Representation and Monitoring of
Commitments and Norms using OWL

Nicoletta Fornara®*, Marco Colombetti P
& University of Lugano, via G. Buffi

18, 6900 Lugano, Switzerland

E-mail: {fornaran,colombem} @Qusi.ch

b Politecnico di Milano

piazza Leonardo Da Vinci 32, Milano, Italy
E-mail: marco.colombetti@polimi. it

Monitoring the temporal evolution of obligations and
prohibitions is a crucial aspect in the design of open
interaction systems. In this paper we regard such obli-
gations and prohibitions as cases of social commit-
ment with starting points and deadlines, and propose
to model them in OWL, the logical language recom-
mended by the W3C for Semantic Web applications. In
particular we propose an application-independent on-
tology of the notions of social commitment, temporal
proposition, event, agent, role, and norm, that can be
used in the specification of any open interaction sys-
tem. We then delineate a hybrid solution that uses the
OWL ontology, SWRL rules, and a Java program to
dynamically monitor the temporal evolution of social
commitments, taking into account the elapsing of time
and the actions performed by the agents interacting
within the system.

Keywords: Normative Multiagent Systems, Semantic

Web Technology, Norms, Obligations, Prohibitions,
OWL, Monitoring

1. Introduction

In an open interaction system [1,15], agents seek,
offer, provide, and consume services by interacting
with other agents. Given that interactions develop
in time, an agent’s ability to deal with temporal
specifications is going to be crucial. In many cases
of practical interest, moreover, temporal specifi-
cations concern deontic relationships, like obliga-
tions and prohibitions, that typically have start-

* Corresponding author: Nicoletta Fornara,

fornaran@usi.ch.

ing points and deadlines. As a consequence, de-
ontic temporal reasoning is going to play an im-
portant role in open interaction systems, at spec-
ification, verification, and run time. In this paper
we are concerned with run-time reasoning on the
temporal constraints of obligations and prohibi-
tions. Such deontic relationships may arise from
the norms regulating the context of an interaction,
or from commitments intentionally undertaken by
the agents, for example as a result of a commu-
nicative act. The most immediate applications of
run-time reasoning on obligations and prohibitions
is monitoring [20,10], that is, checking whether the
deontic relationships created during an on-going
interaction are fulfilled or violated. In turn, moni-
toring can be exploited for the management of ac-
tual interactions, or for simulation purposes (i.e.,
to check whether an agent will fulfill or violate its
obligations or prohibitions under predefined test
conditions). In most cases of interest, monitoring
deontic relationships involves reasoning. Actually,
it is possible to single out three relevant compo-
nents of reasoning. The first component has to do
with the intrinsic logic of deontic relationships; for
example, if an action is not prohibited, then it is at
least permitted, and may be obligatory. The sec-
ond component has to do with temporal reasoning;
for example, if an obligatory action has not been
performed, and the deadline for performing it has
elapsed, then the obligation has been violated. Fi-
nally, the third component has to do with domain-
level reasoning; for example, if agent a is obligated
to pay a given amount of money to agent b, and a
executes a bank transfer to the order of b for the
relevant amount, then the obligation is fulfilled.
To deal with these types of reasoning, differ-
ent approaches can be taken. A possible solution
is to adopt a specialized reasoner, which imple-
ments some suitable version of temporal deontic
logic (like for example the one proposed in [8]).
A different solution is to follow an approach to
reasoning based on widely adopted languages and

2 Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL

tools, like for example those developed in the con-
text of Semantic Web technologies (as suggested,
for example, in [19]). Either solution has its pros
and cons. On the one hand, temporal deontic log-
ics are usually defined as extensions of a proposi-
tional language; thus they are not suitable to rep-
resent complex domain knowledge, and it is not
obvious that they would retain certain desirable
properties (like decidable reasoning) if their base
language is extended. On the other hand, some log-
ical languages recommended in the Semantic Web
area, like the OWL Web Ontology Language®, are
suitable to represent domain knowledge, but it is
not clear how to use them to support deontic and
temporal reasoning. In any case, there may be sev-
eral advantages in adopting a language like OWL
for implementing run-time monitoring of obliga-
tions and prohibitions: even if OWL is a very ex-
pressive language, reasoning is still decidable, and
efficient reasoners (like HermiT? and Pellet?®) are
freely available and widely used; moreover, Seman-
tic Web technologies are increasingly becoming a
standard for Internet applications, and thus allow
for a high degree of interoperability of data and
applications, which is a crucial precondition for
the development of open systems. In this paper
we explore how to use OWL (in its OWL 2 DL
(Description Logic) version) to specify obligations
and prohibitions, in such a way that a standard
reasoner can then be exploited to implement run-
time monitoring. Obligations and prohibitions can
respectively be regarded as positive and negative
commitments which, as we argued in our previous
works on the OCeAN meta-model for the specifi-
cation of artificial institutions [14,15,13], are cre-
ated either by the activation of norms associated
to an agent’s role, or by an agent’s performance
of a communicative act, like a promise or the ac-
ceptance of a proposal. More precisely, we shall
use OWL to specify conditional obligations and
prohibitions over time intervals, and show how a
standard OWL reasoner can be exploited to carry
out run-time monitoring. As we shall see, however,
“pure” OWL is not sufficient to deal even with
simple monitoring problems. We found it neces-
sary to complement it with its standard rule ex-
tension, SWRL (Semantic Web Rule Language?),

Thttp://http://www.w3.org/ TR/owl2-overview/
2http://hermit-reasoner.com/
3http://clarkparsia.com/pellet
4http://www.w3.org/Submission/SWRL/

and with special-purpose Java code; basically, this
is due to two main difficulties:

— The treatment of time. OWL has no na-
tive temporal operators; on some occasions
it is possible to bypass the problem by us-
ing SWRL rules and built-ins for comparing
time instants, but this does not provide full
temporal reasoning capabilities. Even the use
of an ontology of time (like OWL Time On-
tology®) does not solve the problem, because
its axiomatic specification of temporal enti-
ties is very weak, and cannot be sufficiently
strengthened within the expressive limits of
OWL.

— The need for closed world reasoning. In many
contexts, not being able to infer that an ac-
tion has been performed is sufficient evidence
that the action has not been performed; one
would then like to infer, for example, that an
obligation to perform the action has been vi-
olated. As standard OWL reasoning is car-
ried out under the open world assumption,
inferences of this type cannot be drawn di-
rectly. However, it is often possible to simu-
late closed world reasoning by adding closure
axioms, computed by an external routine, at
run-time.

The main contribution of this paper, with re-
spect to our previous works, is to show how obliga-
tions and prohibitions can be formalized in OWL
and SWRL for monitoring and simulation pur-
poses with significant performance improvements
with respect to the solution based on the Event
Calculus that we presented elsewhere [13]. We pro-
pose a hybrid solution based on an application-
independent upper ontology of such concepts. This
upper ontology is then complemented by two fur-
ther application-independent components: a set of
SWRL rules, and a Java program accessing the on-
tology through OWL APIS. Finally, the ontology
is adapted to a specific domain by importing an
application-dependent OWL ontology, and asser-
tions are used to represent the temporal evolution
of an interaction.

The paper is organized as follows. In the next
section we briefly introduce OWL and SWRL, that
is, the Semantic Web languages that we use to

Shttp://www.w3.org/TR/owl-time/,
http://www.w3.org/2006 /time.rdf
Shttp://owlapi.sourceforge.net/

Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL 3

specify the normative component of an open in-
teraction system. In Section 3 we specify the algo-
rithms that we use to monitor the temporal evo-
lution of an open interaction system. In Section 4
we define the classes, properties, axioms, and rules
that we take to underlie the normative specifica-
tion of every interaction system. In Section 5 we
present a use case where the proposed system is
used to specify and monitor the interaction among
two agents regulated by a set of norms. Finally
in Section 6 we compare our approach with other
proposals and draw some conclusions.

