diagonal VAR(1) process.
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The different statistics used to quantify the in-sample and out-of-sample goodness-of-fit in our

empirical analysis are defined as follows (IS denotes in-sample and OS denotes out-of-sample):

IS-NL: − log-likelihood(Xn
1 ; φ̂)

OS-NL: − log-likelihood
(
Ynout

1 ; φ̂
)

IS-MAE:
1
d2

d∑

i,j=1

1
n

n∑

t=1

| vt,ij − v̂t,ij |

OS-MAE:
1
d2

d∑

i,j=1

1
nout

nout∑

t=1

| vt,ij − v̂t,ij(Yt−1
1 ) |

IS-MSE:
1
d2

d∑

i,j=1

1
n

n∑

t=1

| vt,ij − v̂t,ij |2

OS-MSE:
1
d2

d∑

i,j=1

1
nout

nout∑

t=1

| vt,ij − v̂t,ij(Yt−1
1 ) |2

where in the OS performance measures the expression v̂t,ij(Yt−1
1 ) is the ij−th covariance predic-

tion implied by our out-of-sample data Ynout
1 = {Y1, . . . ,Ynout} at time t under the parameter

estimates obtained from the in-sample data Xn
1 = {X1, . . .Xn}. vt,ij is the realized covariance

between the return series i and j at time t. In all cases, a lower goodness-of-fit measure indicates

a higher forecasting power of a model for conditional correlations.

To evaluate whether differences in performance among the models considered are statis-

tically and/or economically significant, we perform a series of tests recently proposed in the

literature. We investigate the statistical relevance of the improvements in forecasting accuracy

of the TreeDCC model relative to the other approaches:

• We perform the superior predictive ability (SPA) test introduced by Hansen (2005). This

allows us to verify whether each of the models considered is significantly outperformed by

one (or more) of the alternatives.

• We construct a model confidence set (MCS) at the 5% and 10% confidence levels as

proposed by Hansen et al. (2003). We introduce the MCS approach with the goal of

characterizing the best subset of models out of a set of competing ones; see Appendix A

for more details about the MCS construction.

We also evaluate the alternative model specifications using an economic criterion. We apply the

methodology suggested by West et al. (1993) and Fleming et al. (2001, 2003) to quantify the
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economic benefit of different correlation forecasts in the context of a portfolio strategy based on

volatility timing. Similarly to Engle and Colacito (2006) and Bandi et al. (2008), we employ

the variance component of an investor’s long-run mean-variance utility as a metric to quantify

the economic differences between the alternative correlation (covariance) forecasts:

AU =
λ

2
1

nout

nout∑

t=1

(
Rp

t −R
p)2

,

where the portfolio return at time t is given by

Rp
t = Rf + w

′
t−1(Yt −RfId), t = 1, . . . , nout.

R
p is the sample mean of the portfolio returns across the out-of-sample period and λ is a

coefficient of risk aversion. As in Bandi et al. (2008), we use three values of λ = 2, 7, 10. In the

computation of the portfolio returns, Rf is the risk-free rate, Id is a d× 1 unit vector, and wt−1

is a d-vector of portfolio weights obtained by solving the classical mean-variance optimization

problem at time t−1, given a fixed target return on the portfolio. In our real data applications,

we set Rf equal to the average value of the US three-month rate in the out-of-sample period.

In the mean-variance optimization, we use the one-step-ahead conditional covariance forecasts

v̂t,ij(Yt−1
1 ) obtained from the alternative multivariate GARCH models under investigation. We

can interpret the difference between the quantity AU implied by the TreeDCC model and each

other model as the fee that an investor would be willing to pay to switch from correlation

forecasts generated by each alternative model to those of the TreeDCC model. We also use the

generalization of the Diebold-Mariano test for pairwise equal predictive ability (EPA) and the

joint test introduced in Engle and Colacito (2006) to study the statistical significance of the

differences in estimated economic gains. For details, see again Engle and Colacito (2006) and

Bandi et al. (2008).

