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(CKLS)) and some recent extensions allowing for a nonlinear drift and for
changing parameters with a new statistical methodology based on robust
statistics, the Robust Generalized Method of Moments (RGMM). We find
that standard GMM model selection procedures are highly unstable in
these applications. When testing the CKLS models with the RGMM we
find that they are all clearly misspecified and we identify a clustering of
influential observations in the 1979-1982 subperiod, a time span that is
well known to coincide with a temporary change in the monetary policy
of the Federal Reserve. This clustering of influential observations does
not disappear when we introduce a non-linearity in the drift and allow
for a parameter shift during the 1979-1982 period. Moreover, a Cox-
Ingersoll-Ross model (selected by the RGMM) might offer a satisfactory
data description for the period after 1982, since there only a few isolated
outliers are found. Comparable results are obtained for the Euro-mark

case.

Keywords: GMM estimators and tests, one factor models of interest
rates, robust estimation, robust testing, robust model selection.
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1 Introduction

This paper deals with the application of robust statistics in finance and more
precisely with the problem of robustly estimating and testing models for the
short rate process.

The theory of robust statistics is concerned with the construction of statisti-
cal procedures that are stable even when the underlying model is not perfectly
satisfied by the available data set (see Huber (1981) and Hampel et al. (1986)
for an overview). It can deal with a part of the data that is not fully compat-
ible with the distributions implied by the assumed model and therefore can be
seen as a statistical theory dealing with approximate models, rather than with
perfectly specified ones.

Many classical econometric procedures are well-known for not being robust,
because their results may depend crucially on the properties of a few observa-
tions in the sample and in the extreme case on the properties of only one of them.
These procedures are optimal when the assumed model is exactly satisfied, but
they are biased and/or inefficient when some (even small) model deviations are
present. The results obtained by classical procedures can therefore be mislead-
ing in such situations.

Financial models are often estimated and tested with methodologies that do
not explicitly control for the effects of small distributional deviations from the
assumptions'. However, because of the intrinsic complexity of financial markets
and the richness of financial phenomena, we may realistically believe that some
deviations from the assumptions will (almost) always be present when using a
financial model in empirical finance.

It seems therefore natural to treat financial models as approximate descrip-
tions of the financial reality and to work with statistical procedures that can
deal with some amount of ”"abnormal” observations and identify them systemat-
ically. In some cases, it is precisely a detailed analysis of the identified abnormal

observations that will offer new insights and suggestions on the kind of features

!See Knez and Ready (1997) for a recent exception.



that a more accurate model should be able to fit.

Implicitly, we argue that while estimating a financial model it is important
to verify first, if the majority of the data is consistent with the assumed model.
If this is not the case, a more complex model can be introduced. This seems
particularly meaningful in the context of empirical financial modelling, where
parameter estimates and the model selected are often the input for the pricing
and hedging of financial instruments. In practice, one would like to ensure that
the choice of a model used to price and hedge a financial instrument is driven by
the features of the majority of the observed data rather than by single datapoints
or some particular historical period.

Our major purpose in this paper is methodological. We illustrate the ro-
bustness problem by using a robust version of the GMM (hereafter RGMM, see
Ronchetti and Trojani (2001)) within well-known financial applications of the
GMM and demonstrate how the RGMM may be used to produce important
statistical information on a given data set and to identify unmasked statistical
problems when investigating a given financial phenomenon.

We analyze three specific models used for the analysis of the short interest
rate. The first one is a much quoted model proposed by Chan et al. (1992)
(hereafter CKLS), that nests several linear-drift one factor models for the short
rate process. The main result of this paper is that the more appropriate models
for the US short interest rates over the period 1964 to 1989 are those that allow
the conditional volatility of short interest rate changes to be highly dependent
on the level of the short rate. We choose this first model because it is a typ-
ical application of GMM in finance, where estimation and testing procedures
are derived from highly nonlinear orthogonality functions, and because it has
been criticized along many dimensions. On the one hand, there is a debate in
the literature to understand whether we need sophisticated multi-factor models
(Dai and Singleton (2000)). On the other hand, more complex single factor

models such as regime-switching models?, models allowing for nonlinearities in

2See Cai (1994), Gray (1996), Ang and Bekaert (2002), Bekaert, Hodrick and Marshall
(2001).



the drift term®, or models adding GARCH and similar features? still constitute
the workhorse of many recent term structure applications.

When the CKLS models are analyzed with the RGMM, they are all clearly
rejected. The different results produced by the classical GMM are explained and
interpreted by performing a simple sensitivity experiment, where we show that
the classical GMM results are highly unstable. Specifically, we observe strong
instabilities of the GMM test results with respect to relatively large changes in
one influential observation and to very small changes of a larger set of no more
than ten influential observations identified by the RGMM.

Looking at the influential observations found by means of the RGMM, we
identify those observations that are primarily responsible for the different results
between the robust and the classical analysis. In fact, we note that the majority
of them are clustered in the 1979-1982 period, a time span that is well known
to coincide with a temporary change in the monetary policy of the Federal Re-
serve’. This anomalous clustering of influential points may suggest a change
of structure over this period, rather than the existence of a set of isolated out-
liers. This confirms the results in the literature (e.g. switching models), where
this period is found to be the main cause of misspecification in the CKLS set-
ting. It is important to stress, however, that with the RGMM we obtain this
same conclusion without changing the basic model but by slightly modifying
the estimation and testing procedure.

To illustrate this important point further and to emphasize the chance to
discover, using RGMM, a possible misspecification within the original model set-
ting, we re-analyze the findings of two recent articles attempting to extend the
CKLS framework in two particular ways. Among several possible specifications

we choose two, which can be estimated with GMM and which are direct exten-

3See Ait-Sahalia (1996), Stanton (1997), Jiang (1998) and Ahn and Gao (1999).
4See Brenner, Harjes and Kroner (1996), Koedijk, Nissen, Schotman and Wolff (1997) and

Ball and Torous (1999).
5Further influential points show patterns similar to those of the probabilities estimated in

switching regime models (cf. for instance Gray (1996)) and in particular corresponding to the

first OPEC crisis and the October 1987 Stock market crash.



sions of the CKLS models. In particular, as a first example, we analyze a model
with a quadratic drift term used by Ahn and Gao (1999) on monthly dataS.
In this application, we find that while with the classical GMM the quadratic
drift model is not rejected, with the RGMM it is. Here too, we find highly
unstable GMM test statistics and a clustering of influential observations during
the 1979-1982 period, indicating that adding a quadratic drift term in this case
does not help to explain this particular period.