2. OWL and SWRL

OWL 2 DL is a practical realization of a De-
scription Logic known as SROZQ(D). It allows
one to define classes (also called concepts in the
DL literature), properties (also called roles), and
individuals. An OWL ontology consists of: a set of
class axioms that specify logical relationships be-
tween classes, which constitutes the Terminologi-
cal Box (TBotx); a set of property axioms to spec-
ify logical relationships between properties, which
constitutes a Role Box (RBoz); and a collection of
assertions that describe individuals, which consti-
tutes an Assertion Box (ABox).

Classes are formal descriptions of sets of objects
(taken from a nonempty universe), and individu-
als can be regarded as names of objects of the uni-
verse. Properties can be either object properties,
which represent binary relations between objects
of the universe, or data properties, which represent
binary relationships between objects and data val-
ues (taken from XML Schema datatypes). A class
is either a basic class (i.e., an atomic class name)
or a complex class build through a number of avail-
able constructors, which express Boolean opera-
tions or different types of restrictions on the mem-
bers of the class.

Through class axioms one may specify that sub-
class or equivalence relationships hold between cer-
tain classes, and that certain classes are disjoint.
In particular, class axioms allow one to specify the
domain and range of a property, and that a prop-
erty is functional or inverse functional. Property
azioms allow one to specify that a given property
(or chain of subproperties) is a subproperty of an-
other property, that two properties are equivalent,
or that a property is reflexive, irreflexive, symmet-

ric, asymmetric, or transitive. Finally, assertions
allow one to specify that an individual belongs to a
class, that an individual is (or is not) related to an-
other individual through an object property, that
an individual is (or is not) related to a data value
through a data property, or that two individuals
are equal or different.

OWL can be regarded as a decidable fragment
of First-Order Logic (FOL). The price one pays
for decidability, which is considered as an essen-
tial precondition for exploiting reasoning in practi-
cal applications, is limited expressiveness: even in
OWL 2 many useful first-order statements cannot
be formalized.

Recently certain OWL reasoners, like Pellet and
HermiT, have been extended to deal with SWRL
rules. SWRL is a Datalog-like language, in which
certain universally quantified conditional axioms
(called rules) can be stated. To preserve decidabil-
ity, however, rules are used in the safe mode, which
means that before being exploited in a reasoning
process all their variables must be instantiated by
pre-existing individuals. An important aspect of
SWRL is the possibility of including built-ins, that
is, Boolean functions that perform operations on
data values and return a truth value. For further
details refer to the recent text book on Semantic
Web [18].

In what follows we use the short hand notation
p: C—oD to specify an object property p (not nec-
essarily a function) with class C as domain and
class D as range, and the notation q: C—pT to
specify a data property q with class C as domain
and the datatype T as range. We use capital ini-
tials for classes, and lower case initials for proper-
ties and individuals. Moreover we assume that all
individuals introduced in the ABox are assumed
to be asserted being different individuals.

3. Specification and monitoring of an open
interaction system

We regard an open interaction system as the
concrete realization of one or more artificial in-
stitutions [14,15,13]. Coherently with this stand-
point, the specification of an open interaction sys-
tem includes:

— a general meta-model of artificial institutions,
which includes the definition of the basic enti-

4 Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL

ties that are common to every institution (like
the concepts of temporal proposition, com-
mitment, institutional power, role, and norm,
and the actions necessary for exchanging mes-
sages);

— a set of domain-level models, concerning the
specific institutions relevant to the interac-
tion; these models cover the concepts pertain-
ing to the concrete domain of the interaction
(for example the actions of paying and of de-
livering a product in e-commerce applications,
of bidding in electronic auctions, etc.), and
the specific powers and norms that apply to
the agents playing the roles defined by the in-
stitution. In particular the domain dependent
concepts may be taken from domain ontolo-
gies that have to share with ontology of insti-
tution at least some upper ontology concepts,
like the class of actions or the class of events.

— an extensional model, which represents all the
events that are relevant to describing the spe-
cific interactions taking place within the open
interaction system (e.g., a specific auction ses-
sion, etc.); these could be actual events that
happen during the run-time of a concrete sys-
tem, or events that are pre-recorded as a pos-
sible history of the system for simulation pur-
poses.

In this paper both the general meta-model and
the domain-level models will be specified in OWL
and SWRL, with the goal of monitoring the ful-
filment or violation of obligations and prohibi-
tions. The extensional model is realized as an OWL
ABox, which is updated partly by a standard OWL
reasoner, and partly by an external Java program
which allows us to account for the flow of time,
to update the model with a representation of the
actions performed by the agents and with a repre-
sentation of the relevant events that happen in the
system, and to derive certain logical consequences
under the closed-world assumption. When the sys-
tem is used for simulation, the set of events and ac-
tions that happen at run-time are known since the
beginning, and are represented in the initial ver-
sion of the ABox. In such a case the Java program
simply updates the state of the system to repre-
sent the elapsing of time and to allow closed-world
reasoning on certain classes; then the reasoner de-
duces the state of obligations and prohibitions at
each time instant.

As it partly relies on the closed-world assump-
tion, the system implements a non-monotonic rea-
soning procedure. However, as we shall see, the
closed-world assumption is applied only to certain
OWL classes, for which it is reasonable to assume
that, in a typical application:

— an individual may become a member of the
class at a given time ¢, but since then it may
never leave the class;

— complete knowledge of the member of the
class up the current time is available.

For each such class, C, we define the correspond-
ing class KC of all individuals that at time ¢ are
known to be instances of C. If the assumption of
complete knowledge of the members of class C is
correct, at every time ¢ up to the current time the
classes C and KC do coincide; therefore all conclu-
sions reached under the closed-world assumption
are valid, and will never have to be retracted when
further knowledge is acquired.

3.1. Temporal evolution of the ontology

As a whole, the system operates according to a
sequence of update cycles, controlled by the Java
program. At every update cycle, the explicit rep-
resentations of the relevant events (i.e., agents’ ac-
tions or time events) are asserted in the ABox (we
assume that the events or actions that happen be-
tween two update cycles are queued in a suitable
data structure for being subsequently managed by
the Java program). Then a reasoner is invoked,
to derive consequences on the basis of the OWL
axioms and SWRL rules. Finally, further conse-
quences are drawn under the closed-world assump-
tion. When an update cycle is completed, a stable
state has been reached, in the sense that no fur-
ther consequences can be derived on the basis of
the currently available knowledge. Now a reasoner
can be used to deduce the state of obligations and
prohibitions, and the agents may perform queries
to know their pending obligations or prohibitions
and to react to violations or fulfilments.

The external Java program is used to update
the ABox, recording the elapsing of time and the
actions performed by the interacting agents at run-
time, and to implement closed-world reasoning on
certain classes (see Section 4.1 for details). The
main operations of the external program can be
summarized as follows:

Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL 5

1. initialize the simulation/monitoring time ¢ to
0 and close the extensions of the classes C, on
which it is necessary to perform closed-world
reasoning, by asserting that the class KC is
equivalent to the enumeration of all individ-
uals that can be proved to be members of the
class C retrieved with the retrieve (C) query
command;

2. insert in the ABox the assertion
happensAt(elapse,t);

3. insert in the ABox the events or actions that
happen in the system between ¢t —1 and ¢ and
that are cached in the ActionQueue queue
(this involves creating new individuals of the
class Event);

4. run a reasoner (more specifically, Pellet 2.0)
to deduce all assertions that can be inferred
(truth values of temporal propositions, states
of commitments, etc.);

5. update the closure of the relevant classes C;

6. increment the time of simulation ¢ by 1 and
go to the point 2.