4.1 First real data application: US equity returns

We consider a multivariate time series of (annualized) daily log-returns for ten US stocks: Alcoa,

Citigroup, Hasbro, Harley Davidson, Intel, Microsoft, Nike, Pfizer, Tektronix and Exxon. Data

are for the sample period between January 2, 2001 and December 30, 2005, amounting to 1256

trading days. The source of the data is Tick Data, a division of Nexa Technologies, Inc. (see

the webpage http://www.tickdata.com). Using these tick-by-tick data, we construct realized

covariances using the method in Corsi and Audrino (2007) and obtain the quantities vt,ij needed

to compute our goodness-of-fit measures.
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We split the sample into two subperiods. The first one consists of n = 752 trading days,

from January 2, 2001 to December 31, 2003. Data from this subperiod are used for in-sample

estimation and performance evaluation. The second subperiod consists of the remaining nout =

504 observations, up to December 30, 2005, and is used for out-of-sample performance evaluation.

We focus on differences in goodness-of-fit implied by the conditional correlation matrix dy-

namics under the different model settings. We estimate our model in two steps as follows. First,

we separately estimate the univariate conditional volatility dynamics for each single return series

and include as possible conditioning variables in the threshold definition (i) its estimated con-

ditional volatility and (ii) the first lag of all components in the multivariate return series. This

threshold volatility structure has proven to produce good empirical results in applications of

tree-structured GARCH models to financial data; see, for example, Audrino and Trojani (2006).

This first step of the estimation procedure is kept identical for all models in which volatilities

can be estimated separately from correlations: the CCC, the DCC, the RSDC, and our tree-

structured DCC model. In this way, we ensure that differences in the goodness-of-fit of these

models with respect to the estimated conditional covariance matrix dynamics are exclusively

due to differences in the explanatory power with respect to conditional correlations. In the

second step of our estimation procedure, we estimate possible tree-structured thresholds and

GARCH-type dynamics in conditional correlations. We include as possible conditioning vari-

ables for the definition of the threshold structure of conditional correlations (i) the first lag of

the average conditional correlation shocks across returns and (ii) the first lag of all components

of our multivariate return series; see again Section 2.2 for details.

4.1.1 Estimation results

The estimation results of our TreeDCC-GARCH model for the ten-dimensional time series of

US stock returns introduced above are summarized in Table 1.

TABLE 1 ABOUT HERE.

Table 1, Panel A, highlights that at most two regimes are necessary to model the individual

conditional variance dynamics accurately. The most important predictor variables impacting on

the corresponding threshold structures are the lagged returns of Microsoft and Harley David-

son. Microsoft and Harley Davidson are the largest stocks in our empirical example. Thus, the

apparent influence of their lagged returns on estimated variance covariance regimes is likely to
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proxy for the latent impact of the aggregate market return on the multivariate variance covari-

ance dynamics. The structure of the estimated conditional correlation dynamics in our model is

summarized in Panel B of Table 1. Similar to volatilities, the most important and statistically

significant predictor variable impacting on the threshold structure of conditional correlations

is the lagged return of Harley Davidson. Moreover, the complete threshold structure of con-

ditional correlations is characterized using only two further lagged stock returns, the returns

of Alcoa and Intel (in descending order of statistical significance), implying four correlation

regimes overall. The first regime is associated with simultaneously low (i.e. under the thresh-

old values) lagged Harley Davidson and Alcoa returns. The second one arises for lagged, low

Harley Davidson returns and for large Alcoa returns. The third regime is obtained for lagged

low Intel returns and large Harley Davidson returns. Finally, the fourth regime is caused by

contemporarily somewhat higher returns of Harley Davidson and Intel. An important difference

between the estimated volatility and correlation dynamics is that the local correlation dynamics

never exhibit GARCH-type effects across the different correlation regimes. In other words, con-

ditional correlations are regime-dependent but piecewise-constant. The local average correlation

levels in the different regimes are similar and vary from 0.897 to 0.962. However, we find that

the BIC criterion increases significantly in all cases when incorporating additional correlation

regimes into the model. This finding is also supported by our out-of-sample tests on the model’s

forecasting power for correlations, which further indicate a clear superiority of our model over

a CCC model with constant correlations.