As a second simple extension of the CKLS models, we further analyze a
model that allows for a structural shift in the parameters (see also CKLS, Bliss
and Smith (1999) and Brenner, Harjes, Kroner (1996)). Bliss and Smith (1999)
define a temporary parameter shift between 1979 and 1982, which seems a nat-
ural model extension based on both the evidence for a structural break during
this sub-period in the literature and the robust weights obtained by the RGMM
in the CKLS case. Also for this extension, it turns out that the classical GMM
fails to reject the null hypothesis of no parameter shift while the RGMM re-
jects the unrestricted CKLS model in favor of the temporary structural break
model. However, when we analyze the weights obtained for the models includ-
ing a temporary parameter shift, we find that they are again clustered in the
1979-1982 period, with similar patterns as those identified earlier in the con-
stant parameters models. We therefore conclude that a CKLS model with a
temporary parameter shift is also unable to take adequately into account the
Fed experiment.

Finally, we observe that the structure of the estimated robust weights sug-
gests that a CIR model could be supported by the data after 1982, because in
this time span only a few isolated influential points are found. This last finding
is consistent with Zhang (1999), who would not reject a CIR specification for
the US interest rate series in the post 1982 period. Similar conclusions arise for
the Euro-mark case.

The remainder of the paper is organized as follows. Section 2 introduces some

6A similar specification was used by Ait-Sahalia (1996) in a semi-parametric setting on

daily data.



basic definitions, the RGMM methodology and the models under scrutiny. We
present empirical results in Section 3 where we discuss the sensitivity analyses
of the GMM specification test and the results of the RGMM estimation and
model selection strategy. Section 4 concludes the paper with some summarizing

remarks.

2 RGMM Analysis of Models for the Short Rate

Process

2.1 The CKLS Framework and some Extensions

CKLS consider a class of widely used stochastic processes for the short rate that

are nested within the stochastic differential equation
dry = (a+ Bry)dt + or dWy (1)

where r; is the short rate at time ¢ and (Wt)tzo is a standard Brownian motion
in R. The scalars a and (3 characterize the linear drift component, o is the
instantaneous volatility parameter, while the constant v measures the sensitivity
of volatility with respect to the current interest rate level r;.

By imposing a set of restrictions on (o, 8,0,7) we obtain a well-known class
of models for the short rate. For completeness, these models are listed in Table

I with the corresponding parameter restrictions.
Insert Table I about here
A discretization of (1) yields the discrete-time model
Ty —Ti—1 = o+ PBri_q + &, (2)

where E(e;) = 0 and E(e2) = 02r27,.

The CKLS orthogonality conditions suited for a GMM estimation of (2) are

E(e)=0  E(gri—1)=0  E(n)=0  E(nri—1) =0, 3)



2y
where 1, = €7 — o?r;" .

The CKLS framework may be naturally extended in order to include a non-
linear drift. Ahn and Gao (1999), for example, estimate the parameters of an

extension of (1) where the drift is quadratic and y=1.5",
dry = (Oq + aory + Ozg?“?)dt + U""L}'E)thy (4)
using the orthogonality conditions:

E(et)

I
o

E(eri—1) =0 E(etT,?_l) =0 (5)
E(m;) = 0 E(nre1) =0 E(ntril) =0,

2 "
where ¢, =7 — 11 — (g + @ary 1 + O[37"%71) and n, = e% — UQthl.

A simple GMM testing procedure for a structural break as used in CKLS
and in Bliss and Smith (1999) can be obtained by extending model (2) to

7y — 11 = (4 61D¢) + (B + 62Dy)ri—1 + € (6)

where E(e}) = 0 and E(e}?) = (0% + 63Dt)rfg+6"D‘), and Dy is a dummy

variable. The orthogonality conditions used for a GMM estimation of this model

are

E(¢) = 0  E(gri-1)=0  E(m)=0  E(@mri1)=0
E(G;Dt) =0 E(G;thlDt) =0 E(?];Dt) =0 E(?];thlDt) =0 (7)

where 17} = e — (o2 + 83D, )r; TP,

For example, CKLS test for a permanent parameter shift after October 1979
by setting a dummy equal to zero before October 1979 and to 1 afterwards, while
Bliss and Smith (1999) test for a temporary parameter shift from October 1979
through September 1982 by setting the dummy equal to 1 only from October
1979 to September 1982. As noted in the introduction, the second specification
is consistent with the widespread economic knowledge of a temporary structural

break in the Fed’s monetary policy (the so-called Fed experiment, which started

"The conditions a3 < 0 (or ag < 0if az = 0) and a1 > 0 (or ag > 0 if a; = 0), ensure

that infinity and zero are unattainable; c¢.f. Ahn and Gao (1999), p. 731.



in 1979 and ended in 1982) and with the robust weights obtained in the empirical
analysis of the next section.

The sets of orthogonality conditions (3), (5) and (7) are defined by an un-
bounded orthogonality function and imply non-robust GMM estimators and

tests (see Section 2.3 below for a more detailed explanation of this point).

2.2 An Illustrative Example

In order to illustrate some of the effects of the contamination by outliers, we
generate 200 paths of 300 observations from a discrete-time CIR process (2) with
parameter values a = 0.074, 8 = —0.86 and o = 0.156. The simulated sample
paths are constructed assuming that the length of time between observations
of the diffusion is A = 1/12. We choose these parameter values in order to
produce a monthly autocorrelation and a variability comparable with the CKLS
dataset. We then add an outlier comparable with the one identified by RGMM in
March/April 1980 using the CKLS dataset (see Section 3.2 below). The average
change in the interest rate for the generated series is about 0.5%. We perform
a sensitivity analysis by taking the largest observation® and by contaminating
it with 300 and 400 basispoints respectively. We then compute Hansen’s test
and its robust version at a 5% nominal level. The latter is Hansen’s over-
identification x? test based on a robust GMM estimation (see Section 2.3). Note
that the numerical value of the contaminated observation is not exaggerated
when compared with short rates observed during the 1979-1982 period. In the
CKLS dataset, for example, the variability of the realized short-term rate during
this period is high, varying from 15% to 9.5% in March 1980.

Insert Table IT about here

We want to show the effects of contamination when comparing two models

in the CKLS framework. As a particular alternative we choose the Brennan

8We have chosen to contaminate only the largest observation in order to provide an ex-
ample close to the data structure in CKLS. Similar results arise when more observations are

contaminated by smaller amounts.