After point 5, given that the ontology has
reached a stable state it is possible to let agents
perform queries about pending, fulfilled, or vio-
lated commitments in order to plan their subse-
quent actions and to apply sanctions or rewards. If
the ontology is used for monitoring purposes, and
given that internal time (i.e., the time as repre-
sented in the ontology) is discrete, it will be nec-
essary to wait the actual number of seconds that
elapse between two internal instants.

The Java pseudo code corresponding to the al-
gorithm previously described is as follows:
t=0;
for each class C

assert KC = {iy,...in}
with {i1,...i,} = retrieve(C);
while t<timeMax {
assert happensAt(elapse,t);
for each event e, in ActionQueue
assert happensAt(e,,t);
run Pellet reasoner;
for each class C
remove equivalent class
axioms of class KC;
assert KC = {iy,...in}
with {i1,...in} = retrieve(C);
run agents queries;
t=t+1;

4. The ontology of obligations and prohibitions

In this section we present the OWL ontology
that specifies the fragment of the OCeAN meta-
model concerning the concepts of temporal propo-
sition, commitment, role, and norm. We specify
the class and property axioms that model those
concepts, and introduce some SWRL rules to de-
duce the truth value of temporal propositions.

Social commitments are a crucial concept in our
approach because they are used to model obliga-
tions and prohibitions that are created either by
the activation of norms or by the performance of
communicative acts, like instances of promising or
accepting a proposal. Thanks to their evolution in
time, commitments can be used to monitor the be-
havior of autonomous agents by detecting their vi-
olation or fulfilment, as a precondition for reacting
with suitable passive or active sanctions or with
rewards [13].

Some general classes of our ontology are intro-
duced to serve as domain or range of the properties
used to describe temporal propositions and com-
mitments; these are class Event, class Action and
class Agent. In particular, an event may be related
through a suitable property to its time of occur-
rence. Class Action is a subclass of Event, and is
the domain of a further property used to represent
an action’s actor. Such properties are defined as
follows:

Event M Agent C L; Action C Event;
hasActor: Action —o Agent;
happensAt: Event — p integer;

To represent the elapsing of time we introduce
in the ABox the individual elapse, that is asserted
to be a member of class Event: Event(elapse).

4.1. Temporal propositions

Temporal propositions are used to represent the
content and condition of social commitments. In
the current OWL specification, they can relate a
proposition to an interval of time in two possi-
ble ways: we distinguish between positive temporal
propositions, used to model obligations (when an
action has to be performed within a given interval
of time), and negative temporal propositions, used
to model prohibitions (when an action must not be
performed during a predefined interval of time).

The classes necessary to model temporal propo-
sitions are TemporalProp, with the two subclasses

6 Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL

TPPos and TPNeg to distinguish between positive
and negative temporal propositions. The classes
IsTrue and IsFalse are used to model the truth val-
ues of temporal propositions. All this is specified
by the following axioms:

TemporalProp M Agent C 1
TemporalProp M Event C 1;
TPPos C TemporalProp;

TPNeg C TemporalProp;

TPPos M TPNeg C L;
TemporalProp = TPPos U TPNeg;
IsTrue £ TemporalProp;

IsFalse = TemporalProp;

IsTrue 1M IsFalse C L;

Note that while TemporalProp is defined as the
disjoint union of TPPos and TPNeg, the same class
is not defined as the disjoint union of IsTrue and
IsFalse. While a temporal proposition cannot have
both truth values, it can have neither, and thus
be undefined. To make an intuitive example, the
temporal proposition “the payment is done before
the end of the month” can become true before the
end of the month (if the payment is done), but
it will remain undefined if the payment has not
be done yet; moreover, if the temporal proposition
does not become true, when the end of the month
elapses it will become false.

In general, the content of a temporal proposi-
tion can be any proposition, describing a state of
affairs of any kind, and in particular an event or an
action. In the current paper, to keep the treatment
simpler we make a more limited use of temporal
propositions, and use them only to describe ac-
tions. The class TemporalProp is therefore the do-
main of the following object and data properties,
and is further specified with suitable cardinality
restrictions:

hasAction: TemporalProp —o Action;

hasStart: TemporalProp —p integer;

hasEnd: TemporalProp —p integer;
hasDuration: TemporalProp —p integer;
TemporalProp C =1 hasAction M =1 hasStart M1
=1lhasEnd M =1hasDuration.

In general the t.,q point of all temporal propo-
sitions can be deduced as the result of the sum
between the tgq,¢ point and the duration of the
interval of the specific temporal proposition. This
can be formalized with the following SWRL rule
that exploits a built-in to add the duration to the
start time of the time interval associated to the
temporal proposition:

TemporalProp(?tp) A hasStart(?tp,?tstart) A
hasDuration(?tp,?d) A

swrlb:add(?tend, ?tstart, 7d) —
hasEnd(?tp,?tend).

Classes IsTrue and IsFalse are used to keep track
of the truth value of temporal propositions. The
membership of a temporal proposition relative to
these classes cannot be specified by means of OWL
axioms, because it involves a temporal compari-
son (i.e., in the current representation, a compari-
son between two integers). In order to exploit suit-
able built-ins, we represent membership relative to
IsTrue and IsFalse with two different SWRL rules,
depending on the type of temporal proposition.

We use a positive temporal proposition (i.e., a
member of class TPPos) to represent the fact that
an action does take place in a given interval of
time, with starting point ts 4+ and end point te,q
and a duration. We therefore introduce a rule to in-
fer that the truth value of the temporal proposition
is true (i.e., the temporal proposition becomes a
member of the class IsTrue) if the action described
by the temporal proposition is performed between
tstart (inclusive) and tenq (exclusive) of the inter-
val of time associated to the same proposition. The
following SWRL rule exploits two built-ins to com-
pare the current time with the extremes of the time
interval associated to the temporal proposition:

RuleTPPosl:
happensAt(elapse,?t) A happensAt(?a,?t) A
TPPos(?tp) A hasAction(?tp,7a) A
hasStart(?tp,?ts) A hasEnd(?tp,?te) A
swrlb:lessThanOrEqual(?ts,?t) A
swrlb:lessThan(?t,?te) — IsTrue(?tp).

We now have to define a rule that, when the time
teng Of a positive temporal proposition elapses, and
the temporal proposition is not true, infers that
the temporal proposition is member of the class Is-
False. Here closed-world reasoning comes into play,
because we cannot assume that the ontology al-
lows us to infer that an action has not been per-
formed: rather, we want to deduce that an action
has not been performed if it cannot be inferred
that it has been performed. As a first attempt, we
may be tempted to define a class

NotlsTrue = TPPos M —lsTrue;
and then use it in a rule like

happensAt(elapse,?te) A hasEnd(?tp,?te) A
TPPos(?tp) A NotlsTrue(?tp) — IsFalse(?tp).

Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL 7

However, this solution would not work, given
that OWL/SWRL reasoners operate under the
open world assumption. This means that the con-
clusion that a temporal proposition is not true can
only be reached for those propositions that can
be positively proved not to be members of IsTrue.
On the contrary, if a temporal proposition is not
inferred to be IsTrue by RuleTPPosl, even if its
deadline has elapsed it will not be inferred to be
IsFalse.