4.1.2 Multivariate performance results

We now compare the accuracy of the conditional correlation predictions implied by our model

with those implied by the CCC, the DCC, the RSDC and the flexible multivariate GARCH

model. Since all models have the same individual volatility dynamics, with the sole exception

being the flexible multivariate GARCH model, any difference in the goodness-of-fit for the

forecasts of the return covariance matrix is due to a difference in the quality of the forecasts for

conditional correlations. In Table 2, we present the goodness-of-fit measures defined in Section

4 for the real data application to our ten-dimensional stock return series.

TABLE 2 ABOUT HERE.

Our multivariate tree-structured model achieves the highest goodness-of-fit overall across the

models with identical volatility dynamics (TreeDCC, CCC, DCC and RSDC models). The
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RSDC model achieves a better in-sample log-likelihood criterion, but it implies worse MAE

and MSE criteria both in-sample and out-of-sample. Since the RSDC model has more than

twice the number of parameters of the other models, we interpret this finding as evidence of

over-fitting for this particular model. The TreeDCC model’s better performance relative to

CCC, DCC and RSDC ranges between 0.5% and 17% depending on the goodness-of-fit measure

applied. In comparison with the flexible multivariate GARCH model, we find that the out-of-

sample forecasting performance of the latter specification is slightly better in two out of three

cases, despite this model’s having more than double the number of parameters of ours. The

heavy parameterization of the flexible multivariate GARCH model can make it impracticable

for settings that include dozens to hundreds of individual time series. Our TreeDCC model

can produce flexible conditional covariance specifications combined with a sufficient degree of

parsimony. This is why the TreeDCC model, like the CCC, DCC and RSDC models, can be

used to estimate the conditional variance-covariance dynamics of very high-dimensional time

series settings.

4.1.3 Statistical and economic significance of the improvements.

In this section, we provide additional evidence of the statistical and economic significance of the

goodness-of-fit improvements provided by our model. We focus first on the statistical significance

of improvements in conditional variance-covariance forecasts. To this end, we first compute

Hansen (2005) tests of superior predictive ability. p-values of these tests are reported in Table

2 for each model and each out-of-sample performance measure under investigation.

TABLE 2 ABOUT HERE.

Consistent with our previous results, the TreeDCC and flexible multivariate GARCH models

are the only ones not significantly outperformed by any other model at the 5% significance level

based on the MAE and MSE statistics. With respect to the negative log-likelihood statistic, the

RDSC model is also not significantly outperformed by any other model at the 20% significance

level. In this case, however, the p−values implied by TreeDCC and flexible GARCH models

are even higher (above 85% and 60%, respectively). To formally characterize the set of models

not significantly outperformed by other ones, we also computed Hansen et al. (2003) model

confidence sets (MCS). Consistent with the previous findings for SPA tests, we find that the 5%-

MCS based on the OS-MAE and OS-MSE criteria using the range and semi-quadratic statistics
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consist solely of the TreeDCC and flexible MGARCH models. 10%-MCS based on the OS-NL

criterion include the TreeDCC, flexible MGARCH and RSDC models.

We now economically quantify the improvements implied by the different variance-covariance

forecasts and compute the difference between the variance component of the average utility AU

implied by TreeDCC model and the one implied by each of the other models. Table 3 presents

results for three levels of risk aversion parameters λ = 2, 7, 10 and three target expected returns

(6%, 10% and 15%) for the mean variance optimal portfolio. The resulting difference between

average utilities is shown as an annualized fee, and the (annualized) risk-free rate is 3%.

TABLE 3 ABOUT HERE.

