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ABSTRACT 

 

This paper examines the performance of panel data models in measuring cost efficiency 

of electricity distribution utilities. Different cost frontier models are applied to a sample of 59 

utilities operating in Switzerland from 1988 to 1996. The estimated coefficients and 

inefficiency scores are compared across different specifications. The results indicate that 

while the average inefficiency is not sensitive to the econometric specification, the efficiency 

ranking varies significantly across models. The reasonably low out-of-sample prediction 

errors suggest that panel data models can be used as a prediction instrument in order to 

narrow the information gap between the regulator and regulated companies.  

 

 

Keywords: Cost efficiency; Electricity utilities; Incentive regulation; Yardstick competition.  
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1. INTRODUCTION 

Transmission and distribution of electricity have been considered as natural 

monopolies, thus less affected by the recent waves of deregulation in power industry. 

However, as competition is introduced into generation sector, regulatory reform and incentive 

regulation of distribution utilities have become more common. In traditional cost-of-service 

regulation systems companies recover their costs with a risk-free fixed rate of return and 

therefore have little incentive to minimize costs. The incentive-based schemes on the other 

hand, are designed to provide incentive for cost-efficiency by compensating the company 

with its savings. A variety of methods are proposed in the literature. Main categories of 

incentive-based schemes used for electricity utilities are: price or revenue cap regulation 

schemes, sliding-scale rate of return, partial cost adjustment, menu of contracts, and yardstick 

regulation.1 Jamasb and Pollitt (2001) provide an extensive survey of different regulation 

practices in electricity markets around the world.  Virtually all the models used in practice, 

are based on ‘benchmarking’ that is, measuring a company’s efficiency against a reference 

performance.  Inefficiency can be resulted from technological deficiencies or non-optimal 

allocation of resources into production. Both technical and allocative inefficiencies are 

included in cost-inefficiency, which is by definition, the deviation from minimum costs to 

produce a given level of output with given input prices.  

In benchmarking applications the regulator is generally interested in obtaining a 

measure of firms’ inefficiencies such as X-factors in price cap regulation, in order to reward 

(or punish) companies accordingly. The inefficiency estimates can have great financial 

sequences for the firms and therefore, their reliability is crucial for an effective regulation 

system. In particular, if the estimated inefficiency scores are sensitive to the benchmarking 

method, a more detailed analysis to justify the adopted model is required. However, in most 

                                                            
1 See Joskow and Schmalensee (1986) for a review of regulation models.  
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cases it is difficult to identify the ‘right’ model among the set of legitimate ones.  Bauer et al. 

(1998) propose a series of criteria that can be used to evaluate if the results obtained from 

different methods are “mutually consistent”, that is, lead to comparable inefficiency scores 

and ranks. It is recommended that rather than using the inefficiency estimates in a mechanical 

way, the benchmarking analysis should be used as a complementary instrument in incentive 

regulation schemes.   

Using a cross section of 63 power distribution utilities in Europe, Jamasb and Pollit 

(2003) show that there are substantial variations in estimated efficiency scores and rank 

orders across different methods.2 There is a common perception that the estimation results 

can be improved using panel data. In contrast with cross-sectional data, panels provide 

information on same companies over several periods. Moreover, panel data models can better 

control for unobserved heterogeneity among companies. This perception is supported by 

suggestive evidence. For instance, after reviewing their previous empirical literature on 

measuring inefficiency with panel data, Kumbhakar and Lovell (2000)3 conclude that 

different approaches are likely to generate rather similar efficiency rankings, especially at the 

top and bottom of the distribution. However, none of the cited works is related to electricity 

distribution.4  

These results raise an important question as to whether (or to what extent) the problems 

reported by Jamasb and Pollitt (2003) are due to the limitations associated with cross-section 

data models. This question is addressed in the present paper by using several alternative 

                                                            
2 Other authors like Horrace and Schmidt (1996), Street (2003) and Jensen (2000) reported substantial errors 

and inconsistency problems in the estimation of individual efficiency scores in cross sectional data. 

3 See page 107. 

4 There is some evidence that the reliability of benchmarking analysis depends on the nature of production. For 

instance Gong and Sickles (1989), using Monte Carlo simulations, find that with complex production functions 

most models show a poor performance, while with simpler production forms the results are more reasonable.  
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models to a panel of power distribution utilities in Switzerland. Given that the validity of 

benchmarking methods in electricity industry has been put into question,5 studying the 

reliability of these methods using better data (panels in this case) can bring some light into a 

controversial debate. Moreover, as an increasing number of regulators throughout Europe and 

elsewhere have access to panel data sets, they will soon face the question if the longitudinal 

data can help evaluate the regulated companies’ inefficiency.  