To solve this problem we first assume that our
ABox contains complete information on the ac-
tions performed up to the current time of the sys-
tem. This allows us to safely adopt a closed-world
assumption as far as the performance of actions is
concerned. More specifically, we assume that the
program specified in Section 3 will always update
the ABox when an action has been performed;
therefore, all actions that have been performed up
to the current time are explicitly represented in
the ontology. We then want to infer that all the
temporal propositions, that cannot any longer be-
come true because their deadline has elapsed, are
false.

To get this result we perform a form of closed
world reasoning on class IsTrue. In principle, it
would be possible to solve the problem using an
epistemic operator K (“it is known that”), and
defining NotlsTrue as:

NotlsTrue = TPPos M — K IsTrue.

At the moment, however, the only available rea-
soner that handles the K operator, described in
[22], deals with the ALCK Description Logic [9],
obtained by adding the K operator to the ALC
Description Logic. However, our ontology uses a
much more expressive Description Logic, for which
no comparable reasoner is available. We therefore
take a different approach, based on an explicit clo-
sure of class IsTrue. More precisely, we introduce
a new class, KlsTrue, which is meant to contain
all temporal propositions that, at a given time,
are known to be true. Class KlsTrue therefore rep-
resents, at any given instant, the explicit closure
of class IsTrue. Given its intended meaning, class
KlsTrue has to be a subclass of IsTrue (and, as a
consequence, of TemporalProp): KlsTrue C IsTrue.

To guarantee that class KlsTrue is the closure of
class IsTrue, we re-define it at every update cycle
as equivalent to the enumeration of all individuals
that can be proved to be members of IsTrue. This
is done by the Java program used to update the

ABox to keep track of the elapsing of time (de-
scribed in Section 3), by executing the operations
described in the following pseudo-code:

assert KIsTrue = {tpi,...tp,} with
{tp1,...tp,} = retrieve(IsTrue);

We then introduce a new class, NotKlsTrue
which is intended to contain all temporal proposi-
tions whose deadline is elapsed, and that are not
members of KlsTrue. Such a class is defined as the
difference between the set of all individuals that
belong to the TemporalProp class, and the set of
all the individuals that are members of KlsTrue:

NotKlIsTrue = TemporalProp M — KlsTrue.

We are now ready to write a rule to deduce that
the truth value of a positive temporal proposition
is false if the deadline of the temporal proposition
has elapsed, and it is not known that the associ-
ated action has been performed:

RuleTPPos2:
happensAt(elapse,?te) A hasEnd(?tp,?te) A
TPPos(?tp) A NotKlsTrue(?tp) — IsFalse(?tp).

We now turn to negative temporal propositions,
that is, the temporal propositions that are mem-
bers of the class TPNeg and are used to repre-
sent the fact that a given action is not performed
in a given interval of time. Such propositions be-
long to class IsFalse when the associated action is
performed in the interval between tg44,+ (inclusive)
and te,q (exclusive). This can be deduced by the
following rule:

RuleTPNegl:
happensAt(elapse,?t) A happensAt(?a,?t) A
TPNeg(?tp) A hasAction(?tp,?a) A
hasStart(?tp,?ts) A hasEnd(?7tp,?te) A
swrlb:lessThanOrEqual(?ts,?t) A
swrib:lessThan(?t,?te) — IsFalse(?tp).

Similarly to what we did for RuleTPPos2, we use
the closure of class IsFalse, that we call KlsFalse, to
deduce that a negative temporal proposition IsTrue
when its t.,q has been reached and it has not yet
been deduced that the proposition IsFalse:

KlsFalse C IsFalse;
NotKlsFalse = TemporalProp M — KilsFalse.

RuleTPNeg2:
happensAt(elapse, 7te) A hasEnd(?tp,?te) A
TPNeg(?tp) A NotKlsFalse(?tp) — IsTrue(?tp)

Temporal propositions have a three-valued logic,
because they can be undefined, true, or false. Note

8 Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL

however that this logic, as defined by the previ-
ous axioms and rules, is temporally monotonic, in
the sense that if at a certain instant a temporal
proposition becomes true (false), then it will be
true (false) forever since.

4.2. Commitment

In the OCeAN meta-model of artificial institu-
tions, a commitment is used to model a social rela-
tionship between a debtor a creditor, about a con-
tent and under a condition. Our idea is that by
means of the performance of communicative acts,
or due to the activation of norms, certain agents
become committed to other agents to perform, or
not to perform, a certain action during a given in-
terval of time; such commitments can be condi-
tional on the truth of some proposition. Both the
condition and the content of a commitment are
taken to be temporal propositions, as defined in
the previous subsection. In particular, this means
that a commitment as such is timeless, as its tem-
poral aspects are specified by its content. For ex-
ample, a commitment to execute a payment be-
fore the end of the month is regarded as a time-
less commitment to perform the action described
by the temporal proposition “pay from now to the
end of the month.”

We can regard a commitment to perform an ac-
tion as a conditional obligation, and a commit-
ment not to perform an action as a conditional
prohibition. More precisely, an obligation will be a
commitment whose content is a positive temporal
proposition, and a prohibition will be a commit-
ment whose content is a negative temporal propo-
sition. We assume that if an action is neither oblig-
atory nor prohibited, then it is permitted.

In terms of truth values, both the conditions and
the content can be undefined, true, or false. Intu-
itively, a commitment becomes pending when its
condition becomes true and its content is still un-
defined. Then, if its content also becomes true, the
commitment is fulfilled, and if its content becomes
false the commitment is violated. As the logic of
temporal propositions is temporally monotonic, if
at a certain instant a commitment becomes ful-
filled (violated), it will be fulfilled (violated) for-
ever since. On the contrary, we prefer to consider
the state of being pending as a transient state,
which is assumed when the condition becomes true
(and the content is still undefined) and holds un-

til the commitment becomes either fulfilled or vi-
olated. In our previous works [13] we introduced a
further state, called precommitment, to deal with
the semantics of directive communicative acts, but
this is not relevant to the current paper.

To deal with commitments, we introduce in
the ontology the class Commitment, disjoint from
Event, Agent and TemporalProp.

Commitment M Agent C L;
Commitment M Event C |
Commitment M TemporalProp C L;

Class Commitment is the domain of the following
object properties:

hasDebtor: Commitment —o Agent;

hasCreditor: Commitment — o Agent;

hasContent: Commitment —o TemporalProp;

hasCondition: Commitment —¢ TemporalProp;

hasSource: Commitment — ¢ Norm;

Commitment T 3 hasDebtor M 3 hasCreditor M

=1hasContent M =1hasCondition.

The hasSource property will be used to keep
track of the norm that generated a commitment,
as explained in Section 4.3. The debtor of a com-
mitment is constrained to be the actor of the ac-
tion that is the content of the commitment, as ex-
pressed by the following subproperty axiom:

hasContentohasActionohasActor C hasDebtor.

In some situations it is necessary to create un-
conditional commitments. To avoid writing dif-
ferent rules for conditional and for unconditional
commitments, we introduce a temporal proposi-
tion individual, tpTrue, whose truth value is always
true; that is, we assert: IsTrue(tpTrue). An uncon-
ditional commitment is then defined as a condi-
tional commitment whose condition is tpTrue.

Our next problem is to specify that a given com-
mitment is:

— fulfilled, when its content is true (we assume
that in such a case a commitment is fulfilled
even if its condition is not true);

— wviolated, when its condition is true and its con-
tent is false;

— pending, when its condition is true but its con-
tent is not yet true or false.