Schwartz model. Similar results are obtained with other models. Table II re-
ports rejection rates for the CIR and the Brennan Schwartz hypothesis using the
classical and the robust Hansen’s test. We see that in the absence of outliers,
the classical Hansen’s test performs satisfactorily. First, as expected, the rejec-
tion rate of the Brennan Schwartz specification is higher than the one obtained
using the robust Hansen’s test. Second, the empirical size of the CIR hypothesis
is 8%, but this can be due to sampling variability.

When the series is contaminated by an outlier, the rejection rate for the
Brennan Schwartz model suddenly decreases in the first contamination case
(300bp) to 51% and in the second contamination case (400bp) to 12%, while
the empirical size of the CIR hypothesis drops to 0% in both cases. The robust
test seems to perform acceptably in both cases.

From this simple example, we see that the classical test is not able to distin-
guish correctly between two competing models, once a series is contaminated.
In particular, for the chosen type of contamination the models with high v tend
to be erroneously selected as in the CKLS case. In addition, we notice that this
is similar to the results for the Euro Dm data (Section 3.4), where the classical
GMM test fails to distinguish between different models while the robust GMM

test selects the CIR specification clearly.

2.3 Robust GMM Estimation and Testing

This section describes briefly the RGMM methodology and outlines some of its
features in a simplified CKLS setting. Full details are provided in Ronchetti
and Trojani (2001). A simplified example is discussed in Section 2.4.

Let { X} }+en be an ergodic series and 6 the unknown model parameter to be
estimated. Further, let 4 : RY x © — R be an orthogonality function defining

a set of orthogonality conditions

We stress the dependence of this orthogonality condition on the underlying

model distribution F, since it is precisely the form of this functional relation that
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determines the robustness of a GMM statistic. Let us denote by W := (W, )nen

a set of weighting matrices converging a.s. to
Wo = [Ep(h(X1; 00)h' (X1:60))] '

An optimal generalized method of moments estimator 6 := (6, )nex of the model
parameter g is defined as a sequence of solutions to the optimization problem
(see Hansen (1982))

S

where F,, := %2?21 Ox, is the empirical distribution of X;,...,X,,, and 6,
denotes the point mass distribution at z € RV,

The influence function (IF)Y of the GMM estimator is given by

. X ) -1
[F;0,F) = —|pp2iXiibo) (g{;,oo)WOEF—ah(g(;;eo) x
oh'(X1;0
L i gy) )

The IF of a statistical functional describes the linearized asymptotic bias of a
statistic under single point contaminations 6, of the assumed model distribu-
tion F. Moreover, under weak regularity conditions, boundedness of the IF is
sufficient to control the bias of a statistic in an e-neighborhood of the model F'

defined by
1l—¢)-F+e-G ,

where G is an arbitrary contaminating distribution. An unbounded IF implies
an unbounded bias of a statistic (an estimator, the power or the level of a
test) already under small single point contaminations of the underlying model.
In order to avoid unbounded bias when the model is slightly contaminated a

bounded IF is necessary. Notice (see (9)) that the IF of a GMM estimator is

9Cf. Hampel (1974) and Hampel et. al (1986) for basic definitions and Ronchetti and
Trojani (2001) for the GMM case.
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linearly related to h(-;6g). Therefore, a GMM estimator has a bounded IF if
and only if the function inducing the orthogonality conditions of the model is
bounded in the observations.

The main idea behind the construction of a robust GMM estimator is to
construct a weighted version of A that is bounded and that may again be inter-
preted as a set of GMM orthogonality conditions. For a given constant ¢ > v H
define a new mapping A2 : RY x @ — R by

het™ (2, 0) = Alh(x;0) — 7] - we( Alh(x;0) — 7]) (10)

where w.(y) := min(1, ”1—3”) for y # 0, and w,.(0) := 1, and the nonsingular

matrix A and the vector 7 are determined by the implicit equations:
Eph{"™(X1,00) =0 (11)
and
Ep, b7 (X1,00)h 7 (X1, 00) =T . (12)

The RGMM estimator 52” is obtained by iteratively computing the GMM
estimator associated with the bounded orthogonality function 2. Note that
the expected value (11) is computed with respect to the given reference model
distribution and not with respect to the empirical distribution of the data. In
this paper, as a reference model for (2), we use one with conditionally normally
distributed errors e;. Because of the robustness properties of the RGMM, the
resulting estimator is stable in terms of bias and efficiency in a neighborhood
of the reference model. The results are not too sensitive to slightly different
choices of the reference model'’.

The orthogonality function h7 is a truncated version of h. It takes into
account the realistic case where only the majority of the data can reasonably
fit the original moment conditions by reweighting observations that are less

compatible with the given GMM structure. The weights w.(A[h(z;6) — T])

10A specification with conditionally normal errors has been used by Nowman (1997) in a

maximum likelihood framework.
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assigned to each single observation x are used to detect outlying structures in
the data.

Let us now briefly discuss how RGMM testing procedures are obtained.
The goal of robust testing procedures is to control the maximal bias on the
level and the power of a test that may arise because of a slight distributional
misspecification of a null or an alternative hypothesis. The tuning constant
c for the above RGMM estimator can be chosen so that the bias of the level
and the power of all GMM tests remain within some pre-specified bounds, for
a maximal amount of contamination a researcher may expect, given some prior
information on the nature of the available data.

Specifically, when the underlying null distribution is locally contaminated as

P o= <1 . %) F+ %G ,
where GG is an arbitrary contaminating distribution, the maximal bias on the
level of a GMM test is bounded by the inequality
lim |o¢(PEO,n,G) — a0| < p-(ec)?® + o(e?) (13)

n— 00

where = 152 — 10, 19(ny_, ), Cy(:) is the cumulative distribution function
of a noncentral x?(r) distribution with 7 degrees of freedom, 7,_,, is the 1 —ag
quantile of a x?(r) distribution, ag = a(F) is the nominal level of the test at
the model, while a(P£ n,G) is the asymptotic level under contamination. Similar
inequalities hold for the power of a RGMM test, see Table 1 in Ronchetti and
Trojani (2001).

In Section 3 of the paper we use (13) to choose ¢ so that the maximal bias on

the level of the RGMM tests is below 0.5% for model contaminations € = 5%.
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2.4 A Characterization of Robustness in a simplified CKLS

Framework

Within the CKLS framework the IF of a GMM estimator 6 can be computed,

given the defining orthogonality conditions
EFh(Tta Tt—1, &, ﬁ: g, IY) =0

For illustration purposes we consider a one-dimensional orthogonality function

g (this is the third orthogonality condition used in CKLS) given by
9(0) := h(re, o1, a, 3,0,7) = (ry —ri_q — a — fBre1)? — o?rd, (14)
and assume that under the given short rate model
dry = (a+ Bry)dt + ory dW, (15)

the parameters «, 3 and - are known.
For this case, the IF of the GMM estimator & is easily obtained by means
of (9) as

N 0 0 _
IF((re,rec1);8,F) = —[Epst(0)WoBrg (o))~ Wo (16)
0
X Eps (0)h(rs, 7i-1, 0, 3, 0,7)

oo

= 7EF[2UT7?11]71h(7"t77“t—1:O‘:ﬂao—:7)7

where F is the distribution of (r¢,7;—1) under model (15). As expected, the IF
of & is unbounded, since A is a polynomial in r; and r;_; whose order depends
on 7.