The main goal of this paper is to study the sensitivity of inefficiency estimates in panel 

data models. We focus on parametric cost frontier methods mainly because these methods are 

more easily adaptable to panel data.6 It should be noted that in practice, most of the regulators 

use deterministic frontier methods like Data Envelopment Analysis. This is mainly because 

such methods require a relatively low number of observations. However, the effects of 

unobserved differences among companies, which are particularly important in network 

industries, are completely ignored in these models.   

In this paper, different stochastic frontier models are applied to a sample of distribution 

utilities in Switzerland. The sample is an unbalanced panel of 59 companies over a period of 

9 years (a total of 380 observations). The inefficiency scores estimated from four different 

models are compared. In particular, the resulted efficiency rankings obtained from random 

effect and fixed effect models are analyzed.  Although there is a reasonably good correlation 

between the estimates obtained from certain models, individual inefficiency scores and ranks 

change quite significantly from one model to another. The estimated measures of inefficiency 

are therefore sensitive to econometric specification and should not be used as a direct 

instrument in benchmarking. These results suggest that the sensitivity problems in 

                                                            
5 For instance see Shuttlewoth (2003) and Irastorza (2003) for criticisms of benchmarking approaches in 

electricity industry. 

6 Other advantages of the parametric approaches are described in section 2. 
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benchmarking electricity utilities are not limited to cross-sectional data and cannot be 

completely resolved by using panel data models. However, our analysis of prediction errors 

indicates that panel data models can be used for predicting utilities costs with a rather 

reasonable error, suggesting that benchmarking analyses can be used as a complementary 

instrument for monitoring utilities’ performances.  

The rest of the paper proceeds as follows: Section 2 provides a brief review of cost-

frontier models and presents the specification used in this paper. The data are described in 

section 3. Section 4 presents the estimation results and discusses their implications. The main 

conclusions are summarized at the end.  

 

 

2. METHODOLOGY 

 

A frontier cost function defines minimum costs given output level, input prices and the 

existing production technology. It is unlikely that all firms will operate at the frontier. Failure 

to attain the cost frontier implies the existence of technical and allocative inefficiency. This 

section provides a description of the cost frontier models and the specification used in this 

paper. The adopted methodology is based on a comparison of different models with respect to 

the estimated cost function parameters, estimated inefficiency scores, and the out-of-sample 

prediction errors. The main goal is to study the limitations of different models in 

benchmarking and the sensitivity of inefficiency scores to model selection.  

 

2.1. Cost frontier models  

There are several cost frontier methods to estimate the cost efficiency of individual 

firms. Two main categories are non-parametric methods originated from operations research, 
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and econometric approaches namely stochastic cost frontier models.7 In non-parametric 

approaches like Data Envelopment Analysis, the cost frontier is considered as a deterministic 

function of the observed variables but no specific functional form is imposed. Moreover, non-

parametric approaches are generally easier to estimate.8 Parametric methods on the other 

hand, allow for a random unobserved heterogeneity among different firms but need to specify 

a functional form for the cost function. The main advantage of such methods over non-

parametric approaches is the separation of the inefficiency effect from the statistical noise due 

to data errors, omitted variables etc. The non-parametric methods’ assumption of a unique 

deterministic cost frontier for all companies is unrealistic. Another advantage of parametric 

methods is that these methods allow statistical inference on the significance of the variables 

included in the model, using standard statistical tests. In non-parametric methods on the other 

hand, statistical inference requires elaborate and sensitive re-sampling methods like bootstrap 

techniques.9 Given the above discussion we decided to focus on the parametric approaches.  

In this paper we consider the estimation of a deterministic and three versions of a 

stochastic frontier cost function using panel data. It should be noted that the theoretical 

development of stochastic frontier models in panel data has been subject of a great body of 

literature.10 We contend that some of the recent developments like the models proposed by 

                                                            
7 See Kumbhakar and Lovell (2000) for an extensive survey of parametric methods and Coelli et al. (1998), 

chapter 6, and Simar (1992) for an overview of non-parametric approaches. 

8 See Coelli et al. (2003) for more details. 

9 These methods are available for rather special cases and have not yet been established as standard tests. See 

Simar and Wilson (2000) for an overview of statistical inference methods in non-parametric models. 

10 See Kumbhakar and Lovell (2000) for a review and Greene (forthcoming) and Tsionas (2002) for some 

recent developments. 
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Greene (forthcoming) can be useful in benchmarking. However, a critical analysis of these 

models needs further research and is beyond the scope of this paper. 

