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Abstract

Creating autonomous agents that learn to act from sequential interactions has
long been perceived as one of the ultimate goals of Artificial Intelligence (AI).
Reinforcement Learning (RL), a subfield of Machine Learning (ML), addresses
important aspects of this objective. This dissertation investigates a particular
problem encountered in RL called representation generation. Two related sub-
problems are considered, namely basis generation and model learning, concern-
ing which we present three pieces of original research.

The first contribution considers a particular basis generation method called
online kernel sparsification (OKS). OKS was originally proposed for recursive
least squares regression, and shortly thereafter extended to RL. Despite the pop-
ularity of the method, important theoretical questions are still to be answered.
In particular, it was unclear how the size of the OKS dictionary, or equivalently
the number of basis functions constructed, grows in relation to the amount of
data available. Characterizing this growth rate is crucial to understanding OKS,
both in terms of its computational complexity and, perhaps more importantly,
the generalization capability of the resulting linear regressor or value function
estimator. We investigate this problem using a novel formula expressing the ex-
pected determinant of the kernel Gram matrix in terms of the eigenvalues of
the covariance operator. Based on this formula, we are able to connect the car-
dinality of the dictionary with the eigen-decay of the covariance operator. In
particular, we prove that under certain technical conditions, the size of the dic-
tionary will always grow sub-linearly in the number of data points, and, as a
consequence, the kernel linear regressor or value function estimator constructed
from the resulting dictionary is consistent.

The second contribution turns to a different class of basis generation meth-
ods, which make use of reward information. We introduce a new method called
V-BEBE V-BEBF relies on a principle that is different from that of previous ap-
proaches based on Bellman error basis function (BEBF), in which approxima-
tions to the value function of the Bellman error, rather than to the Bellman error
itself as in BEBE are added as new basis functions. This approach is justified
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by a simple yet previously unspotted insight, i.e., V-BEBE if computed exactly,
is in fact the error in value estimation, and therefore its addition to the existing
set of basis functions immediately allows the value function to be represented
accurately. We demonstrate that V-BEBF is a promising alternative to BEBE es-
pecially when the discount factor approaches 1, in which case it is proven that
BEBE even if computed exactly, can be very inefficient. Limited experiments,
where both V-BEBFs and BEBFs are approximated using linear combinations of
the input features, are also conducted, and the result is in line with the theoret-
ical finding.

The last contribution focuses on model learning, especially learning the tran-
sition model of the environment. The problem is investigated under a Bayesian
framework, where the learning is done by probabilistic inference, and the learn-
ing progress is measured using Shannon information gain. In this setting, we
show that the problem can be formulated as an RL problem, where the reward
is given by the immediate information gain resulting from performing the next
action. This shows that the model-learning problem can in principle be solved
using algorithms developed for RL. In particular, we show theoretically that if
the environment is an MDE then near optimal model learning can be achieved
following this approach.
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Chapter 1

Introduction

Creating autonomous agents that learn to act from sequential interactions has
long been perceived as one of the ultimate goals of Artificial Intelligence (AI)
[Legg, 2008; Hutter, 2005]. Reinforcement Learning (RL) addresses important
aspects of this objective by answering the following question:

How should an agent interact with a dynamic environment, so as
to maximize the prospect of future reward collected from the environ-
ment?

Reinforcement learning is closely related to how animals and humans act and
learn. Without a teacher, solely from occasional pain and pleasure signals, RL
agents must discover how to interact with an unknown environment to maxi-
mize the pleasure and avoid the pain.

This dissertation addresses a particular problem encountered in RL called
representation generation. Two related subproblems are considered, namely basis
generation and model learning. We present original research concerning the first
topic in Chapter [3|and Chapter [4]and the second one in Chapter 5

This chapter provides a bird’s eye view over the rest of the dissertation in
an informal way. After introducing a few necessary concepts in Section 1.1}, we
explain the general problem of representation generation in Section and
then outline the main contributions in Section [1.3]

1.1 Reinforcement Learning

We consider interactions between an agent and its environment taking place
in discrete time cycles t = 1,2,..., as depicted in Figure In cycle t, the
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Figure 1.1. Agent-environment interaction in RL. At each cycle t, the agent
observes s,, takes action a,, and then receives a real-value reward r,.

agent receives from the environment an observation s,, then sends back an action
a,. In doing this, the agent collects a real-valued reward r,. In RL, the goal
of the agent is to maximize the sum of the rewards received. Comparing to
other problems considered in Machine Learning, e.g., supervised learning, RL
problems are considerably more challenging, particularly because the reward
are usually delayed and sparse.

Traditionally, RL problems are formulated in abstract finite state and action
spaces forming so-called Markov decision processes (MDPs), where it is assumed
that at each moment the observation s,, to which we also refer as the state in this
case, contains all relevant information for predicting future observations and re-
wards in response to any of the agent’s actions. Under this assumption, globally
optimal policies are known to exist and can be represented by (deterministic)
mappings from state to action spaces. It is also known that the optimal policies
maximize the so-called value-function

Vi(s)=R Z}f“lrt s;=s,
t=1

which corresponds to the exponentially discounted sum of reward (with dis-
count factor y € [0,1)) when the agent starts from state s and follows policy
7. Moreover, given the model of the MDB i.e., the conditional distribution dic-
tating how future observations and rewards are generated, there are efficient
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Figure 1.2. General structure of an RL agent. After the inputs are processed
by the sensor block for dimensionality reduction, the agent either follows the
model-based approach (the upper link in the diagram), where it learns a model
of the environment and then plans using the model, or adopts the model-free
approach (the lower link) and learns the policy through value or action-value
functions. The two gray blocks, sensor and model, can all be viewed as the
internal representations created by the agents, and hence are the focus of this
dissertation.

algorithms that find the optimal policies in time polynomial in the number of
states and actions.

In RL, we are mainly concerned with the scenario where the agent has no,
or only partial, knowledge about the model. To achieve the goal, the agent must
interact with the environment to gather the necessary information. There are
two general approaches to this problem, summarized in Figure Model-based
methods (upper branch in the diagram) first learn an (approximated) model
of the environment (the model-learning step), then find the optimal policy on
the learned model (the planning step). Model-free algorithms (lower branch),
bypass the model-learning step and learn the value function directly from the
interactions, primarily using a family of algorithms called Temporal Difference
(TD; [Sutton, [1988]) learning. The policy can then be obtained from the value
function.

In most real-world RL problems, the cardinality of the state space is too
large to permit explicit storage of the value function. In addition, it is often too
expensive to gather the amount of data required to reliably estimate the value
function (a phenomenon known as overfitting in Machine Learning). In such
cases, it is common to reduce the dimensionality of observation via the sensor
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block in Figure then approximate the value function using some tractable
form. This approach is generally referred to as function approximation (FA) in
RL. A popular FA technique is linear function approximation (LFA), where the
value function is represented by

v(s) 22:;1 0,¢,(s). (1.1)

Here ¢4, ..., ¢y are called the basis functions, and 60, ..., 6 are the correspond-
ing coefficients. Usually the basis functions can be computed on the fly, and only
the N weights have to be learned, where N is usually much smaller than the
number of states. Hence, both the storage and overfitting issues can be allevi-
ated by using LFA.

1.2 Representation Generation

The past several decades have seen significant advances in RL. In particular, im-
portant progress has been made in a number of directions concerning MDP In
the model-based case, efficient planning algorithms have been developed which
are capable of solving MDPs with millions of states. In model-free RL, the fam-
ily of TD methods, when combined with function approximators, has demon-
strated convincing performance in a wide range of real-world problems [e.g.,
see [Tesauro, 1995; [Crites and Barto, (1996} Silver et al., 2012]]. In particular,
efficient algorithms have been developed for estimating the weights in LFA.

As the state-of-the-art of RL advances rapidly, numerous new challenges
emerge. In particular, we focus on the following two problems (see the two
gray blocks in Figure [1.2):

* In model-based RL, the model learning problem is still by and large open.
In particular, since the efficiency of the model learning is affected by the
policy that the agent follows to gather information, it is important to se-
lect the actions intelligently. Traditionally, in model learning, the data is
collected by following random policies, which proves to be inefficient due
to the random walk behavior generated, especially when the state space is
large. To address this issue, model learning methods based on active learn-
ing [[Fedorov, (1972} Thrun and Moller, 1991; Jonsson and Barto, |2007]],
artificial curiosity [[Schmidhuber, 1990, 1991} Storck et al., [1995; Wyatt
et al., [2011}; Ross et al., 2011} Schmidhuber, 2010] and intrinsic reward
[Singh et al., 2004; Ozgiir Simsek and Barto, [2006]] have been proposed.
However, the theoretical understanding of these approaches is still lacking.
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* In model-free RL using LFA, the majority of the effort has been devoted to
estimating the weights over a pre-defined set of basis functions (Equation
[1.1). Usually, the basis functions are designed by domain experts after
close examination of the problem to be solved. However, as the tasks grow
in complexity, hand-crafting basis functions becomes increasingly difficult,
and it becomes necessary to consider automatic basis function generation.
The literature on automatic basis generation is relatively new, including
the earlier work on basis adaptation [[Menache et al., 2005], Bellman Er-
ror Basis Functions (BEBFs) [Keller et al., 2006; [Parr et al., 2007; Ma-
hadevan and Liu, |2010], Proto-value functions [Mahadevan et al., 2007],
and algorithmic methods for feature extraction [[Hutter, 2009b]. In addi-
tion, there is growing trend to study the basis generation problem using
Machine Learning methods developed for regression and dimensionality
reduction [[Engel, 2005} Kolter and Ng, 2009aj; [Boots and Gordon, 2010].
At the same time, a number of open problems arise concerning the theo-
retical properties of these algorithms, which call for further investigation.

The two topics above can be summarized into a single, general problem: how to
form effective internal representations for RL in environments that exhibit high
dimensionality. The representation can be a model of the environment in the
model-learning problem, or the set of basis functions in the model-free setting.
Up to now, this general problem is far from solved, and will remain a central
focus in RL research.

1.3 Contributions

In this dissertation, we present three pieces of original research centered around
representation generation, after providing the necessary background concerning
RL in Chapter 2l More specifically, Chapter [3| and [4] are devoted to the basis
generation problem encountered in the model-free case, and Chapter (5| focuses
on the problem of model-learning (see Figure[1.3). The following is an overview
of these three, primarily theoretical, contributions:

* In Chapter |3}, we study a particular basis generation method called online
kernel sparsification (OKS). OKS was originally proposed by Engel et al.
[2004] for recursive least squares regression, and shortly thereafter ex-
tended to RL [Engel, 2005]. Despite the popularity of the method, im-
portant theoretical questions are still to be answered. In particular, it was
unclear how the size of the OKS dictionary, or equivalently the number
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Figure 1.3. Contributions in Tree Diagram

of basis functions constructed, grows in relation to the amount of data
available. Characterizing this growth rate is crucial for the understand-
ing of OKS, both on its computational complexity and, perhaps more im-
portantly, the generalization capability of the resulting linear regressor or
value function estimator.

We investigate this problem using a novel formula expressing the expected
determinant of the kernel Gram matrix in terms of the eigenvalues of the
covariance operator. Based on this formula, we are able to connect the
cardinality of the dictionary with the eigen-decay of the covariance oper-
ator. In particular, we prove that under certain technical conditions, the
size of the dictionary will always grow sub-linearly in the number of data
points, and, as a consequence, the kernel linear regressor or value function
estimator constructed from the resulting dictionary is consistent.

Chapter [4] turns to a different class of basis generation methods, which
make use of the reward information, where we introduce a new method
called V-BEBE V-BEBF relies on a principle that is different from that of
Bellman error basis function (BEBF), in which the approximations to the
value function of the Bellman error, rather than to the Bellman error itself
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as in BEBF [see e.g. Parr et al., [2007]], are added as new basis functions.
This approach is justified by a simple yet previously unspotted insight, i.e.,
V-BEBE if computed exactly, is in fact the error in value estimation, and
therefore its addition to the existing set of basis functions immediately
allows the value function to be represented.

We demonstrate that V-BEBF is a promising alternative to BEBE especially
when the discount factor y approaches 1, in which case it is proven that
BEBE even if computed exactly, can be very inefficient. Limited experi-
ments, where both V-BEBFs and BEBFs are approximated using linear com-
binations of the input features, are also conducted, and the result is in line
with the theoretical finding.

* Chapter |5 focuses on model learning, especially learning the transition
model of the environment. The problem is investigated under a Bayesian
framework, where the learning is done by probabilistic inference, and the
learning progress is measured using Shannon information gain. In this set-
ting, we show that the problem can be formulated as an RL problem, where
the reward is given by the immediate information gain resulting from per-
forming the next action. This shows that the model-learning problem can
in principle be solved using algorithms developed for RL. In particular, we
show theoretically that if the environment is an MDB then near optimal
model learning can be achieved following this approach.

Chapter [3|and [4] are based on two publications [[Sun et al., 2012} 2011a]] in the
International Conference on Machine Learning (ICML), while Chapter [5is based
on a publication [|Sun et al., 2011b]] in the Third Conference on Artificial Gen-
eral Intelligence (AGI), but with significant extension; in particular, the proof of
optimality in the MDP case is new.
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Chapter 2

Reinforcement Learning at a Glance

This chapter serves as a mini-introduction to RL, in the hope of providing the
necessary background to the research presented in the following chapters. In-
deed, due to the broadness of the topic and the rapid advances in the field,
this introduction is not intended to be comprehensive. In particular, we confine
ourselves to (finite) Markov Decision Processes (MDPs), and contend with the
linear case when it comes to Function Approximation (FA). For a more thorough
treatment, the reader is recommended to refer to excellent text books such as
Sutton and Barto| [1998]; Bertsekas and Tsitsiklis| [[1996] and Bertsekas| [2007].

We begin the chapter with an overview of the RL problem in Section [2.1]
where MDPs are formally defined, and then survey a number of variations and
extensions. Section[2.2]reviews (asymptotically) exact solutions to RL, including
Dynamic Programming (DP) methods in the model-based case and Temporal Dif-
ference (TD) methods in the model-free case. Section is devoted to function
approximation, in particular Linear FA (LFA), where algorithms for both weight
estimation and basis generation in LFA are introduced.

2.1 The Reinforcement Learning Problem

Most frequently, the problem of RL is investigated under the framework of MDPs.
It is no exaggeration to say that MDPs have become the default setting in RL,
while results obtained therein are generally regarded as the ‘backbone’ of the
field.



10 2.1 The Reinforcement Learning Problem

2.1.1 Markov Decision Process

Formally, a Markov Decision Process is described by a 5-tuple (5’ ,<,PR, y),
where:

* & is a finite set called the state space,
* .o is a finite set called the action space,
* P isa transition model, such that P (s’|s, a) is a conditional probability mass

function over s’ € &, i.e., P(s'|s,a) > 0 and »,,_. P (s'|s,a) = 1 for any
givens € ¢ and a € .,

s'eS

* Ris a reward model, i.e., a real-valued function R (s, a) over & X ./, and

* vy €[0,1) is a discount factor.

We refer to P and R together as the model. Without loss of generality, assume
that the elements in the state space and action space are so labeled that & =
{1,...,S} and . = {1,...,A}, with S and A the respective number of states and
actions. As a result, any function f over & can be represented by an S-by-1
column vector with the s-th element f (s), and thus we will refer to f both as
a function and a vector depending on the context. Similarly, a function g over
& X .o is treated equivalently as an SA-by-1 column vector, where the entries
can be arranged in any agreed order, for example

[¢(1,1),...,g(1,A4),...,g(S,1),...,g(S,A)] .

An MDP entails a description of the environment and a specification of the
goal of learning. Regarding the former, we consider interactions between an
agent and the environment taking place in discrete time cycles t = 1,2,.... In
cycle t, the agent receives from the environment a state s, € &, then sends back
an action a, € ./. In doing this, the agent collects a reward r, =R (s,,a,).

The defining characteristic of an MDP is the following assumption [see e.g.,
Sutton and Barto, 1998, Section 3.5].

Assumption 2.1 (Markov property) For any t > 1 and any sequence of the form
$1Qq -+ +8:a;S;41, Where sq,...,s,41 €, ay,...,a, € &, we have

P [siqlsiai---sa.] =P (seqqlse,a.), and r,=R(s.at).
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Assumption says that in an MDB previous states and actions have no effect
on the transition probability, and we may view s, as a random sample from the
transition model P (+|s,,a,). In other words, s, contains all relevant information
for predicting the states and rewards beyond time t, in response to any of the
agent’s actions.

During the interaction, the agent has to select an action at each time step.
The rule according to which the agent chooses its actions are referred to as
the policy. In MDE a policy 7 is a mapping from the state space to the set
of probability mass functions over .o/, such that 7 (als) is the probability of
selecting action a when the current state is s. We also denote 7 (s) to be a
unique action chosen if the policy is deterministic.

Policy 7, together with the transition model of the environment and a given
initial state s;, jointly define a probability distribution over all sequences of the
form s,a, - - -s,a,, such that

t t
P I:slal o 'Statlsl] = l—[ T (aT|ST) l_[P (ST |ST—1) ar) B
T=1 T=2

where we use the superscript to highlight the dependency on the policy. The
value function of a policy 7, denoted v”", is thereby defined as a real-valued
function on &, such that

t
v (s) = lim E™ E Yl |s; =s
t—00 1
T=

Here the expectation E” is taken with respect to the distribution P™ and initial
state s. The limit always exists thanks to the boundedness of R (s, a) and the fact
that y < 1, and we may simply write

vi(s)=E" ny_lrr s1=s| . (2.1)
=1

The value function of a policy 7, when evaluated at a particular state s, is the
expectation of the exponentially discounted sum of all future rewards, assuming
that the agent starts from s and follows 7.

A closely related concept is the so-called action-value function, denoted q”,
which is defined as a mapping from % X ./ to R, such that

o
q"(s,a)=E" ny_lrf $;=s,a;,=a

=1
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The action-value ¢” (s,a) amounts to the expected discounted sum of future
rewards, assuming that the agent starts from state s, performs action a, and
then follows policy 7 afterwards. It is easy to see that

vi(s)= Y m(als)g" (s, ).

ac.d

We are now ready to specify the goal of RL in MDB which is to

find an optimal policy m*, such that v™ is maximal in the sense that
v™ (s) > v™ (s) for any policy  and any s € .

By definition all optimal policies share the same value function. We thereby
denote v* to be this optimal value function. In addition, the optimal policies
also define a unique optimal action-value function, which we denote g*, such
that g*(s,a) > g™ (s,a) for any s € &, a € ./ and any policy 7.

It is known [see e.g., Sutton and Barto, (1998, Section 3.8] that for every
MDP there exists at least one deterministic policy that is optimal. Therefore,
the learning problem can in principle be solved by brute-force search over all
deterministic policies, while much more efficient alternatives will be discussed
later in Section 2.2

2.1.2 Beyond MDP

MDP has a number of attractive theoretical properties, and thus receives much
attention in RL research. However, this relatively simple framework is limited in
many ways, to which various extensions are proposed in the literature. In this
section, we briefly survey some of these variations and extensions, in order to
provide the readers a slightly more complete picture of the field. We will not go
into the details of the topics mentioned, and content ourselves with explaining
the basic idea and motivation.

When confined to MDPB there are some minor variations in the formulation.
The first is on the definition of the reward model. Depending on the problem,
reward models can be changed to R(s) or R(s,a,s’). Moreover, it is common to
view R (s, a) as random variables [e.g., see|Szepesvari, 2010]. This assumption is
central in bandit problems [e.g., see |Agrawal, 1995; (Garivier and Cappe), 2011]]
where S = 1 and the goal is to find a* with E[R(1,a*)] maximized. Clearly,
the problem is trivial if R is deterministic. In the general setting where S > 1,
all these modifications will not alter our discussion significantly. The second
variation is on the definition of value function. If the task is episodic, i.e., the
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interactions stop after a finite number of steps, say T, then the value function

can be defined as
T

vi(s)=E" er s;=s|,
t=1
where the discount is removed [see e.g., Sutton and Barto, 1998, Section 3.3].
Sometimes it is also beneficial to consider the value function defined as the
average reward [e.g., see Mahadevan, |1996}; Jaksch et al., [2010]:

1 T
v (s):Th_IEOIE ?;rt S1 =5

The basic transition structure of an MDP can also be altered to formulate
a number of other learning problems studied in RL. Examples include multi-
objective RL, which considers several reward functions instead of one, and tries to
find the set of admissible policies that are non-dominated [Barrett and Narayanan,
2008]]; multi-agent RL studies the scenario where multiple agents act in a single
environment [[Busoniu et al., 2008]]; inverse RL tries to recover the reward model
instead of the value function from examples generated by following (near) op-
timal policies [Ng and Russell, |2000; Ramachandran and Amir, 2007} Ziebart
et al., |2008]; and risk-sensitive RL tries to maximize the value function while at
the same time reduce the fluctuation in return [Mihatsch and Neuneier, 2002;
Mannor and Tsitsiklis, 2011]].

Representing the transition model of an MDP requires O (S®A) parameters.
Sometimes, the transition model exhibits a certain ‘factored’ that allows it to

be represented by much fewer parameters. Factored MDPs exploit this idea by
(1) (n)

assuming that the state s, is described by a set of variables x, , ..., x,;’, and the
transition model is given as
m () 1,.(1) ( ) ® 1M )
]P’(xtﬂ,... Xl x” a) l_[pl(xﬂrl ,...,xt",at),
where each p; is parameterized by m parameters. Assuming x(l) .. xE”) are

all binary, then the state space is of size 2", while the number of parameters
describing the transition model is merely nm—exponentially smaller than the
size of the state space if m is polynomial in n. A rich literature is devoted to
factored MDPs, and efficient solutions have been developed [e.g., see Guestrin
et al., [2003}; Szita and Lorincz, [2009}; Chakraborty and Stone, 2011].

A further extension to MDPs is to drop the assumptions of discrete time as
well as finite state and action space. In particular, continuous-time MDP remove
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the discrete time assumption [[Guo and Hernandez-Lerma, [2009], and MDPs
with continuous state and action spaces are also studied, particularly in the
context of control and robotics [e.g., see van Hasselt and Wiering, 2007, for
a survey].

Perhaps the most significant deviation from the MDP framework is to remove
the Markov Property (Assumption [2.1). Problems belonging to this class are
generally referred to as non-Markovian, where, instead of receiving the state s,
at each step, the agent receives an observation o,, which by itself is not enough
to recover the state information. As a result, the agent has to make use of
potentially all the history information (i.e., memory). Non-Markovian problems
are hard, and only approximate solutions can be expected.

Roughly speaking, there are three methodologies for solving non-Markovian
problems. The first is to reduce the problem to a Markovian one by extract-
ing rich feature representations from the history observations, which are then
treated as the states of the environment. The feature representations can be
generated explicitly, e.g., by recurrent neural networks [|Szita et al., [2006] or
more generally by searching over program spaces [[Hutter, [2009a,b], as well as
implicitly, e.g., by feature maps induced by metric kernels defined over history
observations [McCallum, [1996]. This approach will be referred to later in Sec-
tion 2.3.2]

The second methodology is generally referred to as policy search, where we
search for a good policy from a pre-defined class of functions, (in the most
general case all computable policies [see Hutter, 2005} Veness et al., 2011]].)
Here the policies are evaluated solely based on their empirical performance,
and the search can take various forms, including optimization, Bayesian up-
dating, or even random guessing. One of the most successful classes in this
family are the so-called policy gradient methods (see for example [Baxter and
Barlett, 2001; Wierstra and Schmidhuber, |2007; Wierstra et al., 2007} Peters
and Schaal, [2008]], including the author’s work [Riickstief et al., [2010]), and
the closely related evolutionary optimization methods (see e.g., [[Yao, |1999], as
well as the author’s own work [Sun et al., |2009bla; |Glasmachers et al., [2010]]).
It has been demonstrated that these algorithms are capable of solving complex
non-Markovian control tasks.

Policy search methods treat the environment as a black box, and only rely
on it for the empirical evaluation of the policy. To this extent, these algorithms
are model-free, in that they do not need to construct an explicit model of the
environment. In contrast, the third methodology, which we referred to as model-
based approach, learns the model of the environment first (the model-learning
step), then the policy can be obtained by planning on the learned model (the
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planning step). Here the model classes may be recurrent neural networks (RNN;
see e.g., [Lin and Mitchell, 1993 Whitehead and Lin, 1995; |Schéafer, 2008]) or
probabilistic graphical models (PGM; see e.g., [Toussaint et al., 2006; [Vlassis
et al., 2009]). The models are usually learned by gradient descent or stochastic
search in the RNN case, and by maximum likelihood estimation, in particular
variations of Expectation-Maximization (EM; [Dempster et al., 1977]) method,
in the case of PGMs (e.g., [[Vlassis et al.,|2009]], see also the author’s own work in
learning RNNs using EM-type algorithms [[Unkelbach et al., 2009]). Planning on
the learned models is usually hard, and the policies are obtained from the model
using either policy search or various forms of approximate planning algorithms
[see e.g., Sutton, (1990; Maua and de Campos, 2011; Maua et al., [2012].

A particularly well-studied framework for non-Markovian RL is the Partially
Observable MDP (POMDP; [see e.g., Murphy, 2000]), where the environment is
assumed to follow the generative model

Ot ™~ Dobs ('lxt) > Xt41 ™ Dstate ('lxt:at) .

Here x, is a ‘hidden state’ variable assumed to be finite, and p,,, and p,. are
two conditional distributions respectively describing how the observations are
generated and how the hidden states are updated. A closely related extension
to the POMDP is the so-called Predictive State Representation (PSR; [Littman
et al., |2001]]), where the observations are generated according to a stochastic
multiplicative automata

0~ mul (gt) ’ €t+1 = rot,atgti

where &, is a probability vector, i.e., a non-negative vector summing up to 1, and
mul (£,) is the multinomial distribution parameterized by &,. In PSR, &, can be
viewed as the state, which is updated at each time step by left multiplication
with matrix ', , depending on the action a, and observation o,. POMDP is a
special case of PSR, where &, represents the conditional distribution of x, given
the history. Learning POMDPs can be done via EM. However, recent studies have
shown that PSRs (and thus POMDPs) can also be learned using spectral methods
[Rosencrantz et al., 2004; James and Singh, 2004; McCracken and Bowling,
2005 Wolfe et al., |2005], yielding superior performance. Exact planning in
POMDPs (and thus PSRs) is theoretically hard [Maua and de Campos, 2011],
however, efficient heuristic, approximate algorithms exist (e.g., see [Monahan,
1982; Kaelbling et al., [1998; |Zhang, 2001; [Fleck, 2004; Ross et al., |2008]] for
POMDP and [Izadi and Precup, 2003; Boots et al., 2009] for PSR).
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2.2 Exact Solutions to MDP

In this section we review algorithms for solving MDPs, based on the Bellman
equation (introduced below), and are ‘exact’ in the sense that they guarantee
convergence to the optimal value or action-value functions, or at least to the
value or action-value functions of the policy being evaluated.