For example, in the Variable Rate model (« = 3 = 0, = 1.5) one obtains

—((re = re1)? = 0?r} )

20Ep(ri_,)

IF((ThTt*l)a&:F) =

Similar structures arise for other CKLS models. In particular the IF is propor-
tional to —h.
As an illustration, we present in Figure 1 a plot of the function —h implied

by (14) for the Brennan Schwartz model.
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Insert Figure 1 about here

The surface plot of the IF is (mainly) negative for single point contaminations
(r¢,7t—1) of the short rate process ranging between 0 and 0.20. Specifically the
negative bias of ¢ is close to zero for contaminations where r; and r;_; are
approximately equal, that is when short rates do not vary excessively. On the
other side, a serious negative bias arises when the contaminations are such that
the probability of a large difference r; — ;1 is high, that is when short rates
move very fast. One would thus expect a GMM estimate ¢ induced by functions
h of this form not to be robust to such large interest rates changes. An even
more extreme surface arises, if we look at the second graph in Figure 1, where

the 6-th orthogonality condition used by Ahn and Gao (1999) p. 732 , that is
E((¢f —o®r}_y)ri 1) =0,

is plotted, which leads to an orthogonality function given by a polynomial of
degree 6 in 74_1.

A robust estimation of the parameters of a short rate model is only a part
of a robust selection of models for the short rate. An even more important task
is the construction of robust testing procedures for comparing different sub-
models. We illustrate this second robustness issue within the simplified GMM
setting (14).

Suppose we would like to test the GMM specification null hypothesis

Ho : Eph(rs,re—1;0n,) = 0; Oy, := (o, B,00,7), (17)

in model (15) using a GMM specification test. The statistical functional &
determining the GMM specification test in our simplified setting is given by the

quadratic form
E(F,) :=U(Fp) :== Wo(Ep, h(re, 7e-1;01,))*

In the present example né(F),) is asymptotically x2(1) distributed under Hj,

when (17) is satisfied by the data. Given a nominal level ag, a test of Hy is

15



then defined by a critical region given by

[n&(Fn) > X3, ()},

where x3_, (1) is the 1 — o quantile of a x? distribution with one degree of
freedom. However, when the distribution G of the data slightly differs from F'
this test can have a nominal level different from o«y.

As in the estimation case, the distortion of the level that is obtained under
single point contaminations of F' can be approximated by the IF of a corre-
sponding statistic. In this simple GMM setting, this bias is proportional to the
squared IF of U (see Heritier and Ronchetti (1994) and Ronchetti and Trojani
(2001)), i.e. in our case to h2(ry,r4_1,a, 3,00,7). Hence, one would expect the
level of such a GMM test to be highly sensitive to large r; — r;_; observations.
This is confirmed by the illustrative example of Section 2.2 and by simulations

in Ronchetti and Trojani (2001) for a simple ARCH specification.

3 Data and Empirical Results

3.1 Data

We first use the CKLS data set, that is the one-month Treasury Bill series taken
from the 12-month Fama Treasury Bill Files included in the CRSP monthly
Government Bonds Files. These are 307 monthly observations from June 1964
to December 1989. As pointed out by Duffee (1996), this data series may not be
ideal for the type of analysis addressed here because of an idiosyncratic variation
in the CKLS data set when compared to other one month US rates series. Given
the methodological focus of this paper, we first present our analysis with the
CKLS dataset to guarantee comparability with the original CKLS work!!.

In a second step, we use the McCulloch and Kwon (1993) dataset over the
period from December 1946 to February 1991 for comparability with the Ahn

LA further analysis over the 1975-1999 period using Eurodollar rates yields the same con-

clusions as those obtained using the CKLS sample.
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and Gao (1999) study, which extends the CKLS model to a diffusion process
with an additional quadratic drift term. This analysis is performed in order to
show that the results are not specific to the CKLS model tested on the CKLS
dataset and that similar findings arise when using one of the most recent CKLS
extensions estimated with the GMM.

In a third step, we also test the RGMM methodology using the one-month
Euro-mark rates (taken from Datastream) over the period from February 1975
to April 2000, for a total of 303 observations. We perform this analysis on the
Euro-mark essentially because we do not want our empirical assessment of the
RGMM to be dependent on the very particular and largely studied structure of
US short interest rates over the CKLS sample period.

Insert Table III about here

Table III reports the means, standard deviations, and first five autocorrela-
tions of the one-month interest rate for the CKLS, the AG and the Euro-mark

dataset.

3.2 RGMM Estimation and Testing of the CKLS Models

We estimate the CKLS models (2) with the RGMM and compare the parameter
estimates with their classical counterparts. The left-hand side of Table IV shows

the classical GMM estimates and Hansen’s statistics. This table corresponds to

Table IIT in CKLS!2.
Insert Table IV about here

As in CKLS, models that allow for values v > 1 are not rejected by Hansen’s
statistic, while models where v € [0,1) are. The RGMM estimates are presented
on the right-hand side of Table IV, where the bound on the RGMM estimator

12Compared to CKLS our data have been taken to be the annualized interest rate. Notice

that the relevant 7y estimates and test results are invariant to scaling.
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for the unrestricted CKLS model was set to ¢ = 5.85'.

With this bound, we identify 14 observations out of 307 where as influential
with corresponding weights we(-) defined in (10) that were less than 1. Using
the bounded orthogonality function (10) the constrained models are estimated.
Based on the robust Hansen’s statistics all models with v < 1 are rejected at
a 5% significance level. This is at odds with the classical result, where models
with v = 1 could not be rejected. Moreover, the significance of rejection of the
single models is high, and the p-value of Hansen’s test changes when comparing
the classical with the robust GMM tests. For the Geometric Brownian Motion
model, for example, the p-value goes from about 0.2 to about 0.00003. Models
with v > 1 are not rejected by standard significance levels!?. Note that the
results for v > 1 are given only for the sake of completeness and comparison
with CKLS, since the standard GMM asymptotic inference does not hold under
this parameter choice (see Broze, Scaillet and Zakoian (1995)).