The deterministic approach adopted in this paper can be formulated as: 

     ( ) 0         ,lnln ≥+= ititititit uuwyCC                i= 1, 2, ...., N   and    t = 1,2,…,T            (1) 

where Cit is observed total cost in year t, yit is a vector of outputs, wit is an input price vector 

and uit is a positive one-sided disturbance capturing the effect of inefficiency. N represents 

the number of firms and T the number of years in the sample. Firms can therefore operate on 

or above the cost frontier but not below it. One interesting method proposed for estimating 

equation (1) is Greene's (1980) version of Richmond's (1974) Corrected Ordinary Least 

Squares model. A functional form for the cost function is assumed, and parameter estimates 

are obtained using ordinary least squares method. The intercept is corrected by shifting the 

value of the intercept such that all residuals are positive and at least one is zero.  

The main shortcoming of this method is that it confounds inefficiency with statistical 

noise: the entire residual is classified as inefficiency. Nevertheless many studies have used 

this approach.11 It should be noted that the COLS method does not consider the panel aspect 

of the data because it considers the repeated observations of a given firm as independent 

observations.  These problems can be partly overcome using the stochastic cost frontier 

approach suggested by Pitt and Lee (1981) who extended the original model of Aigner et al. 

(1977) to panel data setups. This model can be written as follows: 

     ( )  0       ,lnln ≥++= iitiititit uvuwyCC  i= 1, 2, ...., N   and    t = 1,2,…,T        (2) 

In this specification the error term is composed of two uncorrelated parts: The first part ui, is 

a one-sided non negative disturbance reflecting the effect of inefficiency (including both 

                                                            
11 See for example Wagstaff (1989) and Filippini and Maggi (1993). 
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allocative and technical inefficiencies), and the second component vit , is a symmetric 

disturbance capturing the effect of noise. Usually the statistical noise is assumed to be 

normally distributed, while the inefficiency term ui is assumed to follow a half-normal 

distribution.12 This model with a normal-half-normal composite error term can be estimated 

using Maximum Likelihood Estimation method. Consistent with Kumbhakar and Lovell 

(2000) we refer to this model as the MLE model. 

Compared to a deterministic approach the main advantage of this stochastic cost 

frontier model is the separation of the inefficiency effect from the statistical noise. However, 

this method is subject to the potential criticism of having arbitrary assumptions about the 

distribution of the random terms. These assumptions can be relaxed by rewriting equation 2 

as:  

     ( ) ,}min{,lnln **
               with          

*
iiiitiititit uuuvuwyCC −=+++= α                              (3) 

and using a feasible Generalized Least Squares method as proposed by Schmidt and Sickles 

(1984).13 The resulting model is referred to as the GLS model. 

The remaining restrictive assumption is that the two random components be 

uncorrelated with each one of the explanatory variables. This implies that the firm’s 

inefficiency is uncorrelated with its observed characteristics included in the cost function. In 

the real world however, many of these factors may affect the firm’s inefficiency. Schmidt and 

Sickles (1984) propose a solution around this assumption.14 In their model the overall 

residual wit is composed of two terms (wit = ui + vit): a symmetric disturbance  vit, like 

                                                            
12 Other extensions of this model have also considered exponential and truncated normal distributions for the 

inefficiency term. See for instance Battese (1992) and Battese and Coelli (1992). 

13 See also Kumbhakar and Lovell (2000). 

14 For a presentation of this method see also Simar (1992). 
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previous models, and a one-sided fixed component ui, that represents cost inefficiency. The 

latter component can be identified by a fixed effects specification with no assumption on the 

distribution of ui.15 Inefficiency scores are estimated as the distance to the firm with the 

minimum fixed effect, that is: ui – min{ui}. The resulting model is a fixed-effects model and 

is labeled as the FE model in the rest of the paper.  

The fixed effects approach controls for unobservable firm specific effects, such as 

inefficiency, that are not captured by control variables. There are however, two limits to this 

approach: First, the time invariant variables are captured by the fixed effects and cannot be 

included in the model. This implies that the inefficiency estimators include the variations in 

time-invariant firm characteristics. Moreover, inefficiency is assumed to be constant over 

time. Notice that this assumption can be relaxed in the random effects models discussed 

above.16  

The main advantage of the fixed-effects specification is that the estimations are 

unbiased even if explanatory variables are correlated with firm-specific dummies. However, 

the inefficiency measures may be confounded with time-invariant factors, which could not be 

included in the model.  The choice between random effects and fixed effects models also 

depends on whether or not firms belong to the same population.17 The random effects model 

is a legitimate specification to the extent that the heterogeneity among companies is limited to 

a single population.  