As stated in Section [2.1.2] solutions to RL problems can generally be par-
titioned into model-based and model-free, depending on whether they require
model-learning as an intermediate step. In Section we focus on the plan-
ning step in the model-based methods, introducing the so-called DP solutions,
while the model-learning step will be investigated later in Chapter[5] Model-free
solutions to MDPs follow in Section [2.2.3]

2.2.1 Bellman Equations

From the definition of v”, it is straightforward to verify the following Bellman
equation

vi(s)= Z m(als) |R(s,a)+ 7 Z P(s'ls,a)v™(s") | - (2.2)

ac.o/ s'es

In fact, v™ is the only solution to the above equation. A similar Bellman equation
holds for the action-value function

q"(s,a)=R(s,a)+7y Z P (s'ls,a) Z n (a'ls") ¢" (s',a’), (2.3)

s'es aed

where the solution ¢” is also unique. It can also be seen that the value and
action-value functions are related through:

q¢"(s,a)=R(s,a)+7 Y P (s'ls,a) v* (5').

s'es

Bellman equations form a finite set of linear equations with v™ (s) or g™ (s, a) as
unknowns. Therefore, v™ and q”, though defined as infinite sums (see Equation
2.1, can be computed in time polynomial in S and A.

Perhaps the most fundamental results concerning MDP is the following the-
orem established by Bellman| [1952]], which states that the optimal value and
action-value functions, and consequently the optimal policies, can be character-
ized by the so-called Bellman optimality equations.
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Theorem 2.1 (Bellman) The optimal value function v* and optimal action-value
function q* are respectively the unique solutions to the following Bellman optimal-
ity equations

v*(s):géeg( R(s,a)+y;P(s’ls,a)v* (s 1, (2.4)
and

“(s,a) = P(s " (s, ). 2.

q"(s,a) R(s,a)+Ys;y (s Is,a)gleegq (s',a") (2.5)

Moreover, an optimal, deterministic policy m* can be obtained by choosing
greedily with respect to q* (s, a), such that

% (s) = argmaxq* (s, a), (2.6)
acof
or equivalently
7*(s) = argmax |R(s,a) + 7 Z P(s'ls,a) v (s') |, 2.7)
ac.d s'es

where ties may be broken in an arbitrary way.

Theorem reduces the problem of MDP planning to the computation of
optimal value or action-value functions, from which the optimal policies can be
‘read out’ using Equation or It also implies that the optimal value func-
tion can be obtained by solving the following Linear Programming (LP) problem
[[d’Epenoux, 1963]:

minz v*(s) s.t.

s€s
v (s) ZR(s,a)—i-yZP (s'ls,a) v (s"),Vse S, ae 4.

s'es

This linear program contains S variables with S X A constraints, therefore can be
solved in time polynomial in S and A [Littman et al., 1995]]. This in turn shows
that MDP planning is solvable in polynomial time.

2.2.2 Model-based Planning Algorithms

The LP solution to MDP offers little insight into the structure of the problem, and
is often found to be less efficient than the algorithms presented in this section
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[see Sutton and Barto, 1998, Section 4.7], which are instances of a family of
solutions based on dynamic programming (DP).

Roughly speaking, all DP solutions work by iteratively updating v(*) or ¢,
which are estimations to the target value or action-value functions. In iteration
i, v (or qV) is updated to vV (or ¢"*V) by applying an operator 7. The set
of operators {Z;} is so designed that the sequence 7,7, - -- forms a contraction,
whose fixed point is v* (or ¢*) when the goal is to find an optimal policy, and v"
(or g™) when we want to evaluate a given policy. Almost exclusively, the opera-
tors J; are variations of the right hand side of the Bellman optimality equations
or Bellman equations.

We start from the evaluation of v”, which may be done by applying S opera-
tors 7W, ..., 7©® cyclically over an initial value estimate. The operator 7© is
so defined that v (s) is updated according to the right hand side of the Bellman
equation

v(s) « Z 7 (als) |:R(s,a)+y Z P(s'ls,a)v (s’):| ,

ac.o s'es

and all other v (s”) for s’ # s remain the same. Another way is to write

Ty =y + (Z 7 (als) [R(s,a) +7r Z P(s'|s,a)v (s’)j| -y (s)) e, (2.8)
ac.of s'es

-

£,(5)

where e, is the function over .% such that e;(s) = 1 and e, (s") = 0 for s # s’.
The term inside the parentheses, ¢, (s), corresponds to the difference between
the right hand side and the left hand side of the Bellman equation, and we call
¢, the Bellman error associated with v. It is straightforward to see that v = v"
if and only if the Bellman error becomes zero, and the above procedure may be
viewed as an attempt to reduce the Bellman error iteratively, one state at a time.
It is known that the sequence {v(i)} converges to v™. In fact, the convergence
to v™ continues to hold even if we mix 7 arbitrarily, provided that every 7
gets applied from time to time.

Similarly, to evaluate the action-value function g, we may devise a set of
operators 7% for s € & and a € .«/, such that

g(s,a)q =q+ (R (S, Cl) +7y Z P (5/|5, a) Z T (a’|s’) q (5/, a/) —q (5, a)) €s,a5
ses aded
(2.9)
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where e, is defined as e ,(s,a) = 1 and e, ,(s',a’) = 0 for s’ # s or a’ # a.
Again, the term in the parentheses can be viewed as a variant of Bellman error
corresponding to the action-value function, and the convergence to g™ holds
provided that each 7 is applied infinitely often.

We now turn our attention to methods for MDP planning, namely computing
v* or q*. The most basic algorithm is policy iteration, which repeatedly alternates
between policy evaluation, i.e., computing v\ (or qV)) with respect to the cur-
rent policy 7 using the above mentioned procedures, and policy improvement,
where we update the policy greedily with respect to the current estimation v®
(or ¢?) as

nHD) (5) = argmax |R(s,a) + v Z p (Sllsja) @ (s') ’ (2.10)
ac.o sles’

or in the action-value case simply

7 (s) = argmaxq (s, a) . (2.11)
ac.of
It is known [e.g., see Sutton and Barto, 1998, Section 4.3] that the sequence
v (or ¢®) converges to the optimal value function v* (or optimal action-value
function g*).

The general structure of policy iteration, i.e., alternating between policy eval-
uation and policy improvement, is shared among a wide variety of algorithms,
often beyond the scope of MDB although the details of the two steps may vary
significantly. For example, in policy evaluation, the value or action-value func-
tion may be estimated from sample trajectories instead being of computed di-
rectly from the model, and the value function may be represented by a (para-
metric or non-parametric) function instead of in tabular form. In policy improve-
ment, the policy may also be represented by some function approximator, and
the update may be less greedy than Equation[2.10|or 2.11] e.g., applying various
types of soft-max or following gradient steps. In addition, the policy evalua-
tion and policy improvement steps might be interleaved at a finer granularity to
speed up the convergence [see Sutton and Barto, (1998, Section 4.5], where it is
possible (and often preferred) to perform policy improvement after only a few
iterations of policy evaluation. In particular, value iteration pairs one iteration of
policy evaluation with one step of policy improvement, by applying cyclically a
set of S operators 7W, ..., 7 defined as

s'es

TGy =y + (raneg [R(s,a) +7y Z P (s'ls,a) v (5’)} — v(s)) e,.
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Similarly, in the action-value case we may compute q* by applying a set of oper-
ators of the form

(s,a) y — / r o
TYVqg=q+ (R(s,a) +v Z P (s'ls,a) maxq (s',a") q(s,a)) o (2.12)

s'es

which leads to Q-learning [Watkins, (1989; Watkins and Dayan, 1992]; to be
explained in the next section.

2.2.3 Model-free Algorithms

In this section we introduce Temporal Difference (TD) methods, which are among
the most successful model-free algorithms for solving MDPs, and are often re-
garded as the key achievement setting the field of RL apart. The common char-
acteristic of TD methods is to learn the value or action-value function from past
experience using stochastic versions of the DP updates.

The first member in the family of TD methods, to which we refer simply as
TD, is for policy evaluation [|Sutton, 1988], i.e., computing v" for a given policy
7. If the model is known, then v™ can be obtained by applying Equation [2.8]
which we write down again for clarity:

Ty =y + (Z 7 (als) |:R(s,a)+}fz P(s'ls,a)v (s')} —v(s)) e

aced ses
=v+e¢,(s)e,.

In the model-free setting, the aim is to estimate v™ from a sample trajectory,
i.e., a sequence of the form s,a,r;s,a,r, -, or more generally from a set of
samples, namely 4-tuples of the form (statrts;) where s is the state following
s,. The samples may be obtained from a single sample trajectory, in which case
${ = S;41, or from multiple trajectories. TD estimates v™ by applying three key
modifications to the DP procedure:

1. Since Z© can be arranged in arbitrary order, we may as well arrange them
according to the order in which states are experienced (or samples are
provided), namely, we apply the operators in the order & (sl), T (52), ..., 1n
accordance with the sample trajectory.

2. When applying 7 (), we replace the Bellman error &, (s,) with the fol-
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lowing sample estimation:

g, (s)) = Z n (als,) R (s, a) + )/Z n (als,) Z P(s'|s,a)v(s) —v(s.)

ac.d acd ses
N NS

—~
~
= 2V(Stﬂ)

~ro4yv (se) —v(se) -

Define the temporal difference error as

g =r +yv" (1) — v (se),
then the updating formula becomes

VD vy ge
3. Finally, as the update is contaminated by sample noise, we reduce it by in-
troducing a small learning rate a,. This leads to the TD updating formula:

v v 4 g e, (2.13)

It has been shown that under fairly standard conditions, e.g., the learning rate
satisfying >, a, = oo and ), a®> < oo, the sequence v will converge to v”
almost surely [[Dayan and Sejnowski, |[1994]. In the following we always assume
that the learning rate {a,} satisfies these conditions.

TD estimates value functions from samples in a model-free fashion. However,
making use of the obtained value functions in policy improvement steps still
requires a model (see Equation [2.10). The ‘control’ versions of TD methods, on
the other hand, eliminate the need for models altogether by estimating instead
the action-value functions, which by themselves provide enough information
for policy improvement (see Equation [2.11)). In particular, applying the above
mentioned transformations to Equationyields SARSA (State-Action-Reward-
State-Action; [[Rummery and Niranjan, 1994; Rummery, (1994])

q(t+1) = q(t) +a, (Tt + Yq(t) (5t+1: ar+1) —-q (st’ af)) Csoae

and to Equation leads to Q-learning [Watkins, |1989; [Watkins and Dayan,
1992]:

q(t+1) — q(t) + at (rt + '}/lgé%;(q (St-l,-]_) a) - q (St’ af)) espat.

In SARSA, the learning is on-policy, that is, the sample trajectory has to be gener-
ated by following the near greedy policy (to be explained below) with respect to
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the current action-value estimation q(*’ to ensure convergence to g*. In contrast,
Q-learning is off-policy, where convergence to q* holds irrespective of the pol-
icy generating the sample trajectory, as long as all state-action pairs get visited
infinitely often.

SARSA and Q-learning store the current estimate of the action-value func-
tion. As a result, at any time, a greedy policy can be read out using Equation
It is tempting to use this policy to generate future samples. However, this
often leads to poor performance due to the exploration exploitation dilemma,
which states that if we act completely greedily according to the current estima-
tion of the value or action-value function, then we may confine ourselves to a
small part of the state-space and miss the opportunity of hitting states giving
large rewards. With respect to SARSA and Q-learning, this means that if we
always choose the action a, that maximizes the current q (s;,a,), then q (s;,a)
for a # a, may never get updated due to bad initial value. To solve this problem,
policy improvement needs to be ‘less greedy’ than in Equation [2.11} in order to
allow all state-action pairs to be tried often enough. Two types of policy im-
provement steps are commonly used:

e-greedy : at time t, with probability 1 — ¢,, choose

a, = argmaxq (s.,a),
a

and with probability €,, choose a random action is chosen. If €, goes to
zero at a speed that allows all (s, a) pairs visited infinitely often, then both
SARSA and Q-learning will produce the optimal policy asymptotically.

softmax : sample the actions from Boltzmann distributions, where action a, is
chosen with the probability proportional to

)

i.e., sub-optimal actions are selected exponentially less often. As with ¢,,
if B;, the temperature, is decrease at a speed that is not too fast to allow
all (s,a) pairs visited infinitely often, then both SARSA and Q-learning
produce the optimal policy.

In addition, the optimistic initialization trick may also be used, i.e., initialize the
action-value table with large numbers, so that the unvisited state-action pairs
will always be preferred [see e.g., Strehl et al., [2006; Kolter and Ng, 2009b].
More sophisticated algorithms are designed for the bandit case, assuming that
the random variables R(1,a) are well-behaved (e.g., bounded, see [[Agrawal,
1995; |Garivier and Cappe, [2011]).
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2.3 Function Approximation

The algorithms presented in the previous section find solutions by iteratively
updating the value or action-value table, and therefore their complexity scales
at least linearly in the cardinality of the state space. This explicit dependency
limits the usefulness of these algorithms for three reasons:

1. In many real-world applications, the cardinality of the state space is ex-
ceedingly large, especially when the state space is defined combinatorially.
For example, if the observation consists of n bits, then the potential num-
ber of states will be S = 2". In such cases, storing the value or action-value
function is impossible.

2. Particular to the model-free methods, even if the value or action-value ta-
ble can be store, all the entries still have to be learned. This amounts to
estimating at least S real-valued parameters from sample trajectories. If
S is large, the length of the sample trajectory required for reliable estima-
tion becomes impractically long, while the value or action-value function
computed from trajectories of limited length is of high risk and cannot be
expected to generalize well.

3. In some cases, maintaining the value and action-value function in tables
prohibits us from incorporating important domain knowledge. For exam-
ple, in control problems, continuous state and action spaces are often dis-
cretized, and hence the value or action-value functions tend to be smooth
with respect to the metric inherited from the continuous space. This bias
may be incorporated to regularize the solution, which improves general-
ization and reduces the required sample size. However, this cannot be
done using the algorithms mentioned in the previous section.

For these reasons, it is often necessary to replace the tabular representation
with a (parameterized or non-parameterized) estimator, even if storing the value
or action-value function is viable. This technique is generally referred to as Func-
tion Approximation (FA).

Usually, FA is combined with TD methods to provide practical solutions to
MDPs with large state spaces. However, it should be pointed out that not only
does FA reduce the computational cost and improve the generalization, it also
stretches the applicability of TD methods. For example, in combination with
function approximators that take continuous input, TD methods can solve MDPs
with continuous state spaces [e.g., see van Hasselt and Wiering, 2007}, [Maei
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et al., 2009]. Moreover, if the function approximator is history dependent,
namely the value function is estimated from both the current and previous ob-
servations, then the combination of FA and TD methods can potentially be used
to solve non-Markovian problems [e.g., see |Sutton, (1990; Whitehead and Lin,
1995 [Szita et al., 2006}, Schafer], 2008; Boots and Gordon, [2010].

Generally speaking, there are two approaches for incorporating FA in TD
methods. The first is to adapt TD methods to FA. The convergence of the re-
sulting algorithms relies on the preservation of the contraction properties of the
operators, which is often problematic (e.g., see [Baird, (1999] for an example
where Q-learning with FA diverges.) The second approach starts from treating
the RL problem as an optimization problem, where the objective is to minimize
some measure of Bellman error. Note that Bellman error vanishes when the
value function estimates approach the true value function, and in general small
Bellman error implies good value function estimates, even if the error cannot be
reduced to zero because the chosen class of estimators is not rich enough to rep-
resent the true value function. Often, the optimization point of view is preferred
for three reasons:

1. Formulating RL as an optimization problem may produce analytical solu-
tions, especially in the linear case. The best example is the Least Square
TD (LSTD) algorithm to be described in Section [2.3.1

2. The optimization point of view leads to (stochastic) gradient descent type
of algorithms, which are often easier to analyze and enjoy better con-
vergence properties, especially when the function approximators are non-
linear [e.g., see Maei et al., 2009].

3. It is easy to incorporate various regularizers into the objective function,
making the solution generalize better. This is particularly useful in the
under-sampled case, where the number of parameters in the function ap-
proximator is more than, or at least comparable to, the number of sam-
ples. A good example is the LARS-TD algorithm by |Kolter and Ng [2009a],
where L, regularizations are added to enforce sparse solutions.

In this section, we review FA methods in RL, focusing exclusively on Linear
Function Approximation (LFA), where the value or action-value function is rep-
resented as a linear combination of a set of basis functions. This bias towards
LFA is for two reasons: First, compared with other techniques, LFA is better un-
derstood theoretically. Second, the work presented in this dissertation (Chapter
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and [4) is all based on LFA, making it more relevant than its non-linear coun-
terpart. However, it is worth pointing out that non-linear FA methods are by no
means unimportant, and they are at least as widely used as LFA, demonstrat-
ing great practicality in various applications including the famous Backgammon
example [Tesauro, (1995].

The basic idea of LFA is to approximate the value function v” as

N
vE(s) = ) 6,0, (),
n=1

where ¢,,..., ¢y are N real-valued functions defined over ¥, called the basis
functions, and 6, ..., 0, are their respective weights. Similarly, for the action-
value function, we have

N
9" (5,0) = Y 0,0, (s,0).

For simplicity, in the rest of this section we focus on the problem of evaluating
value function v" with fixed policy m. Results obtained here can readily be
extended to the action-value case, albeit with slightly complicated notations for
incorporating the action parameter [Lagoudakis and Parr, [2003; Busoniu et al.,
2010]. These algorithms form the policy evaluation step in policy iteration.

When the policy is fixed, it is often beneficial to marginalize out the ac-
tions and consider the resulting Markov chain defined over the state space.
We thereby define a Markov reward process (MRP) as the following 4-tuple
(y,P“, r“’,y), where & and y are defined as before, while P” is a transition
kernel of the Markov chain defined over ., such that

P7 (s'|s) = Z n(als)P (s'|s,a)

ac.d

and r” is a real-valued reward function on & containing the expected reward

r(s)= Y R(s,a)m(als).
ac.o/
With a fixed policy, we drop the superscripts 7, and write v*, P™, and r™ as v,
P, and r, respectively. The MRP admits a particularly convenient matrix repre-
sentation, of which we make heavy usage, especially in Chapter {4, Namely, we
interpret functions over % as column vectors as before, and treat P as an S-by-
S matrix with the (s,s")-th entry P (s’|s). It is easy to check that the Bellman
equation can be written as
v=r+yPv,
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orv = (I - }fP)_ r, where we denote Q™ the inverse of matrix Q. Denote L =
I —yP,thenv=L"r.

Let &= [¢,,..., ] be the S-by-N feature matrix and 6 = [0,,...,6y]" be
an N-by-1 weight vector, then &6 approximates the value function v, while the
Bellman equation now becomes

®0 =r+yPP0,
and the Bellman error is simply
e=r+yP®0 — 0 =r — LPO.

It is straightforward to see that if we have N = S linearly independent basis
functions, then ® becomes an S-by-S invertible matrix, and the Bellman equation
can be solved exactly, giving

=% Lr.
Moreover, if & = I, then the problem become exactly the same as in the tabular
case, with 6, = v (s) for state s.

Applying LFA involves two steps, namely (i) constructing the set of basis
functions ®, and (ii) estimating the weights 6. The second step has been well
studied in the literature, and we will review some of the key results in Section
The first step, being one of the main topics of the present dissertation, is
an open problem, and we briefly survey the literature in Section[2.3.2]

2.3.1 Estimating Weights

In this section, we assume ¢ is given, and focus on the problem of computing 6.
In the general case that N < S, the equation above cannot be solved exactly for
all reward functions.

Let w (s) be the transpose of the s-th row of ®, i.e., w (s) = [P (s),..., Py ()] T
then w (s) is the vector of features observed when the state is s. Suppose we are
given a set of T samples from the MRP

/ / /
(51,51, rl) , (52,52, ’”2) yeens (sT,sT, rT) s

where s/ is the state following s,, i.e., s ~ P (-|s,). Let p be the probability
mass function on & from which s, is sampled and D the diagonal matrix with
diagonal entries p. Note that if the samples are obtained from a single trajectory,
then s] =s,,;, and if moreover the Markov chain is ergodic, then p approaches
the stationary distribution of the chain with increasing T, and in the limit case
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p' = p"P. However, in the general case, the samples may be gathered from

different pieces of trajectories so that s’ # s,,,. Below we write w, = w (s,) and
w; = w (s;) for simplicity.

To compute 6, we may follow the first approach mentioned above, namely
adapting TD to the LFA case. The key insight to this approach is to realize that
the vector e,, with e, (s) = 1 and e, (s’) = 0 for s’ # s, can be viewed as the vector
of features observed in state s, with v being the weight vector. Substituting e;,
with w,, and v with 8 in Equation “ produces the TD update in the LFA
case

0 =9 L g ¢, w,.

This update usually works well in practice, however, in the case where p deviates
too far from the stationary distribution of P, the algorithm may diverge (see
Sutton et al.| [2009] for an explanation.)

Another class of methods for computing 6 comes from the optimization point
of view, where we define some objective function measuring the Bellman error.
The default choice is to use quadratic objective functions of the form

J(O)=¢" (LKL ) e=(v—20) K(v—6),

where K is some positive semi-definite matrix and we add L~ to both sides of
K for notational convenience. The matrix L~ ' KL~ determines how the Bellman
error in different states is weighted. It is also straightforward to see from the
second equality above that J measures the value error, i.e., the deviation of ®6
from the true value function v. Provided that ®'K® is invertible, the optimal
weights minimizing J can be obtained analytically as

6=(2'ke) (2'Kv).

To enable estimation of O from finite samples, the following three relations
are used repeatedly:

&' DP®=E [a)t (w;)T} = lim — cut (w;)T,

' DO=F [w w] | = lim = Zwt (wt)

T—oo T

1
®'Dr=E[rw,]=lim =) ro,

T—00
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where the expectation is taken with respect to distribution p. It can also be seen
that the following relation holds
gif

where /! and w? are the feature vectors corresponding to two independent tran-
sitions from s,. As a result, estimating ®'P'DP® from the samples is nearly
impossible, especially when S is large.

In the literature, there have been several different choices of K correspond-
ing to different algorithms, the earliest being the residual gradient algorithm
proposed by Baird| [1995], where K,, = L'DL. The optimal weights are thus
given by

&P DPO =E [E [w; (o)

6,,=(®'L'DL®) (®'LTDr)
= (y*®"P'DP®—y®'DP®—y® P D&+ &' D®)
-(@"Dr—ye"PDr).
The drawback of this choice is immediately clear from the previous discussion,

as the term ®"PTDP® cannot be estimated from sample trajectories.
A significantly better choice is to set

K q = LTI,DII, L,

where IT,, is a projection operator defined as I1, = ¢ ((I)TD<I>) ~ ®'D. This choice
gives the Least-Square TD (LSTD; [Bradtke et al., [ 1996; Boyan, [2002]) algo-
rithm, which in some sense has become the standard choice in LFA. The optimal
weights in this case are given by

6.0=(®'DL2) (@'Dr)
= (<I>TD<I> — )fCI)TDPCI))_ (<I>TDr) ,

which can be estimated using samples as

5 1 AT (1
td = ?;wt(wt_ywt) ?;wrn .

The reason of choosing the subscript ‘td’ will become clear from later discus-
sion. The computational complexity of LSTD is O (N°T), since the first term
on the right hand side is a sum of rank-one updates and the inverse can be up-
dated efficiently using the Woodbury identity (e.g., see [Boyan, 2002]). It is
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also worth pointing out that various versions of kernelized LSTD have been pro-
posed, where the features are of infinite dimensionality and the computational
complexity of FA usually scales with O (T?), e.g., see Ormoneit and Sen| [|2002]];
Engel| [[2005[]; Xu [[2006]] ; Xu et al.|[2007]]; Engel et al. [2003} 2005]], and [Taylor
and Parr| [2009] for a unified view.

When the number of features N is large, sometimes even the cost of O (N?)
computations per sample is still too high to be affordable. There are three types
of solutions:

1. If we make the assumption that the features are sparse, i.e., for each w,
there are at most M entries which are non-zero, then iLSTD [Geramifard
et al.,2006]] can be applied to reduce the computation cost to O (ZN + M?)
per time step, where Z is an algorithm parameter chosen such that Z < N.

2. From the LSTD objective function, Sutton et al.| [[2009] developed two
gradient-descent type algorithms, namely GTD-2 and TDC, which have
complexity O (N) per sample update. A related algorithm was developed
earlier in |Sutton et al. [[2008]], where a different objective function is used:

Kea=(9'DL)' (#'DL).

The optimal weight with respect to K4 is also 0,4, vet the gradient up-
date takes a different form. Despite its low computational complexity, the
gradient descent type of algorithm usually has a higher sample complexity
when compared to LSTD, meaning that they require much more iterations
(either over new samples or repeatedly over old samples) to reach the
same accuracy as LSTD.

3. We can reduce the number of features from N to a much smaller number
say M, then perform LSTD on the M features obtained. This amounts to
performing feature dimensionality reduction, and is one of the main fo-
cuses of this dissertation. We defer the detailed discussion of this method-
ology to Section[2.3.2]

It is worth pointing out that a particularly interesting connection between
TD and LSTD can be spotted from the result above. Namely, if we rewrite the
definition of 6, as

(¢"D® - yo'DP®) 6,y =" Dr,

or
E [wt (wt - th+1)Ti| étd =E [wtrt] >
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then 6, is the fixed point of the following iteration

G(H_l) - G(t) + a, (E [wtrt] —E |:(x)t ((z)t - th+1)Ti| Q(t))
=0 4 o (E I:Cf)t (rt + thT+19(t) o wz—e(t)):l)
=00 4 a.E [8twt:| :

Therefore, if E [ e,w, ] is replaced with its sample estimate ¢,w,, then we get the
TD update.