In order to verify the degree of data contamination we take a closer look
at the identified influential observations in Figure 2, (Panel A and B) where
the weights produced by the RGMM estimator are plotted together with the

corresponding series for the short rate.

Insert Figure 2 about here

We identify automatically fourteen influential observations through the ro-
bust weights. 10 of them occur in the 1979-1982 period. Consistently with the
results of other studies (see Bliss and Smith (1999), Gray (1996), Brenner, Har-
jes and Kroner (1996)) we interpret this as a hint of a model misspecification of
the CKLS models, caused by the change in the monetary policy of the Federal
Reserve. Further inspection shows patterns of influential observations that are

similar to regimes of high volatility and of high mean reversion found in Gray

3 This corresponds to a maximal bias of 0.5% in the asymptotic size of the test for a
model contamination of 5%.; c¢f. Section 2.3. Different choices of ¢ give qualitatively similar

results.

MMoreover, a detailed inspection of the influential points suggests that the unrestricted

CKLS model is also misspecified, see below.
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(1996) and Ball and Torous (1994). These influential points correspond to the
first oil crisis and to the October 1987 stock market crash.

3.2.1 Robustness of the CKLS Findings

To understand the robustness problem of the classical GMM specification test as
well as the difference between a cross-validation technique for the treatment of
single outliers (as used for instance in Bliss and Smith (1999)) and the RGMM,
we perform some sensitivity analyses of the p—value of Hansen’s statistic under
different kinds of model contaminations.

We begin by investigating the robustness of Hansen’s test with respect to
single point contaminations. This corresponds to a contamination € =1/306,
that is approximately around 0.3% of the data. In particular, we perform this
first analysis with respect to changes of the most influential observation corre-
sponding to March 1980. The observed short term rate is 0.1512. We vary this
value between 0.1350 and 0.1674 by steps of size 0.001 and each time we re-

compute the p—value of Hansen’s test for the nested models presented in Table

115

Insert Figure 3 about here

A general inspection of Figure 3 shows steep p—values curves. Therefore,
a small change of the short term rate on the z—axis implies a large change of
the p—values on the y—axis (the value in the middle of the z—axis represents the
observed value of the short term rate, i.e. 0.1512).

For the Merton, the CIR and the Variable Rate models, a change of the short
rate level from 40 to 90 basis points is enough to obtain p-values not rejecting the
model specification at a 5% significance level in the first two cases and rejecting

it in the third. In the Geometric Brownian Motion, the Brennan Schwartz,

15The variability of the realized short-term rate changes around March 1980 is high, with
a change from a 15% to a 9.5% interest rate level just after March 1980. Therefore, the
magnitude of the contamination intervals in the sensitivity analysis is not unrealistic with

respect to the structure of the short-rate observations over this particular period.
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the Dothan and the Constant Elasticity of Variance models (not shown here),
changes of 160 basis points are not enough to obtain reversions of the test
decision. However, the variability of the corresponding p—values is high (ranging
between 0.09 and 0.31 in the first case, between 0.09 and 0.18 in the second,
between 0.06 an 0.20 in the third and between 0.05 and 0.13 in the fourth).
Moreover, for larger contaminations a reversion of the classical test decision
occurs, even with respect to these models. The same sensitivity analysis of
Hansen’s test derived from the RGMM estimator produces p-values that are
very stable for all models. Moreover, the p—values for the first six nested models
are smaller than 10~2 for values of the short term rate ranging between 0.1350
and 0.1674. For the last two models, the p—values are about 0.05-0.10.

The sensitivity of the classical GMM specification tests in this application
is not limited to large contaminations of single observations. To illustrate this
important point we perform a further sensitivity analysis of the p—values of
Hansen’s test with respect to more general contaminations than those considered
above. We move the 6 most influential observations (a contamination of about
e=2%) over a grid contained in intervals of +/- 45 basis points around the 6
observed non-contaminated values of the short rates. The maximal and the
minimal p—values obtained for the respective CKLS models are listed in Table

V.
Insert Table V about here

The maximal sensitivity of the p-values of Hansen’s statistic is again compa-
rable to that obtained for the above single points contaminations with p-values
in the Merton, the Vasicek and the Variable Rate models, which in some cases
reverse the test decision. In other models a high sensitivity arises. In partic-
ular, in the Brennan Schwartz model a clearly higher p-value sensitivity than
in the single point contamination case is obtained (for this model the p-values
are now changing from 0.0497 to 0.2338). Similar sensitivities in the p-values
are obtained when moving the ten most influential observations by 420 basis-

points. This confirms that when testing contaminated models by GMM even
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small changes of a few observations can have a strong impact on the test results.
Notice, that the p-values of the robust GMM are stable and below 10~2 for all
models except the VR and the CEV, and are therefore not plotted.

3.3 Extensions of the CKLS Model

The analysis presented in Section 3.2 confirms the robustness problem of the
CKLS model, particularly when the data sample spans the 1979-1982 period.
Stanton (1997) and Ait-Sahalia (1996) have recently argued that single factor
models with a nonlinear drift term can possibly cope with the high volatility,
high mean-reverting 1979-1982 period. Alternatively Ang and Bekaert (2002a)
find that the nonlinearity of the drift function may be explained by means of
a regime switching model. Bliss and Smith (1999) and Brenner, Harjes and
Kroner (1996) allow a parameter shift in the 1979-1982 period and test for a
possible structural break. Bliss and Smith (1999) find that when allowing the
parameter to change over the 1979 - 1982 period a CIR specification can not
be rejected. In this Section we show that these recent extensions of the CKLS
model face similar problems. Specifically, we extend our robust analysis to a
model with a nonlinear drift term (the one used in Ahn and Gao (1999)), and to
a model with a temporary dummy between October 1979 and September 1982
(as used in Bliss and Smith (1999)). Our main conclusion is that the stability
problems and the clustering of the influential observations around the 1979-1982

period remain, even for these extensions.

3.3.1 A short rate model with a nonlinear drift term?!¢

In this section we show that nonlinear drift extensions of a one-factor model may
have potentially the same robustness problems described in the CKLS frame-
work. We choose to replicate the Ahn and Gao (1999) study, i.e. specification

(4), because it uses data at a monthly frequency as in CKLS and because it is

16The analysis of the quadratic short rate model of Ahn and Gao (1999) was suggested by

al anonymous referee.
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estimated using GMM in its original setting. This specification is a special case
of CKLS, when a3 is set to 0. Ahn and Gao (1999) choose a « value 1.5 in
order to be broadly consistent with the values and shapes of the diffusion func-
tion found in CKLS and with the nonparametric and semiparametric analysis
in Stanton (1997) and Ait-Sahalia (1996). Given the evidence in the preceding
subsections we should be careful when using v = 1.5. However, since the aim of
this study is mainly methodological, we adopt exactly the Ahn and Gao (1999)
parameterization. Similar results arise for different values of 7. In the same
way, we take only one of the many specification tests performed by Ahn and
Gao (1999), since the main message remains the same.