 

                                                            
15 In this approach the term stochastic is referred to the fact that the model is stochastic (presence of a 

symmetric component of the disturbance vit ) but not the inefficiency term ui. In the approach suggested by 

Aigner et al. (1977) both the model and the inefficiency term are stochastic. 

16 Battese and Coelli (1992) propose a method. See also Coelli, Rao and Battese (1998) for a summary. 

17 See Baltagi (2001) and Hsiao and Sun (2000) for detailed discussions on fixed vs random effects. 



 11

2.2. Specification of the Cost Function 

Electricity distribution utilities operate in networks with different shapes, which directly 

affect the costs. As discussed in Robert (1986), Salvanes and Tjφota (1994) and Thompson 

(1997), the cost function should take into account differences in network characteristics, load 

factor and other factors that are unrelated to cost-efficiency but affect the costs. The 

specification used here draws basically from the model used by Filippini (1998). The output 

is measured by the total number of kWh delivered. Inputs to the electricity distribution 

process consist primarily of labor, capital and the power purchased from the generator. The 

costs of distribution utilities consist of two main parts: the costs of the purchased power and 

the network costs including labor and capital costs. There are therefore two alternatives for 

measuring cost efficiency in power distribution utilities: total costs approach and network 

costs approach. The network costs approach has a practical advantage in that the estimated 

average costs can be directly used in a price-cap formula.18 However, this approach neglects 

the potential inefficiencies in the choice of the generator. In this paper we use the first 

approach based on the total costs function. The firm's total cost of distributing electricity can 

be represented by: 

),,,,,,,,,,C(C TDWDOTHGRIDASCULFPPPY PLK=  (4) 

where C represents total cost; Y is the output in kWh; PK , PL and PP are respectively the 

prices of capital, labor and input power; and  T is a time variable representing the linear trend 

in technological progress. 

In addition to the above variables that are generally included in a cost function model, 

the following six output (and network) characteristics are included in the model: LF is the 

‘load factor’ defined as the ratio of utility’s average load on its peak load; AS the size of the 

                                                            
18 Notice that the price cap is generally applied to the network access.  
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service area served by the distribution utility; and CU is the number of customers. The load 

factor captures the impact of the intensity of use on costs.19 This variable is expected to have 

a negative effect on total costs, because a relatively high value of load factor represents a 

higher capacity utilization, thus lower fixed costs for producing a given output. Obviously, 

the service area and the number of customers are expected to have a positive effect on costs.  

HGRID is a binary indicator to distinguish the utilities that operate a high-voltage 

transmission network in addition to their distribution network. Some of the utilities in our 

sample are involved in auxiliary services such as installation of electric appliances. Both 

these types are expected to be more costly compared to other companies. The utilities whose 

share of auxiliary revenues is more than 25 percent of total revenues are distinguished by 

dummy variable DOT.  The maintenance costs and damage risks of power lines are generally 

higher in forests. Binary indicator DW represents the cases in which more than 40 percent of 

the service area is covered by forests.  

It should be noted that there are other output characteristics that are not considered in 

the cost function (4). An important unobserved dimension of the output in our sample 

concerns the quality of service. Different utilities may deliver different levels of quality, 

which affect their costs. In power utilities, output quality is usually measured by the number 

of interruptions that are not related to rare natural accidents. In Switzerland however, there 

has been practically no such outage cases. The high level of quality is obviously related to the 

tight regulation and high quality standards applied in Switzerland. We therefore contend that 

the quality differences between the utilities in our sample are not significant. Moreover, the 

stochastic models used in our analysis control for unobserved variations that are not 

correlated with the included explanatory variables. 

                                                            
19 See Foreman-Peck and Waterson (1985) for a discussion of the role of load factor in cost models.  
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The regularity conditions require that the cost function in equation (4) be linearly 

homogeneous in input prices, non-decreasing in input prices and concave.20 The translog 

model and Cobb-Douglas form are two main functional forms commonly used in the 

literature. Translog form does not impose any technological restriction and allows the 

economies of scale, size and density vary with output. These values are assumed constant in 

the Cobb-Douglas functional form. In this paper, the Cobb-Douglas form is used for two 

main reasons. First, because of the large number of parameters21 in translog model there is a 

considerable risk of near-multicollinearity, especially given that different output variables Y, 

AS and CU are highly correlated.22 Moreover, the estimation of scale economies is of 

secondary importance in this paper. The assumption that scale-economies do not vary with 

output (implicit in Cobb-Douglas form) can therefore be justified to the extent that it does not 

affect the inefficiency estimators.  