The economic gains relative to CCC and DCC models range from about 1 to 180 basis points.

The economically most important gains arise for highly risk-averse investors (λ = 10) and

high target expected returns of 15%. Economically, very small gains arise for low risk aversion

(λ = 2) and a target expected return of 6%. Consistent with our previous findings, economic

gains are clearly smaller relative to RSDC and flexible MGARCH models. In this case, for a

high risk aversion λ = 10 and a target expected return of 15%, they are 52 and 81 basis points,

respectively. We can use a Diebold-Mariano-type test and the joint test proposed in Engle and

Colacito (2006) to test the statistical significance of these differences. Similarly to Bandi et al.

(2008), we find that these differences are not significant at the 5% significance level.

Overall, these results provide evidence that economically and statistically significant differ-

ences in variance-covariance forecasts of our TreeDCC model are likely to arise with respect to

the CCC and DCC models, whereas with respect to the RSDC and flexible GARCH models,

such differences are less likely.

4.1.4 Sensitivity analysis

To investigate the robustness of our findings, it is useful to study the sensitivity of results to

moderate changes in the structure of the estimated TreeDCC model. We perform this task along

several dimensions.

First, we investigate whether moderate changes in the estimated location and threshold

parameters of the conditional correlation process imply significantly different out-of-sample per-

formances, given a fixed tree-structure. Overall, the resulting effect on the out-of-sample per-

formance relative to the estimated TreeDCC model is economically small. The largest impact
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arises by modifying the location parameter c4 in the fourth regime (of plus/minus one standard

error) or the first threshold parameter d1 (to the nearest possible threshold value in the positive

and negative directions). However, the changes in forecasting accuracy are typically smaller

than the changes in MAE and MSE observed for the CCC, DCC, RDSC and flexible GARCH

models.

Second, we investigate whether moderate changes in the tree-structure of the estimated

TreeDCC model imply significantly different out-of-sample performances. We consider the sec-

ond, third and fourth best (in-sample) TreeDCC models estimated according to the procedure

described in Section 3. Once again, the good forecasting performance of our TreeDCC modeling

approach relative to other models seems to be quite robust across various similar choices of

the parameters and threshold structure in the model. More detailed results of this sensitivity

exercise are available from the authors upon request.

4.2 Second real data application: US stock index and bond returns

We consider a two-dimensional time series of (annualized) daily log-returns for the US S&P500

stock index and the US 30-year Treasury bond. The time period under investigation goes from

January 3, 1996 to October 30, 2003 and contains 1899 trading days. The data are provided by

Tick Data. As in the previous section, we exploit the tick-by-tick data to construct the series

of realized volatilities and covariances between stock index and bond returns. As before, for

forecasting evaluation purposes we split the sample in two sub-periods. The first sub-period

consists of n = 1219 trading days and goes from January 3, 1996 to December 29, 2000. The

second sub-period consists of the last three years of data (nout = 680 observations).

4.2.1 Estimation results

The estimation procedure follows the same steps as the one described in Section 4.1. The

individual variance structures and correlation threshold functions estimated for our TreeDCC

model are summarized in Table 4.

TABLE 4 ABOUT HERE.

The estimated threshold functions for volatility each depend only on one lagged return of each

time series of returns. Similarly to previous findings in the literature, e.g., Audrino and Trojani

21



(2006), we find that the conditional variance of stock index returns implies more than two

regimes. The estimated conditional variance of Treasury bond returns implies only two regimes.

We estimate only two regimes as well for the estimated conditional correlation function

of stock index and Treasury bond returns. These regimes depend on the lagged return of

the S&P500 index only. Each regime features local GARCH-type DCC effects as in Engle

(2002), in which the regime-dependent parameters φk and λk imply a different persistence of

correlation shocks: Here the lagged S&P500 index return is below or above the threshold value

d1 = −3.847. This threshold corresponds to the 37.5% quantile of the distribution of S&P500

index returns. The differences in the estimated parameters of the local DCC dynamics are

statistically significant. Interestingly, we find that correlation shocks are quite substantially more

persistent, conditional on a sufficiently negative past stock index return (Xt−1,S&500 ≤ −3.847).