2.3.2 Generating Basis Functions

The effectiveness of LFA depends crucially on the choice of the set of basis func-
tions ¢, ..., ¢ for the following reasons:

1. With a poor selection of basis functions, the value function cannot be well

represented within the space spanned by ¢,,..., ¢y, or equivalently the
column space of ¢, even if we have infinite number of samples. To see
this, note that the optimal value function estimation in LFA is given by

30 =9 (@Tch)_ ' Kv

=Ilyv,
where IT;, = & ((I)TK <I>) ~ ®"K is the projection operator such that

Mev=argmin (#—v) K@ —v).
17€span{¢1 ,,,,, ¢N}’

If the basis functions are chosen improperly, e.g., in the extreme case
quKv =0fori=1,...,n, then the error v — IT;v will be large.

. The convergence rate of TD (as well as the gradient methods) may vary

significantly among different choices of basis functions, even if they all
span the same subspace. Note that the TD updates can be viewed as the
stochastic approximation of

o+ — g0 4 o ((I)TDr — CIDTDL<I>9(O) s

and the convergence rate of the recursion depends on the condition num-
ber of ®" DL®. Indeed, if we replace ® with a different feature matrix ®W,
where W is an N-by-N invertible matrix, then ®W has the same column
space as ®, yet the condition number of ' DL® and W& DL®W can be
very different.
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Traditionally, the set of basis functions are constructed by experts after care-
ful examination of the problem. However, as the size and complexity of the
problem grows, hand-crafting basis functions becomes increasingly difficult, and
it becomes necessary to resort to methods that generate basis functions automat-
ically.

Depending on the information used, automatic basis generation methods can
be roughly partitioned into two classes. Reward-sensitive methods make direct
use of the reward (or equivalently, the Bellman error or TD error), while reward-
insensitive methods generate basis functions relying only on information con-
tained in the observations. The benefit of reward-sensitive methods is that the
basis functions are tuned specifically to suit the task at hand, and thus accurate
value function estimations may be achieved by using a very small set of such
basis functions. However, the basis functions learned usually cannot be used
across different tasks, even if the dynamics of the environment, i.e., the transi-
tion model, remains the same. In contrast, reward-insensitive methods tend to
exhibit less dependency on the tasks, and the basis functions generated are more
likely to reflect the structure of the transition dynamics. These basis functions
can then be used across different tasks, albeit with degraded performance. It
must be pointed out that even in the reward-insensitive methods, there can still
be implicit dependency on the reward, as the policy that the agent follows to
gather experience may be guided by the reward.

It is also possible to partition the methods according to the way in which the
basis functions are generated. In batch-based methods, the set of basis functions
is constructed at once from a given set of samples, while in online methods, the
set is built up incrementally. Batch-based methods usually give better solutions
thanks to the fact that the information contained in the samples can be processed
altogether, while online methods have the benefit of allowing the set of basis
functions to be continuously adapted.

In this section, we are particularly concerned with a family of automatic basis
generation methods that take the form of linear basis projection (LBP). More
specifically, these methods aim at finding an N-by-M matrix W, where M < N,
so that the feature fed to the LFA at each time step becomes

v = WTco,

which is of size M instead of N. Equivalently, this amounts to replacing the
original feature matrix & with ¥ = W, which is S-by-M dimensional, and the
columns of ¥ are the constructed basis functions. This particular methodology
is motivated by the following scenarios:
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1. As stated above, for complex problems, it is often hard to design a small

set of basis functions that are sufficient in representing the value func-
tion. However, it is usually possible to generate a large number of ‘raw’
basis functions, where each one of them is deemed ‘marginally’ related to
estimating the value function [Boots and Gordon, 2010].

. Sometimes the observations contain enough information about the state,

yet the value function depends on the observations in a non-linear way. In
this case, it is common to transform the observations into high dimensional
features, in the hope that the value function can be represented as a linear
function over features. A classical example is the kernel trick [[Scholkopf
and Smola, 2002], where the observations are mapped into elements in
some infinite dimensional feature space, so that non-linear functions over
observations can be represented as linear functions in the feature space.
Another important example is to use a large number of randomly gener-
ated non-linear features, e.g., neural networks, which are proven to be
capable of universal approximation [Huang et al., 2006].

. As pointed out in Section [2.1.2] when dealing with non-Markovian prob-

lems, it is often desirable to create a large set of history dependent fea-
tures, and regress the value function using LFA. For example, it has been
shown in|Legenstein and Maass [2007]] that certain types of randomly gen-
erated recurrent neural networks are universal predictors, so that a wide
class of history dependent functions, which may include the value func-
tion, can be linearly regressed to high accuracy using the activations of the
network of sufficiently large scale [|Szita et al., 2006].

In all these cases, we end up with a large number of features. It has been pointed
out that direct regression on these features brings with it computational issues
and affects the generalization in the finite sample case, which can be solved by

LBP
When restricted to reward-sensitive approaches, there are three classes of

methods:

LARS-TD. LARS-TD [Kolter and Ng, 2009a]] is a batch-based method which

works by incorporating L, regularization into the objective function, namely,
J=(v-®0) K(v—o0)+«]|0]l,.

Here k is a parameter controlling the strength of the regularization. It
is well known in the regression literature that L, regularization tends to
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produce ‘sparse’ solutions (e.g., see [Hastie et al., [2004],). As a result, v
will typically be dependent only on a handful of basis functions, even if
the set of basis functions is large. In other words, the algorithm implicitly
constructs a W such that W' contains only a small number of entries
in w. LARS-TD is particularly suitable to the scenario where most of the
features are irrelevant to the problem being solved.

Predictive-state TD. PS-TD [Boots and Gordon, 2010] is a family of batch-
based methods. In PS-TD, the matrix W is so constructed that W' e pre-
serves the most information flowing between the ‘past’ and the ‘future’.
Here past and future may be interpreted in different ways. For example,
the past and the future may refer respectively to one or several features
observed before and after the present moment. One may also choose to
include the reward signal into the past or future, and thus PS-TD can be
reward-sensitive or reward-insensitive, depending on the design.

If we restrict the past and future to be the current and the next feature
respectively, then the matrix W can be constructed by performing singular
value decomposition (SVD):

&' DP® =UAV',

where U, V are orthogonal matrices and A is a diagonal, positive semi-
definite matrix with diagonal entries sorted in descending order. PS-TD
constructs W as the first M columns of U. It can be shown that W e pre-
serves the maximum cross variance between the past and future Creutzig
et al. [2009].

Bellman error basis functions. BEBF [Wu and Givan, 2005; Keller et al., 2006;
Parr et al., [2007; Mahadevan and Liu, [2010] is a family of online basis
construction methods, where approximations of the current Bellman error
are repeatedly added as the new basis functions, i.e.,

Ppery 2T +YPV =V,

where ¢, is the next basis function to be added, while ¥ is the cur-
rent value function estimation. The approximation can be done using ei-
ther linear or nonlinear methods. When confined to the linear case, BEBF
amounts to incrementally constructing W, one column at a time, such that
the new column w* to be added is obtained as

| >

w* = argmin ||<I>W — Ewp
w
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where ||-|| is some norm measuring the scale of the difference between ®w
and the current Bellman error ¢, obtained from feature matrix W and
M dimensional weight ¥, i.e.,

Ewo =T +yPOWT — dWD.

BEBF serves as the starting point of the work presented in Chapter {4,
where we propose a new family of online basis construction methods that
have better theoretical properties than BEBE

The reward-insensitive methods for feature dimensionality reduction can
roughly be partitioned into two classes.

Proto-value functions. Proto-value functions [Mahadevan et al., 2007 are batch-
based methods creating basis functions that reflect the clustering structure
of the state space. The original proto-value basis functions are defined
to be the eigenvectors corresponding to small eigenvalues of the Graph
Laplacian

I1-P,

or its symmetrized version. It is known from the spectral clustering lit-
erature (e.g., see [[von Luxburg, 2006; [Filippone et al., 2008]]), that such
eigenvectors correspond to clusters in the state space. This method can be
extended to the feature case, in which we construct each column of W to
be an eigenvector corresponding to near-zero eigenvalues of

®' DO —d'DP.

Unsupervised learning methods. In principle, feature dimensionality reduc-
tion in RL can be done by applying any of the unsupervised dimensionality
reduction methods developed in the i.i.d. setting to the set of features
{w.}. Indeed, if the Markov chain defined by P satisfies certain conditions
(e.g., ergodic, which is in fact stronger than needed), then with increasing
number of samples, the set {w,} can be treated as i.i.d. without much
problem.

A number of methods belonging to this class have been investigated in
the literature. For example, one may use random projection, i.e., W is a
matrix with entries randomly generated [Ghavamzadeh et al., 2010]. The
performance guarantee is obtained from the fact that the random projec-
tion approximately preserves the norm of the high dimensional features,
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a result known as the Johnson-Lindenstrauss Lemma (e.g., see [Dasgupta
and Gupta, [2003] for an elementary proof). Another example is to apply
principle component analysis (PCA); this technique is so widely used that
sometimes it is viewed as a default step.

A particularly interesting method we would like to mention is the fol-
lowing greedy, incremental procedure, where we maintain a dictionary
2 made of a subset of features seen previously. At each time step t, we
check how well w, can be represented by the span of 2 by examining
. 2
min Hw[ - w” .
wEspan 2
If this quantity is larger than some pre-specified constant a, then we add

w, to 2. The matrix W can then be constructed as follows. Namely,
assume 9 = {co(l),...,co(M)} and let B = [w(l),...,w(M)], then

w =BT (BTB) -
so that the new features become
v= (BTB) " Bo,

which are in fact the coefficients when representing « using a linear com-
bination of w®, ..., w™. This technique works, even if the features are
of infinite dimensionality, where we may use the kernel trick to compute
W T analytically. In that case, the procedure is referred to as online ker-
nel sparsification (OKS) [Engel et al., 2004]. We will study the theoretical
properties of OKS in Chapter [3] focusing on the speed with which the dic-
tionary grows.
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Chapter 3

Understanding Basis Size Growth in
Online Kernel Sparsification

In many RL problems, the value functions depend nonlinearly on the obser-
vations, and thus LFA is either ineffective due to the nonlinearity, or impossi-
ble when the observations are not presented in vector form (e.g., strings and
graphs). Kernelized function approximation (kernel FA; [Ormoneit and Sen,
2002; Xu et al., 2005; [Engel, 2005 Xu, 2006} Engel et al., 2003, 2005; Xu
et al., 2007]]) solves these problems by first transforming observations into high
dimensional features using the kernel trick [|Scholkopf and Smola, 2002] and
then applying LFA in the feature space.

A significant drawback of kernel FA (or kernel methods in general) is that
the usual computational complexity scales cubic in the number of observations
[Taylor and Parr, 2009], rendering the method intractable for large data sets. In
addition, the number of parameters to be estimated is the same as the number
of observations, causing overfitting. To alleviate these problems, dimensionality
reduction is often incorporated.

In this chapter we focus on Online Kernel Sparsification (OKS; [Engel et al.,
2004]), a simple, online dimensionality reduction technique for kernel meth-
ods. Intuitively speaking, OKS incrementally builds a dictionary consisting of
‘important’ observations which are sufficient in approximately representing in
the feature space all previous observations. Dimensionality reduction is then
achieved by transforming observations into feature vectors whose dimensional-
ity equals the size of the dictionary. Particular to RL, the resulting feature vectors
can then be fed to LFA.

In spite of its wide usage in regression [Duy and Peters, 2010], classification
[[Slavakis et al., 2008] and reinforcement learning [Engel, 2005; Xu, [2006], the

37
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theoretical understanding of OKS is still lacking. In particular, little is known
about how the size of the dictionary, or equivalently the dimensionality of the
output features, grows with the number of observations. Gaining insight into
this problem is important, since such growth affects both the computational
complexity and the generalization of the associated kernel methods.

The main contribution of the chapter is a novel approach for analyzing the
growth rate of the OKS dictionary, assuming i.i.d. observations. Specifically, we
discover a formula that expresses the expected determinant of the Gram ma-
trix in terms of the eigenspectrum of the covariance operator. This allows us to
connect the cardinality of the dictionary with the eigen decay of the covariance
operator. In particular, we show that under certain technical conditions, the size
of the OKS dictionary will always grow sub-linearly in the number of observa-
tions, and, as a consequence, the kernel regressor constructed from the resulting
dictionary is statistically consistent, i.e., converging to the true regression func-
tion with an increasing number of observations.

It should be pointed out that although we perform the analysis under the
i.i.d. assumption, which is the case for regression and classification but not RL,
the results obtained are still pertinent to kernel FA, particularly when the set of
observations is large and thus can be treated approximately i.i.d.

The rest of the chapter is organized as follows: Section[3.1]briefly reviews the
background and then formulates the research question. Section describes
the first step of our analysis, establishing a number of theoretical properties
concerning the determinant of the Gram matrix, including its expectation, decay,
and moments. We then proceed to the second step, in Section to analyze
the growth of the dictionary size using the results from Section Section |3.4
discusses the results and directions for future research.

3.1 Background

We review some basic facts about kernels and refer the readers to |Scholkopf
and Smola [2002] for more detail. Let & be the set of observations. A positive
definite kernel (PD kernel, or simply kernel) { : 0 x ¢ — R is a symmetric, real-
valued function over pairs of observations, such that for any integer k > 0 andE]

!We use 0., as a short hand for o;,..., 0.
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01.x € 0, the k-by-k Gram matrix

t(01,01) -+ L(01,04)

Gk(oli""ok): : . :
4 (Ok; 01) e (Oka Ok)

is positive semi-definite, i.e., ¢' G,c > 0 for any k-by-1 column vector c. PD ker-
nels can be defined over vector spaces, where commonly used examples include
radial basis functions (RBFs)

, llo—o’|I”
K(o,o)=exp(—T‘2 , >0
and polynomial kernels
£ (0,0") = (1 —I-oTo’)p, p>0,

as well as for discrete objects such as strings [e.g.,|Lodhi et al., 2002]] and graphs
[e.g., Kondor and Lafferty, 2002].

For any PD kernel ¢, we may view the univariate function £ (o,-) as an el-
ement in some uniquely defined (real) Hilbert space s called the reproducing
kernel Hilbert space (RKHS). Roughly speaking, elements in # are functions of
the form

0 =f€(0)€(0,-)d0,

which is essentially a weighted sum of £ (o, -)’s with the respective weights & (o).
The precise meaning of the integration depends on the observation space @. The
inner product (:,-) in S satisfies the reproducing property

£(0,0") =(L(0,),£(0',-)), Vo,0' €0,

and thus for any f € 5, the evaluation at o can be viewed as an inner product,
i.e.,

f(o)= f & (0") ¢ (0,0")do’

:fg(o’) (£(0,),€(0,))do’

- <J £(0) ¢ (o’,-)do’,e(o,-)>

= (f,£(0,")).
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In RKHS, the set {£ (0,-): 0 € 0} plays two roles. On one hand, elements
therein are basis functions since every f € 5 is their linear combination. On the
other hand, each w(0) = £ (0,-) can be interpreted as the (potentially infinite
dimensional) feature associated with obervation o, such that every nonlinear
function over the observations becomes a linear function over the features. This
latter interpretation inspires the so-called kernel trick, where we transform al-
gorithms that depend on finite dimensional feature vectors through their dot
products into algorithms operating on the observation space @ by replacing the
dot product with the kernel £ (-,-). For example, applying the kernel trick on
least square regression gives the (unregularized) kernel least square (KLS):

f0)=y"G g (0),

where g, (0) = [£ (01,0),...,¢ (ok,o)]T, Gy is the Gram matrix over o,.;, and
Y= [Y1se s Vi T with y; being the response for observation o;. Similarly, ap-
plying the kernel trick on LSTD gives the (unregularized) kernelized function
approximation [Xu et al., 2005]]

v(0) =r"G, (GHGy) ™ g (0),

where r = [ry,...,7;] " is the vector containing the rewards collected at each
time step, and
L =y
H, = : . !
-Y
1

encodes the temporal correlation between adjacent observations.

It is easy to see that in both KLS and kernel FA, the computational complexity
scales at least quadratic in k, stemming from the need for inverting G,. This
renders the algorithms infeasible for large k. Furthermore, in both algorithms,
the solutions take the form

k k
Zeie (0;,0) = <29i£ (0:,°) :‘0(0)> >
i=1 i=1

where 0, are k weights over the basis functions £ (0;,-),...,£ (0, ) minimiz-
ing the mean-square errors. This amounts to empirical risk minimization [see
e.g., Bousquet et al., 2004/ with the number of parameters to be estimated the
same as the number of observations, causing overfitting. Particular to kernel
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methods, this is accompanied by the numerical instability resulting from invert-
ing large G, which is often ill-conditioned due to the fast decay of the eigen-
spectrum.

Usually, there are two families of solutions to the above mentioned problems
[see e.g., Bousquet et al., 2004]]. The first one is through regularization, e.g.,
to introduce a positive definite matrix B, typically B = 61 for some 6 > 0, and
replace the inversion of G, and G,H,G, with that of G, + B and G H, G, + B,
respectively. This improves both the generalization and numerical stability, but
does not affect the computational cost. The second solution is through dimen-
sionality reduction. Specific to kernel methods, this amounts to replacing G, with
a low rank approximation

G =UD U],

where Uy is a k-by-m matrix (m < k) and D, is an m-by-m invertible matrix
[see e.g., Scholkopf et al., 1999; Williams and Seeger, [2000; Engel et al., 2004;
Shi and Guo, 2010]. The inverse of G, is then replaced by the pseudo inverse
of G, which can be computed in time O (m?k). Moreover, this also reduces the
number of independent parameters to m, alleviating the overfitting problem. To
see this, taking KLS for example, we have

f)=y"G g0~y (1) D; (U]) gk (0),

where UZ is the m-by-k pseudo inverse of U,. The set of possible weights can
thus be written as

6=[6y....6]" = (U) D (U] y, Vy eR%,

forming an m-dimensional space instead of k. Replacing G, with G, may also be
viewed as a form of linear basis projection (see Section [2.3.2)), where we reduce

the number of basis functions from k to m using matrix (Uk' )T, so that only m
weights need to be estimated.

In this chapter, we are concerned with a particular class of dimensionality
reduction methods, called the dictionary based methods, where we maintain a
dictionary of obervations 2 = {0(1), ooy o(m)} taken from o,.,, and approximate
G, by the following formula

G ~ G, G, G|

km>

or its variations [e.g., Bach and Jordan, 2005; [Shi and Guo, [2010]. Here G, is
the Gram matrix over 2, and Gy, is the k-by-m matrix with the (i, j)-th entry

l (oi,o(j)).
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Generally speaking, there are two approaches to constructing the dictionary.
The first is the Nystrom method [Williams and Seeger, 2000], where a randomly
selected dictionary is used. The second, which is the concern of this chapter,
is OKS, where the dictionary is built up incrementally by incorporating new
features that cannot be represented well (in the least squares sense) using the
current dictionary. More precisely, let w; = w (0;), ©¥ = w (o(i)), and with
a little abuse of notations rewrite 9 = {w(l), . ..,w(m)}, then OKS adds w, =
w(0,) € # toif

min “a)t—wHZ > . (3.1)
wEspan 9
Here a > 0 is a hyper-parameter set by the user. It has been shown in Engel
et al.| [2004] that the left hand side of Equation [3.1] can be computed as

Jmin [loc— | = (0n,0) ~ g] (o) G284 (0.),

where g, (0) = [6 (0(1),0) seeo,l (o(’”),o)]T. It can also be seen [e.g., from
Akhiezer and Glazman, [1961, Section 1.7] that

det G@U{wt}

3.2
det G, (3.2)

min Hwt - co”2 =
w€Espan g

Previous theoretical study by [Engel et al.| [2004] has revealed a number of

attractive properties concerning OKS. In particular, it has been shown that the

constructed dictionary is guaranteed to represent a major fraction of the leading

eigenvectors of the Gram matrix G, [Engel et al., |2004, Theorem 3.3]. In addi-

tion, it was proven that the dictionary stays finite if the set of possible features is

compact, and thus admits a finite covering number [Engel et al., 2004, Theorem
3.1]. Yet, an important question remains open:

How does the size of the dictionary scale with the number of features if
the set of possible features does not admit a finite covering number;, or
if the covering number is too large compared to the size of the data set?

Answering this question allows us to: (1) estimate the computational com-
plexity of OKS, and therefore the associated kernel methods, more accurately,
and (2) characterize the generalization capability of the associated kernel meth-
ods, as the usual risk bounds are controlled by the quotient between the size of
the dictionary and the number of observations [see e.g. Gyorfi et al., [2004].
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In this chapter, we address this question under the assumption that the ob-
servations o0, are given i.i.d. This is the case for regression and classification,
but not for RLﬂ Our analysis proceeds in two steps:

1. We provide a novel formula expressing the expected Gram determinant
E [detG, | over a set of i.i.d. observations in terms of the eigenvalues of
the covariance operator. We then prove that the expected Gram determi-
nant diminishes with the cardinality of the set faster than any exponential
function.

2. We observe that the Gram determinant over the OKS dictionary is lower
bounded by some exponential function in the size of the dictionary. How-
ever, since step 1 concludes that the chance of finding a big Gram matrix
with large determinant is exceedingly small, the size of the dictionary must
also stay small with high probability. Specifically, we show that the size of
the dictionary will always grow sub-linearly in the number of data points,
which implies consistency of KLS regressors constructed from the dictio-

nary.

3.2 The Determinant of a Gram Matrix

We assume throughout the chapter that the RKHS 2 is separable, i.e., admitting
a countable set of orthonormal basis. Let P be the distribution of the /-valued
random element w (0) (0 € 0), and w.,...,w, be the features associated with
iid. observations oy,...,0;, then w;; ~ P, i.id. Assume E__,||w|* < oo,
and let € =E,._p [w ® w] be the (non-centered) covariance operator, where ®
denotes the tensor product. Let A; > A, > --- be the eigenvalues of ¢ sorted
in descending order, then ».A; < oo [Blanchard et al., 2007, Theorem 2.1].
The decay speed of the eigenvalues depends on both the choice of the kernel
and the underlying distribution from which observations are sampled. For some
important special cases, e.g., Gaussian kernels, the decay rate is known [see e.g.,
Bach and Jordan, |2002, Table 3, Appendix C.2, and the references therein].
With a little abuse of notations, we write Gy (w-.) as the k X k Gram matrix
with the (i, j)-th entry <cul-, co]-> ={ (oi, oj), and let det G, be the determinant
of G,. Clearly, det G, is a random variable from #* to R. Moreover, det G, has

2We speculate that if the underlying Markov reward process mixes fast enough, then the
results obtained may also be extended to kernel FA. However, a rigorous analysis on the non-
i.i.d. case is beyond the scope of this dissertation.
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finite expectation since from Hadamard’s inequality

0<E[detG] <E “_[; Hwi| 2} — (ElleZ)k.

Let A, > A, > --- > A, denote the eigenvalues of k~'G, (and thus those of
. : 5 21k . .
the empirical covariance operator ¢, = k™! Zi:l w; ® w;) sorted in descending
order. We assume the following condition.

Assumption 3.1 lim;_, 221 ‘ii — ;| =0, as., where we take A, = 0 for i > k.

The validity of this assumption will be discussed later in Section (3.4.1

3.2.1 A Formula for the Expectation of Gram Determinant

Before presenting our first main result (Theorem (3.1)), we introduce some ad-
ditional notation. The elementary symmetric polynomiaﬂ of order k over n vari-
ables is defined as

Ve i) = KD A Ay Ay,

1<i;<ip<--<ix<n

where the summation runs over all k-subsets of {1, ...,n}. We denote the infinite
extension of v, ; as

Ve (A 2g) = kDY A A Ay,
1<i;<ip<--<i

whenever the infinite sum exists. For simplicity, v, and v, , denote both the
function and their respective values with default argument (Al, Agy... ), and we
only write down the arguments when they differ from (24, A,,...). Some of the
useful properties of v, , and v, are summarized in the following Lemma.

Lemma 3.1 We have

a) Vg = Vpo1x = 0, and lim,,_, o, v, ; = Vj.
b) ,Vn,k = kkn/vn—l,k—l + Vn—l,k)

<) Vi =V Vi, (Newton’s inequality),

1

1 1
d) v = v, (Maclaurin’s inequality).

3Note that the standard definition does not have the k! term.
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Proof. We only prove the limit in a) exists. The other properties can be derived
easily using the limit argument and the properties of elementary symmetric poly-
nomials [e.g., see Niculescu, 2000]. In particular, c) is a direct consequence of
Newton’s inequality, and d) is a rephrase of Maclaurin’s inequality.

Note that v, is a non-decreasing sequence of n. Moreover,

Vo = KU D Ay oAy <K izi
i=1

1<i;<iy<--<ir<n

is bounded because Y A; < co. Therefore the limit exists. m

Note that property b) enables us to compute v, in O (nk) time using dy-
namic programming. More precisely, this is done by initializing i) v; ; = A4,, ii)
Vip = Vio1qpt A fori=1,...,n, and iii) v;; = iA;v;_q;; fori =1,...,k, and
then applying the recursion in b).

The following theorem gives an explicit representation of the expectation of
det G, in terms of the eigenvalues of €.

Theorem 3.1 E [det Gy (wq) ]

That is, the expectation of the determinant of a Gram matrix built from k

features is equal to the k-th order elementary symmetric polynomial over the
eigenvalues of the covariance operator.
Proof. [| Let wy,...,w, ~ P, and G, = G, (wy,,) be the corresponding Gram
matrix. Denote il, cee, A the eigenvalues of n™'G,, so that nk are the eigenval-
ues of G,,. The characteristic polynomial of G, is given by f (1) = det (G, — AI).
By definition,

(=2 = ]_[ (A+nk,)

:ink Z i‘il‘”i’ik .A”_k

1<i;<--<ix<n

_Z Vnk (A’ln An_k.

“An alternative proof may be derived using the generator function of E [detG, ] Martin
[2007]]. Unfortunately, the result is only briefly alluded to in the slides and no detailed doc-
umentation can be found till this moment.
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Alternatively, we can express f (—A) using the determinants of the principal
submatrices [see for example Meyer, 2001, pp.494], which are Gram matrices

by themselves:
n

FER=D) D) detGy(w,) A,

k=0 £e[n];

where [n], is the family of k-subsets in {1,...,n}, and w, denotes {w;}._,.
Divide the coefficients before A"~* by binomial coefficient (1) to get the identity:

- —k)In* »
(Z) Z det Gk (wﬂ) = (n%vn,k (Al:n) .