The Cobb-Douglas specification of the cost function in (4) can be written as: 

     TDWDOTHGRIDCUAS
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 (5) 

Linear homogeneity in input prices is imposed by dividing money values by the price of the 

input power.   

 

                                                            
20 See Cornes (1992) for a discussion of the properties of cost functions. 

21 In our specification the number of parameters in translog model would be 40.  

22 Our preliminary analysis suggests that this problem creates technical difficulties in our maximum likelihood 

estimations. 
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3. DATA 

 

 The data used in this paper consists of an unbalanced panel of 59 Switzerland’s 

distribution utilities over a 9-year period from 1988 to 1996. The sample includes 380 

observations with a minimum of four observations per company. The original data set has 

been prepared and analyzed by Filippini (1998) and completed by Wild (2001) and Filippini 

and Wild (2001). These data are mainly based on the information from the annual reports of 

the Swiss Federal Statistical Office, the Swiss Federal Energy Office, and the Swiss Cities 

Association. A mail survey from the utilities has been used to complete the data.23  The 

sample does not include the utilities that generate more than 20 percent of their input power. 

There are about 900 electricity distribution companies in Switzerland. This sector is 

characterized by a large number of small companies along with a relatively small number of 

large firms. The 59 companies included in this study deliver about a third of Switzerland’s 

electricity consumption.24 The sample used in this study can therefore be considered as a 

representative sample of relatively large distribution utilities in the country. In spite of a 

considerable degree of variation in costs and other characteristics, the sample represents 

relatively similar companies compared to the entire sector.  

 Table 1 gives the summary statistics of the key variables used in the analysis. All 

money values are converted to 1996 Swiss Francs using the global consumer price index. The 

cost of purchased electricity is included in total costs. For those companies that produce part 

of their power the average price of input electricity is assumed to be equal to the price of 

purchased power. Labor price is defined as the average annual salary of the firm’s employees. 

                                                            
23 See Filippini and Wild (2001) for a more detailed description of data sources. 

24 The total power delivered by the companies in our sample in 1993 is 13,250 GWh, which is about a third of 

the total 43,000 GWh electricity consumption in Switzerland in that year.   
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Capital expenditure is approximated by the residual costs that is, total costs minus labor and 

purchased power costs. Because of the lack of inventory data the capital stock is measured by 

the capacity of transformers.25  

 

Table 1. Descriptive statistics (380 observations) 

  
Mean 

Standard 
Deviation 

 
Minimum 

 
Maximum 

 
Total annual costs per kWh 
output (CHF) 

 
 

.188 

 
 

.0303 

 
 

.128 

 
 

.323 

 
Annual output (Y) in GigaWh  

 
 

263.51 

 
 

390.36 

 
 

17 

 
 

2301.5 
 
Number of customers (CU) 

 
26975.6 

 
36935.8 

 
2461 220060 

 
Load Factor (LF) 

 
.5541 

 
.0727 

 
.3219 

 
.9817 

 
Service Area (AS) in km2 

 
15,467 

 
35,376 

 
176 

 
198,946 

 
Average annual labor price (PL) 
per employee (CHF 1000)  

 
 

101.27 

 
 

32.55 

 
 

43.36 

 
 

253.89 
 
Average capital price (PK) in 
CHF per kVoltAmpere 
installed capacity  

 
 

95.06 

 
 

39.35 

 
 

32.08 

 
 

257.98 

 
Average price of input power 
(PP) in CHF/kWh  

 
 

.105 

 
 

.0210 

 
 

.0583 

 
 

.161 
 
High-voltage network dummy 
(HGRID) 

 
.35 

 
.4776 

 
0 

 
1 

 
Auxiliary revenues more than 
25% (DOT) 

 
.397 

 
.490 

 
0 

 
1 

 
Share of forest area more than 
40% (DW) 
 

 
.261 

 
.440 

 
0 

 
1 

 

- All monetary values are in 1996 Swiss Francs (CHF), adjusted for inflation by  
      Switzerland’s global consumer price index. 

 

 

                                                            
25 Transformer is the main device used to transfer electricity in the network. This is basically a device to convert 

current variations to voltage variations and vice versa. 
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4. ESTIMATION RESULTS 

 

 The estimated parameters of the cost frontier are listed in table 2. In the OLS model 

data are pooled across different years and the estimators are based on an implicit assumption 

that the unobserved random variations are not firm-specific. The other three models have the 

advantage of accounting for firms’ heterogeneity. In the random-effects model (GLS) it is 

assumed that firms’ unobserved heterogeneity is uncorrelated with their observed 

characteristics. The MLE model imposes an additional restriction that firms’ unobserved 

heterogeneity has a half-normal distribution. Both these assumptions are relaxed in the fixed-

effects specification. This model however is mainly based on the variations within firms and 

cannot estimate the effect of time-invariant factors.  