This might be interpreted as an indication that correlation shocks between bond and stock

returns are likely to last longer conditional on flight-to-quality effects caused by a drop in the

stock market. It is also interesting to note that the correlation dynamics estimated for stock

index and bond returns are quite different from those estimated earlier in our application to a

ten-dimensional stock returns time series. The flexibility of our TreeDCC setting is crucial for

allowing us to take these different dynamic correlation features of some asset returns adequately

into account.

4.2.2 Multivariate performance results

Table 5 presents results for the goodness-of-fit measures in Section 4, estimated using stock

index and Treasury bond return data.

TABLE 5 ABOUT HERE.

The TreeDCC model clearly has the best goodness-of-fit results across all in-sample and out-of-

sample measures used. The improvements in out-of-sample performance range from 1% to 25%,

depending on the goodness-of-fit measure applied. Constant or piecewise-constant conditional

correlation dynamics (like the ones implied by the CCC and RSDC models) are largely rejected

by the data and lead to very inaccurate correlation forecasts. In contrast to the previous

application to single stock returns, GARCH-type DCC effects are now crucial in order to improve

the model’s out-of-sample forecasting power for correlations.
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4.2.3 Statistical and economic significance of the improvements.

p-values of Hansen (2005) SPA tests are reported in Table 5. They show that the TreeDCC

model is the only one not significantly outperformed by any other model at the 10% confidence

level and for all performance criteria used.

TABLE 5 ABOUT HERE.

The Engle DCC model yields quite good results and is not outperformed by any model at the

5% confidence level. All other models are clearly dominated at standard significance levels.

MCS results consistently support these findings. 10%-MCS using the range and the semi-

quadratic statistics consist only of the TreeDCC model for all performance criteria used. 5%-

MCS additionally include the DCC model

We conclude this section by economically quantifying the forecast improvements of our

TreeDCC model relative to the competing ones. Table 6 presents the annualized fees (in basis

points) that a conditional mean-variance investor would be ready to pay in order to forecast

future variance-covariance matrices with the TreeDCC instead of the other models considered.

The (annualized) risk-free rate is equal to 3%.

TABLE 6 ABOUT HERE.

The largest economic gains arise with respect to the CCC and RSDC models: For risk aversion

parameters λ ≥ 7 and target expected returns larger than 10%, they range from approximately

100 to 440 basis points per year. Sizable economic gains between 70 and 294 basis points for risk

aversion parameters λ ≥ 7 and target expected returns larger than 10% also arise with respect to

the flexible MGARCH model. Economic gains relative to the DCC model are small in almost all

cases and never exceed 43 basis points per year. Using Diebold-Mariano-type tests we find that

estimated economic gains of the TreeDCC are significant at the 1% significance level relative

to the CCC and RSDC model. Estimated economic gains relative to the flexible MGARCH

model are significant at the 5% significance level. Improvements relative to the classical DCC

model are not statistically significant. Overall, these results provide evidence that economically

and statistically significant differences in variance-covariance forecasts of our TreeDCC model

are likely to arise with respect to the CCC, RSDC and flexible GARCH models, and less likely

relative to the DCC model, which was clearly dominated by the TreeDCC model in the previous

empirical application.
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5 Conclusions

We propose a new multivariate DCC-GARCH model that extends previous models by admitting

multivariate thresholds in conditional volatilities and correlations. The thresholds are modeled

by a tree-structured partition of the multivariate state space and are estimated with all other

model parameters. Two real data applications support the overall higher forecasting power of

the TreeDCC model for return correlations, relative to Bollerslev’s CCC model, Engle’s DCC

model, Pelletier’s RSDC model, and the flexible MGARCH model. We find that the condi-

tional correlations of financial data are often characterized by multivariate thresholds and local