The results for the classical and robust GMM estimation using the orthog-
onality conditions (5) are presented in Table VI.!" First, we remark that the
classical Hansen’s test does not reject the Ahn and Gao (1999) model, while the

robust test clearly does.
Insert Table VI about here

Second, as in the preceding section, the most informative contribution is
provided by the estimated RGMM weights. Figure 4 shows the influential points
given by the RGMM when applied to the AG dataset. We notice that the pattern
of the influential observations is similar to the CKLS case. In particular, there
is again a clustering of influential observations in the 1979-1982 period. This
suggests that the extension of Ahn and Gao (1999) is possibly still misspecified
and in particular is not able to cope with the 1979-1982 period.

Insert Figure 4 about here

As in the CKLS case, the sensitivity of the classical GMM test statistics

can be shown by contaminating the most influential observations. The results

1T Ahn and Gao (1999) estimate their models for two different sample sizes. The full sample
goes from July 1946 to December 1991, the shorter sample from December 1960 to December
1991. We present the estimated parameters for the full sample size. Even more pronounced

results arise using the shorter sample size.
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are not presented here for brevity’s sake. Because of the higher order of the
polynomials in the Ahn and Gao (1999) orthogonality functions the overall

shapes are even worse than those for the CKLS case of Subsection 3.2.1%8.

3.3.2 A Robust Test for Regime Shift

A further straightforward extension used in CKLS, Bliss and Smith (1999) and
Brenner, Harjes and Kroner (1996), is to test for a possible break by allowing
the parameters to change during given particular periods.

The classical and robust GMM results of model (6) for the temporary pa-
rameter shift specification are presented in Table VII. In this analysis the CKLS
dataset has been used, in order to be comparable with the analysis in Bliss and

Smith (1999).
Insert Table VII about here

The classical GMM test does not reject the hypothesis of parameter stability
at a 5% significance level. By contrast,the RGMM statistic now rejects the
GMM specification of the unrestricted CKLS model in favor of one allowing a
temporary parameter shift between October 1979 and September 198219,

However, in Figure 2 (Panel D) we observe again RGMM weights clustering

around the 1979-1982 period, with similar patterns as before?’.

Hence, even
with an ’economically founded’ dummy a similar model misspecification as be-
fore persists, indicating that a CKLS model with deterministic parameter shift
cannot provide a full description of the features of the CKLS data set and more

specifically the Fed Experiment.

18The results of this sensitivity analysis are available from the authors on request.
19Notice that the robust GMM test is tailored to reflect the structure of the majority of the

data. Hence, it can be interpreted as a test of a flexible structural break hypothesis where
the distribution implied by the change in monetary policy revealed by the data can deviate a

little from that given in the dummy definition.
20Similar patches of outliers arise when testing for the (less natural) permanent structural

break hypothesis for October 1979 onward, as in CKLS. The corresponding weights obtained

by the robust GMM are shown in Figure 2 (Panel C).

23



3.4 Further Evidence with Euro-mark Data

Having verified the ability of the RGMM to identify well-known misspecification
structures in the CKLS data set, we apply the RGMM to a test of the CKLS
models for the Euro-mark interest rates. For this series, the kind of misspecifi-
cation that one could expect a priori in the data is less obvious and has been
less investigated than in the US case where the Fed Experiment has clearly
dominated the discussion.

The results obtained for the classical and robust GMM are presented in
Table VIII. When testing with the classical GMM, no model specification is
rejected (with the exception of Merton’s model) while only one model, the Cox-

Ingersoll-Ross one, is not rejected by the RGMM?! at a 5% confidence level.
Insert Table VIII about here

Notice the striking difference with the classical GMM results, where essen-
tially no model specification could be rejected. This is very similar to the lack of
power demonstrated in the example of Section 2.2, where after adding an outlier
to a series of 300 observations generated by a CIR model the classical Hansen'’s
test could not distinguish between a CIR and a Brennan Schwartz specification.

In order to further verify this inference we take, as usual, a closer look at

the estimated robust weights that are given in Figure 5.
Insert Figure 5 about here

We observe a cluster of influential observations around a similar period as
for the US short rates. However, the Euro-DM patterns are slightly different,
with the most influential points situated at the beginning and at the end of the
October 1979 - September 1982 sub-period, rather than in the middle in March
1980. This clustering of influential points corresponds to the regime found in
Ang and Bekaert (2000b).

Additional influential observations are found at the beginning of 1975, co-

inciding with the end of the first OPEC crisis and following the adjustment

21 A5 in Section 3.2 the robustness bound was set to ¢ = 5.85.
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period after the Bretton Woods era. The other three most influential points are
observed at January 1987, July 1988 and December 1990. These observations
almost coincide with three of the four largest specific events pointed out by
Ball and Torous (1999) using a different approach: a Bundesbank announce-
ment (December 1990), an OPEC production agreement (November 1988) and
a tight credit market condition (December 1986). Moreover, when imposing
slightly more robustness (¢ between 5 and 5.5) we also observe an influential
point at the ERM crisis in September 1992.

Finally, as for the US, in the period after 1982 only some isolated influential
points are observed. This suggests again that a CIR model could be able to
provide a satisfactory description of the short rate Euro-DM process starting in

1982.

4 Conclusions

In this paper we have focused on the performance of the robust GMM for the
selection of one-factor models for the short rate process within the standard
CKLS framework and some of its extensions allowing for a nonlinear drift term
and a structural break. We have found evidence of unstable GMM statistics
causing unreliable classical GMM procedures and model selections. In contrast,
RGMM model selection procedures perform well and offer a valid complement
to the classical strategy. We have demonstrated how the new method uncovers
general misspecification structures, thereby avoiding the danger of misleading
statistical conclusions as in the classical GMM analysis. An important feature
of the RGMM is the identification of general influential data points. In the
CKLS dataseries we find a cluster of influential points between 1979 and 1982,
which is the well-known period of the Fed Experiment. This is not only true
for the CKLS model, which is known to be misspecified when applied to US
data spanning the 1979-1982 period, but also for a model with an additional
quadratic drift term and for a model allowing for changing parameters during

the 1979-1982 subperiod.
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From the analysis above, we can learn about some of the risks of classical
GMM testing procedures, where a model is tested against a more general nest-
ing one: If the nesting model is possibly itself slightly misspecified, the resulting
statistics may suggest misleading conclusions about the underlying data gener-
ating process. In such situations, the RGMM can help to highlight this problem
using basically only some bounded, modified GMM orthogonality conditions of
the original model. Before extending a model it is therefore important to un-
derstand first whether the general structure of the data can support it. For
instance, a robust methodology can show whether a more complex model is
preferred just because of differences in a particular historical period. This is
often relevant in particular in the context of pricing and hedging of financial
instruments.