Je[n]k

The Lh.s. is a U-statistic [Serfling, [1980] with kernel detG,. Since E [detG, | <
00, the law of large numbers for U-statistics [[Hoeffding, [1961]] asserts that

-1
) n
E [detG, ] = lim (k) Z detGy (wy), ass.
genly
Now consider the r.h.s. For the first term

 (n—=1I)nk ) n n
lim ————— = lim =
n—oo n! n—oon—1 Tl—k+1

For the second term, we have
Vi (A’l:n) — Vi
n
= Z (Vn,k (A‘lzi—li Ai:n - 'Vn,k (Alzii A’H—l:n))
i=1

+ (vn,k (A Ay) — vk) )

Note that
Vik (Al:i—lJ i’i:n ~ Vnk (Alzis i'i-+—1:n)
= |k (il - Ai) Vn-1,k-1 (11:1—1: ii+1:n)
< k i'i - A'i /Vn,k—l (Al:i—l’ki:ii+l:n)
<k|A - Vik—1>

where

Vi1 = Va1 (max {Zl, Al} ,...,max {in, An})
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is bounded as ) max {711-, Ai} < 00. Therefore

Vi k (il:n) — Vi

n

<kvnk 12 L

i=1

’Vn’k (A’li“"kn) — 'Vk|

— 0, a.s.

The first summand vanishes because of Assumption and the second one
diminishes because of Lemma [3.1]a). As a result,

tim O () =

3.2.2 The Decaying Speed of E [det Gy |

It is not immediately obvious how v, = E [detG, | behaves with increasing k.
Here we provide a direct link between the speed with which v, approaches zero
and the tail behavior of {A;}. The analysis is based on the following lemma.

Lemma 3.2 Let A© =3 2;, and AW =3 .| A;. Then

k+s
log vy, — logv, < slog A® +1log ( X )

Proof. Note that

(k+s)!
Vi = Y Ay Ay S A A

1<iy <<y T <Jp <-Js
k+s
( z :A'll lk " Vs ()'lk+17z'lk+27 . )
1<11< <lk

Since A; is decreasing and i, > k, we have for all i

Vs (A’ik—i-l: 25 - - ) = (Ak+1skk+2s---)
= (Vs (A’k-l—la A’k+2’ s ) %)
) S

= (Vl (Ak+1:lk+2:"' )

N (ZM Aj)s’
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N
o
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—_—)\, =
''''' Y =42
= = =)\ = (ilog(1 +4)?)~1
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Figure 3.1. lllustration of the behavior of v, with exponential, polynomial and
nlogn-type eigen decay.
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where the last inequality is from Lemma [3.1]d). Therefore,

k s
s (1) 60 o

Taking the logarithm gives the desired result. m
An immediate consequence is that v, converges to O faster than any expo-
nential function.

Corollary 3.1 For any a > 0, lim,_, ., a *v, = 0.

Proof. Assume k is fixed and s is large. From Stirling’s formula

k+s s k
log L = klog (1 + E) +slog| 1+ S + 0 (logs)
<s+0 (logs),

where we use log(1+ x) < x for all x > —1.
By Lemma 3.2}

logviys — (k+s)loga
<s [1 — loga—l-logk(k)] + klog(k +s)+1logv, —kloga.

Since Y. A; < 0o, we can pick a k* such that log (Z A‘) < —2+loga, then

j>k* 7V
kh—{g logv, —kloga = sli)rglo (logvieis — (K" +s)loga)
< sllrglo (—s+k*log(k* +s) +logv,- — k*log a)
= —00,
and thus lim, ., a v, =0. =

Remark 3.1 We can also bound v, in terms of AX) using Lemma (See Figure
for an illustration.) For exponential decay, i.e., A; ~ O (c7"), we take s = 1,

then
2

logv, < —Eloga +logk! 4+ 0O (k).

The bound is tight since for A, = o, direct computation gives

vk:k!i)\il--- i 2 = ko™

ho1 =+ [T, (oi-1)
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Taking the logarithm and applying some algebra we get
2
logv, = -5 logo +1logk! 4+ O (k).

For polynomial decay, i.e., A; ~ O (i_(”p)), Dok i~(1+p) ~ kp%p, we set s =k,
then
® 2k

log vy, —logv, < klog A +log L
Using Stirling’s formula,

log (2k)! — 2logk! = klog4+ O (logk).
Therefore,
Vor 4
— < —pklogk + klog — + O (logk),
Vi p
which characterizes the convergence of v,.

log

3.2.3 Bounding the Moments of the Gram Determinant

In this section we prove a simple result concerning the moment E [(det Gk)m] ,
with the additional assumption that the kernel £ (-, -) is bounded, i.e.

sup £ (0,0") < 0.

0,0'€0

Note that for any m > 1, £ (0,0") = (£(0,0"))™ is still a bounded kernel.
Let #™ be the RKHS associated with £(™ and denote l(lm) > Ag’”) > .-+ the
eigenvalues of the corresponding covariance operator in #™. We have the
following bound.

Theorem 3.2 E [ (detG,)" | < v, (A™,A3",...) form=2,3,....
Proof. Let Ao B be the Hadamard product of A and B. We use the well-known
fact: If A, B are positive semi-definite, then
det(AoB) > det(A)det(B).
Repeating the process in the proof of Theorem and applying
detG™ > (detG,)"
gives the result. m

Remark 3.2 Theorem|3.2|allows us to estimate empirically the bound of E [(det Gy) m]
without enumerating all subsets of size k. Moreover, for RBF and polynomial ker-
nels, £™ remains RBF and polynomial, respectively. However, it remains unknown
how kgm) behaves in the general case.
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3.3 Analyzing Online Kernel Sparsification

In OKS, the dictionary 2 is initially empty. When a new feature w arrives, it is
added to the dictionary if (see Equation (3.2))
det G@U{w}
_>
detG,,

Our analysis is based on the key observation that
detG,, > a”!.

Since we have shown in the previous section that a *E [det G, | — 0, the chance
of finding a subset with the property that detG, > a!?! will diminish as |2
grows, making a large dictionary unlikely.

More specifically, let w.,...,w, be ni.i.d. features from P, and let 2, be the
dictionary constructed from w,.,. Denote [n], to be the family of all k-subsets
of {1,...,n}. For .« € [n];, let

pr(wy) =1 [det G (wy) > ak] ,

where I [-] is the indicator function. Define

k* = argmax Z pr(wy)>0
k A E€[n]y

Then clearly |@n < k’, and we may study k’ instead of |2|. Intuitively, k;
characterizes the dimensionality of the linear space spanned by w;.,, because
for any subset larger than k; all w can be represented within error a by the
linear combination of w_, for some |.o/| < k.

To characterize k; we study P [k;: > k]. The following lemma shows that
this probability is equal to the probability of the existence of k-subsets .o with

prlwy)=1.
Lemma 3.3 P [k:i > k:| =P [Z%E[n]kpk (wy) > 0].

Proof. By definition

P[ZPk(wﬂ)>O] =P U Z pr (wy) >0

ln)y K>k | elnly
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Therefore the equality is not trivial.
From Theorem 5 in|Cover and Thomas [[1988],

det Gk+l (w1:k+1) k1 < 1 Z det Gk (w;z{) k
ak+1 T k+1 ak '

de[k+1];

Therefore, 3 (. Pk (@) = 0 implies Zde[n]k/ pr (w,) =0 for all k¥’ > k,
and thus

IP’{Z pk(wﬂ):o} <P |4 D) pv(wy)=0

Feln]y K>k | @elnly
Taking the complement on both sides,

IP’{Z pk(coﬂ)>0:| >P | J4 D) pv(wys)>0

o €[n]y K>k | .#E€lnly
- *
=P [ki>k].

[
We may now proceed to bound k, using basic tools from probability theory.

Theorem 3.3 P H@n

> k] <P [k:‘l > k] <a ().

Proof. Note that

P

E{ > b (wﬂ)] = (H)E[pk]

A €[n]i
(k)p [detG, > o]

=

From Markov’s inequality,

E [detG
P [detGy > a*] < #.
a
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It then follows

Plki>k]=P| >’ pk(wﬂ)m}

| .7 €[n]y

<E Z Pk (‘%f):|

| .o/€[n]y

- (n) E [det Gy ] -
k ak
Here we use the fact that p, is {0, 1}-valued, and apply Markov’s inequality
again. m

Note that the proof only uses Markov’s inequality, which usually provides
bounds that are by no means tight. The possibility of strengthening the bound
is discussed in the next section. However, even with this simple analysis, some
interesting results for the size of 2 can be obtained. The first is the following
corollary.

Corollary 3.2 For any € € (0,1],

IimP|—>¢| =0.

n—o00 n

Proof. For simplicity assume en is an integer. Let k = ne, then

n\ v (kv
k)ak — \ k )ak’
Using Stirling’s formula,

log (8_k1k) = log (e‘lk)! —logk! —log ((e_l — 1) k)!

=1k + O (logk),

1 1 1 1
Y:—log——(——l)log(——l).
e "¢ € €

Therefore, following Corollary [3.1]and Theorem

. k:(l . n\ E [det Gk]
ImP|—>¢| < lim _
n—0oo n n—oo,k=en \ k ak

_ ek v,
il W A s

=0.

where
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Remark 3.3 By definition, Corollary indicates that n~'k* — 0 in probability,
i.e., the size of the dictionary grows only sub-linearly with the number of observa-
tions. Assuming finite variance of the response variable, it immediately follows that
the ordinary linear regressor constructed using features obtained from OKS is con-
sistent, as the generalization error is controlled by n™1|9| [e.g., see Gyorfi et al.,
2004].

The next corollary provides a bound given a finite number of observations.

Corollary 3.3 For arbitrary 6 > 0 and
ak(5)i
n<—|—1|,
e \ Vi

Remark 3.4 It is possible to give a bound in k rather than n. However, such a
bound requires the inversion of v, and complicates the notation.

we have P [|@n

>k]<a

Proof. Assume n = ¢ 'k. Rewrite Theorem [3.3] as

P [I@e—lkl > k] <a’k (E_klk) Vi

Using the simple relation (E;{1 ) < (¢7%e)", we have

[k
loga ” v <k (1—loga) —kloge +logv,.
Letting the r.h.s. equal log 9, it follows that

1 e_*_l1 vk_l d e Vi &
oga kogg—ogs,an 8_(1(5) .

[
Using Corollary an upper bound on the dictionary size can be derived
using {2;}, and the impact of a on the dictionary size can be analyzed.
From the previous discussion, if A; < o', then

k!(o)7* k! (o)7*

[, (ci-1) I, -0

Vi =
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or

1 1 k 3 1 .
Elogvk < Elogk! - Eloga — Eloga — E;log (1 - O'_l)

< Kiogo +1ogk — Slogo+ —Z
=g OB TR T S T T e 1)

where we use )
. o
—;10g (1 —O'_l) < (0——1)2

Plugging this into Corollary , n< %5 %0'5, where f is some constant depend-

ing on o, which implies k ~ O (log(n)). Similarly, for polynomial decay n~(1+p),

we have for large k

1 Vor 4
—log— < —plogk + log —,
k Vi p

and using Corollary n< aSkk*P. Therefore, the dictionary size grows ap-
1

proximately at the rate of ni+*. Note that the order of magnitude of these bounds
coincides with the number of eigenvalues above a certain threshold [Bach and
Jordan, 2002, Table 3].

3.4 Discussion

This chapter presented a rigorous theoretical analysis of how the dictionary in
online kernel sparsification scales with respect to the number of observations,
based on properties of the Gram matrix determinant. This work should lead to
a better understanding of OKS, both in terms of its computational complexity,
and the generalization capabilities associated with kernel regressors and kernel
FA. Three additional points are discussed below concerning a) the validity of
Assumption b) how our results relate to the Nystrom method, and c) how
the analysis can be potentially developed further.

3.4.1 On Assumption 3.1

Under the mild condition E,,_, ||w||* < oo, it can be seen that (-,-) is a Mercer
kernel in the sense of Definition 2.15 in Braun| [[2005]], and subsequently by
Theorem 3.26 therein, it follows that the 6, distance (pp.116, Koltchinskii and
Giné|2000) between {ii} and {A;} vanishes almost surely.
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However, the convergence of the spectrum in 6, metric is insufficient for
Theorem [3.1] to hold. To see this, consider the simple case where the kernel is
defined as £ (x,x) =1 and £ (x,x’) = 0 for x # x’. Note that the RKHS induced
by { is non-separable, as there are uncountably many basis vectors if the support
of x is uncountable. Nevertheless, it follows that all eigenvalues of n~'G, are
n~! and all eigenvalues of % are zero. In this case, the §, distance becomes
n~! — 0, yet for fixed k, v, = w — 1, and thus the convergence to v,
fails.

It is possible to drop Assumption altogether and base the discussion on
lim,_,., v, instead, where the limit always exists and equals to E [det G, |. Oth-
erwise, following the analysis by Gretton et al. [2009]], we may provide sufficient
conditionsﬂ to Assumption using the following extension of the Hoffman—
Wielandt inequality (Theorem 3, Bhatia and Elsner|1994)

S =6

where ||-||,, denotes the trace norm. Using Proposition 12 in Harchaoui et al.
[2008], the convergence of || €. — € ||tr to zero can be established provided that
i) S is a separable RKHS (e.g., an RKHS induced by a continuous kernel over a
separable metric space; Steinwart et al. 2006)1 induced by some bounded kernel,

tr?

and ii) the eigenspectrum of ¢ satisfies Y. A2 < oo.

3.4.2 Comparison with Nystrom Method

A similar approach to OKS for reducing the computational cost of kernel meth-
ods is the Nystrom method [Williams and Seeger, 2000], where the dictionary
consists of a subset of observations chosen at random. One distinction of the
two methods, following from the analysis before, is that the dictionary from
OKS satisfies detG, > a'?! while the randomly selected subset 9, satisfies
detGy < al?l for large 2. Therefore,

detG, S detG,
detG, = detGy

. . detG detG,
Note that in Gaussian processes, log deet—G” and log deet—G”
9 9

ditional entropies of the data set given observations in 2 and 9 [see e.g. Ras-
mussen and Williams, [2006]], which indicates that 9 captures much less infor-
mation about the data sets.

are respectively the con-

>We thank Arthur Gretton for pointing this out in the ICML review.
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The theoretical study of the Nystrém method by Drineas and Mahoney| [[2005]]
suggests that O (@~ *k) observations are needed to approximate the first k eigen-
vectors well, which is linear in k, irrespective of the sample size. A recent study
by Jin et al. [2012]] shows that assuming bounded kernel, the spectral norm of
the approximation error between the true and the approximated Gram matrix
scales at O (nl@I_%), and in the case of A; ~ i ?, an O (nI@Il_p) rate may
be obtained. In comparison, the results obtained here are over the dictionary
size |2|, and the approximation error is controlled by a. In particular, assum-
ing bounded kernel, the (i,j)-th entry of the difference between the true and
approximated Gram matrix using OKS is bounded by

<coi,wj> — <H@coi,l'[@cuj> < 2sup||lw|| Va,

where 11, denotes the projection operator into the space spanned by 2 and
the inequality follows from Cauchy-Schwartz inequality. Using the fact that
IlAll, < 4/ l|All; ||All for arbitrary matrix A, where ||-]|,, ||-|l; and ||-||, respectively
denote the spectral norm, maximum absolute column sum norm and maximum
absolute row sum norm, we conclude that the spectral norm of the approxima-
tion error is controlled by O (ny/a), which is a non-probabilistic bound and does
not explicitly depend on the dictionary size.

3.4.3 On Strengthening the Bound

The proof of Theoremuses Markov’s inequality to bound both P [det G, > ak] ,
and the probability of >, ,,; Pk (/) # 0. In practice, this bound is hardly sat-
isfying. One possibility is to strengthen the bound by incorporating information
from higher order moments [[Philips and Nelson, (1995], i.e.,

E |detG]

< ¥ (A5, 25,...) |

T mef1,2,.} akm

However, analyzing Agm) is difficult in general, and remains an open research
question.

It is also possible to improve the second step, using concentration inequalities
for configuration functions [Boucheron et al., [1999]. Let v,,...,v, be a sub-
sequence of w;.,. We say v,.; is a-compatible, if for j =1,...,k,
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Note that the dictionary constructed by OKS is a-compatible, and the property
of a-compatibility is hereditary, i.e., v,., being a-compatible implies that all sub-
sequences are also a-compatible. To see this, let v, ,...,v; be a sub-sequence
of vy, then

detG{Uq ,,,,, vl-s} _ min |’U~ —’U||2
det G{'Uq ..... v, 1} UEspan{vil ..... Uls_l} i
> min ’ Vi — 'UHZ
vespan{vy,...v; 1 } i
detGy,, v}

As a result, let Z, denote the length of the longest sub-sequence in w,., that is
a-compatible, then I@n| < Z,. By Theorem 2 in Boucheron et al. [[1999]], Z,
concentrates sharply around E [Z, |. Therefore, it is unlikely that |9n| exceeds
E [Z,] by much. However, providing tight bounds for E [Z,] is difficult and
requires further study.



Chapter 4

Incremental Basis Construction from
Temporal Difference Error

In this chapter we introduce a method for reward-sensitive, incremental basis
construction, called V-BEBF. V-BEBF relies on a novel principle, where the ap-
proximations to the value function of the Bellman error, rather than to the Bell-
man error itself as in BEBF (see Section [2.3.2)), are added as new basis functions
(hence the name V-BEBF). This approach is justified by a simple yet previously
unspotted insight, i.e., V-BEBE if computed exactly, is in fact the error in value
estimation, and therefore its addition to the existing set of basis functions im-
mediately allows the value function to be represented without error.

This result transforms reward-sensitive basis contruction into a second value-
function estimation problem, and suggests a natural framework for estimating
value functions: a primary reinforcement learner estimates the value function
using its present basis functions; it then sends its TD error to a secondary re-
inforcement learner, which interprets that error as a reward and estimates the
corresponding value function, i.e., V-BEBF; the resulting V-BEBF estimation is
then added to the set of basis functions used by the primary learner.

The main contribution of this chapter is twofold, namely (i) formulating V-
BEBE and (ii) demonstrating that V-BEBF is a promising alternative to BEBF (see
Section [2.3.2)), especially when the discount factor y approaches 1, in which
case we prove that BEBF can be very inefficient. Limited experiments are also
conducted to compare the two methods, and the results are in line with the
theoretical finding.

The rest of the chapter is organized as follows. Section briefly reca-
pitulates the background material. The formulation of V-BEBF is then detailed
in Section along with a theoretical comparison with BEBE Section de-
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scribes two algorithms, where the idea of V-BEBF (as well as BEBF) is used for
linear dimensionality reduction. A limited empirical study is presented in Sec-
tion [4.4] followed by a discussion in Section [4.5

4.1 Background

This section reviews some of the notation established in Section [2.3] A Markov
Reward Process (MRP) is a 4-tuple (&, B r,y), where & = {1,...,S} is a state
space, P is an S-by-S transition matrix, r is an S-by-1 (expected) reward func-
tion, and y € [0, 1) is a discount factor. Let v be the value function of the MRB
then v satisfies the Bellman equation

v=r-+7yPv,

which can be written as
v=LTr, “4.1)

with L =1 — yP.
In LFA, the value function is approximated via a linear combination of basis
functions ® = [ ¢4, -+, ¢y | such that

Vo Zle 0.¢, =20,

where N < S and 6 = [6,,...,6y] T are the corresponding weights. The Bell-
man error of such approximation is thus given by

eE=r+yP®0 —®0 =r—L®O =L(v—®0).

Clearly, ¢ =0 if and only if v = 6.

When the basis functions are given, the weights can be obtained using meth-
ods described in Section In particular, we may compute the weights by
minimizing quadratic objective functions of the form

J=(L"¢) K (L) =(v—20) K(v—20), (4.2)

either explicitly or though (stochastic or batch) gradient descent. The optimal
weights are thus given by

6= (2'ke) @'Kv,
with the corresponding value estimation ¥ = I1,v, Bellman error

E=r—Lo®0 =L (v—Tv),
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and the minimum of the objective function

J=minJ =v'Kv — (Mev) " K (Tev) . (4.3)

Here IT, = & (<I>TA<I>) ~ ®"Ais the projection operator with respect to the (semi)
inner product (v;,v,), = vlT Av, defined by arbitrary positive (semi) definite
matrix A. Specific to LSTD [Bradtke et al., 1996]] and TDC [Sutton et al., 2009],
we set K;,,; = L'II,DII, L, where D is the diagonal matrix whose diagonal is
the sample distribution of the states, and the optimal weights become

6.0=(®'DL®) @'Dr,

which can be estimated from sample trajectories.

When it comes to basis construction, particularly the online, reward sensitive
case, a significant fraction of the existing approaches make use of the so-called
Bellman error basis functions (BEBFs; [[Wu and Givan, 2005; Keller et al., 2006;
Parr et al., 2007; Mahadevan and Liu, [2010]]), in which the next basis function
¢ x4 is constructed so that

Pn+1 ™ Ey,

where €y is the Bellman error corresponding to the optimal value estimation
using basis functions ¢, ..., ¢y. These methods capture the intuition that the
“Bellman error, loosely speaking, point[s] towards the optimal value function” [Parr
et al., 2007]]. Because a sequence of normalized BEBFs form an orthonomal ba-
sis of the space in which the value function resides, any value function can be
exactly represented given a sufficient number of BEBFs [Parr et al., 2007; Ma-
hadevan and Liu, [2010].

4.2 V-BEBF

In this section, we pursue an entirely different idea for basis-function generation.
Instead of constructing a sequence of basis functions that, in sufficient number,
can eventually represent the value function, we aim to do so with a single new
basis function, namely the V-BEBE The rest of this section is organized as fol-
lows: Section details the formulation of V-BEBE Two related topics are
then discussed, namely (i) the comparison with BEBF (Section [4.2.2), where we
provide theoretical results demonstrating the potential ineffectiveness of BEBE
and (ii) issues related to approximating V-BEBF (Section [4.2.3]), where a simple
analysis on the approximation error is presented.
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4.2.1 The Ideal Basis Function from TD-error

With a given set of basis functions, once the optimal weights have been found, no
more improvement can be made to the value-function approximation. To further

improve performance, additional basis functions can be added. If , = [ : ¢],

and 0, = [07 : 1], where [A: B] is the matrix with A and B juxtaposed, then
the Bellman error becomes
e, =r—L® 0, =r—L®0—L¢
=L(v-90—-¢)
=L(L7e—¢).
Ideally, we should choose ¢ = L™¢ =v — ®0, so that ¢, is reduced to 0, and the
value function is exactly represented by v=®_6,.

The key insight is that ¢ = L™ ¢ is the solution of the Bellman equation
¢ = e+ yP¢, namely, ¢ is the value function of the original Markov chain when
its reward function is equal to the Bellman error, €. Since ¢ is also the expectation
of the TD-error, ¢ can be computed by solving a second reinforcement learning
problem, in which the TD-error of the first problem is used as the reward in the
second.

The choice of ¢ above depends on both ® and the current weights 6, which
change during learning. However, in the limit 6 converges to 6, so we can
remove this dependency and define the Value Function of the Bellman Error, V-
BEBE as ¢ = L™¢, or equivalently through the Bellman equation

d=¢+yPo. (4.4)

We argue that ¢ is the ideal basis function for two reasons. First, adding ¢
allows the value function to be represented exactly, since by Equation |4.1

v=L"r=1L" (r — L0 +Lq>é)
=1 (¢+1%0)
= ¢ + 0.
Second, as can also be seen from this last equation, adding ¢ does not change
any of the optimal weights for the existing basis functions. Therefore, when
¢ is added, there is no need to re-adjust the weights learned previously. It is

straightforward to verify that ¢ (up to a non-zero multiplicative constant) is the
only basis function possessing these two properties. Indeed,

_ 1 CaTrr-a TR
0=—_-vyJ| =2'KL é=3K¢, (4.5)
0=0
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indicating that ¢ is orthogonal to the first N basis functions with respect to the
(semi) inner product (-, ).

It must be pointed out that V-BEBF is no easier to compute than the value
function itself (and so does BEBF). Yet, the usefulness of this idea comes from
the following intuition, shared by previous work on BEBF [Wu and Givan, 2005,
see e.g.,], that crude approximations to V-BEBFs (or BEBFs) may still yield good
basis functions. This will be discussed further in Section

4.2.2 Comparison with BEBFs

The idea of generating basis functions from Bellman error has been explored
several times in the literature. In particular, |Parr et al.| [2007]] carried out a the-
oretical study, where they pointed out that a sequence of normalized BEBFs, &
in our terminologyﬂ form an orthonormal basis in RS with respect to (-, ), as-
suming that K;,,4 is used in the objective function. As a consequence, repeatedly
adding BEBFs eventually allows any value function to be represented exactly. A
recent variation, namely the Bellman Average Reward Bases (BARBs), replaces
the very first BEBE r, with P®r, where P* = lim,_,, P". BARBs are equivalent
to BEBFs if P is ergodic, yet demonstrate faster convergence otherwise, particu-
larly when y — 1 [Mahadevan and Liu, [2010].

The formulation of V-BEBF bears a clear resemblance to BEBF in that it is
also based on the Bellman error. However, there is a key difference. In the
worst case, representing a value function requires a whole sequence of BEBFs,
even if all BEBFs are computed exactly. In contrast, a single additional V-BEBE
if computed exactly, is sufficient to represent the value function. In fact, when
the initial basis function set is empty, the first V-BEBF is simply L™ r, the value
function itself.

The difference between V-BEBF and BEBF is captured by the following propo-
sition, and illustrated by the example in Figure

Proposition 4.1 Consider the objective function J as defined in Equation with
K an arbitrary fixed positive definite matrix. Let J and J, be the minimum of J as
defined in Equation corresponding to the basis functions ® and [® : £]. Then
=F <y?
P 7= I
with the equality holding iff r is chosen such that

'The sequence of BEBFs is constructed iteratively, such that ¢; = r, and ¢, = éX =
r—LeWH® where &) = [¢y,--+, ¢, ] and % are the optimal weights.
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1. TPy = P®6;
2. 'K =¢TPTKPG;
3. ¢"KPp =y K.

Remark 4.1 The example in Figure [4.1| shows that when the conditions in Propo-
sition are satisfied, the upper bound for p is indeed achieved.