GARCH-type structures and that the forecast improvements of our TreeDCC model are often

economically relevant. Our model can cope in a parsimonious way with such features of the

data even in applications with large cross-sections of financial assets. An interesting avenue

for future research is the joint empirical modeling of the dynamic correlation of the returns of

several asset classes, which are likely to exhibit rich threshold and GARCH-type effects that

could be parsimoniously taken into account by our model.
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A Testing statistical relevance: The Model Confidence Set

We formally test for differences in forecasting power of the competing models in order to select,

if possible, a best one (or a best subset of models) that significantly dominates the others in our

real data application. To this end, we apply the Model Confidence Set (MCS) method proposed

by Hansen et al. (2003).

Without loss of generality, let us denote by D̂t,wk the differences of each term in the OS-MSE

statistic:

D̂t,wk = Ũt;modelw − Ũt;modelk , t = 1, . . . , nout, w, k = 1, . . . , 9, w < k,
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where
nout∑

t=1

Ũt;model = OS-MSE.

Statistics based on time averages Dwk of D̂t,wk allow us to investigate whether there is a sys-

tematic difference in out-of-sample forecasting power between the different models. Tests based

on D̂t,wk are t-type tests. In a similar way, one can proceed by using a different out-of-sample

goodness-of-fit statistic. In our application, we compute tests based on OS-MSE, OS-MAE and

OS-NL.

The MCS is defined as the smallest set of models which, at a given confidence level α,

cannot be significantly distinguished based on forecasting power. The MCS is determined after

sequentially trimming the set of candidate models, which in our application consists of the

five multivariate GARCH specifications introduced above. At each step of such a trimming

procedure, the null-hypothesis of equal predictive ability (EPA) H0 : E[Dt,wk] = 0, ∀w, k ∈ M
is tested for the relevant set of models M at a confidence level α. In a first step, M consists

of all models under investigation. If, in the first step, H0 is rejected, then the worst-performing

model according to the relevant criterion is eliminated. The test procedure is then repeated for

the new set M of surviving models, and it is iterated until the first non-rejection of the EPA

hypothesis occurs. The set of resulting models is called the model confidence set M̂α at the

given confidence level α. In our application, we work with α = 0.05, 0.10.

Our tests of EPA are based on the range statistic TR and the less conservative semi-quadratic

statistic TSQ:

TR = max
k,w∈M

∣∣Dkw

∣∣
√

v̂ar(Dkw)
and TSQ =

∑

k<w

D
2
kw

v̂ar(Dkw)
,

where the sum in TSQ is taken over the models in M, Dkw = n−1
out

∑nout
t=1 D̂t,kw, and v̂ar(Dkw)

is an estimate of var(Dkw) obtained from a block-bootstrap of the series D̂t,kw, t = 1, . . . , nout.

Using statistics TR or TSQ, we test the null hypothesis EPA at confidence level α for model set

M. If hypothesis EPA is rejected for model set M, we compute a worst-performing index, in

order to trim the worst-performing model from M.

The worst-performing index for Modelk is computed as the mean across models w 6= k of

statistic Dwk. More specifically, it is defined as Dk/
√

var(Dk), where Dk = meanw 6=k∈MDkw.

As above, our estimate of var(Dk) is based on a block-bootstrap. The model with the highest

worst-performing index is finally trimmed fromM. Consistency of estimates of the (asymptotic)

distributions of TR and TSQ can be proved under mild regularity conditions on the bootstrap.
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For details, see Hansen et al. (2003).
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Panel A. Individual conditional variance structures.
Series Regimes Optimal predictors

Alcoa 1 −
Citigroup 2 Microsoft

Hasbro 2 Harley Davidson

Harley Davidson 2 Harley Davidson

Intel 1 −
Microsoft 1 −
Nike 2 Exxon

Pfizer 2 Microsoft

Tektronix 2 Harley Davidson

Exxon 1 −

Panel B: Conditional correlation structure and parameters.