First we introduce classes IsFulfilled, IsViolated,
and IsPending as subclasses of Commitment (class
IsPending is not specified to be disjoint from IsVi-
olated and IsPending for reasons that will soon be
explained):

Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL 9

IsFulfilled U IsViolated U IsPending C
Commitment;
IsFulfilled M IsViolated C 1.

The classes IsFulfilled and IsViolated are then
specified by the following axioms:

AxiomlIsFulfilled:
IsFulfilled = 3 hasContent.IsTrue;

AxiomlIsViolated:
IsViolated= (3 hasContent.IsFalse) I
(3 hasCondition.IsTrue).

We now want to specify when a commitment is
pending. As we have said before, this is the case
when the condition is true, and the content is nei-
ther true not false. To establish that a temporal
proposition is neither true not false, we exploit
again classes NotKlsTrue and NotKlsFalse which al-
low us to reason under the closed-world assump-
tion. We define the following axiom:

AxiomIsPending:

IsPending =(3 hasContent.NotKlsTrue)mn
(3 hasContent.NotKIsFalse)
(3 hasCondition.IsTrue).

Note that as classes NotKlsTrue and NotKlsFalse
are updated after running the reasoner, as soon
as the content of a commitment becomes true the
commitment is member of both class IsPending
and class IsFulfilled; however, the commitment will
cease to be a member of IsPending as soon as the
update cycle is completed.

The previous specifications do not distinguish
between obligations and prohibitions, because the
axioms can be applied to both positive and nega-
tive temporal propositions. Of course, the circum-
stances in which an obligation and a prohibition
are fulfilled or violated are different, but this dif-
ference is dealt with by the axioms and rules regu-
lating the membership of temporal propositions to
IsTrue and IsFalse. This means, for example, that
if action X is executed, an obligation to do X will
be fulfilled, and a prohibition to do X will be vio-
lated.

4.8. Norms and Roles
In OCeAN, norms are introduced to model com-

mitments (i.e., either obligations or prohibitions)
that, contrary to those created at run time by the

performance of communicative acts, are brought
about by an institutional setting that is specified
at design time. For example, norms can be used to
state the rules of an interaction protocol, like the
protocol of a specific type of auction, or the rules
of a seller-buyer interaction. Given that norms are
typically specified at design time, when it is impos-
sible to know which individual agents will interact
in the system, one of their distinctive features is
that the debtor and/or creditor of a commitment
generated by a norm have to be specified with ref-
erence to the roles played by the agents within the
institutional entity to which the norm belongs. At
run time, when a norm becomes active (i.e., when
a pre-defined activating event happens), the actual
debtor and creditor of the commitment generated
by a norm are computed on the basis of the roles
played by the agents in the relevant institutional
entity at that moment.

Another important aspect of norms is that to
enforce their fulfilment in an open system, it must
be possible to specify sanctions or rewards. In [12]
we suggested that a satisfactory model of sanc-
tions has to distinguish between two different type
of actions: the action that the violator of a norm
has to perform to extinguish its violation (which
we call active sanction), and the action that the
agent in charge of norm enforcement may perform
to deter agents from violating the norm (which
we call passive sanction). Active sanctions can be
represented in our model by a temporal proposi-
tion, whereas passive sanctions can be represented
as new institutional powers that the agent entitled
to enforce the norm acquires when a norm is vi-
olated. As far as passive sanctions are concerned,
another norm (that in [21] is called enforcement
norm) may oblige the enforcer to punish the vio-
lation. In this paper we do not submit a model of
the notion of power, and thus leave the treatment
of passive sanctions to a future occasion.

4.3.1. Role

Typically, artificial institutions define different
roles. In a run of an auction, for example, we may
have the roles of auctioneer and of participant; in
a company, like an auction house, we may have the
roles of boss and employee; and so on. More gener-
ally, also the debtor and the creditor of a commit-
ment may be regarded as roles. Coherently with
these examples, a role is identified by a label (like
auctioneer, participant, etc.) and by the institu-
tional entity that provides for the role; such an

10 Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL

institutional entity may be an organization (like
an auction house), an institutional activity (like a
run of an auction), or an institutional relationship
(like a commitment). For example an agent may be
the auctioneer of run01 of a given auction, or an
employee of IBM, or the debtor of a commitment
to pay a given amount of money to some benefi-
ciary (who will typically, but not necessarily, be
the creditor of the same commitment).

We introduce class RoleName to represent the
set of possible role labels (like auctioneer, em-
ployee, etc.), and class InstEntity to represent the
institutional entity within which a given role is
played. Elements of class Role are used to reify the
role played by an agent in the context of a given
institutional entity. Those classes are related by
the following object properties:

isPlayedBy: Role —o Agent;

hasRoleName: Role —» RoleName;

isRoleOf: Role —¢ InstEntity;

4.3.2. Norms

Summarizing, a norm has: a reference to an in-
stitutional entity, within which the norm is to be
applied; a content and a condition, modelled using
temporal propositions; a debtor and a creditor, ex-
pressed in term of roles; an activating event; and a
collection of active and passive sanctions. Norms
are represented in our ontology using class Norm
and the following object properties:

isNormOf: Norm —(InstEntity;
hasNormDebtor: Norm — o RoleName;
hasNormCreditor: Norm — RoleName;
hasNormContent: Norm — o TemporalProp;
hasNormCondition: Norm —o TemporalProp;
hasActivation: Norm —o Event;
hasASanction: Norm— o TemporalProp;
hasPSanction: Norm — o Power.

When a norm is activated, that is when the
event described through the hasActivation prop-
erty is happened, it is necessary to create as many
commitments as there are agents playing the role
associated to the debtor of the norm. For exam-
ple, the activation of a norm that applies to all the
agents playing the role of participant of an auc-
tion, creates a commitment for each participant
currently taking part to the auction. The creditors
of these commitments are the agents that play the
role reported in the creditor property of the norm.
All these commitments have to be related, by the

hasSource object property (defined in Section 4.2),
to the norm that generated them; this is impor-
tant to know which norm generated a commitment
and what sanctions apply for the violation of such
commitment.

As every commitment is an individual of the on-
tology, the activation of a norm involves the gener-
ation of new individuals. However, the creation of
new individuals in an ABoz cannot be performed
using standard OWL axiom or SWRL rules. There
are at least two possible solutions to this problem,
which we plan to investigate in our future work.
The first consists in defining a set of axioms in the
ontology that allows the reasoner to deduce the
existence of those commitments as anonymous ob-
jects with certain properties. With this solution,
an agent that needs to know its pending commit-
ments instead of simply retrieving the correspond-
ing individuals will have to retrieve their contents,
conditions and debtors. Another possible solution
consists in defining a new built-in that makes it
possible for SWRL rules to create new individuals
as members of certain classes and with given prop-
erties. A similar problem will have to be solved
to manage the creation of a sanctioning commit-
ment generated by the violation of a commitment
related to a norm, which has as content the tem-
poral proposition associated to the active sanction
of the norm.

In Figure 1 classes, subclasses, and properties
(dotted lines) of the ontology described in this sec-
tion are graphically represented.