Proof. Let ¢ be the new basis function, then the minimum of the objective
functions J and J, without and with ¢ added are given respectively by Equation

[4.3] and
J,=vKv—v'K [®,¢] ([«b,cj)]TK [@,4;])_ [®,6] Kv.

Change variables for simplicity: write K = ATA, u = Av, ¥ = A®, ¢ = A¢,
thenJ =u" (I = N)u = u"Vu, where I1 = ¥ (\Iﬁmp)_ ¥T and V = I — II. Note
that IT = I1?, V = V2. From block matrix inversion [see e.g., Petersen and
Pedersen, 2008, pp.45],

- Ty Yyyte)” _(vv) vy

vie ey | (e E) R
U R _yle(ele) 1
YIvy YIvy

and by Kailath variant [see e.g., Petersen and Pedersen, 2008, pp.17],

R N GO KGO

P YTV ’
therefore
ve vy | [(wTe) o 1 .
[ww ww} ‘[( o) o]Wva“

where { = [—wT\I’ (\I/T\Il)_ , 1] T. It follows that

u'vap -2 Tvu
Yy

J.o=u'Vu-
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Note that here the additional basis function is the BEBE so ¢p = &
therefore

LA Vu,

- j_+ B (uTVdJ) (wTVu)

7 W) W)
T 3 2
(u"VALA Vu)
(VA TLTATVALA-Vu) (uTVu)
T 2
(2K Lz)
" (z"LTATVALz) (z'Kz)’

=1

with g = A" Vu=A"VAL™r. Also,
ATVA=AT (1 ~w (vTw)” \DT)A <ATA=K,

thus )
(zTK Lz)

" (z'LKLz) (z'Kz)’

And the equality holds if and only if

p=1

(I-V)ALz = (I — V)ALA - VAL r = 0.

Simplify this equation gives the first condition.
Now assume that the equality holds, and expand L =1 — yP, then

(ZTKZ — }szKPz)z
z'Kz-27 (I—yP) K(I—yP)z

5TKz) (2"PTKPz) — (2KPz)’
_ . ('K ( ) — (z"kPz)

2 Kz-z7 (I—yP) ' K(I—yP)z

p=1-

Write x = Az, y = APz = APA™ x, then

1 (x.x=1y)’ _ L (6,0 (1, y) = (x, y)?
Il | x = v Il [ — v |

3

where (x,y) = x"y and ||x||* = (x, x). We show that

el | = vy |[* = el v |[|* = (e, )2
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Indeed,

1?2 = vy ||* = 1l | |[* + (2, 3)
= (Il = ) "+ (1= el (el = ||y [[*) »

and notice that y = APA”x and P is a transition matrix, so all the eigenvalues
of APA™ are smaller or equal than 1, therefore H _y”2 < ||x|I®. Also, the equality

holds iff: a) [|x||* = ||y||2 and b) (x,y) = y|lx||*>, which correspond to the
second and the third condition. m

In particular, when K is chosen as either L DL or D, p corresponds to the
Mean Square Bellman error and the Mean Square Value Error, respectively, and
the fraction of improvement from adding a BEBF is only 1 —y? in the worst case.
However, if the V-BEBF is added as the new basis function, the new minimum of
J is always 0 since the value function is represented exactly.

An analysis in a similar spirit was proposed by Mahadevan and Liu [[2010]],
who showed that the error in approximating the value function using the first
m BEBFs is bounded in terms of the Chebyshev polynomial of degree m and the
condition number of L. Our result, albeit less general, is simpler to interpret and
allows construction of the worst-case scenario (see Figure for an example).

4.2.3 Approximating V-BEBF

In theory, the V-BEBF can be computed as the value function of the Markov chain
using TD-error as the reward, provided that the weights for the current basis
functions are set optimally. In practice, the V-BEBF has to be approximated and
three sources of errors are anticipated: (a) the exact representation of V-BEBF
(as well as BEBF) requires storage of size S which is not available in the first
place, and therefore function approximation must be used; (b) the convergence
of 6 to 6 happens only asymptotically, and thus only the TD-errors, €, corre-
sponding to the current 6 can be used as the reward; and (c) error arises when
estimating V-BEBF from a finite set of samples. Formally, let 9 be the set of
functions from which the representations of V-BEBF approximators are chosen,
and let

b= arggéié}”qb — L‘s”
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Figure 4.1. Consider a simple two-state MDP with transition matrix P = [ (1) (1) 1,

and let K = LTDL, so that J is the MSBE. Assume initially there are no basis
functions. In this case the first BEBF is r, and the V-BEBF L™r is the value
function itself. The figure shows how p% varies with y and r. When r varies
on the unit circle (dotted black circle), the distance between the points on the
butterfly-shaped curve and the origin denotes p%, and each curve corresponds
to a different y. The blue dots show where p achieves its maximum (com-
puted from Proposition [4.1). It can be seen that when y approaches 1, the
worst-case p approaches the unit circle, which indicates less and less improve-
ment when the BEBF is added. Note that p is always zero when r is exactly

T T
on [cos %,sin%] and [cos 2%, sin 37”} , the eigendirections of L, but changes
abruptly when r leaves the first eigendirection.
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be the best-in-class given 6, then the error between an estimate ¢ and ¢, the
exact V-BEBE is bounded by

¢ - | = (¢_4;9)+(4;9_“)+(L—5_L—g)+(L—g_4;)H
S“cﬁg—L‘s +J|q>é—q>9 +J|¢—q59|
(a) ?6 ?5

b

v / /

where & is the Bellman error corresponding to the optimal weight 6 and thus by
definition L™¢ — ¢ =0, and

L e—L =30 —&0

is the error in current value estimation. The three items in r.h.s.of the last in-
equality correspond to the three sources of error mentioned above. As a result,
though only one V-BEBF is needed in principle, in practice we still rely on re-
peatedly adding new approximations of V-BEBFs to compensate for the error
in the estimation, as well as changes in the policy and non-stationarities in the
environment.

4.3 Incremental Basis Projection with V-BEBF

The result in the previous section suggests a natural way to perform value func-
tion approximation incrementally, whereby a primary learner receives reward
from the environment, modifies its value function estimate over a set of basis
functions, and propagates the TD-error to a secondary learner, which estimates
the value function of the TD-error, i.e., an approximation of V-BEBE which is
then added to the existing set of basis functions used by the primary learner
(Figure [4.2). The secondary learner can use any form of approximator for V-
BEBE If the secondary learner uses non-linear function approximation, then the
framework above allows one to increase the representational power of LFA.

In this study, we confine ourselves to the simple, linear case where V-BEBF
is combined with LBP (Section [2.3.2). More specifically, the primary reinforce-
ment learner uses a set of N ‘refined’ basis functions ® = [¢q,---, ¢y ], with
each ¢, being a linear combination of a set of M ‘raw’ basis functions, ¥ =
[Y1,---,Yy ], where N < M, i.e.,

M
d)n = Zm:l Wm,nl/)m = \ijn'

T .. -
Herew, = I:Wl’n, ey me] are the mixing coefficients. Denote W = [w1,...,wy],
then ® = WW takes the form of LBP. The new set of mixing coefficients wy_;
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reward /{>reward value|>\ value

Primary Learner

feature TD error
refined basis functions
reward value
Secondary Learner
raw

observations (> feature TD error [>

Figure 4.2. The V-BEBF framework. A primary learner receives reward from
the environment, modifies its value function estimate over a set of refined basis
functions, and propagates the TD-error to a secondary learner, that estimates
V-BEBF, which then becomes the new refined basis function to be used by the
primary learner.

are thereby generated by the secondary learner such that Yw,_, approximates
the current V-BEBE and are subsequently added as a new column of W, which
amounts to adding V-BEBF as a new refined basis function. We refer to this
approach as IBP-V (Incremental Basis Projection with V-BEBF), and to its BEBF
counterpart, where wy_; is constructed to approximate the current Bellman er-
ror, as IBP-B (IBP with BEBF).

Both IBP-V and IBP-B linearly reduce the feature dimensionality, but do not
add to the representational power of the original set of raw basis functions.
However, adopting the LBP framework allows us to focus on the difference be-
tween the fundamental ideas of V-BEBF and BEBF and avoid unnecessary com-
plications caused by specific (nonlinear) implementations, though it must be
pointed out that most of the practical value of V-BEBF and BEBF does lie in the
construction of basis functions depending nonlinearly on the observations [[Wu
and Givan, [2005;; Keller et al., 2006]].
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4.3.1 Batch IBP-V

We explore the case where the primary and the secondary learner use LST Let
0., = (\IJTDL\I!)_ U Dr be the LSTD solution using the raw basis functions,

0, = ((IJTDLQD) ~ ®"Dr be the LSTD solution using the refined basis functions.
Then by definition the solution of V-BEBF is given by

Wypeps = (LTDLE) U'Dé, (4.6)

=0 — WO,y 4.7)

where €., =1 — L\I’Wéref is the Bellman error. Note that 6., = Wobebs T
WO,.r, which indicates that a single LSTD solution of the V-BEBF allows the
exact representation of 6,,,. Also, note that the LSTD solution of the BEBF can
be derived by just replacing (\IJTDL\I!) - with (\IJTD\I!) in Equation

This naive implementation of IBP-V offers no computational advantage over
directly computing 6., since starting from an empty W, the first V-BEBF is ex-
actly 0,,,. Without assumptions about the sparsity of the basis functions, the
exact computation of 0,,, requires O (M2T) time, and O (M?) storage [Geram-
ifard et al., 2006], which is often not feasible. For this reason, we consider using
only B < M randomly chosen raw basis functions to approximate each V-BEBF
(see Algorithm [4.1). If N V-BEBFs are constructed in total to approximate the
value function, then the overall computational cost is O (MT) + O (NB*T) +
O (N3T), where the three terms correspond respectively to the cost of comput-
ing M raw basis functions, N V-BEBFs, and the weights over the refined basis
functions for N times. The storage cost is O (NB) + O (B*) + O (N?), with the
first term being the storage for W.

Algorithm raises the issue of how to choose N, the number of refined
basis functions to construct, and B, the number of raw basis functions used
to generate each refined basis function. The following analysis shows that we
can choose N = B = (cM )%, where ¢ = —loge, with the guarantee that at
least 1 — € fraction of the raw basis functions are covered when constructing the
refined basis functions. In addition, with this choice of N, B, the computational
complexity becomes O ((cM ) T) in time, and O (¢*M) in storage. To see this,
note that the probability of a raw basis function getting selected at least once is

2For succinctness, we use the exact sample distribution D and transition matrix P. But in
practice, both D and P must be replaced by their finite sample approximations.



71 4.3 Incremental Basis Projection with V-BEBF

Algorithm 4.1 Batch-IBPAf|

Input: samples (s,,S.,1,7¢) thl, discount factor y, raw basis functions
Yq,...,3,, number of basis functions for each V-BEBF B, maximum number
of refined basis functions N
Output: mixing matrix W, weights over refined basis functions 6
L We[];60<I]
2: while n < N do
3:  Select atrandom U C {1,...,M} with |U| =
4: fort=1toT do
5 w— [P1(5),-Pn (s0)]
6: wWp (1 (5e41) - ur (Se41) ]
7: O, =1 tyw,Wo —wWo
8: end for
9: w, — LSTD((5,5:+1,6.) _1» 7> %101
100 W Oypqs Wiy < W W [W i w]
11: 6 — LSTD((s0,S041,7) g » 7> ¥W)
122 n<n+1
13: end while

N . .
1-— (1 - %) , and our assumption requires

B\" —loge
1-11—— >1—€,or N> ———
M

—log(l— )

Assume % = 0(1), and note that —log(1 — x) > x. It suffices that NB > cM,
and letting N =B = (cM )% gives the complexity result.

4.3.2 Online IBP-V

Batch IBP-V can be modified to work online, e.g., by replacing LSTD with iLSTD
[[Geramifard et al., 2006]. One may instead use the linear complexity methods
such as TD or TDC [[Sutton et al., [2009]], (see Algorithm [4.2)), so that the com-
plexity of each time step is O (M N ) if all raw basis functions are used to estimate
the V-BEBF or BEBE or O (BN) if only B raw basis functions are used. In prac-
tice, N may also be controlled by dynamically removing refined basis functions

3We assume the subroutine LSTD (samples, y, basis) produces LSTD estimates of the weights
for the provided samples, i.e., triples (s,,s.41,7;), and basis functions. Also, for an arbitrary set
of integers U, wyy; denotes the sub-vector with entries indexed by U.
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Algorithm 4.2 Online-IBPVf|

Input: sample trajectory (s,$..1,7¢), discount factor y, raw basis functions
Yq,..., P, steps before adding each V-BEBF C
Output: mixing matrix W, weights over refined basis functions 6
1: c«—C
22 We[];0 = []; we 0y
3: repeat

4: Ct)<—|:1/)1 (st)""ﬁwM(st)]

S Wy (1 (Sex1) 5o osPur (5e41) ]

6: 5<—rt+(}fcop—a>)W9

7. 0 —0+as(wW)'

8: W<—W7La(5+ywpw—ww)coT

90 cec—1

10:  if c =0 then

11: c—C

12: We—[W:wl;0—[07:0]"; w0y
13:  endif

14: until trajectory ends

whose weights are very small. If N is upper bounded by a constant, then online
IBP-V is linear in the number of raw basis functions.

4.4 Experiments

We conduct two simple experiments to compare the performance of IBP-V and
IBP-B, with the aim of illustrating the difference resulting from the principles
underlying V-BEBF and BEBE In both experiments, batch and online IBP-V were
tested on randomly generate MRPs with 500 states and a branching factor (the
number of successor states) of 5. The reward at each state was drawn i.i.d. from
a standard normal distribution. All experiments used binary raw basis functions
over the states, that were generated by filling ¥ with i.i.d. Bernoulli variables

“*For simplicity, assume TD is used in both the primary and secondary learner (see line 7 and
8), which can be replaced by other algorithms. Also, the learning rates are fixed to a.

>We use the method described in http://webdocs.cs.ualberta.ca/~sutton/RandomMDPs.
html
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with p = 0.2. The error was measured using

(6 — We)T VDY (6,4, —WO)
6T ¥TDWH

raw raw

n(W,0)=

) (4.8)

which is the normalized Mean Square Value Error (MSVE) with respect to the
best possible value function approximation ¥9,,, from the current set of raw
basis functions. The initial W is set to empty so that the initial value of 7 is
always 1.

For the batch case, IBP-V was compared with IBP-B, with the results from
random feature projection [[Ghavamzadeh et al., 2010] serving as a baseline.
The number of raw basis functions, B, used to compute each V-BEBF or BEBE
and the number of refined basis functions N generated in total, were both set to
V5M, following the analysis in Section

For the online case, IBP-V was compared to IBP-B with B = M (each refined
basis function uses all of the raw basis functions). A refined basis function was
added after every 2000 time steps. To provide a baseline, these two incremental
approaches were compared to TD using only the raw basis functions. All TD
updatef] used the same learning rate 0.1, where the baseline TD achieves the best
performance (see Section for further discussion).

For all experiments, each method was run 50 times with y = {0.9,0.99,0.999}
and M = {100,200} raw basis functions, for a total of six different comparisons
in both the batch and online settings.

4.4.1 Results: Batch

Figure[4.3|plots the error, 7, against the number of refined basis functions added.
Each curve is the average of 50 runs, each of which is based on an indepen-
dent sample of the MRP and the set of raw basis functions, and a trajectory of
length T = 5000 is used. (The error bar is small thus is omitted). It can be
seen that both IBP-V and IBP-B perform significantly better than random feature
projection. It is also clear that when y approaches 1, the difference between
adding IBP-V and IBP-B increases dramatically—when y = 0.999, the error de-
creases very slowly as BEBFs are added, which coincides with Proposition
For smaller y, the difference between BEBF and V-BEBF diminishes, since BEBF
can be seen as V-BEBF with discount factor 0. In addition, although each V-
BEBF is constructed from a much smaller number of raw basis functions, (e.g.,

®Note that the secondary learner in IBP-B performs Least Mean Square [Widrow and Stearns|
1985]] update, which is equivalent to TD with y = 0.
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B =31 for M = 200), the error still decreases rapidly as the number of V-BEBFs
is increased, and our heuristic choice of B and N is shown to be quite effective.

4.4.2 Results: Online

Figure plots the error 1) against the number of time-steps. Note the ‘stair’
shape of the curves for both IBP-V and IBP-B caused by the abrupt drop in error
each time a new refined basis function is added. It can be seen that when the
discount factor approaches 1, the first few V-BEBFs added are far more effective
than the BEBFs added. Also, the performance of IBP-V matches the baseline
TD method after only a few basis functions are added, indicating that the basis
functions constructed are indeed useful.

4.5 Discussion

We address four issues arising from the previous discussion, respectively on
the interpretation of the contributions (Section [4.5.1)), the practical benefit of
V-BEBF (Section [4.5.2)), the intepretation of the experimental results (Section
[4.5.3), and the practical benefit of IBP-V (Section [4.5.4)).

4.5.1 Interpretation of the Contributions

The main contribution of this chapter is twofold: (i) proposing V-BEBF for
reward-sensitive basis construction, and (ii) demonstrating that V-BEBF is a
promising alternative to BEBE particularly when the discount factor y — 1.

It is worth pointing out that V-BEBF is a general methodology in parallel with
BEBE rather than a specific algorithm. Indeed, there are countless way in which
V-BEBF (as well as BEBF) can be approximated. It is therefore foreseenable that
the effectiveness of any particular implementation will be decided not only by
the underlying principle, but also by the quality of the approximation.

The study in Section[4.2.2|compares the theoretical properties of V-BEBF and
BEBE assuming they are computed exactly. The analysis ignores the approxima-
tion error, and may best be intepreted as an attempt to provide insights into the
potential effectiveness (or ineffectiveness) of the two methods. On the other
hand, analysis of this nature is frequently done in the literature, and particular
to BEBE two previous theoretical studies by Parr et al. [2007]] and Mahadevan
and Liul [2010] make the same assumption.
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Figure 4.3. Results for batch IBP. Each graph shows the performance of the
three methods compared, IBP-V, IBP-B, and random feature projection (RFP), in
terms of the error n (Equation against the number of refined basis function
added (averaged over 50 runs).
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Figure 4.4. Results for online IBP. Each graph shows the performance of the
three methods compared, IBP-V, IBP-B, and TD, in terms of n against time
(averaged over 50 runs). The vertical dotted lines indicate the moments at
which a new refined basis function is added to the primary learner. Notice
that in both IBP-V and IBP-B, at each time a new basis function is added, the
error drops abruptly.
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4.5.2 Practical Benefit of V-BEBF

As pointed out in Section |4.2.1] computing V-BEBF (and also BEBF) exactly is as
hard as computing the value function itself, if not harder. While this is indeed
true, we argue that V-BEBF (BEBF) is nevertheless useful. The key insight is that
crude approximations to V-BEBF (BEBF), which are obtained using far less com-
putation or samples, often suffices in providing (a relatively small set of) useful
(refined) basis functions. These basis functions can then be used by the primary
learner to achieve good overall accuracy in value estimation, while keeping the
cost (in terms of either computation or sample complexity) low. This is partially
confirmed by our experiment:

* In the batch case, each refined basis function is generated using only a
small fraction (v/'5M compared to M) of raw basis functions. As a result,
the computational cost of approximating each V-BEBF is O (M T), rather
than O (M2T). However, Figure {4.3|shows that a relatively small number
of V-BEBFs (+/5M) enables value-function approximation to high accuracy.

* In the online case, each approximate V-BEBF is generated from 2000 sam-
ples rather than from the whole trajectory (in our case 20000 samples).
As a result, the approximation is by no means accurate. However, Figure
shows that with each initial V-BEBF added, the error drops steeply, re-
sulting in the stair shape curve. In addition, the overall accuracy from the
first 10 refined basis functions is on par with TD using the same learning
rate and all raw basis functions, indicating that the approximate V-BEBFs
are indeed good basis functions.

4.5.3 Interpretation of the Experimental Results

The empirical study in Section [4.4|is simple and mainly undertaken to illustrate
the theoretical findings. In the batch experiment, both V-BEBFs and BEBFs are
computed optimally in the least square sense, and therefore the performance
difference is caused solely by the underlying principles. On the other hand, the
online experiment is inconclusive, as many factors may interfere with the per-
formance of the algorithms, e.g., separate tuning the learning rates for primary
and secondary learners, or using different value estimation algorithms such as
TD(A). Nevertheless, both batch and online results in these experiments were
in line with the theoretical finding, i.e., that the performance of BEBF degrades
significantly when y — 1, in comparison with V-BEBE
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It is worth pointing out that the algorithms we used in the experiment, IBP-V
and IBP-B, do not expand the set of raw basis functions. The practical value of
these algorithms is unclear, as it is widely perceived that the main usage of basis
construction is to exhance the representational power of LFA. However, we argue
that the experiments are targeted toward revealing the difference between the
fundamental ideas underlying V-BEBF and BEBE To this end, these algorithms
are suitable due to their simplicity, and the comparisons are fair, since both (re-
fined) V-BEBFs and BEBFs are selected from the same set of possible functions,
i.e., the linear span of the raw basis functions.

4.5.4 Practical Benefit of IBP-V

In some of our experiments, we found that IBP-V converges quicker than TD
using the same learning rate. This raises an interesting question as to whether
IBP-V can be used as a practical approach to trade off computational complexity
with sample complexity.

To investigate this, we conducted an additional experiment, where we use
the same setting as that of Section |4.4.2} except fixing M = 200 and y = 0.999.
Four algorithms are compared, TD, IBP-V, and IBP-B, and a new variation to IBP-
V] called IBP-V-Is, where the primary learner uses LSTD instead of TD. We vary
the learning rate of TD (from a = 0.01 to a = 0.5 with step size 0.01), and in
each case the same «a is inherited by IBP-V, IBP-B, and IBP-V-Is (secondary learner
only). Results with selected learning rates are shown in Figure It can be
seen that with small learning rate (a = 0.01 and a = 0.02), IBP-V outperforms
TD, while the performance becomes almost equal around a = 0.1, where TD
achieves the best performance. Further increasing a beyond 0.2 renders both
algorithms unstable. In contrast, the performance of IBP-V-Is varies little with the
learning rate, and is comparable with TD with the best learning rates. However,
since the primary learner uses LSTD, IBP-V-Is does not suffer from the instability
at high learning rates, even if the V-BEBFs are updated aggressively with a = 0.5.
The IBP-B algorithm, suffering from a high discount factor, does not perform as
well with any learning rate, as suggested by the earlier analysis. Given that the
optimal learning rate is usually not known in advance, these results indicate that
IBP-V, in particular the IBP-V-Is variant, may be of practical value. However, the
experiment is inconclusive and the question remains open for future study.



79 4.5 Discussion

12k
time step time step

Figure 4.5. Additional results on IBP. Each graph shows the performance of the
four methods compared, TD, IBP-V, IBP-B, and IBP-V-Is, in terms of n against
time (averaged over 50 runs). In the experiment, we fix M = 200 and y = 0.999,
and vary the learning rate a (shown in the lower left corner).
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Chapter 5

Information Theoretic Exploration in
Dynamic Environments

Chapters[3|and [4] studied basis construction in model-free RL. In this chapter, we
move to the model-based case and consider another representation generation
problem, namely model learning. In particular, the following question is asked:

How should an agent plan its actions such that the knowledge about
the environment accumulates as quickly as possible?

We provide an answer to this question under a classical framework, in which the
agent improves its model of the environment through Bayesian inference, and
the learning progress is measured in terms of Shannon information. We show
that the agent can optimally plan its actions by solving an RL problem in which
the reward is given as the expected (immediate) information gain. We then con-
centrate on a special case, where the environment is finite and Markovian, and
the agent’s knowledge about the environment is represented by a collection of
Dirichlet distributions over the transition probabilities of the Markovian model.
In this case, we first prove the existence of optimal exploration strategies assum-
ing an infinite planning horizon but with future information gain discounted,
and then show that such strategies can be approximated well by solving a series
of dynamic programming problems.

The idea of actively selecting actions to accelerate model learning has a
long history [e.g., Fedorov, |1972; Schmidhuber, 1990, 1991; Thrun and Moller,
1991; [Storck et al., 1995 (Chaloner and Verdinelli, [1995; [Ozgiir Simsek and
Bartol, 2006; Schmidhuber, 2010} |Orseau, 2011]]. Primarily, this idea is pur-
sued under the framework of artificial curiosity [see e.g., |Schmidhuber, 1991,
2010] as well as intrinsically motivated RL [Singh et al., 2004; [Stout et al., 2005;
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Ozgiir Simsek and Barto, 2006|]. Measuring learning progress using Shannon
information gain also dates back to [Lindley [[1956]; Fedorov| [[1972], and is
re-introduced recently as Bayesian surprise [[Itti and Baldi, [2006]]. Our work
combines these two ideas through rigorous derivation from first principles, in
contrast to the more heuristic approaches [e.g., |Storck et al., |1995; Ortega and
Braun, 2010]. It is worth pointing out that in contrast to the exploration problem
studied in model-free RL [see e.g., Kearns and Singh, 2002; |Strehl and Littman,
2005} Kolter and Ng, 2009b]], where the emphasis is on the balance between ex-
ploration and exploitation, we do not address the exploitation aspects, and focus
solely on exploration side of the problem.

The rest of the chapter is organized as follows: Section |5.1|reviews the basic
concepts and establishes the terminology; Section presents our formulation
of optimal Bayesian exploration; Section|[5.3|focuses on exploration in MDP; Sec-
tion[5.4] presents a simple illustrative example; Section [5.5]discusses the results.
The proofs are detailed in Section

5.1 Background

Suppose that the agent interacts with the environment in discrete time cycles
t =1,2,.... In each cycle, the agent performs an action a,, then observes o,. We
assume no external reward signals are provided to the agent, hence the process
is pure exploratory. A history h is either the empty string @ or a string of the
form a,o0, ---a,0, for some t, and ha and hao refer to the strings resulting from
appending a and ao to h, respectively.

5.1.1 Learning from Sequential Interactions

To facilitate the subsequent discussion under a probabilistic framework, we make
the following assumptions:

Assumption 5.1 The models of the environment under consideration are fully de-
scribed by a random element © which depends solely on the environment. More-
over, the agent’s initial knowledge about © is summarized by a prior density p (0).