Taking into account the exceptional 1979-1982 period, an alternative strat-
egy is to consider a simpler model like a CIR for the post 1982 period, as it is
often done in practice (see Zhang (1999)). Similar results apply for Euro-DM
data.
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5 Tables

Table I: Alternative Models of the Short Rate??2

Model a B o v restrictions
Merton 0 (Oattainable)
Vasicek 0 B < 0 (Oattainable)
Cox Ingersoll Ross : B < Oand 2a > 02
Dothan 0 0 1 -
Geometric Brownian Motion 0 1 B < 0, (Oattainable)
Brennan Schwartz 1 B < 0and a >0
Variable Rate 0 0 3 (Oattainable)
Constant FElasticity of Variance 0 B < 0, (Oattainable)

BE) . - P
““Natural restrictions have to be imposed on the parameter values to ensure that the drift is
mean-reverting at high interest rate values (infinity not attainable) and zero is unattainable;

see Ait-Sahalia (1996).
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Table II: An Illustrative Example

Empirical size and power of the GMM and RGMM when the underlying

series of 300 observations is generated by a CIR model and when an outlier of

300 and 400 basispoint, respecitvely, is added. The Table reports the rejection

rates in percentage when testing for a CIR and a Brennan Schwartz (BS) model

with GMM and RGMM. The table values are the percentages of rejections of

the specific model. The total number of runs was set to 200. The nominal size

of the test is 5%. The tuning constant c for the robust test is set to 5.85.

Model Non contaminated series | Contaminate by 300bp | Contaminate by 400bp
GMM: reject CIR 8 0 0

RGMM: reject CIR | 5 5 5

GMM: reject BS 92 51 12

RGMM: reject BS 80 64 60
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Table III: Summary Statistics

Means, standard deviations, and autocorrelations of monthly interest rates
from June 1964 to December 1989 for the CKLS dataset, from December 1946
to February 1991 for the McCulloch and Kwon dataset, and from February 1975
to April 2000 for the Euro-mark dataset. r; denotes the short rate at time ¢,
while Ar; = 7,41 — ¢ is the associated monthly interest rate change. Pj denotes

the jth-order autocorrelation coefficient.

Dataset Variables N Mean SD P1 Pa Pa P4 Ps
CKLS Ty 307 0.06715 0.02675 0.95 0.91 0.86 0.82 0.8
Ary 306 0.00009 0.00821 —0.08 0.07 -012 -014 —-0.03
AG Tt 531  0.0482  0.0319 0.98 0.96 0.94 0.93 0.91
Ary 530  0.0001  0.0061 0.022 -0.02 -0.117 —-0.077 -0.017
Euromark T4 303 0.0574 0.02459 0.981 0.964 0.948 0.928 0.904
Ary 302 0.0001 0.0046 —0.049 —-0.020 0.145 0.093 0.112
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Table IV: Classical and Robust GMM Estimates of Alternative
Models for the Short-Term Interest Rate

The parameters are estimated by the classical GMM induced by the original
orthogonality function h and by means of the RGMM induced by the modi-
fied orthogonality function hZ2%" implied by a bound ¢ = 5.85 on the influence
function for the unrestricted model; ¢-statistics are in parentheses. The value of
Hansen’s statistics (¢ for short) are reported with p-values in parentheses and
associated degrees of freedom (d.f.). The parameters are estimated from the

following discrete-time system of equations:

re —ri—1 = o+ Priq + €,

E(e) = 0, E(e?):a%?ﬁl
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Classical GMM

Robust GMM

Model « Jé] o y 13 « 1] o y 13 d.f.
Unrestricted | 0.0034  -0.0493  0.3656  1.4999 - 0.0024  -0.0306  0.3843  1.5371 - -
(1.85)  (-1.53)  (1.36)  (5.95) (1.35)  (-1.02)  (2.52) (9.59)
Merton 0.0005 0 0.0062 0 6.76 0.0005 0 0.0052 0 43.88 2
(1.44) (14.54) (0.034) | (1.48) (14.70) (0.000)

Vasicek 0.0005  -0.0013  0.0062 0 6.80 0.0023  -0.0293  0.0048 0 65.71 1
0.33)  (-0.04)  (14.33) (0.009) | (214)  (-1.63)  (17.32) (0.000)

CIR 0.0011  -0.0102  0.0254 % 4.90 0.0025  -0.0330  0.0215 % 53.84 1
(0.67)  (-0.36)  (15.28) 0.027) | (2.38)  (-1.83)  (20.34) (0.000)

Dothan 0 0 0.0320 1 5.60 0 0 0.0954 1 19.83 3
(15.94) (0.133) (18.57) (0.000)

GBM 0 0.0084  0.0993 1 3.16 0 0.0070  0.0951 1 20.66 2
(1.50)  (16.07) (0.206) (1.34)  (20.10) (0.000)

BS 0.0020 -0.0262 0.0994 1 2.21 0.0025 -0.0330 0.0914 1 29.27 1
(1.24)  (-0.92)  (16.18) (0.137) | (2.40)  (-1.84)  (23.88) (0.000)

VR 0 0 0.05 % 6.31 0 0 0.3485 % 5.39 3
(15.66) (0.098) (19.79) (0.145)

CEV 0 0.0086  0.1354  1.1711 2.98 0 0.0073  0.4619  1.6244 2.88 1
(1.53) (1.18)  (3.59)  (0.084) (1.54) (3.50)  (13.97)  (0.08)
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Table V: Maximal Sensitivities of the p-Values of Hansen’s Test

Under Contamination of the Six Most Influential Observations

The observations corresponding to August 1974, March 1980, November
1980, May 1981, October 1981 and March 1982 are contaminated in the CKLS

dataset. The six observations are moved over a grid contained in intervals of + /-

45 basis points around the original observation. The Table reports the minimal
and the maximal p-values for the CKLS models.