The first observation on the estimation results (table 2) is that virtually all coefficients 

are highly significant and have the expected signs. The within R2 values are reported for the 

two panel models estimated by the least squares method. These values show that the adopted 

specification has a relatively high explanatory power.26 As it can be seen in the table, the 

fixed-effect estimators for output (Y) and costumers (CU) coefficients are quite different from 

other models. This contrasting difference suggests that the estimations could be sensitive to 

firm-specific characteristics. This result is not surprising in network industries. Any 

correlation between random effects and other explanatory variables may bias the estimation 

results. Therefore, in the absence of information regarding the unobserved heterogeneity 

among firms, the fixed-effect model can provide more reliable estimates for the factors that 

                                                            
26 It should be noted that the R2 value in the OLS model does not consider the panel structure of the data and 

thus, cannot be used to evaluate the model’s explanatory power. In fact the extremely high value of R2 in the 

OLS model can be explained by the relatively low within variations in costs. 
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vary over time. This advantage however, is hardly clear in our sample: A more careful 

examination of the results shows that other coefficients are rather similar among different 

models. Moreover, even though output coefficients Y and CU are different in the FE model, 

their sum is quite similar among different models. This result suggests that the value of 

economies of scale is robust to the econometric specification. Finally, the results of the 

Hausman specification test indicate that the FE and RE estimates are not significantly 

different at 5 percent significance level (p-value of .055). Overall, these results suggest that 

the cost function estimations are not sensitive to the unobserved heterogeneity among 

companies.  

 

Table 2. Cost frontier parameters 

 OLS Random-Effects 
(GLS) 

Random-Effects 
MLE (Half-Normal) Fixed-Effects 

 Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. 

lnY 0.851 0.017 0.780 0.032 0.767 0.040 0.677 0.055 

lnCU 0.084 0.017 0.153 0.033 0.163 0.048 0.251 0.096 

lnAS 0.044 0.004 0.051 0.009 0.047 0.013 - - 

lnLF -0.243 0.037 -0.239 0.039 -0.230 0.023 -0.213 0.044 

lnPL 0.067 0.011 0.041 0.014 0.039 0.014 0.038 0.016 

lnPK 0.200 0.009 0.174 0.010 0.171 0.005 0.169 0.010 

HGRID 0.063 0.012 0.075 0.027 0.098 0.039 - - 

DOT 0.033 0.010 0.050 0.022 0.040 0.028 - - 

DW 0.014 0.010 0.012 0.023 0.062 0.028 - - 

T 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002 

Constant -2.236 0.233 -0.793 0.369 -0.653 0.430 - - 

R Square 0.995  0.711    0.714  
  

- The reported R2 values for GLS and FE models are based on the within variations. 
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It should be noted that both random and fixed effects models used in this analysis, 

assume that the firm-specific stochastic component represents the efficiency differences 

among firms.27 This assumption leads to an overestimation of inefficiency in the FE model 

for the following reasons. First, the fixed firm-specific effects capture both observed and 

unobserved time-invariant factors. Moreover, since the fixed effects do not follow any 

distribution and efficiency is estimated compared to the best observed practice (the firm with 

the minimum fixed effect), the estimators are sensitive to outliers. In fact, the problem of 

outlier firms is transferred from the cost function to efficiency estimators. To illustrate this 

fact, several specifications were compared. We started from a ‘naïve’ OLS model that ignores 

the time-invariant factors and refined this model in several steps until all time-invariant 

factors were included. The inefficiency scores obtained from these models were compared to 

those obtained from a fixed-effects model. The results (not given here) indicate that as the 

OLS model becomes more ‘refined’ the estimated inefficiency scores show less correlation 

with those obtained from the fixed-effects model.28 These results suggest that as far as 

inefficiency scores are concerned the performance of a fixed-effect model is quite poor (even 

compared to a naïve OLS model).  

 In order to see the limitations of these models we also study the inefficiency estimates 

obtained from different models. Table 3 gives the summary statistics of the inefficiency 

scores resulted from different models. The inefficiency score is defined as exp(Ui), where Ui 

is the inefficiency term obtained from the regression model. In the COLS model where the 

inefficiency term is time-variant, the company’s inefficiency Ui is assumed to be the average 

                                                            
27 In fact with the exception of a few recent developments (cf. Greene, forthcoming; Tsionas, 2002), this is a 

general assumption in panel data frontier models.  