Assumption 5.2 The agent is equipped with a conditional predictor p (olha; 6),
i.e. the agent is capable of refining its prediction in the light of information about
©.
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Using p (0) and p (olha; 0) as building blocks, it is straightforward to formu-
late learning in terms of probabilistic inference. From Assumption given the
history h, the agent’s knowledge about © is fully summarized by p (6|h). Accord-
ing to Bayes rule, p (0 |hao) = ‘W, with p (olha) = fp (olha,8)p(O|h)d6.
The term p (0|ha) represents the agent’s current knowledge about © given his-
tory h and an additional action a. Since © depends solely on the environ-
ment, and, importantly, knowing the action without subsequent observations can-
not change the agent’s state of knowledge about ©, then p (6|ha) = p (6|h), and
thus the knowledge about © can be updated using

p (olha; 6)

5.1.2 Information Gain as Learning Progress

Let h and h’ be two histories such that h is a prefix of h’. The respective poste-
riors of © are p (6|h) and p (6|h’). Using h as a reference point, the amount of
information gained when the history grows to h’ can be measured using the KL
divergence between p (6|h) and p (6|h’). This information gain from h to k' is
defined as

gW'lh) =KL (p (61r') llp (810)) = Jp(th’)l PO 4

(9|h)

As a special case, if h = 0, then g (k") = g (h'||0) is the cumulative information
gain with respect to the prior p (6). We also write g (ao||h) for g (hao|lh), which
denotes the information gained from an additional action-observation pair.

From an information theoretic point of view, the KL divergence between two
distributions p and q represents the additional number of bits required to encode
elements sampled from p, using optimal coding strategy designed for q. This can
be interpreted as the degree of ‘novelty’ or ‘surprise’ caused by observing samples
from p when expecting samples from q.

The key property of information gain for the treatment below is the following
decomposition: Let h be a prefix of h’ and h’ be a prefix of h”, then

Ehulh/g (h//”h) = g (h/”h) +Eh//|h1g (h””h/) . (52)

That is, the information gain is additive in expectation.

Having defined the information gain from trajectories ending with obser-
vations, one may proceed to define the expected information gain of perform-
ing action a, before observing the outcome o. Formally, the expected infor-
mation gain of performing a with respect to the current history h is given by
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g (al|lh) = E,,,& (aollh). A simple derivation gives

p(0lhao) p (o|ha)
g (allh) = J p(0,61ha)log d6 =1(0;0lha),
Z,: p(68|h)p (olha)
which shows that g (al|h) is the mutual information between © and the random
variable O representing the unknown observation, conditioned on the history h
and action a.

5.2 Bayesian Exploration in Dynamic Environments

In this section, we present our notion of Bayesian exploration in dynamic en-
vironments, with optimality results assuming a fixed limited life span for the
agent. We then discuss conditions required to extend this to infinite time hori-
zons.

5.2.1 Planning in Finite Time Horizon

Suppose that the agent has experienced history h, and is about to choose 7
more actions in the future. Let 7 be a policy mapping the set of histories to the
set of actions, such that the agent performs a with probability 7 (a|h) given h.
Define the curiosity Q-value q: (h,a) as the expected information gained from
the additional 7T actions, assuming that the agent performs a in the next step
and follows policy 7 in the remaining T — 1 steps. Formally, for 7 =1,

q71-f (h: Cl) = Eo|hag (ClO”h) =8 (Cl”h),
and for T > 1,

q; (h,a) = ]Eo\ha]EallhaoEollhaoal Tt Eof,llhn-aT,lg (haoalol e ar—10T—1||h)

= ]Eo\haEaloynaT,loT,l|haog (haoalol T dr_100 ||h) 5

where a4, ...,a._; are determined by policy 7.
The curiosity Q-value can be defined recursively. Applying Equation for
T=2,
q; (hs Cl) = IEolhaIE“alol|haog (haoalol ”h)
= Eojug [ & (a0llh) + By o, ha0€ (@104 /Iha0) |
=g (Cl”h) + EolhaEaﬂhaoqle (hao, a/) .
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And for T > 2,

q; (h,a) = EolhaEa101~~~a7,1of,1Ihaog (haoalol Trrlr 100 ”h)
= IE:o|ha I:g (aO”h) + Ealol--vaf_lof_lg (haoalol Tt dr_100 ”hao)]
=8 (Cl”h) + IEo|haﬂ'za’|haoq;;_1 (hao, Cl/) : (5.3)

Noting that Equation bears great resemblance to the definition of action-
value function in RL, with the one step expected information gain in the place
of the reward. One can similarly define the curiosity value of a particular history
as v: (h) = E,uq’ (h,a), analogous to the value function, which can also be
iteratively defined as v} (h) = E, ;¢ (allh), and

vE(h) = Egy [ (allh) + Eypevy* (hao)] .

T
The curiosity value v (h) is the expected information gain of performing the
additional 7 steps, assuming that the agent follows policy 7. The two notations
can be combined to write

q; (h,a) = g (allh) + Eoppev; " (hao). (5.4)

This equation has an interesting interpretation: since the agent is operating
in a dynamic environment, it has to take into account not only the immediate
expected information gain of performing the current action, i.e., g (a|lh), but
also the expected curiosity value of the situation in which the agent ends up due
to the action, i.e., v;‘l (hao). As a consequence, the agent needs to choose actions
that balance the two factors in order to improve its total expected information gain.

Now we show that there is an optimal policy 7., which leads to the maximum
cumulative expected information gain given any history h. To obtain the optimal
policy, one may work backwards in 7, taking greedy actions with respect to the
curiosity Q-values at each time step. Namely, for 7 =1, let

q' (h,a) = g (al|h), =} (h) = argmax g (al|h), and v' (h) = max g (a|lh),
such that v! (h) = q* (h, ' (h)), and for T > 1, let
q° (h,a) = g (allh) + Eqpq [me}xqf_l (a/lhao)] = g (allh) + E,pv™ " (hao),

with n} (h) = argmax, q° (h,a) and v* (h) = max, q* (h,a). We show that 77 (h)
is indeed the optimal policy for any given 7 and h in the sense that the curiosity
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value, when following 77, is maximized. To see this, take any other strategy 7,
first notice that

vi (h) =maxg (allh) = Eyg (allh) = v, (h).
Moreover, assuming v* (h) > v’ (h),
v™*! (h) = max [ (allh) + Eqpv© (hao) | > max [ (allh) + EqpovE (hao) |
> By [ 8 (allh) + Eqppevy (hao) | = vi (h).

Therefore v* (h) > v' (h) holds for arbitrary 7, h, and 7. The same can be shown
for curiosity Q-values, namely, q° (h,a) > q’ (h,a), for all 7, h, a, and 7. It may
be beneficial to write gq° in explicit forms, namely,

T —
q (h: a) - IEo|ha n}laXEollhaoal Tt TaXEoT_ﬂh---aT_lg (haoa101 trdp107 ”h) s
1 T—1

Now consider that the agent has a fixed life span T. It can be seen that at time
t, the agent has to perform n! ~* (h,_;) to maximize the expected information
gain in the remaining T — t steps. Here h,_, = a,0,---a,_,0,_; is the history at
time t. However, from Equation |5.2}

Ep i, & (hr) = g (he—1) + By, & (Arllh,_y) -

Note that at time t, g (h,_;) is a constant, thus maximizing the cumulative ex-
pected information gain in the remaining time steps is equivalent to maximizing
the expected information gain of the whole trajectory with respect to the prior. The
result is summarized in the following proposition:

Proposition 5.1 Let q; (h,a) = g (a|lh), v; (h) = max, q; (h,a), and
q. (h,a) = g (allh) + Eypev.—1 (hao), v, (h) = max{. (h,a),

then the policy m (h) = argmax,q. (h,a) is optimal in the sense that v.(h) >
v (h), q.(h,a) = q7 (h,a) for any m, 7, h and a. In particular, for an agent
with fixed life span T, following 7. (h,_;) at time t = 1,...,T is optimal in
the sense that the expected cumulative information gain with respect to the prior is
maximized.

The definition of the optimal exploration policy is constructive, which means
that it can be readily implemented, provided that the number of actions and
possible observations is finite so that the expectation and maximization can be
computed exactly. However, the cost of computing such a policy is O ((nona)f) ,
where n, and n, are the number of possible observations and actions, respec-
tively. Since the cost is exponential on 7, planning with a large number of look-
ahead steps is infeasible, and approximation heuristics must be used in practice.
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5.2.2 Subtlety of the Result

Intuitively, the definition of the curiosity (Q) values bears clear resemblance to
their counterparts in RL. It might be tempting to think that the result is nothing
more than solving the finite horizon RL problem using g (ao|lh) as the reward
signals. However, this is not the case.

First, note that the recursion (Equation|[5.4) is a direct consequence of Equa-
tion which is a special property of the KL divergence. The decomposition
does not necessarily hold for other measures of information gain (e.g., mean
square errors, etc.)

Second, it is worth pointing out that g (aol||h) behave differently from normal
reward signals in the sense that they are additive only in expectation, while in the
standard RL setup, the reward signals are assumed to be additive. Figure |5.1
emphasizes such difference. Note that even g (ao|lh) are non-negative for any
h, a, and o, the cumulative information gain g (h) may not grow monotonically
as h grows. It can also be seen from Figure that the difference between the
sum of one step information gain and the cumulative information gain can be
large for the same history.

5.2.3 Extension to Infinite Horizon

Having to restrict the maximum life span of the agent is rather inconvenient.
It is tempting to define the curiosity Q-value in the infinite time horizon case
as the limit of curiosity Q-values with increasing life spans, T — co. However,
this cannot be achieved without additional technical constraints. For example,
consider simple coin tossing. Assuming a Beta (1, 1) prior over the probability
of seeing heads, then the expected cumulative information gain for the next T
flips is given by
vl (hy) =1(©;X4,...,X;) ~1ogT.

With increasing T, v’ (h;) — oco. To resolve this problem, we introduce a dis-
count factor y. Assume that the agent has a maximum 7 actions left, but before
finishing the 7 actions it may be forced to leave the environment with probabil-
ity 1 —y (0 <y < 1) at each time step. In this case, the y-discounted curiosity
Q-value is defined as q}T’V (h,a) = g (a|lh), and

qTT[’Y (h: Cl) = (1 - Y) g (Cl”h) + Y I:g (a”h) + IEoIhaIEa’|haoq;-r[_17y (haO: a/)]
=& (a”h) + YEolha]Ea’lhaoq;_l’y (hao, a/) .
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Figure 5.1. lllustration of the difference between the sum of one-step infor-
mation gain and the cumulative information gain with respect to the prior.
In this case, 1000 independent samples are generated from a distribution
over finite sample space {1,2,3}, with p(x=1) = 0.1, p(x=2) = 0.5, and
p(x =3) = 0.4. The task of learning is to recover the mass function from the
samples, assuming a Dirichlet prior Dir (2—0,5’3—0,%) The KL divergence be-
tween two Dirichlet distributions are computed according to [Penny| [2001]. It
is clear from the graph that the cumulative information gain fluctuates when
the number of samples increases, while the sum of the one-step information
gain increases monotonically. It also shows that the difference between the two

quantities can be large.

One may also interpret " (h,a) as a linear combination of curiosity Q-values
without the discount,

¢ (ha)=(1-7) Y, v ¢ (ha)+y°q(ha),

where the curiosity Q-values with larger look-ahead steps are weighed exponen-
tially less.

Extending the result in Proposition the optimal discounted curiosity (Q)
value can be computed recursively as

q"" (h,a) = g (allh), v" (h) = maxq"" (h,a),
and

q*" (h,a) =g (allh) + YE,v" " (hao), v*" (h) = maxq™" (h,a),
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with actions chosen greedily with respect to ¢*" (h, a).

It is worth pointing out that although introducing the discount enables one to
define the curiosity Q-value in infinite time horizon in a number of cases, as can
be seen in the following section, it is still possible to construct scenarios where
such method fails. Consider an infinite list of bandits. For bandit n, there are n
possible outcomes with Dirichlet prior Dir (%, e %) The expected information
gain of pulling bandit n for the first time is then given by

1
logn — 4 (2) +log (1 + —) ~ logn,
n

where v (-) is the digamma function. Assume at time t, only the first e bandits
are available, then the curiosity Q-value in finite time horizon is always finite.
However, since the largest expected information gain grows at speed e”, for any
given y > 0, ¢*" goes to infinity with increasing 7. This example shows that
to make the definition curiosity Q-value in infinite time horizon meaningful, the
‘total information content’ of the environment (or its growing speed) must be
bounded.

5.3 Exploration in Finite Markovian Environment with
Dirichlet Priors

In this section, we concentrate on a simple case, where the agent assumes that
the environment is Markovian, with finite state and action space. In this case,
the agent’s belief about the environment is summarized by a collection of Dirich-
let distributions over the transition probabilities. These assumptions enable us to
write down the expected information gain in closed form and reason about the
theoretical properties of various exploration strategies. In particular, we show
the existence of an optimal exploration strategy assuming an infinite planning
horizon with discount, and then provide an approximation of the optimal strat-
egy using dynamic programming, with a performance guarantee.

Formally, let & = {1,...,S} be the space of possible sensory inputs, to which
we refer as ‘states’, and .o = {1,...,A} the space of actions. The dynamics
of a Markovian environment are fully determined by the transition probabil-
ity p (s’|s,a), which is to be learned. Initially, the agent assumes for each (s,a) a
Dirichlet prior over the random variable ©; , corresponding to p (+|s,a). Through
time, the agent observes the transitions when performing a at s, and updates its
estimate of ©;, through probabilistic inference. Since the Dirichlet distribu-
tion is conjugate with multinomial distributions, the posterior is still Dirichlet.
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Therefore, at any time, the agent’s knowledge about the environment can be
fully summarized by a three-dimensional array a (a, ., > 0, Vs, a,s”), such that
Dir (as,a’l, cees as’a’s) is the current (prior or posterior) density of ©; ,. We write

5,d,S

a; , for the vector [as,a,l, cees as,a,s] , as well as for Zf,zl ;s> and the meaning
should be clear from the context. The expected information gain is given by
glalh)=g¢g (as’a) for history h ending with state s. From [Penny| [2001], g (as’a)
can be written in closed form:

a

Mm

nes logasas 1/) (as,a,s’ + 1)] .

/=1 Asa

g (as,a) = lOg as,a - l/) (as,a + 1

For fixed lookahead 7, the curiosity Q-value for a given policy 7 can be
written recursively as

qL;L(s,a)—g(asa)JrYZ e Zﬂ (@'l 4L asy (50)

where 7, (a’|s") is the probability of performing a’ at s, with the current knowl-
edge summarized by a. The operator < is defined so that a < (s, a,s’) is the same
as a, except that the entry indexed by (s, a,s’) is increased by 1. Similarly, the
optimal curiosity Q-value g*'* is given by

q;" (s,a) =g (a,) 12

a (1<1SC(S (s a)

The following proposition ensures that we can drop T and deal with the cu-
riosity Q-value with infinite planning horizon, as long as a discount is applied.
The proof exploits the contraction property resulting from introducing the dis-
count factor y, and is detailed in Section|[5.6.1]

Proposition 5.2 Let y € [0, 1), and g, = max, max, g (as,a). We have

D ql, (s,a) = lim,_,, qre (s,a) exists for any 7, a, s, a. The convergence is
uniform in the sense that

0<q!,(s,a)—q5 (s, a)<1ga Y*, Vs, a.
-

i) q! (s,a) = lim,_,,,q"" (s,a) exists for any a, s, a, and y € [0,1). The
convergence is also uniform in the sense that

0<q"(s,a)—qp
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iii) q! is the solution to the infinite recursion

¢, )=g () +1)]

as,a,s’

/7

Y Y,
. MaX G q) (s',d"), (5.5)
s,a

and for any other policy 7, q! (s,a) > q5 . (s,a).

5.3.1 Approximation through Dynamic Programming

Proposition [5.2|characterizes the optimal discounted curiosity Q-value assuming
infinite planning horizon. However, unlike the finite lookahead case, the infinite
recursion (Equation is not constructive, hence cannot be used to compute
the optimal exploration strategy directly. A natural idea is to approximate this
infinite recursion by solving at each time step the following Bellman equation,

g (s,a)=g (as,a) + yz % rrtgxqg (s',a"). (5.6)

and then following the greedy policy with respect to g’ (s, a). The intuition here
is that after sufficiently long time, g/, and q; .08 should be sufficiently close.
Note that Equation [5.6| can be solved by dynamic programming (DP) in time
polynomial in S and A.

The central result we establish is that ' is a good approximation of q/. As
a consequence, following a greedy policy with respect to ¢’ (s, a) results in near
optimal exploration in finite Markovian environments. The first result bounds
the difference between q (s,a) and g’ (s, a) in terms of the minimum number of
visits over all states and actions.

Proposition 5.3 Let ¢, = min;min, a;,, then there is some K > 0 depending on
S and y only, such that

g% (s,a) — . (s,a)| < f_z

a

Proof (sketch). We proceed in two steps (see detailed proof in Section |5.6.2):

(i) Prove the boundedness of both the information gain g (as’a) (Lemma.
5.7), as well as its expected increment (Lemma. [5.8)), using properties of
polygamma functions established by |Alzer| [1997]] (Section |[5.6.2)).

(ii) Bound the error between g’ (s,a) and G (s,a) by exploiting the contrac-
tion property of Equation and as well as the boundedness of
g (as’a) (Section |5.6.2)).
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]

Proposition guarantees that the difference between ¢’ and ¢’ decreases
at the rate of c;2, irrespective of the environment. However, this alone is not
enough to guarantee that g converges to q! over time. For example, consider
an environment consisting of two disconnected components. In this case, c, is
upper bounded since in one of the components «; , will never increase. Here we
make the following assumption about the connectivity of the environment.

Assumption 5.3 The environment is finite Markovian with dynamics p (s’|s,a),
and the Markov chain with transition kernel

p(s'ls) = ;\ Z p (s'ls,a)

ac.d

is irreducible.

The first half of the assumption ensures that —% converges to p (s'|s, a) when
a; , goes to infinity by the Law of Large Numbers. The second half of the assump-
tion implies that it is always possible to navigate from one state to another with
positive probability of success. Therefore, if some g (as’a) is large, the infor-
mation is guaranteed to propagate to all the states. Under this assumption, we

prove in the following proposition that g’ (s, a) converges to q! (s, a) over time.

Proposition 5.4 Assume and assume at time t that the agent acts greedily
with respect to qgt, where a' is the array summarizing the posterior at time t, then

Y
Q.

—1|=0, a.s.

More precisely, let c,, = min;min, a! , then limc, = oo a.s., and there is some
K > 0 depending only on the dynamics of the environment and v, such that

Y

: Qo
limsup ¢, | — 1| <K, as.
t—00 qat

Proof (sketch). We proceed in two steps (see detailed proof in Section [5.6.3)):

(i) Show that under Assumption all action pairs will be visited infinitely
often (Lemma|5.12), so limc, = oo.

(ii) Prove that all cjzt (s,a) decay at a rate lower bounded by O (ca}) (Lemma
5.13)).
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The result then follows by dividing both sides of the inequality in Proposition
5.3|by G (s,a). m

Proposition demonstrates that through time the precision of our estima-
tion g! (s,a) will improve, in the sense that the relative error with respect to the
optimal curiosity Q-value g’ (s, a) will diminish. Moreover, the speed of conver-
gence is governed by c;}.

5.4 An lllustrative Example

The idea presented in the previous section is illustrated through a simple exper-
iment. The environment is a Markovian environment consisting of two groups
of densely connected states (cliques) linked by a long corridor. The agent has
two actions allowing it to move along the corridor deterministically, whereas the
transition probabilities inside each clique are randomly generated. The agent as-
sumes Dirichlet priors over all transition probabilities, and the goal is to learn
the transition model of the environment. In the experiment, each clique consists
of 5 states, (states 1 to 5 and states 56 to 60), and the corridor is of length 50
(states 6 to 55). The prior over each transition probability is Dir (%, ey é).

We compare four different algorithms: i) random exploration, where the
agent selects each of the two actions with equal probability at each time step;
ii) Q-learning with the immediate information gain g (ao|lh) as the reward; iii)
greedy exploration, where the agent chooses at each time step the action maxi-
mizing g (a||lh); and iv) the DP approximation presented in the previous section.
The discount factors in both ii) and iv) are set to 0.995.

Figure shows the typical behavior of the four algorithms. The upper four
plots show how the agent moves starting from one clique. Both greedy explo-
ration and DP approximation move back and forth between the two cliques.
Random exploration has difficulty moving between the two cliques due to the
random walk behavior in the corridor. Q-learning exploration, however, gets
stuck in the initial clique. The reason for is that since the jump on the corridor
is deterministic, the information gain decreases to virtually zero after only sev-
eral attempts, therefore the Q-value of jumping into the corridor becomes much
lower than the Q-value of jumping inside the clique. The bottom plot shows how
the cumulative information gain grows over time, and how the DP approxima-
tion clearly outperforms the other algorithms, particularly in the early phase of
exploration.
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5.5 Discussion

The main contribution of the chapter is twofold: First, we formulated infor-
mation theoretic exploration, a sound framework for Bayesian model learning.
Second, for the special case of finite Markovian environment with Dirichlet pri-
ors over transition probabilities, we prove that the optimal exploration strategy
can be approximated well by solving a sequence of MDP planning problem:s.

These results, at least partially, provide theoretical justifications for a num-
ber of similar, heuristic approaches, where the information gain is regarded as
the reward to be optimized by reinforcement learning to enable efficient model
learning [see e.g. Schmidhuber, 2010, for a survey]. The algorithm proposed
in Section [5.3.1} aside from its theoretical value, may also be of practical use,
particularly when the state space is not too large and the benefit from reducing
the number of interactions with the environment is significant. The algorithm
may also serve as a baseline for assessing the efficiency of other model learning
algorithms, thanks to its theoretical optimality.

Our work also gives rise to a number of interesting open questions. For exam-
ple, it is unclear how the DP-type algorithm in Section can be extended to
other classes of environments, in particular non-Markovian environments, while
preserving the near optimality. In addition, our algorithm resembles closely to
optimistic initialization [see e.g., Strehl et al., 2006} [Kolter and Ng, [2009b] used
in model-free RL (with zero external reward everywhere), as both the immedi-
ate information gain in our approach and the value function used in optimistic
initialization decay at the rate O (ns_;) , where n, , is the number of times action
a is performed at state s. Establishing further theoretical connections may help
to deepen the understanding of both approaches.

5.6 Proofs

We provide proofs for Proposition and

5.6.1 Proof of Proposition

To prove Proposition we start with the following two technical Lemmas
which bound the difference between curiosity Q-values with different look-ahead
steps.

Lemma 5.1 q;+1,)’ (h: a) - q:[’y (h: Cl) = YTanl---oT_laTlhag (aT”h T Or—l)'
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Proof. Expand ¢°" and ¢7 "7,

T+1

q*r-i-ly T)/_ (1_,},)2}/t 1qt +YT+1qT+1

—(1—Y)Zrt“

— T+1 _ 7T
= (" - ).
By definition,
T+1 T _
9, — 4.~ IEo|haEalol~--aToT|haog (haoalol U arorllh)
- EolhaEaloynaT_loT_lIhaog (haoalol Tt dr_105g ||h)
= EolhaEalol---af,loT,l|hao

[EaToT\h“‘or_lg (haoa,0,---a,o.|lh) — g (haoa 0, --- aT_loT_1||h)] )
Using Equation [5.2]
Eq 0. lh0,_,8 (haoay0, - a.o.|Ih) — g (haoa,0;,---a,_j0._4lh)
=Eq o, , 8 (a llh---0.1),
thus

T+1,y

— "l = 4T e
q, q," =Y EolhaEalolmaT_loT_lIhaoEaT\huoT_lg (aTHh O’r—l)

= YTanluﬁf,laTlhag (afr”h Tt OT—l) .
[
Lemma 5.2 ¢"""7" (h,a)—q"" (h,a) < Y E,p, max, B, jhaoq, - Max, g (a.llh---0,,).
Proof. Expand ¢°7 and q"*!7, and note that maxX —maxY < max|X — Y|, then

q** " (h,a) = q7" (h, a)
= IEolha H}laXEollhaoal o 'H}laX [g (Cl”h) +7r8 (a1||ha0) +et YTg (a'r”h o Or—l):l

— Eolha n}l?XEo]Ihaoal e I(?E_llx I:g (Cl”h) +rg (alllhao) +--- 4+ YT_lg (af—lllh ce 07—2)]
< IE:olha I%?X{Eollhaoal o 'l'l'}laX [g (Cl”h) + Y8 (alllhao) +- YTg (arllh o Or—l):|

~Eoyhaoe, - max [g (all) +7g (@ilhao) + - +7" g (@b 0.5) |}

IA

=< YTEolha IIL?'XEollhaoal T H(llan (arllh Tt Or—l) .
T
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[
It can be seen that if By, .., 4 ne& (a:llh---0,_,) is bounded, then both q»*
and g"* are Cauchy sequences with respect to 7.
The following three Lemmas establish the three statements in Proposition

5.2l

Lemma 5.3 q , (s,a) =1lim__, qre (s,a) exists forany m, a, s, a, and y € [0, 1).
Moreover, the convergence is uniform with respect to (s,a) in the sense that

0=, (5,0)~ 47 (5,0) < =7, ¥s,a
’ ’ -r

where g, = max, max, g (as,a).

Proof. Rewrite the result in Lemma in this context:

,T+1 , —
q%:;—i_ (5: Cl) - q%’; (S> a) - YTanl---oT,laTlhag (arllh o 07—1)

— AT /
=T Eslazsz---sfafﬂlhag (asraﬁl) ’

where
’_
o =a<(s,a,81)<(s1,0d9,85) 9+ <A(s._1,0a.,8;).
Because g (ag a) depends only on the transitions when performing a at s, and

all such transitions are exchangeable since they are assumed to be i.i.d. when
©,, is given, one can rewrite the expectation in the following form:

Eslazsrnsfaﬁllhag (a/ ) = IEs]EaIEnExl o 'Exng (a;,a) .