Model Minimal p — Value | Mazimal p— Value
Merton 0.0082 0.1017
Vasicek 0.0016 0.0325
Coz Ingersoll Ross 0.0059 0.0734
Dothan 0.0726 0.1811
Geometric Brownian Motion 0.1211 0.2593
Brennan Schwartz 0.0497 0.2338
Variable Rate 0.0392 0.1688
Constant Elasticity of Variance 0.0645 0.1072

35



Table VI: Classical and RGMM Estimates of the Quadratic Drift
Model

The parameters are estimated by means of the classical GMM induced by the
original orthogonality function A - in the first row of the Table - and by means of
the RGMM estimator induced by the modified original orthogonality function
hb™ (¢ = 6.58) - in the second row of the Table - for the Ahn and Gao (1999)
model (4). The t-statistics are in parentheses. The values of Hansen’s statistics
(¢ for brevity) are reported with p-values in parentheses and associated degrees
of freedom (d.f.). The dataset used is the same as in Ahn and Gao (1999),
spanning the period 12:1942 to 2:1991. The parameters are estimated from the

following discrete-time system of equations:

2
Tt —Ti—1 = a1t aareg+azry g &
2 2 3
E(e)) = 0, E(e;) = o°ry_y
Model o an as o £ d.f

Classical AG | —0.0697 0.0650 —0.0070 0.0370  4.541 2
(—1.08) (1.73) (—1.81) (19.93) (0.103)
Robust AG —0.0276 0.0434 —0.0050 0.0375 21.276 2
(—0.60) (1.50) (—1.50) (26.17) (0.000)
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Table VII: Classical and Robust GMM Estimates of the

Unrestricted CKLS Model

with Regime Shift from October 1979 to September 1982

The parameters are estimated by means of the classical GMM induced by

the original orthogonality function h - in the first row of the Table - and by

means of the RGMM estimator induced by the modified original orthogonality
function A7 (¢ = 6.5) - in the second row of the Table - for the CKLS models
with regime shift defined from October 1979 to September 1982; t-statistics are

in parentheses. The value of Hansen’s statistics (£ for short) are reported with p-

values in parentheses and associated degrees of freedom (d.f.). The parameters

are estimated from the following discrete-time system of equations:

/
re—ri—1 = (a+061Ds) + (B+ 69Ds)ri—q1 + €
/ _ 2y _ .2 2(y+84Dy)
E(e;) = 0, E(e) = (07 +03D¢)r; ) '
(a4 1] (o3 ¥ 61 62 63 6,1 S df
GMM
0.002796 —0.043283 0.007794 1.004215 | 0.022736 —0.179365 —0.005612 —0.540319 | 8.265 4
(2.44) (—2.04) (0.64) (3.63) (1.83) (—1.64) (—0.43) (—0.95) | (0.082)
RGMM
0.001716 —0.021298 0.002287 0.809461 | 0.016947 —0.126808 —0.001999 —0.719627 | 10.358 4
(1.65) (—1.17) (1.00) (4.48) (1.03) (—0.95) (—0.85) (—1.45) | (0.035)
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Table VIII: Classical and Robust GMM Estimates of Alternative
Models for the Short-Term Euro-DM Interest Rate

The parameters are estimated by the classical GMM induced by the original
orthogonality function h and by means of the RGMM induced by the modi-
fied orthogonality function h72%" implied by a bound ¢ = 5.85 on the influence
function of the estimator for the unrestricted model; ¢-statistics are in paren-
theses. The value of Hansen’s statistics (¢ for short) are reported with p-values
in parentheses and associated degrees of freedom (d.f.). We use eurorates from
February 1975 to April 2000 obtained from Datastream. The parameters are

estimated from the following discrete-time system of equations:

Ty =T = a+fri+e

E(e) = 0, E(¢}) = o°ri2,
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Classical GMM

Robust GMM

Model « Jé] o y £ « 3 o y & d.f.
Unrostricted | 0.1010  -0.0165  0.0997  0.8440 ; 0.0966  -0.0204  -0.1669  0.4033 ; ;
(1.24)  (-1.21)  (1.85)  (2.43) (2.16)  (-2.44)  (-4.49)  (3.26)

Merton 0.0248 0 0.6874 0 6.96 | -0.0039 0 0.3084 0 11.66 | 2
(0.56) (6.37) 0.031) | (-0.22) (16.08) (0.003)

Vasicek 01278  -0.0278  0.3341 184 | 00843  -0.017  0.3103 0 8.86 1
(2.23)  (-2.62)  (9.47) 0.176) | (2.07)  (-2.35)  (16.35) (0.003)

CIR 0.1071  -0.0267  0.1654 i 0.60 | 0.0976  -0.0209  0.1402 i 0.49 1
(1.82)  (-2.07)  (9.80) (0.441) | (2.39)  (-2.80)  (17.54) (0.485)

Dothan 0 0 0.0815 1 1.45 0 0 0.0496 1 20.76 | 3
(11.72) (0.694) (14.96) (0.000)

GBM 0 00004 0.0814 1 1.44 0 200050 0.0493 1 19.26 | 2
(-0.11)  (11.35) (0.486) (-1.57)  (14.92) (0.000)

BS 0.0693  -0.0128  0.0781 1 0.25 | 0.0921 -0.0210  0.0496 1 16.60 | 1
(112)  (-L11)  (9.77) 0.618) | (2.25)  (2.82)  (15.16) (0.000)

VR 0 0 -0.0302 3 7.08 0 0 -0.0153 3 3722 | 3
(-10.23) (0.069) (-12.09) (0.000)

CEV 0 200005 -0.0821  0.9944 144 0 200043 -0.1671  0.3920 597 1
(0.11)  (-2.45)  (4.09)  (0.230) (1.36)  (4.24)  (2.99)  (0.015)
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6 Figures
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Figure 1: Function —h (cf. (16)) in the Brennan Schwartz model and in the
quadratic drift model of Ahn and Gao (1999) when only the parameter o is

estimated with one single orthogonality condition.
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Figure 2: USD Short Term Rate (Panel A) and weights of the RGMM Es-
timation (Panel B), of the 'permanent’” dummy setting (Panel C) and of the
‘temporary’ dummy setting (Panel D). Influential observations correspond to

weights that are smaller than 1.
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Figure 3: Sensitivity Analysis for the Classical GMM-Specification Test in the
Merton, the Vasicek, the Cox, Ingersoll, Ross and the Dothan Model. The

March 1980 observation was contaminated.
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Figure 4: Ahn and Gao (1999) data and weights implied by the RGMM es-
timator. Influential observations correspond to weights that are smaller than

1.
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Figure 5: Euro-mark data and weights implied by the RGMM estimator. Influ-

ential observations correspond to weights that are smaller than 1.
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