5. Use case: vehicle repair contract

In this section we show how it is possible to de-
scribe the state of an interaction system and to
monitor its evolution in time using the proposed
model. The first required step is to integrate the
ontology defined in the previous sections with an
application-dependent ontology, and to insert in
the ABox a set of individuals for representing spe-
cific institutional entities, roles, norms, commit-
ments, and temporal propositions. In a real appli-
cation the commitments and their temporal propo-
sitions will be created by a proper component as
consequence of the performance of communicative
acts (defined in the OCeAN agent communication
library [13]) or by the activation of norms. If the
system is used for monitoring purposes, we assume

Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL 11

| InstE ntity |(-—-| Role |-—)| RoleName

>
isRoleOf R hasRoleName
7

{
/ i,sPIayedBy hasRolgDebtor

— —> property
i —>subclass X D K
Lt TEpOTt to client within £2 days from the reception

Power

hasDe btor :
hasCreditor hasSgufce S~ o ,‘ hasAét'Q/ation
! s’ ~ hasCondition ad S
hasContent h S
77 71 hasasanction \s\
I' hagNContent
hdsN Condition e
! e +hasObiject

hasStart

| IsTrue | IsFalse NotKIsFalse
N
| KlsTrue | KlsFalse NotKIsTrue

Fig. 1. Graphical representation of the ontology.

that there is a way of mapping the actions that are
actually executed onto their counterparts in the
ontology.

The case study that we decide to adopt is the
vehicle repair contract described in [20]. The sce-
nario is as follows: a repair contract regulate the
interactions between a client and a vehicle repair
company and specifies details concerning a partic-
ular repair. In an initial phase the interaction be-
tween the two participants is devoted to the defini-
tion of the properties of a specific repair contract
that is characterized by the type of the repair, the
price, and the deadlines for the performance of the
actions regulated by the contract. This phase con-
sists in the exchange of proper communicative acts
between the client and the repair company, like
request, propose, accept, and reject. The second
phase of the interaction is devoted to the execution
of the contract and it is described as follows: the
client agent has to send the vehicle to the repair
company within kI days from the acceptance of
the contract. The repair company then waits for
the vehicle to arrive, failing which it sends two re-
minders to client. If the vehicle fails to arrive, it
takes an offline action. As per the contract, if the

hasRoIeCledltor ,-,
1
~has Actor hasPSancnon

happensAt

Febiins

"% vehicle arrives the repair company is obligated to
i assess the damage, repair the vehicle, and send a

of the vehicle. On receiving the report, the client is
obligated to send payment to the repair company
within k8 days from the reception of the report. If
the payment is not sent, the repair company sends
two reminders to the client and then takes an of-
fline action. If the payment is sent the client has
to pick-up the vehicle within £/ days from the re-
ception of the report.

The execution of the contract is regulated by
a set of norms that become active when the con-
tract is accepted. When the norms become active
they generate a set of commitments and tempo-
ral propositions for the agent playing the role of
client or the role of repair company in a specific
contract. In this example the repair contract is the
institutional entity where the norms and the roles
are defined and they are represented as follows:

RoleName(repairCompany); RoleName(client);
InstEntity(vRepairContractl);

Role(clientl); Role(repairCompanyl);
hasRoleName(clientl,client);
hasRoleName(repairCompanyl, repairCompany);
isRoleOf{(clientl,vRepairContractl);
isRoleOf(repairCompanyl,vRepairContractl);

The specific agents involved in the execution of
the specific contract vRepairContractl are:

Agent(clAgent); Agent(rcAgent);

isPlayedBy(client1,clAgent);

isPlayedBy(repairCompanyl,rcAgent);

The norm for formalizing the obligation for the
agent playing the role of client to send the vehi-
cle to the agent playing the role of repair company
within k7 days from the acceptance of the con-
tract is described with the following assertions, we
assume that k1 in the specific accepted contract
vRepairContractl is equal to 3 days:

Norm(norm1);
isNormOf(norm1,vRepairContractl);
hasNormDebtor(norm1, client);
hasNormCreditor(norm1, repairCompany);
hasNormContent(norm1, tpSendVehiclel);
hasNormCondition(norm1,tpTrue);
hasActivation(norm1,acceptContractl);

This norm specification refers to two application
dependent actions: the “send vehicle” action, in
the temporal proposition used to describe the con-
tent of the norm, and the “accept contract” action,

12 Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL

in the condition for the activation of the norm. As
consequence the ontology described in the previ-
ous sections has to be integrated with new classes
and property, in order to be able to represent those
actions. The actions introduced up to here have
an actor, usually they have also a recipient and an
object; but for simplicity in this example we repre-
sent the various actions with individuals inserted
in the ABox having only the hasActor property as
described in the following assertions:

Action(acceptContractl);
hasActor(acceptContractl, clAgent);
Action(sendVehiclel);
hasActor(sendVehiclel, clAgent);
TPPos(tpSendVehiclel);
hasAction(tpSendVehiclel, sendVehiclel);
hasDuration(tpSendVehiclel, 3);

The temporal proposition tpSendVehiclel, like
all the temporal propositions that are in the con-
tent of a unconditional norm, has an interval that
starts when the norm is activated. The following
SWRL rule can be used to deduce the 444+ point
of the temporal propositions used in the content
of this first type of norms:

hasActivation(?n, 7e) A happensAt(?e,?7t) A
hasNormCondition(?n, tpTrue) A
hasNormContent(?n,?tp) — hasStart(?tp,?t).

The commitment generated by the activation of
norml is represented as follows:

Commitment(cl); hasSource(cl,norml);
hasDebtor(cl, clAgent);
hasCreditor(cl,rcAgent);
hasContent(cl,tpSendVehiclel);
hasCondition(cl, tpTrue);

If the sendVehiclel action will be performed by
agent clAgent within the interval of time of the
temporal proposition tpSendVehiclel the temporal
proposition becomes member of the IsTrue class,
and the commitment cl becomes fulfilled. Other-
wise when the t.,q instant of time of the temporal
proposition interval is elapsed the temporal propo-
sition becomes member of the IsFalse class and the
commitment becomes violated.

The second norm described in the vehicle re-
pair contract represents the obligation, if the ve-
hicle arrives, for the repair company to assess the
damage, repair the vehicle, and send a report to
client within k2 days from the reception of the ve-
hicle. We assume that k2 in the specific accepted
contract vRepairContractl is equal to 30 days. The

actions of assessing the damage and repairing the
vehicle have not directly observable effects on the
interaction of the agents. As consequence, given
that the model presented in this paper has the goal
to represent and monitor the external observable
interactions among the involved agents, we do not
explicitly model those actions. We represent and
monitor only the action of sending the report to
the client, which has to be performed by the repair
company.
Norm(norm2);
isNormOf(norm2,vRepairContractl);
hasNormDebtor(norm2, repairCompany);
hasNormCreditor(norm2, client);
hasNormContent(norm2, tpSendReportl);
hasNormCondition(norm?2, tpSendVehiclel);
hasActivation(norm2,acceptContractl);

The temporal proposition in the condition of
norm2 has been previously defined because it is
also in the content of norm1. The temporal propo-
sition in the content of this norm is defined as fol-
lows:

TPPos(tpSendReportl); Action(sendReport1);
hasDuration(tpSendReport, 30);
hasAction(tpSendReportl,sendReport1);
hasObject(sendReport1, reportl);
hasActor(sendReportl, rcAgent);

Where the property

hasObject: Action —¢ Object;

is introduced to explicitly represent the object
of a general action, and it will be crucial for the
formalization of the next prohibition. The tem-
poral proposition tpSendReportl, like all temporal
propositions that are in the content of conditional
norms, has an interval that starts when the ac-
tion referred in the condition of the norm is per-
formed. The following SWRL rules can be used to
deduce the t4:q,+ point of the interval of the tempo-
ral propositions used in the content of this second
type of norms:

hasNormCondition(?n, ?tpCond) A

hasAction(?tpCond, 7a) A happensAt(?a,?t) A

hasNormContent(?n,?tpCont) —

hasStart(?tpCont, ?t).