Szdr41

The first and second expectations are taken over the possible final state-action
pairs (s.,da.,,), from which g (a; Tam) is computed. Once (s,a) is fixed, the
third expectation is taken over the time n that (s,a)-pair appears in the tra-
jectory sas,a,---s., i.e., the time that transitions starting from s with action a
occurs. The rest of the expectations are over the n destinations of the transitions,
denoted as x4, -, x,. By definition, Dir (a;,a) is the posterior distribution after

seeing xq,**,X,, and g (a;a) is the expected information gain of seeing the
outcome of the (n+ 1)-th transition, which we denote x,,;, thus

g ((X;,a) =1 (@s,a;Xn+1|x17 . 'axn) s

and
E, - E.g(a,)=1(0uXmlX1....X,).
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Note that X;,---,X,;; are i.i.d. given O, ,, therefore

(0 XXy, .., X,)
=1 (0,0 X150 Xpi1) =1 (8,03 X1, -, X,)
n+1 n
=H (Xy,....Xp1) — D H (X,|0) —H (Xy,....X,) + Y _H (X,|©)
i=1 i=1
=H (Xp111X1,-.-,X,) —H (X,4419)
<H (Xn-i-l) —H (Xn+1|®)
=1(6;Xp41)
- I (@;Xl) .
This means that I (Gs,a;){,ﬂrl 1X,,. ..,Xn) is upper bounded by I (©;X;), which
is the expected information gain of seeing the outcome of the transition for the
first time. By definition I (©;X;) =g (as’a), and it follows that
Il'—SnIExl o 'Exng (a;’a) < 8 (as,a) .

Therefore,

qgfx-i_l (s,a) - qg’,fx (s,a) = YTEslazsz---sTaTHIhag (a;aﬂ_l)
="EEEE, E, ¢ (a,)
<Y EEg (@)
< y"maxmax g (as’a)
S a
=7 &a
Since g, depends on a only, for any T

8a -

Y.
-

gz (s,a)—qlL (@) < 5

This means that q77, (s, a) is a Cauchy sequence with respect to 7, thus lim._,, g7, (s, a)
exists. Also note that the convergence is uniform since g, does not depend on
(s,a). m

Lemma 5.4 ¢’ (s,a) = lim,_,,q"" (s,a) exists for any a, s, a, and y € [0,1).
Also the convergence is uniform in the sense that

0=<q"(s,a)—q" (s,a) < %ﬂ
-y
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Proof. Rewrite the result in Lemma |5.2}

Sols1ag,04 (s,a,sl)

¢ (s,a) = 7 (5,0) < 77E , maxE
2

/
EST\sr,laT,a<<sa51~~~sf,1> rg?f(g (asr,aﬂ,l) .

Since the max operator is only over actions, the proof in the previous proposition
still holds, so

g (s,a) — g7 (s,a) <77 g,

and the result follows. m
The next proposition shows that g, is the solution to the infinite recursion.

Lemma 5.5 ¢, is the solution to the recursion

¢, ) =g () +1]

As g
,a, Y ot

maxq . . (s',d"),
as,a a

and for any other policy 7, q! (s,a) = q. , (s, a).

Proof. To see that q is the solution, taking any £ > 0, one can find a 7 such that

YT _ Y
a<(s,a,s’) qaq(s,a,s’)

|qg’“r1 - qgl <%, and ‘q < £ for any (s, a,s’), thanks to the fact

that there are only finite number of (s, a,s’) triples, and the convergence from
q""*' (s,a) to q7 (s, a) is uniform. It follows that

g(a)+ry. aa

s Y /7 Y
maxq,, .. (5a") —q;(s,0)

a

7T _r

qa<1(s,a,s’) qa<1<s,a,s’)

<|qr™" —qi| +r

<E.

Since ¢ is chosen arbitrary, q! (s, a) must be the solution of the infinite recursion.
The fact that g/, (s, a) = q], , (s, a) follows from the fact that q);* and g7 are
monotonically increasing on 7 (by Lemma l ,and g/ = gl for any given 7
and 7. m
Combining Lemma and [5.5| gives the proof of Proposition

5.6.2 Proof of Proposition

The proof proceeds in two steps. First, we establish necessary properties for the
expected information gain of a Dirichlet distribution.
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A note on notations: The operator <« is defined so that a < (s,a,s’) is the
same as a, except that the entry indexed by (s,a,s’) is increased by 1. We also
assume that < is right associative, so one can write a< (s, dy,s,) < (55, a3,83) - -,
or simply a < (s;a,5,a555--- ). Also, we drop the superscript y so that ql7, and
q);® are written simply as q; , and g;. This should not be confused with the
no-discount case.

Properties of Expected Information Gain in Dirichlet Case

The expected information gain of a Dirichlet distribution Dir (n), where n =
[ny,...,ng] is given by

g () =log(m) ~ 4 (n+1) = Y™ [log (n) = (n,+1)]..

Define
f)=x[¢Y(x+1)—logx] =1—x[logx —(x)].

1
g(n)=; {Zf (ny) —f(n)] .

The following important properties have been proved by |Alzer [[1997]].

then

Theorem 5.1 f has the following propertie

a) lirnx—>0f (X) = O: limx—>oof (X) = %

b) f is strictly completely monotonic, in the sense that

(-1t —drg (nx) >0

In particular, Theorem shows that f is strictly monotonically increasing,
and also strictly concave. The following Lemma summarizes the properties about
f to be used.

Lemma 5.6 Define 6,,(x) = f (x +m) — f (x) for m > 0. Then

a) f is sub-additive, ie., f (x)+f (y) > f (x+y) forx,y >0

!Alzer’s original paper considers the function x (logx —) (x)) = 1 — f (x). Here the state-
ments are modified accordingly.
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b) 6,,(x) is monotonically decreasing on (0, 00).

) 0<x68,(x)<(1—e')m for x €(0,00).

Proof. a) Note that g (n) is mutual information, and the unknown observation
depends on the parameters of the distribution, therefore g (n) > 0, and

0<g([x3]) = 35 [F (45 () = (x4 0)]

b) Note that

5m(X)=J f'(x+s)ds,
0

and the result follows from f” (x) < 0.

c) Clearly, x6,,(x) > 0 because f is strictly increasing. From Intermediate
Value Theorem, there is some & € (0, m), such that

x8, (x)=x [f (x+m)—f(x)]
=mxf'(x+6)
=mxf' (x)+mx [f'(x+8)—f'(x)]

<mxf’(x).

The inequality is because f is strictly concave.
From |Alzer| [1997],

fx)=1 —XJ ¢ (e ™dt,
0

where

¢ (t)=

l1—et ¢t
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is strictly increasing, with lim,_,;, ¢ (t) = % and lim,_,, ¢ (t) = 1. Therefore,

xf’(x):xf ¢ (t)e ™ (xt—1)dt
0
Ji B 1 o ~ 1
=x*| ¢(t)e ™ (t——)dt+x2J p(t)e ™ (t——)dt
X ) x
) 1
<x qS(O)J t——)dt+x2q5(oo)f —;)dt
:—J t—— dt+x2J e_txtdt—xJ e ™dt
<—J t—— dt-l—xzf e_“‘tdt—xf e”tdt.
: :

-

Note that

and

it follows that ;
xf'(x)<1—-.
e
]

The properties of f guarantee that g (n) decreases at the rate of % The result
is formulated in the following Lemma.

Lemma 5.7 Let Dir (n(l), e ng) and Dir (ni, e ng) be the prior and the pos-
terior distribution, such that n* =n° + t. Let s* = argmax; n). Then

25768* f (Tlg) B f (Zsyés* Tl?) E
nt '

<g(n) <

2nt

Proof. The upper bound is because 0 < f (x) < % and f is increasing, thus

D) —fF)=F(n)—f () + D (n)
s s#1
S—1
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The lower bound follows from the fact that f (x + m) — f (x) is decreasing. We
show that the trajectory minimizing g (n') is the one such that all ¢t observations
equal to s*. To see this, let m; be the number of times observing s # s, then

f (n? +m5) + f (nf + ms*) =f (n?) +f (nf* +mg + ms)
+f (ng—i-ms) —f (nf)
— (f (n?* + mg +ms) —f (nf* +ms*)).

Note that nl. +mg > n?, so
F0+m)+f(nd+me)=f(n0)+f (nd+me+m,).
Now assume the observations are all s*, from sub-additivity,
2. (m)=f ()
;Zf () +f (n%+1t)—f (n°+1¢)

::X;:f (nd) - f (;n) + [f (;n) FF (R4 0) = f (r040)
>;f (n) - f (;no)

Remark 5.1 The bounds hold irrespective of the data generating process, namely,
it holds for any sequences of observations, including sequences with zero proba-
bilities.

The following Lemmas bound the variation of the expected information gain,
when one single observation is added.

Lemma 5.8 Let n = [ny,...,ng] and ' = [ny,...,n_,n,+1,n4,...,05],
then

S
HORHOE AT
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Proof. Without loss of generality let s = 1. Note that
n /
—[g () -gm]

_E{n+1 |:Zf(n)+f(n1+1) f(n+1):| —-= {Zf(n) f(n)}}

s#1
_n (TS0 S S S ) S0 TS @)
" n n+1 n+1 n+1 n
[ fe+D) S0 F D= () f@)
T n n+1 n(n+1) n+1 n
m[ f0tD) mgAf®) f(mt)—f () f0)
T n n+1 n(n+1) n+1 n

n(n+1){ 5, (M) +6, (ny) —g ()}

1
= n(n+1) {n151 (nl) - %-nSl(n)—% |:Zs:f (ns) _f(n)] }

From the Lemma

1
O<x51(x)<1,0<f(x)<§,

o)
S nS+1 n1 1 S
—E <o [g(n) g(n)] <5<
and thus S
m N _ 2
" \g(n) g(n)|<n2.
n

Bounding the Difference Between ¢, and G,
Let ¢, = min; min, a ,, we prove that
. 1
405, 0) = a5, )| ~ -
a

S—-1
Lemma 5.9 g, (s,a) < 01)e
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Proof. From Lemma [5.7, write K, = 3=%, then
K K
g(ozsa)<—0<—O Vs,a
s,a Cq
By definition,

(04 /
.2 . $,d,S Y,1 /L
g (s,a) = g (@a) +7 :—a MAX e (5 0)
s/ s,a

1 1
<Ko| —+7r
Cq Caq(s,a,s’)

K
SC—0(1+y),

a

since C,q;.45) = C4- Repeat the process, it follows that for any 7,

KO — KO
Pisa) S — (1474 +771) < ———,
= (k) <
thus
q" (s,a) = lim q"" (s,a) < X __s5-1
a T—00 & ’ _(1—]/)Ca 2(1—)/)(3&-
[

Lemma 5.10 Let n= [ny,---,ng], and n’ = [n, +1,n,,---,ng]. Let xq,- -~

nl-‘r

be S non-negative numbers. Define p, = %, P = - andp slfors =2,

Then

)%

1
<—E X
—n1 spSS

Proof. Simple derivation gives

_ (p.—p;) x,
plz(p p;) —(Zps ) Zpss
S(Zps ) _ps
Ifs=1, 1
pulpi-p| _m Ao nem 1
D1 T on n—nl Cn(n+1) " n
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Ifs#1,
Pi |Pi—Ps| M W T o _1
s n L n(n+1) " n
Therefore,
/
. — Ds 1
s Ds n
and
1
P1 Z (P; —Ps) x| < Ezpsxs-
[

Lemma 5.11 For any a, s, a', there is some constant K depending on S and y
only, such that

as*,a‘i‘,s K
x| (50) ~ 5,0 <

Proof. First change the notations. Let s, =s', a, = a'. Also let a! = a, B! =
a< <sJ", a"',s>. The result to prove becomes

1

—a K
> maxgp (51,0) =g (51,01)] <

s1 Sodo a

Consider the finite time horizon approximations of qg and q,1, namely qg’f
and qZ’f. With a little abuse of notation, we drop the superscript y in this proof.
Note that this shall not be confused with the finite time horizon curiosity Q-
values without discount.

For T = 2, consider the following inequality:

1

S0apS1 2 2
1 n}laX q/jl (S]_Ja]_) - qal (Slaal)
Sodo !
< asloaosl 1 1
— al rr}Iax g sna ) g a51,a1
1
Soq
1 1 1
a a
S0doS1 $10d152 51152 1
+y—— max E = — maxq, (s5,a5)
asoao ! $2 S1ay a5101 2
1 1
S0apS1 z : 514152 1 1
+ 1 n}lax 1 n}lax qﬁZ (52) a2) - qaZ (SZJ aZ) .
Sodo ! $2 s1a1 2
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Here 2 = 1< (s;a;5,), a> = a' < (s,a;s, ). Note that the error between q/23l and
qa1 has been decomposed into three terms. The first term captures the difference
between the immediate information gain, the second term captures the error
between transition probabilities, and the third term is of the same form as the
left side of the inequality, except 7 is decreased by 1. To simplify the notation,
let F* be the operator

t-1

a
t _ St—1ar—15¢ .
Fo[---]= E = — H}I?X[ ].
St St—1a¢-1
For fixed 7, let

NGECHEICH]

ﬁl’ at
E : StdeSe+1 StdeSe+1
+ Y ﬁt - at maxqﬁf‘H (Sf-‘rl’ a[‘-‘rl)
S

Ar+1
t Qe SeQe

and

c=ag " (spa) i (seal).
One can write

Fl¢, <F'8, + yF'F2¢,.

Repeat this process for general 7, it follows that
F'g) <F'5) +yF F ¢,
<F'6, +yF' |25, + yF*F¢; |
=TF'6, + yF'F25, + y*F'F*F3 ¢,
=TF'6, + yF'F25, + -+ ¢y 'F - F5, + -+ 2F - FS
+ YT—IFI .. ']FT¢T'

Now look at a particular term in the inequality above, for example,
1 t—1

a a
S0apS St—1ar—1S
Lo F's, = E —°°1max---2 — " max§,.
! ax at~! a;

S1 Sodo St St—10r-1

Note that if (s,,a,) # <s*,a"‘> then 5, = 0, since 3¢ and a' differ only in the
entry indexed by <s’*‘,a*,sl>. The following discussion assumes that (s,,a,) =

<sJ", a"L>. From Lemma let K; =S, then
Kl
o (Bn) —e ()| s

t
a
SesAr S Ar5S1
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From Lemma5.9]and [5.10] there is some K, that depends only on S and v, such
that

t t

a
StArSt+1 StArSt+1 T—t
I - t max(d g (5t+11at+1)
a Ar+1
St+1 Sede Sede
t
1 ag
tAtSe+1 T—t
< t : : at rglaxqﬁfﬂ (St+1’at+1)
50,0551 S¢+41 Se Qe o
K
<__2
— t . B
S0,dg,51 4

where ¢, = min;min, a! . In combination, there is some K, such that

Ko
0, =< -

Cat asT,aJ",sl
The next step is tricky: Assume that the policy is given, say, it is already
the policy maximizing F!---F'§,, so that each a is a deterministic function of
the prior a' and the previous history. Consider a trajectory s,a,s;d; - - -s,a,, the

predictive probability of seeing such a trajectory is given by

1 2 t—1
__ S0%0S1  S1d152 St—1a¢—15¢

pP (slal ”'StatlsoaO) - al 2 at-1
Sodo $1a1 St—1at-1

Again, if (s.,a,) # <5T,a'*'>, then p (s,a; - -+ 5,.a.|s0a,) 6, = 0. Otherwise,

2 at—l 1
. Ss1a1s2 Se—1d¢—15¢ S0doS1
pP (Slal"'statlsoao) 6, = ) o1 ) 1 o,
S1dq St—14r-1 Sodo
2 t—1 1
a
< Simsy S8 KO . _ 509051
- 2 t—1 1 t
aSlal ast—lat—l Catasoao 50500551
2 t—1
K
s1a;S Se_10¢_1S
< 12 152 tt 11t 15 01
5103 ast—lar—l Catasoao
2 t—1
a K
51a;S Se_10;_1S
S 1212__. ttlltlr_ 20.
at-
s1a1 St—1a¢-1 Cal
Note that ) .
t_
a
$14152 St—1@r-15¢
2 g1 =p (Szaz'”staf|51a1)

S1aq St—14¢-1
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is the probability of seeing the trajectory s,a,---s,a,, when the agent assumes
prior a' < (s, ay,s;) = a?, and follows the same policy starting from (s, a;).

ZZP (52a2 e ‘Star|51a1) =1,
Sy St

Clearly,

which leads to

F'-. ‘F'o, = ZZ " 'Zp (Slal . 'Stat|50a0) o,
s1 Sy S
SZfTOZ"'ZP (Szaz”'star|51a1)
51 S

al So
SK
<
o

Putting the equation back, and note that cil = ci is a constant on a, one has

Fl¢, <F'5, + yF'F2 5, + -+ ¢y 'FH- - F'S, + -+ ¢y " 2F - Fl5
+YT_1F1"']FT¢T
SK
< C—ZO (T+y+-+7r72) +y'F - F g,

a

< i-l— -lpl. g7
= 5T P
1—-yc;

From Lemma [5.9, since the curiosity Q-values are bounded, there is some K,

such that

4)7 = ‘q}jt (staat) - qcllt (St:at)

< ‘qét (s, a.) |+ |qif (st’at)|
<lapr o) | +]a (sina)|

K
<=,
C(X
thus Sk 1 K
Flg) < ——— +y7 1=,
1—vycl Cq
Let T — 00, one has
asloaosl K
Zl—nb?xhﬁl (s1,41) = g (Slzal)l = 2

$1 Sodo
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where K = 1s a constant depending on S and y only. =
Now we are ready to prove Proposition
Proof of Proposition [5.3] Write Equation into the following form

(s',d)

0 (s,0) =g (@) +71

+yZ

The last term is bounded by

5= Z

[maxqa”as (s',a") — maxq, (s, a)}

maxqaqsas (s',a’) — maxq, (s',a")

12X |yefo0) (5,07) = €

Apply Lemma 5.11], it follows that there is some constant K, depending on S and
y only, such that

z aS (15
a maX |qa<1 S ClS (s a ) qa

/ S,a

<0
CZ
s a

Therefore 6 < ’j—g
Now compafle q, and q,:

max max |q, (s, @) — g, (5, )|

< maxmax )/Z (maxqa (s',a’) — maxg, (s',a )) +vo
< ~ TKo
< y max max |qa (s,a) —q, (s, a)| +—.
Therefore
YKO 1
maxmax\qa (s,a) —q, (s, a)| “ -
— '}/ Ca
Letting K = completes the proof. m

5.6.3 Proof of Proposition

The proof is unwrapped in three steps. The first step is to show that all state-
action pairs will be visited infinitely many times along time.
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Lemma 5.12 Assume and the agent chooses the action greedily with respect
to 4,:, where a' is the posterior after t time steps. Then for any s, a,

lim a =00, a.S.
t—oo 5@

Proof. Note that a , is non-decreasing, and can only increase by one if increas-

ing. Therefore, 11mt_)oo a , < oo implies that there is some T, , and c, , such that

forallt > T, = Csq-

The complement of lim,_,,, a! =ooforall (s,a)isthat IA C & X .o/, A # 0,
and 3T, ,,c,, for all (s,a) € A, Such that a; =, for all t > T ,. Since there
are only finitely many (s, a), this can be 51mp11ﬁed to dJA #0, 3T, Elc such that
a,, = Cq forallt > T and (s,a) € A.

Fix A # 0, T and c,,, we show that the event a! = ¢, for t > T and
(s,a) € A is a null event. Let A = & x .&/\A, by deffnition, asf’a — oo for all
(s,a) € A. Clearly, A is not empty. Define

s,a’

={se€ S :Ja,a” such that (s,a) € A, (s,a”) ¢ A}.

Namely, . is the ‘boundary’ between A and A.

The first step is to show & # 0 if A # 0, or more precisely, the event & =0
and A # 0 is null. Assume & = 0 and A # 0, then A must satisfy that if
(s,a) € A for some a, then (s,a) € A for all a. Let ¥, C & be the set of s such
that (s,a) € A. Clearly, once reaching s € ,, any action chosen would cause
A be visited, which can only happen for finitely many times. This implies that
for any s € #,, any state action pair (s, a’) such that p (s|s’,a’) > 0 can only be
visited finite number of times almost surely, because the probability of sampling
from p (-|s’,a’) for infinitely many times but only getting finite number of s is
zero. From Assumption for any &, # &, there is always some (s’,a’) such
thats’ ¢ %, and p (s|s’,a’) > 0, so (s, a’) can only be visited finitely many times,
by definition (s’,a’) € A, which contradicts with the fact that s’ ¢ #,.

Next we show that at least for one s € &, following the optimal strategy
leads to some (s,a) € A being visited. For t > T, Define

4(s,a)=r(s,a)+7 ) b (s'ls,a) maxq (s',a"),

with

p(s’ls a),if (s,a) € A
p(slsa) = aa ,if (s,a) € A ’

s,a
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and
(5.0) = 0,if (s,a) ¢ A
rs,a)= g (ast’a), if (s,a)eA -’
Clearly, p and r do not depend on t, and g is the unique optimal solution. Now

let <sJ", a'r> € A be the pair such that s € &, and

G(s',a")= max §G(s,a).
1 ( ) (s,a)eNseH q ( )

It can be seen that for any a’ such that <s'7,a’> ¢A,q (s"‘,a’) < v§ (sJ",a"“).
The reason is the following: Performing a’ leads to zero immediate reward since
<s"',a’> ¢ A. Let s” be the result of the transition, then either s” € %, so
max,. G (s”,a”) < g (sT, a’f), or s” is some other state such that (s”,a”) ¢ A for
all a”. (Note that s” cannot be a state such that (s”,a”) € A for all a”.) In the
latter case, since s’ is only connected to states in A through %, it must be that

max g (s”,a”) <vg (ST,CIT) )
a

since at least one more step must be made to reach % first. Taking into account
the discount, it follows that

1(sa) -2 (sa) 2 (1-n)a(s'a).
Replace ¢ with G, leads to
G (510") = (+10) = (1=1)a (5")
£ () =0 (50 s (4,0) 0 ()
From the initial assumption, when t > T, (s',a") is never visited, also, the
action is chosen greedily with respect to §,:. This implies that at least for one a’
such that <s"f, a’> ¢ A,
e (520) ~ o (5107) <0,
or
0> (1-1)4(s"a") +dw (s0") — (") +du (+0) —a (5",
> (1-7)q(s",a") — 2maxmax|g, (s,a) ~ 4 (s, a)

>

which leads to

max max |qa[ (s,a) —q (s,a)| > 1%@ (s"‘,a"f) .
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Note that

g @) =260 <|g () -6

+y2

+ YZp (s ls,a) max {qat

f
sa

—p(s |s,a) maxqa (s',a")

SO
maxmax|€1at (s,a)—q(s, a)}
<—)g(asa —r(s,a)
Y %
+ —— maxmax 22 ‘Is,a)|maxq, (s',a’).
1 -y s a ; s.a ) a’ @ ( )
From Lemma 5.7,
¢ S—1 0
g (as’a) —r(s,a)| = max g (asa) oar O

s,a

Therefore, there is some T’ such that
(s,a) ¢ A. Also note that

g (asf’a) —r(s,a)| <

L YA(S a ) for all

S—1

N[ / / <
e (S’a)_2(1—r)ca’

where ¢, = min gep ;4 Let K =

at
K maxmax E
S a t

‘Is,a) |+ 1%4}/61 (s'r,a")

s s,a

Y
>—maxmax£
1=y s a ;

S

max Jo: (s',a")

s,a

+ TY ‘g (a;a) —r(s,a)

> max max ‘qaf (s,a)—q(s, a)}

> 170 6a),
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thus
ast,a,s’ / ast,a,s’ ~ [
max Z — —p(s'ls,a)| = maxmaxz — —p (s'|s,a)
(s,a)EA - as,a s a > as,a
1-
> a(sha),
¢ /

for all t > T’. This implies that when t — oo, the empirical ratio == does

not converge to p (s’|s, a), which is a null event because it contradicts thé’HStrong
Law of Large Numbers. This in turn implies that for fixed A, T and ¢, ,, the event
JA #0, 3T, 3¢, ,, such that asf’a =¢,, forall t > T and (s,a) € A is null.

As the last step, notice that there are only countably many such events, and
since the union of countably many null events is still null, one can conclude that
lim,_, a; , = oo for all (s, a) holds almost surely. m

The second step is to show that all G, (s, a) decrease at a rate lower bounded
by c;l. Let g, , be the Q-value of performing a at state s, assuming the reward is

1 at all states. Namely, q; , is the solution of the following Bellman equation

qs,a =1 +Y2p (Slls) a) qu’,a"

Clearly, g , > 0 from Assumption [5.3} Define ¢ = min, , g, ,. Also, let

0 0
Zs/;és* f (as,a,s/) - f (Zs/;és* as,a,s’)

s,d 2 >

0

where a® is the initial a representing the agent’s prior, and s* = argmax, a°
$,d,S

as defined in Lemma Define u = min, , u,.

Lemma 5.13 Assume and let c,; = min, min, ! , then

s,a’

lim tinf Cutqt (s,a) > ug, as.
—00
Proof. Let g, be the solution to the following Bellman equation:

4o (s,)=g (ast’a) - YZp (s'ls,a) mMax (s',a’).

Clearly, for any (s, a),

U, U
=t
ai,  Cq

g (ast’a) >

t
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and because G, is optimal,

. u uq
G (s,a) > C—qs,a > — Vs,a,
at

at

or C,eG,e (s,a) > uq.
Fix an € > 0, we show that

lim tinf CutGy (s,a) fuq(l—¢), Vs,a
—00

is a null event. Assuming liminf,_, c, g, < uq(1 —¢), and following a similar

procedure as in the proof of Lemma (5.12} let K = ﬁ, then
-r

t
s,a,s’

a,t —p (s'ls,a)

s,a

maxmax E
s a

S/

c
> Ea max max ‘qaf (s,a) —q(s, a)‘

uqe
- K
holds for infinitely many t, which contradicts again with the Law of Large Num-
bers.
Lete, = %, then the union of the countably many events

lim inf ¢ §u (s,a) <uq(l-¢,), Vs,a
t—00
is again a null event, therefore
lim inf c,:q, (s,a) > uq, a.s.
t—00

]
Finally, combining Lemma and gives the proof of Proposition |5.4
Proof of Proposition Note that

K 1
<—.

Ca Cala

%
du

where K is given in Proposition Use Lemma |5.12} [5.13] the result follows
trivially. m

J
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Figure 5.2. The exploration process of a typical run of 4000 steps. The upper
four plots shows the position of the agent between state 1 (the lowest) and 60
(the highest). The states at the top and the bottom correspond to the two cliques,
and the states in the middle correspond to the corridor. The lowest plot is the
cumulative information gain with respect to the prior.
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Chapter 6

Conclusion

We have presented three pieces of research concerning the representation gen-
eration problem in reinforcement learning, with the following original contribu-
tions:

* In Chapter [3] we proved that under certain technical conditions, the size
of the online kernel sparsification dictionary will grow sub-linearly in the
number of data points, which leads to the consistency of the kernel linear
regressor from the resulting dictionary.