Cond. corr. structure Cond. corr. parameters

Rk ck

Xt−1,Harley Davidson ≤ −19.983 and 0.918

Xt−1,Alcoa ≤ −3.553 (0.029)

Xt−1,Harley Davidson ≤ −19.983 and 0.897

Xt−1,Alcoa > −3.553 (0.056)

Xt−1,Harley Davidson > −19.983 and 0.962

Xt−1,Intel ≤ −15.016 (0.016)

Xt−1,Harley Davidson > −19.983 and 0.935

Xt−1,Intel > −15.016 (0.023)

Table 1: Estimation results for a multivariate time series of ten daily (annualized) US stock

returns (in %). Data are for the in-sample time period between January 2, 2001 and December

31, 2003, consisting of 752 observations. Estimated individual conditional variance structures

(Panel A) and estimated conditional correlation structure and parameters (Panel B) are for

the tree-structured GARCH-DCC model fit. Standard errors computed using 1000 model-based

bootstrap replications are given in parentheses.
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US equity returns: Goodness-of-fit results.

Model # par.
IS- OS-

NL MAE MSE NL MAE MSE

CCC-GARCH 80
34959 269.413 176147 21694 105.470 73205.9

(0.0002) (0) (0)

DCC-GARCH 82
34942 269.525 177848 21652 103.259 72731.0

(0.008) (0) (0)

RSDC-GARCH 173
34684 276.604 182999 21634 105.470 74520.1

(0.2203) (0) (0)

TreeDCC-GARCH 84
34927 241.830 152813 21594 86.0280 68831.5

(0.857) (0.124) (0.453)

F-MGARCH 185
34378 188.850 135608 21588 79.6050 69832.7

(0.603) (0.509) (0.0826)

Table 2: Goodness-of-fit of different models for a multivariate time series of ten daily (annualized)

US stock returns (in %). Data are for the time period between January 2, 2001 and December 30,

2005, for a total of 1256 observations. The in-sample estimation period goes from the beginning

of the sample to the end of 2003 (752 observations). NL, MAE and MSE are multivariate versions

of the standard univariate negative log-likelihood, the mean absolute error, and the mean squared

error statistics. # par. reports the number of parameters estimated by the different models. For

the out-of-sample performance measures, p-values of superior predictive ability (SPA) tests are

reported in parentheses.
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US equity returns: Annualized fees (in basis points).

Target Alternative model λ = 2 λ = 7 λ = 10

6%

CCC-GARCH 2.24 7.87 11.24

DCC-GARCH 1.97 6.88 9.83

RSDC-GARCH 0.66 2.31 3.31

F-MGARCH 0.94 3.29 4.73

10%

CCC-GARCH 12.24 42.85 61.22

DCC-GARCH 10.70 37.46 53.52

RSDC-GARCH 3.60 12.59 17.99

F-MGARCH 4.37 15.29 21.85

15%

CCC-GARCH 35.98 125.92 179.88

DCC-GARCH 31.46 110.09 157.28

RSDC-GARCH 10.58 37.02 52.88

F-MGARCH 16.17 56.60 80.85

Table 3: The table contains the annualized fees (in basis points) that a conditional mean-variance

investor with absolute risk-aversion parameter λ = 2, 7, and 10 would be willing to pay to perform

volatility timing using the one-step-ahead conditional correlation and covariance forecasts from

the TreeDCC model (benchmark model) versus those obtained using the CCC, DCC, RSDC,

and the flexible MGARCH models. The portfolio weights are obtained by minimizing the one-

step-ahead conditional variance forecast of a portfolio containing ten US stocks and the risk-free

asset, for a given target expected return on the portfolio. The annual risk-free rate is set to be

equal to 3%. Data are for the out-of-sample time period beginning in January, 2004 and ending

in December, 2005, for a total of 504 daily observations.
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Panel A. Individual conditional variance structures.
Series Regimes Optimal predictors

S&P500 3 S&P500

30-year Treasury bond 2 30-year Treasury bond

Panel B: Conditional correlation structure and parameters.