The commitment generated by the activation of
norm2 is:

Commitment(c2); hasSource(c2,norm?2);
hasDebtor(c2, rcAgent);
hasCreditor(c2,clAgent);

Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL 13

hasContent(c2,sendReportl);
hasCondition(c2, tpSendVehiclel);

A reasonable prohibition that can be introduced
in the vehicle repair contract is the prohibition for
the repair company to use non original spare parts
to repair the vehicle. We assume that a spare part
is not original if its brand is different from the
brand of the repaired vehicle. To model this pro-
hibition we have to introduce in our application
dependent ontology the following new properties.
One property is necessary to model the brand of
the specific vehicle that has to be repaired on basis
of the contract vRepairContractl, whose range is a
new class Brand:

hasBrand: InstEntity —¢ Brand;

Another property is necessary to model the
brand of the spare parts used by the repair com-
pany and that has to be written in the report that
the repair company has to send to the client:

hasSpareBrand: Object —¢ Brand;

We now introduce an SWRL rule to deduce that
if the brand of the vehicle is different from the
brand of the spare parts written in the report sent
to the client, the send report action performed by
the repair company counts as performing a send-
BadReportl action:

Action(sendBadReport1);
hasObject(sendBadReportl, reportl);

hasObject(?a, reportl) A happensAt(?a, 7t) A
hasSpareBrand(reportl, ?sBrand) A
hasBrand(vRepairContractl, ?vBrand) A
differentFrom(?vBrand,?sBrand) —
happensAt(sendBadReportl, ?t);

The norm that has to be introduced to represent
the prohibition to perform the sendBadReportl ac-
tion, whose content belongs to the TPNeg class, is
formalized as follows:

Norm(norm3);

isNormOf(norm3,vRepairContractl);

hasNormDebtor(norm3, repairCompany);
hasNormCreditor(norm3, client);
hasNormContent(norm3, tpSendBadReportl);
hasNormCondition(norm3, tpSendVehiclel);
hasActivation(norm3,acceptContractl);

TPNeg(tpSendBadReport1);

hasAction(tpSendBadReportl, sendBadReportl);

hasDuration(tpSendBadReport1, 30);

The commitment generated by the activation of
norm3 is formalized as:

Commitment(c3); hasSource(c3,norm3);
hasDebtor(c3, rcAgent);
hasCreditor(c3,clAgent);
hasContent(c3,tpSendBadReportl);
hasCondition(c3, tpSendVehiclel);

If reportl is sent by the repair company within
the specified interval of time specified in the con-
tent of commitment c2, c2 becomes fulfilled, but if
the brand of the spare components used to repair
the vehicle as it appear in reportl is different from
the brand of the repaired vehicle, commitment c3
becomes violated.

Due to space limitation we do not report the
other two norms that regulate the execution of the
vehicle repair contract but their structure is simi-
lar to the structure of the norm formalized in this
section.

We created the ontology of the described inter-
action system with the free, open source ontology
editor Protégé”. We implemented the Java pro-
gram described in Section 3 using OWL-APT li-
brary to operate on the ontology, and the source
code of the open source OWL 2 reasoner Pellet &
to reason and query it?.

6. Conclusions and Related Works

The problem of modelling, using formal lan-
guages, norms is widely recognized as a crucial
problem by the multiagent community [3,24], and
the problem of runtime monitoring those norms is
becoming more and more an interesting open ques-
tion for the multiagent community and for the web
service community as demonstrated by recent pa-
pers on this topic [10,20]. One of the most relevant
contribution of this paper, with respect to our pre-
vious works and with respect to other approaches
that use other formal languages, is to propose a
model to represent and monitor conditional obli-
gations and prohibitions with stating points and
deadlines. An significant aspect of the proposed
model is that the mentioned limits of using OWL
2 DL for representing and monitoring obligations
and prohibitions have been overcame by proposing

"http://protege.stanford.edu/

8http://clarkparsia.com/pellet

9The .owl file with the classes and properties of the
model, the .owl file with the formalization of the pro-
posed use case, and the Java program can be found at

http://www.people.lu.unisi.ch/fornaran/ontology/ObligationsProhibitionsTP.ht

14 Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL

an hybrid solution formalized using OWL ontolo-
gies, SWRL rules, and a Java program.

An important aspect of the approach proposed
in this paper with respect to another one that we
presented elsewhere based on Event Calculus [13]
is that Semantic Web technologies are becoming
an international standard for web applications and
numerous tools, reasoners, and libraries are avail-
able to support the development and usage of on-
tologies. This, in spite of the drawbacks on time
reasoning and due to the limits of OWL language
expressivity, is a crucial advantage with respect to
other languages used in the multiagent commu-
nity for the specification of norms and organiza-
tions, like as we already mentioned the Event Cal-
culus [25,1], or other specific formal languages like
the one required by the rule engine Jess [16,6], or
a variant of Propositional Dynamic Logic (PDL)
used to specify and verify liveness and safety prop-
erties of multi-agent system programs with norms
[7], or Process Compliance Language (PCL) [17].
A similar advantage can be highlighted if we com-
pare our proposal to use Semantic Web technol-
ogy for obligations and prohibitions monitoring
with other approaches based on augmented transi-
tion networks [10] or timed automata with discrete
data [20].

In literature there are few approaches that use
Semantic Web languages for the specification of
multiagent systems and in particular of obligations
and prohibitions. One of the most interesting one
is the approach for policy specification and man-
agement presented in the KAoS framework [23].
Even if in English the word norm and policy have
different meaning and also in informatics litera-
ture they could be referred to two different con-
cepts [4], in the MAS community they may have
very close meanings. In KAoS a policy could be
a positive or negative authorization to perform an
action (that is a permission or a prohibition) or
it can be an obligation. Like in our approach in
KAoS policies are specified using a set of concepts
defined in an OWL core ontology that could be ex-
tended with application dependent ontologies. A
crucial difference between KAoS approach and the
approach presented in this paper is in the meth-
ods used for monitoring and enforcement of poli-
cies or norms. In KAoS policies are usually regi-
mented (as far as is possible given that it is almost
impossible to regiment obligations [12]) by means
of ”guards“ and are monitored by means of plat-

form specific mechanisms. Differently in our pro-
posal norms are enforced by means of sanctions
or rewards and are monitored by deducing their
fulfillment or violation with an OWL reasoner (we
use Pellet but other OWL 2 reasoners could be
used) and an external Java program.

Another example is the one presented in [19]
where prohibited, obliged and permitted actions
are represented as object properties from agents to
actions. But without the reification of the notion of
obligation and prohibition that we propose here, it
is very difficult to find a feasible solution to express
conditional commitments with deadlines and it is
impossible to detect what norms and how many
time were fulfilled or violated. Moreover the ap-
proach proposed for detecting violations is based
on the external performance of SPARQL queries
and on the update of the ABox to register that
an obligation/prohibition resulted violated; how-
ever SPARQL queries do not exploit the semantics
specified by the ontology, moreover it is necessary
to write different queries for every possible differ-
ent action that has to be monitored and for the
execution of SPARQL queries it is necessary to use
a proper additional tool.

In [2] a hybrid approach is presented: they define
a communication acts ontology using OWL and
express the semantics of those acts through social
commitments that are formalized in the Event Cal-
culus. This work is complementary with respect to
our approach, in fact we specify also the semantics
of social commitments using Semantic Web tech-
nologies. Semantic Web technologies in multiagent
systems can be used also to specify domain specific
ontologies used in the content of norms like in [11].

Another interesting contribution of this work is
due also to the exemplification of a solution to the
problem to performing closed world reasoning on
certain classes in OWL. Another work that tack-
les a similar problem in a different domain, the
ontology of software models, is [5].