* In Chapter |4, we proposed V-BEBF as a principled alternative to BEBF for
basis construction in the reward sensitive setting. To this end, we showed
theoretically that V-BEBF may offer a significant advantage when the dis-
count factor y — 1, which is partially confirmed by experiments.

* In Chapter[5] we formulated information theoretic exploration for Bayesian
model learning, and then for the special case of finite Markovian environ-
ment with Dirichlet priors over transition probabilities, we proved that
the optimal exploration strategy can be approximated well by solving a
sequence of MDP planning problems.

The work presented is limited in many ways, and each of our findings many
give rise to many more questions than answers. To list a few:

* The analysis in Chapter |3| is done assuming observations are given i.i.d.,
and further theoretical analysis is required to remove this assumption
in order to extend the results to kernel RL. Moreover, the finite sample
bounds are weak, and much improvement is needed to strengthen the
bounds.
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* In Chapter [4] further theoretical and experimental study is needed to bet-
ter understand the effectiveness of the V-BEBF approach, especially in the
non-linear case. In addition, it would be interesting to investigate IPB-V
further, as our preliminary study supports its potential as a practical di-
mensionality reduction method for trading off computational complexity
and sample complexity.

* Chapter [5| poses a number of interesting theoretical questions. In particu-
lar, it is unclear if we can achieve near optimal exploration in environment
that is not finite Markovian, and whether there are strong links between
the optimal initialization in model-free RL, and information theoretic ex-
ploration.



Bibliography

R. Agrawal. Sample mean based index policies with o(log n) regret for the multi-
armed bandit problem. Adv. Appl. Probab., 27(4):1054-1078, 1995.

N. Akhiezer and I. Glazman. Theory of linear operators in Hilbert space. F. Ungar
Pub. Co., 1961.

H. Alzer. On some inequalities for the Gamma and Psi functions. Math. Comput.,
66(217):373-389, 1997.

E R. Bach and M. I. Jordan. Kernel independent component analysis. J. Mach.
Learn. Res., 3:1-48, 2002.

E R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel meth-
ods. In ICML05, 2005.

L. Baird. Residual algorithms: reinforcement learning with function approxima-
tion. In ICML95, pages 30-37, 1995.

L. Baird. Reinforcement learning through gradient descent. Technical report,
School of Computer Science, Carnegie Mellon University, CMU-CS-99-132,
1999.

L. Barrett and S. Narayanan. Learning all optimal policies with multiple criteria.
In ICML08, 2008.

J. Baxter and P L. Barlett. Infinite-horizon policy-gradient estimation. J. Artif.
Intell. Res., 15:319-350, 2001.

R. E. Bellman. On the theory of dynamic programming. In Proceedings of the
National Academy of Sciences of the United States of America, volume 38, pages
716-719, 1952.

D. P Bertsekas. Dynamic programming and optimal control. Athena Scientific, iii
edition, 2007.

119



120 Bibliography

D. P Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming. Athena Scien-
tific, 1st edition, 1996. ISBN 1886529108.

R. Bhatia and L. Elsner. The Hoffman-Wielandt inequality in infinite dimensions.
P Indian. As. - Math. Sci., 104(3):483-494, 1994.

G. Blanchard, O. Bousquet, and L. Zwald. Statistical properties of kernel princi-
pal component analysis. Mach. Learn., 66:259-294, 2007.

B. Boots and G. J. Gordon. Predictive state temporal difference learning. In
NIPS’10, pages 271-279, 2010.

B. Boots, S. M. Siddiqi, and G. J. Gordon. Closing the learning-planning loop
with predictive state representations. Technical report, arXiv:0912.2385,
2009.

S. Boucheron, G. Lugosi, and P Massart. A sharp concentration inequality with
applications. Technical report, Department of Economics and Business, Uni-
versitat Pompeu Fabra, 376, 1999. URL http://ideas.repec.org/p/upf/
upfgen/376.html.

O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning
theory. In Advanced Lectures on Machine Learning, pages 169-207. Springer,
2004.

J. A. Boyan. Technical update: least-squares temporal difference learning. Mach.
Learn., 49:233-246, 2002.

S. J. Bradtke, A. G. Barto, and L. P Kaelbling. Linear least-squares algorithms for
temporal difference learning. Mach. Learn., 22:33-57, 1996.

M. L. Braun. Spectral properties of the kernel matrix and their relation to kernel
methods in machine learning. PhD thesis, University of Bonn, 2005.

L. Busoniu, R. Babuska, and B. D. Schutter. A comprehensive survey of multi-
agent reinforcement learning. IEEE Trans. Syst., Man, Cybern. A, Syst., Hu-
mans, 38(2):156-172, 2008.

L. Busoniu, D. Ernst, B. De Schutter, and R. Babuska. Online least-squares policy
iteration for reinforcement learning control. In ACC’10, pages 486-491, 2010.

D. Chakraborty and P Stone. Structure learning in ergodic factored MDPs with-
out knowledge of the transition function’s in-degree. In ICML11, 2011.


http://ideas.repec.org/p/upf/upfgen/376.html
http://ideas.repec.org/p/upf/upfgen/376.html

121 Bibliography

K. Chaloner and I. Verdinelli. Bayesian experimental design: a review. Stat. Sci.,
10:273-304, 1995.

T. M. Cover and J. A. Thomas. Determinant inequalities via information theory.
SIAM J. Matrix Anal. A., 9(3):384-392, 1988.

E Creutzig, A. Globerson, and N. Tishby. Past-future information bottleneck in
dynamical systems. Phys. Rev. E, 79(4):041925, 2009.

R. H. Crites and A. G. Barto. Improving elevator performance using reinforce-
ment learning. In NIPS96, 1996.

S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson and
Lindenstrauss. Random Struct. Algor., 22(1):60-65, 2003.

P Dayan and T. J. Sejnowski. TD(A) converges with probability 1. Mach. Learn.,
14(1):295-301, 1994.

A. P Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. J. Royal Statistical Society, Series B, 39(1):
1-38, 1977.

E d’Epenoux. A probabilistic production and inventory problem. Manage. Sci.,
10:98-108, 1963.

P Drineas and M. W. Mahoney. On the Nystrém method for approximating a
Gram matrix for improved kernel-based learning. J. Mach. Learn. Res., 6:
2153-2175, 2005.

N. Duy and J. Peters. Incremental sparsification for real-time online model learn-
ing. In AISTAT’10, pages 557-564, 2010.

Y. Engel. Algorithms and representations for reinforcement learning. PhD thesis,
Hebrew University, 2005.

Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman: the Gaussian process
approach to temporal difference learning. In ICML03, pages 154-161, 2003.

Y. Engel, S. Mannor, and R. Meir. The kernel recursive least-squares algorithm.
IEEE Trans. Signal Process., 52(8):2275-2285, 2004.

Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian pro-
cesses. In ICMLO05, pages 201-208, 2005.



122 Bibliography

V. V. Fedorov. Theory of optimal experiments. Academic Press, 1972.

M. Filippone, E Camastra, E Masulli, and S. Rovetta. A survey of kernel and
spectral methods for clustering. Pattern Recogn., 41(1):176-190, 2008.

C. Fleck. A comparison of POMDP algorithms, 2004.

A. Garivier and O. Cappe. The KL-UCB algorithm for bounded stochastic bandits
and beyond. In COLT’11, 2011.

A. Geramifard, M. Bowling, and R. S. Sutton. Incremental least-squares temporal
difference learning. In AAAI'06, pages 356-361, 2006.

M. Ghavamzadeh, A. Lazaric, O. Maillard, and R. Munos. LSTD with random
projections. In NIPS’10, pages 712-720, 2010.

T. Glasmachers, T. Schaul, Y. Sun, and J. Schmidhuber. Exponential natural
evolution strategies. In GECCO’10, pages 393—-400, 2010.

A. Gretton, K. Fukumizu, Z. Harchaoui, and B. K. Sriperumbudur. A fast, consis-
tent kernel two-sample test. In NIPS’09, 2009.

C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solutions algo-
rithms for factored MDPs. J. Artif. Intell. Res., 19:399-468, 2003.

X. Guo and O. Herndndez-Lerma. Continuous-time Markov decision processes.
Springer, 2009.

L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk. A distribution-free theory of non-
parametric regression. Springer, 2004.

Z. Harchaoui, E R. Bach, and Eric Moulines. Testing for homogeneity with kernel
Fisher discriminant analysis. In NIPS’08, 2008.

T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Stat., 32
(2):407-499, 2004.

W. Hoeffding. The strong law of large numbers for U-statistics. Technical report,
Department of statistics, University of North Carolina, 302, 1961.

G.-B. Huang, L. Chen, and C.-K. Siew. Universal approximation using incremen-
tal constructive feedforward networks with random hidden nodes. IEEE Trans.
Neural Netw., 17(4):879-892, 2006.



123 Bibliography

M. Hutter. Universal artificial intelligence: sequential decisions based on algorith-
mic probability. Texts in Theoretical Computer Science. Springer, 2005. ISBN
9783540221395.

M. Hutter. Feature dynamic Bayesian networks. In AGI'09, volume 8, pages
67-73, 2009a.

M. Hutter. Feature reinforcement learning: Part I: Unstructured MDPs. Journal
of Artificial General Intelligence, 1:3-24, 2009b.

L. Itti and P E Baldi. Bayesian surprise attracts human attention. In NIPS’05,
pages 547-554, 2006.

M. T. Izadi and D. Precup. A planning algorithm for predictive state representa-
tions. In IJCAI'03, pages 1520-1521, 2003.

T. Jaksch, R. Ortner, and P Auer. Near-optimal regret bounds for reinforcement
learning. J. Mach. Learn. Res., 11:1563-1600, 2010.

M. R. James and S. Singh. Learning and discovery of predictive state represen-
tations in dynamical systems with reset. In ICML04, pages 417-424, 2004.

R. Jin, T.-B. Yang, M. Mahdavi, Y.-E Li, and Z.-H. Zhou. Improved bound for the
Nystrom method and its application to kernel classification. Technical report,
arXiv:1111.2262, 2012.

A. Jonsson and A. G. Barto. Active learning of dynamic Bayesian networks in
Markov decision processes. In SARA07, 2007.

L. P Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in
partially observable stochastic domains. Artif. Intell., 101(1-2):99-134, 1998.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial
time. Mach. Learn., 49(2-3):209-232, 2002.

P W. Keller, S. Mannor, and D. Precup. Automatic basis function construction for
approximate dynamic programming and reinforcement learning. In ICMLO06,
pages 449-456, 2006.

V. Koltchinskii and E. Giné. Random matrix approximation of spectra of integral
operators. Bernoulli, 6(1):113-167, 2000.

Z. J. Kolter and A. Y. Ng. Regularization and feature selection in least-squares
temporal difference learning. In ICML09, pages 521-528, 2009a.



124 Bibliography

Z. J. Kolter and A. Y. Ng. Near-Bayesian exploration in polynomial time. In
ICML09, pages 513-520, 2009b.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete
structures. In ICML02, pages 315-322, 2002.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration. J. Mach. Learn.
Res., 4:1107-1149, 2003.

R. Legenstein and W. Maass. Edge of chaos and prediction of computational per-
formance for neural circuit models. Technical report, Technische Universitaet
Graz, 2007.

S. Legg. Machine super intelligence. PhD thesis, University of Lugano, 2008.

L.-J. Lin and T. M. Mitchell. Reinforcement learning with hidden states. In From
animals to animats 2: simulation of adaptive behavior, pages 271-280, 1993.

D. V. Lindley. On a measure of the information provided by an experiment. Ann.
Math. Statist., 27(4):986-1005, 1956.

M. L. Littman, T. L. Dean, and L. P Kaelbling. On the complexity of solving
Markov decision problems. In UAI'95, 1995.

M. L. Littman, R. S. Sutton, and S. Singh. Predictive representations of state. In
NIPS’01, pages 1555-1561, 2001.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Test
classification using string kernels. Journal of Machine Learning Research, 2:
419-444, 2002.

H. R. Maei, C. Szepesvari, S. Bhatnagar, D. Precup, D. Silver, and R. S. Sut-
ton. Convergent temporal-difference learning with arbitrary smooth function
approximation. In NIPS99, pages 1204-1212, 2009.

S. Mahadevan. Average reward reinforcement learning: foundations, algo-
rithms, and empirical results. Mach. Learn., 22(1-3):159-195, 1996.

S. Mahadevan and B. Liu. Basis construction from power series expansions of
value functions. In NIPS’10, pages 1531-1539, 2010.

S. Mahadevan, M. Maggioni, and C. Guestrin. Proto-value functions: a Lapla-
cian framework for learning representation and control in Markov decision
processes. J. Mach. Learn. Res., 8:2169-2231, 2007.



125 Bibliography

S. Mannor and J. Tsitsiklis. Mean-variance optimization in Markov decision pro-
cesses. In ICML'11, 2011.

J. Martin. The expected determinant of the random Gram matrix and its appli-
cation to information retrieval systems, 2007. URL http://dydan. rutgers.
edu/Seminars/Slides/martin2.pdfl

D. D. Maud and C. P de Campos. Solving decision problems with limited infor-
mation. In NIPS’11, 2011.

D. D. Mau3, C. P de Campos, and M. Zaffalon. Solving limited memory influence
diagrams. J. Artif. Intell. Res., 44:97-140, 2012.

A. K. McCallum. Reinforcement learning with selective perception and hidden state.
PhD thesis, Department of Computer Science, University of Rochester, 1996.

P McCracken and M. Bowling. Online discovery and learning of predictive state
representations. In NIPS’05, pages 875-882, 2005.

I. Menache, S. Mannor, and N. Shimkin. Basis function adaptation in temporal
difference reinforcement learning. Ann. Oper. Res., 134:215-238, 2005.

C. D. Meyer. Matrix analysis and applied linear algebra. SIAM: Society for Indus-
trial and Applied Mathematics, 2001.

O. Mihatsch and R. Neuneier. Risk-sensitive reinforcement learning. Mach.
Learn., 49(2-3):267-290, Nov. 2002.

G. E. Monahan. A survey of partially observable Markov decision processes:
theory, models, and algorithms. Manage. Sci., 28(1):1-16, 1982.

K. P Murphy. A survey of POMDP solution techniques. Technical report, 2000.

A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In
ICML00, 2000.

C. P Niculescu. A new look at Newton’s inequalities. JIPAM, 1(2), 2000.

D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Mach. Learn., 49
(2-3):161-178, 2002.

L. Orseau. Universal knowledge seeking agents. In ALT’11, volume 6925 of
LNAI, pages 353-367, 2011.


http://dydan.rutgers.edu/Seminars/Slides/martin2.pdf
http://dydan.rutgers.edu/Seminars/Slides/martin2.pdf

126 Bibliography

P A. Ortega and D. A. Braun. A minimum relative entropy principle for learning
and acting. J. Artif. Intell. Res., 38:475-511, 2010.

Ozgiir Simsek and A. G. Barto. An intrinsic reward mechanism for efficient
exploration. In ICMLO06, pages 833-840, 2006.

R. Parr, C. Painter-Wakefield, L.-H. Li, and M. Littman. Analyzing feature gener-
ation for value-function approximation. In ICML07, pages 737-744, 2007.

W. Penny. Kullback-Liebler divergences of normal, Gamma, Dirichlet and Wishart
densities. Technical report, Wellcome Department of Cognitive Neurology,
University College London, 2001.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gra-
dients. Neural Networks, 21:682-697, 2008.

K. B. Petersen and M. S. Pedersen. The matrix cookbook. Technical report,
Technical University of Denmark, 2008.

T. K. Philips and R. Nelson. The moment bound is tighter than Chernoff’s bound
for positive tail probabilities. Am. Stat., 49(2):175-178, 1995.

D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. In
IJCAI07, 2007.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning.
MIT Press, 2006.

M. Rosencrantz, G. Gordon, and S. Thrun. Learning low dimensional predictive
representations. In ICML04, pages 695-702, 2004.

S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning algorithms for
POMDPs. J. Artif. Intell. Res., 32:663-704, 2008.

S. Ross, J. Pineau, B. Chaib-draa, and P Krietmann. A Bayesian approach for
learning and planning in partially observable Markov decision processes. J.
Mach. Learn. Res., 12:1655-1696, 2011.

T. Riickstiel$, E Sehnke, T. Schaul, D. Wierstra, Y. Sun, and J. Schmidhuber.
Exploring parameter space in reinforcement learning. Paladyn Journal of Be-
havioral Robotics, 1(1):14-24, 2010.

G. A. Rummery. Problem solving with reinforcement learning. PhD thesis, Cam-
bridge University Engineering Department, 1994.



127 Bibliography

G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist
systems. Technical report, Cambridge University Engineering Department,
CUED/F-INFENG/TR 166, 1994.

H. A. M. Schéfer. Reinforcement learning with recurrent neural networ. PhD thesis,
Universitat Osnabriick, 2008.

J. Schmidhuber. Making the world differentiable: on using fully recurrent self-
supervised neural networks for dynamic reinforcement learning and planning
in non-stationary environments. Technical Report FKI-126-90, Institut fiir In-
formatik, Technische Universitit Miinchen, 1990.

J. Schmidhuber. Curious model-building control systems. In IJCNN’91, volume 2,
pages 1458-1463, 1991.

J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990-
2010). IEEE Trans. Auton. Mental Develop., 2(3):230-247, 2010.

B. Scholkopf and A. J. Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT Press, 2002.

B. Scholkopf, A. J. Smola, and K. R. Miiller. Kernel principal component analysis.
Advances in kernel methods: support vector learning, pages 327-352, 1999.

R. J. Serfling. Approximation theorems of mathematical statistics. Wiley, 1980.
ISBN 9780471024033.

W. Shi and Y.-E Guo. Incomplete Cholesky decomposition based kernel principal
component analysis for large-scale data set. In IJCNN’10, pages 1-6, 2010.

D. Silver, R. S. Sutton, and M. Miiller. Temporal-difference search in computer
Go. Mach. Learn., 87(2):183-219, 2012.

S. Singh, A. Barto, and N. Chentanez. Intrinsically motivated reinforcement
learning. In NIPS’04, pages 1281-1288, 2004.

K. Slavakis, S. Theodoridis, and I. Yamada. Online kernel-based classification
using adaptive projection algorithms. IEEE Trans. Signal Process., 56(7):2781-
2796, 2008.

I. Steinwart, D. R. Hush, and C. Scovel. An explicit description of the reproduc-
ing kernel Hilbert spaces of Gaussian RBF kernels. IEEE Trans. Inf. Theory, 52:
4635-4643, 2006.



128 Bibliography

J. Storck, S. Hochreiter, and J. Schmidhuber. Reinforcement driven information
acquisition in non-deterministic environments. In ICANN’95, pages 159-164,
1995.

A. Stout, G. Konidaris, and A. G. Barto. Intrinsically motivated reinforcement
learning: a promising framework for developmental robot learning. In AAAI
Spring Symposium on Developmental Robotics, 2005.

A. L. Strehl and M. L. Littman. A theoretical analysis of model-based interval
estimation. In ICMLO5, pages 856-863, 2005.

A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. PAC model-free
reinforcement learning. In ICML06, 2006.

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Efficient natural evolution
strategies. In GECCO’09, pages 539-546, 2009a.

Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber. Stochastic search using the
natural gradient. In ICML09, pages 1161-1168, 2009b.

Y. Sun, E Gomez, M. Ring, and J. Schmidhuber. Incremental basis construction
from temporal difference error. In ICML11, pages 481-488, 2011a.

Y. Sun, E Gomez, and J. Schmidhuber. Planning to be surprised: optimal
Bayesian exploration in dynamic environments. In AGI'11, pages 41-51,
2011b.

Y. Sun, E Gomez, and J. Schmidhuber. On the size of the online kernel sparsifi-
cation. In ICML12, 2012.

R. S. Sutton. Learning to predict by the methods of temporal differences. Mach.
Learn., 3:9-44, 1988.

R. S. Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In ICML90, pages 216-224, 1990.

R. S. Sutton and A. G. Barto. Reinforcement learning : an introduction. MIT Press,
1998.

R. S. Sutton, C. Szepesvari, and H. R. Maei. A convergent O(n) algorithm for
off-policy temporal-difference learning with linear function approximation. In
NIPS’08, pages 1-8, 2008.



129 Bibliography

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvari, and
E. Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In ICML09, pages 993-1000, 2009.

C. Szepesvari. Algorithms for reinforcement learning. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.
ISBN 9781608454921.

I. Szita and A. Lorincz. Optimistic initialization and greediness lead to polyno-
mial time learning in factored MDPs. In ICML09, 2009.

I. Szita, V. Gyenes, and A. Lorincz. Reinforcement learning with echo state net-
works. In ICANN’06, pages 830-839, 2006.

G. Taylor and R. Parr. Kernelized value function approximation for reinforcement
learning. In ICML09, 2009.

G. Tesauro. Temporal difference learning and TD-Gammon. Commun. ACM, 38
(3):58-68, 1995.

S. B. Thrun and K. Moller. Active exploration in dynamic environments. In
NIPS91, pages 531-538, 1991.

M. Toussaint, S. Harmeling, and A. Storkey. Probabilistic inference for solving
(PO)MDPs. In ICML06, 2006.

J. Unkelbach, Y. Sun, and J. Schmidhuber. An EM based training algorithm for
recurrent neural networks. In ICANN’09, pages 964-974, 2009.

H. van Hasselt and M. A. Wiering. Reinforcement learning in continuous action
spaces. In Approximate Dynamic Programming and Reinforcement Learning,
2007. ADPRL 2007. IEEE International Symposium on, pages 272-279, 2007.

J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver. A Monte Carlo AIXI
approximation. J. Artif. Intell. Res., 40:95-142, 2011.

N. Vlassis, M. Toussaint, G. Kontes, and S. Piperidis. Learning model-free robot
control by a Monte Carlo EM algorithm. Auton. Robot., 27(2):123-130, 2009.

U. von Luxburg. A tutorial on spectral clustering. Technical report, Max Planck
Institute for Biological Cybernetics, TR-149, 2006.

C. J. Watkins. Learning from delayed rewards. PhD thesis, University of Cam-
bridge, 1989.



130 Bibliography

C. J. Watkins and P Dayan. Technical note: Q-learning. Mach. Learn., 8:279-292,
1992.

S. D. Whitehead and L.-J. Lin. Reinforcement learning of non-Markov decision
processes. Artif. Intell., 73(1-2):271-306, 1995.

B. Widrow and S. D. Stearns. Adaptive signal processing. Prentice-Hall, 1985.

D. Wierstra and J. Schmidhuber. Policy gradient critics. In ECML07, pages 466—
477, 2007.

D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber. Solving deep memory
POMDPs with recurrent policy gradients. In ICANN’07, pages 697-706, 2007.

C. Williams and M. Seeger. Using the Nystrom method to speed up kernel ma-
chines. In NIPS’00, pages 682-688, 2000.

B. Wolfe, M. R. James, and S. Singh. Learning predictive state representations
in dynamical systems without reset. In ICML05, pages 980-987, 2005.

J.-H. Wu and R. Givan. Feature-discovering approximate value iteration meth-
ods. In SARA0S5, pages 321-331, 2005.

J. L. Wyatt, P Dayan, A. Leonardis, and J. Peters. Exploration and curiosity in
robot learning and inference. Dagstuhl Reports, 1(3):67-95, 2011.

X. Xu. A sparse kernel-based least-squares temporal difference algorithm for
reinforcement learning. In Advances in Natural Computation, volume 4221 of
Lecture Notes in Computer Science, pages 47-56. Springer, 2006.

X. Xu, T. Xie, D.-W. Hu, and X.-C. Lu. Kernel least-squares temporal difference
learning. International Journal of Information Technology, 11(9):55-63, 2005.

X. Xu, D. Hu, and X. Lu. Kernel-based least squares policy iteration for reinforce-
ment learning. IEEE Trans. Neural Netw., 18(4):973-992, 2007.

X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423—
1447, 1999.

W.-H. Zhang. Algorithms for partially observable Markov decision processes. PhD
thesis, Hong Kong University of Science and Technology, 2001.

B. D. Ziebart, A. Maas, A. J. Bagnell, and A. K. Dey. Maximum entropy inverse
reinforcement learning. In AAAI’08, 2008.



	Contents
	Introduction
	Reinforcement Learning
	Representation Generation
	Contributions

	Reinforcement Learning at a Glance
	The Reinforcement Learning Problem
	Markov Decision Process
	Beyond MDP

	Exact Solutions to MDP
	Bellman Equations
	Model-based Planning Algorithms
	Model-free Algorithms

	Function Approximation
	Estimating Weights
	Generating Basis Functions


	Understanding Basis Size Growth in Online Kernel Sparsification
	Background
	The Determinant of a Gram Matrix
	A Formula for the Expectation of Gram Determinant
	The Decaying Speed of E[ detGk] 
	Bounding the Moments of the Gram Determinant

	Analyzing Online Kernel Sparsification
	Discussion
	On Assumption ??
	Comparison with Nyström Method
	On Strengthening the Bound


	Incremental Basis Construction from Temporal Difference Error
	Background
	V-BEBF
	The Ideal Basis Function from TD-error
	Comparison with BEBFs
	Approximating V-BEBF

	Incremental Basis Projection with V-BEBF
	Batch IBP-V
	Online IBP-V

	Experiments
	Results: Batch
	Results: Online

	Discussion
	Interpretation of the Contributions
	Practical Benefit of V-BEBF
	Interpretation of the Experimental Results
	Practical Benefit of IBP-V


	Information Theoretic Exploration in Dynamic Environments
	Background
	Learning from Sequential Interactions
	Information Gain as Learning Progress

	Bayesian Exploration in Dynamic Environments
	Planning in Finite Time Horizon
	Subtlety of the Result
	Extension to Infinite Horizon

	Exploration in Finite Markovian Environment with Dirichlet Priors
	Approximation through Dynamic Programming

	An Illustrative Example
	Discussion
	Proofs
	Proof of Proposition ??
	Proof of Proposition ??
	Proof of Proposition ??


	Conclusion
	Bibliography