Cond. corr. structure Cond. corr. parameters

Rk φk λk

Xt−1,S&P500 ≤ −3.847098
0.0490 0.9129

(0.001) (0.024)

Xt−1,S&P500 > −3.847098
0.0222 0.9724

(0.002) (0.019)

Table 4: Estimation results for a two-dimensional time series of daily (annualized) returns (in

%) for the US S&P500 index and the US 30-year Treasury bond. Data are for the in-sample

time period between January 3, 1996 and December 29, 2000, consisting of 1219 observations.

Estimated individual conditional variance structures (Panel A) and estimated conditional corre-

lation structure and parameters (Panel B) are for the tree-structured GARCH-DCC model fit.

Standard errors computed using 1000 model-based bootstrap replications are given in parenthe-

ses.
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US index and bond returns: Goodness-of-fit results.

Model # par.
IS- OS-

NL MAE MSE NL MAE MSE

CCC-GARCH 25
9334.7 63.6310 21197.8 5511.5 97.2933 27592.1

(0.0003) (0) (0)

DCC-GARCH 27
9299.2 59.4418 20458.1 5451.7 74.8853 22357.5

(0.4469) (0.0868) (0.3319)

RSDC-GARCH 30
9334.7 63.6310 21197.8 5511.5 97.2933 27592.0

(0.0014) (0) (0)

TreeDCC-GARCH 29
9290.2 58.7296 20413.5 5440.9 70.7387 20544.6

(0.8435) (0.2711) (0.2246)

F-MGARCH 13
9389.2 65.0761 22752.7 5483.4 86.1455 28271.6

(0.0012) (0.0007) (0.0652)

Table 5: Goodness-of-fit of different models for a two-dimensional time series of daily (annual-

ized) returns (in %) on the US S&P500 index and the 30-year Treasury bond. Data are for the

time period between January 3, 1996 and October 30, 2003, for a total of 1899 observations. The

in-sample estimation period goes from the beginning of the sample to the end of 2000 (1219 ob-

servations). NL, MAE and MSE are the multivariate versions of the standard univariate negative

log-likelihood, the mean absolute error, and the mean squared error statistics. # par. reports

the number of parameters estimated in the different models. For the out-of-sample performance

measures, p-values of superior predictive ability (SPA) tests are reported in parentheses.
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US index and bond returns: Annualized fees (in basis points).

Target Alternative model λ = 2 λ = 7 λ = 10

6%

CCC-GARCH 5.54 19.38 27.68

DCC-GARCH 0.54 1.87 2.68

RSDC-GARCH 5.54 19.38 27.68

F-MGARCH 3.68 12.89 18.41

10%

CCC-GARCH 30.14 105.50 150.72

DCC-GARCH 2.92 10.21 14.59

RSDC-GARCH 30.14 105.50 150.72

F-MGARCH 20.05 70.18 100.26

15%

CCC-GARCH 88.58 310.05 442.92

DCC-GARCH 8.57 29.99 42.85

RSDC-GARCH 88.58 310.05 442.92

F-MGARCH 58.93 206.25 294.64

Table 6: The table contains the annualized fees (in basis points) that a conditional mean-variance

investor with absolute risk-aversion parameter λ = 2, 7, and 10 would be willing to pay to perform

volatility timing using the one-step-ahead conditional correlation and covariance forecasts from

the TreeDCC model (benchmark model) versus those obtained using the CCC, DCC, RSDC,

and the flexible MGARCH models. The portfolio weights are obtained by minimizing the one-

step-ahead conditional variance forecast of a portfolio containing the US S&P500 index, the

30-year US Treasury bond, and the risk-free asset for a given target expected return on the

portfolio. The annual risk-free rate is set to be equal to 3%. Data are for the out-of-sample

time period beginning in January, 2001 and ending in October, 2003, for a total of 680 daily

observations.
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