Indeed this model is still incomplete and we plan
to investigate how it is possible to manage the cre-
ation of commitments to model norm activations,
and to model active sanctions, moreover we plan to
study how to formalize the notion of power to ex-
press the semantics of declarative communicative
acts and of passive sanctions.

Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL 15

Acknowledgements

The first author is supported by the Swiss
State Secretariat for Education and Research SER
within the COST action number IC0801 ” Agree-
ment Technologies”. Project number C08.0114, ti-
tle “Open Interaction Frameworks: A Model Based
On Artificial Institutions”

References

(1]

2]

A. Artikis, M. Sergot, and J. Pitt. Animated Spec-
ifications of Computational Societies. In C. Castel-
franchi and W. L. Johnson, editor, Proceedings of the
1st International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2002),
pages 535-542. ACM Press, 2002.

I. Berges, J. Bermdez, A. Goi, and A. Illarramendi.
Semantic web technology for agent communication
protocols. In The Semantic Web: Research and Ap-
plications 5th FEuropean Semantic Web Conference,
ESWC 2008, Tenerife, Canary Islands, Spain, June
1-5, 2008 Proceedings, pages 5—18, 2008.

G. Boella, P. Noriega, G. Pigozzi, and H. Verhagen,
editors. Normative Multi-Agent Systems, number
09121 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany.

J. Bradshaw, P. Beautment, M. Breedy, L. Bunch,
S. Drakunov, P. Feltovich, R. Hoffman, R. Jeffers,
M. Johnson, S. Kulkarni, J. Lott, A. Raj, N. Suri, and
A. Uszok. Making agents acceptable to people. pages
355-400. Springer Berlin / Heidelberg, 2004.

M. Brauer and H. Lochmann. An Ontology
for Software Models and Its Practical Implications
for Semantic Web Reasoning. In S. Bechhofer,
M. Hauswirth, J. Hoffmann, and M. Koubarakis, ed-
itors, ESWC, volume 5021 of LNCS, pages 34-48.
Springer, 2008.

V. T. da Silva. From the specification to the imple-
mentation of norms: an automatic approach to gen-
erate rules from norms to govern the behavior of
agents. Autonomous Agents and Multi-Agent Sys-
tems, 17(1):113-155, August 2008.

M. Dastani, D. Grossi, J.-J. Meyer, and N. Tin-
nemeier. Normative multi-agent programs and their
logics. In G. Boella, P. Noriega, G. Pigozzi, and
H. Verhagen, editors, Normative Multi-Agent Sys-
tems, number 09121 in Dagstuhl Seminar Proceed-
ings, Dagstuhl, Germany, 2009. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany.

F. Dignum and R. Kuiper. Combining dynamic
deontic logic and temporal logic for the specifica-
tion of deadlines. In HICSS ’97: Proceedings of the
30th Hawait International Conference on System Sci-
ences, page 336, Washington, DC, USA, 1997. IEEE
Computer Society.

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

F. M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, and
W. Nutt. An epistemic operator for description logics.
Artificial Intelligence, 200(1-2):225274, 1998.

N. Faci, S. Modgil, N. Oren, F. Meneguzzi, S. Miles,
and M. Luck. Towards a monitoring framework for
agent-based contract systems. In CIA ’08: Proceed-
ings of the 12th international workshop on Coopera-
tive Information Agents XII, pages 292—-305, Berlin,
Heidelberg, 2008. Springer-Verlag.

C. Felicissimo, J.-P. Briot, C. Chopinaud, and C. Lu-
cena. How to concretize norms in NMAS? An
operational normative approach presented with a
case study from the television domain. In In-
ternational Workshop on Coordination, Organiza-
tion, Institutions and Norms in Agent Systems
(COIN@AAAI'08), 23rd AAAI Conference on Ar-
tificial Intelligence, Chicago, IL, Etats-Unis, 2008.
AAAI, AAAI Press.

N. Fornara and M. Colombetti. Specifying and en-
forcing norms in artificial institutions. In M. Bal-
doni, T. Son, B. van Riemsdijk, and M. Winikoff, ed-
itors, Declarative Agent Languages and Technologies
VI 6th International Workshop, DALT 2008, Estoril,
Portugal, May 12, 2008, Revised Selected and Invited
Papers, volume 5397 of LNCS, pages 1-17. Springer
Berlin / Heidelberg, 2009.

N. Fornara and M. Colombetti. Specifying Artificial
Institutions in the Event Calculus, volume Handbook
of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models of Information
science reference, chapter XIV, pages 335-366. IGI
Global, 2009.

N. Fornara, F. Vigano, and M. Colombetti. Agent
communication and artificial institutions. Autono-
mous Agents and Multi-Agent Systems, 14(2):121-
142, April 2007.

N. Fornara, F. Vigano, M. Verdicchio, and M. Colom-
betti. Artificial institutions: A model of institutional
reality for open multiagent systems. Artificial Intel-
ligence and Law, 16(1):89-105, March 2008.

A. Garcia-Camino, J. A. Rodriguez-Aguilar,
C. Sierra, and W. Vasconcelos. Constraint rule-based
programming of norms for electronic institutions.
Autonomous Agents and Multi-Agent Systems,
18(1):186—217, 20009.

G. Governatori and A. Rotolo. How do agents comply
with norms? In G. Boella, P. Noriega, G. Pigozzi, and
H. Verhagen, editors, Normative Multi-Agent Sys-
tems, number 09121 in Dagstuhl Seminar Proceed-
ings, Dagstuhl, Germany, 2009. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany.

P. Hitzler, R. Sebastian, and M. Krotzsch. Founda-
tions of Semantic Web Technologies. Chapman &
Hall/CRC, London, 2009.

J. S.-C. Lam, F.Guerin, W. Vasconcelos, and T. J.
Norman. Representing and reasoning about norm-
governed organisations with semantic web languages.
In Siath European Workshop on Multi-Agent Systems
Bath, UK, 18-19 December 2008, 2008.

16 Fornara and Colombetti / Representation and Monitoring of Commitments and Norms using OWL

[20] A. Lomuscio, W. Penczek, M. Solanki, and
M. Szreter. Runtime monitoring of contract regu-
lated web services (extended abstract). In Proceed-
ings of the 9th International Conference on Autono-
mous Agents and Multi-Agent systems (AAMAS10).
Toronto, Canada., pages 1449-1450, New York, NY,
USA, 2010. ACM.

[21] F. Lépez y Loépez, M. Luck, and M. d’Inverno. A
Normative Framework for Agent-Based Systems. In
Proceedings of the First International Symposium on
Normative Multi-Agent Systems, Hatfield, 2005.

[22] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz. Pellet: A practical OWL-DL reasoner.
Web Semantics: Science, Services and Agents on the
World Wide Web, 5(2):51-53, 2007.

[23] A. Uszok, J. M. Bradshaw, J. Lott, M. Breedy,
L. Bunch, P. Feltovich, M. Johnson, and H. Jung.
New Developments in Ontology-Based Policy Man-
agement: Increasing the Practicality and Compre-
hensiveness of KAoS. Policies for Distributed Sys-
tems and Networks, IEEE International Workshop
on, 0:145-152, 2008.

[24] G. E. L. van der Torre, G. Boella, and H. Verhagen,
editors. Special Issue on Normative Multiagent Sys-
tems, volume 17 of Autonomous Agents and Multi-
Agent Systems. Springer Netherlands, August 2008.

[25] P. Yolum and M. Singh. Reasoning about commit-
ment in the event calculus: An approach for specify-
ing and executing protocols. Annals of Mathematics
and Artificial Intelligence, 42:227-253, 2004.