28 This is also the case for the mean and median inefficiency scores (and other quartiles). That is, as the OLS 

model get more refined the summary statistics decrease and get farther from that of the fixed-effects model. 
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of uit over the entire sample period. The scores therefore represent the ratio of a company’s 

actual costs to a minimum level that would have been achieved had the company operated as 

cost-efficient as the ‘best practice’ observed in the sample. The excessively large values 

resulted from the fixed-effect model confirms the poor performance of this model in 

estimating inefficiencies.  

 

Table 3. Summary statistics of inefficiency scores 

 COLS GLS FE MLE 

Minimum 1.07 1 1 1.07 

Maximum 1.46 1.38 2.14 1.36 

Average 1.23 1.16 1.35 1.15 

Median 1.22 1.16 1.31 1.13 

95 percentile 1.41 1.32 1.66 1.30 

Number of firms 59 59 59 59 

 

In practice, benchmarking is usually based on efficiency ranking of companies. The 

correlation matrix between the ranks obtained from different models is given in table 4. The 

ranks are obtained by comparing the firms’ average inefficiency scores over the sample 

period. These results indicate a relatively high correlation between rankings from GLS and 

MLE models. 

 

Table 4. Correlation between inefficiency ranks from different models 

  COLS GLS FE MLE 
 COLS 1    
 RE (GLS) 0.936 1   
 FE 0.447 0.514 1  
 RE (MLE) 0.838 0.895 0.417 1 

 

To see the individual differences the GLS and MLE models are compared regarding 

the inefficiency scores. The FE model is not considered here because as discussed above, its 
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efficiency scores are significantly different from other models. Table 5 summarizes the 

results. These results indicate that the maximum difference of cost-inefficiency between the 

two models is about 9 percent. This difference is quite significant noting that both models are 

based on the same Cobb-Douglas functional form and their only difference is in the 

distribution of the efficiency term.  A closer look at the rankings highlights these differences. 

Our results show that changing from one model to another results in significant changes in 

rankings. For instance for more than half of the companies in the sample changing the model 

from GLS to MLE implies a change of 4 places or more in their ranks, and for about 25 

percent of companies this means a change of 9 places or more. Even the ranking quartile 

changes considerably. Change of the model from MLE to GLS results in a change in ranking 

quartile for 20 companies out of 59. This change results in a change of quartile for about a 

third of the companies in the first quartile (the 25 percent most efficient firms). Moreover, 

different models do not identify the same companies as the best and worst practices. The best 

practice as identified by the MLE method is ranked 17 in the GLS model, whereas the GLS 

model’s best practice is ranked 7 by the MLE model.  These differences are as more striking 

as the two models differ only in their assumption on the distribution of the inefficiency term.  

Therefore, the mutual consistency conditions proposed by Bauer et al. (1998)29 are 

not satisfied. These results show the sensitivity of the benchmarking method in our sample. In 

contrast with the general contention in previous studies that different approaches give rather 

similar inefficiency rankings, this analysis suggests that rankings may be sensitive to the 

adopted model. Therefore, a direct use of inefficiency estimates in benchmarking regulation 

                                                            
29 According to Bauer et al., to be mutually consistent, different approaches should have the following 

conditions: inefficiency scores should have comparable means, standard deviations and other distributional 

properties; the ranking order of the firms should be approximately the same; and the ‘best-practice’ and ‘worst-

practice’ firms should be mostly the same. 
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of network industries may be misleading.  In usual cases where the choice of the appropriate 

model is not clear, a sensitivity analysis could be used to study the robustness of the results 

and the limitations of different models.  

 

Table 5. Summary statistics of the absolute value of difference in inefficiency scores 

  Model: GLS and COLS GLS and MLE 
 Minimum 0.01  0.00  
 Maximum 0.14  0.09  
 Mean 0.07  0.03  
 Median 0.07  0.02  
 95 percentile 0.12  0.08  
 N 59  59  

 

Cost frontier models can alternatively be used by the regulator to predict the costs of 

individual companies. Three specifications, OLS, fixed effects (FE) and random effects 

(GLS), are compared with respect to their predictive power. Predictions are considered in two 

directions: out-of-sample prediction which consists of predicting the costs of a given firm 

using the estimations obtained from other firms, and forecasting that involves the prediction 

of costs in a year using the estimation based on the data previous to that year. One, two and 

three-year-ahead forecasts are considered. In all predictions the actual values of explanatory 

variables are used.  Prediction errors are defined as the predicted total costs minus the actual 

costs divided by the actual costs. In the RE model the forecasts are based on the optimal 

predictor given in Bailli and Baltagi (2000).30 The prediction errors of different models are 

compared. The results are summarized in table 6. The two-year-ahead forecast errors are not 

listed.  

 

 

                                                            
30 See page 256 of Bailli and Baltagi (1999) for more details. 
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Table 6. Prediction errors 

Type of prediction Out-of-sample 1-year-ahead 3-year-ahead 
Model OLS GLS FE OLS GLS FE OLS GLS FE 
Average error 
(absolute value)  7.37 7.57 11.8 5.91 3.02 3.10 6.24 4.18 4.58 

Maximum error 
(absolute value) 25.2 27.3 39.0 17.0 10.3 10.3 16.7 14.6 16.4 

95 percentile error 
(absolute value) 17.8 20.1 31.1 13.5 6.82 7.66 14.1 10.9 13.0 

Average prediction 
bias (average error) .34 .98 1.08 -.03 0.08 .24 -1.89 -1.87 -1.39 

Number of predictions 380 380 380 52 52 52 52 52 52 
 

- Errors are given in percentage of the actual costs. 

 

As expected, the out-of-sample estimation errors are significantly higher in the fixed-

effects model. Interestingly, even the forecasting performance of the GLS model is 

comparable to that of the FE model. This implies that in our sample the FE model does not 

provide a significant predictive advantage over other models.  The results show that from a 

practical standpoint, the prediction errors are generally within an acceptable range. The GLS 

model shows the best performance. As it can be seen in table 6 (see the middle column), the 

GLS model’s one-year-ahead prediction errors with an average absolute value of 3 percent 

and an average value of less than 0.1 percent are particularly low. While the maximum error 

in this case is 10.3%, for 95 percent of the companies the prediction error is limited to 6.8%.  

These results suggest that the panel data models can predict individual companies’ 

total costs with a rather reasonable precision. Therefore, the regulator can use these models to 

predict a confidence interval for the costs of each one of the firms. Acceptable intervals for 

revenue and price caps can be calculated accordingly. Using such predictions along with 

other monitoring instruments, the regulator can hold the companies within a reasonably well-

predicted range of cost-efficiency.   
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5. CONCLUSION 

 

 Four different parametric cost frontier models are applied to a panel data set of 

electricity distribution utilities in Switzerland. A comparison of the estimation results 

indicates significant differences among different models. This result can be explained by the 

strong unobserved heterogeneity among distribution companies, which is a common 

characteristic of network industries.  These differences are particularly important for the 

estimates of inefficiency scores. While the summary statistics of inefficiency estimates are 

not sensitive to model specification, the efficiency ranks change quite significantly from one 

model to another. The alternative models are not found to be ‘mutually consistent’ with 

respect to inefficiency measures. These results point to an important shortcoming of the 

benchmarking methods in network industries. Furthermore, the results confirm that the 

sensitivity problems reported in the previous literature are not limited to cross sectional data. 

Given that the regulators actually use some of these methods in practice, the analysis in this 

paper has an important implication suggesting that benchmarking analysis should be applied 

with caution. In particular, it is recommended that several models be used and compared. A 

sensitivity analysis should be performed to identify the limitations of different models. 

This paper also uses different cost frontier panel data models to predict the firms’ 

costs. In particular, the out-of-sample prediction performance of different models is studied. 

The prediction errors are within acceptable limits from a practical point of view. The results 

suggest that stochastic frontier models can be used to gain information about costs of 

individual firms. Moreover, certain models with apparent limitations in the estimation of cost-

frontier parameters have a relatively good performance in predicting costs. Although this 

conclusion may be limited to the data used in this paper, the results suggest that cost frontier 
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models can be used as a complementary control instrument in order to narrow the information 

gap between the regulator and regulated companies. An interesting example is provided by 

Antonioli and Filippini (2001) in the regulation of water supply in Italy, where a yardstick 

competition model in line with Schleifer (1985) has been applied. This regulation method is 

based on an interactive approach: The company proposes its tariff in the first stage. The 

regulator estimates a price cap for the firm using a benchmarking analysis and adjusting for 

observed differences among companies. The proposed tariff is approved if it does not exceed 

an acceptable range around the estimated price cap. Otherwise, the tariffs can be renegotiated 

with the requirement that the company justify its excessive tariff before any revision. The 

interaction between the regulator and companies may be helpful in the face of information 

asymmetry. In order to provide a disincentive to renegotiate a penalty can be imposed on the 

companies that do not accept the first-stage prices. In case of disagreement the regulator 

performs a more detailed analysis with additional information from individual companies and 

offers a new price. The probability of disagreement and the flexibility of the regulator depend 

on the prediction power of the adopted econometric models. 
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